当前位置: 仪器信息网 > 行业主题 > >

淀粉红外光谱

仪器信息网淀粉红外光谱专题为您提供2024年最新淀粉红外光谱价格报价、厂家品牌的相关信息, 包括淀粉红外光谱参数、型号等,不管是国产,还是进口品牌的淀粉红外光谱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合淀粉红外光谱相关的耗材配件、试剂标物,还有淀粉红外光谱相关的最新资讯、资料,以及淀粉红外光谱相关的解决方案。

淀粉红外光谱相关的论坛

  • 麦饭石粉红外光谱分析

    麦饭石粉红外光谱分析

    我对麦饭石粉(一种天然矿石粉末,产地为河北省石家庄市,土黄色,325目)做了红外光谱测试,得到谱图如下,分析时遇到难处,不知1014cm-1处大峰如何解析,若能顺便解析其他峰则万分感谢!http://ng1.17img.cn/bbsfiles/images/2013/10/201310051706_469311_2800377_3.jpg

  • 橡胶粉红外光谱分析求助

    橡胶粉红外光谱分析求助

    [color=#444444]橡胶粉的红外光谱,出现了这种情况,反复做,还是这种,这是怎么回事?有人知道吗?麻烦赐教,十分感谢。[/color][color=#444444][img=,690,246]https://ng1.17img.cn/bbsfiles/images/2019/06/201906251343087360_7764_1701336_3.jpg!w690x246.jpg[/img][/color]

  • 【求助】版友求助:小麦籽中的化学成分的近红外光谱

    代版友求助:需要采集小麦籽中的化学成分的近红外光谱,遇到些问题:要采集小麦中的蛋白质、淀粉、纤维素这些成分的近红外光谱,这个样品从哪里购得? 具体用哪种型号的比较合适,在网上查得有很多不同型号的。希望有经验的版友可以提供些信息资料和帮助,谢谢!

  • 【求助】求小麦主要营养成分的近红外光谱图

    如题,要对近红外显微图像做相关图像分析,需要物质的标准谱,软件里只找到了中红外的标准光谱图,求淀粉、蛋白质、水、纤维素的近红外光谱图仪器是PE spotlight 400 最好是源文件啊,别单发张图,本人新手不清楚怎么把图片导入软件里

  • 红外光谱

    红外光谱系研究化合物分子结构的有力工具之一,它可广泛应用于化学、皮革、造纸、医学、硅酸盐、食品发酵、生物代谢、石油化工等领域。 红外光谱水仅对单组份进行定性、定量分析,亦可对测定化学反应速度和研究化学反应机理,还可测定分析的键长、键岗、以及推定出分子的立体构型,可根据它的力常数知道化学的强弱。红外光谱可区分由不同原子和化学键所组成的物质以及识别各种同分异构体。可对无机化合物,金属有机化合物组合物进行鉴定。 红外光谱不受样品相态的限制,无论是固态、液态以及气态均可直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体也可直接获得其光谱。

  • 【分享】红外光谱发展史

    红外光谱发展史雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年Plank在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。

  • 【求助】求石棉的红外光谱图

    现单位要用红外光谱仪检测石棉,目前我只有温石棉的红外光谱图,闪石石棉的五种石棉的红外光谱图都没有。请有闪石石棉红外光谱图的朋友能够慷慨共享,小弟万分感激!

  • [转帖]红外光谱原理概述

    红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。  红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。  由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。  分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。  人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。  另外,随着电子技术的日益进步,半导体检测器已实现集成化,焦平面阵列式检测器已商品化,它有效地推动了红外成像技术的发展,也为未来发展非傅里叶变换红外光谱仪创造了契机。随着同步辐射技术的发展和广泛应用,现已出现用同步辐射光作为光源的红外光谱仪,由于同步辐射光的强度比常规光源高五个数量级,这能有效地提高光谱的信噪比和分辨率,特别值得指出的是,近年来自由电子激光技术为人们提供了一种单色性好,亮度高,波长连续可调的新型红外光源,使之与近场技术相结合,可使得红外成像技无论是在分辨率和化学反差两方面皆得到有效提高。

