当前位置: 仪器信息网 > 行业主题 > >

质谱离子源载气流量

仪器信息网质谱离子源载气流量专题为您提供2024年最新质谱离子源载气流量价格报价、厂家品牌的相关信息, 包括质谱离子源载气流量参数、型号等,不管是国产,还是进口品牌的质谱离子源载气流量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱离子源载气流量相关的耗材配件、试剂标物,还有质谱离子源载气流量相关的最新资讯、资料,以及质谱离子源载气流量相关的解决方案。

质谱离子源载气流量相关的论坛

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 你知道几种质谱离子源?

    [font=Optima-Regular, PingFangTC-light]质谱[/font][font=Optima-Regular, PingFangTC-light]仪之间分类一般是按质量分析器来分,如通常我们所说的飞行时间质谱或者四级杆质谱等,但同一台质谱仪可以配几种离子源,每种离子源有哪些特点,该如何选择?[/font][font=Optima-Regular, PingFangTC-light]今天咱们就详细说下质谱主要的几种电离方式及离子源[/font][font=Optima-Regular, PingFangTC-light]。[/font][font=Optima-Regular, PingFangTC-light][size=14px]样品在离子源中电离成离子,比较常用的离子源有与[/size][/font][b][font=Optima-Regular, PingFangTC-light][size=14px][color=#ff4c00]GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光电离(APPI),以及基质辅助光解吸离子化(MALDI)[/color][/size][/font][/b][font=Optima-Regular, PingFangTC-light][size=14px]等等。[/size][/font][font=Optima-Regular, PingFangTC-light][size=16px][color=#0052ff][b]电离方式和离子源[/b][/color][/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]1、电轰击电离(EI)[/b]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。[b]2、化学电离(CI)[/b]电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]3、大气压化学电离(APCI)[/b]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。[b]4、二次离子质谱(FAB/LSIMS)[/b][/size][/font][b][font=Optima-Regular, PingFangTC-light][size=14px][color=#ff4c00]在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。[/color][/size][/font][/b][font=Optima-Regular, PingFangTC-light][size=14px]主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。[b]5、等离子解析质谱(PDMS)[/b]采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]6、激光解吸/电离(MALDI)[/b][/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。[b]7、电喷雾电离(ESI)[/b]电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。[/size][/font]

