当前位置: 仪器信息网 > 行业主题 > >

数字轴上全息显微镜

仪器信息网数字轴上全息显微镜专题为您提供2024年最新数字轴上全息显微镜价格报价、厂家品牌的相关信息, 包括数字轴上全息显微镜参数、型号等,不管是国产,还是进口品牌的数字轴上全息显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字轴上全息显微镜相关的耗材配件、试剂标物,还有数字轴上全息显微镜相关的最新资讯、资料,以及数字轴上全息显微镜相关的解决方案。

数字轴上全息显微镜相关的论坛

  • 便携式全息显微镜检测细菌在美发明成功

    加州大学洛杉矶分校(UCLA) Ozcan教授称,“医生可以使用这些设备来改善偏远地区的卫生健康问题”。  该便携式设备使用激光而不是镜头识别中水、食物或血液中的病菌。廉价的造价还不到 100美金 (60 英镑)。其生成的图像可以被上载到远程计算机作进一步的分析。科学家们希望该技术将有助于缺乏先进的诊断设备的地区提高医疗健康服务。有关显微镜的发明内容,加利福尼亚大学洛杉矶分校 (ucla)的研究人员已经发表在《Biomedical Optics Express》。微三维技术  该设备有两种操作模式:“传输模式”可以分析水和血液等液体,“反射模式”则可以产生高密度物质表面的全息图像。 “传输模式很好的观测透明的细胞或薄片”,Leicester大学先进显微镜中心Karl Ryder博士解释说。“但是,如果你想看看固体的表面,不能使用传输模式,因为光线不会穿透过去”。在反射模式中,显微镜使用全息技术产生样品的三维图形。“你采用一束激光并使用分束镜分成两束,然后使用这两束激光照亮样品”。“你可以再用数学模型让重组的两束光产生三维图形”。廉价芯片  设计的关键优势是它采用廉价的电子元件而不是昂贵的镜头。Ryder博士说,“在此系统中没有光学器具,使得体积做得很小,而且用来看小样品,你不需要复杂的聚焦”。而且显微镜使用类似iPhone 和Blackberry手机中常见的数码照片感应器。这些仅用到少于15美金的成本。尽管它的价格低,研究者声称该显微镜可以监视难检测的细菌如大肠杆菌的暴发。UCLA教授Ozcan表示,“在水和食物检测低浓度大肠杆菌是十分艰巨的任务,这个显微镜可以提供现场调查的方案”。  该设备可以获得原始数据,但简单的设计意味着需要具有计算能力的外部设备进一步处理。用户可以转发图像数据到他们的手机、笔记本电脑、或上传到互联网服务器。Ozcan教授相信该显微镜可以为发展中国家的医务工作提供不可估量的价值。“只需要简单培训,在缺乏医疗检测设备的偏远地区,医生可以使用这些设备提高医疗健康服务。

  • 干货!——微纳器件全息显微镜DHM样品观察结果

    干货!——微纳器件全息显微镜DHM样品观察结果

    数字全息显微镜在的非扫描成像特性在微纳表征等方面有独特优势,在国内越来越热门,2016年北大和清华相继购入反射式数字全息显微镜,用于微纳和电子器件等应用。[img=液体透镜形变,384,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271422_01_1546_3.gif[/img][img=24.7MHz表面声波,384,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271422_03_1546_3.gif[/img][b]液体透镜形变 24.7MHz表面声波[/b][img=MEMS麦克风,384,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271423_01_1546_3.gif[/img][img=MEMS微镜,384,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271424_01_1546_3.gif[/img][b]MEMS麦克风 MEMS微镜[/b][img=MEMS悬臂梁,384,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271425_01_1546_3.gif[/img][img=MEMS微执行器,384,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271425_02_1546_3.gif[/img][b]MEMS悬臂梁 MEMS微执行器[/b][img=超声传感器,384,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271426_01_1546_3.gif[/img][img=动态形貌,384,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271426_02_1546_3.gif[/img][b]超声传感器 动态形貌刻蚀[/b][img=,384,192]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271435_01_1546_3.gif[/img][img=,384,244]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271435_02_1546_3.png[/img][b]细胞筛选-HeLa cells treated with Doxorubicin 红细胞3D图[/b][img=,384,200]http://ng1.17img.cn/bbsfiles/images/2017/09/201709271436_01_1546_3.gif[/img][b]酵母菌干重实时测量[/b]

  • 测量材料动态的3D形貌,效果请看视频,基于菲涅尔衍射的数字全息重建技术

    数字全息显微镜DHM测量材料动态的3D形貌,亚纳米分辨率,基于菲涅尔衍射的数字全息重建技术 [table=100%][tr][td][img=动态3D细胞监测,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241018_01_1546_3.jpg!w690x138.jpg[/img]仅0.001秒即可测出物体三维形貌,并且是亚纳米的分辨率。不同于传统白光干涉仪、共聚焦显微镜、扫描探针轮廓仪等需要扫描的成像方式,DHM仅需0.001秒采集单张全息图即可测出物3D形貌信息,做到了快速动态监测。 和传统全息术不一样的是没有采用干板而是采用CCD记录全息图,全息图中 光强图:提供与传统显微镜一样对比度的图像 相位图:提供量化数值,得以对被测物体进行精确三维测量 该系统为预放大全息显微镜,其中的相位图解析中用到了大量的算法,实时相位解包裹技术 实时形貌测量的案例二:石墨烯薄膜受力形变实时测量[img=薄膜形变实时测量,384,216]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241030_01_1546_3.gif!w384x216.jpg[/img][img=MEMS面内面外运动测量,201,220]http://ng1.17img.cn/bbsfiles/images/2017/11/201711241030_02_1546_3.gif!w201x220.jpg[/img][/td][/tr][/table]

  • 显微镜数字化改造求助

    我处有一台奥地利REICHERT的金相显微镜,型号应该是Nr。 261640。30多年的机器,想做数字化改造。高手指点一下,是否有改造价值。谁可以干这个活。

  • 电子显微镜的现状与展望(ZT)

