当前位置: 仪器信息网 > 行业主题 > >

包裹式植物茎流系统

仪器信息网包裹式植物茎流系统专题为您提供2024年最新包裹式植物茎流系统价格报价、厂家品牌的相关信息, 包括包裹式植物茎流系统参数、型号等,不管是国产,还是进口品牌的包裹式植物茎流系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合包裹式植物茎流系统相关的耗材配件、试剂标物,还有包裹式植物茎流系统相关的最新资讯、资料,以及包裹式植物茎流系统相关的解决方案。

包裹式植物茎流系统相关的资讯

  • 用于表面增强拉曼散射检测的半包裹金纳米粒子
    研究人员一直在努力开发高度可靠和灵敏的表面增强拉曼散射(SERS)基底,用于检测复杂系统中的化合物。在这项工作中,我们提出了一种用不完全包裹的普鲁士蓝(PB)构建Au核的策略,用于高可靠性和高灵敏度的SERS衬底。包裹的铅层可以提供内标(IS)来校准SERS信号浮动,而金岩心的暴露表面提供增强效应。信号自校准和增强之间的平衡(因此SERS可靠性和灵敏度之间的折衷)通过Au核上PB层的近似半包裹配置(即SW-Au@PB)来获得。提出的SW-Au@PB纳米粒子(NPs)表现出与原始Au NPs相似的增强因子,并有助于使用R6G作为探针分子的校准SERS信号的超低RSD (8.55%)。SW-Au@PB NPs同时实现的可靠性和灵敏度还可以检测草本植物中的有害农药残留,如百草枯和福美双,平均检测准确率高达92%。总的来说,这项工作主要为不完全包裹的纳米粒子提供了一种可控的合成策略,最重要的是,探索了在具有不同溶解度的危险物质的精确和灵敏的拉曼检测中的概念验证实际应用的潜力。a)IW-金@PB纳米颗粒的制造。b)IW-金@PB纳米粒子系统信号自校准能力的原理。c)模拟原始金纳米颗粒、IW-金@PB纳米颗粒和基于核壳的FW-金@PB纳米颗粒的局部电场分布。d)IW-金@PB纳米颗粒的拉曼光谱。e)具有不同铅包裹度的IW-金@PB纳米颗粒的典型TEM图像,包括LW-金@PB、SW-金@PB和NFW–金@PB纳米颗粒。f)原始金纳米颗粒、PB纳米颗粒和具有不同PB层包裹程度的IW-金@PB纳米颗粒的紫外/可见吸收光谱。g)关于IW-金@PB纳米颗粒红移的吸收光谱的放大图。R6G的典型SERS光谱,其中原始Au NPs、LW-Au@PB NPs、SW-Au@PB NPs和NFW–Au @ PB NPs作为SERS基底。b)当在硅片上蒸发SW-Au@PB NPs/R6G时,R6G特征峰(612cm-1)和IS峰(2155cm-1)的SERS强度以及它们在随机选择的15个点上的强度比。c)当在硅晶片上蒸发Au NPs/R6G时,R6G特征峰(612cm-1)的SERS强度穿过随机选择的15个点。d)硅晶片上SW-Au@PBNPs分布的典型SEM图像。e-f)硅晶片上蒸发的SW-Au@PB NPs/R6G (e)的校准SERS信号和Au NPs/R6G (f)的SERS信号的映射结果。g)疏水纸上SW-Au@PB NPs分布的典型SEM图像。h-I)SW-Au @ PB NPs/R6G(h)的校准SERS信号和Au NPs/R6G (i)的SERS信号在疏水纸上蒸发的映射结果。a-b)在硅片(a)和疏水纸(b)上具有不同R6G浓度的SW-Au@PB NPs/R6G的典型SERS光谱。c)R6G特征峰的校准SERS强度与R6G浓度的对数之间的对应关系。d)基于SW-Au@PB NPs和疏水纸,跨10个批次的R6G特征峰的相对SERS强度,在每个批次中随机选择5个点。e)长期储存SW-Au@PB NPs和疏水纸后R6G的典型SERS光谱。f)长期稳定性试验中R6G特征峰的相应相对SERS强度。a)基于SW-Au @ PB NPs/疏水纸系统的不同浓度百草枯的典型SERS光谱。b)百草枯特征峰的相对SERS强度与百草枯浓度对数的对应关系。c)基于SW-Au @ PB NPs/疏水纸系统的不同浓度的福美双的典型SERS光谱。d)福美双特征峰的相对SERS强度与福美双浓度的对数的对应关系。三种草本植物中百草枯(e)和福美双(f)的典型SERS光谱。相关成果以“Semi-wrapped gold nanoparticles for surface-enhanced Raman scattering detection”,发表在国际学术期刊“Biosensors and Bioelectronics”上。
  • 植物茎流仪、果实生长变化仪、茎秆生长变化计应用于上海市农科院
    2020年5月,我公司为上海果蔬种植基地(上海清澄果蔬专业合作社)提供植物茎流仪、果实生长变化仪、茎秆生长变化计等数据采集系统。 上海清澄果蔬专业合作社占地面积480亩,先后被评为中国农业部和财政部现代农业产业技术示范基地、市农业技术推广服务中心先进科技示范户、2017年上海农业科学院梨树试验示范基地等多项荣誉。合作社坚持农旅结合,打造特色农业生态合作社,并利用网络平台开设微店,生产的各种特色果品深受市民喜爱。 PEM1000X植物生理生态监测系统是北京博伦经纬公司推出的一款新型的植物生理生态监测系统,分别有监测部分、采集部分、传输部分组成,监测部分包括:各种传感器和供电部分;采购部分包括:数据记录仪、数据存储部分和支架配件部分;传输部分包括:有线传输和无线传输。此系统包括:茎秆生长变化、果实生长变化、茎流等指标,可根据客户的需要酌情添加或减少传感器,可以长期地监测植物的生理变化和影响植物生长变化的监测系统。HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率法(HPV),测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA线缆:5m,Max 60mDE-1T 树木生长变化传感器茎秆直径范围:60mm茎秆变化测量范围:0~10mm分辨率:0.005mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64尺寸:90 W × 60 H × 23 Dmm测量杆尺寸:160 L × 4Φ螺纹管口尺寸:10 L × 5Φ标准线缆:4m长,可选择10mFI-LT果实生长传感器是一个系列位移传感器,主要用于记录完全圆形的果实的生长尺寸和生长速度,在7 -160毫米范围内,通过三个直径变化测量。移动臂原始设计为平行四边形,提供牢固的笔直的传感器位置,用于果实研究。FI型传感器由一个安装在特殊夹子上的LVDT变送器,以及一个DC电源信号调节器组成。测量范围:30~160mm分辨率:0.065mm准确度:±0.3mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64标准线缆:4m长,可选择10m
  • 卓立汉光激光拉曼光谱助力矿物包裹体研究
    引言包裹体(inclusion)是指矿物中由一相或多相物质组成的并与宿主矿物具有相的界限的封闭系统,包裹体中的物质成分是研究相关地质过程中的密码,它可以揭示不同时期成岩成矿的物化条件和物质来源。激光拉曼光谱作为一种高精度、原位、无损和便捷的分子谱,现已成为研究包裹体的重要手段[1]。利用激光拉曼光谱,可以获得包裹体中分子和化学基团信息,了解其成分、结果和对称性;也可以对包裹体进行一些定量分析,比如利用特征峰与浓度、内压之前的线性关系,对其盐度和压力等性质进行分析[2]。此外激光拉曼光谱系统与其他设备联用还可以获得更多的材料信息。卓立汉光的应用团队成功地将拉曼光谱技术应用于矿物包裹体的鉴定与分析中,获得了以下研究成果:利用拉曼光谱技术,实现对天然绿辉石包裹体的组分鉴定,其中不仅可以对裸露在外的包裹体进行光谱测量,而且还可以对隐藏在样品内部的包裹体进行光谱测量;利用Mapping自动分析功能,实现矿物包裹体的空间结构分析。实验方案  实验设备采用的是卓立汉光“Finder930”全自动化拉曼光谱分析系统,测量过程均为共聚焦检测;激发波长为532nm;激发功率:~6.5mW;光谱仪参数:320mm焦长,600g/mm光栅刻线;物镜:50X长焦物镜;针孔大小:50μm;狭缝宽度:100μm。图1 “Finder930”全自动化拉曼光谱分析系统实验主要对绿辉石(主晶)的矿物包裹体进行拉曼光谱研究。选取了3个包裹体进行单点检测和Mapping扫描,采集时间依样品的实际拉曼光谱而定。结果分析1、包裹体的单点拉曼光谱分析天然绿辉石会因为其无序-有序的相变而表现出不同的拉曼光谱特征。一般而言,绿辉石的拉曼光谱可以分成四个部分:100cm-1~300cm-1区域内存在一些低强度的拉曼峰;300cm-1~450cm-1区域内会出现一组重叠峰;在600cm-1~800cm-1区域内存在一个强的非对称特征峰(~680cm-1);在800cm-1~1300cm-1区域内会出现一个强的非对称特征峰(~1010cm-1)[3]。当绿辉石内部的有序性发生变化时,其特征拉曼光谱也会产生些许变化。图2为绿辉石(主晶)和其包裹体的拉曼光谱图,与之相对的包裹体图像也附在图中。图2 绿辉石(主晶)和包裹体1-3的拉曼光谱图2、包裹体的Mapping拉曼光谱分析从包裹体的拉曼光谱可以发现,包裹体的谱图区别在于主晶(绿辉石)的特征峰(具体已在图中使用蓝色三角进行标识),因此我们可以选取这三个特征峰,对不同包裹体的共焦拉曼光谱数据进行处理,得到如图3所示的Mapping图像。图3 包裹体1-3的Mapping结果从以上结果可以看出,“Finder930”全自动化拉曼光谱分析系统可以持续稳定地对样品材料进行Mapping扫描。结论拉曼光谱作为一种无损的分子检测光谱,可以简单快速地对样品进行定性定量分析。通过以上实验研究,可以看到通过搭配透射式光源,“Finder930”全自动化拉曼光谱分析系统可以非常好地对岩石包裹体进行检测,在这一过程中我们不仅可以对裸露在外的包裹体进行检测,而且可以对隐藏在岩石切片内部的包裹体进行检测;此外还可以对相应的包裹体进行持续稳定的共聚焦拉曼成像扫描,得到更为丰富的数据信息。共聚焦拉曼成像数据是一个多维数据,一般包含样品点位置(X、Y轴坐标点)、光谱、强度和时间等信息,无法直观地对空间样品进行显示,但可以针对性地对拉曼成像数据进行选取,即降低成像数据维数以显示信息。在这一过程中,一般会选取位置、波数、强度信息来进行二维Mapping成像,比如上文中的Mapping成像便是以样品的位置、特征峰波数、特征峰强度等信息实现的。
  • HPV-06 插针式植物茎流计应用于东北农业大学
    2020年10月份,我公司为东北农业大学提供6套HPV-06插针式植物茎流监测采集系统。
  • 博伦气象发布HPV 植物茎流传感器/植物液流计新品
