当前位置: 仪器信息网 > 行业主题 > >

便携式太赫兹波谱仪

仪器信息网便携式太赫兹波谱仪专题为您提供2024年最新便携式太赫兹波谱仪价格报价、厂家品牌的相关信息, 包括便携式太赫兹波谱仪参数、型号等,不管是国产,还是进口品牌的便携式太赫兹波谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携式太赫兹波谱仪相关的耗材配件、试剂标物,还有便携式太赫兹波谱仪相关的最新资讯、资料,以及便携式太赫兹波谱仪相关的解决方案。

便携式太赫兹波谱仪相关的资讯

  • EMCORE推出便携式太赫兹光谱仪PB7200
    2011年底,EMCORE公司推出最新PB7200便携式频域太赫兹光谱仪。此光谱仪是为那些需要在太赫兹频段以高分辨率研究物质特性的太赫兹研究者和应用开发者设计的。这项技术的主要应用在于炸药的识别和勘测以及对物质的无损检验。   EMCORE公司声称PB7200是第一个真正意义上能在100GHz到2.0THz以上频率范围内实现单一快速检测有着高频分辨率的经济的太赫兹系统,并采用了精确的隧道化,光纤连接的拥有先进光混合器做信号发生和检测的半导体激光器。除此之外,PB7200还集成了精密的数字控制硬件和软件,用来提供一个完全便携的太赫兹光谱仪。   “PB7200代表了太赫兹技术领域的最新突破,因为它在同类系统一半价格的基础上有着卓越的表现。它可以支持单频或者宽频范围内特殊光谱域内不同分辨率的工作。多用性使得它成为众多应用的有效工具。”EMCORE公司高级光学部门的Joseph Demers博士说道。
  • 预算931.5万!长春理工大学太赫兹波谱与无损检测实验室采购一批仪器
    近日,长春理工大学中山研究院太赫兹波谱与无损检测实验室发布3项招标公告,采购傅里叶红外光谱仪、傅里叶太赫兹光谱仪、高功率飞秒激光器、量子级联激光器、太赫兹时域光谱系统、高精度工业CT扫描系统等仪器设备,总预算达931.5万元。详情如下:长春理工大学中山研究院太赫兹波谱与无损检测实验室高精度工业CT扫描系统等采购项目1、预算金额:316.5万元2、采购需求:品目号品目名称采购标的数量(单位)品目预算(元)1-1工业机器人六轴机器人1(台)160,0002-1光学测试仪器太赫兹时域光谱系统1(台)950,0003-1射线式分析仪器高精度工业CT扫描系统1(台)1,975,0003-2工业机器人片剂药物检测机器人1(台)80,000合计3,165,0003、获取招标文件时间:2022年3月25日至2022年4月1日,每天上午00:00:00至12:00:00 ,下午12:00:00至23:59:59 地点:广东省政府采购网长春理工大学中山研究院傅里叶红外光谱仪和傅里叶太赫兹光谱仪采购项目1、预算金额:285万元2、采购需求:品目号品目名称采购标的数量(单位)品目预算(元)1-1光学式分析仪器傅里叶红外光谱仪1(台)1,800,0001-2红外仪器傅里叶太赫兹光谱仪1(台)1,050,000合计2,850,0003、获取招标文件时间:2022年3月18日至2022年3月25日 ,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59 地点:广东省政府采购网 长春理工大学中山研究院太赫兹波谱与无损检测实验室高功率飞秒激光器和量子级联激光器采购项目1、预算金额:330万元2、采购需求:品目号品目名称采购标的数量(单位)品目预算(元)1-1激光仪器高功率飞秒激光器1(台)1,900,0002-1激光仪器量子级联激光器1(台)1,400,000合计3,300,0003、获取招标文件时间:2022年3月18日至2022年3月25日,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59 地点:广东省政府采购网联系方式1.采购人信息名称:长春理工大学中山研究院地址:中山市火炬开发区会展东路16号数码大厦15-17层联系方式:0760-869811272.采购代理机构信息名称:广东人信工程咨询有限公司中山分公司地址:中山火炬开发区孙文东路濠头段12号光裕大厦第五层A区联系方式:0760-888387183.项目联系方式项目联系人:黄小姐电话:0760-88838718
  • 2012年全球实验室太赫兹光谱市场约2000万美元
    太赫兹光谱的特性使其可以应用在各种行业,并且目前许多大公司已经在应用该技术。新竞争者的加入和技术本身的快速发展预示着其已经成长为分子光谱市场的一个主要部分。   太赫兹波介于微波与红外之间,波长大概在0.1mm(100um)到1mm范围。太赫兹光谱和其他光谱技术形成互补,许多化合物(毒品、炸药和各种形态的原料药)在太赫兹波段具有独特的指纹特征谱。太赫兹波不会引起生物组织的光致电离,人类可以安全接触。各种各样的商业太赫兹光谱仪已经在市场上销售,包括传统的频域系统、时域系统、成像系统和便携式仪器。   在实验室应用方面,太赫兹光谱技术快速地被大公司采用进行质量分析和产品开发。英特尔公司采用该技术验证它在半导体和电子工业的实用性。许多大型制药公司正在使用该技术用于固体制剂的开发和QA&ndash QC。在临床和医学应用方面,太赫兹光谱也有显著的尝试,尽管其中许多工作目前还处于实验室研究阶段。   2012年的全球实验室太赫兹光谱的需求约为2000万美元,并且至少有六个主要的竞争对手能够提供商业化太赫兹光谱仪器。尽管2013年太赫兹光谱市场面临一个具有挑战性的环境,但是仍然会获得中等个位数的增长。而且到2014年这一市场预期会达到两位数的强劲增长。 2012年实验室太赫兹光谱需求的行业分布   半导体、电子产品、纳米技术行业所占份额最大,达25%;其次是制药行业,为23%;位于第三位的是学术研究领域,为21%;其他应用太赫兹光谱较多的领域还有临床和医学领域14%,政府机构为11%,还有6%的份额为其他行业分享。 编译:刘丰秋
  • 我国太赫兹研究领域的实验室概览(图)
    太赫兹波是指频率在0.1~10THz之间的电磁波,在电磁波谱上位于微波和红外线之间。是电磁波谱中唯一没有获得较全面研究并很好加以利用的最后一个波谱区间,是人类目前尚未完全开发的电磁波谱“空白”区。由于太赫兹波所处的特殊电磁波谱的位置,它有很多优越的特性,在材料分子的特殊光谱信息分析、材料与结构的无损探伤及三维层析、违禁物品反恐检查、生物组织的活体检查、高精度保密雷达、卫星间宽带通信等方面的研究,在天体物理学、等离子体物理学、光谱学、材料学、生物学、医学成像、环境科学、信息科学等领域有着广阔的应用前景。   太赫兹波有非常重要的学术和应用价值(有的已处于实用),使得全世界各国都给予极大的关注,美国、欧州和日本尤为重视。我国近年来对于太赫兹技术的研究也日益关注。在近日陆续公布的“2011年国家重大科学仪器开发专项”与“2011年国家重大科研仪器研制专项”中,其中由中科院紫金山天文台史生才研究员作为负责人主持申报的国家重大科研仪器设备研制专项——“太赫兹超导阵列成像系统”项目成功获批立项,资助总经费6000万元,研究期限5年。此外中国工程物理研究院申报的国家重大科学仪器开发专项——“相干强太赫兹源科学仪器设备开发项目”也成功获批立项。   仪器信息网编辑整理了目前国内从事太赫兹技术研究的实验室和研究中心,供读者对我国太赫兹技术的研究情况做一基本了解。   太赫兹光电子学省部共建教育部重点实验室   首都师范大学物理系太赫兹实验室于2001年正式成立。2006年正式批准为北京市“太赫兹波谱与成像”重点实验室。2007年获批太赫兹光电子学省部共建教育部重点实验室。该实验室是目前国内最好的太赫兹研究基地之一。2009年起始,太赫兹实验室正式获批中关村开放实验室,依托实验室现有条件和中关村地区科技资源的优势和作用,深化产学研之间的合作,正式为中关村2万多家注册企业提供相应的技术服务,联合进行关键技术攻关。   目前,实验室具有科研用房1500平方米,其中千级超净实验室2间,面积170平方米。科研仪器设备总值超过千万元。在过去的三年中,实验室共承担包括国家973计划、国家863、国家自然科学基金重大项目等各类项目23项,总科研经费1328余万元。   本实验室主要研究方向:1.太赫兹波谱研究 2.太赫兹成像研究 3.太赫兹与红外无损检测研究 4.太赫兹与物质相互作用。   山东科技大学太赫兹技术研究中心   山东科技大学太赫兹技术研究中心成立于2003年,由我国著名太赫兹专家刘盛纲院士担任中心主任,是山东省唯一的太赫兹科学与技术研究机构。   目前实验室拥有太赫兹源研究室、太赫兹时域光谱技术应用研究室和太赫兹器件开发研究室共三个研究室,实验室面积约500平方米,设备价值约300万元。拥有60m2的千级超净实验室,奥地利产半导体泵浦飞秒激光器,德国产808nm、30W半导体激光器,相干公司激光光束质量分析仪,Gentec公司激光功率计,泰克公司200MHz示波器,光学平台等研究设备,锁相放大器, Golay探测器,精密电移台等专用研究设备。   主要研究方向包括:基于光子学太赫兹辐射源的研究、太赫兹应用技术研究、太赫兹器件的研究。   超快光电子与太赫兹技术实验室   超快光电子与太赫兹技术实验室是一个集合光学,半导体物理学,微电子学,生物学等多学科交叉的实验室。主要涉及微电子制造、半导体工艺、生物医学检测、太阳能光伏、红外传感、超高频电磁波应用等领域。实验室依托于上海理工大学。主要研究人员有庄松林院士、朱亦鸣、许健等。   实验室目前已有1000级超净室180平方米,美国相干公司飞秒激光器一台,时域太赫兹波谱测试系统一套,AFM原子力显微镜一台, SEM扫描电子显微镜一台,半导体参量测试仪一台,积分球光谱测试系统一套,磁共溅射/离子束溅射镀膜机一台等大型设备。   实验室主要研究方向:1.应用全新的超快光学方法-时域太赫兹波谱法,进行半导体材料和器件内超快电子的检测 同时设计开发新型的半导体超快电子器件。2.利用太赫兹波对物质进行研究 如通过太赫兹波和生物分子的作用,来鉴别区分不同类型的中草药,毒品等 通过太赫兹波和液晶材料、半导体材料的相互作用,来研究材料本身的一些物理特性。3.超高频电磁通信和传输及其器件的开发。4.微纳结构硅基光伏材料(黑硅)的制备、检测 基于黑硅的光伏电池的优化组装 5.微纳结构金属材料的制备、检测 基于此类微纳结构金属材料的应用 6.表面等离子波导中电磁场微小频率变化的探测7.表面等离子波导中电磁场的古斯汉欣位移增强效应的研究。   中国计量学院太赫兹技术与应用研究所   中国计量学院太赫兹技术与应用研究所成立于2006年7月,属于校级研究所,研究所所长:为洪治博士。研究所获得了浙江省“重中之重”学科“仪器科学与技术”的资助。   现有实验室面积1000余平方米。拥有基于BWO(返波振荡器)的连续THz实验平台 锁模钛宝石激光器及相关测试设备 太赫兹波TDS系统等实验设备。   主要研究方向1.太赫兹波器件、传输与系统 2.太赫兹波成像、传感技术及应用 3.太赫兹波与生物分子相互作用机理及应用 4.太赫兹波谱材料特性测试及应用。   中科院太赫兹固态技术重点实验室   2011年3月28日,中科院太赫兹固态技术重点实验室揭牌仪式举行,该重点实验室的成立,加强了中科院太赫兹研究基地建设。实验室依托于中国科学院上海微系统与信息技术研究所。曹俊诚研究员担任实验室主任,田彤研究员担任实验室副主任,封松林研究员担任实验室学术委员会主任。   实验室主要围绕半导体固态太赫兹源、探测器及其在通信与成像等领域的应用,开展基于光子学和电子学的固态太赫兹器件物理与工艺、太赫兹器件与模块、太赫兹检测与成像以及太赫兹信息传输与通信等方面的基础和应用研究工作。   中物院太赫兹科学技术研究中心   2011年12月12日,中物院太赫兹科学技术研究中心正式成立,中心主任由电子工程研究所所长姚军代理。   中心主要围绕太赫兹物理理论、半导体太赫兹技术、电真空太赫兹技术以及太赫兹在通信、雷达、光谱学和成像中的应用开展研究。太赫兹研究中心目前成立了4个研究室,包括太赫兹总体和应用技术研究室、太赫兹理论研究室、太赫兹半导体器件研究室和电真空太赫兹技术研究室,依托各相关研究所开展工作,并计划在中物院成都科技创新基地建设太赫兹实验室。   此外目前国内高校中电子科技大学,天津大学,南京大学,中山大学,国防科大,上海交通大学,西安理工大学,深圳大学,南开大学,清华大学 北京航空航天大学 北京理工大学等都有太赫兹研究计划。   研究所方面:中国科学院物理所,紫金山天文台,西安光机所,中科院上海应用物理所,半导体所也有研究项目。
  • 英国科学家发现控制太赫兹波新方法
    英国研究人员2006年112日宣布发现了一种控制太赫兹波的新方法,可大大提高利用太赫兹波探测物质内部结构的能力,在疾病诊断、药物分析、材料探伤和爆炸物检测等诸多方面有很大应用潜力。   太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。   由于此前人们没有掌握使太赫兹波很好聚焦的技术,太赫兹波的应用受到很大限制。利用传统的透镜和反射镜,仅能使太赫兹波聚焦到波束直径不足1毫米的程度,导致分辨率不足。这样的波束远远不能用于研究生物细胞等微小物体,就像最小刻度为1毫米的尺子,不能用来测量长度仅几微米的东西。   英国巴斯大学2日发表的新闻公报说,该校研究人员发现,普通金属线不能很好地引导太赫兹波进行聚焦,但如果在普通金属线的表面切开一些小槽,其聚焦能力就会大大增强。将这样的金属线制作成逐渐变细的形状,使其一端成为一个非常微小的点,金属线就能引导太赫兹波聚焦到这个点上,形成直径只有几微米的波束。   理论上,由于频率与生物大分子的振动频率吻合,太赫兹波在生物医学方面有特殊优势,可用于详细探测机体组织结构,方便研究伤口愈合、肿瘤生长等情况。它还能用来探测大气层、研究分子运动、探测毒品与爆炸物和对材料进行无损探伤等。   要实现这些功能,必须研制出性能良好的波源,提供稳定、分辨率高的太赫兹波波束。新成果使得科学家离实现这一目标又近了一步。