    摘要: 本文扼要介绍了电子显微镜的现状与展望。透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 关键词 透射电子显微镜 扫描电子显微镜 仪器制造与发展 中图法分类号 TN16 O766.1 Q336    电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[1]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[2]。   电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。 半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究[3]。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。本文仅讨论使用广泛的透射电镜和扫描电镜,并就上列几个方面作一简要介绍。部分透射电镜和扫描电镜的主要性能可参阅文献[1]。 透射电子显微镜 1、高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年代初形成的高分辨电子显微学(HREM)是在原子尺度上直接观察分析物质微观结构的学科。计算机图像处理的引入使其进一步向超高分辨率和定量化方向发展,同时也开辟了一些崭新的应用领域。例如,英国医学研究委员会分子生物实验室的A.Klug博士等发展了一套重构物体三维结构的高分辨图像处理技术,为分子生物学开拓了一个崭新的领域。因而获得了1982年诺贝尔奖的化学奖,以表彰他在发展晶体电子显微学及核酸—蛋白质复合体的晶体学结构方面的卓越贡献[4]。 用HREM使单个原子成像的一个严重困难是信号/噪声比太小。电子经过试样后,对成像有贡献的弹性散射电子(不损失能量、只改变运动方向)所占的百分比太低,而非弹性散射电子(既损失能量又改变运动方向)不相干,对成像无贡献且形成亮的背底(亮场),因而非周期结构试样中的单个原子像的反差极小。在档去了未散射的直透电子的暗场像中,由于提高了反差,才能观察到其中的重原子,例如铀和钍—BTCA中的铀(Z=92)和钍(Z=90)原子[5]。对于晶体试样,原子阵列会加强成像信息。采用超高压电子显微镜和中等加速电压的高亮度、高相干度的场发射电子枪透射电镜在特定的离焦条件(Scherzer欠焦)下拍摄的薄晶体高分辨像可以获得直接与晶体原子结构相对应的结构像。再用图像处理技术,例如电子晶体学处理方法,已能从一张200kV的JEM-2010F场发射电镜(点分辨本领0.194nm)拍摄的分辨率约0.2nm的照片上获取超高分辨率结构信息,成功地测定出分辨率约0.1nm的晶体结构[6]。 2.像差校正电子显微镜 电子显微镜的分辨本领由于受到电子透镜球差的限制,人们力图像光学透镜那样来减少或消除球差。但是,早在1936年Scherzer就指出,对于常用的无空间电荷且不随时间变化的旋转对称电子透镜,球差恒为正值。在40年代由于兼顾电子物镜的衍射和球差,电子显微镜的理论分辨本领约为0.5nm。校正电子透镜的主要像差是人们长期追求的目标。经过50多年的努力,1990年Rose提出用六极校正器校正透镜像差得到无像差电子光学系统的方法。最近在CM200ST场发射枪200kV透射电镜上增加了这种六极校正器,研制成世界上第一台像差校正电子显微镜。电镜的高度仅提高了24cm,而并不影响其它性能。分辨本领由0.24nm提高到0.14nm[7]。在这台像差校正电子显微镜上球差系数减少至0.05mm(50μm)时拍摄到了GaAs〈110〉取向的哑铃状结构像,点间距为0.14nm[8]。 3、原子尺度电子全息学 Gabor在1948年当时难以校正电子透镜球差的情况下提出了电子全息的基本原理和方法。论证了如果用电子束制作全息图,记录电子波的振幅和位相,然后用光波进行重现,只要光线光学的像差精确地与电子光学的像差相匹配,就能得到无像差的、分辨率更高的像。由于那时没有相干性很好的电子源,电子全息术的发展相当缓慢。后来,这种光波全息思想应用到激光领域,获得了极大的成功。Gabor也因此而获得了诺贝尔物理奖。随着Mollenstedt静电双棱镜的发明以及点状灯丝,特别是场发射电子枪的发展,电子全息的理论和实验研究也有了很大的进展,在电磁场测量和高分辨电子显微像的重构等方面取得了丰硕的成果[9]。Lichte等用电子全息术在CM30 FEG/ST型电子显微镜(球差系数Cs=1.2mm)上以1k×1k的慢扫描CCD相机,获得了0.13nm的分辨本领。目前,使用刚刚安装好的CM30 FEG/UT型电子显微镜(球差系数Cs=0.65mm)和2k×2k的CCD相机,已达到0.1nm的信息极限分辨本领[10,11]。

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 【讨论】光学显微镜升级为数码显微镜的方法

    【讨论】光学显微镜升级为数码显微镜的方法

    数码目镜数码目镜也称为显微相机,可以使现有的普通光学显微镜立刻升级为数码显微镜显微相机,是专门为普通光学显微镜图像数字化而开发设计的。她具有安装简便,通用性强、使用成本低廉、功能齐全、简单易用等特点。安装只需要2个步骤:1、取下原有的显微镜目镜,2、插入电子目镜替换原有目镜。即可通过USB线缆将显微镜下的图像传输至电脑进行实时显示,并可以随时抓怕冻结图像、录像、测量长度、角度、弧度、矩形面积及周长、不规则图形面积及周长、细胞计数、色彩分割、伪彩色还原、虚拟3D、图像边缘识别、傅立叶变换、光点测量及部分PS图像处理功能。可满足大多数专业应用。非常适合教师教学和装备数字化实验室、医学研究、工业生产(PCB线路版检查,IC质量控制)、医疗(病理切片观察)、食品(微生物菌落观察、计数)、科研、教育(教学、演示、学术交流)、公安(印章验证、弹头检测)等领域...... DCM系列显微相机从普教级到科学级有十几个型号,可以按照不同的要求,选择合适的配置。显微相机的光学接口为国际标准目镜尺寸,适用于任何目镜筒内径为23.2mm、30.0mm或者30.5mm的各类生物显微镜、体视显微镜、金相显微镜、荧光显微镜、偏光显微镜、熔点仪、硬度计等光学设备。另有C-Mount接口的专用型号,可配在标准的C接口上使用。显微相机的光学部分全部采用高透光率优质光学玻璃制成,比树脂镜头产品性能有极大的提高。组装车间装备有千级无尘,超高压静电除尘设备,并采用新型防尘结构,确保每件产品的优质效果。jacobxu7001@163.com[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911201009_185541_1734324_3.jpg[/img]