    HPV 茎流量传感器/Sap Flow SensorHPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用双方法(DMA)热脉冲法,测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量茎流量传感器参考文献:1. Kim, H.K. Park, J. Hwang, I. Investigating water transport through the xylem network in vascular plants.J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]2. Steppe, K. Vandegehuchte, M.W. Tognetti, R. Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]3. Vandegehuchte, M.W. Steppe, K. Sap-flux density measurement methods: Working principles andapplicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.[CrossRef] [PubMed]5. Cohen, Y. Fuchs, M. Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397.[CrossRef]6. Green, S.R. Clothier, B. Jardine, B. Theory and practical application of heat pulse to measure sap flow.Agron. J. 2003, 95, 1371–1379. [CrossRef]7. Burgess, S.S.O. Adams, M.A. Turner, N.C. Beverly, C.R. Ong, C.K. Khan, A.A.H. Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]9. Bleby, T.M. McElrone, A.J. Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.10. Pearsall, K.R. Williams, L.E. Castorani, S. Bleby, T.M. McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]11. Clearwater, M.J. Luo, Z. Mazzeo, M. Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]12. Green, S.R. Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]13. Green, S. Clothier, B. Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]14. Ferreira, M.I. Green, S. Concei??o, N. Fernández, J. Assessing hydraulic redistribution with thecompensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.[CrossRef]15. Romero, R. Muriel, J.L. Garcia, I. Green, S.R. Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]16. Testi, L. Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]17. Vandegehuchte, M.W. Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]18. Kluitenberg, G.J. Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]19. Vandegehuchte, M.W. Steppe, K. Improving sap-flux density measurements by correctly determiningthermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.[CrossRef]20. Looker, N. Martin, J. Jencso, K. Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]21. Edwards, W.R.N. Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulsetechnique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]22. Becker, P. Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]23. Hogg, E.H. Black, T.A. den Hartog, G. Neumann, H.H. Zimmermann, R. Hurdle, P.A. Blanken, P.D. Nesic, Z. Yang, P.C. Staebler, R.M. et al. A comparison of sap flow and eddy fluxes of water vapor from aboreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]25. Kollmann, F.F.P. Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood Springer: Berlin Heidelberg, Germany, 1968.26. Swanson, R.H. Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]27. Barrett, D.J. Hatton, T.J. Ash, J.E. Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition Queensland Government: Brisbane, Australia, 2016.29. Steppe,K. de Pauw, D.J.W. Doody, T.M. Teskey, R.O. A comparison of sap flux density using thermaldissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]30. López-Bernal, A. Testi, L. Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]32. Cohen, Y. Fuchs, M. Falkenflug, V. Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]33. Cohen, Y. Takeuchi, S. Nozaka, J. Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]34. Lassoie, J.P. Scott, D.R.M. Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.35. Wang, S. Fan, J. Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]36. Bleby, T.M. Burgess, S.S.O. Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]37. Madurapperuma, W.S. Bleby, T.M. Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigationscheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]39. Intrigliolo, D.S. Lakso, A.N. Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern UnitedStates. Irrig.Sci. 2009, 27, 253–262. [CrossRef]40. Eliades, M. Bruggeman, A. Djuma, H. Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutiaforest. Water 2018, 10, 1039. [CrossRef]
  • IVIS视角—IVIS系统在植物领域的应用(二)
    在上一期IVIS视角中我们和大家分享了IVIS系统如何在活体状态监测植物氮代谢水平,并基于转基因植物开发分子传感器(IVIS系统在植物领域的应用(一)(点击前方蓝字直达文章内容)),其实除通过构建生物发光的转基因植物之外,IVIS系统还能通过化学发光或者荧光染料探针等方式研究植物领域的多种应用。本期将带领大家继续拓展在植物活体光学领域的应用。活性氧(ROS)是有氧生物在进化过程中产生的一类含氧基团,具有较高的生物活性。除了作为一种氧代谢副产物会导致细胞氧化应激甚至凋亡之外,随着近年来研究的深入,ROS也被发现参与植物的正常生长进和代谢过程,是许多基本生物过程的关键调节因子,包括细胞增殖分化、器官成熟发育、植物应激抗逆等。在往期分享(点击前方蓝字直达文章内容)中,我们介绍过一种纳米探针用于检测动物体内炎症及肿瘤发生时活性氧水平。而在植物中,虽然许多ROS成像技术已经得到了发展和应用,但目前还缺乏一个动态检测植物体内ROS的植物成像平台。近期出现了一种可靠和直接的方法来对植物中的活性氧进行全植物活体成像,该方法发表在《Molecular Plant》期刊上。该方法是利用荧光探针的氧化来直接检测ROS,并且研究人员结合IVIS Lumina活体成像系统,开发了一个用于整株植物活体成像的工作流程。通过该工作平台,可以完成荧光染料探针对整株植物的染色、植株刺激处理以及处理后的ROS定量评价。系统工作流图解说明:A-B 植物在合适的光照周期和湿度的培养环境中培养 C 植物在玻璃熏蒸箱里用雾状染料熏蒸30分钟 D 植物进行相应的刺激(强光照射、植株损伤、病菌感染)E 整株植物在IVIS Lumina成像系统中拍摄 F 利用IVIS LivingImage软件分析植株ROS信号利用该工作平台,研究人员测试了一系列包括DHE、H?DCFDA、H?HFF-OxyBURST、Amplex red、SOSG和PO1在内的多种荧光探针,通过整株植物ROS信号积累数据分析筛选出了一个最有效,最敏感,能够响应多种外界刺激所产生的ROS的荧光探针——H?DCFDA,该探针能够表现出最强的信噪比和应用广泛性。这些不同的外界刺激包括局部强光照刺激、损伤或病原体感染,未来也可以拓展到其他种类的应激反应研究中。此外,通过rbohD和apx1突变体中ROS信号的减弱和增强以及DPI(ROS生产抑制剂)处理后ROS信号传播的减少,进一步证明了该成像系统的有效性,并且表明该方法不受外界因素的影响。拟南芥在不同外界刺激下30分钟内的ROS积累情况(A 局部强光刺激;D 叶片损伤刺激;G 病菌感染)这个新方法可用于研究不同遗传变异体的局部和植株整体积累的ROS信号,进行表型分析来发现新的ROS信号通路,监测不同植物和突变体的应激水平,揭示ROS参与到植物应激、生长调节和发育过程的新途径。文章中探讨了这种新方法在不同拟南芥突变体系统以及小麦、玉米等谷物创伤反应研究中的应用。综上,该研究所报道的方法可以快速有效的对植物进行整体的ROS活体成像,这为今后ROS代谢,系统信号传导等的研究提供了十分有利的科学工具。
  • 2014年高速逆流色谱技术讲座-武汉植物园站
    2014年高速逆流色谱技术讲座-武汉植物园站 2014年4月15日下午2:30,由上海同田生物技术股份有限公司组织召开的“2014年高速逆流色谱技术讲座-武汉植物园站”,在武汉植物园行政楼1号会议室热烈召开。参与交流会的有郭明全教授及各老师,以及数20名博士生研究生。 此次讲座主要向老师同学系统介绍了高速逆流色谱(High Speed Counter Current Chromatography)这种新兴的无耗材制备色谱分离技术,此技术既能实现高纯度物质的分离纯化,又能实现相当量级制备能力的新技术。会上主要做了如下三个专题讲座:1、《高速逆流色谱技术原理、运用及最新进展》 2、《高速逆流色谱与其他色谱的联用技术、溶剂体系筛选》 3、《最新型高速逆流色谱TBE-300C介绍及性能比较》 会议持续2个半小时,老师同学踊跃提问,从反复提问回答探讨中,深入了解了高速逆流色谱技术,通过案例分享比较,老师同学都很兴奋探讨此项技术为现有的分离纯化平台带来的优化解决方案,总结得出这项分离纯化技术处理量大,分离纯度高,前处理简单,运行成本低,回收率高,是一场分离技术的革命。
  • 仅需1min无损快筛,让涉毒快递包裹无处遁形