  • 近红外光谱技术在食品检测中的应用

    [font=宋体][font=宋体]由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术具有诸多优点,其技术在食品营养成分、品质、微生物、真实性以及有害物质检测等众多方面得到了广泛的应用,见图[/font][font=Times New Roman]6-[/font][/font][font='Times New Roman']6[/font][font=宋体]所示。[/font][align=center][img=,458,315]https://ng1.17img.cn/bbsfiles/images/2024/06/202406261013492017_4580_4070220_3.png!w690x493.jpg[/img][b][font='Times New Roman'] [/font][/b][/align][align=center][font=宋体]图[/font][font='Times New Roman']6-6[/font][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在食品检测中的应用[/font][/align][b][font='Times New Roman']1. [/font][font=宋体]蛋白质检测[/font][/b][font=宋体]凯氏定氮法是蛋白质检测的常规手段,其实验操作繁琐,耗时较长,需要强腐蚀性化学试剂,是一种破坏性分析手段,检测样品无法进行二次销售。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术具有快速无损的优势,可实现乳品、肉制品等食品中蛋白质的测定。此外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术还可实现氨基酸态氮的定量检测。氨基酸态氮含量是判定酱油、醋等调味品质量的重要指标之一,常规氨基酸态氮的检测手段有双指示剂法以及电位滴定法,操作复杂且耗时较长,不利于快速无损检测。[/font][b][font='Times New Roman']2. [/font][font=宋体]碳水化合物检测[/font][/b][font=宋体]食品中碳水化合物主要包括淀粉、纤维素、蔗糖、葡萄糖和果糖等,是食品中重要的营养素以及风味物质。通常,食品中不同种类碳水化合物用途不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可实现对不同碳水化合物的定性定量分析。因具有快速无损的优势,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术被广泛用于水果中糖类、大米中淀粉等物质的测定。[/font][b][font='Times New Roman']3. [/font][font=宋体]脂类物质检测[/font][/b][font=宋体]食品中脂类物质的传统检测手段是索氏提取、酸水解法等,存在耗时长,无法同时实现大批量样品检测等弊端。近年来,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术被广泛用于肉制品、大豆、核桃、鸡蛋等食品中脂类物质的快速测定。[/font][b][font='Times New Roman']4. [/font][font=宋体]酸度检测[/font][/b][font=宋体]酸度是食品风味呈现的重要部分之一。食醋是一种历史悠久的酸味调味剂,而有机酸是评价食醋品质的重要指标之一。传统分析手段如滴定法、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法等存在检测时间较长、样品无法二次销售等缺点,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可实现食品中酸度的快速无损测定,具有较好的预测精度和稳定性。[/font][b][font='Times New Roman']5. [/font][font=宋体]水分检测[/font][/b][font=宋体]水分是食品品质的重要指标之一,如肉的嫩度与水分紧密相关。传统水分分析手段多为直接干燥法、减压干燥法、蒸馏法以及卡尔费休法等,但实验操作复杂且耗时较长。由于水分对近红外有强吸收,故[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可实现食品中水分含量准确、快速、无损的测定。[/font][b][font='Times New Roman']6. [/font][font=宋体]其他[/font][font=宋体]化学成分检测[/font][/b][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术还可实现酒中酒精度、黄酮、茶叶中的茶多酚和咖啡碱、油脂中的酸价和过氧化值等化学成分和指标的无损检测。[/font][b][font='Times New Roman']7. [/font][font=宋体]食物微生物检测[/font][/b][font=宋体]微生物中的核酸、蛋白质等成分产生的光谱信息不同。因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可用于微生物的定性和定量检测,如食品中菌落总数、致病菌、霉菌以及毒素的检测,还可用于微生物发酵过程中活菌数量的在线监测。[/font][font='Times New Roman'][font=宋体]然而[/font][/font][font=宋体],[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的灵敏度不高,[/font][font='Times New Roman'][font=宋体]较难实现痕量微生物的检测[/font][/font][font=宋体]。[/font][b][font='Times New Roman']8. [/font][font=宋体]食物真实性检测[/font][/b][font=宋体]近年来,假奶粉事件、地沟油事件、假酒事件等不断发生,一系列重大食品安全事件严重危害到广大人民的身体健康。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术因其快速、无损、简单、高效的优点,被广泛用于食品真实性检测,如乳制品的品种产地鉴别以及肉类、酒类和饮料掺假鉴别等。通过建立鉴伪模型,可以快速获得检测对象是否掺假、掺假种类及掺假比例等信息。[/font][b][font='Times New Roman']9. [/font][font=宋体]食物污染物检测[/font][/b][font=宋体]现有研究表明,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可用于乳制品中三聚氰胺、面粉中滑石粉等食品污染物的检测。然而,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术尚较难实现对于低含量的食品污染物如农药与兽药残留的检测,以及无近红外吸收的污染物如重金属等物质的准确定量分析。[/font]