  • 【分享】显微镜技术原理

    技术原理:微生物个体微小,用肉眼直接观察不到,必须借助显微镜才能观察到他的个体形态和细胞结构。在蛋白质结构等所需对物质的微观结构进行观察的研究中也都会用到各种显微镜。现有的各种显微镜基本上都是由物镜和目镜组成,目镜的焦距很短,目镜的焦距很长,目镜的作用是得到物体放大的实像,目镜的作用是将物镜放大的实像作为物体,进一步放大成虚像。显微镜将物体放大的总倍数是物镜放大倍数乘以目镜放大的倍数。这样虽然目镜和物镜放大的倍数有限,但是显微镜总放大倍数 就非常可观。 仪器结构和分类:普通光学显微镜是一种精密的光学仪器。早期的显微物镜仅由少数几块透镜组成,难于消除物像的像差和色差。近代的显微物镜已由一套精密磨制的透镜组成,已能较好地消除像差和色差,并能将物体放大1500~2000倍。普通光学显微镜的构造可分为两大部分:即机械装置和光学系统。这两部分很好地配合,才能充分发挥显微镜的作用。1.显微镜的机械装置 显微镜的机械装置包括镜座、镜筒、物镜转换器、载物台、推动器、粗动螺旋和微动螺旋等部件。(1)镜座:镜座是显微镜的基本支架,由底座和镜臂两部分组成。在其上部连接有载物台和镜筒,是用于安装光学放大系统部件的基础。 (2)镜筒:镜筒上接接目镜,下接转换器。形成接目镜与接物镜(装在转换器下)间的暗室。从镜筒的上缘到物镜转换器螺旋口之间的距离称为机械筒长。因为物镜的放大率是 对一定的镜筒长度而言的。镜筒长度的变化,不仅放大倍率随之变化,而且成像质量也受到影响。因此,使用显微镜时,不能任意改变镜筒长度。国际上将显微镜的 标准筒长定为160mm,此数字标在物镜的外壳上。(3)物镜转换器:物镜转换器上可安装3~4个物镜,一般是3个物镜(低倍、高倍、油镜),Nikon显微镜装有4个物镜。转动转换器,可以按需要 将其中的任何一个接物镜和镜筒接通,与镜筒上面的目镜构成一个放大系统。 (4)载物台:载物台中央有一孔,为光线通路。在台上装有弹簧标本夹和推动器。 (5)推动器:是移动标本的机械装置,由一横一纵两个推进齿轴和齿条构成。研究显微镜的纵横架杆上刻有刻度标尺,构成精密的平面坐标系。如需要重复观察已检查标本的某一 物像时,可在第一次检查时记下纵横标尺的数值,下次按数值移动推动器,就可以找到原来标本的位置。 (6)粗调螺旋:粗调螺旋用于粗放调节物镜和标本的距离,老式显微镜粗调螺旋向前扭,镜头下降接近标本。新近出产的显微镜(如Nikon显微镜)镜检时,右手向前扭动使载 物台上升,让标本接近物镜,反之则下降,标本远离物镜。(7)微调螺旋:用粗调螺旋只能粗放地调节焦距,难于观察到清晰的物像,因而需要用微调螺旋做进一步调节。微调螺旋每转一圈镜筒仅移动0.1 mm(100μm)。新近出产的研究显微镜的粗调螺旋和微调螺旋是共轴的。2.显微镜的光学系统显微镜的光学系统由反光镜,聚光器,物镜,目镜等组成,光学系统使标本物像放大,形成倒立的放大物像。