  • 英研究人员发现一种控制太赫兹波的新方法
    2006年11月,英国研究人员近日宣布发现了一种控制太赫兹波的新方法,可大大提高利用太赫兹波探测物质内部结构的能力,在疾病诊断、药物分析、材料探伤和爆炸物检测等诸多方面有很大应用潜力。   太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。   由于此前人们没有掌握使太赫兹波很好聚焦的技术,太赫兹波的应用受到很大限制。利用传统的透镜和反射镜,仅能使太赫兹波聚焦到波束直径不足1毫米的程度,导致分辨率不足。这样的波束远远不能用于研究生物细胞等微小物体,就像最小刻度为1毫米的尺子,不能用来测量长度仅几微米的东西。   英国巴斯大学2日发表的新闻公报说,该校研究人员发现,普通金属线不能很好地引导太赫兹波进行聚焦,但如果在普通金属线的表面切开一些小槽,其聚焦能力就会大大增强。将这样的金属线制作成逐渐变细的形状,使其一端成为一个非常微小的点,金属线就能引导太赫兹波聚焦到这个点上,形成直径只有几微米的波束。   理论上,由于频率与生物大分子的振动频率吻合,太赫兹波在生物医学方面有特殊优势,可用于详细探测机体组织结构,方便研究伤口愈合、肿瘤生长等情况。它还能用来探测大气层、研究分子运动、探测毒品与爆炸物和对材料进行无损探伤等。   要实现这些功能,必须研制出性能良好的波源,提供稳定、分辨率高的太赫兹波波束。新成果使得科学家离实现这一目标又近了一步。
  • 三宝兴业成为Rainbow Photonics太赫兹产品中国区代理
    三宝兴业(微视凌志)成为瑞士Rainbow Photonics品牌太赫兹系列产品中国区代理   2012年2月27日,北京三宝兴业(微视凌志)视觉技术有限公司与瑞士Rainbow Photonics公司签署了代理合作协议,正式成为其太赫兹系列产品的中国区代理。   太赫兹作为一个电子学向光子学过渡频段,其频段覆盖大分子的转动和振动频率,是有待全面研究的一个频率窗口,成为近年全球的科研热点。   频率:0.1THz –10 THz( 0.03 mm – 3 mm)   瑞士Rainbow Photonics成立于1997年,是世界一流的太赫兹成像与光谱产品生产商,其销售产品为瑞士联邦工学院非线性光学实验室的科研成果。三宝兴业(微视凌志),作为国内资深图像处理企业,自2003年成立以来,主营业务是以代理销售国际知名厂商的图像处理产品为主,成立近10年来,不断扩展其代理产品线,此次代理瑞士Rainbow Photonics品牌,将为广大中国科研用户在太赫兹研究领域带来福音,并提供更加本土化的技术支持。   若您对Rainbow Photonics太赫兹产品感兴趣,可致电北京三宝兴业(微视凌志)010-51262828-6603或wuxl@mvlz.com咨询。   公司简介:      瑞士Rainbow Photonics产品线涵盖实验室级太赫兹时域光谱系统(TeraKit-Transmission- TeraKit-Reflection)、最新太赫兹成像与光谱系统(TeraImage)、太赫兹一体化系统(TeraSys 4000)、基于高效有机电光晶体(OH1,DAST,DSTMS)的太赫兹产生器与探测器、高质量KNbO3 晶体、全固态近红外飞秒激光器等。广泛应用于实验室中进行的生物医学成像、安全检查、无损探伤、爆炸物探测等研究领域,客户遍布美、英、法、德、日等国家。 TeraSys 4000 TeraIMAGE      北京三宝兴业(微视凌志)科学部自2007年成立以来,一直致力于国际顶尖科研级产品的推广工作,宗旨是为中国广大的科研工作者提供优质服务,专业的硕博技术人员随时为您解答疑问产品及应用中的问题,可保障您的工作进展更顺畅。目前,代理品牌及产品主要有Princeton Instruments(科研级制冷CCD,光栅光谱仪)、e2v(科研级芯片)、Light conversion(飞秒激光器)、Advanced Research Systems(低温制冷设备)、B&W TEK(便携式光谱仪)、Ludl Electronic Products (显微纳米位移台)、Femto(电流、电压放大器、锁相放大器)、Quantum(时序脉冲发生器)、Scientech(激光功率计、能量计)、Delta(滤光片)、Frankfurt Lasers(固体激光器、激光二极管),Rainbow Photonics (太赫兹产品)等。
  • 天津大学何明霞教授:主攻太赫兹工业无损检测 多领域推进产业化
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。天津大学何明霞教授本次会议中,天津大学何明霞教授分享了《太赫兹科学技术应用近年新进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请何明霞教授分享其团队在太赫兹技术及应用拓展方面的系列研究成果。1、成果简介基于太赫兹时域光谱技术的多层非极性复合材料检测系统太赫兹电磁波介于微波与红外之间(0.1THz -10 THz ),处于电子学与光子学的交叉领域,被誉为人类认识世界的“第三只眼睛”、“改变世界的十大科技”。太赫兹具有光子能量低、穿透性强、指纹谱特征、高信噪比、高分辨率、宽频带、瞬态性等独特优势,近年来在工业无损检测领域发展迅速。太赫兹时域光谱技术(THz-TDS)是一种新型的脉冲全息光谱技术,可获取物质的折射率、吸收系数、介电系数等多个物理参数信息。相比于红外光谱、拉曼光谱,太赫兹光谱覆盖了生物大分子、有机分子等物质独特的特征谱信息;相比于X射线,太赫兹辐射能量低,对人体安全;相比于超声检测、涡流检测,太赫兹检测为非接触式、穿透性更强,可表征多涂层的信息。利用新型的太赫兹技术进行物质光谱检测分析、无损扫描成像及超薄样品测厚应用,弥补传统检测手段不足之处,完成更高精度、更快速安全的检测。本团队基于高信噪比、高灵敏度、安全、快速的太赫兹时域光谱技术,开展在非极性电介质材料缺陷探测成像及微米级多涂层测厚领域相关研究。迭代开发智能化工业机器人手臂及协作控制系统,实现对非极性材料内部缺陷三维层析无损扫描成像,对多层的微米级别超薄涂层厚度可进行每单层的精准测量表征。系统覆盖太赫兹波谱宽度为0.1THz -3THz,太赫兹光纤长度10m,工作重复频率10Hz;无损扫描成像层数可达3层,平面扫描范围180×180mm,空间机械臂延伸测量半径为1.3m,最快扫描速度500mm/s;涂层测厚层数可达3层,最小测厚值可达10μm,绝对精度2μm;且满足空间、异形曲面移动多点位精准快速无损检测需求,具有全自动处理、高精度测量、多层厚度实时计算等优势,为超薄涂层类复合材料提供更加精准、高效和可靠的测量方式,适用于汽车工业、航空航天、锂电池电极、非金属管道、泡沫塑料等多领域无损检测场景。2、产业化探索智能化机器人手臂空间异形曲面无损检测系统在未来是考虑多个领域产业化的,拥有在材料检测、无损探伤、医疗检查,以及文物资料研究等多个领域发展的潜质。太赫兹时域光谱技术本身是一个多领域快速发展的检测技术,其测量方式依赖于平面扫描或者曲面扫描载荷技术,配合样本的空间建模,以完成自动化样本数据有序测量。具体到应用领域,需要根据样品的尺寸、规格以及空间特征,设计低成本、易便携、方便取样的测量装置。比如可以对皮肤表面进行快速扫描成像、对曲面的陶瓷文物信息鉴定等,这些有待合作单位的具体要求。3、课题组未来研究计划太赫兹波在电磁波谱中处于电子学向光子学的过渡区,也是宏观经典理论向微观量子理论的过渡区,其具有光子能量低、穿透性强、指纹谱特征等独特优势。太赫兹时域光谱技术利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,检测过程快速、安全、精度高,且光谱具有物质特征峰,在物质鉴别分析、工业无损检测、产线在线质量监测、安检扫描成像等领域应用潜力巨大,弥补传统检测手段的缺陷不足。本研究团队重点主攻方向为太赫兹工业无损检测方向,分析、利用太赫兹时域光谱,建设标准太赫兹光谱数据库,实现物质太赫兹光谱检测分析、微米级多涂层太赫兹精准测厚及材料内部无损探测成像等多方面太赫兹无损检测研究。4、合作需求关于非极性材料无损扫描探测成像、物质太赫兹光谱检测分析及超薄涂层测厚方面,涉及生物医药、锂电池电极、半导体、复合材料、文物艺术品等领域检测需求可探索合作研究。联系方式:曲秋红 15122743715(手机、微信)附专家及课题组简介何明霞,博士,天津大学精密仪器与光电子工程学院电子物理学与仪器科学与技术专业教授、博导,首届“中国生物物理学会太赫兹生物物理分会”副会长兼秘书长、“毫米波太赫兹产业联盟”太赫兹光谱与检测工作组组长、中国仪器仪表学会图像科学与工程分会秘书长、中国光学学会光电技术专业委员会委员,是“天津大学太赫兹光子学”组建者之一和核心骨干。主要研究方向∶太赫兹光谱技术与成像应用和太赫兹生物效应研究。致力于太赫兹时域光谱技术实用化、多种非极性材料的太赫兹光谱成像无损检测及太赫兹生物医学基础研究,是国内最早将太赫兹光谱技术用于癌症组织、生物组织的研究者。太赫兹光谱技术与成像应用团队以高信噪比、高灵敏度、宽带、安全、快速的太赫兹时域光谱技术为核心,结合汽车工业、航空航天、管道塑材、生物医药、食品安全等领域实际应用需求,开展物质太赫兹光谱检测分析、太赫兹标准光谱数据库建设、非极性材料无损扫描成像、微米级多涂层系统精准测厚、太赫兹辐射成分鉴定以及实用化技术应用产品开发等研发工作。搭建太赫兹光谱与成像系统应用平台,完成三维层析太赫兹光谱快速扫描成像测厚设备及智能化工业机器人手臂空间异形曲面无损检测系统的开发,适用于各类涂层的微米级厚度测量和材料内部缺陷的无损检测,如汽车车身涂层、锂电池隔膜、锂电池电极、泡沫塑材、非金属管道、生物组织样品等,相关研究成果及产品拥有自主知识产权20余项。团队研发并已投入市场应用的全国产化高灵敏度太赫兹相机,适用于现有多种主流太赫兹源辐射探测,对非极性物质材料成像清晰,可在安检成像领域推广使用。针对太赫兹光谱检测市场需求,正进行应用标准化和实用数据库的工作,建立多类物质的开源太赫兹标准数据库,实现物质太赫兹光谱的定性与定量分析检测。
  • 太赫兹技术“未来可期”“太赫兹光谱与测试工作组”正式成立
    p style=" text-indent: 2em text-align: justify " strong 仪器信息网讯& nbsp /strong span style=" text-indent: 2em " 太赫兹光谱与测试应用研讨会”暨“太赫兹光谱与测试工作组”成立大会于2020年1月12日在天津举行。本次大会由毫米波太赫兹产业发展联盟主办,莱仪特太赫兹(天津)科技有限公司承办,爱德万测试(中国)管理有限公司、中国科学院上海微系统与信息技术研究所与天津大学精密仪器与光电子工程学院联合协办。近百位太赫兹领域的专家学者、各领域的企业用户齐聚天津,分享科研成果、企业需求,共话太赫兹技术与产业发展道路。 /span /p p style=" text-align: justify text-indent: 2em " 太赫兹电磁波段具有频谱资源丰富、穿透性强等特点。随着太赫兹科学技术研究的不断发展,技术应用需求市场正在形成,其中尤为突出的是对于太赫兹光谱技术应用需求。太赫兹光谱检测与成像技术作为太赫兹领域的基础技术,正在食品安全、公共安全、材料科学及生物技术领域显示出其独特的优势和广阔的应用前景。 /p p style=" text-align: justify text-indent: 2em " 国内太赫兹科技研究发展迅速,对太赫兹技术的应用需求与日俱增,将带动国内太赫兹光谱检测与成像技术相关的芯片、模块、系统以及太赫兹数据的爆发式增长。据统计数据显示,2017年中国太赫兹光谱检测与成像技术的市场规模约为2亿元,预计2020年将达5亿元,到2023年中国太赫兹光谱检测与成像技术的市场规模将超10亿元。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/6e629ed1-2554-421c-bd65-6f74be431475.jpg" title=" 会议照片.jpg" alt=" 会议照片.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong style=" text-indent: 0em " 会议现场 /strong /p p style=" text-align: justify text-indent: 2em " 在此次会议上,毫米波太赫兹产业发展联盟特别成立了“太赫兹光谱与测试工作组”,旨在通过工作组的努力,推动太赫兹光谱技术的应用及其标准化工作,并促进太赫兹光谱检测应用的发展,填补我国太赫兹频段物质光谱与材料电磁特性数据库的空白。 /p p style=" text-align: justify text-indent: 2em " 会议由毫米波太赫兹产业发展联盟秘书长刘海瑞主持,他首先对联盟的组织架构、联盟单位、工作进展以及“太赫兹光谱与测试工作组”的主要成员进行了介绍,并宣布“毫米波太赫兹产业发展联盟· 太赫兹光谱与测试工作组”正式成立。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/8627ed3b-02fd-479f-9ffe-8033d602f756.jpg" title=" 刘海瑞.jpg" alt=" 刘海瑞.