  • 如何选择质谱离子源

    [color=#000000]我们一起来看看离子源的分类、工作原理和优缺点。希望能对你选择离子源有所帮助哦~[/color] [color=#000000][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]质谱(GC/MS)离子源[/color] [color=#000000]对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]质谱(GS/MS)来说,主要有电子轰击电离源(EI)、化学电离源(CI)、场致电离源(FI)及场解吸电离源(FD)。我们一起来了解一下:[/color] [color=#000000]1、电子轰击离子源(EI)[/color] [color=#000000]EI源主要由电离室(离子盒)、灯丝、离子聚焦透镜和一对磁极组成。灯丝发射电子,经聚焦并在磁场作用下穿过离子余弦定理到达收集极。此时进入离子化室的样品分子在一定能量电子的作用下发生电离,离子被聚焦、加速聚焦成离子束进入质量分析器。[/color] [color=#000000]EI的优点:[/color] [color=#000000]非选择性电离,只要样品能气化都能够离子化;离子化效率高,灵敏度高;EI谱白日做提供丰富的结构信息,是化合物的“指纹谱”;有庞大的标准谱库供检索,谱图是在70eV条件下获得的,谱图重复性好,被称作经典的EI谱(是指谱图中同位素峰的比例能反映构成该离子的天然同位素丰度分布规律。[/color] [color=#000000]EI的缺点:[/color] [color=#000000]样品必须能气化,不适于难挥发,热不稳定的样品;有的化合物在EI方式下分子离子不稳定易碎裂,得不到分子量信息,谱图复杂解释有一定困难;EI方式只能检测正离子,不检测负离子。[/color] [color=#000000]2、化学电离源(CI)[/color] [color=#000000]CI和EI一样,灯丝发射的电子使中性分子电离,不同的是样品和反应试剂一起进入离子化室,反应所浓度高于样品浓度,首先电离的是反应试剂中性分子,由于压力较高,发生离子-分子反应,产生各种活性反应离子,这些离子与样品分子再发生离子-分子反应,实现样品分子电离。常用的反应气试剂有甲烷、异丁烷、氨气等.[/color] [color=#000000]CI的优点:[/color] [color=#000000]CI不仅是获得分子量信息的重要手段,还可通过控制反应,根据离子亲和力和电负性选择不同的反应试剂,用于不同化合物的选择性检测。[/color] [color=#000000]CI的缺点:[/color] [color=#000000]和EI一样要样品必须能气化,不适于难挥发,热不稳定的样品;而且CI谱图重现性不如EI,没有标准谱库。另外反应试剂易形成较高本低,影响检测限。反应试剂的压力需要摸索。[/color] [color=#000000]3、场致电离源/场解电离源(FI/FD)[/color] [color=#000000]由一个电极和一组聚焦透镜组成,电压高达几千伏的电极形成一强电场,气态的样品被导入离子区,在强电场作用下使气态分子的电子被拉出电离,形成的离子不会有过剩的能量,因此电子几乎不再进一步裂解FD源,将样品涂在长晶须的电极上,通过电流加热使样品吸解并在强电场作用下发生电离.[/color] [color=#000000]FI/FD的优点:[/color] [color=#000000]只有分子离子几乎没有碎片离子,而且没有反应试剂形成的本底,谱图比EI图更为简洁。适合于聚合物和同系物的分子量测定,尤其是烃类混合物中各类烃分子量测定。结合高分辨质谱能给出元素组成,从而获得分子式,对化合物鉴定非常有利。[/color] [color=#000000]FI/FD的缺点:[/color] [color=#000000]和EI、CI一样要样品必须能气化,不适于难挥发,热不稳定的样品。FD虽然可解决样品不易气化和热不稳定问题,但FD源的发射丝需要活化成本较高,重现性较差;灵敏度差,别外高电压易发生放电效应,操作难。同时四极杆和离子阱质谱是不能配置FI源。[/color] [img]https://file.jgvogel.cn/134/upload/resources/image/408045.png?x-oss-process=image/resize,w_700,h_700[/img] [color=#000000][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]质谱(LC/MS)离子源[/color] [color=#000000][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱联用仪,简称[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url](LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。下面咱们逐一来了解一下:[/color] [color=#000000]1、大气压离子源(API)[/color] [color=#000000](包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)[/color] [color=#000000]在ESI中,离子的形成是被测分子在带电液滴的不断收缩过程中喷射出来的,即离子化是在液态下完成的。经[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离的样品溶液流入离子源。在N2流下汽化后进入强电场区域,强电场形成的库仑力使小液滴样品离子化,借助于逆流加热N2分子离子颗粒表面液体进一步蒸发,使分子离子相互排斥形成微小分子离子颗粒如图所示。这些离子可能是单电荷或多电荷,这取决于所得的带有正、负电荷的分子中酸性或碱性基团的体积和数量。多电荷离子峰的形成使质量范围为3000u的四极杆滤过器质谱仪也能检测到生物大分子的准确分子量。 [/color] [img]https://file.jgvogel.cn/134/upload/resources/image/408046.jpeg?x-oss-process=image/resize,w_700,h_700[/img] [size=14px][color=#000000]APCI技术与传统的化学电离接口不同,它并不采用诸如甲烷一类的反应气体,而是借助电晕放电启动一系列[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]反应以完成离子化过程,就其原理,它也可被称为放电电离或等离子电离。从[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]流出的样品溶液进入一具有雾化气套管的毛细管,被氮气流雾化,通过加热管时被气化。在加热管端进行电晕尖端放电,溶剂分子被电离,充当反应气,与样品气态分子碰撞,经过复杂的反应过程,样品分子生成准分子离子: [/color][/size] [img]https://file.jgvogel.cn/134/upload/resources/image/408047.png?x-oss-process=image/resize,w_700,h_700[/img] [color=#000000]上式表示一种正离子模式的化学电离过程。R代表溶剂,M代表样品分子,MH+为生成的准分子离子。如果溶剂比样品碱性弱,则生成MRH+,都属于准分子离子。准分子离子也能以负离子模式生成准分子离子,主要应用于具有强的电子亲和力的化合物。样品分子的准分子离子经筛选狭缝,进入质谱计。[/color] [color=#000000]APPI是一种被分析物在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中吸收由真空-紫外发出的电子(10eV或10.6eV)后放出电子而离子化的过程,APPI使用较少。APPI是直接将待测物电离,比较适合非极性或弱极性化合物的分析。[/color] [color=#000000]ESI的优点:[/color] [color=#000000]可生成高度带电的离子而不发生碎裂,这样可将质荷比降低到各种不同类型的质量分析仪都能检测的程度。通过检测带电状态,可计算离子的真实分子量。同时,解析分子离子的同位素峰也可确定带电数和分子量,因同位素峰间的质荷比差与带电数相对应。最大优势是可方便地与分离技术联用。[/color] [color=#000000]ESI的缺点:[/color] [color=#000000]ESI的主要缺点是它只能接受非常小的液体流量(1-10μl/min),这一缺点已被1987年研制出来的离子喷雾接口(ISP)所克服(离子喷雾接口是一种借助气动的电喷雾接口,它可适应较高的流速)。[/color] [color=#000000]APCI&APPI的优点:[/color] [color=#000000]适用于低极性化合物离子化;宽度动态范围(4-5个数量级);质量敏感,可耐受高缓冲液浓度[/color] [color=#000000]APCI&APPI的缺点:[/color] [color=#000000]化合物热稳定性低(最高130-150℃),易挥发,需要掺杂剂[/color] [color=#000000]2、基质辅助激光解析电离源(MALDI)[/color] [color=#000000]在一个微小的区域内,在极短的时间间隔 (ns数量级 )中,激光对靶上待分析物质提供高强度脉冲式能量,使其在瞬间完成解吸和电离,且不产生热分解。MALDI是一种直接气化并离子化非挥发性样品的质谱离子化方式,但是其离子化机理尚不清楚,存在两种可能性:离子在固态时已形成,激光照射时只是简单的释出;或是由激光引发的离子 -分子反应产生的。[/color] [color=#000000]MALDI的优点:[/color] [color=#000000]可电离一些较难电离的样品 (特别是生物大分子 ) ,得到完整的电离产物,且无明显碎片;单电荷分子离子峰占多数,质谱图较简单,适合多组分样品的分析;适用范围广,能耐受一定程度的盐和缓冲液;对样品处理的要求不严格,甚至可以直接分析未处理过的生物样品,从而简化繁琐的制样过程;灵敏度高。[/color] [color=#000000]MALDI的缺点:[/color] [color=#000000]然而在有机小分子、烟草烟气化学成分定性定量分析方面则应用较少。[/color] [color=#000000]2、快原子轰击源(FAB)[/color] [color=#000000] 用加速的中性原子(快原子)撞击以甘油(底物)调和后涂在金属表面的有机化合物(“靶面”),导致这些有机化合物电离的方法称之为快原子轰击(FAB)。以电子轰击气压约为100Pa的中性气体(氩或氦),产生的惰性气体离子经聚焦和加速后撞击靶面导致分析物的离子化称作离子轰击作用。在此基础上将氩离子还原为中性原子,再以加速的中性原子撞击“靶面”即为快原子轰击。分析物经中性原子的撞击获取足够的动能以离子或中性分子的形式由靶面逸出,进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]。产生的离子一般是准分子离子。[/color] [color=#000000]FAB的优点:[/color] [color=#000000]对热不稳定、难以汽化的化合物的分析有独到的长处。尤其是它对肽类和蛋白质分析的有效性,在电喷雾接口出现前是其他接口无法相比的。FAB在肽类和蛋白质分析方面有大量的报道和成功的蛋白质分析实例,显示出在此领域内很强的实用性。[/color] [color=#000000]FAB的缺点:[/color] [color=#000000]只能在低流量下工作(5μl/min),严重限制了[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]柱的分离效果。流动相中含有的1%-5%的甘油会使离子源很快变脏。液体通过石英毛细管时容易造成堵塞。此外,由于它的特殊的制样方法,FAB的一个很大的问题是混合物样品中共存物质的干扰,它们常常会抑制分析物的离子化,造成灵敏度下降甚至根本没有信号产生[/color]