    ► 2022年4月,福建省和广西省公安联合破获一起快递藏毒案件。犯罪人将海洛因藏在电脑硬盘内,以快递的形式寄给对方。 ► 2022年2月,浙江某市公安局破获一起通过快递邮包方式贩卖毒品的案件。犯罪人通过快递邮包的方式层层兜售,累计销售多种管制精神药品680余例。 警钟:快递运毒日渐增多人体藏毒、开车千里运毒… … 一直以来,普通群众对于贩毒、运毒等犯罪活动的印象,还停留在传统的影视剧和新闻报道中。然而,伴随着电子支付、网络购物等行业的发展,毒品交易方式也随之变化,线上不见面交易、线下交付方式日渐流行,辐射地域和服务人群逐步扩大。物流寄递的需求扩容、规模成型、种类多样,除了带来生活上的便捷外,却也被毒品犯罪分子盯上。与传统运毒方式相比,这种运毒行为具有货物中转速度快、全程人货分离等特点,给公安民警侦查破案带来了一定难度。然而,传统的筛查需要破坏快递包裹,且毒品的鉴定使用传统的色谱质谱方法,分析周期长,不利于快递包裹的大面积快速筛查。 魔高一尺,道高一丈。在筑牢寄递物流行业禁毒管控壁垒的同时,借助科技化手段与大数据支撑,不断加强打击能力,变“被动防守”为主动出击。 痛点:毒品流通“寄递化”,如何堵截“毒快递”?在以往,面对一个集装箱的快递包裹,公安机关如果要进行检查,只能将其中的包裹全部卸下,再对其进行一一检验,最后再将包裹装回集装箱中,耗时耗力不说,还非常影响快递企业的正常工作。有没有一种技术,可以让公安民警快速对大规模包裹进行统一检测?答案是:有的!岛津DPiMS-8060NX,可以在不破坏快递包裹的前提下,1 min内快速筛查包裹表面的可疑毒品残留。 岛津DPiMS-8060NX 对策:1min无损快筛潜在藏毒风险 方案优势分析过程实验结果 l 1min内快速分析21种毒品和精神类药物使用棉签棒充分擦拭快递包裹表面后,放入2 mL 50%异丙醇溶液中浸泡。取10 μL浸泡液上机分析,可在1 min内快速检测21种毒品和精神类药物。 表1. 21种毒品及精神类药物信息及MRM优化参数部分代表性化合物色谱图 l 稳定性良好取21种毒品混标溶液连续进样6次,峰面积的重复性在3.86-13.07%之间。 l 检出限低将溶剂空白(50%异丙醇)进样分析,得到溶剂空白色谱图。21种化合物的检出限约为0.1~5 ng/mL。 表2. 21种毒品及精神类药物检出限l 分析效果佳取5种常见毒品溶液滴在快递包裹表面,待充分晾干后,用本方法进行检测。5种毒品均检出,如下图所示。 结语 岛津DPiMS-8060NX可以在1 min内快速筛查快递包裹表面的21种可疑毒品及精神类物质,方法简便快速、重复性好且不破坏快递包裹,为科技禁毒擦亮“慧眼”,让快递包裹藏毒无处遁形。 *本文内容非商业广告,仅供专业人士参考。
  • 拉曼光谱是流体包裹体领域非破坏性研究重要手段——访南京大学地球科学与工程学院副院长倪培教授
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 矿物在生长过程中所圈闭的流体,即流体包裹体。流体包裹体分析是矿床学和地质流体研究不可或缺的环节。包裹体中的物质成分是解读相关地质信息的密码,保存了当时地质环境的各种地质地球化学信息(如P、T、pH、X等)。研究流体包裹体的主要目的之一,就是通过对包裹体中的古流体的定性或定量分析,获得各种数据、信息来解释所研究的地壳及地幔中的各种地质作用过程,甚至是获得古环境(如古海水、古气候)信息。流体包裹体分析已广泛应用于矿床学、岩石学、构造地质学、石油地质学等地质研究领域,同时也被应用于古环境研究和宝玉石鉴定。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   那么,流体包裹体领域的研究目的是什么?工作具体内容有哪些?都用到哪些仪器?对分析手段有哪些具体的要求?有哪些新兴的、适合的分析手段?为深入了解流体包裹体研究的具体工作内容和科学意义,仪器信息网编辑带着以上问题采访了南京大学地球科学与工程学院副院长/内生金属矿床成矿机制研究国家重点实验室副主任倪培教授。 /span /p p style=" text-align: center " img title=" 213.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/b895be8f-73cf-404b-8016-f58fe6b66d5b.jpg" / /p p style=" text-align: center " strong 南京大学地球科学与工程学院副院长/内生金属矿床成矿机制研究国家重点实验室副主任 倪培 /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 流体包裹体研究可提供准确而详尽的古流体物理化学信息 /strong /span /p p   内生金属矿床成矿机制研究国家重点实验室是首批建立的,全国第一家矿床地球化学学科的国家重点实验室,93年开始建设,95年通过评估。“我们课题组主要从事矿床学和地质流体研究工作,课题方向以金属矿产的研究为主,比如金矿、铜矿的研究。”倪培说,“我们主要通过研究成矿模式和成因类型来指导找矿勘察。这方面的工作我们做得很多,比如东北、华南的金矿,江西、福建的铜、金矿。现在开展的研究工作主要集中在闽浙赣这一带。” /p p   对于目前正在开展的研究工作,倪培介绍,“我们现在做的工作主要是关于热液流体矿床的研究,这类矿产一般温度比较高,最高能达到四五百度。研究热液流体矿的成矿机制和成矿模型,是我们研究工作的核心内容。而研究成矿流体最重要的手段之一就是流体包裹体的研究,因为金属矿物都是在某种流体中沉淀出来的,所以一定要把流体包裹体的情况搞明白。对流体包裹体的研究主要包括温度、压力、密度等物理化学条件和成分的研究。除此以外,我们还开展了人工合成包裹体及地质流体相关模拟实验等研究工作。” /p p   流体包裹体成分在许多情况下代表了包裹体形成时流体的原始组成,可以反映当时地质过程流体的物理化学条件。到目前为止,已有多种方法和仪器设备用于流体包裹体的成分分析,但无论采用哪种分析技术,都可以归结为群体包裹体分析或者单个包裹体测定。由于同一样品中的流体包裹体通常是由不止一个世代的包裹体所组成,而不同世代的包裹体性质有很大差别,因此群体包裹体分析不仅复杂而且分析结果的代表性相对较差。单个包裹体测试可以准确的分析感兴趣的特定包裹体,其所代表的地质信息是确定的或是唯一的。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 显微激光拉曼光谱是流体包裹体非破坏性分析的重要手段 /span /strong /p p   “检测不同相态的包裹体里面的成分是一个重要的手段。”倪培说,“如果能对单个包裹体来做成分分析将会解决很多问题。用到的方法主要有两种,一种是拉曼光谱法,一种是激光剥蚀电感耦合等离子体质谱法。” /p p   激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是一种破坏性的分析技术。近年来在国际上,激光剥蚀电感耦合等离子体质谱法虽然已经被成功的应用于单个包裹体元素组成的定量分析,但是单个流体包裹体成分的LA-ICP-MS分析技术,仅西方少数单位掌握,我国目前尚没有成功建立单个流体包裹体成分LA-ICP-MS分析实验室。而显微镜(包括可见光、荧光和红外显微系统)、冷热台、高温台、激光拉曼光谱仪等是目前国内外单个流体包裹体非破坏性测试的重要且被广泛采用的测试手段。 /p p   显微激光拉曼光谱作为一项新兴的微区分析技术在20世纪70年代渗入地学领域,其在微区分析上所显示的高精度、原位、无损和快速的特点,使之逐渐成为地球科学基础研究中的一项重要分析手段。目前,显微激光拉曼光谱技术已经被广泛应用于岩石学、矿物学、矿床学、构造地质学、石油地质学、宝玉石学等各个地球科学的分支学科。显微激光拉曼光谱技术可用于矿物鉴别(尤其是微细矿物和矿物包裹体)、矿物结构和应力分析、流体(熔体)包裹体的成分和温度测定、油气成藏信息获取、宝玉石鉴定等方面研究。此外,拉曼光谱与特定温度-压力仪器相结合,可以为地质领域矿物相转变、流体相变等原位分析研究提供有效的手段。 /p p   “拉曼光谱在地质领域应用得还是比较多的,特别是在矿物领域和包裹体领域应用得最多。”倪培说,“拉曼光谱已经成为流体包裹体研究必不可少的仪器。”如今,显微激光拉曼光谱已经被广大地质工作者接纳并采用,而且越来越受到地质科研工作者的重视。“现在来讲,能稳定测定包裹体里挥发分的非破坏性方法,除拉曼光谱外,没有其他非破坏性的方法可以代替。”倪培如是说。 /p p   随着科研的深入,国内地学工作者发现技术设备的更新是推进流体包裹体研究及其它地质研究的关键,且由于与国际研究接轨的迫切需求,内生金属矿床成矿机制研究国家重点实验室在经过多方数据收集、文献调研和实地勘查的基础上,于2001年引进了一台雷尼绍(Renishaw)RM2000显微激光拉曼光谱仪,用于开展流体包裹体及相关地质领域的研究,该台设备是国内地学领域最早引进的拉曼光谱仪之一。 /p p   基于Renishaw RM2000显微激光拉曼光谱仪,倪培课题组在国内较早的开展了流体包裹体成分定性-定量分析,并将拉曼光谱与特定温度-压力仪器相结合,进行地质领域矿物相转变、流体相变等原位分析,以及将拉曼测试应用于矿床学、岩石学、构造地质学、石油地质学,甚至是古环境研究和宝玉石鉴定,都获得了可喜的成果,这些工作在国内很多都具有开创性的意义。 /p p   “中国流体包裹体及相关地质领域最早的一台拉曼光谱是西安地化所在80年代引进的,我们不是最早的,但目前在地质学界,我们的拉曼光谱实验室是将拉曼光谱应用于流体包裹体及相关地质研究的最好的实验室之一。”倪培解释到,“第一,在国内我们是最先用拉曼光谱来开展包裹体的低温相平衡研究的团队。我们在国内率先发表了一些论文,把它介绍给国内的一些学者 第二,利用拉曼定量计算挥发分的组成,在国内我们是最早的之一。在95-96年,我在英国金士顿大学做博后,当时我的导师Andrew H. Rankin是英国矿学会主席, 是英国流体包裹体、矿产研究领域的权威,当时实验室就有一台Renishaw的拉曼光谱,这个方法就是从那儿学的。之后,我们自己在这个方法的基础上做了很多改进。” /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 科研工作者对拉曼光谱的自动化程度、灵敏度、稳定性、仪器精准度等要求越来越高 /span /strong /p p   对于仪器的选择,倪培介绍说“我看中了Renishaw的两点:首先,他们最早开发建立了一个矿物谱库,可以做谱图比对。像我们做地质研究的人,有的不是专门做谱学的,有这样一个谱库可以作比对非常方便,在这方面Renishaw做的很好。另外一个重要的原因是我在英国用的就是Renishaw,比较熟悉他们的产品,用起来方便。” /p p   这样一台使用了十几年的老仪器,还能满足如今的实验需求吗?倪培回答说,“目前还是完全能够满足实验需求的,自2002年投入使用以来,除了常规耗材更换外并没有大的维修,期间还承受了一次由老校区至新校区的搬运,至今一直运行良好。我认为,仪器的良好运行需要有专业人才来使用和维护。在国外很多大型的质谱仪,用了二十多年的有很多,关键在于仪器操作者的专业水平。另一方面,售后服务也很重要。在这十几年的使用过程中,我的感受是,Renishaw售后服务非常好,响应非常快,我认为这对我们做研究的人来说是非常重要的。” /p p style=" text-align: center " img title=" 214.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/dfc0dc57-76b2-418c-89a7-efd52e913ce9.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 内生金属矿床成矿机制研究国家重点实验室高级工程师丁俊英正在使用Renishaw RM2000显微激光拉曼光谱仪 /strong /span /p p   拉曼光谱有其局限性,这导致了应用限制,如:并非所有物质都具有拉曼效应,有些物质具有强荧光效应且无法规避导致干扰测试结果。此外对流体包裹体测试而言,针对不透明矿物中的流体包裹体因在可见光下观察不到故无法测试,以及对烃类包裹体而言存在的荧光干扰也是致命的。 /p p   倪培提出,希望拉曼光谱技术今后在几个方面做出改进,“一是如果能用同一个光路,既能做拉曼也能做红外,可以统一调节的,这我觉得是重要的。第二,也是非常重要的,就是能否将拉曼和红外显微镜结合,比如现在很多不透明金属矿物没办法检测,那么在红外下面能不能做拉曼呢?