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong style=" text-indent: 0em " 毫米波太赫兹产业发展联盟秘书长 刘海瑞 /strong /p p strong style=" text-indent: 0em " /strong /p p style=" text-indent: 2em text-align: justify " 随后,揭牌仪式正式开始,由天津市科学技术委员会生物医药处处长王锐与太赫兹光谱与测试工作组组长、天津大学何明霞教授共同揭牌,并为工作组理事单位颁发牌匾。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/2ade9f08-8358-4590-9183-96bd5c54051a.jpg" title=" 揭牌.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 揭牌.jpg" / /p p style=" text-align: center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/5e497f39-5a58-4659-b731-631b58547eeb.jpg" title=" 揭牌2.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 揭牌2.jpg" / /p p style=" text-indent: 0em text-align: center " strong 揭牌仪式 /strong /p p br/ /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/202001/uepic/fd76136e-a905-43b6-8c70-20314ad4b7da.jpg" title=" lingjiang .jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" lingjiang .jpg" style=" width: 600px height: 400px " / /p p style=" text-indent: 0em text-align: center " strong 颁发理事单位牌匾 /strong /p p style=" text-indent: 2em text-align: justify " 天津大学精密仪器与光电子工程学院院长曾周末教授、太赫兹光谱与测试工作组组长、天津大学精仪学院何明霞教授和首都师范大学张存林教授分别致辞,表达他们对工作组成立的祝贺与期望。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/972b8f45-0e07-4ef3-8c0c-fe7b135d16a5.jpg" title=" 院长.jpg" alt=" 院长.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong style=" text-indent: 0em " 天津大学精密仪器与光电子工程学院 院长 曾周末 /strong /p p strong style=" text-indent: 0em " /strong /p p style=" text-align: center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/a3dd1525-346b-4d55-8f44-68c3d1116704.jpg" title=" hemingxia.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" hemingxia.jpg" / /p p br/ /p p style=" text-align: center text-indent: 0em " strong 赫兹光谱与测试工作组组长、天津大学 教授 何明霞 /strong /p p br/ /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/202001/uepic/b3ce6e8f-0196-47d8-9023-b491d0cad414.jpg" title=" 张存林.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 张存林.jpg" style=" width: 600px height: 400px " / /p p style=" text-indent: 0em text-align: center " strong 首都师范大学 教授 张存林 /strong /p p style=" text-indent: 2em text-align: justify " 大会报告环节中,8位太赫兹领域的专家及工作者进行了精彩的分享。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/90b59608-61c7-45d5-9ecd-0659b8c93984.jpg" title=" 年夫顺.jpg" alt=" 年夫顺.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中国电子科技集团有限公司 首席科学家 年夫顺 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:基于电子学的太赫兹材料电磁特性测试与结构成像技术研究进展 /strong /p p style=" text-align: justify text-indent: 2em " 在材料测量中,太赫兹材料测量可以深入材料内部,具有电磁特性且对人体无害,有其不可替代性。年夫顺从太赫兹工程相关问题思考、关键技术仪器设备、材料电磁特性测量、材料三维结构成像仪及团队建设未来展望几个部分进行了分享。他还指出,太赫兹目前还没有相应的标准,需要联盟和工作组的共同努力,将太赫兹技术“发扬光大”。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/facef07b-04f9-4eec-9199-37709da8242f.jpg" title=" 朱亦鸣.jpg" alt=" 朱亦鸣.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 上海理工大学 教授 朱亦鸣 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:太赫兹波谱技术进展及其应用 /strong /p p style=" text-indent: 2em text-align: justify " 太赫兹因其独特的性质已成为各国争相抢占的科学制高点,它既是科学前沿,又是国家的重大需求。朱亦鸣从目前国内太赫兹技术的发展状况,以及它在食用油油品检测、危险品检测、公共安全检测、中药有效成分检测和癌细胞检测等相关领域的应用对国内太赫兹发展的整体状况进行了介绍。随后,他还分享了太赫兹成像新技术——太赫兹近场超分辨显微镜。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/3d3627d6-6994-4227-aaf4-1f650554325c.jpg" title=" 黎华.jpg" alt=" 黎华.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中国科学院上海微系统与信息技术研究所 研究员 黎华 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:新型太赫兹激光光频梳及光谱应用 /strong /p p style=" text-indent: 2em text-align: justify " 科学与应用的发展对表征技术提出了新的需求,包括超高空间分辨、超快时间分辨及精细光谱分辨等,且表征方法也在向低能量尺度表征发展。黎华基于高性能半导体太赫兹量子级联激光器与光频梳,结合近场显微技术,实现了太赫兹波段时间、空间、光谱的高分辨,解决了色散,主/被动稳频三大挑战,并在国际上首次实现了紧凑型实时太赫兹光谱仪。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/60ae14fe-ace0-4b87-bd15-cd818d3985ae.jpg" title=" 曲秋红.jpg" alt=" 曲秋红.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 莱仪特太赫兹(天津)科技有限公司 技术总监 曲秋红 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:太赫兹光谱检测应用研究及莱仪特检测平台 /strong /p p style=" text-indent: 2em text-align: justify " 太赫兹技术应用前景十分广泛,但太赫兹光谱技术发展还存在很多在技术、成熟度及应用场景中的问题。曲秋红在报告中对莱仪特太赫兹(天津)科技有限公司的检测平台进行了简要的介绍,并分享了平台为食品、中药、太赫兹研究等领域用户提供检测服务的典型案例。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/4a9f2910-9926-455d-91df-8c28c4ba6261.jpg" title=" 赵红卫.jpg" alt=" 赵红卫.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中国科学院上海高等研究院研究员 赵红卫 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:太赫兹光谱技术在生物化学中的应用研究 /strong /p p style=" text-indent: 2em text-align: justify " 太赫兹在生物化学和生物医学等领域具有广阔的前景。报告中,赵红卫从太赫兹在生物化学检测和手性生物分子的应用入手,介绍了太赫兹在生物化学及生物医学领域的应用,并分享了太赫兹光谱解析的一些心得。最后,她对太赫兹未来的发展提出了一些展望。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/a3f6f0ad-9320-48bc-a52f-e47acdb6e7bb.jpg" title=" 张彦华.jpg" alt=" 张彦华.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 爱德万测试(中国)管理公司 新业务高级拓展经理 张彦华 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:“蒲公英花开”——太赫兹谱数据共享平台 /strong /p p style=" text-indent: 2em text-align: justify " 目前,国内外多家单位拥有一定量的太赫兹光谱数据,但都规模较小、检测平台仪器型号多样,导致各单位交流难度大,且无统一的测样标准。张彦华介绍了爱德万测试(中国)管理公司的蒲公英太赫兹谱数据共享平台,是如何通过用户单位共享的方式让用户获得更加完整的数据库。他还展示了数据平台的相关功能。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/2f1a6ace-c861-4a8a-92d4-d7cdf410fcfd.jpg" title=" 叶伟斌.jpg" alt=" 叶伟斌.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 清华大学天津电子信息研究院 电子综合检测中心总监 叶伟斌 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:测试太赫兹材料与器件电磁参数的技术与方法 /strong /p p style=" text-indent: 2em text-align: justify " 毫米波太赫兹通信具有设备小、定向性强、频谱资源丰富、具有穿透等离子体能力等特点,可以应用于雷达探测、材料成像、生物探测和通讯技术中。报告中,叶伟斌首先简要介绍了清华大学天津电子信息研究院电子综合检测中心的电子综合检测平台,随后,他分享了平台检测雷达芯片的实际案例,最后他还列出了平台提供的毫米波太赫兹的检测服务项目。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/ef2c7fd7-a93c-462d-a8cb-39e20d1f081d.jpg" title=" 邓玉强.jpg" alt=" 邓玉强.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中国科学院计量院 研究员 邓玉强 /strong br/ /p p style=" text-align: center text-indent: 0em " strong 报告题目:太赫兹计量研究 /strong /p p style=" text-indent: 2em " 太赫兹是宏观电子学和微观光子学的桥梁,近年来,各类太赫兹测量仪器不断涌现,但却没有统一的标准。邓玉强研究员介绍了他在太赫兹计量领域的一些研究成果。如太赫兹时域光谱计量、太赫兹辐射功率计量、太赫兹波长频率计量、太赫兹空域参数计量,以及太赫兹计量应用几个部分。 /p p style=" text-align: center text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/e2619468-d700-4ff9-b1f3-6f98caa85110.jpg" title=" heying.jpg" alt=" heying.jpg" / /p p style=" text-align: center text-indent: 0em " strong 全体与会代表合影 /strong br/ /p