  • 近红外光谱的产生及光谱特征

    近红外光谱的产生及光谱特征

    近红外光是电磁波,它具有光的属性,即同时具有“波”“粒”二重性。从光源发出上海牙防所的近红外光照射到由一种或多种分子组成的物质上,假如分子没有产生吸收,则光穿过样品,该物质分子为非红外活性分子,否则,为红外活性分子。只有红外活性分子中的键才能与近红外光子发生作用,产生近红外光谱吸收。所有近红外光谱的吸收谱带都是中红外吸收基频(4000~1600cm-1)的倍频及合频,由于分子的合频、倍频振动是跃迁禁阻的,谱带强度较弱。  正是近红外光谱具有:近红外区域的信号能量较弱,具有漫反射、散射、穿透深度大、透过玻璃不产生吸收等特征,赋予了近红外光谱分析一些独特的魅力,如样品可以不经过预处理,直接检测种植牙各种类型的样品,除液体外,还可检测粉末、纤维、糊状、乳状等形式样品。同时,构成近红外谱带的背景非常复杂,从近红外提取的是弱信号,通常使用化学计量学方法。

  • 红外光谱仪的应用

    红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。红外光谱仪的特点如下:1、 只需三个分束器即可覆盖从紫外到远红外的区段;2、 专利干涉仪,连续动态调整,稳定性极高;3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;4、 智能附件即插即用,自动识别,仪器参数自动调整;5、 光学台一体化设计,主部件对针定位,无需调整。红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。红外光谱仪还应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。(选自网络)

  • 近红外光谱仪、红外光谱仪有什么区别?

    近红外光谱仪、红外光谱仪有什么区别?咱们常规使用的紫外可见分光光度计,似乎只可以液体测量?而我见到过近红外光谱可以液体测量,也可以固体直接扫描测量,红外光谱是不是像近红外一样的测量样品呢?

  • 五分钟了解电化学原位红外光谱

    本作品对电化学原位红外光谱这个热门的分析方法进行了一个全面的梳理,首先介绍了电化学原位红外光谱的定义,重要意义及应用领域;然后阐明了电化学原位红外光谱中常用的两种采样模式及其原理,并根据各自特点选取相

  • 【分享】如何进行红外光谱分析

    利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。红外光谱仪的种类有:①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:①多通道测量,使信噪比提高。②光通量高,提高了仪器的灵敏度。③波数值的精确度可达0.01厘米-1。④增加动镜移动距离,可使分辨本领提高。⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。由于分子中邻近基团的相互作用,使同一基团在不同分子中的特征波数有一定变化范围。此外,在高聚物的构型、构象、力学性质的研究,以及物理、天文、气象、遥感、生物、医学等领域,也广泛应用红外光谱。 红外光谱解析方法一,IR光谱解析方法二,IR光谱解析实例一,IR光谱解析方法1.已知分子式计算不饱和度不饱和度意义:续前例1:苯甲醛(C7H6O)不饱和度的计算续前2.红外光谱解析程序 先特征,后指纹 先强峰,后次强峰 先粗查,后细找 先否定,后肯定 寻找有关一组相关峰→佐证先识别特征区的第一强峰,找出其相关峰,并进行峰归属再识别特征区的第二强峰,找出其相关峰,并进行峰归属一,IR光谱解析方法二,IR光谱解析实例一,IR光谱解析方法1.已知分子式计算不饱和度不饱和度意义:续前例1:苯甲醛(C7H6O)不饱和度的计算续前2.红外光谱解析程序 先特征,后指纹 先强峰,后次强峰 先粗查,后细找 先否定,后肯定 寻找有关一组相关峰→佐证先识别特征区的第一强峰,找出其相关峰,并进行峰归属再识别特征区的第二强峰,找出其相关峰,并进行峰归属

  • 求助~~~~~测试红外光谱

    有几个问题向各位请教:1 测试红外光谱时使用的氯化钠和溴化钾使用的波数范围各为多少???2 为什么红外光谱时连续的曲线图谱??3 压片太厚,红外光谱有何变化???

