当前位置: 仪器信息网 > 行业主题 > >

紫外吸收高分子实验

仪器信息网紫外吸收高分子实验专题为您提供2024年最新紫外吸收高分子实验价格报价、厂家品牌的相关信息, 包括紫外吸收高分子实验参数、型号等,不管是国产,还是进口品牌的紫外吸收高分子实验您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外吸收高分子实验相关的耗材配件、试剂标物,还有紫外吸收高分子实验相关的最新资讯、资料,以及紫外吸收高分子实验相关的解决方案。

紫外吸收高分子实验相关的资讯

  • 岛津推出塑料及环境中苯并三唑类紫外吸收剂的测定方案
    苯并三唑类物质是种较好的紫外光吸收剂,具有性能稳定、毒性低、吸收紫外线的能力强、能够抑制或减弱光降解作用、提高合成材料的耐光性能和与高分子材料相容性好的特点。所以广泛地应用于聚烯烃、聚酯树脂、涂料、食品包装、感光材料等各种合成材料制品中。但是苯并三唑遇明火可燃,并产生有毒气体一氧化碳和氮氧化物。如吸入环境中的苯并三唑类化和物,可引起鼻炎、支气管炎、发热以及由于气管炎症而引起的迷走神经紧张等症状,所以需对其在塑料及水质、土壤等环境基质中的含量进行限制。我国2007版《化妆品卫生规范》对亚甲基双苯并三唑基四甲基丁基酚的用量作了详细限制。欧盟76/768EEC标准、美国食品和药物管理局(Food and Drug Administration,FDA)规定辛普紫外线AB全波段防晒剂UVAB480-P(亚甲基双苯并三唑四甲基丁基苯酚)用于防晒化妆品的最大用量不得超过百分之十。 岛津公司作为全球著名的分析仪器厂商,进入中国已经30多年,长期以来一致关注国内外各行业标准法规的颁布与实施,积极应对,及时提供全面、有效的解决方案。岛津公司拥有完整的仪器产品线,并与国家环境分析测试中心、研究院所共建实验室开展了环境保护相关的多项工作。&ldquo 十二五&rdquo 国家环境保护标准修订期间,岛津公司分析中心先后与中日友好环境监测中心,江苏省环境监测站、上海市浦东新区环境监测站、上海市普陀区环境监测站、沈阳市环境监测站等环境部门合作,在各项环境标准的制定及验证过程中取得了丰硕的成果。本应用方案采用岛津公司GCMS-QP2010 Ultra气相色谱质谱联用仪,对塑料及环境中的苯并三唑类紫外吸收剂进行了检测。汇编成了《塑料及环境中苯并三唑类紫外吸收剂的测定》应用方案,以帮助更多的客户解决塑料、水质和土壤等突出的环境检测问题。主要内容包括: 1 相关法规 2 苯并三唑类物质的理化性质 3 检测流程 4 检测步骤 5 主要前处理样品流程图片 6 技术数据 了解详情,请点击下载最近解决方案:《塑料及环境中苯并三唑类紫外吸收剂的测定》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 总有机碳TOC对比紫外吸收—与体积排阻色谱SEC连用
    简介体积排阻色谱法(SEC,Size Exclusion Chromatography)是将样品分子按照尺寸大小来分开的分析方法。流动相以填充有多孔珠状材料的色谱柱来承载样品分子,样品分子可以在孔和空隙(即填充物周围的空间)之间自由移动1。小分子在孔空间中停留的时间较长,大分子在孔空间中停留的时间较短,因此能够按照分子的大小将其分开1。SEC系统可以方便地同其它监测方法(如TOC、吸光度、荧光检测等)搭配使用2-4,结果数据显示分子量(MW,Molecular Weight)与强度(即TOC浓度、吸光度、荧光特征)的详细比较色谱图,可以用来表征有机物(OM,Organic Matter),并帮助我们深度了解水处理工艺2-4。有机物和分子尺寸在批量水处理工艺中,需要测量TOC和吸光度来满足法规要求,但这些技术只能将有机物的复杂性简化成单一数据点,来代表批量水系统的成分5。而实际上水中的有机物由许多复杂分子组成,分子大小和分子量都差别很大,从小于500道尔顿到大于2万道尔顿2-5。人们按照分子量来分类有机分子,例如最大分子量的分子为生物分子(分子量大于2万道尔顿)2,中等分子量的分子为腐殖物分子(分子量为500-3000道尔顿)6。有机分子的大小决定了其某些性质,例如能否反应产生消毒副产物,以及是否易于在水处理过程(即膜过滤、凝聚)中被去除2-4。SEC搭配TOC和吸光度检测在过去的几十年,有机物的SEC分析法越来越流行。如今SEC分析法已广泛用于研究和工业领域。早期的SEC分析法用紫外吸光度作为主要检测方法2-4。但吸光度仅适用于发色分子,而大量的非发色有机物无法被吸光度检测到,从而导致人们对水质的误判3,4。近年来,SEC分析法采用TOC作为检测方法。SEC和TOC搭配使用,能够检测出给定样品中的所有有机物3,4。就像批量水分析一样,将SEC-TOC数据同SEC-吸光度数据一起使用,就能得出有机物性质的信息(即有机物中的脂肪族与芳香族的比例)2-4。SEC-TOC-吸光度的工业用途有机物的SEC分析提供了有关有机物表征和水处理工艺效果的详细数据。不同的水处理过程会对不同分子量和类型的有机分子产生不同的处理效果3,4,因此上述数据极具实用价值。例如膜过滤只能去除大于特定分子量的有机分子,凝聚能从腐殖质中去除芳香族分子(即发色分子),臭氧氧化能将较大的芳香族分子分解为较小的脂肪族分子。与批量水分析相比,在监测水处理过程中的有机物变化方面,SEC分析具有明显优势。有机物表征能够帮助我们预测和确认处理工艺对水中的特定有机物的处理效果,以及哪种处理工艺最有效3,4。下文“性能数据”部分中的示例显示了用SEC分析来表征有机物并跟踪水处理过程中有机物含量变化的能力。解决方案Sievers M9 TOC分析仪有在线运行模式,可以作为检测器同HPLC-SEC系统搭配使用。优点样品制备和仪器操作便捷SEC-TOC系统可以与其它类型的检测器(如吸光度、荧光特征等)搭配使用,一次运行即可获得多组数据结果数据显示分子量与 TOC 的详细色谱性能数据下面是用HPLC-SEC来表征有机样品和水处理工艺效果的示例。用HPLC-SEC系统搭配吸光度(Agilent 1260 Infinity II多波长检测器)和TOC(Sievers M9 TOC分析仪)来分析样品。本文着重讨论结果数据所显示的几个要点。水处理工艺的效果以下是来自水处理厂的示例数据。在示例中,水经过凝聚,然后经过膜过滤。表2中显示了同一样品的批量水分析数据。图1a和b显示了SEC分析的色谱数据。讨论SEC-TOC和SEC-紫外色谱图看上去不同,这是因为SEC-TOC检测所有有机分子中的总碳浓度,而SEC-UV只检测吸收光的有机分子(即发色有机物,只占总有机物中的一部分)。SEC色谱图将一维的批量水数据点扩展为分子量与 TOC 或紫外吸光强度的详细显示。我们无法从批量水分析中得到其它具体结论。两个主要的分子量峰值部分(见图1a中的“峰值 1”和“峰值 2”)代表有机物。峰值1位置的有机物吸光度较弱,基本上属于脂肪族。峰值2位置的有机物吸光度较强,基本上属于芳香族。凝聚去除峰值1和峰值2的有机物。凝聚只去除峰值2的发色有机物(即芳香族分子)。 膜过滤只去除峰值1的有机物,由此可知峰2的有机分子小于本研究中所采用的膜过滤分子量截止值。 臭氧处理的效果本文还显示了用臭氧在2个剂量下(从“剂量1”增加到“剂量2”)处理有机物的示例。我们用前面示例中所描述的SEC系统进行分析。表3、图2a和2b列出了结果数据。讨论臭氧处理可以分解高分子量的有机物,产生低分子量的有机物。随着臭氧用量的增加,产生的处理效果增强。新产生的分子位于约1000道尔顿的独特峰值处。臭氧处理破坏发色分子(即芳香族分子)。不产生新的发色分子(即芳香族分子)。新产生的低分子量分子(峰值在约1000道尔顿处)是脂肪族分子(不吸收紫外线)。结论SEC-TOC分析对分析有机物非常有用,能够大大扩展从批量水分析中得到的数据。分析结果提供了分子量与TOC的详细比较色谱。此分析系统可以方便地与其它类型的检测器(如紫外吸光度检测器)搭配使用,结果数据可用于表征有机物,帮助我们深入了解水处理过程,优化水处理工艺。Sievers M9 TOC分析仪可以以在线模式来进行SEC检测,实现更好的水处理工艺的表征和控制。参考文献1. Striegel, A. M., Yau, W. W., Kirkland, J. J., & Bly, D. D. (2009). Modern size-exclusion liquid chromatography: Practice of gel permeation and gel filtration chromatography. Hoboken, NJ: Wiley. 2. Her, N., Amy, G., McKnight, D., Sohn, J., & Yoon, Y. (2003). Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Research, 37(17), 4295-4303. doi:10.1016/s0043-1354(03)00317-8 3. Her, N., Amy, G., Foss, D., Cho, J., Yoon, Y., & Kosenka, P. (2002). Optimization of Method for Detecting and Characterizing NOM by HPLC−Size Exclusion Chromatography with UV and On-Line DOC Detection. Environmental Science & Technology, 36(5), 1069-1076. doi:10.1021/es015505j 4. Allpike, B. P., Heitz, A., Joll, C. A., Kagi, R. I., Abbt-Braun, G., Frimmel, F. H., . . . Amy, G. (2005). Size Exclusion Chromatography To Characterize DOC Removal in Drinking Water Treatment. Environmental Science & Technology, 39(7), 2334-2342. doi:10.1021/es0496468 5. Chin, Y., Aiken, G., & O' loughlin, E. (1994). Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances. Environmental Science & Technology, 28(11), 1853-1858. doi:10.1021/es00060a015 6. Perdue, E.M., Ritchie, J. D., (2003). Dissolved Organic Matter in Freshwaters. In H. D. Holland, K. K. Turekian, Treatise of Geochemistry (pp. 273-318). Elsevier Science. 7. Leenheer, J.A. (2009). Systematic Approaches to Comprehensive Analysis of Natural Organic Matter, Annals of Environmental Science, 3, 1-130◆ ◆ ◆联系我们,了解更多!
  • 【瑞士步琦】从猫爪草提取物当中有效分离紫外吸收与非紫外吸收成分
    从猫爪草提取物中分离紫外吸收与非紫外吸收成分Pure 应用”猫爪草是一种热带藤本植物,是科学研究的一种宝贵的药物资源。活性成分为生物碱,丹丁酸和其它可能有促进免疫系统功能潜力的植物素。其中,生物碱有降压药的效果,可降低胆固醇,除此之外,还具有消炎、抗氧化和抗癌等特性。1方法萃取条件萃取类型研磨重量2g萃取溶剂乙醚溶剂体积20ml超声波提取30minFlash 色谱条件FlashPure EcoFlex 12g Sclia流速25ml/minUV1 波长254nmUV2 波长280nm溶剂 A正己烷溶剂 B乙酸乙酯进样模式液体ELSD 载体空气柱平衡时间5min洗脱方法步骤1234时间(min)0.03.03.04.0%B3030100100▲ 图 1. 在装有 12g Sclia 填料的 FlashPure EcoFlex 柱上对猫爪草进行纯化。色谱图说明使用紫外检测器和蒸发光散射检测器检测峰的诸多优点。通过调整流动相的梯度对方法进行优化以期获得更好的分离效果,方法如下:洗脱方法步骤1234时间(min)0.03.09.01.0%B3030100100▲ 图 2. 优化后的方法使得整体分离度大大提高,在 ELSD 检测器的加持下,可以有效检测到无紫外吸收的目标产物。使用分析型 HPLC 将两组实验与初始粗提物进行分析对照,结果如下:▲ 图 3. 通过对照发现只用 UV 检测器对样品进行纯化,不能检测非发色团的产物,导致馏分纯度不高。使用 ELSD 检测器收集的馏分可分离出高回收率和高纯度的组分。2结论天然产物在新药物研发中发挥重要的作用。粗提物通常含有活性良好的先导化合物,因此分离和纯化时需要很多步骤且充满未知性。Pure 系统收集包括 UV 检测器和 ELSD 检测器在内的多个检测器的信号,克服了使用传统 Flash 色谱方法遇到的纯化瓶颈,大大提高目标产物的纯度和回收率。化学家可以在双检测器以及 Navigator 技术的帮助下,有效地从粗提取物中分离目标化合物和含量低的成分,节省时间和人力成本。3参考Cat's Claw Technical Literature, Raintree Nutrition, Carson City, Nevada.Medicinal natural products a biosynthetic approach, 3rd edition Dewick, P. John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
  • 总有机碳TOC对比紫外吸收——在水处理行业中的应用
    简介水处理厂在为消费者生产安全饮用水的过程中,需要监测多种水质参数,包括水中的pH值、总有机碳TOC、UV 254吸光度。TOC和UV 254吸光度是评估水中有机物(OM,Organic Matter)含量和质量的重要参数。TOC和紫外吸光度都取决于水中的有机物。正确了解两者的关系,就能避免错误解读水质监测数据。本文讨论了这两个参数间的关系,以及它们在水处理工艺和合规性方面的应用。文中使用的Sievers M5310 C分析仪为TOC分析提供了最佳解决方案,实际样品数据也证明了此款分析仪的实用性。技术比较有机物 有机物是指水中的各种化合物的混合,包括自然物质(即植物、动物、微生物)降解后产生的天然有机物(NOM,Natural Organic Matter),以及生活污水带来的有机物1。尽管有机物本身对人体健康无害,但它会与氯反应产生消毒副产物(DBP,Disinfection Byproducts)。消毒副产物对人体健康有害,因此法规要求水处理厂在处理水时控制有机物的浓度2,3。TOC和紫外吸光度在有机物分析中的应用TOC分析提供简明的TOC浓度读数,单位是“毫克碳每升(mg C/L)”。水处理厂可以根据TOC来准确地估算出有机物浓度,因此TOC成为被普遍采用的控制和规范有机物浓度的方法。3紫外吸光度是指水中特定化合物吸收紫外线辐射的量度。对于复杂且易变的混合物(例如水中的有机混合物),紫外吸光度可以帮助表征特定样品4。水中的有机物具有复杂性和异质性,而紫外吸光度取决于有机样品的具体成分,因此不能单用紫外吸光度来比较水中的样品5,理解这一点很重要。例如,有的样品的紫外吸光度较低,但有机物浓度较高。有的样品的紫外吸光度较高,但有机物浓度较低。有些样品的有机物浓度完全不同,但它们的紫外吸光度读数却相同。只有将紫外吸光度和TOC数据一起分析,才能来解决上述问题。“特征紫外吸光度(SUVA,specific UV absorbance)”是特定波长的紫外吸光度和TOC的比例6。SUVA是固有参数,与浓度无关,可以用来比较样品。SUVA254(即254nm波长SUVA)可用来比较不同样品中的芳香族化合物的含量(即芳香度)6。芳香度与反应性有关,对水处理工艺具有重要意义。例如,有机物的反应性反映了通过凝聚来去除该有机物的难易程度,以及该有机物与氯反应产生消毒副产物的可能性。总之,TOC是有机物浓度的简明测量结果,而紫外吸光度可以为表征样品提供补充依据。紫外吸光度必须同TOC数据一起用于比较样品。TOC和紫外吸光度在水处理行业中的应用法规美国国家环境保护局“饮用水处理法规:第1阶段消毒副产物规则(Drinking Water Treatment Regulation: Stage 1 DBP Rule)”要求根据源水的TOC和碱度,通过增强凝聚作用或软化作用来去除TOC百分比含量。规则还规定,如果源水或要处理的水的SUVA值保持在2.0L/(mgm-1)以下,则可以忽略去除百分比3。优化工艺TOC和SUVA数据可用于优化水处理工艺。例如,对水处理(即凝聚、膜过滤)前后的TOC和SUVA数据进行比较,得出有机物去除率的定量结果。结果表明去除效率是否合格,是否需要提高去除效率,是否需要考虑使用其它水处理方法等。解决方案专为饮用水行业的水质监测而设计的Sievers M5310 C TOC分析仪(包括实验室型、便携式、在线型配置)具有性能可靠、工作高效的优点,能够分析各种化学类别和分子大小的有机碳样品,有效应对有机物的复杂性。Sievers M5310 C分析仪的优势:测量所有类型的有机物的浓度。工作范围是4 ppb-50 ppm(涵盖自然水和处理水的典型TOC范围)。同常见的测量紫外吸光度的分光光度计搭配使用,得出表征天然有机物的数据。可以用TOC和紫外吸光度一起来计算SUVA。确认紫外吸光度数据(确保不会发生紫外信号漂移)。确认制备好的天然有机物分离液的浓度,以及纯有机化合物的浓度。满足SM 5310 C和EPA 415.3要求。无需外部试剂,几乎不需要制备样品。性能数据:跟踪整个水处理过程中的TOC变化以下表2中列出了用Sievers M5310 C分析仪测量的水处理厂的一组TOC数据示例。在示例中,水先经过凝聚,然后经过膜过滤。在处理之前、3次不同剂量的凝聚之后、以及膜过滤前后,都测量了TOC和UV 254。“百分比变化”列比较了给定水处理前后的TOC或UV。我们将凝结剂用量与“处理之前”的值进行了比较,将“膜过滤之后” 的值与“膜过滤之前”的值进行了比较。 表2中的数据证明了M5310 C分析仪量化分析水处理过程中的TOC变化的强大能力。此外,“百分比变化UV”与“百分比变化TOC”并不匹配,因此仅凭紫外吸光度不能准确表明TOC浓度,不足以表征或量化有机物。结论TOC数据和紫外吸光度是水处理行业用于表征和控制有机物的两个重要指标。TOC分析能够提供所有有机化合物的绝对碳浓度,而紫外吸光度仅限于检测吸光化合物,因此应与TOC搭配使用。Sievers M5310 C分析仪是为水处理行业设计的性能可靠的TOC分析仪。本文中的样品分析数据证明了Sievers M5310 C分析仪能够跟踪整个水处理过程中的TOC变化,同时显示了只用紫外吸光度是无法跟踪这种变化的。参考文献1. Perdue, E.M., Ritchie, J. D., (2003). Dissolved Organic Matter in Freshwaters. In H. D. Holland, K. K. Turekian, Treatise of Geochemistry (pp. 273-318). Elsevier Science. 2. Reckhow, D.A., Singer, P.C., Malcolm, R.L., (1990) Chlorination of Humic Materials: Byproduct Formation and Chemical Interpretations, Environmental Science and Technology, 24, 1655-1664. 3. Environmental Protection Agency (2001). The Stage 1 Disinfectants and Disinfection Byproducts Rule What Does it Mean To You? (EPA 816-R-01-014). 4. Summers, R., Cornel, P., & Roberts, P. (1987). Molecular size distribution and spectroscopic characterization of humic substances. Science of The Total Environment, 62, 27-37. doi:10.1016/0048-9697(87)90478-5 5. J.K. Edzwald, W.C. Becker and K.L. Wattier, (1985). Surrogate Parameters for Monitoring Organic Matter and Trihalomethane Precursors in Water Treatment, J. Am. Water Works Assoc., 77(4), 122-132. 6. Leenheer, J.A. (2009). Systematic Approaches to Comprehensive Analysis of Natural Organic Matter, Annals of Environmental Science, 3, 1-130 ◆ ◆ ◆联系我们,了解更多!
  • 国家高分子材料质量检验检测中心(安徽)携手珀金埃尔默共建高分子材料检测分析联合实验室
    2022年2月23日,国家高分子材料质量检验检测中心(安徽)与珀金埃尔默合力共建的联合实验室——高分子材料检测分析联合实验室,揭牌仪式在质检中心隆重举行。联合实验室将依托合作双方在技术、仪器和方法开发上的优势,积极探索新的检验检测技术,以助力进一步提升高分子材料科研及检测技术水平。国家高分子材料质量检验检测中心(安徽)主任吴雄杰(左)、珀金埃尔默应用市场事业部中国区总经理刘继涛(右)出席签约仪式联合实验室揭牌仪式以塑料、橡胶、合成纤维等为代表的高分子材料是现代工业和高新技术产业的重要基石,已经成为国民经济的基础产业和国家安全不可或缺的重要保证。对高分子材料开展精准、高效的质量检测,对于促进行业快速、健康发展起着至关重要的作用。国家高分子材料质量检验检测中心(安徽),坐落在国家级桐城经济技术开发区,是华东地区唯一一家国家级的高分子材料质检中心。随着国家质检机构体制改革和机制创新,以及高分子材料行业蓬勃发展,质检中心正迎来新的发展机遇。相信和珀金埃尔默公司的深度合作,双方将能够在高分子材料分析检测相关仪器的功能化、新测试方法或重要的标准方法开发和验证方面取得新的突破。”国家高分子材料质量检验检测中心(安徽)主任吴雄杰表示国家高分子材料质量检验检测中心(安徽)主任吴雄杰、中心书记吴旺生、办公室主任乔胜、测试中心主任江小平和技术人员等,同珀金埃尔默应用市场事业部中国区总经理刘继涛、大区销售经理张亮、大区维修经理朱炜、大区技术支持经理华诚等人共同为实验室揭牌。珀金埃尔默PerkinElmer珀金埃尔默是全球最大的分析仪器生产及服务提供商之一,与国家高分子材料质量检验检测中心(安徽)有着多年的合作,为其提供了一系列先进的分析测试仪器:如QSight 220液相串质谱联用仪、NexION300X ICP-MS等离子体质谱仪、AAnalytst AAS原子吸收光谱仪、Lambda紫外/可见/近红外分光光度计以及TGA-FITR联用系统、DSC、DMA、TMA等,为高质量、高效率的元素分析提供坚实保障。双方共建的高分子材料检测分析联合实验室也将依托珀金埃尔默在国内和国外的技术中心和技术资源,共同开展相关实验,并探索新的检验检测技术和实验方法开发。希望通过共建联合实验室这种新的合作方式,助力国家高分子材料质量检验检测中心(安徽)提高技术应用水平,推进科研探索的进程,为中国高分子材料科学的基础与应用研究做出更大贡献。”珀金埃尔默应用市场业务部中国区总经理刘继涛表示
  • “100家实验室”专题:访上海高分子材料研究开发中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。2010年11月初,仪器信息网工作人员参观访问了本次活动的第五十七站:上海高分子材料研究开发中心(以下简称:中心)。 上海高分子材料研究开发中心   上海高分子材料研究开发中心成立于1999年7月,隶属上海市科学技术委员会。中心主要任务是面向社会,对高分子材料生产及相关应用企业、科研机构提供高分子材料领域的分析测试研究和检测等技术服务。   上海高分子材料研究开发中心在2005年、2007年分别取得了中国合格评定国家认可委员会实验室认可(CNAS)和计量认证(CMA)等资质。同时,其也是上海公共研发服务平台的成员单位,由资深专家免费为客户提供有关橡胶、塑料等高分子材料产品的质量评估保证及试验等方面的咨询服务。 上海高分子材料研究开发中心资质证书   中心主要业务分四大类,包括:(1)各类高分子材料的样品(包括塑料、橡胶、纤维、涂料、催化剂、黏结剂、发泡剂等)的分析测试,包括相关检测样品的制作;(2)对样品的未知组成物及结构进行剖析;(3)为中小科技企业的研发提供配套服务,包括技术咨询、材料研发咨询、工艺制备咨询、整体解决方案的提供等;(4)在高分子材料(特别是新型材料)的应用领域(如汽车、造船、建材、纺织等)开展高分子材料的技术标准的研究和分析测试方法研究。   目前,中心拥有气相色谱一质谱联用仪、扫描电镜、能谱分析仪、元素分析仪、气相色谱仪、液相色谱仪、红外光谱仪、紫外可见分光光度仪、热分析仪、各类力学性能测试仪器等价值千万元的仪器,设备配套齐全。 NETZSCH 热机械分析仪TMA202、差示扫描量热仪DSC204、热失重分析仪TG209   TMA202:主要进行高分子材料线性膨胀系数、玻璃化转变温度的测定。   DSC204:主要进行材料的熔点,玻璃化转变温度、结晶度、熔融焓测定。   TG209:主要进行高分子材料热稳定性的评定,添加剂、共聚物和共混物、挥发物的分析,水分含量的测定,预测高分子材料使用寿命等。 INSTRON数显洛氏硬度计2000系列、摆锤式冲击机POE2000、电子万能试验机5567型   2000系列:测定洛氏硬度。   POE2000:主要进行塑料、陶瓷及复合材料试样的简支梁和悬臂梁冲击试验。   5567型:主要进行各种材料的拉伸、压缩、弯曲物理性能及其在不同温度下的试验,具体测定拉伸强度、压缩强度、弯曲强度、拉伸模量、压缩模量、弯曲模量等。 济南试验机厂磨损试验机、Haake转矩流变仪PolyLab   M200:进行塑料及复合材料的摩擦磨损试验,测定磨损量、摩擦系数。   PolyLab:测试聚合物粉末与液体添加剂的混合、复合、吸收性能、塑化性能;确定聚合物的流变参数,制备供分析测试用的聚合物样品,混合色母料,加入添加剂和排出挥发份,制备高分子合金和增强塑料,作为螺杆反应器制备超高分子量聚合物。 QUV耐侯试验机、日本电子JSM-5610高低真空扫描电镜(配能谱EDS)   耐侯试验机:UV紫外老化,可靠的老化测试数据可对产品的耐候(抗老化)性做出准确的相关性预测,并有助于材料及配方的筛选、优化 快速、真实地再现阳光、雨、露对材料的损害,只需要几天或几周时间,可以再现户外需要数月或数年才能产生的破坏,包括褪色、变色、亮度下降、粉化、龟裂、变模糊、脆化、强度下降及氧化。   JSM-5610:研究各种均相聚合物的结构及其断口形态特征与力学行为关系;研究多相复合体中各相的结构及其分布和相之间界面的状态;研究聚合物材料作为涂层、粘合剂、薄膜时,形成聚合物膜的结构及其粘结状态;研究纤维和织物的结构及其缺陷特征;一个检测器可以同时得到立体图像、构成图像、凹凸图像;对样品表面成分(元素)进行半定量、定量分析。 JC2000C1接触角测量仪、瑞士Metrohm库伦水分测定仪F-756型   JC2000C1:主要测量液体对固体的接触角,即液体对固体的浸润性,也可测量外相为液体的接触角,该仪器能测量各种液体对各种材料的接触角,例如块状材料、纤维材料、纺织材料等,粉末样品在压片后也可测量;同时此仪器可测量和计算表面/界面张力、CMC、液滴形状尺寸、表面自由能。   F-756:该仪器配有加热装置,可以将材料内部水分烘出,由载气带入滴定池,通过K-F试剂滴定,精确测定材料中水分含量。对材料中微量水分测定特别有效,可以用于塑料原料、成型材料及其它固体材料的水分检测。   此外,上海高分子材料研究开发中心于2008年12月在上海青浦建成材料耐火阻燃实验室,该实验室可以执行中国船级社MSC Circ.1006燃烧测试,MSC Circ.1006标准广泛应用于船舶上燃烧性能的检测,是船级社认可的标准。实验室拥有耐火试验设备、阻燃试验设备。   耐火试验设备:用丙烷等气体作为试验气体,可将火焰温度准确稳定地控制在1550~1600度,温度由两个精确的红外探头测定。本实验室的耐火试验设备可输出精确、直观的温度-时间曲线,数据可靠。   阻燃试验设备:采用国外先进的电火花点火装置,功率可达1万瓦,锥形辐射器完全按照ISO5660制造,辐射照度稳定在50KW。整个试验流程完全为电脑程序控制,可精确测出点火功率、电流大小点火时间等数据,严格按照MSC Circ.1006标准进行试验。   为发展上海和长江三角洲的高分子产业、发挥与高分子材料检测相关机构的联合技术服务优势,更好地为企业研发和生产服务。上海高分子材料研究开发中心与复旦大学 、交通大学、东华大学、 上海材料所、上海塑料所、上海橡胶所、上海涂料研究所等相关检测机构于2008年共同发起组建了“高分子材料检测服务联盟”。联盟秘书处筹备联络工作由上海高分子材料研究开发中心承担。   联盟成员之间,优势互补,同时每年定期进行1~2次的能力对比试验;资源共享(仪器和设备);相互提供检测标准的咨询、培训、讲座、现场技术指导等信息和技术支持;联合进行与检测技术与方法相关的课题、研发、剖析和检测等工作;联合争取国家与政府的政策与资金支持。   联盟为社会和企业提供专业检测服务,也提供与检测相关的新产品标准、检测技术咨询和技术交流等服务。   附录:上海高分子材料研究开发中心   http://www.polymercenter.org/
  • 环境监测总站紫外吸收水质在线监测仪合格目录更新
    从中国环境监测总站获悉,中国环境监测总站公布紫外(UV)吸收水质在线监测仪认证检测合格厂家名录(截止2015年6月23日),此次目录包括2012年至2015年认证合格的12个厂家的12台仪器,其中国产厂商仪器7台。具体名录如下: 紫外(UV)吸收水质在线监测仪适用性检测合格名录(截止2015年6月23日) 序号 单位名称 仪器名称 报告编号 1 北京中自控环保科技有限公司 CAC-A型紫外扫描式水质在线自动监测仪 质(认)字No.2012-057 2 杭州微兰科技有限公司 VLUV-201型紫外(uv)吸收水质在线监测仪 质(认)字No.2012-058 3 广州市怡文环境科技股份有限公司 EST-2006型紫外(UV)吸收水质自动在线监测仪 质(认)字No.2013-004 4 宇星科技发展(深圳)有限公司 YX-UV型紫外吸收水质在线自动监测仪 质(认)字No.2013-025 5 上海泽安实业有限公司 K301 A型全光谱紫外(UV)吸收水质分析仪 质(认)字No.2013-068 6 维赛仪器(北京)有限公司 IQ Sensor Net型紫外(UV)吸收水质在线监测仪 质(认)字No.2013-069 7 堀场(中国)贸易有限公司 OPSA-150型紫外(UV)吸收水质自动在线监测仪 质(认)字No.2013-088 8 德菲电气(北京)有限公司 SA-9型紫外-可见光连续光谱水质分析仪 质(认)字No.2014-004 9 江西夏氏春秋环境投资有限公司 CQ-UV型紫外扫描式水质自动在线监测仪 质(认)字No.2014-040 10 北京利达科信环境安全技术有限公司 KS2201型紫外(UV)吸收水质自动在线监测仪 质(认)字No.2014-041 11 岛津企业管理(中国)有限公司 UVM-4020型紫外吸收水质在线分析仪 质(认)字No.2014-066 12 上海恩德斯豪斯自动化设备有限公司 CAS51D型紫外(UV)吸收在线水质分析仪 质(认)字No.2014-122 相关阅读: 环境监测总站公布最新环境空气自动监测系统合格目录 时隔一年半 环境监测总站再次更新数采仪合格目录 环境监测总站CEMS合格名录更新 环境监测总站水质自动采样器合格名录更新
  • 瞬态吸收光谱法测量极紫外自由电子激光脉冲的频率啁啾
    【研究背景】快速发展的自由电子激光(FEL)技术在高光子能量下产生了飞秒甚至阿秒的脉冲,使得X射线能够用于状态选择性和相敏多维光谱分析和相干控制。直接和常规测量现有的极紫外(XUV)和X射线自由电子激光脉冲的光谱相位是充分实现这种非线性相干控制概念的关键,以便为它们与物质的相互作用找到和设置最佳的脉冲参数。自放大自发辐射XUV/X射线自由电子激光脉冲的直接时间诊断工具是线性和角度条纹法,它对脉冲的时间形状(包括啁啾)非常敏感。这些方法依赖于一个时间同步且足够强的外场的可用性。诊断SASE辐射脉冲的时间结构的一个补充途径是测量电子束中FEL激光诱导的能量损失(例如使用X波段射频横向偏转腔(XTCAV)),从中可以重建XUV/X射线发射的时间剖面。对于种子自由电子激光脉冲,两个几乎相同的自由电子激光脉冲的产生及其XUV干涉图的评估允许其光谱时间内容的完整表征。在这项工作中,科学家提出了一种直接测量XUV-FEL频率啁啾的技术,而不依赖于任何额外的外场或种子多脉冲方案。由于所报道的技术提供了对XUV辐射光谱时间分布的目标访问,它是对FEL激光性能敏感的用户实验的原位诊断的理想方法。例如,在这里,我们实验观察到频率啁啾对自由电子激光脉冲能量的系统依赖性(增加啁啾以减少脉冲能量)。【成果简介】由最先进的自由电子激光器(FELs)产生的极紫外(XUV)和X射线光子能量的高强度超短脉冲正在给超快光谱学领域带来革命性的变化。为了跨越下一个研究前沿,精确、可靠和实用的光子工具对脉冲的光谱-时间特性的描述变得越来越重要。科学家提出了一种基于基本非线性光学的极紫外自由电子激光脉冲频率啁啾的直接测量方法。它在XUV纯泵浦探针瞬态吸收几何结构中实现,提供了自由电子激光脉冲时能结构的原位信息。利用电离氖靶吸光度随时间变化的速率方程模型,给出了直接从测量数据中提取和量化频率啁啾的方法。由于该方法不依赖于额外的外场,我们期望通过对FEL脉冲特性的原位测量和优化,在FEL中得到广泛的应用,从而使多个科学领域受益。【图文导读】图1:频率分辨等离子体选通原理图2:等离子体选通效应的数值模拟图3:通过瞬态吸收光谱测量XUV-FEL频率啁啾图4:频率啁啾特性,自由电子激光脉冲能量依赖性分析图5:色散对部分相干自由电子激光场的影响原文链接:Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy | Nature Communications
  • 【环境监测行业】2020年度最热关键词 - TOP1 紫外吸收法
    top1 紫外吸收法 上榜理由2020.4.24《固定污染源烟气(二氧化硫和氮氧化物)便携式紫外吸收法测量仪器技术要求及检测方法》(HJ 1045-2019)标准实施2020.5.15《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》(HJ 1131-2020)《固定污染源废气 氮氧化物的测定 便携式紫外吸收法》(HJ 1132-2020)两项标准发布2020.8.15《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》(HJ 1131-2020)《固定污染源废气 氮氧化物的测定 便携式紫外吸收法》(HJ 1132-2020)两项标准实施 紫外吸收法相关标准密集发布,意味着紫外烟气分析仪将迎来广阔的市场的火爆标准方法的实地应用离不开相关设备的支持!MH3200紫外烟气分析仪,自2019年以来,2020口碑销量双丰收,各大环保类相关网站搜索量位居前列! 执行标准HJ 1131-2020《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》HJ 1132-2020《固定污染源废气 氮氧化物的测定 便携式紫外吸收法》HJ 1045-2019《固定污染源废气(二氧化硫和氮氧化物)便携式紫外吸收法测量仪器技术要求及检测方法》JJG 968-2002 《烟气分析仪检定规程》 优势1台仪器——3种方法——7种气体测量集紫外吸收法(SO2、NO、NO2、NH3)、红外吸收法(CO2)、电化学法(CO、O2)等多种烟气检测技术于一体,快捷高效。热湿法真空枪管全程加热,避免水损失,准确度高,安全可靠。一体化整机一体化设计,管线连接简便,携带方便。高清大屏4.3寸触摸彩屏,操作简单高效。自动反吹内置可充电锂电池,断电后自动反吹维护,无需人工操作。云平台数据交互手机电脑远程监控,规范质控管理,紧跟大数据时代步伐。 好啦,本周的关键词就聊到这里,下周小编将为大家带来年度热词TOP2“VOC检测”,我们下周见啦!