  • 国防军工行业:太赫兹,不再是黑科技
    太赫兹波技术-改变未来世界的十大技术之一。太赫兹波是人类迄今为止了解最少、开发最少的介于无线电波和光波之间一个波段。太赫兹波拥有低能量,宽频谱,强穿透,瞬态性等技术特点,在国防、国土安全、天文、医疗、生物、计算机、通信等科学领域有着巨大的应用价值。  太赫兹应用技术研究主要分为太赫兹波谱,成像,通信,军事等方向。  细分领域涉及基础科学研究,质量检测,医学成像,材料无损检测,安全检查,室内局域无线通信,高速局域网络通信,军事国土安全等。  高功率太赫兹辐射源,高灵敏度太赫兹波探测器,以及太赫兹波器件等关键组件是太赫兹波应用技术推广的基础。  国际太赫兹市场较为成熟,国内市场处于发展初期。国际太赫兹技术较为成熟,已经逐步进入产业化应用,国际市场高速扩容。全球太赫兹组件和系统的市场将从 2015年的5600万美元增加到2023年的4.15亿美元,2015-2023年复合增长率为25.9%。 (TransparencyMarketResearch)截止到2014年,组件方面,太赫兹源占据较大的市场份额。  系统方面,光谱系统占据最大市场份额。应用领域方面,非破坏性测试和研究实验室中的应用一起贡献了超过60%的市场应用。  我国处于太赫兹技术应用拓展初期,政策支持与研发成果落地有望带动相关产业。  太赫兹技术在国防军工和民用领域具有丰富的下游应用,国防军工领域主要涉及太赫兹雷达,爆炸物、毒气战剂和生物战剂的感测,军工通信(战术通信网,天基通信系统等),军用无损检测等。民用领域主要涉及人体安检,工业无损检测,生物医学(生化检测,医学成像,组织检测)等。  投资建议:我们建议短期内关注安检和无损检测方向,中期关注太赫兹通信,长期关注太赫兹全产业链化发展。中国电科国产化率达到90%的中国首台太赫兹安检仪研制成功,打破了国外垄断,填补国内空白,目前已经试点推广,随着使用范围进一步扩大,并带动安防安检上下游行业,未来将形成千亿规模。太赫兹波在无损检测非金属复合材料方面相比传统的工业手段有着明显的优势。无线通信带宽已经无法满足物联网迅速发展,无线载波必将进入太赫兹波谱范围,支撑物联网万亿市场规模。  太赫兹相关主要上市公司:四创电子(股东中国电科38所研发太赫兹人体安检仪),同方股份(子公司同方威视发展了在毫米波/太赫兹波领域业务-安检设备),华讯方舟(研发石墨烯太赫兹芯片,发展太赫兹成像和生物检测业务),大恒科技(太赫兹时域光谱仪),天瑞仪器(太赫兹波谱技术,液相色谱仪检测地沟油),聚光科技(太赫兹技术的地沟油快速检测仪合作研发单位),凤凰光学(太赫兹技术的地沟油快速检测仪合作研发单位),TCL(太赫兹通信)等。
  • 我国大力发展太赫兹技术!太赫兹技术(大同)研究院揭牌成立
    p style=" text-indent: 2em text-align: justify " 太赫兹波又称远红外波,曾被评为“改变未来世界的十大技术”之一,它是电磁波段中最后一段未被人类充分认识和应用波段。由于频率高、脉冲短、穿透性强,且能量很小,对物质与人体的破坏较小,所以与X射线相比,太赫兹成像技术和波谱技术更具优势,在空间探测、医学成像、安全检查、宽带通信等方面具有广阔的前景。 /p p style=" text-indent: 2em text-align: justify " 7月7日,太赫兹技术(大同)研究院、大同东华科技有限公司在山西省大同市正式揭牌成立,为大同转型发展蓄势赋能。山西省委常委、大同市委书记张吉福,大同市市长武宏文,山西省投资促进局党组书记、局长杨春权及两大平台相关负责人进行揭牌。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 537px height: 356px " src=" https://img1.17img.cn/17img/images/202007/uepic/03fdaf1d-fe27-44c3-be23-ef3886ecd362.jpg" title=" 88ca67ee0af44026a65ab96cdb949524.jpg" alt=" 88ca67ee0af44026a65ab96cdb949524.jpg" width=" 537" height=" 356" / /p p style=" text-indent: 2em text-align: justify " 据了解,太赫兹技术(大同)研究院是大同聚力建设12大科技创新平台的重要平台之一,主要由毫米波与太赫兹技术北京市重点实验室和毫米波太赫兹产业发展联盟组建;大同东华科技有限公司的总部东华软件股份公司成立于2001年1月,以应用软件开发、计算机信息系统集成、信息技术服务等为主要业务,拥有千余项自主知识产权的软件产品。 /p p style=" text-indent: 2em text-align: justify " 武宏文表示,大同将致力把太赫兹技术(大同)研究院打造成一流的国家级研究院。同时,大同将与大同东华科技有限公司在高端制造、信息技术应用、大数据等领域进行深度合作,加强技术研发、加快成果转化、加速产业孵化,着力打造大同成功转型的“四梁八柱”。 /p p style=" text-indent: 2em text-align: justify " 据悉,大同近年来启动建设了大同市国际能源革命科技创新园,引进了12大科技创新平台,集聚了28名两院院士、77名高科技领军人才,转化落地了太赫兹技术测温安检门、煤矿废弃巷道压缩空气储能等一大批高科技转型项目,推动大同发展步入创新驱动快车道。 /p p style=" text-indent: 2em text-align: justify " 揭牌仪式上,杨春权表示,全省投资促进系统将以项目招商、落地为核心,坚持“项目为王”理念,精准招商,为大同项目落地投产见效提供全方位“保姆式”服务。 /p
  • 美研究人员研制成功一种用于光谱学的新型太赫兹激光器
    从左至右:利哈伊大学(Lehigh University)电气和计算机工程研究生Ji Chen、Liang Gao和Yuan Jin在利哈伊大学Sinclair大楼Sushil Kumar的太赫兹光电子(Terahertz Photonics)实验室  美国研究人员展示了一种具有破记录输出功率的太赫兹半导体激光器,可用于各种形式的光谱学和其他应用。  以强烈的单色辐射光束形式提供的光束是众所周知的技术,可以追溯到1960年推出的第一台激光器。依靠激光器来实现超快速和高容量的数据通信、制造、手术以及商业应用,例如条形码扫描仪、打印机,诸如CD和DVD的光盘,自动驾驶车辆,激光显示表演和动态艺术装置,当然还有光谱学。  从红外到紫外的激光器被广泛使用,然而,利哈伊大学的Sushil Kumar团队研究了太赫兹激光器。太赫兹辐射位于微波和红外区域之间的电磁波谱区域。它们可穿透塑料、织物、纸板和其他材料,可用于检测各种化学品。太赫兹激光有可能用于非破坏性、非侵入性筛查和检测爆炸物,非法药物,检测药物化合物,筛查皮肤癌。  为了真正有用,激光必须以非常精确的波长发射,这通常通过单模激光器中的“分布式反馈”来完成。太赫兹激光器必须是单模的。随着太赫兹辐射的传播,其中一部分会被大气湿度吸收,这是非常不利的。因此,一个用于光学传感和分析的太赫兹激光,不管距离多远,即使几米,也必须避免这个问题。现在,Kumar的团队一直致力于通过提高光功率输出来提高强度和亮度。  他们研究了“表面发射”(而不是“边缘发射”)的单模激光器。已经找到了一种将周期性引入激光器光学腔的方法,使其能够从根本上辐射高质量的光束并提高辐射效率。该团队将这种方法称为“混合二阶和四阶布拉格光栅”。他们建议,他们的混合光栅不一定限于太赫兹激光器,而是可以用于增强几乎任何表面发射半导体激光器。  该团队报告了单模太赫兹激光器的功率输出为170毫瓦的实验结果。这是迄今为止这种激光器中功能最强大的。因此他们证明,它们的混合光栅可以通过简单地改变激光腔内压印光栅的周期来精确控制发射波长。库马尔表示,1000毫瓦的设备应该很快成为可能,这可能会吸引制造商的眼球。  原文请查阅:  Power up: New lasers for spectroscopy  SpectroscopyNOW.com  Channels: Atomic  Published: May 15, 2018 符斌供稿
  • 重大科学仪器专项:太赫兹光谱仪最新进展
    p    strong 仪器信息网讯 /strong & nbsp 2016年12月6日,中央民族大学,2016年太赫兹波谱技术及产业化研讨会暨国家重大科学仪器设备开发专项-基于飞秒激光的太赫兹时域光谱仪开发项目(以下简称:太赫兹专项)2016年年度总结汇报会顺利召开。中科院物理所院士杨国桢、北京理工大学院士周立伟、清华大学院士周炳琨、北京大学院士龚旗煌、中科院半导体所院士李树深、深圳大学院士范滇元、南京大学院士吴培亨、清华大学院士金国藩、天津大学院士姚建铨、科技部资源配置与管理司处长刘春晓、北京市科委李建玲处长等70多人到会。大恒新纪元科技股份有限公司总经理杨晓红、中央民族大学校长宋敏致欢迎辞。宋敏在致辞中说到,本次会议是中央民族大学今年规格最高的一次会议,光电领域顶级专家齐聚,可谓太赫兹领域的年度盛会,并预祝太赫兹专项取得丰硕成果。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/dba4bdfb-5646-46d7-93c4-bde95acb31c8.jpg" title=" songmin.jpg" style=" width: 400px height: 261px " hspace=" 0" height=" 261" width=" 400" vspace=" 0" border=" 0" / /p p style=" text-align: center "   中央民族大学校长宋敏致欢迎辞 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/7edebd8d-e799-403b-aed2-3243948c71e1.jpg" title=" yangxiaoh.jpg" style=" width: 400px height: 261px " hspace=" 0" height=" 261" width=" 400" vspace=" 0" border=" 0" / /p p style=" text-align: center "   大恒新纪元科技股份有限公司总经理杨晓红致欢迎辞 /p p   大恒新纪元科技股份有限公司研发部副经理张翼、首都师范大学教授张存林、中国石油大学(北京)教授赵昆等各项目承担单位代表介绍了项目有关仪器研制、应用研究、产业化进程等各方面的详细情况 与会院士、部委领导及专家学者代表就项目及产业化方面发表了各自的意见和建议。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/87906388-b8bc-44e6-8af7-5a6521acca02.jpg" title=" zhangcunlin.jpg" style=" width: 400px height: 261px " hspace=" 0" height=" 261" width=" 400" vspace=" 0" border=" 0" / /p p style=" text-align: center "   首都师范大学教授张存林致辞 /p p   太赫兹专项已经历时4年,2017年结项,2016年是承上启下的关键一年。太赫兹项目总体进展顺利,2016年已经开始欧、美、印度、国内等方面的市场推广工作,杨晓红介绍到。大恒新纪元科技股份有限公司研发部副经理张翼详细汇报太赫兹专项进展。太赫兹专项项目经费为1亿3780万(国拨+企业自筹),目前已经完成76.99%经费投入(国拨76.3%+企业自筹68.8%) 计划开发仪器10项,已完成18项 计划应用开发5个,已完成7个 计划申请专利43个,已经完成101个 计划制定标准8个,已经完成3个 计划取得软件著作权8项,已完成11项。太赫兹专项已经完成产品转化15项,2016年密集开展各项市场推广工作,参加慕尼黑激光上海展、第十一届国际激光加工技术研讨会、慕尼黑分析仪器展(德国)、西部光电子展(美国)等20多个国际国内学术会议和展会,实现产品销售41例,CIP-TDS光谱仪、太赫兹时域光谱仪等产品实现销售额3506万元。与传统的中国科学仪器企业有所不同,大恒科技在坚持自研的技术路线之外,也借助了资本的力量,把国际技术领先的美国Zomega公司(该公司由于所有人个人原因关闭)所有技术和专利收入囊中,并为Zomega公司在中国已经销售的所有产品提供后续服务。