  • 【资料】相差显微镜原理、显微镜安装调试与使用

    【资料】相差显微镜原理、显微镜安装调试与使用

    相差显微镜  •1940年荷兰学者F.Zernik巧妙地应用光的衍射和干涉原理提高标本细节的折光率的差异,创造了相差显微镜(phase contrast microscope)。从此非常简便而有效地观察体外培养细胞的生长过程,记录细胞分裂周期中的染色体的移动。近年来细胞学家和生物学家所拍摄的生活细胞生长、分裂过程的非常出色的记录影片,都是利用相差显微镜的优秀性能完成的。因此相差显微镜、倒置相差显微镜已成为细胞学、细菌学、寄生虫学、免疫学和海洋生物学的实验室必备仪器。  •相差显微镜是用于观察组织培养中活细胞形态结构的。活细胞无色透明,一般显微镜下不易分辨细胞轮廓及其结构。  •相差显微镜的特点是将活细胞不同厚度及细胞内各种结构对光产生的不同折射作用,转换为光密度差异(明暗差),使镜下结构反差明显,影像清楚。  相差显微镜的优点http://ng1.17img.cn/bbsfiles/images/2011/02/201102161815_278026_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/02/201102161816_278027_2961690_3.jpg  相差显微镜成像光路http://ng1.17img.cn/bbsfiles/images/2011/02/201102161817_278028_2961690_3.jpg  相差显微镜的部件  •相差显微镜的关键性部件为位相板(phase plate)、环状光阑(anular diaphragm)和中心调节望远目镜(centring telescope)。  环状光阑  •环状光阑是在玻璃片上喷涂金属薄膜借以挡光,只留下环形透光窄缝的光阑。它能使来自反光镜的直射光只能从环状部分通过,形成一个空心圆筒状的光柱,经聚光器并照射到标本以后,就产生两部分光,一部分是直射光,另一部分是经过标本后产生的衍射光,这两部分光经物镜内相板的作用而改变了光的相位和振幅。  •在相差聚光器下面装有一个转盘,盘上镶有宽狭不同的环状光阑,在不同光阑边上刻有10×、 20×,40×等字样,这表示当用不同放大倍数的物镜时,必须配合相应的环状光阑。http://ng1.17img.cn/bbsfiles/images/2011/02/201102161819_278029_2961690_3.jpg  相板  •相板安装在物镜的后焦平面上,带有相板的物镜称为相差物镜(蔡司厂用红色“PH”表示)。  •相板上有一灰色的环状圈,称为共轭面。面上涂有吸光物质,直射光从这部分通过,并吸收了约80%的直射光,以降低它的透光度。在共轭面的内,外侧部分称为补偿面,面上涂有减速速物质,使衍射光的相们发生改变,因此这两者相结合就能分别改变直射光和衍射光的振幅和相位。  相板分类  •A型位相板 凡是共轭面即环形相板上涂有吸收层的相板均为A型。A型相板又分为二型:  •(1)A十型位相板:这是在共扼面上既涂吸收层又涂有电解质的相板。这种相板能吸收其共轭面的60一90%直射光,而透过其20一40%。市场出售的位相板型号分类时,都以数字表示其透射率和推迟位相的数据(图10-12,表10—1)。  •(2)A一型位相板是共扼面上涂有吸收层。同时在补偿面上涂有电解质。  •B型位相板凡是在补偿面上涂有吸收层而在共轭面上有电解质的位相板,均属此类。  •(1)B十型位相板是在补偿面上涂有吸收层共轭面上有电解质的相板。  •(2)B一型位相板是在补偿面上涂有吸收层加电解质的相板。http://ng1.17img.cn/bbsfiles/images/2011/02/201102281441_279896_2961690_3.jpg  对焦望远目镜  对焦望远目镜(centring telescope)又叫合轴望远镜或校正望远目镜。这是一种场透镜和接目透镜之间的距离可变的目镜。http://ng1.17img.cn/bbsfiles/images/2011/02/201102281443_279897_2961690_3.jpg  相差显微镜的成像原理  •从波动光学的角度可把物体细节即生物标本的细节,看成是成像光束的障碍物。它可以改变相干光束的振幅、位相和光强分布。  •从变换光学的频谱转换角度,可把物体细节看成是不同空间信息的集合物。它可改变光信息的空间频谱。  •在显微镜下标本细节的光密物质、光疏物质和无结构的介质的折射率不同,因此相干光束通过光密物质(t)时,必然产生衍射,使光程延长,推迟位相(图10—21P)。这时衍射光(P)和直射光(S)之间的位相出现d/λ差异。但是标本的吸收程度近似,所以振幅未变即光强末变。这种直射光和衍射光到达像平面重叠成像时,其合成波的振幅与通过无结构介质的直射光的振幅几乎近似,即其光强相似。这就是未染标本在普通显微镜下反差很小的基本原因(图10—22)。http://ng1.17img.cn/bbsfiles/images/2011/02/201102281447_279898_2961690_3.jpg  暗相差  •在被检物的折射率大于介质的情况下,透过共轭面的直射光被吸收80%后亮度变暗,衍射光在通过被检物后其相位己推迟1/4波长,再在位相板的补偿面的电解质又推迟了1/4波长。由于这两束光的相位不同(差1/2波长),其合成波的振幅为两者之差,所以光线就更加暗。  •与此同时,通过无结构介质的衍射光的光程只被补偿面的电介质推迟l/4波长。这就造成通过光密物质的光强远比通过无结构介质(背景)的光强减衰得多。相差显微镜下标本细节的反差加大丁。光密结构比背景暗得多了。这种反差叫暗反差也叫正反差。  明相差  •如果相板的共轭面上涂的是减速物质,推迟直射光1/4波长,而补偿面涂的是吸光物质,结果就是直射光与衍射光的相位相同(衍射光通过物体时相位推迟了1/4波长),其合成波的振幅为两者之和,结果物体是明亮的而背景是暗的,这称为明相差或负相差。http://ng1.17img.cn/bbsfiles/images/2011/02/201102281450_279899_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/02/201102281450_279900_2961690_3.jpg  相差显微镜实验方法和步骤  •安放相差装置取下原有聚光器和物镜,分别安上相差聚光器和相差物镜,并将转盘转到“0”标记的位置。用10×相差物镜调光。  •调节光源。  •合轴调节取下原有目镜,换上合轴调整望远镜。上下移动望远镜筒,至能看清物镜中的相板环为止。  •放回目镜取下合轴调整望远镜,放回目镜即可进行观察。更换不同放大倍数的相差物镜时,每次都要按上述方法重新调节。

  • 【分享】如何选择显微镜?

    显微镜具有很广泛的用途,因此分为不同的类型并具有特殊的附件。生物显微镜常用在实验室、高校、医院,用于生物样品的研究和诊断。工业显微镜工业显微镜主要用于装配工作或质量监控。用于检测材料和工厂成品。体视显微镜体视显微镜是工作或学习中典型的放大工具,常用于样品的镜下手工操作或工具操作(如解剖)。倍数通常比较低,有些体视显微镜可放大到几百倍。电子检查设备体视显微镜常用于检测制造或成品的印刷电路板的缺陷。一个“斜查看器”(oblique viewer) 可添加到体视显微镜中,这样能够围绕一个组件检测它与印刷电路板的连接情况。测量显微镜这种显微镜具有数字读出功能。提供X、Y、Z轴可靠、精确、可重复的测量。金相显微镜金相显微镜用于科研和工厂。用于观察金属磨面、平面或其他物件表面。偏光显微镜偏光显微镜在科研、工业和学术领域有广泛的应用。利用偏振光,科研工作者能够发现不同有机物或无机物的结构、含量和化学组成。石棉显微镜Meiji有特殊的石棉显微镜,为世界各地的公司和政府机构提供矿物质和纤维的观察、鉴定工具。视频显微镜视频显微镜用于机器视觉,测量和生产小尺寸元件、需要高分辨率的领域。

  • 求HIROX数码显微镜目镜的数字孔径大小~~~~~~~~~~

    求HIROX数码显微镜目镜的数字孔径大小~~~~~~~~~~

    实验室有台浩视的KH-7700数码显微镜,用的OL-700Ⅱ物镜,http://www.hirox.com.cn/products/mount_lens/mx_lens/mx-10c.htmlhttp://ng1.17img.cn/bbsfiles/images/2015/03/201503191832_538894_1626032_3.jpg现在做的实验需要知道目镜的数值孔径大小,但是查了网上都没得,问了国内的厂家也说不知道有哪位高手能帮忙查到该物镜的数值孔径大小吗,或者其他的方式算出数字孔径,谢谢