  • 针对烟气检测紫外吸收新规,乐氏科技提供最优解决方案
    为您解答!烟气检测紫外吸收法新规定生态环境部发布HJ1131-2020 《固定污染源废气 二氧化硫的测定 便携式紫外吸收法》、HJ 1132-2020 《固定污染源废气氮氧化物的测定 便携式紫外吸收法》自2020年8月15日起实施。 符合标准: 该分析仪性能指标均符合国家环保局颁布的烟气测试仪的有关规定。采用紫外吸收光谱技术和化学计量学算法测量O2、SO2、NO、NO2、NOx、NH3、H2S等气体的浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳 定性,特别适合高湿低硫工况测量,具有测量精度高、可靠性强、响应时间快、使用寿命长等优点。 【乐氏科技 技术解决方案】德国Fodisch UVA17m便携式高温紫外烟气分析仪测量原理: UVA17m便携式高温紫外烟气分析仪采用国际上目前 最先进成熟的原态采样,原态分析方法。实现污染源大气污染物的快速,无损,原态的高精度测量。整个分析全程高温取样、高温过滤、高温快速分析,无需气体干燥、稀释冷却等前处理,直接分析样品,有效减少过程损失,测量结果更加真实可靠。 适用场合:UVA 17m 便携式高温紫外烟气分析仪,适用于垃圾焚烧、脱硫脱销、催化剂生产以及燃烧器排放分析。尤其针对烟气 的超低排放、高温高湿低硫检测、氨逃逸等复杂工况的监测及检测,有极高的 适用性,广泛应用于环境监测以及热工参数测量等部门。仪器优势: 原态分析方法:全程高温取样、高温过滤、高温分析——最大限度的减少过程损失。 高温采样预处理:全程185℃——从源头解决烟气温度低、湿度大、易损失的问题。 先进的光学系统:采用紫外吸收光谱技术测量——不受烟气中水蒸气影响,具有极高的测量精度和稳定性。 强大的软件功能:丰富的化学计量学算法,完善的数据处理——数据结果拥有强大的保障。 消除与干扰: 采用高温测量法(无需使用制冷器,避免样气冷凝损失) 热湿态分析,全程高温加热 185℃,水呈气态,不除水, 避免了除水过程中低浓度NO2-SO2-H2S-NH3等气体的溶解,尤其适合脱硫脱硝后低浓度NO2,SO2以及氨逃逸测 量,不存在H2O对测量数据的交叉干扰。 补充亮点: UVA17m便携式高温紫外烟气分析仪的出现,弥补了电化学、普通红外、低温紫外等烟气测量分析技术上的不足,具有高精度、抗干扰、能力强、耐腐蚀、免除水等特点。尤其符合目前中国环保形势对污染企业减排净化工作的要求。
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 山东省发布《便携式紫外吸收法多气体测量系统技术要求及检测方法》
    为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,防治大气污染,改善环境质量,规范便携式紫外吸收法多气体测量系统的技术性能,制定本标准。 随着国家环保部展开以锅炉或炉窑监测SO2、NOx为主的气态污染调查,各省市环保局对CEMS在线监测系统的大力普及,SO2、NOx的在线监测与瞬时监测之间的数据不统一的矛盾日益突出。目前国内监测SO2、NOx常用的仪器主要依赖于电化学传感器法,但由于在高湿低硫的工况中,易发生气体间交叉干扰以及前处理不彻底受水汽影响等因素而导致测量数据不准确的案例时有发生。 2007年8月,中国环境监测总站在青岛召开各省、直辖市、省会城市环境监测工作会议,许多代表提出目前电化学传感器测试烟气中SO2存在的问题,中环总站副站长在会议上指出:电化学传感器是否继续适用我国的固定污染源测试值得商榷,建议仪器生产厂家抓紧时间研制稳定、可靠的SO2测试仪。 在这种大环境下,崂应公司很早就开始研制以紫外光学法测量SO2、Nox等烟气的监测仪。此方法的特点是利用紫外光谱分段测量不同气体,不受水汽及气体间交叉干扰的影响,测量精度高、数值准确。 另外,崂应相信在广大同仁及社会各界人士的共同努力下,我们一定会在大气污染防治这场攻坚战中取得最终胜利,还给地球一片绿色,为生活在“穹顶之下”的我们呼吸到干净的空气贡献出环保人的一份力量,给我们的子孙后代留下一片干净的天空!
  • 赛默飞推出高效液相色谱法同时测定化妆品中11种紫外吸收剂的解决方案
    2014年12月12日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出高效液相色谱法同时测定化妆品中11种紫外吸收剂的解决方案。 太阳中紫外线可分为紫外线-A(400-320nm)和紫外线-B(320-290nm),以及紫外线-C(280nm以下)。通常,295nm以下的光线不能达到地表,所以会到达人体皮肤的是前两个波长。紫外线会导致皮肤晒黑、晒伤,甚至会诱发皮肤癌,特别是臭氧空洞,使得到达地球的紫外线增多。为体现防晒功能,化妆品生产厂家会添加一定量具有防晒功能的紫外吸收剂于防晒霜、隔离霜等化妆品中。但是过量的紫外吸收剂,会使人体皮肤致敏机率增加,影响人体健康。 目前,测定化妆品中紫外吸收剂的方法主要有:薄层色谱法、气相质谱法和高效液相色谱法。其中,高效液相色谱法使用最为广泛。在2002年出版的《进口化妆品中紫外吸收剂的测定 液相色谱法》这一标准中,采用甲醇、四氢呋喃和水的混合溶液作为流动相,其中四氢呋喃除了具有较大的毒性外,还容易引起色谱系统的不稳定,导致峰拖尾和新峰的产生等问题。赛默飞采用常用的高效液相色谱,以乙腈和0.1%甲酸水溶液作为流动相,在11.5min内完成化妆品中11种紫外吸收剂的测定;该方法具有良好的线性,重现性和可靠性,同时具有快速、准确的特点,为规范化妆品中紫外吸收剂的使用提供技术支持。 下载应用文章请登陆:www.thermo.com.cn/Resources/201411/13133251750.pdf-------------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 2009年全国高分子学术论文报告会取得圆满成功!
    2009年全国高分子学术论文报告会将于2009年8月18~22日在天津南开大学成功举办,这是中国高分子界学者的一次盛会。来自全国各高校和科研单位的超过2000多名专家学者参加了本次会议,提交论文近3000余篇。 2009年全国高分子学术论文报告会由中国化学会高分子学科委员会主办,南开大学功能高分子材料教育部重点实验室与高分子化学研究所,天津大学材料科学与工程学院,天津工业大学,河北工业大学化工学院,天津理工大学和天津科技大学承办,为高分子领域学术研究的相互促进提供宽广的交流平台,以此为推动我国高分子学科的进步和发展做出贡献. 中国科学院院士、中国化学会高分子学科委员会主任王佛松、南开大学党委书记薛进文出席并致辞。薛进文向大会致辞中指出,经过几代人的努力,高分子学科已经成为我国化学化工和材料科学技术发展的重要推动力量,每两年召开一次的学术年会更是该学科的盛会,并希望此次盛会为高分子领域专家的广泛交流、前沿研究的相互促进提供良好交互平台,以此来推动我国高分子学科的进步与发展。 同时,本次论文报告会邀请了多位专家、学者围绕高分子领域研究进展等内容进行了报告。 程教授首先为与会人员介绍了他在美国Akon大学的科研团队成员以及课题概况。进而报告就C60和POSS自组装、稀溶液中嵌段共聚物高分子单晶和聚合物刷,以及溶液中嵌段共聚物聚集体的稳态、亚稳态和平衡态形貌几个方面做了精彩演讲。最后程教授指出了未来高分子领域发展方向为:离开平衡态 离开焓主导 离开平均场的描述 离开大尺寸 离开单一空间和时间尺度。 本报告简要介绍了中石油的业绩及炼化业务情况,从产业布局、特色产品、基础支撑条件等方面展示了中石油在聚烯烃合成橡胶合成纤维三大高分子合成材料领域的业务发展成果,并从研究开发的角度,指出中石油在聚烯烃合成橡胶领域的研发目标及方向,例举了多个代表性项目,介绍了相关技术及产品特点。 颜教授在报告中就人类两个终极问题,即宇宙的起源和生命的起源为参会人员进行了生动的演讲。前一问题已经基本解决,后一问题正处于破解的前夜&mdash &mdash 一个生命不是一个分子,而是分子的聚集体,那么大量分子式如何聚集成生命的呢?这就是化学自组装正在探索的问题之一。报告简要介绍了课题组的工作,并结合文献报道和一些自然界的自组装现象展望&ldquo 合成生命&rdquo 的前景。 天津港东科技发展股份有限公司也应邀参加了本次会议,在会上重点展示了公司的红外光谱仪和荧光分光光度计,薄膜测厚仪。很多会议代表对天津港东的荧光光谱仪非常感兴趣,并现场进行了操作,对他的30000nm/分钟的扫描速度非常感兴趣,并现场体验,对我们的仪器提出了很多宝贵意见! 值此会议之际,刚好有部分专家正组织编写相关论文和教材,并积极要求我单位提供相关产品图片,原理,技术参数等资料,方便编写论文和教材,这个对我们单位也是很大的肯定!中山大学老师现场订购我们一台紫外分光光度计,在次也表示衷心感谢! 会议主题 主题A 聚合反应及新型聚合物的合成 主题B 高分子结构、表征与性能 主题C 高分子材料成型加工新理论、新技术 主题D 微纳米材料和技术 主题E 功能高分子 主题F 生物医用高分子 主题G 天然高分子及环境友好高分子材料 主题H 高分子改性、共混与复合 主题I 高分子与工业 主题J 高分子与教育
  • 普析通用河北举办《紫外、原子吸收、X射线荧光分析仪》学术交流会
    关于举办《紫外可见分光光度计、原子吸收光谱仪、X射线荧光分析仪》 学术交流会邀请函 随着加入WTO与国际接轨,新的要求、新的标准给仪器应用带来了更广泛的领域,同时,随着科技的发展、市场的繁荣给分析工作带来了新的仪器、新的技术。为更进一步了解仪器的原理性能,使现有的资金——购置最适用的设备;使现有的设备——发挥最出色的作用,北京普析通用仪器有限责任公司特举办此交流会,并邀请专家授课。现将有关事宜通知如下: 一、日期:2006年4月26日 二、讲课内容及时间安排: l 上午8:45-11:45介绍讲解 李昌厚教授专程主讲 紫外可见分光光度计部分 1. 目前国内、外紫外可见分光光度计仪器及应用的最新进展。 2. 紫外可见分光光度计的主要性能指标(定义、测试方法、对分析误差的影响、应用上的重要性)。 3. 如何评价(挑选)紫外可见分光光度计使之适用于本职的分析工作。 4. 如何使用好紫外可见分光光度计的关键问题。 l 下午1:00-2:30介绍讲解 李昌厚教授专程主讲 原子吸收分光光度计部分 1. 目前国内、外原子吸收分光光度计仪器及应用的最新进展。 2. 原子吸收光谱仪的主要性能指标(定义、测试方法、对分析误差的影响、应用上的重要性。) 3. 如何比较一台原子吸收光谱仪的功能,它给分析工作带来的优越性是什么? 4. 如何选择原子吸收光谱仪的最佳分析条件,及提高灵敏度的方法。 l 下午2:30-4:00介绍讲解 田宇纮教授专程主讲 X射线荧光分析仪部分 全反射X射线荧光(TXRF)分析技术是近年才发展起来的多元素同时分析技术。TXRF可以大大提高能量分辨率和灵敏度。该技术被誉为在分析领域是最具有竞争力的分析手段、在原子谱仪领域内处于领先地位。本讲座将要介绍的就是X射线荧光分析仪在材料分析中的应用技术与最新的发展情况。 三、 原吸紫外主讲人: 李昌厚教授 中国分析仪器学会副理事长 中国光学仪器学会 物理光学仪器专业委员会 副主任 中国国家技术监督局 国家级计量认证评审员 中国科学院上海生物工程研究中心 仪器分析室主任、研究员、博士生导师:李昌厚教授专程主讲 X射线荧光分析仪主讲人: 田宇纮教授 中国科学院近代物理研究所 教授 X射线荧光分析仪设计与制造 专家 四、 会议地点: 唐山饭店 多功能厅 唐山市建设南路46号(唐山市百货大楼对面) 报名联系人:孟令红 田凤 电话:13383059598 0311-86050158 五、 本次研讨会免费听取,并提供中午工作餐。 六、 到场请认真填写《会议信息反馈表》,及时交到会务组,凭此领取礼品。 七、 为提高听课质量,敬请与会者在主讲人授课时间保持手机安静。 八、 乘车路线:唐山市火车站汽车站坐车到唐山市百货大楼对面。车程十五分钟。 注:具体讲课时间以4月26日当天的研讨会现场安排为准,如有变动不另行通知。 北京普析通用仪器有限责任公司河北联络处 2006年4月12日 参 会 回 执 单位全称: 部门(科、室): 通讯地址: 邮    编: 参会人数: 电    话: 参会人员姓名: 联 系 电 话: 其他要求: 注:因会场空间有限,名额仅限150人。请参会人员及时准确填写回执。并请传真至0311-86050158-810。凭此回执参加研讨会。 另:如不方便发传真,也可电话及邮件报名 报名联系人:田凤 联系电话:0311-86050158 E-mail:hebeioffice@pgeneral.com
  • 黄河水利委员会中游水文水资源局2150.50万元采购水质采样器,气相分子吸收,紫外分光光度,原子吸收...