  • 红外光谱

    红外光谱仪原理主要分为三个部分----电磁辐射的检测、光谱拆分、结果分析

  • 红外光谱仪与傅立叶变换红外光谱仪的区别

    大侠们,您们好: 红外光谱仪与傅立叶变换红外光谱仪的区别是什么啊,傅立叶红外是不是一种先进的红外啊,能够代替做中药检测用的红外啊。 做空气中的游离二氧化硅检测必须用傅立叶红外吗 谢谢。。

  • 红外光谱分析

    红外光谱分析

    [color=#444444]本人有红外光谱图如附件(图中上面的曲线是PP接枝1%马来酸酐的红外光谱图,记为曲线1;下图表示另一种单体(未知)改性的PP红外光谱图,记为曲线二。两图的主要差别在1600~1800cm-1 和1240cm-1)。现有如下问题想向各位讨教:[/color][color=#444444](1)由图中曲线1和2的信息,能确定“2不是由马来酸酐改性”这个结论么?[/color][color=#444444](2)若2不是马来酸酐改性的PP,那能由曲线二分析出物质2是什么单体改性的PP么?[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/06/201906111632472331_4996_1827556_3.jpg!w690x517.jpg[/img][/color]

  • 【讨论】关于红外光谱的问题求助

    压片法做红外光谱分析时,加入样品量与溴化钾的比例不同,从而使红外光谱图有所区别,这属于正常情况吗?为什么有时透过百分率会大于100%?

  • 【资料】红外光谱实用指南

    [em31] 红外光谱实用指南 本书收集了典型有机化合物的红外光谱图近1200张,按化合物进行分类,共分48章。每章均由简要的文字说明、特征谱带的频率框图和一定数量的标准红外光谱图三部分组成。 本书的特点是,对所收集的化合物的特征谱带归属进行了标注,结合简要的文字说明和频率框图而简明地向读者介绍了红外光谱与化合物结构之间的对应关系。 需要的朋友请到资料中心下载! http://www.instrument.com.cn/download/shtml/032026.shtml