  • 7种质谱电离方式和离子源

    [color=#ff0000][b]1. 电轰击电离(EI)[/b][/color]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为 10eV 左右,50~100eV 时,大多数分子电离界面最大。70eV 能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定。电子轰击电离是应用最普遍、发展最成熟的电离方法。EI 的优点在于易于实现,质谱图再现好,而且含有较多的碎片离子信息,有利于未知物结构的推测。其缺点为当样品分子稳定不高时,分子离子峰的强度低,甚至没有分子离子峰。当样品不能汽化或遇热分解时,则更没有分子离子峰。电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。[color=#ff0000][b]2. 化学电离(CI)[/b][/color]原理是在离子室中通入反应气(压力上升到约 1Torr),用 200~400eV 的电子轰击使反应气分子电离,然后样品分子在高压下与反应气离子发生离子-分子反应生成样品离子。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合 EI/CI 离子源。试剂气一般采用甲烷气 ,也有 N2,CO,Ar 或混合气等。试剂气的分压不同会使反应离子的强度发生变化 ,一般源压为 0.5~1.0 Torr。反应气通常是甲烷、胺、异丁烷等气体。[color=#ff0000][b]3. 大气压化学电离(APCI)[/b][/color]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为63Ni 辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达 9L/S。需要采取减少源壁吸附和溶剂分子干扰。大气压电离是由 ESI 衍生出来的方法。样品溶液仍由具有雾化气套管的毛细管端流出,被氮气流雾化,通过加热管时被汽化 。在加热管端进行电晕放电使溶剂分子被电离形成反应离子,这些反应离子与样品第 179 页分子发生离子-分子反应生成样品的准分子离子。与经典 CI 不同的,是 APCI无须加热样品使之汽化,因而应用范围更广。由于要求样品分子汽化,因而 APCI主要用于弱极的小分子化合物的分析。[color=#ff0000][b]4. 二次离子质谱(FAB/LSIMS)[/b][/color]分析化学论坛在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成 MH 离子,其中有些反应会形成干扰。[color=#ff0000][b]5. 等离子解析质谱(PDMS)[/b][/color]分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流采用放射同位素(如 Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于 FAB/LSIMS,可分析多肽和蛋白质。[color=#ff0000][b]6. 激光解吸/电离(MALDI)[/b][/color]波长为 1250~775 的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为 10000/1。根据分析目的不同使用不同的基质和波长。[color=#ff0000][b]7. 电喷雾电离(ESI)[/b][/color]电喷雾电离采用强静电场(3~5KV),形成高度荷电雾状小液滴,经过反复、的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。ESI 电离是很软的电离方法,通常没有碎片离子峰,只有整体分子的峰。有利于生物大分子的测定。

  • 质谱的离子源系统

    离子源系统的作用就是将中性原子或分子转换成具有一定能量和一定形状的正或负的聚焦良好的离子束。根据被分析物质的状态,它的物理化学性质,选择合适的电离方式。并随着电离方式的不同(例如:电子轰击、离子轰击、场致电离、光致电离、化学电离等),配置必要的组件,组成相应的离子源系统。在离子源电离区域形成的离子,经离子源透镜公聚成品质良好的、合乎需要的离子束。整个离子源的由中性原子或分子到离子的转换效率,取决于离子源的电离效率和离子光学系统的离子传输效率。这对那些要求实现高灵敏度质谱分析的课题,是十分重要的。

  • 质谱仪小知识——离子源

    http://simg.instrument.com.cn/bbs/images/brow/em09502.gif以前还真没接触过质谱,只是因为最近公司进了各种各样的质谱,看看各种牌子的,慢慢的就知道了什么ab的,bruke,micromass等等各家的质谱,也知道版友们说的QQQ,tof,traq等等是神马东西。呵呵,当然,在大虾门面前都是小菜了。 学习总是个循序渐进的过程,因为公司本身的业务要求,比较注重维修维护方面,所以先从仪器的部件下手,先了解一下各式各样的质谱的离子源啦,下面是一些离子源的小资料,供像我们这样的小菜了解了解。 液质联用和气质联用气质联用仪(GC-MS):适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。 GC-MS一般采用EI和CI离子源。EI:电子电离源,最常用的气相离子源,有标准谱库CI:化学电离源,可获得准分子离子。PCI,NCI液质联用(LC-MS):不挥发性化合物分析测定,极性化合物的分析测定,热不稳定化合物的分析测定,大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;液质的离子源种类比较多,这里只列主要的几个。大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)ESI 为电喷雾,即样品先带电再喷雾,带电液滴在去溶剂化过程中形成样品离子,从而被检测,对于极性大的样品效果好一些;APCI 为大气压力化学电离源,样品先形成雾,然后电晕放电针对其放电,在高压电弧中,样品被电离,然后去溶剂化形成离子,最后检测,对极性小的样品效果较好。APPI:大气压光电离源,适用于弱极性的化合物,如多环芳烃等ESI 的软电离程度较APCI 的还小,但其应用范围较APCI 的大,只有少部分ESI 做不出,可以用APCI 辅助解决问题,但是APCI还是不能解决所有ESI 解决不了的问题,一般用ESI 和 APPI 搭配使用比 ESI 和APCI 的应用范围更广一些。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da以上的蛋白质。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,