    详细信息 黄河水利委员会中游水文水资源局黄委中游水文水资源局水资源监测能力建设项目设备采购项目公开招标公告 山西省-晋中市-榆次区 状态:公告 更新时间: 2022-06-26 黄河水利委员会中游水文水资源局黄委中游水文水资源局水资源监测能力建设项目设备采购项目公开招标公告 项目概况 黄委中游水文水资源局水资源监测能力建设项目设备采购项目 招标项目的潜在投标人应在郑州市金水区金水路226号楷林国际B座20楼。获取招标文件,并于2022年07月19日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:ZDZB-2022-134 项目名称:黄委中游水文水资源局水资源监测能力建设项目设备采购项目 预算金额:2150.5000000 万元(人民币) 最高限价(如有):2150.5000000 万元(人民币) 采购需求: 本项目涉及黄委中游水文水资源局水资源监测能力建设的设备服务采购。设备购置包含全自动五日生化需氧量测定仪、全自动COD测定仪、全自动高锰酸盐指数分析仪、气相分子吸收光谱仪、氮吹仪、全自动总磷测定仪、紫外分光光度计、离子色谱仪、原子吸收分光光度计(带石墨炉)、原子荧光分光光度计、电感耦合等离子体质谱仪 (ICP-MS)、自动紫外测油仪、全自动红外测油仪、总有机碳分析仪、气相色谱仪、气相色谱-串联质谱联用仪(GC-MS-MS)、吹扫捕集及自动进样器、高效液相色谱仪、高效固液萃取仪、液相色谱-质谱仪、快速溶剂萃取仪、多功能定量浓缩仪、全自动液液萃取仪、样品自动蒸发赶酸仪、GPC样品净化仪、三合一自动进样器、总αβ蒸发浓缩仪、采样无人机、水生生物采样系统、常规仪器系列、洗瓶机、冷冻干燥机、底质研磨机、微波消解仪、多功能振荡萃取器、浮游植物分类荧光仪、程控定量封口机、叶绿素测定仪、藻类自动分类鉴定与计数系统、浮游生物鉴定系统、体视显微镜、交换机、路由器、防火墙、实验室管理系统各1台(套),购置三参仪(PH、电导率、溶解氧)、柱后衍生仪、总αβ测定仪、连续流动分析仪、连续流动无人值守系统、玻璃器皿清洗消毒机、大容量过滤系统各2台(套),购置自动采样器5台、DO测定仪10台等。 标段划分:本项目共一个标段。 合同履行期限:合同签订后150日历天 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:1)根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)的规定,对列入失信被执行人、重大税收违法案件当事人名单(税收违法黑名单)、政府采购严重违法失信行为记录名单的供应商,拒绝参与本项目政府采购活动;2)供应商在法律和财务方面独立,与采购人就本次招标的服务委托的咨询机构、采购代理机构、以及上述机构的附属机构没有行政或经济关联;3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。 三、获取招标文件 时间:2022年06月27日 至 2022年07月01日,每天上午8:00至12:00,下午15:00至18:00。(北京时间,法定节假日除外) 地点:郑州市金水区金水路226号楷林国际B座20楼。 方式:现场获取,购买招标文件时须携带以下证明文件一套,并加盖公章: 营业执照或事业法人证书(复印件) 法定代表人需提供:法定代表人身份的证明及身份证(原件) 或授权代表需提供:法定代表人授权委托书及被授权人身份证(原件) 依法缴纳税收和社会保障资金的证明材料(近六个月内任意1个月的纳税及社保缴纳证明 ,依法免缴的应提供相应文件证明)(复印件) 具备履行合同所必需的设备和专业技术能力的书面声明 参加政府采购活动前三年内在经营活动中没有重大违法记录的书面声明 财务状况报告,可以为以下两项中任一项(复印件): ①提供由会计师事务所出具的2020年度或2021年度财务审计报告 ②供应商基本开户银行(于开标前三个月)出具的资信证明(附基本帐户信息材料) 以上证明文件均需携带原件核实。 售价:¥800.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年07月19日 09点00分(北京时间) 开标时间:2022年07月19日 09点00分(北京时间) 地点:河南正大招标服务有限公司开标室(郑州市金水区金水路226号楷林国际B座20楼) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 (一)政府采购活动执行的政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:黄河水利委员会中游水文水资源局 地址:山西省晋中市榆次区桥东街216号 联系方式:薛小龙 0354-3168953 2.采购代理机构信息 名 称:河南正大招标服务有限公司 地 址:河南省郑州市金水区金水路226号楷林国际B座20楼 联系方式:王墨 0371-55376830 55377122 3.项目联系方式 项目联系人:薛小龙 电 话: 0354-3168953 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:水质采样器,气相分子吸收,紫外分光光度,原子吸收光谱,微波消解仪,分子荧光光谱,藻类计数仪,LIMS系统,离子色谱仪,液相色谱仪,冷冻干燥机,柱后衍生装置,氮磷钙测定仪,自动进样器,原子荧光光谱,浓缩仪,氮吹仪,ICP-AES,吹扫捕集,COD测定仪,液液萃取仪,洗瓶机,气相色谱仪,总磷总氮测定,TOC分析仪,快速溶剂萃取,ICP-MS,测油仪,叶绿素,流动注射分析,立体显微镜 开标时间:2022-07-19 09:00 预算金额:2150.50万元 采购单位:黄河水利委员会中游水文水资源局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河南正大招标服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 黄河水利委员会中游水文水资源局黄委中游水文水资源局水资源监测能力建设项目设备采购项目公开招标公告 山西省-晋中市-榆次区 状态:公告 更新时间: 2022-06-26 黄河水利委员会中游水文水资源局黄委中游水文水资源局水资源监测能力建设项目设备采购项目公开招标公告 项目概况 黄委中游水文水资源局水资源监测能力建设项目设备采购项目 招标项目的潜在投标人应在郑州市金水区金水路226号楷林国际B座20楼。获取招标文件,并于2022年07月19日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:ZDZB-2022-134 项目名称:黄委中游水文水资源局水资源监测能力建设项目设备采购项目 预算金额:2150.5000000 万元(人民币) 最高限价(如有):2150.5000000 万元(人民币) 采购需求: 本项目涉及黄委中游水文水资源局水资源监测能力建设的设备服务采购。设备购置包含全自动五日生化需氧量测定仪、全自动COD测定仪、全自动高锰酸盐指数分析仪、气相分子吸收光谱仪、氮吹仪、全自动总磷测定仪、紫外分光光度计、离子色谱仪、原子吸收分光光度计(带石墨炉)、原子荧光分光光度计、电感耦合等离子体质谱仪 (ICP-MS)、自动紫外测油仪、全自动红外测油仪、总有机碳分析仪、气相色谱仪、气相色谱-串联质谱联用仪(GC-MS-MS)、吹扫捕集及自动进样器、高效液相色谱仪、高效固液萃取仪、液相色谱-质谱仪、快速溶剂萃取仪、多功能定量浓缩仪、全自动液液萃取仪、样品自动蒸发赶酸仪、GPC样品净化仪、三合一自动进样器、总αβ蒸发浓缩仪、采样无人机、水生生物采样系统、常规仪器系列、洗瓶机、冷冻干燥机、底质研磨机、微波消解仪、多功能振荡萃取器、浮游植物分类荧光仪、程控定量封口机、叶绿素测定仪、藻类自动分类鉴定与计数系统、浮游生物鉴定系统、体视显微镜、交换机、路由器、防火墙、实验室管理系统各1台(套),购置三参仪(PH、电导率、溶解氧)、柱后衍生仪、总αβ测定仪、连续流动分析仪、连续流动无人值守系统、玻璃器皿清洗消毒机、大容量过滤系统各2台(套),购置自动采样器5台、DO测定仪10台等。 标段划分:本项目共一个标段。 合同履行期限:合同签订后150日历天 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:1)根据《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)的规定,对列入失信被执行人、重大税收违法案件当事人名单(税收违法黑名单)、政府采购严重违法失信行为记录名单的供应商,拒绝参与本项目政府采购活动;2)供应商在法律和财务方面独立,与采购人就本次招标的服务委托的咨询机构、采购代理机构、以及上述机构的附属机构没有行政或经济关联;3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。 三、获取招标文件 时间:2022年06月27日 至 2022年07月01日,每天上午8:00至12:00,下午15:00至18:00。(北京时间,法定节假日除外) 地点:郑州市金水区金水路226号楷林国际B座20楼。 方式:现场获取,购买招标文件时须携带以下证明文件一套,并加盖公章: 营业执照或事业法人证书(复印件) 法定代表人需提供:法定代表人身份的证明及身份证(原件) 或授权代表需提供:法定代表人授权委托书及被授权人身份证(原件) 依法缴纳税收和社会保障资金的证明材料(近六个月内任意1个月的纳税及社保缴纳证明 ,依法免缴的应提供相应文件证明)(复印件) 具备履行合同所必需的设备和专业技术能力的书面声明 参加政府采购活动前三年内在经营活动中没有重大违法记录的书面声明 财务状况报告,可以为以下两项中任一项(复印件): ①提供由会计师事务所出具的2020年度或2021年度财务审计报告 ②供应商基本开户银行(于开标前三个月)出具的资信证明(附基本帐户信息材料) 以上证明文件均需携带原件核实。 售价:¥800.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年07月19日 09点00分(北京时间) 开标时间:2022年07月19日 09点00分(北京时间) 地点:河南正大招标服务有限公司开标室(郑州市金水区金水路226号楷林国际B座20楼) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 (一)政府采购活动执行的政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:黄河水利委员会中游水文水资源局 地址:山西省晋中市榆次区桥东街216号 联系方式:薛小龙 0354-3168953 2.采购代理机构信息 名 称:河南正大招标服务有限公司 地 址:河南省郑州市金水区金水路226号楷林国际B座20楼 联系方式:王墨 0371-55376830 55377122 3.项目联系方式 项目联系人:薛小龙 电 话: 0354-3168953
  • 揭秘高分子材料全球顶尖实验室
    刚刚落下帷幕的2013年诺贝尔奖颁奖牵引全球注意力,物理奖、化学奖、生物奖等,无一不涉及高科技应用,这实际上是一场科技力量的较量。   科学的&ldquo 圣堂&rdquo 依然闪耀着光芒,引无数科技&ldquo 圣徒&rdquo 们前仆后继。   高分子材料也依然充满魅力,功能性膜材料、有机硅、工程塑料、特种橡胶,也无一不充满着未来想象力。   理财周报材料科学实验室把探索的触角延伸至全球领域,在世界范围内寻找这些&ldquo 闪耀&rdquo 的物质所在地。   据理财周报记者统计,全球涉足高分子材料科学研究的科研机构、高校研究所、顶尖公司研究所共有175所。其中,美国有53家,除了美国以外的主要地区包括欧洲、韩国、日本、新加坡、南非等有76家,中国有46家,美国是拥有顶尖科研机构、高校研究所和公司研究所最多的国家,科研实力全球领先。   美国&ldquo 之巅&rdquo   美国是科技大国,走在高科技前沿,名副其实。   50个州一共拥有50个科研机构和高校研究所,其中,据理财周报记者统计,在美国涉及高分子材料科学研究的顶尖高校以及科研机构共有50所,其中名列前五的分别是麻省理工学院、斯坦福大学、伊利诺伊大学厄巴纳香槟分校、西北大学以及加州大学伯克利分校。   此外,波士顿大学聚合物研究中心、普林斯顿大学化学工程部、加州理工学院化学工程与聚合物物理流变学、弗罗利达大学的瓦格纳小组、马萨诸塞大学的阿姆赫斯特高分子研究与教育中心、马萨诸塞大学塑料工程罗维尔分校、南密西西比大学、康奈尔大学以及新罕布什尔大学也都是集聚高分子材料科学研究精英的&ldquo 圣堂&rdquo 。   这些堆砌的名校,是美国能够站在高分子材料科学研究&ldquo 之巅&rdquo 的扎实基础。   不仅高校研究所林立,美国在专业科研机构方面实力非常雄厚。理财周报主要关注涉足高分子材料科学研究的美国标准与技术研究院、NIST化学科学与技术实验室以及NIST材料科学与技术实验室。   作为权威科研机构,美国标准与技术研究院(NIST),前身为国家标准局(NBS,1901年~1988年),是一家测量标准实验室,属于美国商务部的非监管机构。NIST总部位于马里兰州的盖瑟斯堡,在国内约有350个附属研究中心。   此外,在高分子材料的产业化发展过程中,一批具有创新精神的企业走在了时代的前沿,这其中包括大名鼎鼎的杜邦公司、尤尼艾克斯公司(UNIAX)、明尼苏达矿务及制造业公司(3M)以及光学聚合物研究公司(Optical Polymer Research,Inc.)等。   中国&ldquo 在路上&rdquo   在领略了其他地区高分子材料研究所的风采后,我们走进中国大陆地区高分子研究所和高校实验室。   大陆研究所方面,中国科学院占据了绝对的主导地位。第三方研究显示,中科院材料科学专业的研究已经连续多年全球领先,现在也是一直走在&ldquo 路上&rdquo   根据中科院内部人士透露,中科院直属研究所中涉及物理和化学研究的所几乎都在做新材料的研发,其中包括中科院宁波材料技术与工程研究所、中科院化学研究所、中科院物理研究所、中科院国家纳米科学中心、中科院金属研究所、上海应用物理研究所、上海硅酸盐研究所、长春应用化学研究所、高能物理研究所、半导体研究所、光电研究院、微电子研究所、北京综合研究中心、工程热物理研究所、大连化学物理研究所、上海技术物理研究所、上海有机化学研究所等。   在以上研究所中,高分子材料研究做得最为出色的包括中科院化学研究所、上海应用物理研究所、上海硅酸盐研究所、长春应用化学研究所、中科院宁波材料技术与工程研究所等数家研究所。如中科院长春应用化学研究所就取得了镍系顺丁橡胶、火箭固体推进剂、稀土萃取分离、高分子热缩材料等重大科技成果450多项,创造了百余项&ldquo 中国第一&rdquo 。   此外,大陆地区众多高校的高分子实验室研究也做的风生水起,包括华北地区的清华大学、哈尔滨工业大学、北京航空航天大学、大连理工大学、天津大学、北京理工大学等,上海江浙地区的上海大学、华东理工大学、上海交通大学、浙江大学、同济大学、南京理工大学、南京大学等,以及其他地区中国科学技术大学、华中科技大学、中南大学、西安交通大学、四川大学、西北工业大学、华南理工大学、东南大学等等。   此外,国内高分子材料相关顶尖公司的研发中心力量同样不可小觑。如国内光学膜领导者康得新就从韩国、日本、美国和台湾等地区引进了100多位博士、专家人才,组建了国内领先的高分子材料研发技术团队。   欧、日、韩&ldquo 各有所长&rdquo   高分子材料目前应用广泛,但其研究也具备一定的技术和资金上的壁垒壁垒,从欧洲、日本、韩国、台湾等国家和地区的研究方式来看,存在一定的差异性,但也各有所长,取得不错的研究成果。   欧洲是高分子材料研究的一个重要区域,代表性国家有德国、英国和俄罗斯。以德国为例,德国在高分子方面的研究主要集中在国家支持成立的研究机构联合会里。德国研究气氛浓厚,既有政府支持的联合会,也有企业资助的协会。而这些研究机构也注重与大学的联系,例如马普高分子所便设立在德国美因茨大学内部。   另外,德国企业本身也同样重视新技术的研发与应用,能够迅速地将新技术、新材料应用于大规模生产,朗盛集团、西门子为当中翘楚。   英国同样拥有众多顶尖研究所和高校研究院。最早将&ldquo 黑金&rdquo 石墨烯从石墨中分离出来便是英国的曼彻斯特大学实验室。   俄罗斯关于高分子材料的研究则主要集中在国内大型、最前沿的研究机构中,比如说航空材料研究所等军工研究机构。   另外,亚洲日本、韩国也是多集中在全国性的研究机构内,起到整合资源的作用。而这些国家的企业也是高分子材料研究的前沿,索尼、LG、三星等产品风靡全球。
  • 海东市生态环境局682.00万元采购天平,吹扫捕集,筛分仪,紫外分光光度,原子吸收光谱,微波消解仪,...
    基本信息 关键内容: 天平,吹扫捕集,筛分仪,紫外分光光度,原子吸收光谱,微波消解仪,分子荧光光谱,干燥箱,抽提萃取,旋转蒸发仪,离子色谱仪,快速溶剂萃取,土壤采样器,测油仪,原子荧光光谱,流动注射分析 开标时间: 2021-12-02 10:00 采购金额: 682.00万元 采购单位: 海东市生态环境局 采购联系人: 刘先生 采购联系方式: 立即查看 招标代理机构: 青海旺利欣招标代理有限公司 代理联系人: 赵先生 代理联系方式: 立即查看 详细信息 海东市生态环境局等离子发射光谱仪等招标 青海省-海东市-平安区 状态:公告 更新时间: 2021-11-12 招标文件: 附件1 招标单位: 正在招标 招标产品:,,,,,, 招标编号:青海旺利欣公招(货物)2021-071号 海东市生态环境局等离子发射光谱仪等招标 2021-11-12 16:24:57 【海东市生态环境局等离子发射光谱仪等招标】,招标编码为【青海旺利欣公招(货物)2021-071号】,招标项目内容包括【等离子发射光谱仪、微波消解、旋转蒸发仪、原子吸收光谱仪、快速溶剂萃取仪、紫外可见光分光光度计、离子色谱仪】,投标截止到【2021-12-02 10:00】,欢迎合格的供应商前来投标 项目编号:青海旺利欣公招(货物)2021-071号 项目名称:海东市土壤环境监测能力建设项目 一、采购需求:(预算金额:682万元) 1原子吸收光谱仪(原装进口)1 台 2等离子发射光谱仪(ICP)(原装进口)1 台 3水土一体吹扫捕集1 台 4超级微波消解平台(原装进口)1 台 5全自动旋转蒸发仪1 台 6全自动定量氮吹1 台 7全自动索氏提取仪(脂肪提取器)1 台 8原子荧光光度计1 台 9行星式球磨仪1 台 10振荡筛分仪1 台 11自动旋转分样仪1 台 12温控翻转振荡器1 台 13 离心机1 台 14快速溶剂萃取仪1 台 15紫外可见光分光光度计1 台 16十万分之一天平1 台 17 万分之一分析天平2 个 18 干燥箱2 个 19土壤采样器2 台 20离子色谱仪(原装进口)1 台 21 纯水仪1 台 22叠加式智能恒温培养摇床1 台 23全自动洗瓶机1 台 24全自动洗瓶机(含酸洗)1 台 25红外测油仪1 台 26全自动流动注射分析仪1 台 合同履约期限:合同签订后30个工作日 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:节能环保、小微企业 3.经信用中国(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)等渠道查询后,列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的,取消投标资格。(提供“信用中国”网站的查询截图,时间为投标截止时间前20天内) 4.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。否则,皆取消投标资格 5.为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标人,不得再参加该采购项目的其他采购活动 6.本项目不接受投标人以联合体方式进行投标 7.投标人提供所投进口产品有效的授权书证明材料。 三、获取招标文件 时间:2021年11月12日至2021年11月18日 ,每天上午09:00至11:30 ,下午13:30至17:30(北京时间,法定节假日除外) 地点:西宁市海湖新区万达中心1号写字楼5楼10508室 方式:线下获取(疫情原因,不见面网上报名) 售价(元):500 报名资料:营业执照复印件(加盖单位公章)、法定代表人授权书、法人及被授权人身份证复印件(加盖单位公章)。将以上材料扫描后和报名费缴纳凭证发送至采购代理机构电子邮箱,在邮件中标明项目编号、项目名称、联系人及联系方式,并联系代理机构工作人员进行确认。 报名邮箱:804736864@qq.com 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年12月02日 10:00(北京时间) 投标地点(网址):海东市公共资源交易中心三号开标室。 开标时间:2021年12月02日 10:00 开标地点:海东市公共资源交易中心三号开标室。 五、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:海东市生态环境局 地 址:青海省海东市平安区平安大道214号 项目联系人:刘先生 项目联系方式:13309728245 2.采购代理机构信息 名 称:青海旺利欣招标代理有限公司 地 址:青海省西宁市城西区西宁市西川南路76号1号楼5层10508室 项目联系人:赵先生 项目联系方式:0971-6103828 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:天平,吹扫捕集,筛分仪,紫外分光光度,原子吸收光谱,微波消解仪,分子荧光光谱,干燥箱,抽提萃取,旋转蒸发仪,离子色谱仪,快速溶剂萃取,土壤采样器,测油仪,原子荧光光谱,流动注射分析 开标时间:2021-12-02 10:00 预算金额:682.00万元 采购单位:海东市生态环境局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:青海旺利欣招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 海东市生态环境局等离子发射光谱仪等招标 青海省-海东市-平安区 状态:公告 更新时间: 2021-11-12 招标文件: 附件1 招标单位: 正在招标 招标产品:,,,,,, 招标编号:青海旺利欣公招(货物)2021-071号 海东市生态环境局等离子发射光谱仪等招标 2021-11-12 16:24:57 【海东市生态环境局等离子发射光谱仪等招标】,招标编码为【青海旺利欣公招(货物)2021-071号】,招标项目内容包括【等离子发射光谱仪、微波消解、旋转蒸发仪、原子吸收光谱仪、快速溶剂萃取仪、紫外可见光分光光度计、离子色谱仪】,投标截止到【2021-12-02 10:00】,欢迎合格的供应商前来投标 项目编号:青海旺利欣公招(货物)2021-071号 项目名称:海东市土壤环境监测能力建设项目 一、采购需求:(预算金额:682万元) 1原子吸收光谱仪(原装进口)1 台 2等离子发射光谱仪(ICP)(原装进口)1 台 3水土一体吹扫捕集1 台 4超级微波消解平台(原装进口)1 台 5全自动旋转蒸发仪1 台 6全自动定量氮吹1 台 7全自动索氏提取仪(脂肪提取器)1 台 8原子荧光光度计1 台 9行星式球磨仪1 台 10振荡筛分仪1 台 11自动旋转分样仪1 台 12温控翻转振荡器1 台 13 离心机1 台 14快速溶剂萃取仪1 台 15紫外可见光分光光度计1 台 16十万分之一天平1 台 17 万分之一分析天平2 个 18 干燥箱2 个 19土壤采样器2 台 20离子色谱仪(原装进口)1 台 21 纯水仪1 台 22叠加式智能恒温培养摇床1 台 23全自动洗瓶机1 台 24全自动洗瓶机(含酸洗)1 台 25红外测油仪1 台 26全自动流动注射分析仪1 台 合同履约期限:合同签订后30个工作日 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:节能环保、小微企业 3.经信用中国(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)等渠道查询后,列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的,取消投标资格。(提供“信用中国”网站的查询截图,时间为投标截止时间前20天内) 4.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。否则,皆取消投标资格 5.为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标人,不得再参加该采购项目的其他采购活动 6.本项目不接受投标人以联合体方式进行投标 7.投标人提供所投进口产品有效的授权书证明材料。 三、获取招标文件 时间:2021年11月12日至2021年11月18日 ,每天上午09:00至11:30 ,下午13:30至17:30(北京时间,法定节假日除外) 地点:西宁市海湖新区万达中心1号写字楼5楼10508室 方式:线下获取(疫情原因,不见面网上报名) 售价(元):500 报名资料:营业执照复印件(加盖单位公章)、法定代表人授权书、法人及被授权人身份证复印件(加盖单位公章)。将以上材料扫描后和报名费缴纳凭证发送至采购代理机构电子邮箱,在邮件中标明项目编号、项目名称、联系人及联系方式,并联系代理机构工作人员进行确认。 报名邮箱:804736864@qq.com 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2021年12月02日 10:00(北京时间) 投标地点(网址):海东市公共资源交易中心三号开标室。 开标时间:2021年12月02日 10:00 开标地点:海东市公共资源交易中心三号开标室。 五、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:海东市生态环境局 地 址:青海省海东市平安区平安大道214号 项目联系人:刘先生 项目联系方式:13309728245 2.采购代理机构信息 名 称:青海旺利欣招标代理有限公司 地 址:青海省西宁市城西区西宁市西川南路76号1号楼5层10508室 项目联系人:赵先生 项目联系方式:0971-6103828
  • 呼和浩特市生态环境局300.00万元采购离子色谱仪,紫外分光光度,原子吸收光谱
    详细信息 呼和浩特市生态环境局玉泉区监测站仪器设备采购项目竞争性磋商公告 内蒙古自治区-呼和浩特市-玉泉区 状态:公告 更新时间: 2022-09-18 招标文件: 附件1 项目概况 玉泉区监测站仪器设备采购项目采购项目的潜在供应商应在内蒙古自治区政府采购网获取采购文件,并于 2022年09月30日 09时30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:150101-ZCSXCG-CS-20220006 项目名称:玉泉区监测站仪器设备采购项目 采购方式:竞争性磋商 预算金额:3,000,000.00元 采购需求: 合同包1(玉泉区监测站仪器设备采购项目): 合同包预算金额:3,000,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 水质污染防治设备 全自动CODCr分析仪 1(台) 详见采购文件 345,800.00 - 1-2 其他环境污染防治设备 原子吸收分光光度计 1(台) 详见采购文件 474,000.00 - 1-3 其他环境污染防治设备 离子色谱仪 1(台) 详见采购文件 850,000.00 - 1-4 其他环境污染防治设备 油气回收多参数检测仪 3(台) 详见采购文件 216,000.00 - 1-5 大气污染防治设备 便携式排放检测系统 3(台) 详见采购文件 387,000.00 - 1-6 其他环境污染防治设备 智能试剂安全管理系统 9(台) 详见采购文件 585,000.00 - 1-7 热式打印机 多功能标签打印机 1(台) 详见采购文件 1,200.00 - 1-8 其他环境污染防治设备 紫外可见分光光度计 1(台) 详见采购文件 120,000.00 - 1-9 其他环境污染防治设备 紫外可见分光光度计 1(台) 详见采购文件 21,000.00 - 本合同包不接受联合体投标 合同履行期限:合同签订后20个日历日内交货 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2.落实政府采购政策需满足的资格要求: 无。 三、获取采购文件 时间: 2022年09月18日至 2022年09月23日,每天上午 00:00:00至 12:00:00,下午 12:00:00至 23:59:59(北京时间,法定节假日除外) 地点:内蒙古自治区政府采购网 方式:在线获取。获取采购文件时,需登录“政府采购云平台”,按照“执行交易→应标→项目应标→未参与项目”步骤,填写联系人相关信息确认参与后,即为成功“在线获取”。 售价: 免费获取 四、响应文件提交 截止时间: 2022年09月30日 09时30分00秒(北京时间) 地点: 内蒙古自治区政府采购网(政府采购云平台)五、开启 时间: 2022年09月30日 09时30分00秒(北京时间) 地点: 内蒙古自治区政府采购网(政府采购云平台)六、公告期限 自本公告发布之日起3个工作日。七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:呼和浩特市生态环境局 地 址:呼和浩特市赛罕区新华东街12号城建大厦 联系方式:189479274562.采购代理机构信息 名 称:内蒙古众诚守信项目管理有限公司 地 址:内蒙古自治区呼和浩特市赛罕区如意南路金隅朗峰A1307 联系方式:0471-33279953.项目联系方式 项目联系人:赵潇 电 话:0471-3327995 内蒙古众诚守信项目管理有限公司 2022年09月18日 相关附件: 玉泉区监测站仪器设备采购项目磋商文件(2022091801).pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:离子色谱仪,紫外分光光度,原子吸收光谱 开标时间:null 预算金额:300.00万元 采购单位:呼和浩特市生态环境局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:内蒙古众诚守信项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 呼和浩特市生态环境局玉泉区监测站仪器设备采购项目竞争性磋商公告 内蒙古自治区-呼和浩特市-玉泉区 状态:公告 更新时间: 2022-09-18 招标文件: 附件1 项目概况 玉泉区监测站仪器设备采购项目采购项目的潜在供应商应在内蒙古自治区政府采购网获取采购文件,并于 2022年09月30日 09时30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:150101-ZCSXCG-CS-20220006 项目名称:玉泉区监测站仪器设备采购项目 采购方式:竞争性磋商 预算金额:3,000,000.00元 采购需求: 合同包1(玉泉区监测站仪器设备采购项目): 合同包预算金额:3,000,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 水质污染防治设备 全自动CODCr分析仪 1(台) 详见采购文件 345,800.00 - 1-2 其他环境污染防治设备 原子吸收分光光度计 1(台) 详见采购文件 474,000.00 - 1-3 其他环境污染防治设备 离子色谱仪 1(台) 详见采购文件 850,000.00 - 1-4 其他环境污染防治设备 油气回收多参数检测仪 3(台) 详见采购文件 216,000.00 - 1-5 大气污染防治设备 便携式排放检测系统 3(台) 详见采购文件 387,000.00 - 1-6 其他环境污染防治设备 智能试剂安全管理系统 9(台) 详见采购文件 585,000.00 - 1-7 热式打印机 多功能标签打印机 1(台) 详见采购文件 1,200.00 - 1-8 其他环境污染防治设备 紫外可见分光光度计 1(台) 详见采购文件 120,000.00 - 1-9 其他环境污染防治设备 紫外可见分光光度计 1(台) 详见采购文件 21,000.00 - 本合同包不接受联合体投标 合同履行期限:合同签订后20个日历日内交货 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2.落实政府采购政策需满足的资格要求: 无。 三、获取采购文件 时间: 2022年09月18日至 2022年09月23日,每天上午 00:00:00至 12:00:00,下午 12:00:00至 23:59:59(北京时间,法定节假日除外) 地点:内蒙古自治区政府采购网 方式:在线获取。获取采购文件时,需登录“政府采购云平台”,按照“执行交易→应标→项目应标→未参与项目”步骤,填写联系人相关信息确认参与后,即为成功“在线获取”。 售价: 免费获取 四、响应文件提交 截止时间: 2022年09月30日 09时30分00秒(北京时间) 地点: 内蒙古自治区政府采购网(政府采购云平台)五、开启 时间: 2022年09月30日 09时30分00秒(北京时间) 地点: 内蒙古自治区政府采购网(政府采购云平台)六、公告期限 自本公告发布之日起3个工作日。七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:呼和浩特市生态环境局 地 址:呼和浩特市赛罕区新华东街12号城建大厦 联系方式:189479274562.采购代理机构信息 名 称:内蒙古众诚守信项目管理有限公司 地 址:内蒙古自治区呼和浩特市赛罕区如意南路金隅朗峰A1307 联系方式:0471-33279953.项目联系方式 项目联系人:赵潇 电 话:0471-3327995 内蒙古众诚守信项目管理有限公司 2022年09月18日 相关附件: 玉泉区监测站仪器设备采购项目磋商文件(2022091801).pdf
  • ​紫外可见光谱法研究光伏电池
    近些年来,寻找环境问题解决方案日益成为全球亟待解决的主要难题。鉴于化石燃料资源正在迅速耗竭及其对环境造成严重破坏,发展替代性能源产品已经成为当务之急。太阳是清洁能源的一个丰富来源,可通过光伏系统,将太阳光转化为直流电能从而为我们所用。近年来各国都在积极推动可再生能源应用,因此,光伏产业发展十分迅速。今年是“十四五”开局之年,在国家政策的支持下,在“碳达峰”、“碳中和”的目标要求下,光伏行业将迎来更大的发展。光伏转换技术的发展和进步需要在化学、电子、机械和光学等方面对整个过程的各个阶段进行表征,大量的研究工作仍然在进行中。紫外/可见/近红外光谱仪在光学性质研究中有着重要的应用。配有150mm积分球的LAMBDA 1050+紫外/可见/近红外分光光度计使用LAMBDA 1050+紫外/可见/近红外分光光度和150mm积分球,可以测量样品在200~2500nm范围内的透过率、反射率和吸光度。积分球的内表面使用Spectralon高分子材料制成,其反射率接近100%。150mm积分球的窗口面积占内反射表面比值小于2.5%。窗口面积比例越低,测量结果的精密度越高。60mm积分球的窗口面积比大约为7%。透射率和反射率积分球测量:透射模式(上)和反射模式(下)积分球内部的检测器(可见光区域使用光电倍增管,近红外光区域使用PbS检测器)被Spectralon材料制成的挡板所保护,避免直接反射光线进入检测器,从而保证测试结果的准确度。在进行反射率测量时,可以打开镜面反射侧翼,将镜面反射光线排除,从而只测量漫反射光线。在进行透射率测量时,将正对入射光束的窗口上的标准盖板取走,可以排除直接透射光线,从而只测量漫透射光线。吸光度中心样品架附件;使用积分球测量吸收光谱使用中心样品架,将待测样品放置在积分球的中心位置,可以直接测量样品的吸光度。光伏电池的测量光伏电池是将光能转换为电能的半导体器件,第一阶段是吸收有效光谱范围内的光线。为了增加光电转换效率,需要对硅片表面进行处理,以增加光伏电池的吸光度。测量光伏电池的反射率、透过率和吸光度,可以评价其处理方式的效果。未处理的硅晶片、经过织构化处理的硅晶片、覆盖了抗反涂层的硅晶片以及光伏电池成品处理前和处理后硅晶片的透过率(左)和反射率(右)硅片的吸光度可通过如下公式获得:%吸光度=100%-%反射率-%透过率可见,经过处理的硅片吸光度更高,从而光能利用率更高。光伏电池的有效反射率是包含了AM1.5太阳辐射光谱权重的积分反射率,可以表示为:其中R(λ)是测量得到的百分比反射率,Sλ是太阳辐射光谱(以光子流表示)。有效反射率可以在光伏电池生产过程的任意环节进行测量,所得数值可以用于不同样品的相互比较。光伏电池对不同角度光线的透射率和反射率非常重要,后续文章会介绍相应分析方法,敬请期待。更多详情,请扫描二维码下载完整应用报告。
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) JohnWiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28