  • 生物显微镜的主要构造

    生物显微镜的主要构造普通生物显微镜的构造主要分为三部分:机械部分、照明部分和光学部分。1.机械部分(1)镜座:是显微镜的底座,用以支持整个镜体。(2)镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。(3)镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。(4)镜筒:连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。(5)物镜转换器(旋转器):接于棱镜壳的下方,可自由转动,盘上有3-4个圆孔,是安装物镜部位,转动转换器,可以调换不同倍数的物镜,当听到碰叩声时,方可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。(6)镜台(载物台):在镜筒下方,形状有方、圆两种,用以放置玻片标本,中央有一通光孔,我们所用的生物显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。(7)调节器:是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。①粗调节器(粗螺旋):大螺旋称粗调节器,移动时可使镜台作快速和较大辐度的升降,所以能迅速调节物镜和标本之间的距离使物象呈现于视野中,通常在使用低倍镜时,先用粗调节器迅速找到物象。②细调节器(细螺旋):小螺旋称细调节器,移动时可使镜台缓慢地升降,多在运用高倍镜时使用,从而得到更清晰的物象,并借以观察标本的不同层次和不同深度的结构。2.照明部分装在镜台下方,包括反光镜,集光器。(1)反光镜:装在镜座上面,可向任意方向转动,它有平、凹两面,其作用是将光源光线反射到聚光器上,再经通光孔照明标本,凹面镜聚光作用强,适于光线较弱的时候使用,平面镜聚光作用弱,适于光线较强时使用。(2)集光器(聚光器)位于镜台下方的集光器架上,由聚光镜和光圈组成,其作用是把光线集中到所要观察的标本上。①聚光镜:由一片或数片透镜组成,起汇聚光线的作用,加强对标本的照明,并使光线射入物镜内,镜柱旁有一调节螺旋,转动它可升降聚光器,以调节视野中光亮度的强弱。②光圈(虹彩光圈):在聚光镜下方,由十几张金属薄片组成,其外侧伸出一柄,推动它可调节其开孔的大小,以调节光量。3.光学部分(1)目镜:装在镜筒的上端,通常备有2-3个,上面刻有5×、10×或15×符号以表示其放大倍数,一般装的是10×的目镜。(2)物镜:装在镜筒下端的旋转器上,一般有3-4个物镜,其中最短的刻有“10×”符号的为低倍镜,较长的刻有“40×”符号的为高倍镜,最长的刻有“100×”符号的为油镜,此外,在高倍镜和油镜上还常加有一圈不同颜色的线,以示区别。在物镜上,还有镜口率(N.A.)的标志,它反应该镜头分辨力的大小,其数字越大,表示分辨率越高,各物镜的镜口率如下表:物镜 镜口率(N.A.) 工作距离(mm)10× 0.25 5.4040× 0.65 0.39100× 1.30 0.11表中的工作距离是指生物显微镜处于工作状态(物象调节清楚)时物镜的下表面与盖玻片(盖玻片的厚度一般为0.17mm)上表面之间的距离,物镜的放大倍数愈大,它的工作距离愈小。显微镜的放大倍数是物镜的放大倍数与目镜的放大倍数的乘积,如物镜为10×,目镜为10×,其放大倍数就为10×10=100。

  • 【分享】如何选购显微镜之显微镜供应商的正确选择

    相信很多显微镜采购者都还不是很清楚应该如何去选择适合的显微镜,而且我在平时也了解到很多客户一打电话进来,都会直接说要显微镜而没有很清楚自己要哪一种显微镜才是适合用的。针对这种情况,今天我倒想简单介绍一下在选购显微镜时应该如何去选择合适的供应商了。一、选择显微镜供应商时,您会遇到哪些风险?1 交货能力的风险。 2 货物质量控制的风险。 3 技术支持的风险。 4 售后服务的风险。对于显微镜的选购来说,好的供应商就是质量、售后、价格等一系列重要因素的保证。显微镜是经久耐用的精密光学仪器,其核心技术是光学技术和机械部位.这就要求有厂家有很强的技术实力和完善的售后服务. 现在市场上的显微镜的对外宣传的技术基本都一样,实际上质量相差很大,价格相差也大.有的甚至冒充著名厂家的牌子行骗.一个好的供应商能及时的交货,交出适合您使用的显微镜,能给您以质量和售后的保证,和这样的供应商合作无疑是愉快的,是一种享受。而一个不合适的供应商可能在产品价格上是低廉的,但是随之而来的就是产品供货时间的遥遥无期,产品质量的无保证,甚至连税票都无法出据,至于售后服务就更无法得到保障,而显微镜这种经久耐用的精密光学仪器的使用寿命是很长的,短则数年长则近十年,在这样长的时间内无售后保障将会给您带来一系列的麻烦和困扰。二:如何选择供应商?对供应商的考核方法,一般先就价格、品质、交货、协调等主要考核指标进行配分,比如价格占40%,品质占30%,交货占20%,协调占10%。建议现场考察,拿需要检测样品到公司来测试。俗话说"百闻不如一见",显微镜的种类很多,所以当自己选择显微镜的时候,最好是自己拿着样品在显微镜现场操作,亲自观看是否理想,是否可以满足要求。综合各个方面来决定。

  • 金相显微镜电子目镜介绍

    金相显微镜电子目镜是一种针对金相显微镜成像专门研制而成的光学电子仪器。该系列金相显微镜电子目镜作为一款新型光电装置,传输接口为USB2.0高速接口,金相显微镜电子目镜采用1/2″CMOS大面阵图像传感器及大口径光学镜头,使获取的图像具有极高的清晰度;单幅照相影像更佳。分辨率可达130-300万像素,并可以方便地应用于任何标准生物显微镜、体视显微镜及望远镜中。从而给观察、教学、科研、临床、家庭带来了极大的快捷和便利。 金相显微镜电子目镜是一种针对普通光学显微镜通用目镜筒而开发的一种能替代人眼观察视野,将镜下图像真实反映在电子图像显示及输出设备上的光电设备,从而实现了图像时时共享,资料数字化、电子存档化。 金相显微镜电子目镜采用高分辨率图像传感器、光学部分由国家光学重点实验室设计,性能优异、体积小巧,更适合教师教学和装备数字化实验室。 主要功能特点 1、安装简单,即插即用,计算机端采用USB2.0接口插拔方便。 2、操作简单。操作软件兼容性强,界面简洁。可自由调整曝光帧速率、对比度、亮度、锐度及影像尺寸等。拍摄软件有着优异的人机界面,使用者可轻易在计算机上进行摄像、摄影操作。 3、共享性强,可随时对图像进行编辑、处理、保存、传输数据等。金相显微镜电子目镜可配合投影机组成一个电子多媒体教学、演示系统,提高设备利用率、共享性,促进相互交流。