  • 实验室分析仪器--质谱仪的离子源种类及各自原理

    离子源是质谱仪器最主要的组成部件之一,其作用是使被分析的物质分子或原子电离成为离子,并将离子会聚成具有一定能量和一定几何形状的离子束。由于被分析物质的多样性和分析要求的差异,物质电离的方法和原理也各不相同。在质谱分析中,常用的电离方法有电子轰击、离子轰击、原子轰击、真空放电、表面电离、场致电离、化学电离和光致电离等。各种电离方法是通过对应的各种离子源来实现的,不同离子源的工作原理不同,其结构也不相同。离子源是质谱仪器的一个重要部分,它的性能直接影响仪器的总体技术指标。因此,对各种离子源的共性要求如下:①产生的离子流稳定性高,强度能满足测量精度;②离子的能量发散小;③记忆效应小;④质量歧视效应小;⑤工作压强范围宽;⑥样品和离子的利用率高。[b]一、电子轰击型离子源[/b]电子轰击离子源(electron impact ion source)是利用具有一定能量的电子束使气态的样品分子或原子电离的离子源(简称EI源)。具有结构简单、电离效率高、通用性强、性能稳定、操作方便等特点,可用于气体、挥发性化合物和金属蒸气等样品的电离,是质谱仪器中广泛采用的电离源之一。在质谱分析领域,为了适应不同样品电离的需求质谱仪器会配置不同功能的离子源。但电子轰击源作为一个基本装置,仍被广泛应用在气体质谱仪、同位素质谱仪和有机质谱仪上。应该特别指出,电子轰击源是最早用于有机质谱分析的一种离子源,可提供有机化合物丰富的结构信息,具有较好的重复性,是有机化合物结构分析的常规工具。电子轰击离子源一般由灯丝(或称阴极)、电子收集极、狭缝、永久磁铁。、聚焦电极等组成(见图1)[img=49049846c413a18bd54bf33a180973f.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178115431647.jpg[/img]图1 电子轰击型离子源示意图灯丝通常用钨丝或铼丝制成。在高真空条件下,通过控制灯丝电流使灯丝温度升至2000℃左右发射电子。一定能量的电子在电离室与气态的样品分子或原子相互作用使其部分发生电离。永久磁铁产生的磁场使电子在电离室内做螺旋运动,可增加电子与气态分子或原子之间相互作用的概率,从而提高电离效率。电离室形成的离子在推斥极、抽出极、加速电压(accelerating voltage)、离子聚焦透镜等作用下,以一定速度和形状进入质量分析器。在电子轰击源中,被测物质的分子(或原子)是失去价电子生成正离子:M+eM[sup]+[/sup]+2e或是捕获电子生成负离子:M+e[sup]-[/sup]→m一般情况下,生成的正离子是负离子的10[sup]3[/sup]倍。如果不特别指出,常规质谱只研究正离子。轰击电子的能量一般为70eV,但较高的电子能量可使分子离子上的剩余能量大于分子中某些键的键能,因而使分子离子发生裂解。为了控制碎片离子的数量,增加分子离子峰的强度,可使用较低的电离电压。一般仪器的电离电压在5~100V范围内可调。电子轰击源的一个主要缺点是固、液态样品必须气化进入离子源,因此不适合于难挥发的样品和热稳定性差的样品。[b]二、离子轰击型离子源[/b]利用不同种类的一次离子源产生的高能离子束轰击固体样品表面,使样品被轰击部位的分子和原子脱离表面并部分离子化—一产生二次离子,然后将这些二次离子引出、加速进入到不同类型的质谱仪中进行分析。这种利用高能一次离子轰击使被分析样品电离的方式统称为离子轰击电离。使用的一次离子源包括氧源、氩源、铯源、镓源等。[b]1、溅射过程及溅射电离的机理[/b]一个几千电子伏能量的离子束(初级离子)和固体表面碰撞时,初级离子和固体晶格粒子相互作用导致的一些过程如图2所示。一部分初级离子被表面原子散射,另一部分入射到固体中,经过一系列碰撞后,将能量传递给晶格。获得一定能量的晶格粒子反弹发生二级、三级碰撞,使其中一些从靶表面向真空发射,即溅射。溅射出来的晶格粒子大部分是中性的,另有一小部分粒子失去电子或得到电子成为带正电或负电的粒子,这部分带电粒子称为二次离子。[img=b5d7ca2ed153a848f53723f1c88a292.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178115377492.jpg[/img]图2 溅射离子过程关于二次离子产生的机理,有许多学者进行了研究, Evans的综述认为有两种过程导致二次离子产生。一种是“动力学”过程,连级碰撞的结果使电中性的晶格粒子发射到真空中,其中一部分处于亚稳激发态,它们在固体表面附近将价电子转移到固体导带顶端而电离。另一种是“化学”过程,认为在样品靶中存在化学反应物质,比如氧,由于氧的高电子亲和势减少了自由导带电子数目,这就降低了在固体中生成的二次离子的中和概率,允许它们以正离子发射。反应物质可能是固体中本来就存在的,也可以是以一定的方式加入体系的。在这两个过程中,“化学”过程起主导作用。[b]2、几种常用的一次离子源[/b]目前在离子轰击电离方式中,用于产生一次离子的离子源型号很多,主要介绍下面两种类型的离子源:冷阴极双等离子体源和液态金属场致电离离子源。[b](1)冷阴极双等离子体源[/b]世界上不同厂家制造的SMS仪器,所选用的冷阴极双等离子体离子源可能因生产厂家及型号不同,外形结构差异很大,但基本工作原理类同。图3为冷阴极双等离子源的基本结构示意。冷阴极双等离子体离子源具有电离效率高、离子流稳定、工作可靠及能产生极性相反的引出离子等特点。[b](2)液态金属场致电离离子源[/b]场致电离离子源通常使用的金属有镓、铟、铯等,使用金属离子轰击固体样品表面产生负的二次离子,多用于氧、硫、碳等非金属元素的分析。由于一次金属离子在样品表面会产生电荷累积效应,因此需要配合电子枪使用。