  • 高分子表征技术专题——示差扫描量热法进展及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20234《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304示差扫描量热法进展及其在高分子表征中的应用陈咏萱 , 周东山 , 胡文兵 南京大学化学化工学院 配位化学国家重点实验室机构 南京 210023作者简介: 胡文兵,男,1966年生. 南京大学化学化工学院高分子系教授、博士生导师. 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系. 分别于1998~1999年赴德国弗莱堡大学物理系、2000~2001年美国田纳西大学化学系、2001~2003年荷兰物质科学研究院(FOM)原子与分子物理研究所从事博士后研究. 2004年至今,在南京大学任教. 2008年获杰出青年科学基金资助,2020年入选美国物理学会会士(APS Fellow). 主要研究方向为采用蒙特卡洛分子模拟和Flash DSC研究高分子结晶机理及材料热导率表征 通讯作者: 胡文兵, E-mail: wbhu@nju.edu.cn摘要: 示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点. 近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究. 温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容. 闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能. 本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望. 本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.关键词: 高分子表征 / 示差扫描量热法 / 温度调制示差扫描量热法 / 闪速示差扫描量热法 目录1. 热分析基础1.1 温度和热1.2 热分析(thermal analysis)2. 示差扫描量热法2.1 基本原理2.2 实验技巧2.2.1 仪器校准2.2.2 样品制备2.2.3 温度程序2.2.4 保护气氛2.3 应用举例2.3.1 比热容2.3.2 热转变温度2.3.3 转变焓2.3.4 DSC与其他技术连用3. 温度调制示差扫描量热法3.1 基本原理3.2 实验技巧3.2.1 样品质量3.2.2 温度程序3.3 应用举例3.3.1 可逆热容和不可逆热容3.3.2 等温可逆热容3.3.3 玻璃化转变4. 闪速示差扫描量热法4.1 基本原理4.2 实验技巧4.2.1 样品制备4.2.2 样品质量4.2.3 临界条件4.3 应用举例4.3.1 等温总结晶动力学4.3.2 不可逆熔融转变4.3.3 与其他表征技术连用4.3.4 玻璃化转变4.3.5 热导率5. 总结与展望参考文献1. 热分析基础1.1 温度和热温度是表征物体冷热程度的物理量,它仅由系统内部的热运动状态决定,是系统中物质分子热运动强度的量度. 热力学第零定律表明,所有互为热平衡的系统都存在一个共同的数值相同的态函数,这个态函数被称为温度,是一个强度量. 热力学第零定律阐明了温度计的工作原理:在测量温度时,首先选择一个作为标准的测温物体,也就是温度计,然后让它分别与各个物体接触并达到热平衡,得到的标准物体的温度就是各待测物体的温度. 值得注意的是,温度计的热容必须比待测物体的热容要低得多,以保证接触过程中不会改变物体的温度. 然而,温度测量获得的是一个相对量,为了定量测定温度,人们还需要建立一个温标.最初的温标是经验温标,它依据测温质的某一种物理属性随温度的变化关系来表征温度的大小. 例如,酒精和水银温度计是根据液体加热时的体积膨胀设计的,铂和RuO2温度传感器是依据金属导体的电阻随温度的变化关系设计的. 通常,这种变化关系是显著而单调的,假定其为简单的线性关系,那么测温属性x和温度θ的关系为:其中,常数a和b是由标准点和分度法确定的,根据不同的标准点和分度法可以确定不同的温标. 1714年,Fahrenheit将水的冰点设为32 °F,沸点为212 °F,建立了华氏温度. 1742年,Celsius将水的冰点设为0 °C,沸点为100 °C,建立了摄氏温度. 到1779年为止,全世界并存有19种经验温标. 然而,这些温标缺乏统一的标准,除了标准点外,采用不同的测温质测得的温度并不完全一致. 此外,测温属性往往无法在整个温度范围内保持完全线性的变化关系. 例如,水银在−39 °C发生固化,在357 °C发生气化,因此水银温度计的测温范围在其凝固点和沸点之间. 1848年,Kelvin依据卡诺定律提出了开氏温度作为物理学温标,它不依赖于任何测温物质的具体测温属性,故又称为绝对温标. 相应的温度也被称为热力学温度,以T表示,单位为开尔文,记为K.1967年,第13届国际标度会议确立热力学温度为基本温标,并将水的三相点的热力学温度设为273.15 K. 摄氏温度与热力学温度之间的关系为即,摄氏温度的0 °C对应热力学温度的273.15 K.热量是物质状态发生转变的一种反映,它与人类的日常生活息息相关,很早以前人们就开始了对热的探索. 早在公元前5世纪,Empedocles[1]就提出这个世界是由气、水、土和火(热)四大元素所组成的. 一直到18世纪中叶以前,热质说(theory of caloric)盛行. 18世纪后期,人们开始通过实验证明热是粒子内部的运动. 19世纪后半期,Joule和Boltzmann等建立了统计热力学的基本原理,从而彻底推翻了传统的热质说.由热力学第一定律可知,热是能量的一种形式,记为Q,它可以和其他形式的能量互相转化,且总能量保持不变,即:物体吸收或放出热量的能力由热容C (JK−1)来表征,表示物体温度升高1 K所吸收的热量(单位J),而单位质量(克,g)物体升高1 K所吸收的热量为比热容cm (JK−1g−1),将能量表示为体积和温度的函数,则根据体积不变的条件可以得到同样可以将能量表示为压强、温度的函数, 在压强不变的条件下,可得到其中,H为定义的一个态函数,称为焓(enthalpy). 它与内能的关系为由此得到等容热容和等压热容的关系为1.2 热分析(thermal analysis)广义上来说,所有控制温度的测量过程都可以称为热分析. 1999年,国际热分析和量热协会(International Confederation for Thermal Analysis and Calorimetry, ICTAC)和美国材料与试验协会(American Society for Testing and Materials, ASTM)[2~4]对热分析的定义为:在程序温度下,测量物质的物理性质与温度或时间关系的一类技术. (A group of techniques in which a physical property of a substance is measured as a function of temperature or time while the substance is subjected to a controlled-temperature program.)常见的热分析所测量的物理性质包括质量、温差、热量、应力和应变等. 按照测量性质的不同,最基本的热分析包括以下几种:差热分析法(differential thermal analysis, DTA)、示差扫描量热法(differential scanning calorimetry, DSC)、热机械法(thermomechanical analysis, TMA)、热重分析法(thermogravimetric analysis, TGA)等等.示差扫描量热法(DSC)的定义是:在程序控温和稳态保护气氛下,测量进出样品和参比物之间的热流差随温度或时间变化的一种技术. 它是目前应用最为广泛的一种热分析技术. 随着科学技术的进步,DSC也得到了不断的发展,特别是近年来取得了显著的进展. 其中一个主要的进展是在20世纪90年代出现的温度调制DSC (temperature-modulated DSC, TMDSC). TMDSC在传统DSC线性扫描速率的基础上加入了调制升降温速率,可测得非线性调制热流信号,对该热流信号进行解调制,可以将总热流信号区分为可逆信号和不可逆信号两部分. TMDSC还可以通过对等温过程施加微量调制升降温速率进行准等温实验,追踪实验过程中的不可逆过程随时间的演化,并最终获得平衡状态下的可逆热容. DSC技术的另一个重要进展是近年来发展起来的闪速示差扫描量热法(fast-scan chip-calorimetry, FSC). FSC其商业化版本为Flash DSC,是基于芯片量热技术和微制造技术而发明的超快速示差扫描量热技术,它可达到106 Ks−1的扫描速率,具有较高的灵敏度,进一步将DSC的表征时间和温度窗口拓展到了发生较快速热转变的区间,增强了其表征和研究各种热转变动力学的能力.2. 示差扫描量热法2.1 基本原理示差扫描量热法起源于19世纪中期. 1887年,Le Chatelier[5,6]采用热电偶首次记录了陶土的温度随时间变化的升温曲线. 1899年Roberts-Austen[7]使用参比热电偶,首次测量了样品与参比物之间的温差,发展了差热分析法(DTA). 然而这种方法只能用于定性测量样品和参比物之间的温差ΔT.1955年,Boersma[8] 改进了DTA设备并建立了一个定量DTA测量单元,该仪器的热阻与试样无关. 对仪器的热容进行校正,可使得扫描过程中样品的热流与温差呈稳定的线性关系,从而可以定量测量热流. 这一发现最终导致了热流型DSC的诞生. 热流型DSC保留了差热分析法引入的参比物,并监测试样和参比物之间的热流差变化,得到了比只测定试样的绝对热流变化更为精确的测试结果,这也是示差扫描量热法中“示差”的含义及来源. 1964年,Watson等[9,10]提出了功率补偿型DSC的概念,这一概念有利于提高DSC的升降温速率. 此后,DSC技术不断发展并成为热分析领域的常规分析手段. 目前,市场化的DSC设备根据加热方法和测量原理主要分为热流型示差扫描量热仪(heat flux DSC)和功率补偿型示差扫描量热仪(power compensation DSC)两类[11].热流型DSC的测试装置如图1所示.图 1Figure 1. Illustration of heat-flux DSC (Mettler-Toledo heat-flux DSC) with the heating rate controlled through the furnace temperature. There are two sets of thermocouples measuring the heat flow between the furnace and the pan for sample and reference and two central terminals bringing the average T signal from all the thermocouples out to the computer.热流型DSC从外部加热整个炉体,并给样品和参比物提供同样的加热功率. 由热欧姆定律可知,由炉体流到试样坩埚的热流[Math Processing Error]ϕs 以及由炉体流入参比坩埚的热流[Math Processing Error]ϕr分别为[12]其中,[Math Processing Error]Ts、[Math Processing Error]Tr和[Math Processing Error]Tc分别为试样温度、参比温度和炉体温度,[Math Processing Error]Rth为热阻.DSC检测信号[Math Processing Error]ϕ为2个热流之差,由于参比坩埚和试样坩埚相同,仪器两边具有对称性,可将上式简化为即,热流型DSC的检测信号[Math Processing Error]ϕ与试样和参比物之间的温差[Math Processing Error]ΔT=Ts−Tr成正比.热流型DSC对整个炉体进行加热,测试氛围均匀且稳定,因此能保持较为稳定的基线. 另一方面,炉体的热容较大,不利于快速升降温,因此热流型DSC的升降温速率较慢.功率补偿型DSC的测试装置如图2所示.图 2Figure 2. Illustration of power-compensation DSC as invented by Perkin Elmer with the reference and the sample separately heated by two platinum resistance thermometers in two calorimeters mounted in a constant temperature block.功率补偿型DSC采用2个独立的加热器分别对样品盘和参比盘进行控温和功率补偿,当样品发生吸热或者放热效应而导致样品与参比物之间的温差不为零时,电热丝将及时对参比盘或样品盘输入电功率以进行热量补偿,使两者的温度始终处于动态零位平衡状态,同时记录样品和参比物的2只补偿电热丝的功率之差随时间的变化关系,功率补偿型DSC的热源更贴近样品,温度响应灵敏,因此升降温速率更快. 为了准确测量样品的热效应,功率补偿型DSC的2个炉体必须具有很高的对称性,然而仪器内部的环境往往会随着时间而发生改变,因此功率补偿型DSC的基线容易发生漂移,不如热流型DSC稳定.2.2 实验技巧2.2.1 仪器校准首先采用标准物质在待测温度范围内对仪器进行校准,以保证测量值与参考值相吻合. 校准的内容主要包括DSC曲线上的温度值以及热流速率值. 因此标准物质应具有较好的稳定性,其测量性能必须具有可靠的文献参考值. 常用于校准的标准物质有铟、锡、尿素、苯甲酸等等,这些标准物质可用于不同温度范围内的校准. 图3是采用铟进行熔点以及熔融焓校准得到的测量结果,将标准物质的熔点以及熔融焓的测量值与文献参考值进行比较,若测量值不在误差限之内,则需要对仪器的参数进行调整,使测量值与参考值相符合[13].图 3Figure 3. Illustration of the calibration of temperature and heat-flow rate with the standard material Indium for DSC measurement. The curve is characterized by its baseline and the endothermic process with some characteristic temperatures including the beginning of melting, Tb, the extrapolated onset of melting, Tm, the peak temperature, Tp, and the end of melting where the baseline is finally recovered, Te. Generally, Tm is the most reproducible point as an accurate measure of the equilibrium temperature which are used for the temperature calibration. The peak area below the baseline can be compared with the expected fusion heat of standard materials for the calibration of the heat flow rate.2.2.2 样品制备DSC实验采用坩埚作为试样容器,包括铝坩锅、高压坩埚以及具有特殊用途但使用较少的铂金、黄金、铜、蓝宝石或者玻璃坩埚等等. 其中最常用的是铝坩埚,包括40 μL标准铝坩埚和20 μL轻质铝坩埚. 带盖的40 μL标准铝坩埚应用范围较广,能进行固体和液体样品的测试. 20 μL的轻质铝坩埚的热容较小,有利于提高测试信号的分辨率和灵敏度,可用于质量较小的薄膜或者粉末样品的测试,一般不用于液体样品的测试. 称量样品之前首先需要选取2个质量十分相近的坩埚,以保证DSC仪器具有较好的对称性. 此外,取放坩埚时采用镊子夹取坩埚,并将坩埚放置在称量纸上,以免污染坩埚及坩埚内的样品.然后选择样品质量. 一般来说,样品质量越少越好,较少的样品量可以减小样品内部的温度梯度,提高信号的分辨率,此外还能保证与坩埚底部的良好接触,有利于提高基线的稳定性和温度测量的准确度. 然而样品质量过少会导致信号的灵敏度较低. 因此,在称量样品时需要综合考虑两者的影响. 通常,样品的体积不超过坩埚体积的2/3,有机样品的质量为5~10 mg,无机样品的质量为10~50 mg[12]. 称量时采用差减法,先用分析天平称量空坩埚的质量,然后放入样品,称量样品和坩埚的质量之和,两者相减则得到样品的质量. 称量时每个质量都需要测量3遍,保证质量称量的准确度在±0.2%.装样过程需要注意3个方有关高分子标准热容数据可从ATHAS (Advanced THermal AnalysiS)[16]等数据库中查找.2.3.2 热转变温度高分子材料的物理热转变温度主要包括玻璃化温度和熔点. 玻璃化温度[Math Processing Error]Tg是非晶态聚合物在玻璃态和高弹态之间转变的温度. 研究玻璃化转变温度可以得到有关样品的热历史、稳定性、化学反应程度等重要信息,对于实验研究、质量检测等具有重要意义. 玻璃化转变温度通常取DSC曲线发生玻璃化转变台阶上下范围的中点. 图5是ASTM方法[17]测量聚合物玻璃化转变温度的热流曲线图,在台阶的拐点[Math Processing Error]Ti处做一条切线,由这条切线与基线的交点可得到外推起始温度[Math Processing Error]Tb1和外推终止温度[Math Processing Error]Te1,这两点的中点即为玻璃化转变温度[Math Processing Error]Tg.图 5
  • 中教金源参与起草国标《纳米技术 镉硫族化物胶体量子点表征 紫外-可见吸收光谱法》正式发布
    国家标准《纳米技术 镉硫族化物胶体量子点表征 紫外-可见吸收光谱法》由TC279(全国纳米技术标准化技术委员会)归口上报及执行,主管部门为中国科学院。 2021-12-31日由国家纳米科学中心 、北京中教金源科技有限公司 等起草的国家标准《纳米技术 镉硫族化物胶体量子点表征 紫外-可见吸收光谱法成功发布,并于2022-07-01起正式实施。 主要起草人为:葛广路 、张东慧 、蔡春水 、王新伟 、庞代文 、朱东亮 、郭海清 、钟海政 、康永印 、赵治强 、张海蓉 、王瑞斌 、黄生宏 、冀代雨 、刘忍肖 、张轩 。北京中教金源科技有限公司是以实验仪器研发和生产的高新技术企业、中关村高新技术企业,注册于北京国际企业孵化中心(IBI)、中关村科技园丰台园科创中心,实资注册1200万元。中教金源产品以实验室仪器、实验光源、光电仪器、光电化学、催化微反、电池储能测试等系统开发为主,服务中国科研和教育事业,产品质量铸金,技术创新立源。   中教金源,与全国各高校研究所建立了长久的合作关系。2010年以来,采用中教金源仪器,发表的SCI文章千余篇,尤其在客户化定制及系统搭建上满足了不同的实验需求。部分客户:中国科学院化学研究所、国家纳米中心、北京大学、上海交通大学、南京大学、中国石油大学、重庆大学、华南理工大学、中山大学、武汉大学、兰州大学、中国科学院新疆理化所、哈尔滨工业大学、黑龙江大学等千余家单位、研究院所。   产品主要应用:实验室科学研究、化学研究、工业催化、光电化学、光电测试分析、生物研究、催化表征、光化学及光催化、光降解污染物、光降解有害物、光聚合、光电转换、光致变色、太阳能电池研究、电池储能测试等领域。
  • 从墨水到光刻胶,瞄准“卡脖子”问题——访苏州大学高分子材料与工程专业负责人朱健教授
    高分子合成材料以其优异的性能、丰富的原料和低廉的成本,已经成功地成为当今生产生活中不可缺少的基础材料。随着社会的快速发展,人们越来越希望能够根据自身的不同需求,简单方便的设计合成各种各样性能优异的高分子材料。因此,研究人员们一直努力寻找简单而高效的活性聚合方法实现人类社会对高分子材料的高需求及高性能要求。近期,苏州大学高分子材料与工程部发表多篇活性聚合相关高水平论文,引起业内高度关注。仪器信息网也特别采访了苏州大学材料与化学化工学部高分子材料与工程专业负责人朱健教授,深入了解朱健及其团队在高分子合成领域所做的工作,并就其近期研究成果以及高分子合成未来发展方向等进行了深入的交流。科研之路:从“活性”自由基聚合到功能性材料从1995年开始,朱健便开始了高分子合成研究之路,刚开始主要研究方向是“活性”自由基聚合。传统的自由基聚合不能控制聚合物分子的结构和分子量大小,通常聚合物分子量分布宽;活性聚合反应条件比较苛刻,分子结构的可设计性较小。 活性自由基聚合可以方便的实施单体的自由基聚合又可摒弃两者缺点实现聚合物合成设计。朱健表示,刚开始对 “活性”自由基聚合的研究主要是对催化体系的开发,建立探索一些新的催化体系,例如对乙烯基单体的可控聚合,也将这一方法沿用到高分子聚合物的拓扑结构和分子量控制。随着对“活性”自由基聚合深入研究,朱健团队也将原来的合成方法向活性阴阳离子自由基聚合和结构调控方向进行拓展。“在合成方法建立以后,我们开始考虑方法的实用性,所以开始了功能材料合成的研究。”朱健介绍到。含硒化合物由于其特殊的光电响应行为和生理活性,近些年在在功能材料方面以及医药行业得到了很大发展。然而,有机硒的化学行为较为独特,国内关于含硒聚合物的研究十分稀少。朱健围绕含硒聚合物开展了含硒聚合物的设计与合成及其性能研究,建立了有机硒化合物调控的活性自由基聚合体系。通过此项研究,大大提升了活性自由基聚合方法的操作便利性,简化复杂聚合物合成步骤,为聚合物合成方法提供新途径。近几年,3D打印成为材料领域的研究热点,但已有技术打印体量较小,限制了其实际应用。朱健将光引发聚合与3D打印相结合,制备出新颖的“活性”材料。该方法所制备材料中聚合物链含有活性末端,可进一步进行材料后修饰及功能化,在制备刺激响应性、自修复等各种功能材料领域体现出重大潜在应用。同时将催化体系和单体的比例进行优化调整,对网格结构进行调整,这样3D打印出的物体机械性能也要优于普通材料。“在不同的应用领域,对于高分子材料的性能也有不同的要求,我们要通过功能推测出结构,将结构作为合成的目标,运用合适的聚合反应,合成目标结构,最后体现材料功能。”朱健谈到,“看似简单的研究过程,实则每一步都充满挑战性。”GPC:高分子合成过程的“观察者”高分子合成是分子层面的反应,人们肉眼是无法看到分子的变化,也无法去跟踪反应过程。而各种各样的分析仪器可以帮助人们去剖析和观察“看不到”的化学变化。朱健表示,在高分子合成研究过程中用到的科学仪器种类比较多,可简单划分为物理分析和化学分析两大类,常用仪器包括凝胶渗透色谱仪(GPC)、核磁共振波谱仪、气相色谱仪、荧光光谱仪、红外光谱仪、紫外光谱仪,以及各种质谱仪等。其中,GPC是一种表征聚合物分子量和分子量分布等特征的物理化学方法,由于仪器的不断改进,比如高效填料的使用、多种检测器的联用及与计算机的联用、仪器操作和数据处理的自动化等,使其在高分子合成领域中的应用范围不断扩大。“分子量是高分子结构参数中最基本、最重要的参数,目前,最高效便捷测定分子量的方法便是GPC。”朱健提到他团队便有多台GPC,其中有三台来自于东曹,三台GPC几乎是24小时“运转”。近年来,其他课题组也陆续购买了多台东曹的GPC。朱健认为,一台好的GPC最重要的一点便是高稳定性和高重复性,东曹的GPC所有的管路系统都在一个恒温的体系中,使溶剂流量不受溶剂类型和环境温度波动的影响,提高了检测的稳定性和重复性;其次是性价比高,能够高效缩短分析时间做到低溶剂消耗,同时保证实验的即时有效性;最后是操作简单,实验人员能够非常方便地进行仪器控制,数据采集、分析和管理等相关操作。不过,朱健也提到,目前GPC在检测器的性能方面仍有提升空间,多种检测器联用时,稳定性有待于进一步提升。从墨水到光刻胶,瞄准“卡脖子”问题从最简单的生活用品,到工业涂料、光刻胶,甚至航空、航天、军事领域都离不开高分子材料。朱健认为“如何将高分子合成研究,转化为实际能让人们受益的东西,是我们研究的关键。”在很多人的眼中,与超导体材料、半导体、超材料等研究比起来,一个“小小”的墨水研究算不上什么“高大上”的研究。李克强总理曾在采访中提出“小小的圆珠笔,中国造不出来吗?”的疑问。圆珠笔的核心就是笔尖和墨水,然而我国90%的笔尖、80%的墨水都需要进口,整个行业处于“替人打工、受制于人”的不利局面。为了解决这一问题,国家在 “十三五”中设置了《制笔新型环保材料》的国家重点研发计划。科研无大小,学术有深浅,遵循这一人生信条,朱健团队积极展开相关工作,切实解决“墨水”这样的民生问题。朱健团队也积极的承接了《制笔新型环保材料》项目。他们从墨水基础材料层面着手,根据高分子结构设计方法,利用大分子乳化剂,实现高稳定性、环保性乳化墨水的研发及产业化应用;该乳化墨水相对于传统墨水具有书写细腻流畅、粘度低、触变性优异及储存稳定性高等特点。他们也与文具公司合作成功研发了超顺滑中性笔,给数百亿支笔装上“中国墨水”。也许,您正在使用的中性笔便包含了朱健团队所研发的成果。当然,朱健团队的研究工作中也不乏“光刻胶”这样关系国家产业发展的大问题。目前,中国光刻胶国产化率较低,重点技术水平与国际先进技术有较大的差距。随着半导体行业、LED及平板显示行业的快速发展,对于光刻胶的需求越发旺盛,国内光刻胶产品未来市场空间巨大。朱健从光刻胶的应用场景及使用过程中性能要求出发,设计所需的聚合物的结构。往往光刻胶涉及到多组分单体,在合成的过程中,单体的双键含量和位置都需要严格设计,才能最终得到一个性能优异的高分子。朱健表示,目前光刻胶前期开发的工作已经完成,也有部分材料处于放大生产阶段,相信在不久的将来,国内光刻胶难题也将解决。在中国许多行业都存在“圆珠笔”、“光刻胶”等问题,朱健希望能够发挥团队在关键技术攻关中强有力的科研优势,集各家资源,力争我国在关键核心技术方面早日取得新的突破,解决关键领域“卡脖子”问题,实现科技自立自强。朱健,教授,博士,博士生导师,苏州大学材料与化学化工学部副主任,高分子材料与工程专业负责人。分别于1995,1998和2004年在苏州大学获学士、硕士和博士学位。1998年留校任教。2006-2007和2009-2010在新加坡国立大学和宾夕法尼亚州立大学从事博士后工作。主持国家十三五重大专项子课题一项,国家自然科学基金项目三项,江苏省自然科学基金和教育厅重点项目各一项。积极与企业合作,共同开发各类产品,累计到账横向课题经费907万元。获苏州大学苏鑫科研奖(2008,独立),江苏省科技进步二等奖(2009,第三)和教育部科技进步二等奖(2009,第三)。先后发表研究论文180多篇,获美国发明专利授权2项,澳大利亚发明专利授权2项,中国发明专利授权18项。
  • 山东发布《DB37/T 3786-2019 环境空气 硫化氢等气态污染物的测定开放光程紫外吸收光谱法》
    p   在无组织污染物排放(控制)标准方面,《大气污染物综合排放标准》(GB 16297-1996)对苯、甲苯、二甲苯、甲醛等制订了排放限值 《恶臭污染物排放标准》(GB 14554-93)对氨、三甲胺、硫化氢、甲硫醇、甲硫醚、二甲二硫醚、二硫化碳、苯乙烯等制订了排放标准。 /p p   无组织逃逸监测一直是环境监测领域的盲区,国内有相关的仪器已经实现自动监测,并且在部分工业园区已经安装,但多以空气质量监测为主,而且监测部署多为点位法,由于气象条件的复杂性,几乎无法完成无组织排放逃逸监测。开放光程紫外吸收光谱法的多气体测量系统,可实现远距离、长光程条件测量,分析一条光谱即可得到监测路径内的多种气态污染物的定量分析结果,且现场作业方式灵活,可满足对环境空气中无组织逃逸监测的需要,因此有必要制定标准以规范自动监测方法,并出台相关仪器方法标准,正确指导环境监测机构选择合适的仪器对无组织逃逸排放监测监管。 /p p   气态污染物测量仪器目前采用的分析技术主要有:PID法、非分散红外吸收法(NDIR)、FID法、GC-MS和开放光程吸收光谱法(OP-DOAS及OP-FTIR)等,各方法技术特点对比及应用见下表。 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" margin-left:0 border-collapse:collapse border:none" tbody tr style=" height:21px" class=" firstRow" td width=" 93" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 21" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 分析技术 /span /p /td td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 21" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 监测对象 /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 21" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 技术特点分析对比 /span /p /td td width=" 133" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 21" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 应用 /span /p /td /tr tr style=" height:23px" td width=" 93" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center line-height:normal" span FID /span /p /td td width=" 75" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center line-height:normal" span VOC /span span style=" font-family:宋体" 、 /span span NMTHC /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" line-height:normal" span style=" font-family:宋体" 对 /span span HC /span span style=" font-family:宋体" 响应灵敏,线性范围宽、稳定、结构简单、使用方便; /span /p /td td width=" 133" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center text-indent:0 line-height:normal" span style=" font-family:宋体" 实验室 /span span style=" font-family:宋体" 便携 /span /p p style=" text-align:center line-height:normal" span style=" font-family:宋体" 固定源在线 /span /p /td /tr tr style=" height:23px" td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" line-height:normal" span style=" font-family:宋体" 废气中 /span span O sub 2 /sub /span span style=" font-family:宋体" 、 /span span H sub 2 /sub O /span span style=" font-family:宋体" 及含有 /span span N /span span style=" font-family:宋体" 、 /span span O /span span style=" font-family:宋体" 、 /span span X /span span style=" font-family:宋体" 的有机物有干扰 /span /p /td /tr tr style=" height:20px" td width=" 93" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" text-align:center line-height:normal" span PID /span /p /td td width=" 75" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" text-align:center line-height:normal" span THC /span span style=" font-family:宋体" 、 /span span TVOCs /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" line-height:normal" span style=" font-family:宋体" 检测器体积小、无需辅助气体,现场便携,可用于室内气体、应急监测、危险泄漏气体检测,无组织排放源 /span span TVOCs /span span style=" font-family:宋体" 追踪 /span /p /td td width=" 133" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 便携应急 /span /p /td /tr tr style=" height:20px" td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" line-height:normal" span style=" font-family:宋体" 无法判定气体组分,监测无组织排放源无法厘清排放主体 /span /p /td /tr tr style=" height:18px" td width=" 93" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 催化氧化 /span span -NDIR /span /p /td td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" text-align:center line-height:normal" span THC /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" line-height:normal" span style=" font-family:宋体" 稳定性灵敏度不高,现场应用少 /span /p /td td width=" 133" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 固定源在线 /span /p /td /tr tr style=" height:26px" td width=" 93" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 26" p style=" text-align:center line-height:normal" span GC-MS /span /p /td td width=" 75" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 26" p style=" text-align:center line-height:normal" span HAPs /span span style=" font-family:宋体" 、 /span span TVOCs /span span style=" font-family:宋体" 、 /span span VOCs /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 26" p style=" line-height:normal" span style=" font-family:宋体" 灵敏度高,选择性强,多组分同时测定,烷烃、烯烃、芳香烃、氯代烃、醛、酮、醚、酯、等 /span span 200 /span span style=" font-family:宋体" 多种有机物 /span /p /td td width=" 133" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 26" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 实验室 /span /p p style=" text-align:center line-height:normal" span style=" font-family:宋体" 便携、应急 /span /p p style=" text-align:center line-height:normal" span style=" font-family:宋体" 固定源在线 /span /p /td /tr tr style=" height:21px" td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 21" p style=" line-height:normal" span style=" font-family:宋体" 样品分析时间长,响应速度慢,仪器购置运营成本高 /span /p /td /tr tr style=" height:37px" td width=" 93" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 37" p style=" text-align:center line-height:normal" span FTIR /span /p p style=" text-align:center line-height:normal" span OP-FTIR /span /p /td td width=" 75" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 37" p style=" text-align:center line-height:normal" span VOCs /span span style=" font-family:宋体" 、 /span span HAPs /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 37" p style=" line-height:normal" span style=" font-family:宋体" 技术成熟,多种 /span span VOCs /span span style=" font-family:宋体" 及 /span span HAPs /span span style=" font-family:宋体" 同时监测,现场测定周期短,响应时间快,烷烃、烯烃、芳香烃、氯代烃、醛、酮、醚、酯及 /span span HCl /span span style=" font-family:宋体" 、 /span span HF /span span style=" font-family:宋体" 、 /span span CO /span span style=" font-family:宋体" 、 /span span NH3 /span span style=" font-family:宋体" 、 /span span H2S /span span style=" font-family:宋体" 等 /span span 2000 /span span style=" font-family:宋体" 多种有机物、无机物 /span /p /td td width=" 133" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 37" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 便携、应急 /span /p p style=" text-align:center line-height:normal" span style=" font-family:宋体" 固定源在线 /span /p /td /tr tr style=" height:20px" td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" line-height:normal" span style=" font-family:宋体" 灵敏度依据各气体吸收强度,部分气体强度较低,仪器成本高 /span /p /td td width=" 133" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 厂界在线 /span /p /td /tr tr style=" height:31px" td width=" 93" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center line-height:normal" span DOAS /span /p p style=" text-align:center line-height:normal" span OP-DOAS /span /p /td td width=" 75" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center line-height:normal" span VOCs /span span style=" font-family:宋体" 、 /span span HAPs /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" line-height:normal" span style=" font-family:宋体" 技术成熟,多组分同时测定。现场非接触式直接连续测量,无需预处理,响快,烯烃、芳香烃、氯代烃、醛、酮、醚及 /span span NH3 /span span style=" font-family:宋体" 、 /span span H2S /span span style=" font-family:宋体" 、三甲胺、硫醚、硫醇类 /span span 200 /span span style=" font-family:宋体" 多种气体 /span /p /td td width=" 133" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 便携 /span /p p style=" text-align:center line-height:normal" span style=" font-family:宋体" 固定源在线 /span /p p style=" text-align:center line-height:normal" span style=" font-family:宋体" 厂界无组织在线 /span /p /td /tr tr style=" height:21px" td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 21" p style=" line-height:normal" span style=" font-family:宋体" 监测灵敏度依据各气体吸收强度 /span /p /td /tr tr style=" height:20px" td width=" 93" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 离子迁移谱 /span /p /td td width=" 75" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" text-align:center line-height:normal" span VOCs /span span style=" font-family:宋体" 组分 /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" line-height:normal" span style=" font-family:宋体" 灵敏度高,无需真空系统,仪器结构简单,成本低 /span /p /td td width=" 133" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 便携、应急 /span /p /td /tr tr style=" height:20px" td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 20" p style=" line-height:normal" span style=" font-family:宋体" 特异性差, /span span VOCs /span span style=" font-family:宋体" 种类少,干扰多 /span /p /td /tr tr style=" height:10px" td width=" 93" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 10" p style=" text-align:center line-height:normal" span TDLAS /span /p /td td width=" 75" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 10" p style=" text-align:center line-height:normal" span CH4 /span /p /td td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 10" p style=" line-height:normal" span style=" font-family:宋体" 灵敏度高,选择性强,干扰少,现场非接触式直接连续测量,无需预处理,相应快 /span /p /td td width=" 133" rowspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 10" p style=" text-align:center line-height:normal" span style=" font-family:宋体" 便携 /span /p p style=" text-align:center line-height:normal" span style=" font-family:宋体" 固定源在线 /span /p p style=" text-align:center line-height:normal" span style=" font-family:宋体" 厂界在线 /span /p /td /tr tr style=" height:10px" td width=" 343" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 10" p style=" line-height:normal" span style=" font-family:宋体" 一种光源只能监测一种气体 /span /p /td /tr /tbody /table p   此次山东省发布的《DB37/T 3786-2019 环境空气 硫化氢等气态污染物的测定开放光程紫外吸收光谱法》规定了测定环境空气中硫化氢、氨气、苯、甲硫醚、二甲苯、甲硫醇、苯乙烯、甲醛、甲苯、二甲二硫、三甲胺、二硫化碳12种气态污染物的开放光程紫外吸收光谱法。本标准适用于环境空气中上述气态污染物的预警、应急监测测定。 /p p   标准全文: a href=" https://www.instrument.com.cn/download/shtml/948251.shtml" target=" _blank" DB37/T 3786-2019 环境空气 硫化氢等气态污染物的测定开放光程紫外吸收光谱法 /a /p