  • 金相显微镜在教学的适用性

    金相显微镜电子目镜是一种针对普通光学显微镜通用目镜筒而开发的一种能替代人眼观察视野,将镜下图像真实反映在电子图像显示及输出设备上的光电设备,从而实现了图像时时共享,资料数字化、电子存档化。金相显微镜电子目镜是一种针对金相显微镜成像专门研制而成的光学电子仪器。该系列金相显微镜电子目镜作为一款新型光电装置,传输接口为USB2.0高速接口,金相显微镜电子目镜采用1/2″CMOS大面阵图像传感器及大口径光学镜头,使获取的图像具有极高的清晰度;单幅照相影像更佳。分辨率可达130-300万像素,并可以方便地应用于任何标准生物显微镜、体视显微镜及望远镜中。从而给观察、教学、科研、临床、家庭带来了极大的快捷和便利。金相显微镜电子目镜采用高分辨率图像传感器、光学部分由国家光学重点实验室设计,性能优异、体积小巧,更适合教师教学和装备数字化实验室。

  • 【分享】关于显微镜问题讨论帖

    问题: 想请教大家一个弱弱的问题:我将做一些有关细胞骨架蛋白表达情况的实验,拟采用免疫荧光技术。但是我不知道荧光显微镜和激光共聚焦显微镜在显示蛋白表达上有什么差别呢?是不是后者的观察结果会更清晰一些呢?目前我们实验室还没有激光共聚焦显微镜,那么能否在荧光显微镜下观察拍照,对结果是否有很大的影响呢? 1. 其实激光共聚焦显微镜就像CT一样,如果只是了解蛋白表达情况没有太大差别,当然其观察结果会更清楚。 2. 激光共聚焦显微镜就像细胞CT,把细胞的一个个层面都扫了一下,结果非常清晰,比荧光显微镜要清楚。荧光显微镜拍下来,细胞层叠比较多,看得不是太清楚。但是如果只是看细胞骨架蛋白表达情况,对结果没有有很大的影响。  源一:激光共聚焦显微镜原理:它是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。  同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具.精确地对光谱的本质进行分析,区分发射光谱高度重叠的不同标记的信号。  最重要的是,对于多色的荧光染色,它能彻底消除了荧光串色的影响,同时最大限度的减少了样品荧光信号的损失。这些都是一般光镜所不能达到的。

  • 【求助】倒置显微镜的镜头安装在普通显微镜上为什么不清晰呢?

    实验室有两个倒置显微镜镜头“CPC 25/0.40 160/1.5”和“CPC +xc 25/0.40 160/15” 。1、安装在老式显微镜上时视野很亮,但很不清晰。只有把聚光镜调得很低时(此时较暗)才能看清细节。请问是为什么呢?(会不会是老式显微镜在进光量大时镜筒内部反光?)2、还有+xc在这里是什么意思呢?3、“160/1.5”和“160/15”中的1.5和15是什么含义啊?

  • 【分享】显微镜问题----总结帖子

    问题:我将做一些有关细胞骨架蛋白表达情况的实验,拟采用免疫荧光技术.但是我不知道荧光显微镜和激光共聚焦显微镜在显示蛋白表达上有什么差别呢?是不是后者的观察结果会更清晰一些呢?目前我们实验室还没有激光共聚焦显微镜,那么能否在荧光显微镜下观察拍照,对结果是否有很大的影响呢?回答:激光共聚焦显微镜原理:它是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具.精确地对光谱的本质进行分析,区分发射光谱高度重叠的不同标记的信号。最重要的是,对于多色的荧光染色,它能彻底消除了荧光串色的影响,同时最大限度的减少了样品荧光信号的损失。这些都是一般光镜所不能达到的。除此之外,你如果只是了解蛋白表达情况,如楼上二位所说,没有太大差别,当然其观察结果会更清楚 。

  • 【转帖】显微镜锦之堂显微镜常识--光学显微镜的组成结构和分类

    本文来自显微镜之家转贴显微镜之家融合了各种进口国产显微镜的集中展示,集显微镜知识/咨询/动态等于一体的显微镜之家 http://goldroom.zhan.cn.yahoo.com/登陆指导!光学显微镜一般由载物台、聚光照相系统物镜、目镜和调焦机构组成。载物台用于承放被观察的物体,利用调焦旋扭可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成像,它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。物镜位于被观察物体附近,是实现第一级放大的镜头,在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。物镜是显微镜对成像质量优劣起决定性作用的光学元件,常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍,按照所说的所能看到的视场大小,目镜可分为视场较小的普通目镜和视场较大的大视场目镜(或称广角目镜)两类。载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像.用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距,分辨率和放大倍率是两个不同的但又有联系的概念。当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廊虽大但细节不清的图像。聚光照明系统对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明,聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中没有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微调结构。

  • 【资料】显微镜基础知识和原理(三)