图4是铯源的基本结构示意。[img=6e861f14b1d8243a7d37f50da23bf84.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116476680.jpg[/img]图3 冷阴极双等离子源的基本结构示意图[img=c72458c7b868299d2724613ef5b0b90.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116400622.jpg[/img]图4 铯源的基本结构示意图[b]三、原子轰击型离子源[/b]与离子轰击电离相似,原子轰击电离也是利用轰击溅射使样品电离的,所不同的是用于轰击的粒子不是带电离子,而是高速的中性原子,因此原子轰击电离源又称为快原子轰击源(fast atom bombardment source, FAB)。原子轰击源是20世纪80年代发展起来的一种新技术。由于电离在室温下进行和不要求样品气化,这种技术特别适合于分析高极性、大分子量、难挥发和热稳定性差的样品。具有操作方便、灵敏度高、能在较长时间里获得稳定的离子流、便于进行高分辨测试等优点。因此得到迅速发展,成为生物化学研究领域中的一个重要工具。原子轰击既能得到较强的分子离子或准分子离子,同时也会产生较多的碎片离子;在结构分析中虽然能提供较为丰富的信息。但也有其不足,主要是:[b]①甘油或其他基质(matrix)在低于400的质量数范围内会产生许多干扰峰,使样品峰识别难度增加;②对于非极性化合物,灵敏度明显下降;③易造成离子源污染。[/b]原子轰击源中使用的轰击原子主要是Ar原子。在放电源中,氩气被电离为Ar,经过一个加速场,Ar具有5~10keV的能量,快速的Ar进入一个充有0.01~0.1Pa氩气的碰撞室,与“静止”的Ar原子碰撞,发生电荷交换。即:Ar(快速)+Ar(静止)→Ar(快速)+Ar[sup]+[/sup](静止)生成的快速Ar原子保持了原来Ar[sup]+[/sup]的方向和大部分能量,从碰撞室射出,轰击样品产生二次离子。在射出碰撞室的快原子中还来杂有Ar[sup]+[/sup],在碰撞室和靶之间设置的偏转极可以将Ar[sup]+[/sup]偏转掉,仅使Ar原子轰击样品。图5是原子轰击源的结构示意。此外,氙气(Xe)、氦气(He)等其他情性气体的原子也可用作轰击原子使用。[img=76a94ac1e2c48555b7631bc4a90a183.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116426694.jpg[/img]图5 原子轰击源的结构示意图[b]四、放电型离子源[/b]利用真空火花放电在很小的体积内积聚起的能量可使体积内的物质骤然完全蒸发和电离,从而获得具有表征性的离子流信息。 Dempsteri最早把这一现象应用到质谱仪器上实现了当时物理、化学家们用电子轰击型电离源无法解决的铂、钯、金、铱电离的遗留问题完成了当时已知元素同位素的全部测量。这一具有历史意义的成果对后来物理、化学、地质、核科学等学科的发展,起着基础性的促进作用。下面介绍两种典型的放电型离子源。[b]1、高频火花源[/b]高频火花离子源(high frequency spark ion source)是广泛使用的一种真空放电型离子源。由于其对所有的元素具有大致相同的电离效率,因此应用范围较广,可用来对多种形态的导体、半导体和绝缘体材料进行定量分析,是早期质谱仪测定高纯材料中微量杂质的重要方法之一。图6是高频火花放电电离示意。被分析物质以适当的方式制成样品电极,装配时和参比电极相距约0.1mm的间隙。利用加载在两个电极间的高频高压电场使其发生火花击穿来产生一定数量的正离子。[img=c20a2842770bee39eaa9af208c6f2d5.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117263374.jpg[/img]图6 高频火花放电电离示意图使用高频火花源的一个关键是制作电极,对不同形态、不同导电性能的样品有不同的电极制作方法。如果样品是块状导体,可以直接裁制成约1mm直径、10mm长的柱状(或条状)电极;如果是粉末样品,可以冲压成上述形状;液体样品要加充填物。对于非导体材料,则需要采用适当的方法,使电极有较好的导电性能。一种方法是在非导体样品粉末中掺入良导体材料,如石墨、金、银、铟粉,然后冲压成电极;另一种方法是在非导体表面喷镀导电层,或在样品下面衬进导体基片。火花源的缺点:操作技术复杂,造价昂贵,且离子能量发散较大。这些缺陷限制了它的进一步发展和应用[b]2、辉光放电源[/b]辉光放电源是另一种放电电离技术,辉光放电技术先于真空火花放电电离,但用于质谱仪器上却在火花放电电离技术之后。事实上,是由于当时火花源的成就使人们离开辉光放电,而在相隔50多年以后,又是火花源在使用过程中出现的缺陷,促使质谱工作者又重新思考辉光放电技术。正如人们所知,气体放电过程出现的辉光是等离子体的一种形式,等离子体是由几乎等浓度的正、负电荷加上大量中性粒子构成的混合体。出现辉光放电最简单的形式是在安放在低压气体中的阴、阳电极间施加一个电场,使电场中的部分载气(如氩气)电离,电离产生的“阴极射线”或“阳极射线”在残留的气体中朝着带相反极性的方向加速,轰击阳极或阴极,使位于极板上的样品物质气化,部分气化物质的原子在其后的放电过程中电离。[b]五、热电离离子源[/b]热电离离子源是分析固体样品的常用离子源之一。其基本工作原理是:把样品涂覆在高熔点的金属带表面装入离子源,在真空状态下通过调节流过金属带的电流强度使样品加热蒸发,部分中性粒子在蒸发过程中电离形成离子。热电离效率依赖于所用金属带的功函数、金属带的表面温度和分析物质的第一电离电位。