  • 德国IKA/艾卡:IKA助力第十七届反应性高分子会议
    七月骄阳似火,19-20日,中国化学会第17届反应性高分子学术研讨会在常州大学举行。大会由中国化学会高分子学科委员会主办,南开大学高分子化学研究所等重点实验室共同承办。德国IKA公司作为赞助商出席本次大会,与来自国内40余家高校、科研院所和企业的注册代表126位专家学者们汇聚交流。开幕式现场报告会上,与会代表们围绕功能聚合物材料和新型反应性高分子等方面的学科前沿和研究成果进行了广泛而深入的研讨。IKA公司作为实验室前处理仪器领域的佼佼者,在高分子合成中,应用广泛。2天的大会中,共收集到会议论文摘要92篇,安排口头报告34个,以及南开大学高分子化学研究所袁直教授,南京大学李弘教授、南京工业大学汪勇教授、中山大学吴丁财教授、漂莱特(中国)有限公司马志超博士、江苏苏青水处理工程集团有限公司张玉格博士以及常州大学陈群教授等大会特邀报告7个。报告会现场会议现场,IKA江苏省项目经理李世成介绍了IKA前处理技术在高分子实验室的应用,包括各种类型的磁力搅拌器,功能强大的LR1000真空乳化釜,带遥控功能的欧洲之星系列顶置搅拌机及恒温器,独具定量蒸馏功能的旋转蒸发仪RV10等等。并在主会场的大厅安排了现场仪器讲解与演示,专家老师们能更加直观地了解产品的各方面性能,并通过现场操作与技术交流,对使用过程中容易出现的问题进行技术答疑与探讨。德国IKA项目经理做分会场报告主会场大厅德国IKA仪器展示区此次研讨会为高校科研工作者和企业之间构造了一个完美的交流平台,也是一次年度化学行业的盛会,德国IKA公司也将在新高分子材料领域中不断推陈出新,至此,IKA的常州高分子研讨会之旅圆满落幕。 关于 IKA? ( www.ika.cn ) IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 恒温循环器,量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西等国家都设有子公司. IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!热重分析技术及其在高分子表征中的应用ThermogravimetricAnalysisTechnologyandItsApplicationinPolymerCharacterization作者:谢启源,陈丹丹,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生.博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师.自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员.曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项.编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点.近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究.本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战.在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetricanalysistechnology(TGA)isanefficientresearchtoolthatcharacterizestheweightofmaterialswithtemperatureortimeunderaprogramcontrolledtemperatureandacertainatmosphere.OneofitsadvantagesisthattheTGAresultscanbewellrepeatedwithhighsensitivity.Inaddition,itsheatingprocessisaccuratelyandflexiblycontrolledaccordingtorealthermalenvironmentofsamples.Inrecentyears,TGAispopularlyusedinthefieldofpolymermaterials,whichpromotesthedetailedanalysesontheirthermalstability,compositionanalysisandthermaldecompositionmechanismetal.ThisreviewwillcovermanyaspectsofTGA,includingbasicprinciples,calibration,schemedesign,curveanalysis,aswellasthosecommonerrorsduringsamplepreparationandexperiments,abnormaldatafiguringandthesolutionforthem.Additionally,thetypicalapplicationcasesofTGAinpolymerscience,aswellastheiropportunityandchallengesinfuture,arealsopresented.IntheapplicationsofTGAtechnology,moreinformationaboutthethermal-responsebehaviorofpolymersunderdifferentatmosphereandheatingconditionscouldberevealedbyTGAcoupledwithFTIR,DSC,GC/MStechnology.Inthiscase,notonlytheweightinformationofsampleduringaspecificheatingcondition,butalsotheendothermicandexothermicbehaviors,releasedgascomponentsatthesametimecanbeanalyzedtogether.Theyarehelpfulfornewpolymerdesign,thermaldecompositionmechanismandflamespreadmodelsdevelopment.   关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetricanalysistechnology  Curveanalysis  Thermalstability  Thermaldecompositionmechanism  Caseanalysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3].经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4].该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(InternationalConfederationforThermalAnalysisandCalorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5].基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域.在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivativethermogravimetriccurve,DTG曲线)是TG曲线进行一次微商的结果.因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率.对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1℃时,样品的相对质量变化.而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到.与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性.图1给出了XLPE在10℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig.1TGandDTGcurvesofXLPEwiththeheatingrateof10℃/mininairatmosphere.    1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点.热重法可准确测量物质在不同受热和气氛条件下的质量变化特征.例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析.此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性.此外,热重法仅需微量样品.因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据.由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备.因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点.然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用.因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetricanalyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器.测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4].变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息.零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜.由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig.2SchematicoftypicalTGequipmentwiththesampleinaheatingfurnace,whosetemperatureiscontrolledwithaprogram.    根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig.3SchematicofTGequipmentwiththecrucibleatlowerpositionoftheverticalheatingfurnace.  Fig.4SchematicofTGequipmentwiththecrucibleathigherpositionoftheverticalheatingfurnace.  Fig.5SchematicofTGequipmentwiththehorizontal.    由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同.该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化.温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量.热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析.常用联用技术如下所述[4].  (1)同时联用技术.是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术.主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术.是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接.常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等.此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式.前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正.由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperaturecorrection)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程.通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别.例如:当使用熔融温度为156.6℃的金属In进行温度校正时,若所测熔融温度为154.1℃,则(6)  因此,在温度校正时,测量值应增加2.5℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正.在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:  (1)居里点法.居里点法是在磁场的作用下,将铁磁性标准物质加热到某一温度时,其磁性很快完全消失而引起质量变化的原理来对温度进行校正的方法[7,8].磁性消失时所对应的温度通常称之为铁磁性材料的居里温度(Tc).居里温度只与材料的组分有关.  通常使用具有确定居里温度值的纯金属或合金作为标准物质,该温度校正过程实质上为磁性温度的测量[9].图6为使用几种磁性标准物质进行校准时得到的TG和DTG曲线.此外,通过该方法可以在单次实验中测量多个磁性样品的转变过程.Fig.6TGandDTGcurvesofseveralmagneticmaterialsfortemperaturecalibrationofTGequipmentwiththeheatingrateof10℃/mininN2atmosphere.    (2)吊丝熔断法.吊丝熔断法通过将熔点已知的纯金属细丝固定悬挂在样品支撑系统附近位置,当温度升高至其熔点时,该金属丝发生熔化并从其支撑件滴落[10,11].通过确定在已知温度熔融而引起的表观质量变化对应的温度,从而校准仪器温度.  (3)特征分解温度法.特征分解温度法是通过结构已知物质的初始分解温度来进行仪器温度校正[12].此处所指的初始分解温度为失重速率达到某一预定值之前的试样温度.标准物质应具有以下特性:在温度达到其特征分解值前具有足够的稳定性 特征分解温度具有重现性 不同来源得到的同种标准物质,其初始分解温度差异较小.  当采用热重分析仪与差热分析或示差扫描量热技术进行联用时,也可利用试样在实验过程中随温度变化而引起的熔融、晶型转变等过程产生的特征热效应,对仪器进行温度校正[13~15].例如:通过一些具有可逆“固↔固”转变或“固↔液”转变过程的物质来进行温度校正.  2.4.3质量校正  常用的质量校正方法主要包括2种:静态质量校正和动态质量校正.  (1)静态质量校正法.在某一个设定的温度和气氛下,通过对已知质量为m0的砝码进行称重测量,确定测量值mi与m0之间的差值∆mc,即:(7)  在仪器的软件中分别输入mi与m0的数值,在之后的测量中,软件将自动扣除质量差∆mc.  (2)动态质量校正法.在实验过程中,质量基线可能随温度发生一定的漂移.质量基线是在不加任何样品的条件下得到的,理论上,该质量在不同的温度下应始终保持为0.为了使得到的质量更接近真实值,通常采用扣除空白基线法和用已知质量的砝码进行动态质量校正方法对不同温度下的质量进行整体校正.  在完成以上质量校正后,可用已知分解过程的标准物质,例如:高纯碳酸钙或一水合草酸钙样品,对校正结果进行验证,评价校正结果是否合理.  2.4.4仪器状态评价  仪器在长时间工作过程中,可能出现一些不易被察觉的状态变化,在这种“亚健康”状态下,所测得异常数据一般不易察觉,此时,实验数据的准确性和重复性往往明显较差.由于不同操作人员对仪器状态是否异常的判断标准不同,从而导致采取的措施之间也存在差异,进而对实验结果带来不同程度的影响.  在分别对热重分析仪的温度和质量进行校正之后,还需要按照相应的检定规程或者校准规范等的要求,对校正结果进行评价,以确认仪器的工作状态是否可以满足实验的要求.  1997年,原国家教委于发布了《JJG(教委)014-1996热分析仪检定规程》[16],其中对于新安装、使用中和修理后的热重分析仪(TG)等仪器的检定做了规范.此外,原国家质量监督检验检疫总局分别于2017年和2002年发布了热重分析仪检定规程《JJG1135-2017热重分析仪检定规程》[17]和《JJG936-2002示差扫描热量计检定规程》[18].  3热重分析实验方案设计  3.1实验方案设计的重要性  热重实验方案设计决定着实验成败.如前所述,热重仪具有多种结构形式,在实际应用中应首先根据实验需求,选择结构形式合适的热重仪[19].例如:当需要研究易氧化试样在惰性气氛下的热行为时,应选择具有较好密封性的热重仪.此外,对于一些重量变化不明显的过程,在选择仪器时,应考虑仪器的天平质量测量灵敏度和量程.  在选定合适的热重分析仪后,还需要选择合适的实验条件,主要包括以下几个方面:试样状态(粉末、薄膜、颗粒、块体等)、试样用量、试样容器的材质和形状、实验温度范围及控制方式、实验气氛的种类和流速,以及其他条件,包括湿度控制、光照等.  此外,在实验过程中所用试样的来源、前处理方式、试样容器以及实验所用仪器自身的差异等,也可能对最终的实验结果带来影响.如果忽视这些影响因素,往往很难得到较好的热分析实验结果,甚至可能得到错误的实验结论.  3.2实验方案设计的主要内容  3.2.1热重分析仪的选择  选择合适的热重分析仪是确定热分析实验方案的第一步.在进行实验之前,应根据实验目的和样品信息,选择合适的热重分析仪.这里所指的热重分析仪,不仅仅局限于独立式热重分析仪,还包括与热重分析仪联用的热重-差热分析仪、热重-示差扫描量热仪、热重/红外光谱联用仪、热重/质谱联用仪、热重/气相色谱/质谱联用仪等形式的热分析联用仪.  在实际应用中,对于下皿式、上皿式和水平式等不同结构形式的热重仪,其性能参数(如灵敏度、控温精度等)、气氛气体的流动方式、实验温度范围、温度变化速率范围等存在一定的差异.此外,有时需要根据特殊的实验目的,在真空、高压、还原气氛、强氧化气氛、腐蚀性气氛、蒸汽等特殊条件下进行实验,此时,更应关注所选热重仪是否满足实验要求.  如前所述,在一些应用中,除了需要得到样品在加热过程中的质量信息之外,还需测量其中的热效应、生成气体种类和含量等,此时,则应采用与热重分析仪联用的相关仪器.  关于商品化热重分析仪的选用,经过近几十年的发展,当前,国外主流仪器厂商如德国Netzsch、美国TA、美国PerkinElmer、瑞士MettlerToledo等均生产有适用不同温度范围的热重分析仪和TG-DSC同步热分析仪,各型号仪器的灵敏度与可重复等性能都可满足聚合材料的常规性能测试要求,且大多均可配置自动进样器等辅助配件,提高仪器工作效率.此外,上述仪器厂商所产热重分析仪可与红外光谱仪、气相色谱仪、质谱仪中的一种或者多种进行联用,对逸出气体组分等进行综合测量.各仪器厂商的联用技术与方式存在一定差异,以满足不同的领域需求.不同型号仪器的联用技术也各有优势,应根据实际需求,合理选用.其中,德国Netzsch公司的多级热分析联用仪可实现热重分析仪与红外光谱仪、质谱、气质联用仪的联用,可以分别实现红外光谱仪与质谱、气质联用仪串接式联用和并联式联用的连接形式 瑞士MettlerToledo公司的热重分析/红外光谱/气质联用仪可实现多段气体的采集与分析功能 美国PerkinElmer公司的热重分析/红外光谱/气质联用仪可以通过八通阀的灵活切换,实现在线分析和分离分析等多模式实验测量.  3.2.2实验操作条件的选择  由热重实验得到的曲线受操作条件的影响十分显著,在应用中,应针对影响热重曲线的因素,选择合适的操作条件.主要包括:试样状态、实验气氛、温度控制程序、实验容器或支架、环境特殊实验条件、采集软件参数等.  (1)试样量/试样形状的选择.由于热重分析仪器的种类、结构形式以及实验条件等因素的差异,不同的热分析仪器对试样量或试样形状的要求差别较大.  通常情况下,热重实验的样品用量为坩埚体积的1/3~1/2.对于密度较大的无机样品,试样质量一般为10~20mg 对于在实验过程中不发生熔融的样品,在确保仪器安全的前提下,可适当加大试样量.热分析串接联用的仪器对试样的要求,与该类热分析仪对试样的要求相同.  在实际应用中,大多数热重实验对样品状态没有严格的要求,液态、块状、粉状、晶态、非晶态等形式均可以进行热重实验.实验前,可以不进行专门的处理,直接进行测试.对于较潮湿的样品,一般在实验前需进行干燥处理,以避免因溶剂或吸潮而引起曲线失真.  此外,实验时,所用试样的粒度及形状也可能影响所得热分析曲线的形状.试样粒径的不同,往往引起气体产物扩散变化,导致气体的逸出速率变化,从而引起曲线形状的变化.一般情况下,试样的粒径越小,反应速率越快,对应曲线的起始分解温度和终止分解温度也降低,同时,反应区间变窄,分解反应也越彻底.  (2)实验气氛的选择.在热重实验中可选择的气氛通常为静态(真空、高压、自然气氛)或动态气氛(氧化性气氛、还原性气氛、惰性气氛、反应性气氛),实验时,应根据需要,选择合适的实验气氛和流速.实验气氛的流速一般不宜过大,过大的流速往往导致较轻试样来不及发生完全分解而被气流带离测量体系,从而影响热分析曲线的形状.另一方面,过低的流速也不利于分解产物及时排出,往往使分解温度升高,严重时可能影响反应机理.  在选择实验气氛时,应明确实验气氛在实验过程中的作用,这里给出几种常用选择原则:如果仅是通过气氛使炉内温度保持均匀、及时将实验过程中产生的气体产物带离实验体系,通常选用惰性气氛 如果需要研究试样在特定气氛下的行为时,应选择特定的实验气氛,此时的气氛的作用可以是惰性气氛,也可以是反应性气氛 当需要研究试样在自然气氛下的热行为时,样品室无需通入气氛气体,将流速设为0或者关闭气体开关,此时,若试样发生分解,可能污染检测器 对于相邻的2个过程,可通过改变实验气氛,实现相邻过程的有效分离 对于含有复合材料或含有有机物的混合物,可根据各组分在不同温度范围发生的热分解过程,确定热稳定性不同的组分的含量 当使用反应性气氛时,应充分评估气氛对仪器关键部件的安全性,某些反应性气氛如H2、纯氧等在高温下可能与仪器的关键部件发生反应,对仪器造成不可逆的损害.  (3)温度控制程序的选择.在热重实验中,所采用的温度控制程序主要包括加热、降温、等温以及这些方式的组合等形式,其中,主要包括温度扫描速度和温度范围的确定.  对于温度扫描速率,若采用线性加热或降温过程,采用较快的加热速率,可有效提高仪器的灵敏度,然而可能导致分辨率下降,从而使相邻的过程较难分离.一般情况下,在实际应用中,应综合考虑转变的性质和仪器的灵敏度,综合选择一个合适的温度扫描速率.对于热重实验,最常用的温度扫描速率为10℃/min.  对于温度范围,应根据样品的性质和实验目的,进行合适选择.大多热重实验从室温开始进行,最高温度基于实验中可观察到所关注变化过程进行设定.对于热稳定性较低的物质,最高实验温度以覆盖物质的分解过程即可,不设为仪器可达最高温度.  在进行等温实验时,从开始温度达到设定温度所需的时间越短越好,即热惯性越小越好,以避免所关注的变化在达到设定温度的过程中已经发生.  (4)实验容器或支持器的选择.对于热重分析仪,其测试对象主要呈粉末状,通常用坩埚盛装样品.无论是坩埚还是支架,在实验过程中均不能与试样发生任何反应.  一般来说,用于热重实验的坩埚主要有敞开式和密封式2类.常用坩埚的材质有铝、石墨、金、白金、银、陶瓷和不锈钢等,实验时,应根据样品的状态、性质和测量目的合理地选择坩埚的形状和材质.  对于剧烈分解的样品,在热重实验中,应尽量减少试样用量,且应多使用浅皿坩埚.同时,应增大气氛气体的流速,从而及时带离分解产物.当使用敞口坩埚时,若出现迸溅现象而使试样未完全分解却被带出坩埚的情形,可通过坩埚加盖扎孔的方法解决.即,在盖子中心位置扎一个圆形小孔,以便实验过程中产生的气体及时逸出.与不加盖时的结果相比,由加盖坩埚所得热分析曲线形状往往明显变化,相应特征温度也升高.  在选择坩埚材质时,还应考虑坩埚需承受的最高温度及其惰性特征,例如:铝坩埚的最高使用温度不超过600℃.如需进行更高温度实验,可选用金坩埚或铂坩埚.而分解反应的热重实验一般不用铝坩埚,常用氧化铝、陶瓷、铂、铜、不锈钢等材质.由于铂对棉纤维、聚丙烯腈等物质反应具有催化作用,因此,若样品中含磷、硫和卤素,则不可用铂坩埚.此外,陶瓷类坩埚通常不适用于碱性物质、含氟聚合物及硅化合物的热重实验.  (5)环境特殊实验条件的选择.进行热重实验时,有时还需根据实验目的和样品种类,选择是否需要控制环境湿度、磁场、电场、光照等条件.  在实际应用中,应结合具体的实验目的,判断所使用的热分析仪能否满足实验要求的特殊条件,仪器通常以附件的形式来实现上述的特殊实验条件.  (6)数据采集频率的设置.通常情况下,1数据点/s的采集频率足以准确记录试样质量变化信息.对于一些非常快的变化过程,仪器默认的数据采集频率无法实时记录下该过程中的变化信息,此时,应增大采集频率.而对于耗时较长的等温实验或较低加热速率的实验,则不宜使用1数据点/s的采集频率,应降低数据采集频率.  4热重实验过程  4.1样品准备  理论上,一切非气态的试样都可以直接通过热重实验,测量其质量在一定气氛和程序控制温度下随温度或时间的连续变化过程.待测样品,应根据实验目的,进行合理制样或取样,并标明相应信息.由于热重实验所需样品量极少,应避免样品局部取样和混合不均等问题.此外,由于由不同状态的试样所得热重曲线的差别往往较大,因此,选择合适的试样状态对能否得到合理的实验结果十分关键.一般来说,不同状态的试样需做一些相应的处理才可用于热重实验.  4.2实验测试  在完成样品准备和实验条件选择之后,即可开始进行热重实验测量.整个测量过程主要包括:仪器准备、样品制备、设定实验条件和样品信息、开始实验等过程[4].  4.2.1仪器准备  若实验室供电正常,热重实验仪一般24h开机,当重新开机时,应开起仪器使其至少预热平衡30min.若仪器虽在正常使用中,调整了气氛气体,也应使仪器在调整后气氛条件下,平衡至少30min,以使炉内气体浓度保持一致.  在仪器处于平衡稳定的状态下,正式开始实验前,还应对实验中使用的坩埚进行质量扣除,即,“清零”操作,具体做法如下:  (a)将一个洁净的空坩埚置于样品支架或吊篮上,若热重仪为水平式或上皿式,应在参比支架上放置一个质量相近的同类型坩埚.关上加热炉,使天平所测质量几乎不变,几分钟后,按下面板上或仪器控制软件中的“清零”按钮.完成这一操作后,若显示的质量变化很小,则表明实验中所用的坩埚的空白质量已经扣除,装入试样后,软件显示的质量即为试样绝对质量.  在热重实验过程中,若坩埚需使用扎孔上盖或坩埚内需加稀释剂,则坩埚盖或所加稀释剂质量也应扣除.  (b)打开加热炉,将坩埚取下,用于盛装待测实验样品.对于配置自动进样器的热重仪,可集中对多个空白坩埚依次进行清零操作,软件将对自动进样器中各编号坩埚清零过程中的质量差异进行分别记录,使用时,应避免混淆坩埚顺序.  4.2.2制样  将待实验的试样放入已扣除空白质量坩埚中,试样量一般不应超过坩埚体积的1/3~1/2.对于含能材料等在高温下易剧烈分解或可熔融样品,试样用量能覆盖坩埚底部即可.对于易剧烈分解样品,也可使用较大尺寸坩埚或加入稀释剂的方法,减少试样热分解过程对支架或吊篮的损害.  对于组成不同、结构相近的系列试样,为消除试样量对实验曲线的影响,同一系列实验中,各次试样用量应相近.  将适量试样加入至坩埚后,可用镊子夹住坩埚在桌面上轻敲几次,使试样均匀分布于坩埚底部.对于易挥发、不稳定的液体黏稠试样或易吸潮的粉末试样,应尽快加载和摇匀坩埚内试样,减少试样在空气中的变化.  之后,打开加热炉,用镊子将坩埚置于热重仪的吊篮或支架上,并及时关上加热炉腔体,待试样信息设置完毕和样品质量读数稳定后,即可开始实验.  对于一些较易挥发的液体试样,在天平清零操作后,应提前在控制软件中设定相应信息,从而缩短实验开始前的等待时间.  4.2.3设定试样信息和实验条件等信息  目前的商品化热重仪都配有相应的控制软件和数据分析软件,不同厂家的仪器的软件界面各不相同,但在软件中需输入的试样信息和实验条件等大多相似.在软件中所输入的信息,可在后期的数据分析过程中查看.  在正式实验开始前,控制软件中应输入的信息主要有:  (1)样品信息.包括样品名称、编号、送样人、实验人、批次、文件名等.目前大多数热重仪软件不支持中文输入,建议多用英文字母和数字,尽量避免使用“%、?、/”以及汉字等字符.  当使用自动进样器时,除以上信息外,还应输入坩埚所对应的位置序号.  (2)实验条件信息.主要包括试样质量、温度程序信息、坩埚参数、气氛种类及流速以及数据采集频率等其他信息.  4.2.4运行实验测量  信息输入后,待试样质量稳定,即可按下控制软件中的“开始”按钮开始实验,加热炉即按设定温度控制程序对试样进行加热、降温、等温等操作,数据将自动保存.实验结束后,包括试样参数、实验程序、实验数据等信息将各自单独生成文件,供后续数据分析与处理所用.  由于热重仪天平的灵敏度较高,实验过程中,工作台附近不可出现较大的振动,加热炉出口区域也不应有较大气流波动.  5热重实验曲线解析  5.1曲线解析概述  热重曲线解析是热重实验过程的重要环节,是获得所测式样热响应特性的关键步骤,曲线解析主要包括以下几个步骤[19]:实验数据导入与基本分析、运用作图软件进一步分析、热重曲线描述、热重曲线初步解析、热重曲线综合解析以及实验报告或科研论文撰写.  5.2在仪器分析软件中的基本数据处理  5.2.1仪器分析软件中实验数据的导入  各组热重实验完成后,在仪器附带的数据分析软件中,可导入数据文件并进行数据处理与分析,不同厂商的数据文件的格式可能存在一定的差异,但都可转化输出为Excel等通用软件可读格式文件,以便于后续数据处理与分析.  5.2.2仪器分析软件中的基本作图  为了便于分析,首先可在软件中对测得的热重曲线的纵坐标进行归一化处理,将纵坐标由绝对质量换算为相对质量.对于仅含一个线性加热程序的热重实验,热重曲线常以温度为横坐标.对于温度程序中含有一个或多个等温段的实验,则其横坐标常用时间,此时,在图中也可作出“温度-时间”曲线,以显示各时刻温度.  5.2.3仪器分析软件中的曲线数学处理  在仪器附带的数据分析软件中打开数据文件并进行基本作图之后,也可直接对数据进行换算、求导、积分、平滑等进一步的数学处理.  5.2.4仪器分析软件中确定曲线的特征物理量  热重曲线中质量变化反映了试样性质随温度的变化特性,对于一个变化过程,一般用温度和质量同时描述.常用的特征温度主要包括初始温度(initialtemperature,一般用Ti表示)、外推起始温度(extrapolatedonsettemperature,Tonset)、终止温度(finaltemperature,Tf)、外推终止分解温度(extrapolatedendtemperature,Tendset)、n%分解温度(n%temperature,Tn%)和最快质量变化温度(DTG峰值温度,peaktemperature,Tp),直接使用分析软件,即可在图种标出上述特征温度.  图7给出了热重曲线中各特征温度的位置示意图,具体确定方法如下所述:Fig.7CharacteristictemperaturesinTGcurves(PointA:Initialtemperatureaccordingtoacertainmassloss PointB:Initialtemperatureaccordingtoacertainmasslossrate PointC:Extrapolatedonsettemperature PointD:Extrapolatedendtemperature PointE:Initialtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointF:Endtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointG:Temperatureforthemaximummasslossrate).    (1)以失重数值达到最终失重量的某一百分数时的温度值作为反应起始温度(Ti,图7中A点) 此外,n%反应温度为质量减少n%时的温度,可直接由热重曲线标出(Tn%),常用的n%分解温度主要有0%、1%、5%、10%、15%、20%、25%、50%时的Tn%,其中,0%分解温度特指试样保持质量不变的最高温度.  (2)以质量变化速率达到某一特定数值时的温度作为反应起始温度(Ti,图7中B点).  (3)以反应到达到某一特征点(如:热重曲线斜率最大)时热重曲线的切线与平台延伸线交点所对应的温度作为“外推反应起始温度”(Ti,图7中C点)和“外推反应终止温度”(Tf,图7中D点) 与Ti和Tf相比,Tonset和Tendset受人为主观判断的主影响较小,常用来表示试样的特征分解温度,而Ti和Tf则常用来表示质量变化范围的起止温度.  (4)以反应达到热重曲线上某2个预定点的连线与平台延伸线交点所对应的温度作为反应的起始温度(Ti,图7中E点)和反应终止温度(Tf,图7中F点).  (5)由微商热重曲线中得到的最快质量变化温度也称最大速率温度或微商热重峰值温度(Tp),是指质量变化速率最大的温度(图7中G点),可直接由微商热重曲线的峰值获得,Tp对应是最大质量变化速率,常用(dm/dt)p表示.  在实际应用中,何种方法所确定的初始温度等特征值,往往都存在一定的特殊性和局限性.如图7所示,常用C点外推起始温度或A点预定质量变化百分比(通常为5%)温度来表征物质的热稳定性.  5.2.5专业绘图软件的绘图与处理  当前,大多商品化仪器所附带的数据分析软件都可进行多条曲线的对比分析,也可在软件中直接进行曲线上下移动和线型颜色等编辑.然而,为进行更专业和细致的数据分析与对比,往往将数据转化输出为Text、Excel等通用格式文件,从而采用Origin、Matlab、Tecplot等专业作图软件进行分析,尤其是对多工况、多样品复杂系列实验测量结果的综合分析,即可给出静态的2D和3D图,也可根据实验研究目标,重构特征参数的时空演化动态视频,以满足实验报告、科研论文以及现场交流视频等需要.  5.3热重曲线的解析  5.3.1热重曲线的初步解析  热重曲线的初步解析主要包括如下几点.  (1)结合样品信息解释曲线中发生的变化.曲线中各典型温度区间或时刻所发生变化与样品结构、成分、处理工艺等信息密切相关.  (2)结合实验条件信息解释曲线中发生的变化.实验时采用的实验条件对热重曲线的影响较大,应结合实验所采用温度控制程序、气氛等信息,初步解释热重曲线主要特征形成的主要原因.  5.3.2热重曲线的综合解析  进行材料热响应特性研究时,采用多种实验测试方法进行综合分析,有利于更加客观、全面地揭示其中的本质特性及其影响机制.综合解析主要包括如下几个方面.  (1)通过多种分析技术与热重曲线进行互补与验证分析.例如:通过热重曲线可以得到一定范围内的质量变化信息,对于结构较复杂的物质而言,仅通过热重曲线较难准确获得在实验过程中的结构变化信息.通常利用与热重仪联用的红外光谱、质谱和气相色谱/质联用技术,综合分析在质量减少过程中产生的气体产物信息,从而获得实验过程中样品结构变化特征.  (2)通过外推法对热重曲线进行分析.由于热重曲线大多是在动态温度条件下测得,对应特征量为非热平衡状态的测量值.因此,可进行不同温度扫描速率条件下的系列热重曲线分析,将所得系列特征转变温度对温度变化速率进行数据拟合,并进行0温度变化速率条件下的外推,获得准平衡状态下的特征值.  6在高分子科学中的应用进展  由于可准确地测量物质受热过程中的质量变化及其变化速率,热重法在高分子科学中得到了广泛应用,对于升华、汽化、吸附、解吸、吸收和气固反应等物理和化学过程,都可进行定量检测.近年来,主要应用包括以下几个方面.  6.1聚合物中添加剂的影响  高分子聚合物中添加各类改性物质,是高分子材料设计与性能提升的重要研究方向.聚合物中各添加剂含量的测定,是其性能分析与配方设计的关键环节,根据各物质热稳定性差异,可由TG曲线确定添加剂的含量[20~24].  Dorez等[25]基于TG方法,研究了聚磷酸铵(APP)、磷酸二氢铵(DAP)和磷酸(PA)3种阻燃添加剂分别对聚丁二酸丁二醇酯(PBS)/亚麻纤维(Tfl)复合高分子材料热解性能的影响.图8给出了不同阻燃添加剂条件下的复合高分子聚合物TG曲线和DTG曲线,可见,其热解过程主要分2个阶段.对于不含阻燃添加剂的PBS+Tfl,样品被加热到约370℃时,其TG曲线有一个与亚麻纤维热解对应的肩形失重,而由图8(b)所示的DTG曲线可见,PBS热解主峰在400℃位置.在该复合高分子材料中添加3%质量的APP、DAP和PA后,其热解行为主要呈现2个显著变化.首先,材料的初始热解温度更低,由图8(b)所示的各DTG曲线可见,添加APP、DAP和PA的PBS+Tfl复合高分子材料分别在277、309和259℃出现第一个热解峰,这些热解峰比亚麻热解峰更早.因此,亚麻纤维热稳定性的降低,主要归因于所添加阻燃剂分解产生的磷酸对纤维素的磷酸化作用,该反应改变了纤维素的热解路径,从而有利于亚麻脱水,并形成含碳残留物.此外,PBS+Tfl原复合高分子材料的Res600为7.0%,而添加了APP和PA的材料的Res600为11.7%,可见,阻燃添加剂的加入,使得样品热解后的残留物显著增多.其次,PBS+Tfl原复合高分子材料的DTG峰值温度为400℃,而添加阻燃剂后的DTG峰值温度范围为375~380℃,即,主要热解温度区间降低,主要归因于PBS的热水解反应.Fig.8TG(a)andDTG(b)curvesofPBS+TflandFPBS+Tflwith3wt%variedphosphorousadditives(APP:AmmoniumPolyphosphate DAP:Dihydrogenammoniumphosphate PA:Phosphoricacid)(ReprintedwithpermissionfromRef.‍[25] Copyright(2014)Elsevierpress).    6.2混合物中各组分含量分析  为增强高分子材料的强度、硬度及阻燃等性能,实际使用的高分子聚合物材料中常常包含各类无机和有机组分,TG法也常用于分析确定复合材料和天然高聚物中各组分含量分析[26~28].  Rego等[28]针对9种树木样品,采用热重分析法,基于纤维素、半纤维素、木质素和水分4组分模型,通过高斯方程优化拟合,给出了各树木样品的组成,如表1所示.Table1Lignocellulosicscontents(%mass,drybasis)inthesamplesofpoplargenotypes(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).  图9给出了其中一种木材样品(grimmingegenotype)的曲线拟合结果,如图所示,通过4组分热重曲线的叠加包络曲线,与实验测量的样品热重曲线吻合度高.  Fig.9ExperimentalanddeconvolutedDTGprofileforGrimmingegenotype.Curvesoffourcomponents(water,hemicellulose,celluloseandlignin)andthecombinedoneareshownforcomparisonwiththeexperimentalresults.(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).    图10为氧化石墨烯(GO)和聚丙烯/氧化石墨烯/四氧化三铁(PAA/GO/Fe3O4)纳米复合材料的TG曲线[29].由图可见,对于GO样品而言,由于样品中含氧官能团的分解,TG曲线在250~350℃范围内出现明显了的重量损失.另外,在425~625℃温度范围的质量损失是GO在空气中碳的燃烧引起的.因此,在水溶性的PAA/GO/Fe3O4纳米复合材料的热重曲线中:(1)在50~150℃范围的重量损失是在样品表面物理吸附的残余水引起的 (2)在150~250℃温度范围的重量损失是在合成时加入的有机溶剂和表面活性剂引起的 (3)在350~500℃之间的重量损失是PAA的氧化分解引起的 (4)500~630℃之间的重量损失是GO在空气中碳的燃烧引起的 (5)630℃以上,在实验的温度范围内,质量没有发生明显的变化.Fig.10TGcurvesoftheGO(a)andPAA/GO/Fe3O4(b)nanocomposites(GO:Grapheneoxide PAA:Polyacrylicacid).ForGO,aweightlossfrom250-350℃isascribedtothedecompositionofoxygen-containinggroupsofGO.Theothermasslossfrom425℃to625℃isattributedtotheburningofcarboninGO.ForPAA/GO/Fe3O4,thelossstepover50-150℃mightbeduetothelossofresidualwateradsorbedphysicallyinthesample.Theweightlossaround350-500℃wasduetotheburningofPAA.Theweightlossoverthetemperaturerangeof150-250℃isattributedtotheresidualorganiccompoundsinthesample.(ReprintedwithpermissionfromRef.‍[29] Copyright(2013)TheRoyalsocietyofChemistry).    综合以上分析,由TG曲线可以确定,在PAA/GO/Fe3O4纳米复合材料中PAA:GO:Fe3O4的重量比是1:1:3.基于PAA/GO/Fe3O4纳米复合物的重量和PAA的平均分子量分析,可以估算得到每2个PAA分子连接一个纳米颗粒.  