    第四章 显微镜的光学附件显微镜的光学部件包括物镜,目镜,聚光镜及照明装置几个部分。各光学部件都直接决定和影响光学性能的优劣,现分述如下:一.物镜物镜是显微镜最重要的光学部件,利用光线使被检物体第一次成像,因而直接关系和影响成像的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准。国际物镜的检测标准是以蔡司物镜为基准的。物镜的结构复杂,制作精密,由于对像差的校正,金属的物镜筒内由相隔一定距离并被固定的透镜组组合而成。物镜有许多具体的要求,如合轴,齐焦。齐焦既是在镜检时,当用某一倍率的物镜观察图像清晰后,在转换另一倍率的物镜时,其成像亦应基本清晰,而且像的中心偏离也应该在一定的范围内,也就是合轴程度。齐焦性能的优劣和合轴程度的高低是显微镜质量的一个重要标志,它是与物镜的本身质量和物镜转换器的精度有关。传统物镜的种类很多,可从不同的角度分类,现分类介绍。根据物镜位置色差校正的程度进行分类,可分为:1.消色差物镜(Achromatic objective): 这是常见的物镜,外壳上常有“Ach”字样。这类物镜仅能校正轴上点的位置色差(红,蓝二色)和球差(黄绿光)以及消除近轴点慧差。不能校正其它色光的色差和球差,且场曲很大。最早的消色差物镜是由蔡司制造的。2.复消色差物镜(Apochromatic objective): 复消色差物镜的结构复杂,透镜采用了特种玻璃或萤石等材料制作而成,物镜的外壳上标有“Apo” 字样 ,这种物镜不仅能校正红绿蓝三色光的色差,同时能校正红,蓝二色光的球差。由于对各种像差的校正极为完善,比响应倍率的消色差物镜有更大的数值孔径,这样不仅分辨率高,像质量优而且也有更高的有效放大率。因此,复消色差物镜的性能很高,适用于高级研究镜检和显微照相. 完善的复消色差物镜由蔡司制造的. 2004年蔡司推出了研究级ICCS物镜是在传统的平场复消色差物镜的基础上进一步校正倍率色差和无应变,增强短波长的透过率,并且增强反差,明显提高分辨率。3.半复消色差物镜( Semi apochromatic objedtive): 半复消色差物镜又称氟石物镜,物镜的外壳上标有“FL”字样,在结构上透镜的数目比消色差物镜多,比复消色差物镜少,成像质量上,远较消色差物镜为好,接近于复消色差物镜。平场物镜是在物镜的透镜系统中增加一快半月形的厚透镜,以达到校正场曲的缺陷。平场物镜的视场平坦,更适用于镜检和显微照相。4.特种物镜:所谓“特种物镜”是在上述物镜的基础上,专门为达到某些特定的观察效果而设计制造的。主要有以下几种:(1) 带校正环物镜(Correction collar objective):在物镜的中部装有环装的调节环,当转动调节环时,可调节物镜内透镜组之间的距离,从而校正由盖玻片厚度不标准引起的覆盖差。调节环上的刻度可从0 .11--.023,在物镜的外壳上也标有此数字,表明可校正盖玻片从0.11—0.23mm厚度之间的误差。(2) 带虹彩光阑的物镜(Iris diaphragm objective ): 在物镜镜筒内的上部装有虹彩光阑,外方也可以旋转的调节环,转动时可调节光阑孔径的大小,这种结构的物镜是高级的油浸物镜,它的作用是在暗视场镜检时,往往由于某些原因而使照明光线进入物镜,使视场背景不够黑暗,造成镜检质量的下降。这时调节光阑的大小,使背景变黑,使被检物体更明亮,增强镜检效果。(3)相衬物镜(Phase contrast objective ):这种物镜是由于相衬镜检术的专用物镜,其特点是在物镜的后焦平面处装有相板。(4)无罩物镜(No cover objective ):有些被检物体,如涂抹制片等,上面不能加用盖玻片,这样在镜检时应使用无罩物镜,否则图像质量将明显下降,特别是在高倍镜检时更为明显。这种物镜的外壳上常标刻NC,同时在盖玻片厚度的位置上没有0.17的字样,而标刻着“0”。(5)长工作距离物镜:这种物镜的焦距大于普通物镜,它是为了满足液态材料(高温金相)、液晶、组织培养、悬浮液等材料的镜检而设计。 二. 目镜目镜的作用是把物镜放大的实像(中间像)再放大一便,并把物像映入观察者的眼中,实质上目镜就是一个放大镜。已知显微镜的分辨率能力是由物镜的数值孔径所决定的,而目镜只是起放大作用。因此,对于物镜不能分辨出的结构,目镜放的再大,也仍然不能分辨出。由于不同系列目镜光学设计不同,所以不能混用。三. 聚光镜聚光镜又名聚光器,装在载物台的下方。小型的显微镜往往无聚光镜,在使用数值孔径0.40以上的物镜时,则必须具有聚光镜。聚光镜不仅可以弥补光量的不足和适当改变从光源射来的光的性质,而且将光线聚焦于被检物体上,以得到最好的照明效果。聚光镜的的结构有多种,同时根据物镜数值孔径的大小 ,相应地对聚光镜的要求也不同 。1. 阿贝聚光镜(Abbe condenser)这是由德国光学大学大师恩斯特。阿贝.(Ernst Abbe 蔡司公司的创始人之一)设计。阿贝聚光镜由两片透镜组成,有较好的聚光能力,但是在物镜数值孔径高于0.60时,则色差,球差就显示出来。因此,多用于普通显微镜上。2. 消色差聚光镜(Achromatic aplanatic condenser ) 这种聚光镜又名“消色差消球差聚光镜”和“齐明聚光镜”它由一系列透镜组成,它对色差球差的校正程度很高,能得到理想的图像,是明场镜检中质量最高的一种聚光镜,其NA值达1.4 。因此,在高级研究显微镜常配有此种聚光镜。它不适用于4 X以下的低倍物镜,否则照明光源不能充满整个视场。 3. 摇出式聚光镜( Swing out condenser)在使用低倍物镜时(如4X),由于视场大,光源所形成的光锥不能充满真整个视场,造成视场边缘部分黑暗,只中央部分被照亮。要使视场充满照明,就需将聚光镜的上透镜从光路中摇出。4. 其它聚光镜:聚光镜除上述明场使用的类型外,还有作特殊用途的聚光镜。如暗视野聚光镜,相衬聚光镜,偏光聚光镜,微分干涉聚光镜等,以上聚光镜分别适用于相应的观察方式。四.显微镜的照明装置显微镜的照明方法按其照明光束的形成,可分为“透射式照明”,和“落射式照明”两大类。前者适用于透明或半透明的被检物体,绝大数生物显微镜属于此类照明法;后者则适用于非透明的被检物体,光源来自上方,又称“反射式或落射式照明”。主要应用与金相显微镜或荧光镜检法。1. 透射式照明透射式照明法分中心照明和斜射照明两种形式:(1) 中心照明:这是最常用的透射式照明法,其特点是照明光束的中轴与显微镜的光轴同在一条直线上。它又分为“临界照明”和“柯勒照明”两种。A. 临界照明(Critical illumination):这是普通的照明法。这种照明的特点是光源经聚光镜后成像在被检物体上,光束狭而强,这是它的优点。但是光源的灯丝像与被检物体的平面重合,这样就造成被检物体的照明呈现出不均匀性,在有灯丝的部分则明亮;无灯丝的部分则暗淡,不仅影响成像的质量,更不适合显微照相,这是临界照明的主要缺陷。其补救的方法是在光源的前方放置乳白和吸热滤色片,使照明变得较为均匀和避免光源的长时间的照射而损伤被检物体。B. 柯勒照明:柯勒是十九世纪末蔡司厂的工程师,为了纪念他在光学领域的突出贡献,后人把他发明的二次成像叫做柯勒照明. 柯勒照明克服了临界照明的缺点,是研究用显微镜中的理想照明法。这中照明法不仅观察效果佳,而且是成功地进行显微照相所必须的一种照明法。光源的灯丝经聚光镜及可变视场光阑后,灯丝像第一次落在聚光镜孔径的平面处,聚光镜又将该处的后焦点平面处形成第二次的灯丝像。这样在被检物体的平面处没有灯丝像的形成,不影响观察。此外照明变得均匀。观察时,可改变聚光镜孔径光阑的大小,使光源充满不同物镜的入射光瞳,而使聚光镜的数值孔径与物镜的数值孔径匹配。同时聚光镜又将视场光阑成像在被检物体的平面处,改变视场光阑的大小可控制照明范围。此外,这种照明的热焦点不在被检物体的平面处,即使长时间的照明,也不致损伤被检物体。2004年蔡司公司又在传统柯勒式照明基础上推出了带有反光碗的全系统复消色差照明技术,消除照明色差,增强光的还原性,进而提高分辨率,同时照明均匀而光效高。(2) 斜射照明:这种照明光束的中轴与显微镜的光轴不在一直线上,而是与光轴形成一定的角度斜照在物体上,因此成斜射照明。相衬显微术和暗视野显微术就是斜射照明。2. 反射式照明这种照明的光束来自物体的上方通过物镜后射到被检物体上,这样物镜又起着聚光镜的作用。这种照明法是适用于非透明物体,如金属,矿物等。