这我觉得也很重要。第三,我们发现当矿物的粒度小到一定程度的时候,荧光干扰会非常强,这个缺点是很致命的,就是矿物小到一定粒度时,很多信号就测不出来了。此外,数据库可以进一步扩充,需要不断地完善。” /p p    strong 后记 /strong :显微激光拉曼光谱仪在测试过程中具有微区、无损、快速、原位的优点,而且易与一些其它的小型设备结合使用,获得更丰富的测试结果。但是,正如我们所知道的,世界上没有任何一种方法或事物是绝对完美的,显微激光拉曼光谱除了自身固有的非拉曼效应物质、荧光干扰等问题外,随着科研工作的深入,科研工作者对设备的自动化程度、灵敏度、稳定性、仪器精准度等要求越来越高。 /p p   针对流体包裹体研究而言,全国配备流体包裹体实验室的科研单位本就不多,配备拉曼光谱仪的实验室也在少数,以台式拉曼光谱仪为主,便携/手持拉曼光谱仪极少见。但是,综观整个地质行业,已经有众多科研单位意识到拉曼光谱仪的重要性,并加以引进。 随着拉曼光谱仪在地质领域的应用越来越广泛,甚至在某些方面已成为常规测试手段,相信拉曼光谱仪在地质领域具有很好的市场前景。 /p p style=" text-align: right " 采访编辑:李博 /p p    strong 倪培简历 /strong /p p   倪培教授,男,1963年12月生,安徽淮南人,分别于1980、1984、1987年考入南京大学地质系攻读学士、硕士和博士学位,1990年留校工作,1995~1996年在英国金斯顿大学从事博士后研究,2004年被南京大学聘为教授和博士研究生导师 现任南京大学地球科学与工程学院副院长(主管科研)、内生金属矿床成矿机制研究国家重点实验室副主任、地质流体研究所所长 主要学术兼职包括国际矿物协会矿物包裹体工作组主席,国际成矿流体包裹体委员会秘书长,中国矿物岩石地球化学学会理事、副秘书长,中国矿物岩石地球化学学会矿物包裹体专业委员会主任,中国矿物岩石地球化学学会矿床地球化学专业委员会委员,中国矿业联合会矿产资源委员会副主任,中国地质学会矿床地质专业委员会和区域地质与成矿专业委员会委员,国土资源部成矿作用与资源评价重点实验室学术委员会委员,《Journal of Geochemical Exploration》副主编,《矿床地质》、《矿物岩石》、《矿物岩石地球化学通报》、《高校地质学报》、《地球科学与环境学报》、《油气地质与采收率》等学术期刊编委。 /p p   倪培教授长期从事矿床学和包裹体地球化学相关领域的教学和科研工作,主要研究方向为金属矿床成矿机理和成岩、成矿过程的流体作用,包括:①金、铜、钼、铅、锌、钨、稀土等矿床的成矿流体、成矿机理及成矿模式研究 ②沉积盆地、油气盆地和现代盐湖的流体包裹体研究 ③人工合成流体包裹体、流体包裹体的低温相平衡和原位拉曼光谱研究 ④成岩成矿过程的流体包裹体面(FIP)研究。他主持过包括国家自然科学基金项目、国家科技支撑计划项目、全国危机矿山接替资源找矿专项项目、老矿山接替资源找矿项目、整装勘查区关键基础地质研究项目、全国重要矿集区找矿预测项目等在内的多项科研项目。他已在《Journal of Geophysical Research:Solid Earth》、《Lithos》、《Precambrian Research》、《Ore Geology Reviews》、《Journal of Geochemical Exploration》、《Geofluids》、《Journal of Asian Earth Sciences》、《Palaeoworld》、《Carbonates and Evapotites》、《科学通报》、《地质学报》、《岩石学报》、《矿床地质》等国内外重要学术期刊上发表论文150余篇,参与编著出版《流体包裹体》专著和《环境地质学》教材。 /p p   倪培教授曾获国家教育委员会科技进步二等奖、南京大学青年教师学术研究奖、南京大学优秀教学成果一等奖、江苏省一类优秀课程等。他曾先后为本科生和研究生主讲过《环境地质学》、《矿相学》、《包裹体地质学》等课程,已培养博士研究生和硕士研究生33人。他于2006年发起召开ACROFI(Asian Current Research on Fluid Inclusions)国际会议,该会议目前已经成为与PACROFI(Pan-American Current Research on Fluid Inclusions)和ECROFI(European Current Research on Fluid Inclusions)并列的三大国际流体包裹体会议之一。 /p
  • 新技术把核桃油变“植物黄油”
    核桃油富含不饱和脂肪酸,但易氧化、存储时间短限制了应用。云南农业大学了盛军教授、田洋教授团队联合中国科学院西双版纳热带植物园副研究员罗嘉等人,在不添加增稠剂的情况下,成功制备出食用油凝胶,使核桃油变成固体“植物黄油”。并在国际期刊Food Hydrocolloids在线发表了相关成果。我国核桃种植面积和产量均居世界第一,云南省核桃种植面积居全国之首。2022年,云南核桃产量达191万吨。核桃含油量约65%,核桃油中优质多不饱和脂肪酸丰富,亚油酸约占60%,α-亚麻酸约占10%。当今,健康生活提倡增加多不饱和脂肪酸的摄入,同时降低动物源饱和脂肪酸的摄入,消除反式脂肪酸。“因此,将核桃油凝胶化替代传统塑性脂肪,是增加核桃油利用、促进居民健康的一种有效途径。”盛军介绍。研究团队以具有特殊结构和生物降解性、机械性能优越、表面活性强的食用纳米纤维素作为唯一凝胶因子,以核桃油为载体,通过乳液模板法,成功构造出性能良好的核桃油凝胶,使核桃油变身“植物黄油”。在乳液阶段,食用纳米纤维素吸附并紧密包裹在核桃油油滴表面,形成不均匀的致密网格结构,降低液滴的聚集;经过冷冻干燥后,其结构产生形变,获得油脂结合能力强、凝胶强度大、稳定性好的核桃油凝胶。由于纳米纤维素可定向“裁剪”,因此可构造不同性质的多不饱和油凝胶,这为核桃油的多元化利用,以及可调控食用纳米纤维素油凝胶的应用提供了新路径。“这一技术方法的创新和突破,延长了核桃油保质期,增加了核桃油的食用范围和应用场景,使核桃深加工增加了新品类,延长了核桃产业链,突破了产业的痛点。”论文共同第一作者、云南农业大学李秀芬博士说,相关成果,还有助于更好地理解食用油的油凝胶化,用核桃油按需开发功能性油脂产品。
  • 垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置
    垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置【新闻导读】众所周知,垃圾投放站、垃圾中转站、垃圾分拣站散发出的恶臭问题一直以来都是市民反映的热点问题,为了加强对城市垃圾的处理,垃圾中转站的数量也会越来越多。关于垃圾投放站、垃圾中转站、垃圾分拣站环境治理的要求也会越来越严高。  特别是在炎炎夏日,在垃圾投放站、中转站、压缩站、分拣区、堆放区等场所,各种垃圾混杂在一起都会散发着难闻的恶臭气体,大量的臭气飘散对周边或附近的住宅小区、厂区等众多场所造成很大的影响,为了解决垃圾除臭难题,采用智能垃圾站除臭设备有效改善站内环境空气质量是势在必行的。  如今,很多垃圾投放站、垃圾中转站、垃圾分拣站为了彻底解决垃圾恶臭带来的不利影响,采用了新型的科技手段—植物液雾化除臭装置--正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除湿机,实现了垃圾站环境的科学治理。这项工程不仅造福于民,更是直接关系到城市居民的身心以及市民对政府工作的满意度。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机采用的是超声波雾化技术,将除臭剂(或植物液)均匀喷洒在整个除臭空间,只有1-10微米的雾化颗粒能够迅速扩散,在空气中快速有效去除硫化氢、氨、有机胺、硫醇、硫醚等恶臭分子 具有高效、节能、维护方便等特点,受到广大用户与环卫部门的一致好评。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机,注入中性除味剂可自动为酒店、商场、写字楼、厕所等空间除味,注入中性消毒水可为室内自动消毒,注入自来水可为场所空气自动加湿。根据上海、广东、福建、湖北、湖南、北京等地垃圾站喷淋除臭装置试运营的情况来看,垃圾房使用该设备主要的优势有以下几点:  ◎高效除臭:将用于除异味浓缩液雾化成气态,使其能与异味分子充分混合,从而发挥高效除臭、除异味作用。  ◎杀菌灭蚊:可定时喷天然植物液不仅除臭、除异味,还能杀菌灭蚊,清新空气,大大降低使用成本维护费用。  ◎节约成本:雾气主要成分是水,成本低 添加少许除异味的浓缩液,超声波雾化技术将浓缩液的活性高效发挥。  ◎超细雾滴:经过超声后的雾滴极其细密,因此表面活性强、吸附力大,使植物液对臭味分子的包裹反应效果好。  ◎节省人工:添加一次用于除臭、除异味的浓缩液之后,半个月或一个月无需打理,自动完成喷雾除臭、除异味。  正岛植物液雾化除臭装置ZY-1800垃圾分拣站除臭机控制方式及技术参数:  正岛植物液雾化除臭装置ZY-1800垃圾分拣站除臭机,控制方式采用数字时序控制器自动循环控制,自动循环控制周期由一秒钟到九十九分钟五十九秒,可任意设置工作时间及停止时间,设定好后可连续工作,无需人员职守 配有5.5公斤水容量的自备水箱,水箱上端连接有注水口,下端配有放水开关 可根据实际需要连接⊙75mm的PVC管路,其传输距离可在5-8米左右 操作简单、维护方便!欢迎您来咨询垃圾分拣站除湿机,垃圾分拣房植物液雾化除臭装置的详细信息!  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机产品,是采用超声波高频振荡的原理,从而达到均匀喷雾除臭的目的 对于其他喷雾除臭方式的除臭机而言,具有【雾化颗粒细】 、【使用能耗低】 、【雾化能效高】,【加湿速度快】的显著优势,箱体采用全不锈钢材质,表面喷塑处理,此举既保证了外形美观大方又满足了设备防腐的要求。  正岛植物液雾化除臭装置ZY系列垃圾分拣站除臭机(型号:ZY-10/ZY-20/ZY-30/ZY-40/ZY-60/ZY-80/ZY-100)技术参数:  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机所产生的雾粒直径只有 小于10μm,颗粒均匀,能长时间悬浮于空气当中,具有空气加湿、除臭净化、消毒灭菌、以及预防静电和减少粉尘、降温降尘等多种用途 既可以较大空间进行均匀喷雾除臭,也可对特殊空间进行局部喷雾除臭,具有较高的使用灵活性,改善你我共同呼吸的空气。  杭州某个垃圾投放分拣站由于站内设备陈旧、设备设施不足等原因,造成该站运营效率不高,只能基本满足镇内各类垃圾收集和转运要求,而且密闭不严,容易产生和散发恶臭气体,苍蝇蚊子较多,尤其是夏季高温天气,臭气散发,影响环卫工人和周边街坊的工作、生活,引起群众的不满。 在使用了喷雾除臭装置--正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机后经检测显示,该站臭气浓度由原来的7244(单位:无量纲)下降至316(单位:无量纲) 氨浓度由原来的36.3(单位:PPM)下降至1.01(单位:PPM) 硫化氢浓度由原来的1.8(单位:PPM)下降至0.05(单位:PPM)。其效果比原来的掩盖除臭方法好的太多。  综上所述:一直以来,垃圾投放站、垃圾中转站、垃圾分拣站等站内的恶臭问题都是广大市民关注的一个热点问题 为了有效解决城市垃圾处理问题,垃圾投放站、垃圾中转站、垃圾分拣站的站点也会越来越多,对中转站的管理和环境治理的要求也越来越高,这是一项重大工程。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机相比其他除臭方法来说,喷雾除臭更加简单有效,性价比也更高。相比用喷雾除臭使用掩盖臭味的方式,不但耗费人力物力财力,除臭效果也不是很好,而它不但能够有效吸附空气中的污染因子90%左右,而且耗能小,可采用自动化控制,也不耗费人工,经济实惠,是垃圾站、垃圾投放站、垃圾中转站、垃圾收集站、垃圾分拣站以及垃圾处理厂等除臭、杀菌、消毒的理想选择!以上关于垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置的全部新闻资讯报道是正岛电器为大家提供的,仅供大家参考与学习!