6.3TG-FTIR联用分析案例  Plassauer等[30]针对聚氨酯丙烯酸酯(PUA)和添加了磷酸酯聚氨酯丙烯酸酯(PUA-FR),采用TG-FTIR联用技术,研究了其热解特性.图11中给出了2种样品的TG-DTG曲线,同时,可见,PUA的热解过程主要分为4个阶段,各阶段质量损失分别为4.3%、24.4%、15.9%和52.8%.此外,图12中给出了PUA和PUA-FR在典型温度下的热解产物FTIR吸收光谱.  Fig.11TG(solidlines)andDTGcurves(brokenlines)ofPUAandPUA-FRunderpyrolyticconditionswiththeheatingrateof10℃/mininN2atmosphere.PUA:polyurethaneacrylate PUA-FR:flame-retardantPUAtreatedwithtris(1-chloro-2-propyl)phosphate(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    Fig.12(A)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUAobtainedatdifferentpyrolysistemperatures:(a)200℃,(b)290℃,(c)350℃,(d)470℃ (B)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUA-FRobtainedatdifferentpyrolysistemperatures:(a)290℃ (b)350℃ (c)450℃ (d)510℃(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    综合其热解失重曲线和热解产物吸收光谱图,可见,第一阶段(135~200℃),主要是PUA中PMMA-PHEMA段的初始热解,然而,样品中残留溶剂的蒸发量更大,成为该阶段主要生成物.  在第二阶段(266~310℃),聚丙烯酸酯主链的随机断链更为显著,形成的丙烯酸酯单体是该阶段PMMA-PHEMA段分解的主要产物.  第三阶段(348~385℃),生成了较多的二氧化碳,表明MMA/HEMA单体的分解可能与丙烯酸酯的自由基脱羧有关.对于PUA-FR样品,由于TCPP对聚丙烯酸酯具有中断其释放自由基的作用,因此抑制了该阶段的热解反应,同时由于生成了具有更高热稳定性的含碳产物和聚磷酸盐,并通过酯侧链的脱羧释放出二氧化碳,从而达到阻燃效果.  第四阶段(456~506℃),发生了HDI异氰尿酸盐和少量含羟基部分的快速释放,可见该阶段主要发生氨基甲酸酯键的解离,而从PUA的气体分解产物红外数据,可进一步看出由于氨基甲酸酯键的脱羧和相关尿素的分解,形成了氨基己基异氰尿酸盐.此外,对气体和固体分解产物的红外光谱分析表明,当温度超过400℃时,异氰尿酸盐分解为三聚氰酸和异氰酸.  6.4TG-DSC/MS联用分析案例  Mas等[31]针对二氨基顺丁烯二腈(DAMN),通过TG/DSC-MS联用,研究了DAMN的热解特性,图13给出了氩惰性气氛和20℃/min的升温速率条件下的TG、DSC和MS实验曲线.Fig.13(a)TG,(b)DTGandDSCcurvesand(c)temperature-dependentioniccurrentvariationoftheDAMNattheheatingrateof20℃/mininargonatmosphere.DAMN:Diaminomaleonitrile(ReprintedwithpermissionfromRef.[31] Copyright(2021)Elsevier).    由图13(a)可见,样品受热升温至300℃时,质量损失18%,在温度升高至其熔融转变温度(约180℃)时,DAMN已经开始热解.由图13(b)中的DTG曲线可见,该曲线反映了若干个互有重叠的分解反应,针对DTG曲线的进一步分析表明,其中包含多个DTG峰值的叠加.通过反卷积法,对叠加包络曲线进行分离处理,结果表明,该DTG曲线至少包含2个同步反应.  进一步的耦合峰值反卷积法分析表明,曲线包含3个高斯峰值,其中,如图13(b)可见,前2个峰值较低,而在较高的温度215℃处,有显著更大的另一个峰值.此外,由图13(b)中的DSC曲线可见,在由于材料熔融相变引起的第1个吸热峰位置,存在明显的少量质量损失.  图13(c)给出了DAMN热解反应中的主要气体产物的质谱曲线,其中,由图中所示的m/z=27(HCN+)碎片吸收峰值所在温度可见,脱氢氰酸化反应主要发生于上述热失重曲线的后期,而16(NH2+)、17(NH3+)和18(NH4+)碎片的变化过程,反映的是热过程中的脱氨和脱质子反应.  上述4个碎片的离子电流随温度的变化分布曲线表明,它们在195~225℃温度区间形状相似,并与图13(b)中所示的质量损失速率曲线一致.此外,m/z=28(N2+)和26(CN+)的2个相对低强度质谱曲线,也表明在熔融聚合过程中发生了脱氨和脱氰过程.  6.5热解反应动力学分析  对于大多反应体系,其动力学模型可用式(8)描述.(8)  式中α为体系反应进度或转化率,无量纲 T为温度,K β为升温速率,K/min k(T)为温度对反应速率的影响函数,1/min f(α)为反应进程对反应速率的影响机理函数,无量纲.  转化率α可用式(9)进行计算.(9)  其中m0为样品初始质量,mg m为样品当前质量,mg m∞为结束时样品残余质量,mg.  对于式(8)中的k(T),主要可用2种模型,一是较为通用的阿伦尼乌斯公式[32],如式(10)所示 二是如式(11)所示的H-E模型[33],较不常用.(10)(11)  式中,A为指前因子,1/min E为活化能,J/mol.R为气体常数,J/(molK) C为常数 m为幂指数.  反应进程机理函数f(α)描述了样品反应速率与物质自身含量的关系,不同的反应机理存对应各自的反应进程机理函数形式.其中,最为通用的是n级反应模型,如式(12)所示.(12)  式中,n即为反应级数.  综合整理式(9)、(10)和(12),可得完整的反应动力学模型,如式(13)所示.(13)  可见,上式中主要包含3个动力学参数(A,E,n),它们综合表征了样品热解反应的详细进程,因此,样品热解动力学分析的核心,即为动力学三参数(A,E,n)的求解.在众多求解方法中,常用方法有3类:微分法、积分法和GE算法,其中,前2类为线性分析法,而GE算法为非线性求解法,以下分别介绍.  6.5.1微分法  微分法通常直接针对式(13)进行求解,对于样品仅在单一扫描速率条件下的热重过程进行动力学分析,可称为单扫描速率法.基于n级反应假设,常用的单扫描速率法包含如下3种.  (a)Freeman-Carroll公式[34],通过作图可以由斜率得到活化能,如式(14)所示.(14)  (b)当n=1时,可用Newkirk公式[35],如式(15)所示.(15)  取2个实验点T1和T2,则有:(16)  (c)Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.  针对不同扫描速率下测得的多条热重曲线,进行动力学分析的方法称为多重扫描速率法.实际应用中,基于微分形式的多重扫描速率法有以下几种.  (a)Kissinger-Akahira-Sunose公式[37],针对不同升温速率(β)下所测热重曲线峰值对应的温度Tp,可得到式(18),由该线性方程的斜率,可确定E,由截距可确定A.(18)  (b)Friedman公式[38],对于多条不同升温速率β下的热重曲线,选择等转化率α处,有式(19).(19)  由斜率可以求得E,截距为ln[Af(α)].  如果结合n级反应模型假设则可得:(20)  结合不同的α,由式(19)可得确定不同的截距,再基于式(20),由斜率可求得n,由截距可求得A.  此外,还有Vachuska和Vobril法[39]等,在此不再赘述.  6.5.2积分法  积分法则是通过对温度或者时间积分得到g(α)如式(21)所示.(21)  常用的积分法有如下几种.  (a)Horowitz-Metzger公式[40],如式(22)所示.  译(22)(23)  式中,Tr为满足1-α=1/e的参考温度,单位K.θ为当前温度和参考温度的差值,单位K.作lng(α)~θ图,即可由斜率确定活化能.该模型后来进一步修改为Dharwadkar-Karkhanavala公式[41],如式(24)所示.(24)  其中Ti,Tf分别为反应开始和结束的温度,单位K.  (b)Coats-Redfern公式[42],首先,采用Taylor展开取近似,得式(25)(25)  由于RT/E~0,所以,1−2RT/E≈1.式(25)可近似为式(26)(26)  即可基于斜率和截距值,算出E和A.  (c)Flynn-Wall-Ozawa公式[43~45],如式(27)所示.(27)  针对不同的升温速率β下的曲线,在等转化率α处的温度T,作lgβ~1/T图,由斜率可到E.  此外,还有Zsako公式[46]和Satava-Sestak公式[47]等,在此不赘述.  6.5.3非线性动力学求解  随着计算机科学技术的发展,可将动力学三参数的求解转化成一个迭代优化过程,即,将各参数代入反应动力学公式,根据所计算热重曲线和实际热重曲线的误差,调整参数,最终基于误差最小原则,给出最优动力学三参数值.  Tang等[48]针对PVC热解,基于3个平行反应模型,构建动力学计算公式,如式(28)所示.(28)  总的反应转化率则是3个平行反应的叠加,如式(29)所示.(29)  对式(28)中的3个平行反应进行独立求解,其显示差分格式如式(30)所示.(30)  具体计算过程中,可采用当前流行的优化求解方法:遗传算法(GeneticAlgorithm),基于该算法的不断“自然选择-繁殖”迭代,直至达到目标拟合精度.式(31)给出了评价优化参数好坏的误差函数Φ表达.(31)  其中,Φ为模型预测结果和实验值之间的误差 γ为实验和模型预测的反应进度速率(DTG)之间的误差占总误差的权重 α˙exp,i为实验测量的反应速率,1/K α˙cal,i为当前动力学三参数下计算出的反应速率,1/K α˙exp¯¯¯¯¯¯为实验测量的反应速率的均值,1/K αexp,i为实验测量的无量纲反应进度 αcal,i为该动力学3参数下计算出的无量纲反应进度.αexp¯¯¯¯¯¯为实验测量的反应进度均值.M为在特定升温速率下实验数据点的数目.  Tang等[48]基于遗传算法,进行XLPE热重曲线的拟合结果如图14所示,可见,各升温速率下,可算出与热重实验曲线吻合度很高的动力学三参数.Fig.14DTGcurvesforXLPE(Crosslinkedpolyethylene)pyrolysisinatmosphereatdifferentheatingratesandtheoptimaltheoreticalfittingbasedonsingle-scanmethod.TheoptimizationofpyrolysismodelingisbasedontheGA(Geneticalgorithm)method(ReprintedwithpermissionfromRef.[48] Copyright(2018)Elsevier).    7总结与展望  本文综述了热重分析技术在高分子表征领域的主要进展,旨在帮助大家全面掌握TGA技术的实验原理,提高实验操作与数据分析过程的有效性和准确性,进一步推动TGA技术在高分子表征领域的广泛应用.  TGA分析仪将样品精细加热调控技术与高精度质量测量技术联合,从质量变化角度,对高分子材料等受热过程中的物理与化学变化行为进行直接表征.当前,国内外相关仪器厂商的多款TGA分析仪具有的响应灵敏度、测量精度及操作方便性等各项性能已能满足大多高分子性能表征的需要.关于TGA分析仪的未来发展,主要包括如下几点:(1)进一步提高仪器准确度、灵敏度,以及稳定性 (2)不影响灵敏度的前提下,拓宽TGA分析仪的温度范围 (3)超快加热/降温速率的实现 (4)快速等温实验过程中的热惯性的进一步减小 (5)特殊实验过程所需的仪器附件研发,包括高压真空热解腔、温湿度综合控制器等 (6)与TGA分析仪联用仪器的校准方法及标准物质等方面的进一步发展 (7)仪器软件的功能拓展.  此外,关于基于TGA分析的高分子材料应用研究方面,未来机遇与挑战主要包括:(1)基于高分子材料微量样品的高精度热重数据及其计算参数,发展其对于实际工程的应用性模型,即,通过微量样品热分析参数与尺度放大(Scale-up)模型相结合,推动微量样品热分析结果在工程实际的更好应用 (2)在基于TGA分析的材料动力学模型与参数计算,进一步解决其中的动力学补偿效应(kineticcompensationeffect,KCE) (3)TGA分析技术与DSC、FTIR、GC/MS等仪器的无缝联用优化方案设计和联用数据精确、可靠分析.  最后,近年来,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破.同时,我国相关仪器厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地.  参考文献  1  SeifiaH,GholamibT,SeificS,GhoreishiaSM,Salavati-NiasaribM.JAnalApplPyrolysis,2020,149:104840.doi:10.1016/j.jaap.2020.104840  2  PeñalverR,Arroyo-ManzanaresN,Lopez-GarcíaI,Hernández-CórdobaM.Chemosphere,2020,242:125170.doi:10.1016/j.chemosphere.2019.125170  3  ChenYongxuan(陈咏萱),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPolymericaSinica(高分子学报),2021,52(4):423-444  4  DingYanwei(丁延伟).FundamentalsofThermalAnalysis(热分析基础).Hefei(合肥):UniversityofScienceandTechnologyofChinaPress(中国科学技术大学出版社),2020.doi:10.3866/pku.dxhx202012012  5  GB/T6425-2008NomenclatureforThermalAnalysis(热分析术语).NationalStandardsofPeople’sRepublicofChina(中华人民共和国国家标准),2008.doi:10.1016/S1734-1140(13)71006-5  6  IHainesPJ,ThermalMethodsofAnalysis:Principles,ApplicationsandProblems.SpringerScience+BusinessMedia:Dordrecht,1995.Chap1.doi:10.1007/bf02548698  7  NoremSD,O’NeillMJ,GrayAP.ThermochimActa,1970,1:29-38.doi:10.1016/0040-6031(70)85026-2  8  GallagherPK,SchreyF.ThermochimActa,1970,1:465-476.doi:10.1016/0040-6031(70)85017-1  9  OzkanUS,KumthekarMK,KarakasG.JCatal,1997,171:67-76.doi:10.1006/jcat.1997.1793  10  McGhieAR.AnalChem,1983,55:987-988.doi:10.1021/ac00257a047  11  McGhieAR,ChiuJ,FairPG,BlaineRL.ThermochimActa,1983,67:241-250.doi:10.1016/0040-6031(83)80104-x  12  BrownME,BhenguTT,SanyalDK.ThermochimActa,1994,242:141-152.doi:10.1016/0040-6031(94)85016-x  13  GallagherPK,ZhongZ,CharsleyEL,MikhailSA,TodokiM,TanaguchiK,BlaineRL.JThermAnal,1993,40:1423-1430.doi:10.1007/bf02546906  14  WeddleBJ,RobbinsSA,GallagherPK.PureApplChem,1995,67:1843-1847.doi:10.1351/pac199567111843  15  GundlachEM,GallagherPK.JThermAnal,1997,49:1013-1016.doi:10.1007/bf01996788  16  JJG014-1996VerificationRegulationforThermalAnalyzer(热分析仪检定规程).NationalEducationCommissionofPeople’sRepublicofChina(中华人民共和国国家教育委员会),1996.doi:10.1007/978-1-349-24516-1_6  17  JJG1135-2017VerificationRegulationforThermogravimetricAnalyzer(热重分析仪检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2017.doi:10.2753/clg0009-4609390303  18  JJG936-2002VerificationRegulationforDifferentialScanningCalorimeter(示差扫描热量计检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2002.doi:10.1007/BF02856701  19  DingYanwei(丁延伟),ZhengKang(郑康),QianYixiang(钱义祥).IntroductiontoThermalAnalysisExperimentDesignandCurveAnalysis(热分析实验方案设计与曲线解析概论).Beijing(北京):ChemicalIndustryPress(化学工业出版社),2020  20  GibertJP,LopezCuestaJM,BergeretA,CrespyA.PolymDegradStab,2000,67:437-447.doi:10.1016/s0141-3910(99)00142-1  21  SchindlerA,DoedtM,GezginS,MenzelJ,SchmolzerS.JThermAnalCalorim,2017,129:833-842.doi:10.1007/s10973-017-6208-5  22  VogelC,KrugerO,AdamC.JThermAnalCalorim,2016,123:1045-1051.doi:10.1007/s10973-015-5016-z  23  YuanY,MaC,ShiYQ,SongL,HuY,HuWZ,MaterChemPhys,2018,211:42-53.doi:10.1016/j.matchemphys.2018.02.007  24  WangFang(王芳),HaoJianwei(郝建薇),LiZhuoshi(李茁实),ZouHongfei(邹红飞),ActaPolymericaSinica(高分子学报),2016,7:860-870.doi:10.11777/j.issn1000-3304.2016.5329  25  DorezG,TaguetA,FerryL,LopezCuestaJM.PolymDegradStab,2014,102:152-159.doi:10.1016/j.polymdegradstab.2014.01.018  26  HatakeyamaH,JThermAnalCalorim,2014,118:23-30.doi:10.1007/s10973-014-3959-0  27  GerassimidouS,VelisCA,WilliamsPT,KomilisD,WasteManageRes,2020,38(9):942-965.doi:10.1177/0734242x20941085  28  RegoF,DiasAPS,GasguilhoM,RosaFC,RodriguesA.BiomassBioenerg,2019,122:375-380.doi:10.1016/j.biombioe.2019.01.037  29  ZhangWJ,ShiXH,ZhangYX,GuW,LiBY,XianYZ.JMaterChemA,2013,1:1745-1753.doi:10.1039/c2ta00294a  30  PassauerL.ProgOrgCoat,2021,157:106331.doi:10.1016/j.porgcoat.2021.106331  31  MasI,Hortelano,Ruiz-BermejoM,FuenteJL.EurPolymJ,2021,143:110185.doi:10.1016/j.eurpolymj.2020.110185  32  LaidlerKJ.JChemEduc,1984,61(6):494-498.doi:10.1021/ed061p494  33  HarcourtAV.PhilTransR.SocLondA,1913,212:187-204  34  FreemanES.CarrollB.JPhysChem,1958,62(4):394-397.doi:10.1021/j150562a003  35  NewkirkAE.AnalChem,1960,32(12):1558-1563.doi:10.1021/ac60168a006  36  SharpJH,WentworthSA.1969,41(14):2060-2062.doi:10.1021/ac50159a046  37  KissingerHE.AnalChem,1957,29(11):1702-1706.doi:10.1021/ac60131a045  38  FriedmanHL.JPolymSci:PolymSymp,1964,6:183-195.doi:10.1002/polc.5070060121  39  VachuskaJ,VoborilM.ThermochimActa,1971,2(5):379-392.doi:10.1016/0040-6031(71)85014-1  40  HorowitzHH,MetzgerG.AnalyChem,1963,35(10):1464-1468.doi:10.1021/ac60203a013  41  DharwadkarS,KarkhanavalaM.ThermAnal,1980,18(1):185-191.doi:10.1007/bf01909466  42  CoatsAW,RedfernJ.Nature,1964,201(4914):68-69.doi:10.1038/201068a0  43  OzawaT.BullChemSocJpn,1965,38(11):1881-1886.doi:10.1246/bcsj.38.1881  44  FlynnJH,WallLA.JResNatBurStand,1966,70(6):487-523.doi:10.6028/jres.070a.043  45  FlynnJH,WallLA.JPolymSci,PartC:PolymLett,1966,4(5):323-328.doi:10.1002/pol.1966.110040504  46  ZsakoJ.JPhysChem,1968,72(7):2406-2411.doi:10.1021/j100853a022  47  SatavaV.ThermochimActa,1971,2(5):423-428.doi:10.1016/0040-6031(71)85018-9  48  TangXY,XieQY,QiuR,YangY.PolymDegradStab,2018,154:10-26.doi:10.1016/j.polymdegradstab.2018.05.016原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21210&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21210
  • 高分子领域国家重点实验室仪器配置清单
    p   人类的生产和生活离不开高分子材料,小到日用家居,大至航空领域,高分子材料广泛应用于通讯、电子、电气、医疗、化工、航空、航天、汽车、信息、生命科学等多个领域,因此高分子材料的研究与应用具有十分重要的意义。仪器信息网特对高分子领域国家重点实验室仪器配置情况进行盘点。 /p p style=" text-align: center " strong span 高分子领域国家重点实验室 /span /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " align=" center" colgroup col width=" 240" style=" width:240px" / col width=" 387" style=" width:387px" / col width=" 123" style=" width:123px" / col width=" 122" style=" width:123px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 240" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 高分子领域国家重点实验室 /strong /td td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 依托单位 /strong /td td width=" 211" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 实验室主任 /strong /td td width=" 123" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 学术委员会主任 /strong /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 纤维材料改性国家重点实验室& nbsp /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 168" 东华大学 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 88" 朱美芳 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 张& nbsp 希 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 聚合物分子工程国家重点实验室 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 168" 复旦大学 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 88" 丁建东 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 江& nbsp 明 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 高分子物理与化学国家重点实验室& nbsp /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 168" 中国科学院化学研究所和中国科学院长春应用化学研究所 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 88" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 高分子材料工程国家重点实验室& nbsp /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 168" 四川大学 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 88" 李光宪 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span style=" outline: none" 曹& nbsp 镛 /span /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 化学工程联合国家重点实验室 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 168" 清华大学、天津大学、华东理工大学和浙江大学 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 88" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 超分子结构与材料国家重点实验室 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 168" 吉林大学 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 88" 孙俊奇 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 段& nbsp 雪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 化工资源有效利用国家重点实验室 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 168" 北京化工大学 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 88" 宋宇飞  /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 田& nbsp 禾 /td /tr /tbody /table p br/ /p p span    /span strong 纤维材料改性国家重点实验室 /strong /p p   纤维材料改性国家重点实验室依托于东华大学,源于我国第一个化学纤维专业,于1992年由国家计委批准筹建,1996年通过国家验收,分别于2003、2008、2013、2018年通过国家评估,其中2018年被评“优秀类国家重点实验室”,是我国纤维和纺织材料领域第一个国家重点实验室。实验室依托东华大学材料科学与工程学科,立足国际纤维科技前沿,紧密结合国家战略需求和国计民生需要,在高性能纤维领域打破国外垄断、民用纤维领域引领产业超越国家先进水平、生物质纤维和无机纤维开展前沿探索研究等方面作出了重要贡献。 /p p style=" text-align: center " strong 纤维材料改性国家重点实验室仪器配置清单 /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " align=" center" colgroup col width=" 258" style=" width:259px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 285" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 纤维材料改性国家重点实验室仪器配置& nbsp /strong /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 声速仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 光学解偏振仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 水分测定仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 小型湿法纺丝机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 真空转鼓烘箱 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 微型流延膜机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 聚合釜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 微型锥形双螺杆共混仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 微型注塑机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 35" 微型双锥共混螺杆纺丝机 /td /tr /tbody /table p    /p p strong span    /span 聚合物分子工程国家重点实验室 /strong /p p   聚合物分子工程国家重点实验室依托复旦大学,于2011年10月获得科技部批准建设,2013年12月通过科技部验收,2014年8月通过科技部组织的化学领域国家重点实验室的评估,获得“良好”。 /p p   实验室主体依托学科是复旦大学高分子化学与物理全国重点学科。实验室以“分子工程学”思想为导向,把结构性能关系研究、分子设计与合成、材料制备与应用融为一体。以“国家重大需求和学科前沿导向的基础研究”为总体定位,结合学科发展和学科交叉的需要,基于原有的研究基础,设置四个主要研究方向:(1)通用高分子的高性能化 (2)生物医用高分子的设计 (3)高分子相关的功能介孔材料 (4)高分子多尺度制备科学与技术。 /p p style=" text-align: center " strong style=" text-align: center " strong 聚合物分子工程国家重点实验室 /strong 仪器配置清单 /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " align=" center" colgroup col width=" 258" style=" width:259px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 294" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" strong style=" text-align: center white-space: normal " strong style=" white-space: normal " 聚合物分子工程国家重点实验室 /strong 仪器配置 /strong /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 动态力学分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 凝胶渗透色谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 静态/动态激光光散射仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 应变型流变仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 差示扫描量热仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 固体核磁共振仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 稳态/瞬态荧光光谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" X射线衍射仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 可变真空扫描式电子显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 基质辅助激光解析电离-飞行时间质谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 自动纯化色谱质谱联用仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 傅里叶变换红外光谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 纳米粒度-Zeta点位分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 热重分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 偏光显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 紫外可见分光光度计 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 扫描探针显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 场发射扫描电镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 透射电镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 荧光光谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 凝胶色谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 冷冻超薄切片机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 低温超速离心机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 基质辅助激光解吸电离飞行时间质谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 热机械分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 激光拉曼光谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 液体核磁共振波谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 小动物多角度光学活体成像系统 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 流式细胞仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 激光共聚焦显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 旋转流变仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 小动物Micro-CT成像系统 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 53" 转矩流变加工系统 /td /tr /tbody /table p    br/ /p p    strong 高分子物理与化学国家重点实验室 /strong /p p   高分子物理与化学国家重点实验室的前身是1989年经中国科学院批准,依托中国科学院化学研究所和中国科学院长春应用化学研究所建立的中国科学院高分子物理联合开放实验室。 /p p   鉴于1995和1999年连续两次在“国家化学学科重点实验室评估”中被评为优秀实验室,2000年经科技部批准由中国科学院开放实验室晋升为国家重点实验室,并扩充“中国科学院-中国石化总公司高分子化学联合开放实验室”(依托单位为中国科学院长春应用化学研究所和中国科学院化学研究所),重新组建成“高分子物理与化学国家重点实验室”。实验室于2001年3月通过建设验收。 /p p   * i 高分子物理与化学国家重点实验室仪器配置未公开 /i /p p br/ /p p    strong 高分子材料工程国家重点实验室 /strong /p p   高分子材料工程国家重点实验室(四川大学)1991年在四川大学高分子材料学科基础上组建,是世界银行贷款“重点学科发展项目”建设的75个国家重点实验室之一和确定的七个试点实验室之一。1995年4月通过国家验收,1996年2月正式向国内外开放,1997年、2003年、2008年和2013年连续四次通过国家评估,取得良好成绩。实验室的创始人中国科学院院士徐僖教授是我国高分子材料科学奠基人之一。实验室学术委员会由国内外知名专家学者17人组成,学术委员会主任为中国科学院院士曹镛教授。实验室研究方向明确,在高分子材料应用基础研究和工程化方面有鲜明特色,拥有一支朝气蓬勃、结构合理的高水平科研队伍,承担国家重要科研任务,取得显著科研成果,并在高层次人才培养方面取得卓越成绩,开展了卓有成效的对外交流与合作,现已成为我国高分子材料科学与工程领域规模最大的科研和教学基地之一。 /p p   * i 高分子材料工程国家重点实验室仪器配置未公开 /i /p p i br/ /i /p p i /i /p p style=" white-space: normal " span    /span strong 化学工程联合国家重点实验室 /strong /p p style=" white-space: normal "   化学工程联合国家重点实验室1987年被批准建设,1991年建成并开放运行,由清华大学、天津大学、华东理工大学和浙江大学四个分室组成。四个分室强强联合、优势互补,构成了我国唯一定位于化学工程一级学科的国家重点实验室。 /p p style=" white-space: normal text-align: center " strong style=" text-align: center " 化学工程联合国家重点实验室 /strong strong style=" text-align: center " 仪器配置清单 /strong /p p style=" white-space: normal text-align: center " strong style=" text-align: center " /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" border-collapse:collapse " align=" center" data-sort=" sortDisabled" colgroup col width=" 234" style=" width:235px" / col width=" 518" style=" width:519px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " rowspan=" 1" colspan=" 2" width=" 732" align=" center" valign=" middle" strong 化学工程联合国家重点实验室 /strong strong style=" text-align: center white-space: normal " 仪器配置 /strong /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" rowspan=" 6" colspan=" 1" 热分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 同步热分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 差示扫描热量计 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 差示扫描量热仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 反应型差示扫描量热仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 热重分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 热分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" rowspan=" 4" colspan=" 1" 分子量与组成 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 凝胶渗透色谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 高温凝胶色谱仪(三氯苯相) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 气相色谱仪——付立叶红外光谱仪& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 激光拉曼光谱分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" rowspan=" 8" colspan=" 1" 形态结构 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 磁悬浮高压热天平 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 全自动比表面和微孔孔径分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 表面积分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 压汞仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 纳米粒度电位分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 粒度分析仪(0.017~2000μm) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 纳米粒度电位分析仪(2-3000nm) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 粒度分析仪(0.04—2000μm) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" rowspan=" 5" colspan=" 1" 力学性能 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 万能材料试验机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 仪器化低温摆锤冲击测试仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 导热系数测定仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 维卡测定仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 摆锤材料冲击仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" rowspan=" 8" colspan=" 1" 表面分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 100" 超薄冷冻切片机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 120kv透射电子显微镜 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 多功能纳米红外光谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 场发射扫描电子显微镜 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 台式扫描电镜 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 原子力显微镜 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 视频接触角测试仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 偏光显微镜(带热台) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" rowspan=" 5" colspan=" 1" 流变性能 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 高压毛细管流变仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 带环境调控的动态热机械分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 旋转流变仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 粘度计 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 熔融指数仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" rowspan=" 9" colspan=" 1" 聚合物加工 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 微型制样系统 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 微型高性能复合材料混合成型系统 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 微型高性能复合材料混合成型系统 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 转矩流变仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 转矩流变仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 微型仿型制样机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 气动空心冲模压机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 100" 实验室压片机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 双辊开炼机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 79" rowspan=" 4" colspan=" 1" 高压反应器 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 100" 间歇式捏合反应器系统 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 带扭矩传感器的高压反应釜系统 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 100" 反应釜(Parr 3.75L) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " width=" 100" 反应釜(Parr 1L) /td /tr /tbody /table p style=" white-space: normal " br/ /p p    strong 超分子结构与材料国家重点实验室& nbsp /strong /p p   超分子结构与材料国家重点实验室的前身是1978年由唐敖庆院士创建的“吉林大学结构化学研究室”,1991年在此基础上成立了“分子光谱与分子结构教育部开放研究实验室”,2001年更名为“超分子结构与材料教育部重点实验室”。2006年申请建立国家重点实验室,2007年由国家科技部批准建设,2010年通过验收。现任学术委员会主任为中科院院士段雪教授,实验室主任为孙俊奇教授。 /p p   实验室依托吉林大学高分子化学与物理、物理化学、有机化学、分析化学四个国家级重点学科,汇聚了一批具有不同学科专业背景的研究人员,现有固定人员85人,其中研究人员70人,技术人员11人,管理人员4人。研究队伍中包括中科院院士3名(含双聘院士2名),特聘领军人才2名,国家杰出青年科学基金获得者7名,国家自然科学基金委优秀青年科学基金获得者8名,优秀青年学术带头人6名,国家百千万人才计划入选者1名,国家万人计划入选者4名,全国百篇优秀博士学位论文获得者2名,教育部新(跨)世纪优秀人才培养计划入选者8名。 /p p style=" text-align: center " strong style=" text-align: center " 超分子结构与材料国家重点实验室 /strong strong style=" text-align: center " 仪器配置清单 /strong /p p style=" text-align: center " strong style=" text-align: center white-space: normal " /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " align=" center" colgroup col width=" 258" style=" width:259px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 316" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" strong 超分子结构与材料国家重点实验室 /strong strong style=" text-align: center white-space: normal " 仪器配置 /strong /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 核磁共振谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" x射线单晶衍射仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 粉末x射线衍射仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 高分辨紫外光电子能谱 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 飞行时间质谱联用仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 气相色谱质谱联用仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 透射电子显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 原子力显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 光栅型拉曼光谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 66" 激光共聚焦显微镜 /td /tr /tbody /table p    /p p strong span    /span 化工资源有效利用国家重点实验室 /strong & nbsp /p p   化工资源有效利用国家重点实验室(北京化工大学)前身为2000年8月成立的可控化学反应科学与技术教育部重点实验室,2006年6月27日由国家科技部批准筹建国家重点实验室,2009年1月4日正式通过验收。 /p p   实验室学术委员会由22名专家学者组成,学术委员会主任由中科院院士田禾教授担任,实验室主任由宋宇飞教授担任。 /p p   重点实验室密切围绕我国建设资源节约型社会的战略目标,以化工资源有效利用为主攻方向,深入研究相关领域的科学问题与技术集成原理,充分利用北京化工大学化学、化工和材料三个一级学科布局紧凑、专业方向完整的优势,通过学科间的交叉、渗透和整合,针对“化工资源有效利用”的途径,形成了三个有特色的研究方向:组装化学、可控聚合、过程强化。 /p p   实验室认真贯彻执行“开放、流动、联合、竞争”的方针,重视科学研究、人才培养、队伍建设和开放交流等各方面的工作。基于北京化工大学的基础及办学宗旨,实验室确定了基础研究与应用研究密切结合的定位,即在开展学术前沿研究的同时,以国家实际需求为切入点,直接进入国民经济建设的主战场。承担一批基础和工程化及产业化研究项目,发表一批高水平的学术论文,申报一批国家和国际发明专利,产出一批具有显示度的科研成果,形成鲜明的应用基础研究特色。 /p p style=" text-align: center " strong 化工资源有效利用国家重点实验室 /strong strong style=" text-align: center white-space: normal " 仪器配置清单 /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" border-collapse:collapse " align=" center" data-sort=" sortDisabled" colgroup col width=" 98" style=" width:99px" / col width=" 72" style=" width:72px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" colspan=" 2" width=" 355" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " strong 化工资源有效利用国家重点实验室 /strong strong style=" text-align: center white-space: normal " 仪器配置 /strong /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 核磁分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 400MHz固体核磁共振谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 4" colspan=" 1" 形貌分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 261" 扫描电子显微镜(热场高分辨SEM) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 透射电子显微镜(高分辨TEM) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 透射电子显微镜(分析型TEM) /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 扫描探针显微镜 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 3" colspan=" 1" 热分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 热分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 差热天平 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 热分析/质谱联用系统 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 2" colspan=" 1" 色谱分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 气相色谱质谱联用仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 液相色谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 8" colspan=" 1" 表面性能分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 物理吸附分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 4站物理吸附分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 化学吸附分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 程序升温化学吸附/质谱联用仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 表面张力仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 光学法液滴形状分析系统 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 激光粒度仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 纳米粒度和Zeta电位分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 7" colspan=" 1" 光谱分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 傅里叶红外光谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 原位红外光谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 真空红外/拉曼联用光谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 紫外分光光度计 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 圆二色光谱分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 显微共焦拉曼光谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 激光显微共聚焦荧光显微镜 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 2" colspan=" 1" 元素分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 等离子发射光谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" 能谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 结构分析 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 256" X射线衍射仪 /td /tr /tbody /table p   除了上述国家重点实验室,还有海洋涂料国家重点实验室和废旧塑料国家重点实验室等企业国家重点实验室。另外,还有一些教育部成立的重点实验室等,以下也将公开的仪器配置予以列出。 /p p    strong 工程塑料重点实验室 /strong & nbsp /p p   中国科学院工程塑料重点实验室成立于1991年,是国内最早开展工程塑料科学研究的实验室。实验室建设和发展初期以高分子复合材料和狭义的工程塑料研究为主 后逐渐扩展到多品种的高分子材料科学研究,如烯烃聚合催化剂的合成及可控聚合、高分子材料的增强增韧、塑料高性能化的新技术、苛刻环境中使用的先进高分子材料等方向 近年来,随着学科的发展和国民经济建设的需要,实验室增加了纳米复合材料、生物医用高分子材料、环境友好高分子材料和聚烯烃合金新材料的合成与制备等研究方向。工程塑料重点实验室已经成为我国从事高分子材料基础研究和应用基础研究、实施科技成果转化、培养优秀青年科技人才、开展国际学术交流和合作的重要基地。 /p p style=" text-align: center " strong span 工程塑料重点实验室 /span 仪器配置清单 /strong   /p table border=" 0" cellpadding=" 0" cellspacing=" 0" width=" 419" style=" border-collapse:collapse " data-sort=" sortDisabled" align=" center" colgroup col width=" 174" style=" width:175px" / col width=" 244" style=" width:244px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 1" colspan=" 2" align=" center" valign=" middle" strong 工程塑料重点实验室 /strong strong style=" text-align: center white-space: normal " 仪器配置 /strong /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 10" colspan=" 1" 加工成型 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 反应型双螺杆挤出系统 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 同向双螺杆挤出机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 塑料注射成型机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 微量注射成型仪& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 气动制样机& nbsp & nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 自动切缺口机& nbsp & nbsp & nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 小型捏合机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 转矩流变仪& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 平板硫化机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 超临界二氧化碳反应装置 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 7" colspan=" 1" 结构、热性能 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 差示扫描量热计 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 动态力学分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 热失重分析仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 傅里叶红外光谱仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 凝胶渗透色谱仪& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 高效液相色谱& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 台式万能材料 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 8" colspan=" 1" 流变、力学性能 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 试验机& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 电子式悬简组合 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 冲击试验机 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 毛细管流变仪& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 高级流变拓展系统/旋转流变仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 拉伸流变仪 /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 熔融指数仪& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 偏光显微镜& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 6" colspan=" 1" 微观形貌 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 冷热台& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 透射电子显微镜& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 扫描电子显微镜& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 超薄切片机& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 溅射仪& nbsp /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 扫描探针显微镜& nbsp /td /tr /tbody /table p    /p p strong span    /span 高分子化学与物理教育部重点实验室 /strong & nbsp /p p   北京大学高分子化学与物理重点实验室于2004年底获教育部批准立项建设。实验室的总目标是面向学科发展和国家需求,对本领域内的重要科学前沿问题和重大技术问题进行创新性研究 按照教育部重点实验室建设的要求,结合高分子科学的发展趋势,进一步凝炼研究方向,加强研究队伍建设,围绕高分子化学与物理的核心问题,开展原创性的前沿工作,努力体现基础与应用基础研究两个层面的交叉复合。本实验室将对高分子科学领域的学术创新和技术进步作出贡献,解决本领域一些重要的科学技术问题,培养高水平的高分子科学研究人才,努力成为我国高分子领域重要的基础研究基地、材料开发和技术创新基地、人才培养基地和学术交流中心。 /p p i    /i i    /i /p p    strong 功能高分子材料教育部重点实验室 /strong & nbsp /p p   功能高分子材料教育部重点实验室于1989年经国家计委批准立项,由世界银行贷款资助,在南开大学高分子化学与物理国家重点学科的基础上创建的。1995年9月实验室通过国家验收并向国内外开放。 /p p   实验室根据国际高分子科学的研究前沿和我国国民经济发展的需求,主要开展分子识别与吸附分离功能高分子材料、生物医用高分子材料、杂化及纳米材料和聚合物结构与性能研究。部分研究领域居国际、国内前列。 /p p   2019年12月,教育部科技司评估功能高分子材料教育部重点实验室(南开大学)结果为优秀类教育部重点实验室。 /p p style=" text-align: center " span strong style=" white-space: normal " 功能高分子材料教育部重点实验室仪器配置清单 /strong /span /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " align=" center" colgroup col width=" 258" style=" width:259px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 315" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 功能高分子材料教育部重点实验室仪器配置 /strong /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 超导核磁共振谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 核磁共振波谱仪& nbsp /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 小角X光散射系统 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 付立叶红外光谱仪& nbsp /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 原子力显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 扫描式电子显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 热分析系统& nbsp /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 广角激光光散射系统& nbsp /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" ZETA电位仪& nbsp /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 高效液相色谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 荧光光谱测量系统& nbsp /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 接触角分析仪& nbsp /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 凝胶渗透色谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 高效液相色谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 折光指数增量测定仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 气体吸附表面积分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 紫外分光光度计 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 万能材料实验机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 液体核磁共振谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 广角激光散射仪(红光636nm) /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 偏光显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" ZETA电位+广角激光散射仪(绿光532nm) /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 飞行时间质谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 83" 拉曼光谱仪 /td /tr /tbody /table p    /p p strong span    /span 聚合物成型加工工程教育部重点实验室 /strong & nbsp /p p   聚合物成型加工工程教育部重点实验室以华南理工大学材料科学与工程国家重点一级学科和机械工程国家重点(培育)学科为支撑,以材料学、材料加工工程、材料物理与化学、机械设计及理论、化工机械等五个博士点为依托,于2002年9月经教育部评估优秀后正式成立,是目前我国唯一有关聚合物成型加工工程的重点实验室。 /p p   本实验室的总体定位是围绕聚合物成型加工技术与工程,开展高水平基础与应用基础研究,探索聚合物加工新方法和高分子材料微结构设计理论 研究开发具有自主知识产权的聚合物成型加工新技术与新装备,提升我国高分子材料成型加工技术水平及国际竞争力 培养高层次的专业人才,为相关领域的理论研究、教学和技术开发提供人才资源。实验室的主要研究方向是聚合物成型加工新技术及理论、加工过程动力学及加工过程高分子物理化学,以及三者之间的相互作用关系。 /p p style=" text-align: center " strong span 聚合物成型加工工程教育部重点实验室 /span 仪器配置清单 /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " align=" center" colgroup col width=" 337" style=" width:337px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 352" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " strong 聚合物成型加工工程教育部重点实验室 span 仪器配置 /span /strong /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 差示扫描量热仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 热重分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 热重气相色谱质谱联用仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 应力控制流变仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 动态热机械分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 傅里叶变换红外光谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 场发射扫描电子显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 熔融指数仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 台式电子万能试验机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 高温十八角度激光光散射仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 橡胶加工分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 塑料工作站 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 高分子材料动态流变工作站 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 单双三螺杆反应挤出机及电磁动态塑化挤出机系列 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 24" 各种注塑及注射机系列密炼机系列 /td /tr /tbody /table p br/ /p p    strong 生物医用高分子材料教育部重点实验室 /strong & nbsp /p p   生物医用高分子材料教育部重点实验室由国家教育部于2003年批准立项建设,实验室的前身是 1993年原国家教委批准建立的生物医用高分子材料教育部开放实验室。实验室自上世纪80年代开始开展生物材料研究,是国内最早开展生物医用高分子研究的基地之一。在卓仁禧院士、张俐娜院士等学术带头人的领导下,经过多年的努力和发展,实验室形成了自己的特色和学术优势,科研成果获多项国家级、省部级奖励。目前实验室已成为我国生物医用高分子材料的一个重要研究基地、高水平生物医用材料专业人才的培养基地。 /p p style=" text-align: center " strong style=" text-align: center white-space: normal " strong style=" white-space: normal " 生物医用高分子材料教育部重点实验室 /strong 仪器配置清单 /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " align=" center" colgroup col width=" 258" style=" width:259px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 364" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" strong 生物医用高分子材料教育部重点实验室 strong style=" white-space: normal text-align: center " 仪器配置 /strong & nbsp /strong /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 小动物活体成像仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 激光共聚焦显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 超高分辨率激光共聚焦显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 光声/超声成像仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 流式细胞仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 凝胶渗透色谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 激光散射仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 粒径电位分析仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 紫外可见分光光度计 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 红外光谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 倒置荧光显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 荧光分光光度计 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 偏光显微镜 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 酶标仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 接触角测量仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 核磁共振谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 高效液相色谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 冷冻干燥机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 核酸合成仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 圆二色谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 132" 液相质谱仪 /td /tr /tbody /table p br/ /p p    strong 橡塑材料与工程教育部重点实验室 /strong /p p   橡塑材料与工程教育部重点实验室暨山东省橡塑材料与工程重点实验室是依托青岛科技大学高分子材料与工程学科建设的省部共建重点实验室,是青岛科技大学以橡胶材料与工程为特色的优秀科研团队和高水平仪器设备聚集、运行管理相对独立的科研平台。 /p p   重点实验室于2003年获教育部批准立项建设,2006年完成建设方案预定的各项目标并通过教育部专家组验收正式揭牌运行。与此同时,重点实验室2004年被山东省科技厅列为山东省重点建设的高水平重点实验室,并在历次山东省重点实验室考评中均取得优异成绩,连续两个五年计划获山东省科技厅的大力支持。 /p p    /p p    strong 生态环境相关高分子材料教育部重点实验室 /strong & nbsp /p p   生态环境相关高分子材料实验室,是在甘肃省高分子材料重点实验室的基础上于2005年7月由国家教育部批准立项建设的生态环境相关高分子材料教育部重点实验室。2009年5月通过教育部专家组验收,成为教育部重点实验室。主要研究方向为:环境修复高分子材料研究、环境友好高分子复合材料研究和改性天然及农用生态高分子材料研究。 /p p br/ /p p    strong 聚合物复合材料及功能材料教育部重点实验室 /strong & nbsp /p p   聚合物复合材料及功能材料教育部重点实验室于1993年12月经国家教委批准成立,1996年9月正式对外开放,1999年10月第一批被批准为教育部重点实验室。 /p p   实验室的主要研究方向为:1. 聚合物多相复合体系的结构与性能及聚合物复合材料的研究和应用。研究内容包括:聚合物及其复合材料(包括纤维增强、颗粒填充和共混等)的基础和应用研究 复合材料界面效应及其作用机理、界面层设计及其控制方法和相关表征技术的研究 复合材料结构、性能及加工成型工艺的优化设计和综合研究 新型聚合物的(合成)制备和研究。2. 新型(纤维状)功能材料研究及其应用技术。研究内容包括:新型吸附分离功能纤维材料(活性碳纤维、离子交换纤维、螯合纤维)的制备、吸附分离机理及其在环保资源回收方面的应用。新型聚合物功能材料的(合成)制备和研究。 /p p   现任实验室正、副主任分别是章明秋教授和符若文教授,学委会主任是曾汉民教授,学术秘书是陈水挟副教授。 /p p br/ /p p    strong 橡塑新型材料合成国家工程研究中心& nbsp /strong /p p   橡塑新型材料合成国家工程研究中心隶属中国石化集团公司,于1996年11月1日在北京正式成立。 /p p   橡塑新型材料合成国家工程研究中心(RPNERC)北京燕山石油化工公司自1992年开始向国家申报组建橡塑新型材料合成国家工程研究中心,1995年6月6日国家计委正式批准项目建议书,1995年11月23日正式批准可行性研究报告,同时进入实施阶段。2003年4月15日,橡塑新型材料合成国橡塑新型材料合成国家工程研究中心由七个科研开发职能部和一个办公室组成。 /p p   分析检测部主要是负责橡胶和塑料高分子材料原材料和成品的结构分析和物性测试,共有分析技术人员30人,测试仪器齐全,技术力量雄厚,是高分子材料全面分析和测试的基地。家工程研究中心(RPNERC)通过了国家有关部门组织的验收。 /p p br/ /p p    strong 聚烯烃国家工程研究中心 /strong & nbsp /p p   聚烯烃国家工程研究中心于2003年1月16日在北京通过了国家有关部门验收。受国家计委的委托,聚烯烃国家工程研究中心于2003年1月16日在北京通过了国家有关部门验收。上世纪90年代以前,中国的聚烯烃先进技术几乎依赖进口。国家计委依托中国石化北京化工研究院于1995年批准建设聚烯烃国家工程研究中心。中心的工作重点是研制聚烯烃高效催化剂,开发大型成套技术,并将研究成果转化为工业化生产,在全行业推广。 /p p   聚烯烃国家工程研究中心由国家计委投入3100万元人民币,中国石化投入近1亿元。经过几年建设,基本建成了催化剂研究开发和生产制备、聚合工艺评价与成套技术开发、合成树脂表征及应用等综合配套的工程研究及开发能力。总体实力达到国内领先、国际先进的水平。中心自主开发并转化生产的聚丙烯N型催化剂技术具有明显的优势,该技术向美国菲利普斯(Phillips)石油公司转让专利许可证。目前该催化剂已成为包括欧美市场在内的国际市场上第二大聚丙烯催化剂品种。 /p p   中心建设期间,在科研开发、成果产业化、市场推广应用、人才队伍建设以及国内外合作交流等方面已取得较大的成绩,为中国聚烯烃行业的技术进步与发展作出了重要的贡献。 /p p br/ /p p    strong 中国科学院生态环境高分子材料重点实验室& nbsp /strong /p p   中国科学院生态环境高分子材料重点实验室主要研究生态环境高分子材料的高效制备、先进加工技术和工程化所面临的关键问题,主要研究以聚乳酸和二氧化碳基塑料为代表的生物降解高分子材料、以膜分离高分子材料和絮凝材料为代表的水资源高分子材料、以聚苯胺和紫外光固化树脂为代表的环保防腐高分子材料,并以生态环境材料的加工工程为四个研究方向之一。 实验室有固定职工54人,研究生等流动人员57人。 /p p   本实验室在上述四类材料上有10年以上的长期积累,承担了国家科技部、自然基金委、中国科学院、吉林省科技厅等各部门在相关领域的重大、重点计划,研究成果在国内外产生了重要影响。如本实验室在世界上率先实现了二氧化碳基塑料的产业化,得到了世界范围的认可 建立了世界上第二条、国内第一条千吨级聚乳酸生产线,获得了吉林省科技进步一等奖 建立了世界上第二条、国内第一条百吨级聚苯胺生产线 在海水淡化膜分离材料方面也拥有丰富积累,是科技部973项目中高分子膜分离材料的负责单位,在油田水处理方面也正在日益显示出本实验室技术的有效性和重要性,建立了国内第一条水介质分散聚合制备水溶性高分子的3000吨生产线,获得了中油大庆油田分公司等大型企业的认可。 /p p   实验室的创立者和名誉主任为我国著名的高分子化学家王佛松院士,实验室主任为王献红研究员,学术委员会主任为张希院士。 /p p br/ /p p    strong 中国科学院高分子复合材料工程中心 /strong & nbsp /p p   高分子复合材料工程实验室成立于2009年,是为了适应我国发展战略高技术对先进高分子复合材料的强烈需求,在2009年经中国科学院批准建设的“中国科学院高分子复合材料工程化研发平台”的基础上,利用长春应化所高分子物理与化学国家重点实验室和原高分子工程实验室的部分研究力量组建而成的。实验室现有研究员11人,副研究员24人,高级工程师4人,中级研究人员49人,初级研究人员3人,在读研究生54人,2015年经费达到10169万元,有科研用房面积约5557平方米,科研仪器设备总价值7125余万元。 /p p style=" text-align: center " strong 高分子领域常用仪器配置 /strong /p p /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" border-collapse:collapse " align=" center" data-sort=" sortDisabled" colgroup col width=" 72" style=" width:72px" / col width=" 146" style=" width:147px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" colspan=" 2" width=" 248" style=" border: 1px solid windowtext padding: 5px word-break: break-all " align=" center" valign=" middle" strong 高分子领域常用仪器 /strong /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " rowspan=" 2" colspan=" 1" width=" 170" align=" center" valign=" middle" 色谱 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/29.html" target=" _self" 凝胶色谱仪 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px word-break: break-all " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/23.html" target=" _self" 高效液相色谱 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid windowtext padding: 5px " width=" 176" align=" center" valign=" middle" 波谱 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/43.html" target=" _self" 核磁共振 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " rowspan=" 4" colspan=" 1" width=" 176" align=" center" valign=" middle" 光谱 /td td style=" border: 1px solid windowtext padding: 5px word-break: break-all " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/31.html" target=" _self" 红外光谱仪 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px word-break: break-all " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/35.html" target=" _self" 紫外分光光度 /a /td /tr tr td colspan=" 1" rowspan=" 1" style=" border-color: windowtext border-width: 1px border-style: solid word-break: break-all " width=" 13" align=" center" valign=" middle" 荧光光谱仪 /td /tr tr td colspan=" 1" rowspan=" 1" style=" border-color: windowtext border-width: 1px border-style: solid word-break: break-all " width=" 13" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/34.html" target=" _self" 拉曼光谱仪 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " rowspan=" 3" colspan=" 1" width=" 176" align=" center" valign=" middle" 质谱 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/290.html" target=" _self" 气质联用 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/51.html" target=" _self" 液质联用 /a /td /tr tr td rowspan=" 1" colspan=" 1" style=" border-color: windowtext border-width: 1px border-style: solid word-break: break-all " align=" center" valign=" middle" 飞行时间质谱仪 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid windowtext padding: 5px " width=" 176" align=" center" valign=" middle" X射线仪器 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/73.html" target=" _self" X射线衍射仪 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " rowspan=" 2" colspan=" 1" width=" 176" align=" center" valign=" middle" 粒度/颗粒/粉末分析仪器 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/112.html" target=" _self" Zeta电位仪 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/470.html" target=" _self" 激光粒度仪 /a /td /tr tr td rowspan=" 2" colspan=" 1" style=" border-color: windowtext border-width: 1px border-style: solid word-break: break-all " align=" center" valign=" middle" 表界面物性测试 /td td rowspan=" 1" colspan=" 1" style=" border-color: windowtext border-width: 1px border-style: solid word-break: break-all " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/191.html" target=" _self" 比表面 /a /td /tr tr td rowspan=" 1" colspan=" 1" style=" border-color: windowtext border-width: 1px border-style: solid word-break: break-all " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/523.html" target=" _self" 化学吸附仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid windowtext padding: 5px " width=" 176" align=" center" valign=" middle" 流变仪/粘度计 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/84.html" target=" _self" 流变仪 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px word-break: break-all " rowspan=" 4" colspan=" 1" width=" 176" align=" center" valign=" middle" 热分析仪 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" 差示扫描量热仪 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/62.html" target=" _self" 热重分析仪 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/68.html" target=" _self" 热分析联用仪 /a /td /tr tr td rowspan=" 1" colspan=" 1" style=" border-color: windowtext border-width: 1px border-style: solid word-break: break-all " width=" 16" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" 热机械分析仪 /a br/ /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " rowspan=" 2" colspan=" 1" width=" 179" align=" center" valign=" middle" 试验机 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/373.html" target=" _self" 万能试验机 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/374.html" target=" _self" 拉力试验机 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " rowspan=" 4" colspan=" 1" width=" 179" align=" center" valign=" middle" 电子显微镜 /td td style=" border: 1px solid windowtext padding: 5px " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/53.html" target=" _self" 扫描电镜 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/1139.html" target=" _self" 透射电镜 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/60.html" target=" _self" 原子力显微镜 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 224" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/60.html" target=" _self" 扫描探针显微镜 /a /td /tr tr height=" 18" style=" height:18px" td style=" border: 1px solid windowtext padding: 5px " width=" 179" rowspan=" 2" colspan=" 1" align=" center" valign=" middle" 显微镜 /td td style=" border: 1px solid windowtext padding: 5px word-break: break-all " width=" 189" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/57.html" target=" _self" 偏光显微镜 /a /td /tr tr td colspan=" 1" rowspan=" 1" style=" border-color: windowtext border-width: 1px border-style: solid word-break: break-all " width=" 13" align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/286.html" target=" _self" 共聚焦显微镜 /a br/ /td /tr /tbody /table p br/ /p p /p p   信息统计来源于各国家重点实验室官网,部分实验室罗列仪器设备较全,部分实验室仅罗列了最主要或特色的仪器设备,因此结果仅供参考。另外其中有些仪器类型可能存在并列或包含关系,并未进行详细区分。 /p p br/ /p
  • 南京市溧水区自来水有限公司252.10万元采购吹扫捕集,紫外分光光度,原子吸收光谱,气质联用仪
    详细信息 南京市溧水区自来水有限公司水质检测中心检测分析仪器设备采购及相关服务项目招标公告 江苏省-南京市-溧水区 状态:公告 更新时间: 2023-12-27 招标公告南京市溧水区自来水有限公司水质检测中心检测分析仪器设备采购及相关服务项目招标公告(招标编号:HB203223T92787) 公告发布时间:2023年12月27日 项目所在地区:江苏省,南京市一、招标条件本南京市溧水区自来水有限公司水质检测中心检测分析仪器设备采购及相关服务项目已由项目审批/核准/备案机关批准,项目资金来源为自筹,招标人为南京市溧水区自来水有限公司。本项目已具备招标条件,现招标方式为公开招标。二、项目概况和招标范围规模:约人民币252.1万元招标范围:本招标项目划分为1个标段,本次招标为其中的:(001)水质检测中心检测分析仪器设备采购及相关服务项目。三、投标人资格要求1、投标人具有独立法人资格,提供营业执照(副本)(提供复印件加盖公章);如为代理商投标,需提供原子吸收分光光度计、气质联用仪、吹扫捕集进样器、三合一进样器生产厂家针对该项目代理授权书且加盖厂家公章,同时需提供生产厂家售后服务承诺证明文件(提供复印件加盖公章,原件备查);2、投标人自2020年1月1日至今(以合同签订日期为准) 有已成功履行与本次招标内容相似的业绩证明(需提供合同复印件,至少提供合同首页,金额页和签字页,提供复印件加盖公章);3、投标人财务和经营状况良好,具备履行合同的能力,提供近三年(2020-2022年)的财务报表(提供复印件加盖公章);4、投标人应提供法定代表人授权委托书原件及被授权委托人身份证复印件。本次招标不接受联合体投标。四、招标文件的获取获取时间:从2023年12月27日到2024年01月02日17时30分获取方式: (一)凡有意参加投标者,请于获取时间内(北京时间,下同),登陆e交易平台(http://www.ejy365.com)按照要求进行实名会员注册、完善相关信息及选择项目报名、下载招标文件,招标文件服务费800元,下载后不退。(二)平台网址为:http://www.ejy365.com。下载者首次登陆平台前,须前往平台免费注册,注册成功且完善相关信息后,可以及时参与平台上所有发布的项目。(三)下载者应充分考虑平台注册、信息检查、资料上传、购标确认、费用支付所需时间,下载者必须在获取时间内完成支付,否则将无法保证获取招标文件。未按照本公告要求获得本项目招标文件的,招标代理机构不予接收其投标文件。(四)下载者需要发票的,须通过平台“资金管理”模块进行操作。招标文件服务费发票由招标代理机构开具;下载者选择开具增值税普通发票的,可在“资金管理--标书费电子发票”下载增值税电子普通发票;选择开具增值税专用发票的,可在“资金管理--专用发票申请”中填写相关信息;平台服务费发票由江苏易交易信息科技有限公司开具。非因招标代理机构或平台原因,发票一经开具不予退换。(五)平台网站首页“帮助中心”提供操作手册,下载者可以下载并根据操作手册提示进行注册、登录等操作。平台咨询电话为:400-828-0799,服务时间为工作日上午9时至12时,下午1时至6时。平台会通过短信提醒下载者进行注册、支付、下载等操作。(六)联合体投标(如允许)的,联合体各方应当指定牵头人,并授权其以自身名义在平台办理注册、下载文件、缴纳保证金等手续,其在平台的办理行为,对联合体各方均具有约束力。五、投标文件的递交递交截止时间:2024年01月16日14时00分递交方式:江苏省南京市鼓楼区清江南路18号鼓楼创新广场D栋11楼开标1室,现场递交。六、开标时间及地点开标时间:2024年01月16日14时00分开标地点:江苏省南京市鼓楼区清江南路18号鼓楼创新广场D栋11楼开标1室。七、其他(一)本项目允许投标人同时中标的最多标段数为1个。(二)本项目的潜在投标人/投标人须按项目获取招标文件,按标段编制、密封、提交投标文件(含投标保证金),本项目按标段开标、评标。(三)逾期送达的、未送达指定地点的或者不按照招标文件要求密封的投标文件,招标人将予以拒收。(四)发布公告的媒介本次招标公告同时在中国招标投标公共服务平台、江苏省招标投标公共服务平台、e交易平台上发布。八、监督部门本招标项目的监督部门为南京市溧水区自来水有限公司。九、联系方式招 标 人:南京市溧水区自来水有限公司 地 址:南京市溧水区联 系 人:经工电 话:15298377087 招标代理机构:江苏省设备成套股份有限公司地 址:江苏省南京市鼓楼区清江南路18号鼓楼创新广场D栋904室联 系 人:孙工电 话:025-83310231,18705197312电子邮件:sunx@jcec.cn × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:吹扫捕集,紫外分光光度,原子吸收光谱,气质联用仪 开标时间:2024-01-16 14:00 预算金额:252.10万元 采购单位:南京市溧水区自来水有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏省设备成套股份有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 南京市溧水区自来水有限公司水质检测中心检测分析仪器设备采购及相关服务项目招标公告 江苏省-南京市-溧水区 状态:公告 更新时间: 2023-12-27 招标公告南京市溧水区自来水有限公司水质检测中心检测分析仪器设备采购及相关服务项目招标公告(招标编号:HB203223T92787) 公告发布时间:2023年12月27日 项目所在地区:江苏省,南京市一、招标条件本南京市溧水区自来水有限公司水质检测中心检测分析仪器设备采购及相关服务项目已由项目审批/核准/备案机关批准,项目资金来源为自筹,招标人为南京市溧水区自来水有限公司。本项目已具备招标条件,现招标方式为公开招标。二、项目概况和招标范围规模:约人民币252.1万元招标范围:本招标项目划分为1个标段,本次招标为其中的:(001)水质检测中心检测分析仪器设备采购及相关服务项目。三、投标人资格要求1、投标人具有独立法人资格,提供营业执照(副本)(提供复印件加盖公章);如为代理商投标,需提供原子吸收分光光度计、气质联用仪、吹扫捕集进样器、三合一进样器生产厂家针对该项目代理授权书且加盖厂家公章,同时需提供生产厂家售后服务承诺证明文件(提供复印件加盖公章,原件备查);2、投标人自2020年1月1日至今(以合同签订日期为准) 有已成功履行与本次招标内容相似的业绩证明(需提供合同复印件,至少提供合同首页,金额页和签字页,提供复印件加盖公章);3、投标人财务和经营状况良好,具备履行合同的能力,提供近三年(2020-2022年)的财务报表(提供复印件加盖公章);4、投标人应提供法定代表人授权委托书原件及被授权委托人身份证复印件。本次招标不接受联合体投标。四、招标文件的获取获取时间:从2023年12月27日到2024年01月02日17时30分获取方式: (一)凡有意参加投标者,请于获取时间内(北京时间,下同),登陆e交易平台(http://www.ejy365.com)按照要求进行实名会员注册、完善相关信息及选择项目报名、下载招标文件,招标文件服务费800元,下载后不退。(二)平台网址为:http://www.ejy365.com。下载者首次登陆平台前,须前往平台免费注册,注册成功且完善相关信息后,可以及时参与平台上所有发布的项目。(三)下载者应充分考虑平台注册、信息检查、资料上传、购标确认、费用支付所需时间,下载者必须在获取时间内完成支付,否则将无法保证获取招标文件。未按照本公告要求获得本项目招标文件的,招标代理机构不予接收其投标文件。(四)下载者需要发票的,须通过平台“资金管理”模块进行操作。招标文件服务费发票由招标代理机构开具;下载者选择开具增值税普通发票的,可在“资金管理--标书费电子发票”下载增值税电子普通发票;选择开具增值税专用发票的,可在“资金管理--专用发票申请”中填写相关信息;平台服务费发票由江苏易交易信息科技有限公司开具。非因招标代理机构或平台原因,发票一经开具不予退换。(五)平台网站首页“帮助中心”提供操作手册,下载者可以下载并根据操作手册提示进行注册、登录等操作。平台咨询电话为:400-828-0799,服务时间为工作日上午9时至12时,下午1时至6时。平台会通过短信提醒下载者进行注册、支付、下载等操作。(六)联合体投标(如允许)的,联合体各方应当指定牵头人,并授权其以自身名义在平台办理注册、下载文件、缴纳保证金等手续,其在平台的办理行为,对联合体各方均具有约束力。五、投标文件的递交递交截止时间:2024年01月16日14时00分递交方式:江苏省南京市鼓楼区清江南路18号鼓楼创新广场D栋11楼开标1室,现场递交。六、开标时间及地点开标时间:2024年01月16日14时00分开标地点:江苏省南京市鼓楼区清江南路18号鼓楼创新广场D栋11楼开标1室。七、其他(一)本项目允许投标人同时中标的最多标段数为1个。(二)本项目的潜在投标人/投标人须按项目获取招标文件,按标段编制、密封、提交投标文件(含投标保证金),本项目按标段开标、评标。(三)逾期送达的、未送达指定地点的或者不按照招标文件要求密封的投标文件,招标人将予以拒收。(四)发布公告的媒介本次招标公告同时在中国招标投标公共服务平台、江苏省招标投标公共服务平台、e交易平台上发布。八、监督部门本招标项目的监督部门为南京市溧水区自来水有限公司。九、联系方式招 标 人:南京市溧水区自来水有限公司 地 址:南京市溧水区联 系 人:经工电 话:15298377087 招标代理机构:江苏省设备成套股份有限公司地 址:江苏省南京市鼓楼区清江南路18号鼓楼创新广场D栋904室联 系 人:孙工电 话:025-83310231,18705197312电子邮件:sunx@jcec.cn
  • 中国高分子科学奠基人于同隐逝世 享年101岁
    p   于同隐,中国共产党党员,著名有机化学家、高分子科学家和化学教育家,中国高分子科学的奠基者和开拓者之一,复旦大学高分子学科的创建人和带头人、高分子科学系教授,因病医治无效于2017年2月6日10时56分在上海仁济医院浦东分院逝世,享年101岁。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/noimg/4a10c2d9-f94e-471c-a982-24d4223d9ba0.jpg" title=" e2d2726f-566c-45f4-9435-8133462bb8eb_size45_w600_h428_副本.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体,楷体_GB2312,SimKai " 著名有机化学家于同隐6日上午在沪去世 复旦大学供图 /span /p p   云山苍苍,江水泱泱,先生之风,山高水长。斯人已逝,谨以此文回顾于老先生的一生,寄托我们的无限哀思。 /p p   乐山水,寿期颐。 /p p   96岁高龄时,他去浙江台州游玩,兴致勃勃地在码头看上半天海,紧接着登上温岭长屿山看“天下第一硐”,仔仔细细听介绍、看说明。 /p p   95岁时,他登上杭州北高峰,登上数百级石阶,不在话下。 /p p   94岁时,他去香港,夜里11点半登上太平山欣赏夜景,还独自在山顶溜达了一圈。 /p p   ...... /p p   这位老人名叫于同隐,是我国高分子学科的奠基人之一,复旦大学高分子学科的创建人与学科带头人。他长期从事高分子粘弹性和高分子合金研究,研制了取得重大社会效益的人工肺,开拓了蚕丝等天然大分子研究新方向,为我国高分子化学和物理学科的发展做出了重要贡献。 /p p    strong 化学报国,辗转梦圆 /strong /p p   1917年9月6日,于同隐出生于江苏无锡一户小康之家。自5岁入小学到高中毕业,于同隐接受了完备的新式教育。小学时的他“并不都是按时回家的,常常流连于崇安寺闹市的喧嚣,猴子戏、西洋镜、梨膏糖......一路走一路玩一路吃,完全是个顽皮淘气的小孩子。”中学时代,于同隐每天都要翻阅各种报纸和进步刊物。他很喜欢邹韬奋主编的《生活》周刊,其“有趣味有价值”的内容、“明显畅快”的文风深深吸引了他。 /p p   1934年,于同隐顺利考取了浙江大学化学系。由于基础扎实,进入大学以后,于同隐的成绩突飞猛进。1937年抗战爆发,于同隐随浙江大学汇入西迁的长途跋涉中,并在战乱中毕业。 /p p   1943年,毕业5年后,26岁的于同隐回到母校浙江大学任教,投身学术界。他说:“为了贯彻出国的愿望,同时痛恶这些机关中的生活,所以虽然那时学校的待遇低很多,仍旧决心回到学校??在回到学校的这两年中,埋头做实验和读书,总算为苦烦的心情找到了出路。” /p p   正是在这段时间里,于同隐获得机会,跟随有机化学领域的名师、时任浙大化学系主任的王葆仁从事科研工作。在王葆仁的指导下,于同隐与同为青年教师的高善娟合作,一同完成了他学术生涯中的第一项科研成果。这篇论文“处女作”于1945年1月被送至美国审稿,历经两年辗转,最终于1948年发表在当时国内水平最高的专业化学期刊——《中国化学会会志》上。 /p p   第一篇论文发表之时,于同隐已身在大洋彼岸,成了美国密歇根大学的一名研究生。1951年1月,于同隐顺利通过了论文答辩,获得密歇根大学博士学位。在学校200多名研究生中,于同隐的成绩名列前茅,被推举为荣誉化学会会员,获得了一枚象征开启科学大门的金钥匙。这是美国化学界很高的荣誉,意味着他是该领域的学术精英,想要在美国获得工作机会是非常容易的。然而,和当时的很多中国学者一样,于同隐下定决心回国。他回忆说:“作为一个中国人,自然会想回到祖国来,尤其在祖国迫切需要的时候。看到美国的繁华,心中很羡慕,我们中国要能埋头苦干五十年,一定可以和他们一样。” /p p   当时正值朝鲜战争,中美处于交战状态。美国国内出台了《麦卡锡法案》,用监视、迫害等手段阻止在美华人学者返回中国,对涉及尖端科学技术的专家学者控制尤为严格。历经波折,1951年6月,于同隐终于带着妻子蔡淑莲离美回国。轮船到达香港后,港英政府不让他们登陆,把他们禁闭在轮船的一间舱房里。中国政府知道后,派了一艘小船把他们接到广东,夫妇二人这才回到了祖国。1952年8月,于同隐夫妇来到复旦大学。35岁的于同隐是当时化学系中最年轻的教授,蔡淑莲则在分析化学教研室。在此后的几十年里,伉俪二人为复旦大学化学系的发展做出了巨大贡献。 /p p    strong 转投新学,建立学科 /strong /p p   于同隐在复旦大学化学系做的头一件大事,就是组织编写教材。在极其困难的条件下,于同隐带领有机化学教研组,编写了《有机化学》和《有机结构理论》等讲义,翻译了《有机化学教程习题》等参考文献 /p p   1958年,复旦大学与中国科学院合作创设高分子化学研究所,于同隐被任命为副所长。对于同隐来说,接受这样的任命,意味着放弃已有相当基础的有机合成研究,转向对他而言全新的高分子科学领域。这不是一个容易的决定。慎重考虑两星期后,于同隐决定接受任命,主持与领导复旦大学高分子学科工作。 /p p   要搞高分子物理,就会碰到很多数学和物理的题目,而数学素来是于同隐的短板。高考时,高等代数三角一门,于同隐仅得了24分,解析几何仅42分 大学里唯一的数学课程初等微积分与微分方程也只是刚好及格,是他所有课程中得分最低的。这样的数学知识与水平,很难解决物理方面的问题。 /p p   已过不惑之年的于同隐,坚持自学补课,并率先在教研组给青年教师讲解高分子物理中常用到的数学矩阵,介绍高分子的多重结构。由于复旦的高分子学科是在“大跃进”的背景下仓促建立的,师资不足,为此,学校抽出12名化学系三年级的本科学生,让他们提前毕业,留校充当高分子专业的青年教师。 /p p   中国科学院院士、复旦大学化学系教授江明正是这12名学生之一。江明院士回忆说,高分子学科建立之初,于同隐曾专门请来数学系教授为大家上课。当时读的是一本俄文专著,非常难读,他就带着大家一起读,遇到不懂的地方就请数学系的老师讲解。 /p p   于同隐还亲自带着大家在化学系图书馆查阅资料,资料都是英文原版,可大家学的是俄语,看不懂。于同隐总是不厌其烦地一句句翻译了再讲解。到了1959年冬天,他还专门开办了英文突击班,教了一个寒假,帮大家打下阅读英语文献的基础。正因为如此,虽不是于同隐的在册弟子,江明院士也总说自己是于同隐的学生,“他真正是我们科学道路上的引路人”。 /p p   1980年底,复旦大学设立材料科学研究所,于同隐出任第一任所长,高分子学科全体人员成建制地从化学系转入了材料科学研究所,撑起了材料科学的半壁江山。履新之后,于同隐立即对高分子实验室进行了整顿和重建,大规模更新了仪器设备。经过几年发展,复旦的高分子实验室达到了国内一流水平,并且已经接近国际先进水平。 /p p   1993年5月14日,复旦高分子第一代学人终于梦想成真,复旦大学高分子科学系和高分子科学研究所正式成立。经过20余年发展,复旦大学高分子科学系在国内已具有举足轻重的地位,其高分子化学、高分子物理、高分子材料等三大领域的代表性研究成果已接近国际领先水平,属于国际前沿领域,其代表性的研究方向有聚合物凝聚态物理理论与计算、聚合物自组装和生物大分子(丝素)材料等。 /p p    strong “抓大放小”,倾力育人 /strong /p p   于同隐的工作奠定了复旦大学高分子学科的基础,为中国高分子科学的发展做出了重要贡献。而他最为人所称道的,是其独到的人才培养方式。中科院院士、吉林大学教授、中国第二代高分子科学代表人物沈家骢将其称为“于同隐模式”。他的研究生张炜曾将“于同隐模式”总结为八个字:学术自由、百花齐放。 /p p   于同隐自1953年开始招收研究生。“文革”结束时他已逾六旬,此后还培养了17名硕士、31名博士。在研究生培养方面,于同隐只抓大事不管小事。他的学生、复旦大学高分子科学系教授邵正中有一个形象的说法:“于老师给你圈定一块他认为有价值的地,让你自己去刨,到底能挖出红薯、金子,还是什么都挖不出,就要看你自己的努力程度了。” /p p   不过,于同隐并不是完全“放羊”。给学生指出有前景的研究领域和方向后,他让学生在该领域充分发挥自己的能力,有不懂的地方,他随时会给予解答,或者与学生共同研究,直到解决为止。多年来,他坚持给研究生开一门文献阅读课。通过这门课,学生不仅提高了英文阅读水平,更了解了学术发展的前沿,对自己的选题也有了相当程度的了解。 /p p   他的第一个硕士、复旦大学高分子科学系教授杜强国说:“你的进展他一直掌握着,他也不来逼你。只要有困难就一起讨论,介绍你去看一些什么书。” /p p   他的第一个博士、中科院院士杨玉良说:“他把你带到一片森林,然后把你放到一棵树上,但是你别老待在这棵树上,因为他也教会了你跳到其他树上的可能性。当你看到其他的树,你又跳不过去,他就给你跳跃的能力与机会。”因此,他的研究生中,不少人都“能游走在各种不同的领域”。 /p p   杜强国回忆说,他们的研究课题碰到了困难,曾跟于同隐商量,看在他们是“老”研究生,“上有老、下有小”的面子上,能否换一个容易一点的题目。但于同隐笑笑,就是不放松,然后鼓励说:“不难的,你们有什么困难,到时候我们一起讨论,能做得出来的,不要担心。” /p p   于同隐在人才培养上,并不仅限于自己的研究生,他对年轻教师的培养也耗费了不少精力。在复旦高分子学科建立之初,很多时候可以说于同隐是“手把手”地教他们。在这些年轻教师看来,于同隐最大的贡献是培养了一大批人,并以他的个人魅力团结了一批人。一个单位经过了“文革”以后,人们往往有所间隙,要把那么多人捏在一起,把整个教学科研搞好,并非易事,然而于同隐做到了。有人评价,关键是“他淡泊名利,对人宽厚,哪怕是以前整过他的人,他也不会计较”。 /p p   退休后的于同隐长期保持着规律的学习生活习惯。除了吃饭、睡觉、外出散步,他就喜欢一个人静静地待在书房看书。他一直关注着高分子科学最前沿的信息,即使90岁后,也常常一个人坐着公交车到浦西福州路外文书店去买最新的专业书。2005年,88岁高龄的他还在《化学世界》上发表《漫谈化学反应》和《从化学反应到生命》这样的科普文章。 /p p   于同隐阅读兴趣非常广泛,哪朝哪代有过什么著名人物,他都知道得清清楚楚。最近几年,他也阅读一些文学著作,莫言、陈忠实、村上春树等许多作家的经典作品他书房里都有。 /p p   别人眼里的一代大家,在自己的生活里却乐得做一个平凡的普通人。不忘初心,方得始终。一个世纪的风云散去,面对生活、面对未来,于同隐还是那个“没有一分钟会在他面上找不到笑容”的孩童,优哉游哉,云淡风轻。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制