通常金属带的功函数越大、表面温度越高、分析物质的第一电离电位越低,热电离源的电离效率就越高。因此具有相对较低电离电位的碱金属、碱土金属和稀土元素均适合使用热电离源进行质谱分析。而一些高电离电位元素,如Cu、Ni、Zn、Mo、Cd、Sb、Pb等过渡元素,在改进涂样技术和使用电离增强剂后,也能得到较好的质谱分析结果。[img=6cb803845e78c0c20db3311688659a1.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117555301.jpg[/img]图7 表面电离源的示意图图7是表面电离源的示意,结构为单带热电离源。当金属带加热到适当的温度,涂在带上的样品就会蒸发电离。单带源适合于碱金属等低电离电位的元素分析。对于电离电位较高的样品为了得到足够高的电离效率,需要给金属带加更高的工作温度。金属带在升温过程中,样品有可能会在达到合适的电离温度之前,因大量蒸发而耗尽。为了解决这一问题,在其基础上又形成了双带和多带热电离源。即在源中设置两种功能的金属带,一种用于涂样,称样品带;另一种用于电离,叫电离带。这两种带的温度可分别加以控制。当电离带调至合适的温度后,样品带的温度只需达到维持蒸发产生足够的束流。这样既能节制蒸发,又能获得较高的电离效率。还有一种舟形的单带,把铼或钨带设计成舟形,舟内放入样品。由于舟内蒸发的样品在逸出前会与炽热的金属表面进行多次碰撞,增加生成离子的机会,因此,舟形单带的电离效率可接近于多带电离源。[b]六、电感耦合等离子体离子源[/b]利用高温等离子体将分析样品离子化的装置称为电感耦合等离子体离子源,也叫ICP离子源。等离子体是处于电离状态的气体。它是一种由自由电子、离子和中性原子或分子组成的且总体上呈电中性的气体,其内部温度可高达上万摄氏度。电感耦合等离子体离子源就是利用等离子体中的高温使进入该区域的样品离子化电离。ICP离子源主要由高频电源、高频感应线圈和等离子炬管组成(图8)。利用高频电源、高频感应线圈“点燃”等离子体炬管内的气体使其变成等离子体。等离子体炬管由三根严格同心的石英玻璃管制成。外管通常接入氩气,流量控制在10~15L/min,它既是维持ICP的工作气流,又起到冷却作用将等离子体与管壁隔离,防止石英管烧融;中间的石英管通入辅助气体,流量为1L/min左右,用于“点燃”等离子体;内管通入0.5~1.5L/min载气,负责将分析样品送进等离子体中进行电离。由于ICP离子源是在常压下工作的,因此产生的离子还必须通过一个离子引出接口与高真空的质量分析器相连,这就需要应用差级真空技术,如图8所示。通常是在样品锥和截取锥之间安装一个大抽速前级泵,在此形成第一级真空,此真空维持在100~300Pa范围。截取锥之后为第二级真空,装有高真空泵,真空可达0.1~0.01Pa范围。电感耦合等离子体离子源最大的特点是在大气压下进样,更换样品非常简单、方便。此外,由于等离子体内温度很高,样品电离的效率高,因此,电感耦合等离子体离子源可提高质谱仪器元素的检测灵敏度。但是,同样在高温状态下生成的分子离子也会严重干扰对被检测样品成分的鉴别。超痕量分析中,样品处理过程中应注意可能有来自试剂、容器和环境的污染。[img=9ce118fc568554297ba172fbfaa3aa8.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117157289.jpg[/img]图8 电离耦合等离子体离子源示意图[b]七、其他类型的电离技术1、激光电离技术[/b]具有一定能量的激光束轰击样品靶,实现样品蒸发和电离,即激光电离(laser ionization,L电离的概率取决于激光脉冲的宽度和能量。当选择单色光激光器作为电离源,可进行样品微区分析,样品的最小微区分析区域与激光的波长有关。分析灵敏度在10量级,分析深度为0.5um,空间分辨率1~5um。随着激光束的不断改进,剖析深度可以达到几十微米,配备数字处理系统,还可得到样品的三维离子分布图。激光电离飞行时间质谱仪就是一种典型的使用激光电离技术的质谱分析仪器。从脉冲激光束开始照射样品,到质谱分析的完成,时间很短,分析效率极高。现在,随着激光技术的快速发展和激光发生器生产成本的降低,激光电离技术已越来越多地用在不同类型的质谱仪上,得到广泛应用。[b]2、激光共振电离技术[/b]激光共振电离(laser resonance ionization,LRI)是20世纪70年代发展起来的激光电离的另一种形式,基本原理是基于每种元素的原子都具有自己确定的能级,即基态和激发态。量子力学揭示这些能级是分离而不是连续的。当某一个处于基态的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]了激光特定能量的光子,跃迁到激发态能级,便实现了共振激发。处于激发态的原子如能再吸收光子,只要两次吸收的光子能量之和大于该原子的电离能,即可使该原子电离,这一过程称为 LRI LRI的基本特征是:对被激发的元素具有非常强的选择性。LRI与质技术相结合组成的激光共振电离质谱仪(laser resonance ionization mass spectrometry,LRIMS)是20世纪后期发展起来的一种新型质谱技术,能够有效地排除其他同位素质谱测量过程中难以克服的同质异位素干扰,灵敏度、丰度灵敏度高,适合核反应过程中的低产额裂变核素测量,也为地球化学、宇宙化学研究中的稀有核素分析提供强有力的支持。Mainz大学使用该技术测量了Ca、u、Np等元素,对Ca的探测限达到10[sup]6[/sup]个原子。曼彻斯特大学采用冷端富集与激光脉冲电离方式实现了惰性气体的高灵敏度分析,对[sup]132[/sup]xe的探测限达到1000个原子