  • 土壤植物机器系统技术国家重点实验室通过验收
    2010年8月9日,科技部组织专家在北京对土壤植物机器系统技术国家重点实验室进行验收。科技部基础研究司、基础研究管理中心、国资委规划局、中国机械工业集团有限公司等相关负责同志参加了验收会。验收专家组由来自全国9所大学及研究机构的专家组成,组长由中国工程院院士、东北农业大学蒋亦元教授担任。   专家组认真听取了实验室的建设情况报告,现场考察了实验室。专家组认为土壤植物机器系统技术国家重点实验室围绕发展现代农业的重大需求,以农业机械与土壤、植物、投入物和环境的相互作用规律及机理为主要研究对象,开展土壤-植物-机器系统应用基础、土壤和植物信息获取与病虫草防控技术与装备、农业雾化工程技术与装备、农业装备智能化技术四个方向的研究工作。研究方向定位准确,研究目标符合现代农业发展要求。建设期内,实验室承担了一批国家级科研项目,在自主研发实验设备和装置方面突出 形成了合理的学术梯队 建立了良好的运行机制 依托单位对实验室建设高度重视,给予了大力的支持。专家组一致同意该实验室通过验收。同时,专家组就加强农机与农艺结合,加强创新性技术研究等方面提出了中肯的建议。
  • 中石化研制世界首台高性能单体包裹体成分分析仪
    中国石化石油勘探开发研究院研制成功世界上第一台高性能单体包裹体成分分析仪,建立具有国际领先水平的单体油气包裹体剥蚀成分分析新技术。   据介绍,该技术突破性地实现了不改变单个包裹体内原始油气组成下的有机成分提取和分析。利用该分析仪,我国首次实现对塔河油田不同期次单体油气包裹体的成分分析,为塔河油田奥陶系油藏油气充注过程、油气成藏期次提供了可靠证据。同时,建立的一系列油气包裹体分析新技术方法所获得的分析数据及地球化学信息,已有效应用于塔河油田、普光气田、胜利油田等油气源对比、油气运移以及成藏过程研究,也为南方海相天然气勘探、我国碳酸盐岩油气成藏理论和勘探实践提供了科学依据。
  • 同田中标中科院昆明植物所高速逆流色谱仪项目
    经过大半年的技术跟进,上海同田中标中科院昆明植物所高速逆流色谱仪项目,这也是昆植所本部首次采购高速逆流色谱仪。 中科研昆明植物研究所是国内顶级的植物学研究机构,现已建成具有先进水平的科技信息、仪器分析测试、标本馆、种质资源库以及植物园等重要科技支撑条件。设有&ldquo 两室一园一库&rdquo (即生物地理与生态学研究室、植物化学研究室、植物园和中国西南野生生物种质资源库),拥有植物化学与西部植物资源持续利用国家重点实验室、国家大科学工程中国西南野生生物种质资源库、中国科学院生物多样性与生物地理学重点实验室。本次采购预示着高速逆流色谱技术已逐渐成为常规的分离技术手段,被广泛的使用。 仪器简介: TBE -300B 制备型高速逆流色谱仪 背景技术简介 高速逆流色谱 ( high-speed countercurrent chromatography , HSCCC )是 20 世纪 80 年代发展起来的一种连续高效的液&mdash 液分配色谱分离技术, 它不用任何固态的支撑物或载体。 它利用两相溶剂体系在高速旋转的螺旋管内建立起一种特殊的单向性流体动力学平衡,当其中一相作为固定相,另一相作为流动相,在连续洗脱的过程中能保留大量固定相。 由于不需要固体支撑体,物质的分离依据其在两相中分配系数的不同而实现,因而避免了因不可逆吸附而引起的样品损失、失活、变性等,不仅使样品能够全部回收,回收的样品更能反映其本来的特性,特别适合于天然生物活性成分的分离。而且由于被分离物质与液态固定相之间能够充分接触,使得样品的制备量大大提高,是一种理想的制备分离手段。 它相对于传统的固&mdash 液柱色谱技术,具有适用范围广、操作灵活、高效、快速、制备量大、费用低等优点。目前 HSCCC 技术正在发展成为一种备受关注的新型分离纯化技术,已经广泛应用于生物医药、天然产物、食品和化妆品等领域, 特别在天然产物行业中已被认为是一种有效的新型分离技 术;适合于中小分子类物质的分离纯化。 我国是继美国、日本之后最早开展逆流色谱应用的国家,俄罗斯、法国、英国、瑞士等国也都开展了此项研究。美国 FDA 及世界卫生组织( WHO )都引用此项技术作为抗生素成分的分离检定, 90 年代以来,高速逆流色谱被广泛地应用于天然药物成分的分离制备和分析检定中。 关于上海同田生物 上海同田生物是高速逆流色谱领域的领导者;公司致力于高速逆流色谱仪( HSCCC )、双柱塞恒流泵、超纯水机以及高纯度天然产物有效成分单体、天然药物原料 / 中间体的研究开发、生产和销售。 欲了解更多信息,请浏览公司网站:www.tautobiotech.com 上海同田市场部 2010.9.9
  • 植物研究所成立资源植物研发重点实验室
    12月29日上午,植物研究所举行资源植物研发重点实验室启动仪式。中科院副院长李家洋院士,中科院生命科学与生物技术局综合规划处处长刘杰、副处长许航,整合生物学处处长娄治平出席仪式,李家洋、植物所所长方精云院士、植物所匡廷云院士、洪德元院士为资源植物研发重点实验室揭牌。植物所领导班子成员及有关研究中心研究人员参加了启动仪式。   仪式由方精云主持,植物所副所长葛颂从资源植物研发的重要性及国内外现状,资源植物研发重点实验室成立的必要性,定位和研究内容,研究基础和条件,发展目标,组织结构和管理模式等五个方面介绍了资源植物研发重点实验室的基本情况。   资源植物研发重点实验室是植物所举全所之力,整合植物所在资源植物基础研究和应用开发方面的核心力量而成立的所级重点实验室,是植物所为适应国家中长期发展战略对生物资源的新需求,在深入分析中科院和植物所的定位和长远科技目标基础上,对植物所学科布局、科研组织方式做出的重要调整和尝试。   在学科定位上,资源植物研发重点实验室将面向国家重大战略需求,以我国特色与优势资源植物为研究对象,发挥植物所基础研究和多学科交叉的优势,系统开展资源植物的收集、评价、研究和开发利用 在资源植物生物学研究领域开展创新性的整合研究,解决我国在资源植物发掘与利用方面的重大科技难题和实际需求。主要研究内容包括:(1)资源植物的收集、评价和共享 (2)资源植物关键生物学特性的研究 (3)资源植物优良种质的发掘和利用。   资源植物研发重点实验室的目标是力争1-2年内在资源植物基础研究领域取得明显进展,形成具有国际竞争力的研发队伍,建成中国科学院重点实验室 争取在5-8年内,在资源植物基础研究和种质资源开发方面取得重大突破,引领我国资源植物的创新发展,显著提升我国资源植物相关产业的国际竞争力,推动生物产业升级,带动生物产业发展,为国家经济社会发展做出重要贡献,争取最终纳入国家重点实验室序列。   在组织与管理形式上,作为植物所科研组织形式改革的试点机构,资源植物研发重点实验室将采取新的管理模式,以研究群(Research Team)和研究组(Research Group)为基本运行单位,每个群下设若干研究组。实验室目前设有6个研究群: 1)资源植物收集与评价研究群 2)植物抗逆机理与应用研究群 3)环境和能源植物研发研究群 4)园艺植物研发研究群 5)种子特性及应用研究群 6)药用植物研发研究群。   在评估评价机制上,实验室将根据基础类、应用基础类、技术开发类研究任务的特点,建立合理的评价体系。在人才队伍方面,植物所引进了“千人计划”研究员桑涛任实验室主任,聘任华中农业大学校长邓秀新院士作为学术委员会主任,并即将就研究群负责人(Team Leader)面向国内外公开招聘。   刘杰受院生物局局长张知彬、副局长苏荣辉的委托致辞,对成立资源植物研发重点实验室表示祝贺,并希望植物所继续发挥基础性研究优势,加强交叉和综合性研究,特别是加强系统性研究。他说,资源植物研发重点实验室的成立,是研究所在经过深入研讨后做出的重要战略部署,资源植物研发重点实验室在强调基础性研究的同时,也强调科技成果产业化,整合分散的研究力量开展面向国家重大战略需求的集成性研究,符合中科院以科学发展观为指导所要着力实现的“9个转变”,符合院“十二五”发展规划,相信植物所在今后几年内一定会做出好成绩来,同时祝实验室早日进入院重点实验室序列。   李家洋对植物所在学科布局调整中的举措给予了充分肯定,指出植物所在资源植物研究方面有很好的研究基础,而成立资源植物研究重点实验室,可以将分散的研究力量整合起来,集中开展面向科学前沿和国家重大战略需求相结合的系统性研究,体现了植物所的特色和优势。李家洋特别强调,作为历史悠久的基础类研究所,植物所需要找准定位,进一步凝练学科目标,凝聚研究力量,在保留传统优势的同时,积极开拓新兴前沿领域。李家洋希望植物所紧密结合“十二五”规划和院“创新2020”规划,做好研究所的战略部署,统筹强弱学科、传统与新兴学科的发展,争取更多的支持,通过“特色”学科建设,推动“特色”研究所建设。   方精云对院领导的到来表示感谢,同时感谢院领导和生物局对植物所工作的肯定与支持,感谢以葛颂为组长的资源植物研发重点实验室筹备组前期的努力工作。他简要阐述了重点实验室成立的简要背景,为适应国家“十二五”规划的新需求,植物所将系统与进化、生态环境、发育与信号转导、光合作用和植物资源科学利用等5个研究领域作为重点领域进行部署。资源植物研发重点实验室的成立,是植物所面向国家对生物资源的重大战略需求而进行的重要举措,是植物所发展史上的重要事件。研究所将用更加精良的装备,更加宽松良好的环境,更加灵活有效的管理机制,更加合理的评估体系来建设和管理实验室,使其在资源植物的基础研究和应用开发方面取得双丰收,并争取把若干个项目推向产业化。   植物所将以资源植物研发重点实验室的成立为契机,进一步凝练和优化研究方向,整合研究和开发队伍,引进高端人才特别是领军人才,加快形成植物研究所的资源植物研发的特色和优势,推动植物研究所“十二五”规划和“创新2020”规划的目标的实现。
  • 《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定》
    2021年3月份,国家卫生健康委员会、农业农村部、国家市场监督管理总局联合正式发布GB 23200.121-2021《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》,该标准涉及到蔬菜、水果、食用菌、糖料、谷物、油料、坚果、茶叶、香辛料、植物油类10大类农产品,规定了植物源性食品中331种农药及其代谢物残留量的液相色谱-质谱联用测定方法,并将于今年9月份正式实施。新标准实施在即,月旭科技针对GB 23200.121-2021《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》进行了梳理,整理出了该方法中所用到的样品前处理耗材、色谱柱耗材、分析标准物质以及通用耗材等,旨在为新标准提供整体解决方案。GB 23200.121-2021《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》产品配置方案表
  • Dolomite Bio隆重推出Nadia单细胞测序自动包裹仪
    随着科学的发展,科学家们发觉许多群体细胞,完整个体水平的研究只是研究多种类细胞,多个细胞共同作用的“平均值”,淹没了细胞个体之间的差异。因此,针对单个细胞的研究技术,单细胞基因组学研究(Single Cell Genomics Study)成为生物学研究迫切的方向,并成为再生医学,发育生物学,肿瘤研究,免疫学研究必不可少的关键研究手段。 英国Dolomite Bio公司基于其已有的单细胞RNA测序系统和μEncapsulator细胞包裹系统取得良好的销售业绩及客户反馈。2017年11月,Dolomite Bio公司隆重推出Nadia单细胞自动制备仪,可平行运行1,2,4,8个样品, 每个样品18min内可生成6000个单细胞库;专为DropSeq方案设计;使用一次性试剂盒,防止污染;自动检测试剂盒状态,触摸屏控制,全自动运行。同时,添加Nadia创新平台,可以使用自己的试剂,开发新的方法,可调节液滴大小、频率、温度、搅拌和时间等参数,一旦条件摸索成功,可通过Nadia单细胞自动制备仪在相同条件下平行运行2,4,8个样品。 Nadia单细胞自动制备仪及其创新平台的问世,为单细胞研究者提供了更多、更灵活的研究手段,相信将在很大程度上推进肿瘤、免疫和发育生物学的研究在真正的单细胞水平取得更大的进展!