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/78aa27e0-eb51-4b8a-8b55-d4d8b60e30fb.jpg" title=" zhangyi.jpg" style=" width: 400px height: 261px " hspace=" 0" height=" 261" width=" 400" vspace=" 0" border=" 0" / /p p style=" text-align: center "   大恒新纪元科技股份有限公司研发部副经理张翼汇报项目进展 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/87f82528-0737-46a7-bd03-72cfdd6de945.jpg" title=" 飞秒激光器.jpg" style=" width: 300px height: 174px " hspace=" 0" height=" 174" width=" 300" vspace=" 0" border=" 0" / img src=" http://img1.17img.cn/17img/images/201612/insimg/9f6747e3-1e39-4472-972c-6a75ffca5ced.jpg" title=" 时域光谱仪.jpg" style=" width: 300px height: 174px " hspace=" 0" height=" 174" width=" 300" vspace=" 0" border=" 0" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/4c26d459-5966-4a8e-9630-71a7aa6e8d86.jpg" title=" 太赫兹光谱仪.jpg" style=" width: 300px height: 174px " hspace=" 0" height=" 174" width=" 300" vspace=" 0" border=" 0" / img src=" http://img1.17img.cn/17img/images/201612/insimg/2695b8c2-eae5-4a86-b6f7-f596a374b234.jpg" title=" 飞秒激光器1.jpg" style=" width: 300px height: 174px " hspace=" 0" height=" 174" width=" 300" vspace=" 0" border=" 0" / /p p style=" text-align: center " 现场产品展示 br/ /p p   中国石油大学(北京)教授赵昆作《油气资源太赫兹光谱表征与评价》报告。报告中说到,借助太赫兹专项,开拓了石油气光学学科研究领域 依托太赫兹专项,后续获得973课题1项、国家自然科学基金2项、石油化工联合会科技计划3项、中石化课题1项、中石油课题1项。2015年11月14日“井下油气探测关键技术创新及应用”科技成果鉴定会上,太赫兹光谱油气探测技术获得“达到国际领先水平”的评价。目前,油气资源太赫兹光谱表征与评价技术已经应用油气产业的“上游”、“中游”、“下游” 油品太赫兹光谱数据库已经初步建立。赵昆说到,太赫兹技术在石油气方面的应用,并不是替代原有技术和设备,而是有益的补充 未来,太赫兹在非常规油气勘探与开发等方面将大有作为。据了解,太赫兹专项目前已经在食品安全、石油气、民族医药等7个方面完成应用开发的相关工作。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/50098563-4809-47e0-9434-ee550a0d67f7.jpg" title=" zhaokun.jpg" style=" width: 400px height: 261px " hspace=" 0" height=" 261" width=" 400" vspace=" 0" border=" 0" / /p p style=" text-align: center "   中国石油大学(北京)教授赵昆代表项目应用组报告 /p p   为太赫兹专项所取得的成绩及更好地完成2017年专项结题工作,与会的院士、专家学者和相关部门领导纷纷发表自己的意见和建议。譬如:如何进一步提高仪器的稳定性、可靠性?如何加快产业化进程等.....有院士说到,以前我们知道太赫兹应该很有用,太赫兹专项解决了“太赫兹技术如何应用”的问题! /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/e72b8dfd-b69c-46b9-8ed2-baacc7d9d709.jpg" title=" yuanshiping.jpg" style=" width: 620px height: 348px " hspace=" 0" height=" 348" width=" 620" vspace=" 0" border=" 0" / /p p style=" text-align: center " 与会代表发言 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/c0cec519-fd6e-4eb5-9035-f2eaa05e8871.jpg" title=" 参观.jpg" style=" width: 620px height: 413px " hspace=" 0" height=" 413" width=" 620" vspace=" 0" border=" 0" / /p p style=" text-align: center " 与会代表现场听取产品介绍 /p p   张翼在汇报中说到,2016年,太赫兹专项进入项目第四年,不论是仪器研发还是应用研发均进入收尾阶段,项目正式进入结题准备阶段。2016年,仪器的优化改进及应用探索工作还在进行当中,钛宝石飞秒激光群II型、光纤耦合太赫兹时域光谱仪等设备还在陆续的研发和改进中,大恒科技将以更好的产品、更好的用户体验来迎接未来市场的挑战。2017年,不是终点,是起点! /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/55cfb73b-e1e1-4e8e-b73e-300a2528556c.jpg" style=" width: 620px height: 301px " title=" 合影.jpg" hspace=" 0" height=" 301" width=" 620" vspace=" 0" border=" 0" / /p p style=" text-align: center "   与会代表合影留念 /p
  • 2006年太赫兹科学国际研讨会在深举行
    国际前沿学科太赫兹技术未来有何重要发展?太赫兹技术能为深圳的自主创新提供何种机遇?2006年9月23日,来自美国、英国、德国、俄罗斯以及我国的多位知名物理科学家,齐聚深圳大学研讨太赫兹技术未来的科学研究方向,以及在经济社会发展中的应用前景。市委常委、常务副市长刘应力出席了会议开幕仪式。   会议开幕式上,刘应力用流利的英文欢迎参会的各国科学家们,介绍了深圳26年来经济社会的快速发展历程,并用详细的数据说明了深圳高新技术产业、物流产业、金融产业等支柱产业的发展过程。   刘应力说,深圳是座非常年轻的城市,年轻意味着希望和未来。近年来,深圳的高新技术发展很快,不少本土企业已经在国际上享有很高的声誉。未来深圳的高新技术产业亟须得到提升,城市产业机构优化和升级,需要更多的基础性研究支撑。长期以来,深圳与中国科学院等国内知名的研究机构建立了紧密联系,并正在合作进行很多项目,清华大学、北京大学等一流院校也在深圳设立了研究生院。   刘应力表示,深圳市委市政府将为科学技术的研究和发展,尽可能地创造良好的环境。太赫兹是一项非常重要而有待开发的交叉前沿科学技术,很多发达国家都将太赫兹技术研究列入科技战略研究重点,太赫兹很可能成为未来高新技术发展的焦点。深圳热情欢迎与会的知名物理学家们,希望科学家们在深圳能够多走走、多看看,通过切身体会更全面、直观地了解深圳的企业和社会。同时,期待双方能在未来寻找到更多的合作机会,为全人类的科学技术发展做出贡献。   美国能源部核聚变项目研究负责人、物理科学家乔治博士代表与会嘉宾发言。他说,年轻的深圳充满了朝气,深圳人民通过勤劳和快节奏的工作和生活方式,正在描绘着深圳未来美好的发展前景和梦想。深圳市政府在经济社会快速发展的过程中,能够多方面听取专家和学者意见,这种做法令人钦佩。在这次短暂的相聚中,我们将根据所有的专业知识,对深圳未来的发展机遇、发展前景提供力所能及的帮助,为深圳这座城市未来的美好梦想做出贡献。   此次深圳太赫兹科学与技术发展国际研讨会,由中国科学院院士工作局和深圳市政府共同举办,深圳大学和深圳中国科学院院士工作基地承办。   什么是太赫兹?   太赫兹、红外线、毫米波是电磁波谱的一部分,太赫兹是指频率在0.1-10THz范围内的电磁波。它在长波段与毫米波重合,而在短波段与红外线重合。国际上对太赫兹的研究仅仅只有20多年的历史,人们对该波段电磁辐射性质的了解非常有限,以至于该波段被称为电磁波谱中的太赫兹空隙。科学家们普遍认为,太赫兹是一种新的、有很多独特优点的辐射源。虽然目前利用太赫兹开发的产品非常有限,但可以预计的是太赫兹将对航空、航天、天文、核聚变等多个领域带来革命性变化。   深圳大学于2005年10月成立了“深圳大学太赫兹技术研究中心”。
  • 上海微系统所与加拿大合作研究太赫兹技术
    2004年5月11日记者从在上海召开的“太赫兹物理及超快过程”国际研讨会上获悉,中国较早开展太赫兹技术研究的中科院上海微系统与信息技术研究所,正在与加拿大国家研究所合作开展能够产生太赫兹电磁波的源发生器的研究与制作。   太赫兹频段,是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹产生与检测方法,人们对该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的太赫兹空隙。目前国际上对太赫兹的研究仅仅只有20多年的历史,中国则不到10年。   据介绍,在医学治疗过程中照射的X光的光子能量高,对人体造成的伤害非常大。而应用目前国际上电磁波研究领域的新宠——太赫兹技术(1太赫兹=1012赫兹)制成的用于医疗诊断的成像设备,则能将这种照射对人体的伤害降低100万倍。   中科院微系统所曹俊诚研究员介绍说,加拿大在太赫兹研究的实验水平方面比较发达,而中科院上海微系统所则在揭示太赫兹现象的理论研究方面比较成功,双方的合作将有利于将理论与实践相结合,促进太赫兹领域技术的研发进程。   据介绍,太赫兹电磁波由于频带宽,是微波的1000倍,因此在通信方面有很大的应用前景。
  • 英国尝试用太赫兹射线“剿灭”癌症
    2006年11月,英国物理学家如今正在研制一种杀伤力最强的太赫兹射线,并尝试用它破坏生长在培养器中的皮肤癌细胞。利物浦大学的这一试验将帮助科学家进一步了解太赫兹技术在治疗人类疾病上的运用。据英国广播公司报道,这是科学家首次进行利用太赫兹技术杀伤癌细胞的试验,这一技术还将运用于遗传物质的识别。   太赫兹波是指频率在0.1至10太赫兹(波长为3000至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。   太赫兹射线不仅可以检测出脱氧核糖核酸(DNA)物质的转变,而且能够帮助医生根据个体患者的遗传信息实施相应的药物治疗。此外,由于太赫兹波具备穿透衣服、纸张、木头、墙体、塑胶和陶瓷等物体的能力,因而还被运用于探测隐秘武器、识别爆炸物和毒品。太赫兹波还能“感受”到分子的振动和旋转,因而可以用来对物质的内部进行深入研究。利物浦大学的研究人员如今正在开发这一“杀伤力”最为强大的技术,使其广泛运用于各个领域。   研究人员指出,细胞死亡的形式分成两大类:一是凋亡——细胞招致损伤而导致胀大和破裂 二是细胞的计划性死亡——细胞的自然老化。前者是在液体环境下迅速变化完成的,而后者则不是。这两种形式的不同之处在于细胞保持水分程度的差异。   利用太赫兹射线治疗皮肤癌正是建立在这样的理论基础之上——癌细胞与其他组织水分中的细胞差别甚微,通常癌细胞相对来说更大、更活跃。因而,含水量较多的癌细胞才能被组织水分中大量吸收的太赫兹射线杀死。   研究人员认为,现在迫切需要的就是从第四代光源中制造高能量太赫兹射线。太赫兹成像和太赫兹光谱能够破译出在低能量太赫兹射线下所得到的肿瘤影像的结构和成分 能量高的太赫兹射线有利于近场成像。而高清晰度的太赫兹成像和太赫兹光谱对识别癌细胞非常重要。   据介绍,基底细胞癌(BCC)是最常见的皮肤恶性肿瘤。这种皮肤癌细胞会对皮肤、组织甚至骨头造成损害,并且能导致死亡。40%的患者会转化为多发性病变。脸和脖子是最为常见的局部病变部位,常常需要实施大规模的整形外科手术。英国每年有3万多起BCC案例,65岁以上的人中有1/5的人可能罹患该病。   参与此项研究的利物浦大学物理学教授Peter Weightman说:“第四代光源的产生与直线加速器原型密不可分。而破坏组织培养器中癌细胞的太赫兹射线的部分能量来源就是加速器周围高速运转的电子。”“培养器是用来繁殖皮肤癌细胞的,而太赫兹射线是用来轰击这些癌细胞的。当太赫兹射线照射到培养器的时候,射线波被浸泡癌细胞的液体吸收,吸收放射性物质后的液体进入到癌细胞内部,从而将癌细胞彻底杀灭。”他补充道。   据悉,开发太赫兹射线项目是由英国西北地区发展署资助的,该项目的开发将用到由达斯伯里实验室开发的第四代光源的原型。
  • 首都师大太赫兹光电子学重点实验室项目通过验收