  • 质谱TIS离子源

    请问质谱TIS离子源是啥?[color=#444444][b]在文章中直接写HRMS-TIS (m/z): Calcd for....可以吗?[/b][/color]

  • ETD,CID是质谱的离子源吗?

    [color=#444444]在说到质谱的离子源时,人们常提的是EI,CI,FD,FAB, ESI, APCI,APPI,MALDI那在做蛋白组的时候,常常还提到 ETD,CID,那它们属于质谱的什么部分呢。[/color]

  • 【质谱比较】气质与液质的离子源区别

    离子源的性能决定了离子化效率,很大程度上决定了质谱仪的灵敏度。常见的离子化方式有两种:一种是样品在离子源中以气体的形式被离子化,另一种为从固体表面或溶液中溅射出带电离子。在很多情况下进样和离子化同时进行。本期主题:气质与液质的离子源区别讨论内容:1、气质与液质常用的离子源2、气质与液质的离子源在离子形成上主要区别在哪?筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • “源”来如此——生物质谱的离子源探究

    每一个新现象的发现就会促使一个理论产生,而每一个理论的发表都会诞生出一大批的应用。质谱行业也是如此。而作为质谱系统的急先锋,离子源的进步也把质谱系统带进了一个个新鲜的行业和领域。生命科学领域,最近数年一直是质谱的大卖场之一,作为一名质谱的使用或者科研人员,您对每种离子源,APCI,ESI,MALDI,包括最近一段时间出现的黑马DART源等在质谱应用上的推动作用有什么想法呢,期待您的参与。

  • 质谱年会最新产品-纸喷雾离子源质谱仪

    质谱年会最新产品-纸喷雾离子源质谱仪

    [align=center]质谱年会最新产品-纸喷雾离子源质谱仪[/align]2019年4月在 MSACL US2019研讨会上,质谱研发厂商重磅推出最新直接采样系统纸喷雾离子源。我正好有幸在2019年8月12号新旧动能转换-中美精准医疗高峰论坛亲眼见到了这一新技术的真机,新技术都会得到大家的宠爱,在茶歇时间我们都围过去询问了很多关于纸喷雾的问题,那么纸喷雾离子源到底是什么呢?纸喷雾直接采样技术实际上是通过实现:无样品前处理、极低的有机溶剂消耗量、无样品残留和快速准确地完成药物分析为目标,只需3步即可完成质谱分析:Step 1. 将含有滥用药物及内标物的血液或尿液直接加载在三角形纸片中,制备出尿斑及血斑;Step 2. 将湿润溶剂滴加在样品点上;Step 3. 加入喷雾溶剂且同时施加喷雾电压辅助化合物电离。 整个过程由仪器自动完成,无需人工操作。下图是操作流程图。[img=,690,246]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131734271500_3641_3255306_3.jpg!w690x246.jpg[/img]每天,分析实验室面临着不同挑战,这可能源自样品积压,更高的样品成本,以及如何找到有经验的实验室技术人员,色谱维护和停机时间。[img=,690,389]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131734437364_8661_3255306_3.jpg!w690x389.jpg[/img]纸喷雾离子源以独特方式解决了这些问题,将纸喷雾离子源与下一代最新技术质谱仪结合起来,通过基于自动化,高通量,直接质谱的样品分析,缩短了测试结果所需时间并降低测试成本。纸喷雾离子源允许使用稀释和喷射的方法,最大限度的减少溶剂消耗和耗时的样品前处理步骤,如衍生化,同时无需专家级操作人员,并尽可能减少仪器停机时间。下图为纸喷雾离子源质谱仪。[img=,690,543]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131738305176_7995_3255306_3.jpg!w690x543.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131738308356_1121_3255306_3.jpg!w690x517.jpg[/img]那么纸喷雾直接采样技术代替传统的液相色谱分离主要优势体现在以下四个方面:● 极大缩短分析时● 提高分析通量● 搭载高通量多样品板加载器● 实现8小时内完成约240个样品的筛查检测[color=#3E3E3E]在常规[/color][color=#3E3E3E]UHP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url][/color][color=#3E3E3E]分析中,峰宽通常在几秒内,这经常导致每个化合物色谱峰点数不够影响实验结果的情况。而纸喷雾直接采样技术,使用纸喷雾直接采样技术,化合物会同时在[/color][color=#3E3E3E]1-2min[/color][color=#3E3E3E]采集时间内被洗脱,这给化合物[/color][color=#3E3E3E]SRM[/color][color=#3E3E3E]扫描提供了充足的时间。[/color]利用技术,我们尝试对尿斑中19种滥用药物进行快速筛查分析,并对其中两个化合物——可卡因、苯甲酰爱康宁进行定量测定。为了评估测试灵敏度能否满足相应化合物分析要求,分别测试各化合物目标浓度曲线下面积(AUC)需大于等于基质空白面积的四倍。 结果表明19种化合物均符合要求。在定量方面,使用内标法对可卡因与苯甲酰爱康宁进行定量分析,线性范围在5-1000ng/mL下定量曲线如图所示:[img=,690,323]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131738496740_8727_3255306_3.jpg!w690x323.jpg[/img][img=,690,313]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131738496415_846_3255306_3.jpg!w690x313.jpg[/img][align=center][color=#3E3E3E]15[/color][color=#3E3E3E],[/color][color=#3E3E3E]100[/color][color=#3E3E3E],[/color][color=#3E3E3E]800[/color][color=#3E3E3E]三个浓度水平下[/color][/align][align=center][color=#3E3E3E]基质加标样品定量测试精密度与准确度[/color][/align]通过高通量自动化流程,使用先进的机械臂点样器可以探测样品板,可以容纳多达十块样品板,可无人值守分析多达240个样品。样品板装载器条形码读取功能被整合到LIS系统中,简化了工作流程。样品板见下图。[img=,690,550]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131739124513_4316_3255306_3.jpg!w690x550.jpg[/img][img=,690,1189]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131739133984_686_3255306_3.jpg!w690x1189.jpg[/img]