  • 近红外光谱技术在农业领域的应用

    [font=宋体][font=宋体]我国是农业大国,农业是立国之本,是我国的第一产业,是经济发展的基础。一直以来,农业为人们提供基本的生活物质,是保障民生健康的重要支撑。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]反映[/font][font=Times New Roman]C[/font][/font][font='Times New Roman']-H[font=宋体],[/font][font=Times New Roman]N-H[/font][/font][font=宋体][font=宋体]以及[/font][font=Times New Roman]O-[/font][/font][font='Times New Roman']H[/font][font=宋体]等含氢基团振动的倍频和合频吸收,适用于分析动植物产品的组成与结构信息,在农业领域的应用呈现增长趋势,从早期的农作物种子品质检测、迅速扩展到水果、食品、饲料等领域。本节将从粮食和水果两方面,介绍[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在农业领域的应用。[/font][b][font=宋体]一、[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在粮食中的应用[/font][/b][font=宋体]如何在种植、储藏、运输、加工等各个环节中保证粮食安全一直是人们所关注的问题。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是一种快速无损的检测技术,具有环境友好、检测效率高等优点,可以为保障粮食安全提供重要的技术支撑。本节主要总结了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在作物的育种筛选和评估、病害检测和预防,以及粮食品质特性检测方面的应用研究。[/font][b][font='Times New Roman']1. [/font][font=宋体]育种筛选和评估[/font][/b][font=宋体][font=宋体]种子是农业的[/font][font=宋体]“芯片”,加强品质育种,提高粮食质量和产量,对于保障粮食安全具有重要意义。品质育种是根据育种目标和重点品质形状的遗传特点,确定育种策略,合理协调不同品质性状。如吉林农科院以培育加工专用马铃薯为目标,培育出具有适应性强、抗病性良好和高产量等优点的春薯[/font][font=Times New Roman]3[/font][font=宋体]号和春薯[/font][font=Times New Roman]88-3-1[/font][font=宋体],被百事等知名企业选定为油炸原料薯[/font][/font][sup][font='Times New Roman'][1][/font][/sup][font=宋体]。一般来说,在品质育种过程中,需要对种质资源、原始育种群体样本以及遗传育种群体样本进行化学成分分析(蛋白质、淀粉、水分等含量)、筛选(区分母本和杂交种等)和评价。常规的化学方法需要破坏样本,并对样本进行较为复杂的前处理,耗时耗力严重还影响育种效率。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术因其具有快速、无损、环保、多指标同时分析等优点而引起人们的关注。[/font][font=宋体]中国农业大学、华中农业大学、浙江大学、中国科学院以及中国农科院等国内外诸多科研单位开展了一系列基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在水稻[/font][sup][font='Times New Roman'][2-4][/font][/sup][font=宋体]、玉米[/font][sup][font='Times New Roman'][5, 6][/font][/sup][font=宋体]、小麦[/font][sup][font='Times New Roman'][7, 8][/font][/sup][font=宋体]、豌豆[/font][sup][font='Times New Roman'][9][/font][/sup][font=宋体]等粮食作物育种方面的研究,并在实际育种过程中得到广泛应用。[/font][b][font='Times New Roman']2. [/font][font=宋体]植物病害检测[/font][/b][font=宋体][font=宋体]储粮安全是粮食安全体系建设中的重要组成部分,然而粮食在储藏过程中常因害虫而发热和霉变,影响其食用品质和营养价值,从而造成严重损失。据联合国粮农组织调查,由于害虫原因每年引起的全球粮食总损失达到[/font][font=Times New Roman]10-28%[/font][/font][sup][font='Times New Roman'][10][/font][/sup][font=宋体]。因此,监测粮食中的害虫是尤为必要的。常用的检测方法有直接检查法、取样检测法、诱集检查法以及包括近红外检测的电子检测法。其中,取样检测法是目前我国粮食仓储行业常规的检测方法,主要是通过采用剖粒、染色和比重法等方法检测部分样品中害虫的发生情况,从而评估整体粮食中害虫发生情况[/font][sup][font='Times New Roman'][11][/font][/sup][font=宋体]。然而这种方法有破坏性、检测时间较长、不适用于检测隐蔽害虫等。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术因其样品需用量少、快速、无损而被广泛用于检测谷物中的米象[/font][sup][font='Times New Roman'][12][/font][/sup][font=宋体]、谷象[/font][sup][font='Times New Roman'][13][/font][/sup][font=宋体]、玉米象[/font][sup][font='Times New Roman'][14][/font][/sup][font=宋体]和锯谷盗[/font][sup][font='Times New Roman'][14][/font][/sup][font=宋体]等。[/font][b][font='Times New Roman']3. [/font][font=宋体]粮食品质评价[/font][/b][font=宋体]粮食含有淀粉、脂肪和蛋白质等丰富的营养成分,在长期储藏过程中由于自身的呼吸作用或者外界环境等因素,容易发生氧化、降解等现象,从而导致粮食的腐败与变质[/font][sup][font='Times New Roman'][15][/font][/sup][font=宋体]。因此,粮食品质监测对于保障粮食安全具有重要意义。一般而言,粮食品质指标包括水分、脂肪、蛋白、淀粉、纤维素和灰分等。针对这些指标,常规的化学检测方法有加热干燥法、索氏抽提法、凯氏定氮法、酸水解法、范氏纤维素含量测定法以及直接灰化法等[/font][sup][font='Times New Roman'][16][/font][/sup][font=宋体],然而这些方法常常需要破坏样品、使用有机试剂,并且需要较高的能量和较长的分析测试时间。而[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术因其可以同时测量多个品质指标,提高工作效率、减少人力成本而在今麦郎集团和江苏三零面粉集团等知名企业得到了广泛应用。[/font]

  • 求间苯二酚-甲醛形成树脂的红外光谱

    如题,求间苯二酚-甲醛形成树脂的红外光谱。明天要做酚醛树脂的红外仪器测试,想提前了解一下它的谱图。它的峰会出现在哪里??还有怎样分析有没有其他物质生成。跪求各位大神给点意见。谢谢啦

  • 【红外光谱专家系列讲座】:8月4日 红外光谱联用技术

    【专家讲座】:红外光谱联用技术【讲座时间】:2015年08月04日 10:00【主讲人】:周群 (多年来一直从事红外、拉曼光谱的研究工作。主要研究领域为二维相关光谱,分子光谱法与文物鉴定,中药及食品的宏观质量控制。)【会议简介】第四讲:红外光谱联用技术内容提要:红外光谱显微成像技术的原理与应用,原子力显微镜-红外光谱联用技术的原理与应用,飞秒激光二维红外光谱的原理与应用,拉曼光谱-红外光谱联用技术的原理与应用,气相色谱-红外光谱联用技术的原理与应用,热重分析-红外光谱联用技术的原理与应用,流变仪-红外光谱联用技术的原理与应用。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2015年08月04日 9:303、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/15664、报名及参会咨询:QQ群—379196738

  • 红外光谱积分峰面积的相关问题

    [table=100%][tr][td]现在我想对红外光谱求某个峰的面积,开始我用透过率的峰积分的,后来又用吸光度的峰积分,发现两者差距还是挺大的,请问各位,应该用透过率还是吸光度更合适呢?[/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制