    11月28日,教育部组织专家在首都师范大学召开了太赫兹光电子学省部共建教育部重点实验室建设项目验收会议。验收专家组由南京大学吴培亨院士任、天津大学姚建铨院士、上海微系统所曹俊诚研究员、紫金山天文台史生才研究员、西安光机所范文慧研究员、中山大学王雪华教授、北京大学李焱教授七位专家组成。教育部科技司李武处长主持了验收会,北京市教委科研处赵胤慧处长和科技处主管翟昊同志代表共建单位参加会议。首都师范大学常务副校长宫辉力、科研处副处长赵云云代表依托单位参加验收会,太赫兹实验室学术委员会主任杨国桢院士,物理系领导张存林教授、朱一心教授以及实验室张岩研究员、赵国忠教授等骨干教师出席了会议。   张岩研究员介绍了实验室在研究成果、队伍建设和人才培养、开放交流、平台建设和运行管理等方面取得的成果,重点介绍太赫兹波谱学、太赫兹成像、太赫兹和红外无损检测、太赫兹与物质相互作用四个研究方向所取得的主要研究成果。随后专家组和与会领导现场考察了实验室。   经过认真讨论,专家组一致认为实验室在上述四个研究方向开展研究,定位准确,在基础研究方面的工作细致精彩,在应用研究方面的工作发展空间巨大,开展了大量卓有成效的研究工作,取得了相当大的进步。同时承担了包括973课题、863课题等多项国家级课题,在论文发表、专著出版、发明专利申请等方面取得了很好的成果,圆满完成了建设任务,专家组一致同意通过验收。同时,专家组还建议实验室进一步凝炼研究方向,突出特色,加大高水平人才培养与引进力度,向国家重点实验室的行列迈进。
  • 首都师大太赫兹光电子学重点实验室项目通过验收
    11月28日,教育部组织专家在首都师范大学召开了太赫兹光电子学省部共建教育部重点实验室建设项目验收会议。验收专家组由南京大学吴培亨院士任、天津大学姚建铨院士、上海微系统所曹俊诚研究员、紫金山天文台史生才研究员、西安光机所范文慧研究员、中山大学王雪华教授、北京大学李焱教授七位专家组成。教育部科技司李武处长主持了验收会,北京市教委科研处赵胤慧处长和科技处主管翟昊同志代表共建单位参加会议。首都师范大学常务副校长宫辉力、科研处副处长赵云云代表依托单位参加验收会,太赫兹实验室学术委员会主任杨国桢院士,物理系领导张存林教授、朱一心教授以及实验室张岩研究员、赵国忠教授等骨干教师出席了会议。   张岩研究员介绍了实验室在研究成果、队伍建设和人才培养、开放交流、平台建设和运行管理等方面取得的成果,重点介绍太赫兹波谱学、太赫兹成像、太赫兹和红外无损检测、太赫兹与物质相互作用四个研究方向所取得的主要研究成果。随后专家组和与会领导现场考察了实验室。   经过认真讨论,专家组一致认为实验室在上述四个研究方向开展研究,定位准确,在基础研究方面的工作细致精彩,在应用研究方面的工作发展空间巨大,开展了大量卓有成效的研究工作,取得了相当大的进步。同时承担了包括973课题、863课题等多项国家级课题,在论文发表、专著出版、发明专利申请等方面取得了很好的成果,圆满完成了建设任务,专家组一致同意通过验收。同时,专家组还建议实验室进一步凝炼研究方向,突出特色,加大高水平人才培养与引进力度,向国家重点实验室的行列迈进。
  • 我国提出新的太赫兹时间频率特性分析方法
    “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。   激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。   在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。   飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。   谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。   太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。   邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。(2010年1月21日)
  • 太赫兹技术助力空间技术仰望“芯”空
    他们,研制了我国第一台毫米波天文超导接收机;他们,在国际上首次实现高能隙氮化铌超导隧道结的天文观测;他们,研制了目前世界上最前沿的超导热电子混频器;他们,实现了我国首例千像元太赫兹超导成像阵列芯片… … 他们是中国科学院紫金山天文台太赫兹超导空间探测技术研究青年团队(以下简称太赫兹团队),多年来专注国际前沿太赫兹超导探测技术和空间天文应用研究,目前正在承担中国空间站巡天望远镜“高灵敏度太赫兹探测模块”研制任务,有望实现我国太赫兹超导探测技术在空间应用“零”的突破。 近日,这支年轻的团队被授予“中国科学院青年五四奖章集体”称号。仰望星空 探索未知 仰望星空是人类探索未知的本能,而宇宙的绮丽无法靠想象感知,只有“看见”才能了解。 “太赫兹天文探测能探索宇宙最久远的过去,为我们解释现代天文学中最重要的前沿问题提供先端手段。”太赫兹团队负责人、紫金山天文台研究员李婧告诉《中国科学报》。 在电磁波谱中,太赫兹波段包含部分毫米波、全部亚毫米波和部分远红外,其波长从3毫米到30微米,频率覆盖0.1~10太赫兹(太,T=1012)。太赫兹位于微波和红外之间,其研究手段也处于电子学向光子学过渡的区域,具有指纹性、穿透性和安全性等重要特性。 关于指纹性,李婧解释道,物质的晶格振动和分子转动等引起的能级跃迁都对应在太赫兹谱段,而不同物质的光谱位置、强度、形状均有差异,具有指纹般的唯一性,常被称作为太赫兹“指纹谱”。 不同于X射线对人体可能存在伤害,由于水对太赫兹具有强烈的吸收,因此太赫兹不会对物体尤其是生物组织产生有害的电离反应。 李婧介绍,当前,太赫兹超导探测技术可分为相干探测和非相干探测两大类。其中,太赫兹相干探测器可以同时探测信号的幅度和相位信息,主要应用于高频率分辨率的分子和原子谱线观测,以及具有高空间分辨率的天线干涉阵列;太赫兹非相干探测器则只能探测信号的幅度信息,而不获取其相位信息,主要应用于连续谱成像观测和宽频带中低分辨率谱线观测。 “成像还是光谱?天文学家都要。”李婧指出,根据科学目标的不同,天文学家对观测技术的需求也不尽相同:有时会需要大天区的多色成像,有时也需要高频率分辨率的谱线观测。坚守初“芯” 攻坚克难 据了解,地球大气层对太赫兹信号的强烈吸收一定程度上制约了太赫兹地面观测的能力,为了让中国在该领域站在国际前沿,将观测平台从地面移到太空几乎是必经之路。 李婧向《中国科学报》介绍,太赫兹探测技术的核心是“超导探测器”,是人类关于星空梦想的基石,更是重要的关键核心技术。 几十年来,从薄膜生长,到芯片制备,再到接收机系统集成与表征,太赫兹团队坚持自主的研发与研制路线,突破重重技术关卡。 李婧还记得当年团队在开展研究之初,一些发达国家已经在超导芯片的研制方面具备明显优势。“虽然我们实验室有超导探测技术研究方向的国际知名专家,但工作中仍然会遇到很多困难,比如:缺乏配套的超导芯片制备平台和实验仪器条件等。” 随着实验条件的逐步改善,太赫兹团队坚守初“芯”,攻坚克难,通过持续潜心研究,解决了技术瓶颈背后的基础物理问题。 “目前,我们已经成为国际上少有的完全掌握四种太赫兹天文主流探测技术的团队。”李婧说,“有了这些自主的关键核心技术支撑,我国的太赫兹天文发展之路上,就没有了关于探测器的后顾之忧,更不会受制于人。” 现在,太赫兹团队承担“高灵敏度太赫兹探测模块”研制任务,其技术指标达国际前沿。但李婧也指出:“作为我国首次空间太赫兹超导探测技术应用,其难度和挑战可想而知。”绽放芳华 无悔青春 这些年来,在中国科学院院士史生才的指导下,太赫兹团队迅速成长,曾获江苏青年五四奖章集体,其科研成果获国家科技进步奖二等奖、中国电子学会科技进步二等奖等奖励。 在太赫兹团队成员25人中,李婧是仅有的3名女性之一。她还记得自己2002年来到紫金山天文台读博士研究生,也是在那时首次接触到太赫兹超导空间探测技术研究。 “当时感觉这项工作不太适合女生,不仅需要经常拆装和搭建很重的低温实验仪器,有时还需要出野外。”这是李婧对该研究的第一印象。 但她没有知难而退,李婧带领太赫兹团队经常身裹实验服,“泡”在无尘实验室里,一待就是数个小时。与她为伴的是设备运行的嗡嗡轰鸣声、是化学试剂散发的刺鼻气味、是口干舌燥却不能饮水的坚持与隐忍。 惟其艰难,方显勇毅;惟其磨砺,始得玉成。历经挫折与荆棘,太赫兹团队终于研制出高性能的氮化铌超导隧道结混频器芯片,将我国太赫兹高能隙低温超导探测的水平推进到国际前列。 “高灵敏度超导探测器的测试,经常会收到轻微振动的干扰。”李婧说,为排除周边环境引起地面振动给实验结果带来的影响,我们经常选择凌晨做实验,白天进行数据分析。” 为了能选出适合太赫兹天文观测的优良台址,太赫兹团队成员无数次登上5100米以上的高海拔地区,顶着强风、忍着高反,他们在零下几十度的环境中调试设备,一干就是十几天。这些坚守的背后,是家里牙牙学语、蹒跚学步的孩子,是年近高龄、甚至身缠重病的老人。
  • 太赫兹应用:无标记识别脑胶质瘤细胞
    近日,由上海交通大学朱卫仁教授与重庆西南医院神经外科冯华教授/陈图南副教授团队、爱德万测试(中国)管理有限公司三方合作在国际高水平期刊《Biosensors and Bioelectronics》上发表题为“Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency”的研究结果,首次展示了一种针对不同胶质瘤分子分型细胞进行无标记识别的太赫兹超材料检测方法,该研究也得到了天津大学姚建铨院士团队的指导和支持。胶质瘤是颅内最常见的、造成最多死残病例的中枢神经系统肿瘤,目前临床主张进行整合诊断,将胶质瘤分为多个特定的分子亚类,其中IDH是与肿瘤进展、治疗反应和预后密切相关的经典分子分型标记。快速早期无标记区分IDH1野生/突变两种胶质瘤对于术中和术后早期精准诊疗具有重要价值。研究团队提出了一种无标记的脑胶质瘤细胞“分子分型(IDH1野生/突变)”生物传感超材料,通过在生物传感器表面加载人原代胶质瘤细胞进行太赫兹波谱探测,其频率偏移和峰幅变化与不同类型细胞及其浓度呈现相关性;通过观察超材料传感器共振频率的变化,可以区分不同分子分型的胶质瘤细胞,这种识别是在没有引入抗体等生化标记方法的情况下,在多个不同细胞浓度下实现的。基于该项研究结果,太赫兹超材料生物传感器在识别胶质瘤细胞类型中显示出了巨大的潜力,基于肿瘤分子分型的太赫兹波谱识别策略也拓展了新的太赫兹波生物传感技术发展方向。太赫兹技术在生命科学领域有广阔的应用前景,第十届光谱网络会议(iCS2021)邀请了四位来自国内外高校的专家学者们,届时,专家将介绍太赫兹技术的更多应用,点击下方链接立即报名哦。5月25-28日 光谱网络会议相约十年(iCS2021)专家报告推荐之光谱在生命科学领域的应用1、《太赫兹生物医学与生物物理发展概况》(中国生物物理学会-太赫兹生物物理分会 何明霞副会长/秘书长)2、《纳米-生物界面作用的定量分析》(中国科学院高能物理研究所 王黎明研究员)3、《面向生物医学检测的LIBS/Raman联用装置与方法研发》(四川大学 林庆宇副教授)4、《新型冠状病毒核酸检测技术研究进展》(阿尔伯塔大学 庞博博士)立即报名(免费哦):https://www.instrument.com.cn/webinar/meetings/iCS2021/
  • 2012太赫兹科学仪器及前沿技术专题研讨会在京成功召开
    仪器信息网讯 2012年8月8日-9日,由中国仪器仪表学会、“太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办的2012太赫兹科学仪器及前沿技术专题研讨会在北京紫玉饭店成功召开。本次会议的宗旨是为太赫兹科学仪器研制开发提供技术交流平台,为太赫兹仪器选购提供技术咨询,并为太赫兹仪器使用提供技术支撑。本次研讨会特别邀请到电子科技大学刘盛纲院士、天津大学姚建铨院士等太赫兹研究领域的多名专家学者做精彩报告,吸引了来自各科研院所、仪器公司的近100位代表参会。 会议现场   开幕式由太赫兹光电子学教育部重点实验室主任张存林教授主持,中国仪器仪表学会副理事长兼秘书长吴幼华先生,电子科技大学刘盛刚院士分别为大会致辞。 中国仪器仪表学会副理事长兼秘书长吴幼华先生 电子科技大学刘盛纲院士   首先,吴幼华先生代表主办方对各位代表表示热烈的欢迎。并介绍到,太赫兹科学仪器涉及的领域很广,专业性很强,是非常重要的交叉前沿领域,其技术进步为技术创新、国民经济发展和国家安全提供了一个非常诱人的发展机遇。   电子科技大学刘盛纲院士在致辞中指出,“重要的科学成就必须以实验研究为基础,在国际上重要的仪器设备是一流大学所必备的条件。近几年,中国也越来越多的认识到科学仪器的重要性。在过去的十几年中,日本人拿了6个诺贝尔奖,以色列拿了两个诺贝尔奖,我们相信中国一定会拿诺贝尔奖,但是不知什么时候。我们有很多好的思想,只是做不出实验结果来,我们国家要想成为科技大国,加强对仪器设备的支持是非常必要的。此外,中国的太赫兹技术发展非常快,也得到了国家自然科学基金委的大力支持,不过目前还存在一些问题,如投资不太集中等”。 国家自然科学基金委员会信息科学部张兆田主任   在开幕式中,国家自然科学基金委员会信息科学部张兆田主任还做了《信息优先资助领域及其基金资助工作》的相关报告。在报告中,张兆田主任介绍了信息科学的发展规律与特点,发展状况与未来发展趋势、重点优先发展领域等。其中,新型毫米波与太赫兹器件就是其优先发展的领域之一,其研究内容包括太赫兹核心器件及阵列检测器、微结构太赫兹功能器件;新型太赫兹探测技术等。此外,张兆田主任还介绍了信息科学部的部门设置、资助方针、资助格局、资助项目类型、项目受理评审过程等相关内容。 首都师范大学物理系张岩主任   此外,首都师范大学物理系张岩主任也介绍了太赫兹科学仪器及前沿技术专题研讨会的会议组织等相关情况。   大会报告 技术发展篇 太赫兹光电子学教育部重点实验室主任张存林教授 报告题目:基于飞秒激光的太赫兹时域光谱仪开发   张存林教授在报告中详细介绍了国家重大科学仪器设备开发专项“基于飞秒激光的太赫兹时域光谱仪开发”的相关情况。介于微波和红外之间的太赫兹是物理与信息领域重大科学技术问题,太赫兹波谱是反应分子结构和空间阵列的指纹谱。