  • 最牛生物显微镜,还有谁?

    最牛生物显微镜,还有谁?

    [img=,400,513]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131659_01_3194653_3.png[/img]Edge-3D多功能Z轴叠合显微镜利用自动化Z轴叠合技术,使许多过去难以观察的样本变得轻而易举,并且能获得各目标在Z轴上的相对关系,较传统显微镜提供更多资讯。过去显微镜影像总是建立在景深极浅的2D影像上,由于近年来精密机械与电脑的发展,共轭焦显微镜首次做到了3D模型重建。然而共轭焦显微镜直到今天依然十分昂贵,非一般实验室所能负担。Edge-3D提供人人皆能负担的3D显微影像系统,不只利用自动Z轴叠合解决传统2D影像放大倍率与景深无法兼顾的问题,还能生成动态4D影像,清楚显示不同物件之间的位置关系,给您除了长景深影像以外的更多资讯。过去昂贵的3D模型重建现在也能轻易实现。另有一键3D图片建立功能,让您即使在纸本上也能轻易展示立体影像。[img=,398,232]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131701_03_3194653_3.png[/img][img=,690,500]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131701_01_3194653_3.jpg[/img] [img=,690,509]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131701_02_3194653_3.jpg[/img]没话说效果图详细资料027-87870349

  • 金相显微镜的测量方法

    1、接触法:接触法是利用金相显微镜的标记对和紧靠测件测量点、线、面的万工显附件-----光学测孔器的测头连在一起的双刻线进行瞄准定位的测量方法。测量时将光学测孔器的测头紧靠件(内、外)表面。当测量孔径时,首先使测头与测件内孔接触,取得最大弦长后,使米字线中间刻线被光学测孔器的双套线套在中间,并在金相显微镜读取一数;然后改变测量方向,使测头在另一侧与测件接触,同样使米字线分划板的中间刻线仍被光学测孔器的双套线套在中间,在金相显微镜上读取另一数。两次读数的差,再加上测头直径的实际值,即为测件的内尺寸,如减去测头直径的实际值,即为测件的外尺寸。2、影像法:影像法是利用金相显微镜的标记,对影像法进行瞄准定位的测量方法。测量时,通常是先用(米字线)分划板上的刻线瞄准测件影像的边缘,并在读数显微镜上读出数值,然后移动工作台以同一条刻线瞄准测件影像的另一边,再作第二次读数。两次读数的差,就是被测件的测量值。3、轴切法:轴切法是利用金相显微镜的标记对通过测件轴心线并利用测量刀上的刻线进行瞄准定位的测量方法。金相显微镜测量刀是万工显的附件。其表面有一刻线,刻线至刃口的尺寸为0.3和0.9毫米两种,测量时,把测量刀放在测量刀垫板上,刻线面通过测件的轴线,并使测刀的刃口和被测面紧紧接触,用相应的米字线去瞄准,测量两把测刀刻线间的距离,就间接测得被测件的测量值。为了避免测量中的计算,在中间垂直米字线的两侧刻有两组共四条对称分布的平行线,每组刻线对中心刻线的距离分别为0.9和2.7毫米,它正好是测刀的刃口到刻线间的距离0.3和0.9毫米的3倍。这样用3倍物镜瞄准时,分划板上的0.9和2.7毫米刻线正好压住测刀上的0.3和0.9毫米刻线,这时测刀上的刃口正好被米字线的中间刻线所瞄准。主要用于螺纹中径测量。

  • 【求助】显微镜Z轴控制器的精度

    问下现在显微镜Z轴控制器的精度有多少呢?我的意思是令Z轴移动距离a,那么Z轴实际移动的距离假设为b, 那么b-a大概是多少呢?0.01微米?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制