  • IVIS视角——IVIS系统在植物领域的应用(一)
    在往期分享中,我们介绍了IVIS成像系统在动物水平的众多应用,其实IVIS同样可以用于全植物成像。此次我们就分享IVIS在水稻氮代谢研究中的应用。氮是植物生长发育所必需的养分,但其在土壤中的浓度往往达不到最佳作物生长浓度。因此,提高作物氮素利用率被认为是农业生物技术的一个主要目标。然而,关于作物氮代谢仍有许多需要了解的地方。在此,研究人员开发了一个分子传感器系统来监测水稻中氮的状态,该方法发表在《Frontiers in Plant Science》杂志上。研究中首先利用该系统研究了尿囊素的作用,尿囊素分解为尿囊素衍生的代谢物,在低浓度下作为氮源使用。参与尿素代谢的两个基因尿囊素酶(OsALN)和尿素渗透酶1 (OsUPS1),对氮状态高度敏感,在低氮条件下,OsALN迅速上调,而高氮条件下OsUPS1表达上调。基于上述机制,研究人员培育了含有氮分子传感器系统的[proALN::ALN-LUC2]和[proUPS1::UPS1-LUC2]转基因水稻。这种转基因的表达可以模拟内源性的转录调控,即OsALN和OsUPS1基因对外源N状态的响应。文中使用两种方法来测定分子氮传感器的能力:方法一:在长期培养中,转基因水稻植株在高浓度氮源培养基(GM+N)或不含氮源的生长培养基(GM-N)中培养5天,随后使用IVIS活体成像系统进行成像及定量。结果显示,生长在GM+N培养基中的 proUPS1::UPS1-LUC2 水稻植株表现出更高的荧光素酶活性(图1A)。为了对发光信号进行定量,研究人员测定了5个独立的纯合系(具有单个基因拷贝)。生长在GM+N培养基中的proUPS1::UPS1-LUC2 植株发光信号强于GM-N组20倍,而强于对照组约2,800倍(图1B)。方法二:在短期培养实验中,转基因水稻植株先在GM-N培养基中培养4天,第5天在加入100nM硫酸铵。结果显示,同长期实验结果一样,生长在后期加 氮培养基中proUPS1::UPS1-LUC2 植株,发光信号更强(图1C)。同样对5株独立的纯合系进行了定量,生长在后期加N培养基中的proUPS1::UPS1-LUC2 植株生物发光信号强于GM-N培养基中约50倍,而强于对照组13,000倍(下图1D)。图1.在高氮培养条件下,proUPS1::UPS1-LUC2 具有很强的发光信号。 (A)对照组和proUPS1::UPS1-LUC2 植株在GM+N或者GM–N培养基 中培养5天;(B)5个独立的纯合子proUPS1::UPS1-LUC2 在(A)条件下,发光定量结果;(C)对照组和proUPS1::UPS1-LUC2 植株在GM–N生长5天, 或者在GM–N培养基中生长4天,然后加入100 mM硝酸铵培养1天;(D)5个独立的纯合子proUPS1::UPS1-LUC2 在(C)条件下的定量结果,以对照组作为基准进行标准化 。这些结果说明,proUPS1::UPS1-LUC2 传感器能够通过发光信号水平检测外源氮的情况。同样在研究中对proALN::ALN-LUC2 植株进行了相同的处理。结果显示,在长时间的培养实验中,GM+N和GM-N培养基生长的proALN::ALN-LUC2 没有明显差异(图2A)。对5株独立的纯品系进行发光信号定量,相比GM+N培养基,GM-N培养基生长的proALN::ALN-LUC2 植株发光信号要高约1.8倍,比对照组高约17倍(图2B)。因此很难鉴定GM+N和GM-N培养基对生长的影响。而在短时间培养实验中,连续生长在GM-N培养基中的proALN::ALN-LUC2,发光信号要强于加高氮培养1天的。图2.在低氮培养条件下,proALN::ALN-LUC2 植株显示强的生物发光信号。(A)对照组和proALN::ALN-LUC2 植株,在GM+N or GM–N培养基中培养.;(B)A组相对定量结果;(C)对照和proALN::ALN-LUC2 植株在 GM–N中培养5天,或者在GM–N培养基中培养4天,然后加入100 mM 硝酸铵再培养1天 ;(D)C组相对定量结果;GM–N培养基生长的对照组植株作为基准进行标准化。此外,在文章中,还利用IVIS活体成像系统,探讨了该传感器对于氮源是否具有选择性及对于氮源的敏感性。结果显示proUPS1::UPS1-LUC2 和proALN::ALN-LUC2 对于氮源无特异性,可以广泛的作为水稻等植株中分子氮的传感器。并且proUPS1: UPS1-LUC2 植株在硝酸铵、硫酸铵或硝酸钾浓度 1mM即表现出强烈的生物发光信号,而低氮浓度( 10mM)。综上,分子氮传感器的信号反映了分子氮的内部状态。结合IVIS活体成像技术,proALN::ALN-LUC2和proUPS1::UPS1-LUC2 可作为分子传感器在不同研究中监测大米内部氮状态。文献来源:Dong-Keun Lee, Mark C. F. R. Redillas, Harin Jung, Seowon Choi, Youn Shic Kim and Ju-Kon Kim. A Nitrogen Molecular Sensing System, Comprised of the ALLANTOINASE and UREIDE PERMEASE 1 Genes, Can Be Used to Monitor N Status in Rice. Front. Plant Sci, 18 April 2018.
  • 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》产品配置方案
    2018年6月份,国内首部将气相色谱-三重四极杆联用系统用于多种农药残留检测的国家标准《GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》发布,并于2018年12月21日正式实施。《GB 23200.113-2018》几乎囊括了所有的植物源性食品,包括蔬菜、水果、食用菌,谷物、豆类、油料作物,茶叶、香辛料,植物油等9大类23种样品基质。目标针对208种农药及其代谢物,包括有机磷、有机氯、菊酯、三唑类、酰胺类、三嗪类、苯氧羧酸类、氨基甲酸酯类等。月旭科技针对GB 23200.113-2018《食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》进行了梳理,整理出了该方法中所用到的样品前处理耗材、色谱柱耗材、分析标准物质以及通用耗材等,旨在为新标准提供整体解决方案。上期回顾《食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》产品配置方案。GB 23200.113-2018《植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法》产品配置方案表
  • 五洲东方参加第六届中国植物逆境生理学与分子生物学研讨会
    2010年3月26-31日,第六届中国植物逆境生理学与分子生物学研讨会在深圳举办,来自中国科学院、中国农科院等30多个生命科学研究所及重点综合性大学的近400余名从事生命科学研究的院士、专家、教授、青年学生参会,五洲东方作为生命科学通用实验室仪器供应商赞助了此次研讨会,并通过此次会议成功宣传了五洲东方代理的美国PERCIVAL植物培养箱、法国VILBER荧光成像系统、美国REVCO超低温冰箱、德国SIGMA离心机、德国BRAND移液操作等与植物学研究密切相关的仪器,其中美国PERCIVAL系列植物培养箱以其专业性和在国内拥有众多专业用户备受关注。 拥有百年历史的美国PERCIVAL公司不断为环境控制工业建立标准,现已生产13个种类,近80个型号的培养箱,覆盖整个植物培养领域以及动物和环境测试领域。另外,还可以根据客户的实验需求量身定制培养箱。默克(Merck)、礼来(Eli Lilly)、罗氏(Roche)、法玛西亚普强(Pharmacia & Upjohn)、美国陶氏益农公司(Dow AgroSciences)、美国国家宇航局(NASA)、杜邦(DuPont)、孟山都(Monsanto)、诺华(Novartis)及法国葡萄酒酿造厂等著名跨国企业都是PERCIVAL的客户。在我国,北大、清华、复旦、中科院、农科院、北京生命科学研究所、天药药业、泰德制药等众多知名科研院所和企业也正在使用PERCIVAL的各类产品。 美国PERCIVAL中国总代理 北京五洲东方科技发展有限公司 地址:北京市海淀区北四环中路265号(100083) 电话:010-82388866 传真:010-82388989 邮箱:info@ostc.com.cn 公司网址:www.ostc.com.cn
  • 输美植物提取物谨防“杀虫剂残留”
    据美国FDA官方网站统计,今年8月份,中国输往美国的植物提取物有6批次因“含有一种杀虫剂”和“含有一种不安全的农药”而遭拒绝入境,而该类产品2012年全年都未见类似通报。主要产品涉及红景天提取物、欧洲越橘提取物、银杏提取物等。     植物提取物是应用现代提取分离技术从植物原料(水果、药食两用植物、中草药等)中定向获取和浓缩的某一种或多种成分,而不改变其有效成分而形成的产品。按照提取植物的成分不同,形成甙、酸、多酚、多糖、萜类、黄酮、生物碱等。其用途非常广泛,不仅可作为制药行业的主要原料,还可应用于普通食品、保健品、膳食补充剂、化妆品、食品添加剂(色素、甜味剂等)、香精香料等行业。在美、日、韩和欧洲等发达国家和地区,以植物提取物为原料的保健品备受消费者青睐,市场需求逐年上升。     中国提取物出口美国量近两年来不断增长,美国FDA今年以来对植物提取物的关注度提高,对农残限量要求呈不断加严趋势。由于植物提取原料来源广泛,目前FDA对植物提取的质量和农药残留进行判定主要基于以下标准:一是对所有在美国药典(USP-NF)中已经列名的提取物,依据美国药典(USP36-NF31)标准进行判定。二是对于其他在药典中无列名的提取物,农残则按照NF28进行检测和判定(NF28相当于USP36,比USP36的限量指标稍微宽松)。美国基于技术性贸易壁垒的考量,不断加重农残限量检测砝码,一些农药检测限量值一般要求在0.01PPM以下,中国部分野生植物和中药材原料的提取物,都有可能被检测出微量残留而遭拒绝入境,今年国内一些大公司出口量比较大的产品而因此遭到美国FDA退货。   美国是宁波地区植物提取物出口的重要出口市场,为防止相关企业再遭美国通报,检验检疫部门提醒各出口企业一定要谨防输美产品杀虫剂和农药残留:一是要把好植物原料、中药材等采购关,对于种植的原料,要调查清楚种植户的用药情况或相关记录。二是要把好原料验收关,原料进厂时,企业应加强抽样自检,有代表性的抽样送往专业机构检测杀虫剂、农药残留等项目,同时,做好原料的批次验收和核销记录,确保植物提取物产品质量可追溯。三是要把好产品出厂检验关,加强成品检验,尤其是针对提取物有效成分高的产品,由于提取浓缩幅度大,溶剂残留和农药残留更容易超标,一定要加大检测把关力度,以避免不必要的退货损失。
  • 科学家开发新激光系统,可使植物生长加倍