太赫兹时域光谱仪未来将向宽谱、高能量、小型化的方向发展,在科研及食品药品鉴定和检测方面具有很重要的应用价值和前景,对经济社会发展、民生改善具有很重要的支支撑作用。在市场方面,近三年来,已经有上百家应用单位有着明确的应用需求。据2010年度太赫兹市场报告的预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万到数亿美元,市场总额可达到数十亿美元。张存林教授还介绍说按此推算,“基于飞秒激光的太赫兹时域光谱仪开发”项目完成后,若中国市场可占到10%的全球市场份额,预期经济效益也将达到数亿美元。由此,也将拉动中关村高科技示范区高端仪器制造业及相关产业产值约10亿元人民币/年。 上海大学马国宏教授 报告题目:太赫兹脉冲的产生及波前控制研究   马国宏教授介绍到目前THz波的研究主要包括THz源、THz检测和THz传输等方面,要使THz波的研究成果得到广泛的应用,尤其是将THz技术应用到远红外光谱学中,有必要研究THz脉冲的波前控制以及各种THz光子学器件的工作原理,从而实现对THz辐射的人工调控。随后,马国宏教授介绍了上海大学超快光子学实验室近年来在THz波的产生、THz的主动和被动控制、THz光子学和THz自旋电子学等方面开展的一系列研究工作。其中,主要探讨了利用THz波与各种微结构相互作用实现THz波前的控制,包括THz偏振控制、抗反射、全吸收设计、THz全禁带光子晶体以及THz磁共振器件等。中科院紫金山天文台副研究员张文先生 报告题目:太赫兹高灵敏超导热电子探测器技术   张文先生谈到,太赫兹波段存在丰富的分子转动谱线和原子精细结构谱线,通过对这些分子谱线的高频率分辨率观测,可以研究天文、大气和深空探测等领域的重要科学问题。超导HEB混频器是1HTz以上灵敏度最高的相干探测器,已经成功应用到Herschel空间卫星、SOFIA天文台和地面APEX望远镜开展天文观测研究。张文先生所在系统改进了超导HEB热电子混频器的热点模型,深入理解其机制,率先实现了4K闭环制冷环境下的超导HEB混频实验;并研制国际上最高频率(5.3HTz)天线耦合超导HEB混频器,灵敏度率先突破5倍量子噪声极限。此外,张文先生还介绍了其课题组在太赫兹超导HEB混频器应用方面的研究工作。 天津大学姚建铨院士 报告题目:太赫兹技术及太赫兹仪器的发展趋势   姚建铨院士在报告中介绍到,随着太赫兹科学技术的飞速发展,对太赫兹科学仪器也不断提出新的需求,不仅推动了太赫兹科学仪器的快速发展,也催发了太赫兹前沿技术的不断涌现。同时,太赫兹科学仪器的前沿技术也表征着太赫兹科学仪器的先进性和尖端性,引领着太赫兹科学仪器的进一步发展。在这一部分内容中姚建铨院士介绍了太赫兹技术国内外研究及应用概况,光学太赫兹辐射源研究及太赫兹功能器件-微结构材料的应用等方面的情况。并且指出,微结构光学材料在激光技术、THz技术等方面可望实现传输、源、开关、放大、滤波、调制、吸收、偏振等功能,有十分重要的科学价值及实际意义。如果将微结构材料施加各种场(电、磁、声、光、热、机械等)作用可望产生新现象、出现新机理、实现新功能、制成新器件。此外,姚建铨院士还介绍了基于法布里-珀罗干涉仪的THz波长测试法及THz傅立叶变换光谱仪的相关研究工作。 首都师范大学赵国忠教授 报告题目:太赫兹波产生探测及太赫兹时域光谱技术   赵国忠教授谈到,对于太赫兹光谱应用来说,获得宽带太赫兹辐射至关重要,目前,实验室使用的宽带太赫兹辐射源以光整流和电导天线为主。随后详细介绍了基于飞秒激光的宽带光电导天线的设计、研制,光电导天线温控系统和太赫兹辐射测量装置的研制,光电导天线太赫兹辐射特性等方面的研究工作。另外,半导体表面太赫兹辐射可以提供方便的宽带太赫兹源,进一步研究非常必要。其中,富含缺陷的氮化铟有望代替砷化铟成为高效、实用的宽带太赫兹辐射源。此外,赵国忠教授还指出太赫兹发射光学的研究也有助于探索半导体表面和内部的载流子动力学。   此外,北京理工大学胡伟东教授、哈尔滨工业大学(威海)田兆硕教授、中国计量科学研究院孙青博士等也就太赫兹技术现状及研究进展做了精彩的报告。 北京理工大学胡伟东教授 报告题目:Progress in the Terahertz Pulse 3D Imaging System (220GHz) 哈尔滨工业大学(威海)田兆硕教授 报告题目:THz激光F-P旋转透过率研究 中国计量科学研究院孙青博士 报告题目:太赫兹光谱与功率计量技术   大会报告 应用篇 首都师范大学沈京玲教授 报告题目:太赫兹光谱技术在毒品检测中的应用研究   沈京玲教授介绍到,太赫兹波能够用于毒品检测和识别是基于下列两个事实:多数毒品在太赫兹波段具有特征吸收;多数包装材料如纸张、织物、塑料、木头,对太赫兹波是透明的。将两者结合起来,使太赫兹技术非常适于进行毒品的无损检测应用。随后,沈京玲教授详细的介绍了所在课题组近年来在毒品检测识别方面的相关工作:应用太赫兹光谱和成像技术对毒品进行品种鉴定和含量分析,完成了确定毒品纯度和有效成分含量的理论和实验方法;对隐藏在信封和包裹中的毒品进行探查;建立了含有38种纯度在90%以上的毒品的太赫兹光谱数据库等。 上海理工大学副院长朱亦鸣教授 报告题目:基于太赫兹技术的药物分析与检测   朱亦鸣教授介绍到,国内外现有药物检测技术手段无法有效的检测出假药,而且无法做到在线式检测。太赫兹波处于微波电子学与红外光子学的交叉、过渡区域,是被公认的有重要科学价值和巨大应用前景的频率窗口。太赫兹技术先后被列为“改变未来世界的10种技术”及“2011年六大类电子类新技术”之一,是分析分子有机功能基团最有效的手段。基于这些优势,朱亦鸣教授所在课题组利用时域太赫兹波谱系统对中西药做了相关检测,结果显示太赫兹光谱技术对各种药物鉴别率可达90%,扫描速度达到1s/片,可以做到无损探测及真正的在线检测和分析,并且结合HIPHOP模型,还可以进行药理基团的解析。 中国石油大学(北京)赵卉博士 报告题目:太赫兹技术在油气光学中的应用   赵卉博士在报告中介绍说,油气光学是研究油气物质的光学性质、光在油气介质中的传播规律和光学技术在油气领域应用的科学。它是在石油与天然气工程、地球探测与信息技术、材料科学与工程、物理学、光学工程等学科发展与支持的基础上建立起来的一个新兴交叉学科。针对国家重大需求,并且基于太赫兹与油气物质相互作用的认知,赵卉博士所在课题组建设了以油气资源、石油化工为研究对象的太赫兹波谱与探测技术平台,开发了油品光学性能透射式测试装置,岩石光学性能透射式测试装置,基于对岩石有机质、干酪根、基础油、汽油等多种体系的太赫兹频段特征吸收带的认知,建立了石油化工产品太赫兹光谱特性和理化性能之间的关系,为太赫兹技术在油气领域的应用提供了实验基础。   此外,中科院上海微系统所谭智勇博士、中科院工程物理研究院流体物理研究所助研朱礼国先生也就太赫兹技术的应用做了精彩的报告。 中科院上海微系统所谭智勇博士 报告题目:太赫兹量子器件及其成像应用 中科院工程物理研究院流体物理研究所助研朱礼国先生报告题目:超快太赫兹光谱在研究太阳能光伏材料中的应用   除了以上各位专家的报告之外,安捷伦科技(中国)有限公司叶伟斌先生,脉动科技有限公司陆明先生,先锋科技股份有限公司Albert Rsdo-Sanchez先生、Patrick F. Tekavec先生,顶尖科仪(中国)股份有限公司贺雪鹏先生也介绍了公司的产品特点及研发情况。 安捷伦科技(中国)有限公司叶伟斌先生 报告题目:安捷伦毫米波测试解决方案 脉动科技有限公司陆明先生 报告题目固体THz源和异步采样THz时域光谱系统 先锋科技股份有限公司Albert Redo-Sanchez先生 报告题目:Terahertz Instrumentation Status and Market Outlook 先锋科技股份有限公司Patrick F. Tekavec先生 报告题目:High Power THz sources 顶尖科仪(中国)股份有限公司贺雪鹏先生 报告题目:飞秒光纤激光器及其在太赫兹光谱学中的应用   报告会之后,与会代表参观了首都师范大学太赫兹光电子学教育部重点实验室,相关工作人员为与会代表详细介绍了实验室整体概况,并就相关仪器及其研究的课题同与会代表进行了深入的沟通。 与会代表参观太赫兹光电子学教育部重点实验室 太赫兹光电子学教育部重点实验室部分仪器设备 与会代表合影
  • 2005年香山科学会议探讨“太赫兹科学技术的新发展”
    太赫兹(Terahertz)波在电磁波谱中占有一个很特殊的位置,并具有一系列特殊性质和重要的学术应用价值。在2005年12月举行的以“太赫兹科学技术的新发展”为主题的第270次香山科学会议上,与会专家就发展我国太赫兹科学技术进行了交流和研讨。   “空白”渐成热点   太赫兹波是指频率在0.1~10THz(波长为3000~30微米)范围内的电磁波。它在长波段与毫米波、亚毫米波相重合,而在短波段与红外线相重合,在电磁波谱中占有一个很特殊的位置。太赫兹这一位置正好处于科学技术发展相对较好的微波毫米波与红外线光学之间,但由于太赫兹波源问题一直未能得到很好的解决,因此形成了一个在研究上相对落后的“空白”。太赫兹在长波方向主要依靠电子学技术,而在短波方向则主要依靠光子学技术,在电子学与光子学之间的这一“空白”蕴含着深刻的物理含义。   经过近十几年的研究,国际科技界认为,由于太赫兹的频率很高,所以其空间分辨率也很高 又由于脉冲很短(飞秒),具有了很高的时间分辨率,太赫兹成像技术及太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,太赫兹的能量很小,不会对物质产生破坏作用,所以与X射线相比更具优势。   国际上对太赫兹辐射已经达成了如下共识,即太赫兹是一种新的、有很多独特优点的辐射源 太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。   目前,包括长青藤大学在内的数十所美国大学都在从事太赫兹研究,美国国家基金会、国家航天局等都对太赫兹研究给予了大规模的投入 英国、德国、俄罗斯的多所大学也都设立了专门进行太赫兹研究的项目。在亚洲,韩国、新加坡等也都积极开展了这方面的研究工作。目前已经在全世界范围内形成了一个太赫兹技术的研究高潮。   诱人的机遇   会议执行主席、电子科技大学刘盛纲院士介绍说,太赫兹的独特性质使它具有非常重要的多方面应用。   在科学研究方面,太赫兹成像和太赫兹波谱学在物理学、化学、生物医学、天文学、材料学和环境科学方面有着极其重要的应用。太赫兹波除了可以成像外,还可作为一种特殊的探针用来对物质内部进行深入研究,利用太赫兹辐射还可以探测出高温、高密度等离子体中密度的分布空间。   太赫兹在生物医学应用上被一致看好,如皮肤癌的诊断和治疗、药物的分析和检测、大分子生物学研究的发展等。由于生物大分子的振动和转动频率均在太赫兹波段,因此太赫兹在粮食选种、优良菌种的选择等农业和食品加工行业有着良好的应用前景。   太赫兹辐射可以穿透烟雾这一特点,还可用于检测有毒、有害分子,在环境监测和保护方面有着重要的作用。利用太赫兹的穿透特性,美国已经开始用太赫兹技术检查邮件和识别毒品,并用于对航天飞机的无损探伤。   太赫兹在雷达和通信方面,特别是在太空通信方面的巨大优势是没有疑问的。太赫兹卫星太空成像和通信技术将成为一个重要的研究领域。而且太赫兹技术是新一代IT产业的基础。在日本,以太赫兹技术为基础的新一代IT产业已开始逐步形成。   突破关键技术“瓶颈”   刘盛纲说,在太赫兹技术及应用中,辐射源和检测技术是两个主要问题。大功率太赫兹辐射源研究是太赫兹技术发展的重要环节,在研究中既要重视半导体太赫兹源和基于光子学的太赫兹源,又要重视真空电子学在太赫兹领域可能有的重要贡献。太赫兹探测技术是研究的另外一个重要环节,既要重视发展温室的太赫兹检测技术,也要重视灵敏度高的、低温检测系统。此外,太赫兹功能部件如传输线等的研究也很重要。   与会专家建议,加强太赫兹在国防及国家安全方面的应用研究,如太赫兹穿透物质成像技术可用于太赫兹雷达、精确制导等 尽快建立实用的、可调谐的、高功率的太赫兹研究平台,这将有助于推动我国太赫兹技术的研究与应用。通过国家投入、鼓励企业参与、加强国内外交流等,力争用两个五年计划的时间,即到2015年,使我国在太赫兹源、太赫兹检测、成像及波谱技术等关键领域都有所突破,在理论和实验研究方面与国际同行站在同一个起跑线上,并取得一批拥有自主知识产权的实用技术和产品。
  • 2006年第31届红外、毫米波与第14届太赫兹联合国际会议在沪隆重召开
    2006年9月18日上午,由中科院上海技术物理研究所、东南大学、上海市对外文协等单位主办的IRMMW-THz 2006红外、毫米波与太赫兹电子学国际会议隆重拉开帷幕,今起,包括诺贝尔奖得主、著名科学家K.Vonkliting在内的500多位国内外红外、太赫兹及其毫米波领域的知名专家将聚会上海,围绕“红外、太赫兹和微波成像”、“红外、太赫兹和微波天文学、大气和环境科学应用”等热点问题开展交流、探讨。他们之中有IEEE高级会员、美国、俄罗斯、中国等多个国家的科学院或工程院院士、联合国发展计划总署 (UNDP) 高级科学顾问、大功率毫米波发生器与许多重要器件、仪器设备的发明人等,几乎代表了世界红外、微波、太赫兹领域的精英。   红外、毫米波与太赫兹国际会议是红外、毫米波与太赫兹领域内最具权威性的国际系列性年度会议。1974年第一届红外与毫米波国际会议在美国召开,1993年第一届太赫兹国际会议在德国召开,此后在各自的领域内都产生了巨大的影响。自2004年起,相关领域的科学家决定将这两个国际会议合并召开。合并后的会议涉及领域更广泛,科技内涵更深刻,成为国际上规模大,影响大的系列学术会议。其涉及内容与人类在通讯、信息、能源、航天、航空、遥感、遥控、安全、预警和监测等高新技术活动密切相关,因此一直受到科学家、产业界以及各国政府的高度重视。   本次会议得到了中国自然科学基金会、中国科学院、上海市对外文化交流会以及中国物理学会、电子学会、光学学会的大力支持和赞助。还得到了美国电气和电子工程师协会 (IEEE) 的支持。   相关新闻:上海技物所成功申办第31届红外、毫米波和太赫兹国际会议   上海技物所成功争得第31届红外、毫米波和太赫兹国际会议的主办权   经国务院及中国科学院的批准,在上海技物所领导及中科院院士沈学础的努力下,上海技物所成功争得了“第31届红外、毫米波与太赫兹国际会议”(2006年)的主办权。   红外、毫米波与太赫兹国际会议是红外与光电技术研究领域最高级别的国际系列性会议,一直受到各国科学家的高度重视,在该领域具有深远的影响。大会的成功申办,是中国红外毫米波与太赫兹发展的难得机遇。   红外、毫米波与太赫兹都是电磁波谱的一部分。其辐射包括相干辐射的产生、传播和接收构成了内容十分丰富,用途特别广泛的研究领域。与航空、航天、遥感、遥控、预警、监测等一系列有关国防、国家安全、国民经济以及人民生活的重大技术应用密切关联,是国际学术界、产业界和各国政府十分重视和关注的科技领域。我国在红外与毫米波的科技应用上目前距离国际先进水平还有相当的差距。