  • 离子源位置和质谱响应的关系

    离子源位置和质谱响应的关系

    近期在摸索黄曲霉毒素的液质分析条件,纯溶剂(水:乙腈=90:10)条件下,4种毒素B1/B2/G1/G2的定量限只能做到0.1-0.2ppb和另一家的TQ相比,灵敏度差了至少1个数量级以上,于是怀疑参数没有优化到最好,开始重新优化参数。质谱参数如锥孔电压、碰撞能量等重新优化后和原先差不多,雾化气、去溶剂气和反吹气参数也大致相同,主要调节了离子源的三维位置,如图所示。http://ng1.17img.cn/bbsfiles/images/2013/09/201309032005_462039_1970765_3.jpg我是用T通流动注射方式来优化的,如下图所示。http://ng1.17img.cn/bbsfiles/images/2013/09/201309032005_462041_1970765_3.jpg注射泵进的是黄曲霉毒素单标(10uL/min),LC进的是流动相(水:甲醇+乙腈(1:1)=45:55,流速0.29mL/min),这样来模拟一个真实进样环境,监控分析物的定量离子对的MRM响应,从而优化得到最佳的离子源位置。从Orifice孔的轴线方向看,当把探头(Probe)越往里移动时,质谱响应越高,直到探头移不动为止,响应比最开始增加了3倍以上然后又调节了Probe出口的喷雾针伸出长度,刚开始固定在伸出套管2mm左右,后来尝试着增大伸出长度,发现响应越来越高,在最佳灵敏度时目测了下大概伸出长度有7-8mm。通过优化离子源位置,发现质谱响应比没优化前高了5倍左右,于是非常开心的拿了配好的混标(10ppb)进样,结果一进样发现基线噪音有1.0e4cps,四种毒素都没有出峰,难不成离子源位置太靠里,造成分析物响应升高的同时,基线噪音也随之增加,可是用T通流动注射优化时,也分辨不出来啊。各位,你们对这个情况是怎么看的呢?顺便问下论坛里做过黄曲霉毒素的筒子,你们仪器的定量限大概在什么范围?

  • 皖仪科技申请质谱离子源进样装置及进样方法专利

    据国家知识产权局公告,安徽皖仪科技股份有限公司申请一项名为“质谱离子源进样装置及进样方法“,公开号CN117650038A,申请日期为2023年11月。[align=center][img=专利图.png]https://img1.17img.cn/17img/images/202403/uepic/07d50b7f-736b-4a98-8f41-0c7cb8a5f914.jpg[/img][/align]专利摘要显示,本发明公开了质谱离子源进样装置及进样方法,进样装置包括样品打印头、样品床、雾化器以及真空接口。样品的进样方法为,样品从样品打印头喷射到载样纸中;载样纸通过加热器加热,使样品的溶剂挥发,样品在载样纸中形成样品斑,同时,滚筒驱动载样纸绕着滚筒旋转,使样品斑朝向真空接口的方向移动;雾化器喷射的带电溶剂喷雾射向载样纸,使样品斑中的化合物在带电溶剂喷雾中溶解,并被后续的带电溶剂喷雾溅射弹起,形成带电样品?溶剂液滴;液滴通过库伦爆炸形成带电离子;带电离子在真空接口位置被电场吸引,并进入真空接口内完成进样。[b]该进样装置及进样方法,使样品不需要经过复杂的前处理可以直接上样,降低了工作量。[/b][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 安捷伦质谱5975B怎么烘烤离子源?

    如题,安捷伦的质谱5975B怎么烘烤离子源呢,工程师告诉我说在调谐的那个界面找bake ,再设时间,没找着啊?工程师也一直不回信。求助大家

  • 质谱离子源上的毛细管柱

    各位大侠:请教下:质谱离子源上的毛细管柱是什么样的?是不是就是空的毛细管啊?像热电和AB的质谱上离子源的毛细管可以用普通的国产的产品来替代么?

  • 【求助】质谱离子源灯丝的问题

    通过万用表测量残气分析质谱的离子源灯丝发现灯丝居然对地有三十几兆欧,而且Reserve(收集极)对地也有十几兆欧,这个好像是有问题的吧,可是也不知道问题在哪?恳求各位大侠赐教!先谢过了!

  • 液质联用质谱的APCI离子源

    [color=#444444]我们在把ESI 源换成APCI源时发现,APCI源的蒸发器温度达不到设定的要求。质谱出峰较小,同时有液滴从离子源中直接滴下来,有人说是离子源的蒸发器坏了。我想问下,出现这种情况怎么解决。[/color]

  • 2011 BCEIA 质谱仪器与技术评议--聚焦离子源

    2011 BCEIA“质谱仪器与技术评议”活动安排活动一 2011质谱技术评议--聚焦离子源时间:2011年10月13日 上午9:00-12:009:15 CaptiveSpray离子源技术与应用,布鲁克公司蒲海,9:40 解吸电晕束离子源的开发与进展,岛津公司孙文剑,10:05 封闭式可调气氛电喷雾离子源研发,好创生物朱一心,10:30 多通道直接进样系统与应用,华质泰科刘春胜,10:55 离子淌度离子源,AB 公司蒋鸿剑,地点: 北京展览馆二号馆二层第八会议室活动二 便携式气质联用仪现场评议时间:2011年10月13日 下午13:00-17:00地点: 北京展览馆二号馆二层第八会议室中国分析测试协会分析测试仪器技术评议办公室

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制