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据英国《每日邮报》近日报道,俄罗斯科学家称,他们已在农业方面取得新突破,开发出一种激光系统,可使农作物生长速度快一倍,并且培育过程中不需任何杀虫剂。该技术可用于城市,亦或偏远地区,据称还可大大延长食品的储藏时间,延长食物保鲜期。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/b10c8e78-8144-4435-84c2-6b6324ec869c.jpg" title=" ds.jpg" / /p p style=" line-height: 1.75em text-align: center "   图为培育植物所用激光器 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/4d060ae2-2885-4768-9e9e-9419743620bf.jpg" title=" d.png" / /p p style=" line-height: 1.75em text-align: center "   激光系统 /p p style=" line-height: 1.75em "   报道指出,世界人口2050年将达90亿人,预计对食物的需求量将提高70%。要弥合这一鸿沟,科技将扮演重要的角色。 /p p style=" line-height: 1.75em "   该系统由俄罗斯米丘林国立农业大学(Michurinsk State Agrarian University)的科学家发明。该研究团队称,他们使用了相对便宜的激光系统培育作物,包括番茄、黄瓜、萝卜、茴香等,其生长速度和产量都比自然生长要高得多 并且无需杀虫剂等化学品加速农作物的生长,因此该技术培育出的植物为“生态清洁型”。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/b960ff6b-de1e-40b9-962a-b82785565aa8.jpg" title=" a398e51b8d2a19f.png" / /p p style=" line-height: 1.75em text-align: center "   实验室 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/ade21677-dfad-4c5c-9e40-9df5fe2a9a87.jpg" title=" 258a0deded2db71.png" / /p p style=" line-height: 1.75em text-align: center "   植物每天需经激光照射,但该工作由机器人完成。与传统种植模式相比,此举可节省农民的时间。图为黄瓜接受激光照射 /p p style=" line-height: 1.75em "   该技术对植物用单一波长或颜色的激光进行照射。其他科学家正在研究不同颜色的LED光对促进植物生长分别有何作用。 /p p style=" line-height: 1.75em "   俄罗斯专家称,该激光系统还可提高植物免疫能力,从而治愈患病植物。专家还表示,激光技术还可延长作物储存时间,并发现其体内有毒有害物质。 /p p br/ /p
  • 植物提取物的前景分析--“它”具有权威发言权
    p style=" text-align: center " img width=" 598" height=" 148" title=" 4444.jpg" style=" width: 539px height: 118px " src=" http://img1.17img.cn/17img/images/201704/insimg/cb2775ae-cfc0-49d9-aa29-dedf08ad738f.jpg" / /p p   产品定义 /p p   植物提取物是以植物为原料,按照对提取的最终产品的用途的需要,经过物理化学提取分离过程,定向获取和浓集植物中的某一种或多种有效成分,而不改变其有效成分结构而形成的产品。按照提取植物的成份不同,形成甙、酸、多酚、多糖、萜类、黄酮、生物碱等 按照性状不同,可分为植物油、浸膏、粉、晶状体等。[2] /p p   市场供求 /p p   植物提取物有许多不同品种[3] ,这些产品供需随年份及各种市场因素不断变化,供需不平衡的情况时有发生。 /p p   ① 产品供给影响  由于植物提取物行业原材料为农林产品,容易受天气、病虫害、播种面积等因素影响,不同年份的原材料收购价格及数量会出现波动,原材料价格波动使天然植物提取物产品的价格、产量会有一定程度的变动,发生市场供需失衡。 /p p   ② 市场需求影响 /p p   多数生产企业对海外市场需求认识有限,可能对市场需求缺乏科学和长期准确判断。当某一产品市场需求较好时,短期内会出现供不应求的市场失衡情况,但随着市场信息的传播,大量企业会一拥而上重复生产,导致产品供大于求。 /p p   生物碱 /p p   是一类复杂的含氮有机化合物,具有特殊的生理活性和医疗效果。如麻黄中含有治疗哮喘的麻黄碱、莨菪中含有解痉镇痛作用的莨菪碱等。 /p p   苷类又称配糖体 /p p   由糖和非糖物质结合而成。苷的共性在糖的部分,不同类型的苷元有不同的生理活性,具有多方面的功能。如洋地黄叶中含有强心作用的强心苷,人参中含有补气、生津、安神作用的人参皂苷等。 /p p   挥发油 /p p   又称精油,是具有香气和挥发性的油状液体,由多种化合物组成的混合物,具有生理活性,在医疗上有多方面的作用,如止咳、平喘、发汗、解表、祛痰、驱风、镇痛、抗菌等。药用植物中挥发油含量较为丰富的有侧柏、厚朴、辛夷、樟树、肉桂吴茱萸、白芷、川芎、当归、薄荷等。 /p p   单宁(鞣质) /p p   多元酚类的混合物。存在于多种植物中,特别是在杨柳科、壳斗科、蓼科、蔷薇科、豆科、桃金娘科和茜草科植物中含量较多。药用植物盐肤木上所生的虫瘿药材称五倍子,含有五倍子鞣质,具收敛、止泻、止汗作用。 /p p   其他成分 /p p   如糖类、氨基酸、蛋白质、酶、有机酸、油脂、蜡、树脂、色素、无机物等,各具有特殊的生理功能,其中很多是临床上的重要药物。 /p p   综合各国的立法范畴和概念及使用情况,植物提取物这个概念是可以被各国所接受与认可的,也是传播草药在各国通用的共性表达方式。中国植物提取物的出口额早在1999年就已超过中成药的出口额。在欧美国家,植物提取物及其制品(植物药或食品补充剂)有着广泛的市场前景,已发展成一个年销售额近80亿美元的新兴产业。 /p p   中国的植物提取物总体上是属于中间体的产品,目前的用途非常广泛,主要用于药品、保健食品、烟草、化妆品的原料或辅料等。用于提取的原料植物的种类也非常多,目前进入工业提取的植物品种在300种以上。 /p p   产品功效——遏制癌症 /p p   美国科学家说,他们通过对膀胱癌的研究,证实了绿茶提取物能有效遏制癌肿瘤发展,同时不损害健康细胞。由美籍华人科学家领导的这个研究小组认为,绿茶提取物可能成为一种有效的抗癌药物。 /p p   这一成果当天发表在《临床癌症研究》杂志上。主持这项研究的加利福尼亚大学洛杉矶分校副教授饶建宇说,他们的成果“增进了对绿茶提取物作用机理的理解”。如果人们对绿茶提取物遏制肿瘤的机理有所了解,就能确定哪种类型的癌症患者能从绿茶提取物中受益。 /p p   研究人员在论文中写道,癌肿瘤的发展与癌细胞的扩散运动密切相关,癌细胞要运动,就必须启动一个被称为“肌动蛋白重塑”的细胞进程。一旦这一进程被激活,癌细胞就能够侵入健康的组织,导致肿瘤扩散。而绿茶提取物能破坏“肌动蛋白重塑”进程,使得癌细胞粘附在一起,其运动受到阻碍,此外它还能使癌细胞加快老化。 /p p   饶建宇说,癌细胞具有“侵略性”,而绿茶提取物打破了它“侵略”的路径,能限制癌细胞,使其“局部化”,使癌症治疗和预后工作都变得相对简单。 /p p   此前,已经有一些研究成果揭示了绿茶提取物对包括膀胱癌在内的许多癌症具有效果,它能够引起癌细胞过早凋亡,并阻断肿瘤组织的血液供应。饶建宇对新华社记者说,他们研究小组的一些成员正在验证绿茶提取物对胃癌等其他癌症的效力。 /p p   他说,与以前类似的研究不同,他们使用的绿茶提取物,其成分和饮用的绿茶非常相似,这意味着常饮绿茶可能有某种抗癌效果,至少可以增强人体对癌症的防御能力。不过研究人员也认为,目前他们只实验了有限的几个膀胱癌细胞系,要揭示绿茶的抗癌机理还有待进一步的研究。 /p p   其他科学家当天评论说,这一研究成果进一步证实了绿茶在预防和治疗癌症方面所具有的潜力。尤其在膀胱癌治疗方面,新成果有助于发现膀胱癌的易感者,降低发病率。 /p p   产品功效——抗氧化性 /p p   自1900年Gomberg提出自由基(tripheylemthylradical)学说以来,人们对自由基的研究逐渐加深。传统合成的抗氧化剂虽然抗氧化能力比较强,但长期食用有潜在的毒性,有的甚至会产生致畸、致癌作用,因此愈来愈受到人们的排斥 而蜂花粉是蜜蜂从花朵上采集的花粉粒,含有黄酮类、维生素、激素、核酸、酶类和微量元素等,具有抗衰老作用,是良好的抗氧化食品。葛 根 、杜仲叶、 枸 杞 、 枳 椇 子 、 茯 苓 、 五 味 子 、 银 杏 、 竹叶、柠檬、柑橘和蜂胶的抗氧化作用均已得到实验证明。因此,从天然产物中筛选具有抗氧化和清除自由基活性的物质对食品和医药工业都有重要意义。 /p p /p
  • Dolomite Bio成功举办高通量单细胞转录组测序和单细胞液滴包裹技术交流会
    随着科学的发展,科学家们发觉许多群体细胞,完整个体水平的研究只是研究多种类细胞,多个细胞共同作用的“平均值”,淹没了细胞个体之间的差异。因此,针对单个细胞的研究技术,单细胞基因组学研究(Single Cell Genomics Study)成为生物学研究迫切的方向,并成为再生医学,发育生物学,肿瘤研究,免疫学研究必不可少的关键研究手段。 Dolomite Bio公司基于其已有的单细胞RNA测序模块系统和μEncapsulator单细胞包裹模块系统取得良好的销售业绩及客户反馈。2017年11月,Dolomite Bio公司隆重推出Nadia高通量单细胞建库仪,可平行运行1/2/4/8个样品, 每个样品18min内可生成6000个单细胞库;专为DropSeq方案设计;使用一次性试剂盒,防止污染;自动检测试剂盒状态,触摸屏控制,全自动运行。同时,添加Innovate新方法开发平台,可以使用自己的试剂,开发新的方法,可调节液滴大小、频率、温度、搅拌和时间等参数,一旦条件摸索成功,可通过Nadia高通量单细胞建库仪在相同条件下平行运行2/4/8个样品。 2018年4月24日-27日, Dolomite Bio公司在北京、上海、深圳和澳门成功举办了Nadia高通量单细胞转录组测序技术交流会,会议现场Dolomite Bio公司CEO Mark Gilligan先生详细介绍了液滴微流控技术应用在单细胞研究的优势,高通量单细胞RNA测序实验中遇到的问题以及B细胞和T细胞、FACS分选等应用,并现场利用Nadia单细胞建库仪和Innovate新方法开发平台演示了单细胞库制备的整个实验过程。现场部分客户被邀请亲自体验了实验过程,客户对实验结果非常满意,并对Nadia通量高、操作简单、Innovate灵活开放的特点给予了极大的肯定。清华大学会场中科院学术会议中心会场华大基因会场澳门大学会场Mark给客户演示Nadia样机
  • 新芝,助力植物源性食品农残检测
    植物源性食品为人体提供身体所需的能量和营养物质,是不可或缺的基础生活品。近年来我国食品安全问题频发,其中农残问题尤为突出,引起社会各界广泛关注。许多农药由于其化学结构稳定,自然条件下难以快速降解,长期食用农残食品对人体会造成巨大危害,威胁生命健康。植物源性食品的农残检测从食品安全角度来看,是绕不开的问题,必须确保植物源性食品农残符合国家安全标准。目前常用的植物源性食品农残检测方法有色谱法、酶抑制法、表面增强拉曼散射法、分子印迹法等。其中色谱检测由于其发展较早,目前技术已经十分成熟完善,包括气相色谱法、液相色谱法、液质联用法、气质联用法等多种技术,满足大多数农残检测需求。国家最新的植物源性食品农残检测以液相-质谱联用方案作为检测方法。  农残新国标GB23200  植物源性食品样品的检测除了需要高灵敏度的分析检测手段,如何高效对样品进行前处理也尤为重要。一个好的前处理过程不但能够省时省力,更重要的是能够提高后续的样品提取效率,提高分析检测结果的准确性与一致性。  针对不同的物料采用不同的处理方法:  1.食用菌、热带和亚热带水果、水生蔬菜、茎菜类蔬菜、豆类蔬菜、核果类水果、热带和亚热带水果、瓜类蔬菜等采用先切碎后匀浆进行样品的前处理。  注:干制蔬菜、水果和食用菌则进行研磨粉碎处理  2.谷类研磨粉碎后使其全部何通过425μm的标准网筛处理。  3.油料、茶叶、坚果和香辛料(调味料)研磨粉碎处理。  4.植物油类均匀搅拌处理处理。  处理后的样品进行后续的提取离心分离,过滤后进行上样检测。    我们能做什么?!  我们新芝为客户提供两种能够进行组织分散仪器,S10手提式高速匀浆机以及XHF-DY高速分散器分别能够故处理小体积(1-120mL)和大体积(3-1000mL)处理量,供需选择。提供SCIENTZ-48高通量组织研磨器,可搭配多种研磨球和适配器,能够灵活方便进行高通量样品研磨。提供HSC-2015L/HSC-3020L高速冷冻离心机两款,其中HSC-3020L是前一款的升级款。    以上,就是我们新芝生物能为植物源性食品农药残留检测实验提供的仪器清单,供需查询。  详情请登录新芝官方https://www.scientz.com  参考文献  1. GB23200.121-2021植物源性农残检测国标  2. 植物源性食品中农药残留检测方法研究进展_张丽  3. 植物源性食品中手性农药残留检测技术的研究进展_陈丹丹▼End