  • 太赫兹成像技术获重大突破 有望迎产业化契机
    来自科技部网站的消息,由弗劳恩霍夫物理测试技术研究所与Hubner公司联合研制的太赫兹信件安检设备即将投放欧洲市场。而国内电子科技集团38所亦研究出首台太赫兹人体安检设备。种种迹象显示,太赫兹技术正在迎来关键的产业化契机,其未来在安检、探测领域的应用,有望开辟可观的市场份额。   安全性大幅提高   作为&ldquo 本世纪又一场科技前沿革命&rdquo 的技术,太赫兹在电磁波谱里位于毫米波与红外之间的&ldquo 真空地带&rdquo ,其频率约为1万亿赫兹,具有很强的穿透性。太赫兹成像具有独特优势,可以对无法目测的物体进行三维立体成像。该技术目前已经初步应用于检查邮件、识别炸药及无损探伤等安全领域,但还仅是初步应用。   从技术角度,太赫兹安检设备在安全性和可靠性方面都将有很大的提高。太赫兹安检设备采用被动探测,即发射设备不存在任何的电离或电磁辐射,因此对被检测人员和物体没有任何伤害。此外,考虑到不同物体发射的射线均具有明显的特征,太赫兹技术有助于发现那些过去常规安检设备无法或很难发现的物质。无论是金属材料、爆炸性粉末还是非法食品添加剂等物质,在太赫兹成像设备面前将完全显形。   可应用于生命科学等领域   除了太赫兹安检设备方面,太赫兹电磁波更可应用于生命科学、材料科学、天文学、大气与环境监测、通讯等多个重要领域。太赫兹无线通信可以解决目前信息传输受限的问题,可以承载更大的信息量,是目前所知能满足大数据无线传输速率通信要求的唯一通信手段。   从现实意义来看,反恐、国家安全等使用的太赫兹安检设备将颇具产业化前景。我国已经打破欧美等发达国家在太赫兹技术方面的垄断,国内亦有多家公司经过长期技术攻关,逐渐掌握核心技术,为太赫兹技术的产业化道路做出良好的铺垫。   国内已有突破   国内企业方面,太赫兹技术也有比较大的突破。四创电子的大股东华东电子工程研究所(中国电子科技集团公司第三十八研究所)太赫兹人体安检设备样机已经面市,产品将主要应用于机场、海关、地铁、文化遗产等重要建筑物以及大型活动现场的安全检查。上海现代光学系统重点实验室与上海市分析检测协会合作研发出&ldquo 基于太赫兹技术的地沟油快速检测仪&rdquo 。聚光科技作为实验室的合作单位,有望率先使用其太赫兹技术。大恒科技在太赫兹设备关键器件方面具有很好的积累,国家科委立项的&ldquo 基于飞秒激光的太赫兹光谱仪&rdquo 和&ldquo 软X射线/极紫外无谐波光栅单色仪&rdquo 2014年均已进入了产品的研发阶段。
  • 科学家成功成功研制太赫兹摄像机
    2009年7月,据俄罗斯《纽带》网报道,一个国际性研究小组日前成功研制出了一种可用于生产“透视”摄像机的新技术。这项技术的基础是一种纳米级的电子管,借助它,摄像机将能够在一、二十米外看到隐藏在衣服下的武器、装饰品和其他物品。这种“透视”摄像机被称为太赫兹摄像机,其神奇的透视效果是通过接收物体辐射出的频率在0.1至10太赫兹范围内的电磁波而获得的。所谓太赫兹波是指频率在 0.1至10太赫兹范围内的电磁波,在电磁波谱上位于微波和红外线之间。   这种频率的电磁波具有较强的穿透能力,可以非常容易地穿过纸张、塑料、棉布和各种 衣物。所有人和物体都会放射出自然的低水平的电磁辐射,但它们发出的波的信号是不同的。借助物质的这一特性,通过特殊的接收设备便能够绘制出物体的形状。   与 X射线、毫米波、红外光等类似,太赫兹波也可以成像,但它具有穿透力强、清晰度高、辐射量小的特点。太赫兹波的另一大专长就是辨别物体的化学性质,它甚至 能分辨出被检查物是爆炸物还是药品。除在反恐方面的应用之外,太赫兹波在物理学、医学成像、通讯等方面都具有重大的应用前景。   科学家们指出,通过获取太赫兹电磁波来成像的设备不但可用来诊断疾病,还可用于制作监测武器和各种违禁品的安检设备。   虽然研究人员早在上世纪90年代便认识到太赫兹波的存在,并认为可借助纳米级的电子管接收到它们。但这一想法直到不久前才真正地成为现实。在科学家们的不懈努力下,一种基于纳米电子管的透视摄像机终于问世。   至于制作投射摄像机的成本,科学家们指出,在实现大规模生产的情况下,这种太赫兹成像设备的价格将不会很高,而且,其还能够在常温下工作。
  • 西安光机所在太赫兹消色差超透镜研究方面取得新进展
    近日,瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展,相关研究成果发表于Journal of Science: Advanced Materials and Devices(IF = 7.38)。论文第一作者为博士生江晓强,通讯作者为范文慧研究员。   超透镜是一种二维平面透镜结构,具有体积小、重量轻、易于集成等特点,可实现对太赫兹波振幅、相位、偏振等参量的灵活调控,有望解决天然材料在太赫兹频段电磁响应不足而导致的效率低、体积大等问题。近年来,消色差超透镜由于能够有效消除宽频带成像产生的色差问题而受到广泛关注。然而,如何在实现宽频带消色差的同时,赋予超透镜连续变焦的能力,仍然是目前亟待解决的难题。   针对此问题,研究团队首先基于Ⅲ-Ⅴ族半导体材料锑化铟(InSb)设计了性能优异的单元结构。随后,研究团队采用几何相位和传输相位相结合的方式,巧妙设计超透镜单元结构的排布方式与空间取向,采用单层超透镜实现了太赫兹波的宽频带聚焦,有效消除了色差现象。进一步地通过改变器件工作温度,进而调控器件单元结构的相位补偿范围,实现了焦距736.25 μm (NA = 0.62)至 861.02 μm(NA = 0.56)的连续变焦。本研究成果为设计多功能消色差超透镜提供了一种新思路,有望进一步拓展太赫兹频段超透镜在显微成像和内窥镜等领域的实际应用。 图1 连续变焦消色差超透镜工作示意图   西安光机所范文慧研究员带领的太赫兹光子学与表面微纳智造团队已在超宽频谱太赫兹波产生与探测、超快太赫兹波谱成像与应用、太赫兹频段超材料与超表面功能器件等领域开展持续研究并取得一定突破。相关研究成果陆续发表于Angewandte Chemie - International Edition、Carbon、Journal of Science: Advanced Materials and Devices、Optics Letters、Optics Express、Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy、Nanomaterials等国际知名期刊,获得了国内外同行的广泛认同。
  • 微电子所成功研制太赫兹倍频器核心元件
    近日,中国科学院微电子研究所微波器件与集成电路研究室(四室)太赫兹器件研究组研制出截止频率达到3.37THz的太赫兹肖特基二极管和应用于太赫兹频段的石英电路。该器件作为太赫兹倍频器核心元件,经中电集团41所验证,性能与国际同类产品相当。   太赫兹波指的是频率在0.1THz~10.0THz范围的电磁波。它具有很多优异的性质,被美国评为“改变未来世界的十大技术”之一。太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有着重要的应用。具有极高截止频率的肖特基二极管能够在室温下实现太赫兹波的混频、探测和倍频,是太赫兹核心技术之一 此外,在低损耗的衬底上实现太赫兹电路是太赫兹技术得以实现的基础。   由四室主任金智研究员领导的太赫兹器件与电路研究组针对太赫兹电路的关键技术开展研究,对器件外延材料生长的进行了设计与优化,突破了低电阻欧姆接触合金、肖特基微孔刻蚀和空气桥腐蚀技术等关键制作工艺,有效地降低了器件的串联电阻和寄生电容,实现了可在太赫兹频段应用的肖特基二极管,并开发了多种肖特基二极管的集成方式(见图1),太赫兹肖特基二极管(见图2)器件的最高截止频率达到3.37THz,可广泛应用于太赫兹波的检测、倍频和混频。   为了解决太赫兹频段下外围电路损耗高的问题,研究人员开发出器件与电路衬底背面减薄技术,并采用低介电常数石英材料实现了太赫兹电路,研制出厚度小于50um,可应用于太赫兹频段核心电路(见图3),极大地减小了在太赫兹频段的损耗,提高了电路模块的效率。   课题组与中电集团第41研究所联合开展了太赫兹倍频器的验证工作,采用自主研制的太赫兹肖特基二极管器件实现了倍频器在太赫兹频段的工作,在170~220 GHz的倍频效率为3.6%,220~325 GHz的倍频效率达到1.0%(见图4),可实现宽频带倍频,其输出功率和倍频效率与国外VDI同类产品相当,该倍频器可用于构建宽频带太赫兹源,在太赫兹成像、太赫兹通信和卫星遥感方面有着广阔的应用前景。对于太赫兹系统的核心器件(主要是肖特基二极管)的国产化具有重要意义,为国内的太赫兹技术的发展提供良好的器件和工艺支撑。
  • 美研制出太赫兹设备可在20米外探测爆炸物
    华盛顿2010年7月11日电(记者任海军)美国纽约州伦斯勒理工学院11日发布新闻公报称,该机构研究人员日前在美国国防部大力资助下研制出一种太赫兹遥感设备,可在20米外探测目标物体是否装有爆炸物。   公报说,这一设备借助激光诱导荧光生成可以与太赫兹波相互作用的等离子体,后者可在20米外获得目标物体的太赫兹波“指纹”(波谱)。由于每种物质都有独特的太赫兹“指纹”,将目标物质的“指纹”与探测器中事先已存储的大量太赫兹波谱对比,可以判定目标物体性质及其内部情况。   太赫兹波是指频率在0.1太赫兹至10太赫兹(波长为3000微米至30微米)范围内的电磁波,在电磁波谱上位于微波和红外线之间。这一波段的电磁辐射具有很强的穿透能力,可以作为一种特殊的“探针”用来对物质内部进行深入研究。   研究人员研制的新设备可以“看透”衣服和包装物,迅速确定除金属和液体外的几乎所有其他物质的太赫兹“指纹”,而且与X射线检测设备不同,它基本不威胁人体健康。   研究人员表示,这一设备携带方便,可用于遥感探测机场丢弃的背包、行李中是否有爆炸物、非法药品或其他危险物质 在军事上,它可以用于搜寻炸弹藏匿处。   研究人员预测,几年以后,太赫兹科技将更广泛地应用于工业和防务相关领域。   这项研究成果11日发表在英国《自然光子学》杂志上。
  • 盛志高研究团队成功研发出一种主动智能化的太赫兹电光调制器
    近日,中科院合肥研究院强磁场中心盛志高研究团队依托稳态强磁场实验装置成功研发了一种主动智能化的太赫兹电光调制器。相关研究成果发表在国际期刊 ACS Applied Materials & Interfaces 上。虽然太赫兹技术具有优越的波谱特性和广泛的应用前景,但其工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。其中,围绕智能化场景应用,采用外场对太赫兹波进行主动、智能化的控制是这一领域的重要研究方向。瞄准太赫兹核心元器件这一前沿研究方向,强磁场中心磁光团队继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器[Adv. Optical Mater. 6, 1700877(2018)]、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器[ACS Appl. Mater. Inter. 12, 48811(2020)]、2021年发明一种基于声子的新型单频磁控太赫兹源[Advanced Science 9, 2103229(2021)]之后,选择关联电子氧化物二氧化钒薄膜作为功能层,采用多层结构设计和电控方法,实现了太赫兹透射、反射和吸收多功能主动调制(图a)。研究结果表明,除了透射率和吸收率,反射率和反射相位也可被电场主动调控,其中反射率调制深度可以达到99.9%、反射相位可达~180o调制(图b)。更为有趣的是,为了实现智能化的太赫兹电控,研究人员设计了一种具有新型“太赫兹-电-太赫兹”的反馈回路的器件(图c)。不管起始条件和外界环境如何变化,该智能器件可以在30秒左右自动达到太赫兹的设定(预期)调制值。(a)基于VO2的电光调制器示意图(b)透射率、反射率、吸收率和反射相位随外加电流变化(c)智能化控制原理图这一基于关联电子材料的主动、智能化太赫兹电光调制器的研发为太赫兹智能化控制的实现提供了新的思路。该工作获得了国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金的支持。文章链接:https://pubs.acs.org/doi/10.1021/acsami.2c04736
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制