搜索
我要推广仪器
下载APP
首页
选仪器
耗材配件
找厂商
行业应用
新品首发
资讯
社区
资料
网络讲堂
仪课通
仪器直聘
市场调研
当前位置:
仪器信息网
>
行业主题
>
>
气相液相质谱联用仪
仪器信息网气相液相质谱联用仪专题为您提供2024年最新气相液相质谱联用仪价格报价、厂家品牌的相关信息, 包括气相液相质谱联用仪参数、型号等,不管是国产,还是进口品牌的气相液相质谱联用仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相液相质谱联用仪相关的耗材配件、试剂标物,还有气相液相质谱联用仪相关的最新资讯、资料,以及气相液相质谱联用仪相关的解决方案。
气相液相质谱联用仪相关的方案
睿科仪器:全自动固相萃取-高效液相质谱联用法测定酱油中的黄曲霉毒素G1
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定食用油中的黄曲霉毒素B1
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定食用油中的黄曲霉毒素G2
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定食用油中的黄曲霉毒素G1
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定大豆中的黄曲霉毒素B2
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定酱油中的黄曲霉毒素B2
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定大豆中的黄曲霉毒素G1
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
赛默飞在线固相萃取- 液相色谱- 质谱联用法测定环境水中的萘普生
由于环境水体中萘普生含量很低,单独采用高效液相色谱法或者高效液相色谱- 质谱联用法无法满足检测要求,目前多采用离线固相萃取方法完成水体中样品富集,但步骤较为繁琐,单个样品耗时大。采用在线的固相萃取方法对样品进行净化和富集,大大提高了检测的灵敏度,节约了单个样品的分析时间。
采用液相色谱-质谱联用技术直接分析水中全氟癸烷磺酸
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟十八酸
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟十一酸
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟十二酸
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟丁酸
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
睿科仪器:全自动固相萃取-高效液相质谱联用测定奶粉及牛奶中的M1
本应用文章参考GB 5009.24-2016《食品中黄曲霉毒素M 族的测定》中第一法,采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了奶粉和牛奶中对黄曲霉毒素高灵敏度的前处理和检测分析方法,对于M1毒素的加标回收率在90-110%之间。
赛默飞色谱与质谱:赛默飞在线固相萃取- 液相色谱- 质谱联用法测定环境水中的萘普生
由于环境水体中萘普生含量很低,单独采用高效液相色谱法或者高效液相色谱- 质谱联用法无法满足检测要求,目前多采用离线固相萃取方法完成水体中样品富集,但步骤较为繁琐,单个样品耗时大。采用在线的固相萃取方法对样品进行净化和富集,大大提高了检测的灵敏度,节约了单个样品的分析时间。
睿科仪器:全自动固相萃取-高效液相质谱联用法测定酱油中的黄曲霉毒素G2
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定食用油中的黄曲霉毒素B2
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定大豆中的黄曲霉毒素B1
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定酱油中的黄曲霉毒素B1
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
睿科仪器:全自动固相萃取-高效液相质谱联用法测定大豆中的黄曲霉毒素G2
采用免疫亲和柱净化,高效液相色谱-串联质谱(HPLC-MS/MS)联用技术检测,建立了复杂粮油样品基质中黄曲霉毒素高灵敏度的前处理和分析方法,得到四种常见粮油样品中黄曲霉毒素的加标回收率在85-110%之间
采用液相色谱-质谱联用技术直接分析水中全氟 [ 13C] 十二烷酸酯
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟 [ 13C] 己酸酯
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟辛基磺酸酯
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟辛酸酯
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟辛烷 [ 13C] 磺酸盐
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟己烷 [ 18O] 磺酸盐
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟 [ 13C] 丁酸酯
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟 [ 13C] 辛酸酯
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟庚酸酯
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
采用液相色谱-质谱联用技术直接分析水中全氟戊酸酯
串联液相色谱- 质谱联用(LC/MS/MS)具有高选择性与灵敏度,因此,是测定生物和环境样品中全氟烷基表面活性剂含量的最常用的分析方法。在液相色谱-质谱/质谱联用(LC/MS/MS)分析之前实施固相萃取(SPE)程序是从水性环境基质中提取全氟烷基表面活性剂的最常用方法之一。在本研究中,我们开发了LC/MS/MS 直接进样方法,结果表明这种简单的LC/MS/MS工作流程为饮用水与地表水全氟烷基表面活性剂的分析提供了极好的灵敏度和特异性。
相关专题
实用宝典 - 一机多用的超高效液相色谱
包罗万象——液相色谱技术及应用大赏
赛默飞液相色谱新品来袭
液相色谱法在中药分析中的应用
依利特30周年全新液相色谱新品发布
津心匠造,慧启未来——岛津液相色谱柱新品发布会
PerkinElmer Altus液相色谱系列
“质源于心 谱写传奇”华谱科仪三重四极杆质谱仪新品发布会
气质联用仪导购专刊
国产质谱最新进展之天瑞篇
厂商最新方案
离心法应用于脑脊液细胞学检查
双压法微泄漏密封测试仪
玻璃瓶盖扭力试验仪
阴极发光设备(SEM-CL)在量子异质结构方面的应用
实验方案:微滴/微球制备仪制备含Oligo DNA的可降解凝胶珠
可降解薄膜材料的透湿性能测试
肉制品真空包装的密封性能测试
煤气的顶空气相色谱分析
在线浓度计在碳酸钠浓度监测中的应用
口腔清洁用品-牙磨块染色测试
相关厂商
青岛佳鼎分析仪器有限公司
合肥氦质谱检漏仪真空技术有限公司
麦谱科技(北京)有限公司
深圳市心怡创科技有限公司
衡昇质谱(北京)仪器有限公司
昆山琦凡精密仪器有限公司
杭州科晓化工仪器设备有限公司
北京橙达仪器有限公司
成都珂睿科技有限公司
上海恪瑞仪器科技有限公司
相关资料
液相,气相,质谱联用技术
液相色谱质谱联用仪、液相色谱仪等设备招标文件
液相色谱_质谱联用仪校准方法研究
液相色谱-质谱联用仪 的原理及应用
液相色谱_质谱联用仪的性能检测_许航
GBT37849-2019液相色谱飞行时间质谱联用仪性能测定方法
高效液相色谱一质谱联用技术
液相色谱-质谱联用仪校准方法研究
LC-MS1000液相质谱联用仪
(液相色谱—质谱联用)——甘草提取物的液相色谱质谱联用分析