  • PlantScreen高通量植物表型系统火热安装中”系列报道(一)
    癸卯春节 安装启动! 2023年农历春节,各地沉浸在轻松欢快的节日氛围,而在中国农科院作科所的温室里,中国农科院的研究人员、PSI公司和北京易科泰公司的工程师投身于PlantScreen高通量植物表型系统——作物高光效高效筛查与鉴定表型平台的安装工作中,现场一片火热繁忙的景象。 从正月的初三到十四,短短的两周时间里,PlantScreen高通量植物表型系统平地而起。庞大的规模、现代感十足的外观、火热的安装场面,吸引假期期间仍在温室里辛苦劳作的研究人员纷纷驻足观看,询问安装进度,热切表达了希望未来能够使用这套系统开展实验的愿望。 PlantScreen高通量植物表型系统由国际知名的表型系统制造厂商PSI研发,整合了LED植物智能培养、自动化植物传送、多种光学成像传感器(FluorCam叶绿素荧光成像、多光谱荧光成像、可见光近红外及短波红外高光谱成像、植物热成像、RGB真彩3D成像、激光雷达3D成像、根系成像等)、自动条码识别管理、自动称重与浇灌、电脑自动控制及数据处理等多项先进技术,能够以最优化的方式对大量植物样品的生理状态、生化组分、形态结构的进行自动成像分析。 系统有效解决了传统植物表型分析技术中存在的精度低、费时费力、适用性差等问题,具备高效准确的特点,并可实现全生育期的无损动态监测;被广泛用于研究不同环境因子及基因型对植物生长、产量、质量的影响,揭示可控环境下基因组与环境等因素互作进而调控作物表型的分子机理。截止2020年底,PlantScreen在全球累积销售/装机量超过50台。主要用户有荷兰瓦格宁根大学、德国莱布尼茨植物遗传和作物研究所、芬兰赫尔辛基大学、澳大利亚国立大学等全球知名的农业学府和顶级研究机构(下图中的PlantScreen系统于2020年安装在都柏林大学),也不乏杜邦先锋、孟山都、巴斯夫等农业企业巨头。 作为PSI公司的合作伙伴和大中华区技术服务中心,成立20年来北京易科泰生态技术有限公司致力于精密、高端植物和藻类实验设备和技术的引进推广及自主研发,迄今为止已为中科院植物所、中国农科院、中科院水生所、中国农业大学、西北农林科技大学等国内知名农业院校和机构提供了大量仪器设备及技术支持。此次安装的PlantScreen高通量植物表型系统通量为4000株种苗/200株成体,配备FluorCam叶绿素荧光成像、RGB真彩3D成像、激光雷达3D成像、植物热成像和高光谱成像等传感器,具备自动称重与浇灌功能,将主要用于水稻等作物高光效高效筛查与鉴定、作物高光效机理研究及新材料创制。 立春已过,农耕将始。今年春天,除了位于北京的中国农科院生物技术研究所,中国水稻研究所(杭州)和东北地理与农业生态研究所(长春)也正在或者即将紧张有序地进行PlantScreen系统的安装。高通量作物表型监测被称为育种的加速器。毫无疑问,PlantScreen高通量植物表型系统的安装运行能够帮助中国作物遗传育种学家深入剖析与产量和胁迫耐受性相关的遗传学数量性状,必将为具有国家战略意义的分子设计育种和种质资源开发应用提供强有力的技术支撑。截止发稿前,农科院生物所PlantScreen系统的安装工作已基本完成,即将进入调试和试运行环节,并将合作举办培训研讨。
  • 30min搞定植物转基因检测——盘古快速定量PCR系统
    导读3月19日,农业农村部种业管理司公告显示,27个转基因玉米和3个转基因大豆品种通过初审。这是继2023年末首批51个转基因玉米、大豆品种通过国家品种审定后,第二批通过初审的转基因玉米、大豆品种。这一成果不仅标志着我国农业科技创新迈出了坚实的一步,也为我国农业可持续发展注入了新的活力。植物转基因技术是指把从动物、植物或微生物中分离到的目的基因或者经过修饰的基因导入植物体内,使目的基因能够在受体内进行稳定的表达和遗传,从而使植物具有人们所需要的性状(如抗病、抗虫、抗逆等)的方法。转基因是一种分子杂交育种的方式,是一种更准确、更高效、更有针对性的定向杂交。转基因植物的构建转基因技术已经成为全球发展最成熟、应用最广泛的生物育种技术,为农作物的遗传改良提供了广阔的前景。大豆、玉米、棉花、油菜是全球最主要的转基因作物,本世纪以来,以上四种转基因作物全球总种植面积占比均在98%以上。全球转基因作物的商业化种植面积,在2019年已经达到了1.904亿m² ,1996-2019年转基因作物的累计种植面积已经达到27亿m² 。通过对作物进行转基因检测,能帮助农业部门快速了解转基因农产品的情况并对其进行针对性控制,为转基因作物安全监管提供有力的技术支持。艾普拜生物一直致力于为用户提供新型生命科学研究仪器和分析产品以及优化的整体应用解决方案。在转基因成分的快速检测方面,艾普拜生物也有一整套的解决方案。核酸提取使用样本DNA直提试剂,裂解速度快,无需额外加热,6分钟内即可完成。核酸快速扩增试剂重复性好,稳定性高,快速qPCR扩增。核酸检测试剂盒该系列转基因检测试剂盒,特异性强,灵敏度高,可用于转基因株系的快速检测,大大提高检验效率。快速qPCR检测
  • 探秘逆境植物实验室
    这是一个特殊的实验室,它的四周由玻璃制成,看起来好像是一间巨大的温室,里面摆放着各色植物,有的植物因为长期未浇水,已经变得枯萎,有的植物则被特意种植在盐碱土壤中,还有的植物则被放置在具有重金属污染的土壤中。它们所有的生长繁殖都被记录下来,进行科学研究。   这就是逆境植物实验室,用来观察植物的抗逆性,并且进行各种转基因实验。近日,记者来到了山东师范大学生命科学学院,对山东省逆境植物重点实验室进行了探访。   狗尾巴草  进入温室   在山师大生命科学学院楼前的空地上,记者见到了已经建成一年之久的“山东省逆境植物重点实验室”,据生命科学学院正在读博士的侯蕾同学介绍,这只是逆境植物实验室的一部分而已。   记者走进这间实验室发现,里面摆满了各种植物,有的植物因为缺水,叶梢已经开始发黄枯萎,还有的培养皿中带有一些白色的结晶颗粒。   “这些都是实验室要用的植物,”侯蕾向记者解释说,为了研究植物的抗逆性,实验室会专门针对不同的植物进行模拟生态繁殖。比如说有的植物会种植在富含盐碱的土壤中,有的植物则要种植在干旱的土壤中。更让记者惊讶的是,在温室的一角,记者居然发现了大量的狗尾巴草,而它们则是实验室进行抗逆实验的一部分。“我们给予这些狗尾巴草各种恶劣的环境,观察它们对恶劣的环境所产生的应变反应。”   除了进行模拟自然条件下恶劣的生长环境外,实验室的工作人员跟教授们还在进行着各种尝试,比如通过各种特殊的灯光模拟紫外线对植物进行光照,考察植物的反应 或者是可以降低或提升温度,观察植物的生长变化等等。“事实上所谓的逆境实验室,就是给植物极其恶劣的生存环境,逼迫促使它们在生长中对这些环境产生应对能力。”侯蕾告诉记者说,对于植物来说,当它们遭遇到严酷的逆境时,往往会产生一些意想不到的突变:“不可能每一株植物都会产生基因的突变,但是总会有一小部分的植物能够适应突变的环境,生存下去。”如果用通俗的话说,就是人为的促进植物进行进化。   未来用海水种植水稻?   那么逆境植物实验室将为科学家们提供什么样的帮助呢?或许我们可以从山师大的博士生导师张慧所描述的场景里窥得一二。   “我们都知道现在地球的淡水资源在减少,那么将来淡水不够用了怎么办?我们可以用海水来灌溉农田。”张慧向记者描述了这样一种情况:在未来的数年间,我国沿海各省将会在海边修建大量的水利工程,蔚蓝色的海水被引入内陆地区,经过河道或者专用的管道,然后送到水稻田中进行大面积的灌溉。   这些生活在蔚蓝色海水中的水稻,像普通的水稻一样生长,发芽,最后结果,然后被收割机收割,最终送上我们的餐桌 而困扰我们的干旱和沙漠也得到了有效的治理,一株株特殊的植物开始在干旱的沙漠中快速生长,原本漫天的黄沙变成了绿洲 原本惧怕低温的农作物开始在北方不断的生长发育,威胁到我们身体的重金属污染也因为一些特殊植物的出现而被分解消化。   “这么说可能大家觉得是在痴人说梦,但是对于我们这些研究植物抗逆性的专家来说,这个梦想已经距离现实越来越近了。”张慧肯定的告诉记者说。   喝盐水长大的满天星   张慧为何会如此确信海水种植水稻不是梦想呢?记者在逆境植物实验室中找到了答案。   在实验室的温室中,一种特殊的植物被大量培育,其土壤中含有大量的盐分,经过仔细观察记者发现,这些植物的表面都有着层层的白色颗粒,“这些白色的东西就是土壤中的盐分。”张慧告诉记者说,这种植物叫做补血草(即俗称的满天星)。与其他植物不同,补血草本身具有一种分泌盐分的能力,“这就好比我们人类,剧烈运动时,我们的汗腺会排出大量的汗水,补血草本身也具有这种类似汗腺的东西。”当实验室的工作人员用含盐量高的水去灌溉补血草时,它们会把盐分通过根茎吸收,然后通过叶子表面的“汗腺”把其中的盐分排出体外,从而得以继续生存。   如今,张慧正带领着自己的学生培育大量的补血草,然后在显微镜下将补血草叶面的“汗腺”分离出来进行观察,“为什么补血草会有这种汗腺,而其他植物没有呢?我们可以通过DNA的对比,发现其汗腺出现的原因,然后尝试着去把这种DNA镶嵌到水稻中去,让水稻也具有排泄盐分的能力。”   张慧告诉记者说,世界上已经有很多科学家在研究类似的问题,“大家都在尝试着使用海水去灌溉植物,因为在未来淡水资源会越来越珍贵,所以如何利用海水是一个很重要的课题。”   “在不同的环境下,植物会表现出各种抗逆性,比如说抗旱、抗盐碱、抗低温或者抗高温等等,这些都是植物的抗逆性。”张慧告诉记者说,我国一直很重视农业发展,因此在研究植物的抗逆性上投入了很大的资金:“希望我们通过植物的逆境实验,能够培育出抗旱、抗盐碱、抗低温或者是抗高温之类的植物,来改变生态环境,加大农业的发展力度。”   可以分解重金属的植物   “除了可以培育出抗旱、抗盐碱、抗低温高温的植物外,我们还可以利用植物的抗逆性来分解重金属污染。”张慧告诉记者说,由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染。   “比如说蔬菜,前一段时间就有新闻报道说某些地方的蔬菜重金属污染超标,但是某些植物对于重金属有分解作用。”张慧告诉记者说,在一些富含重金属的矿山附近,往往会生长着一些植物,这些植物对于重金属污染已经有了分解能力:“我们可以通过模拟矿山或使用重金属污染的土壤培育一些植物,然后观察它们对重金属的抗逆性,根据它们的变化来选择出可以分解重金属的物种进行研究,然后培育出可以分解重金属或者是抵抗重金属的植物。”   名词解释   植物抗逆性  到底咋回事?   “任何一种植物,都具有抗逆性。”山东师范大学博士生导师张慧告诉记者说,所谓的植物抗逆性,是指植物所具有的抵抗不利环境的某些性状。“举个简单的例子,仙人掌可以在极度缺水的沙漠中存活,海南的红树林可以长期生活在海水中等等,这都是植物所具备的抗逆性。”   张慧告诉记者说,在遥远的远古时期有很多的植物,当地壳因为运动而发生改变时,这些植物的生存环境也发生了剧烈变化:有的时候因为大陆的抬升,造成了气候的湿润和温度的降低,有时候地面的凹陷,导致了河水海水的倒灌,在环境的剧烈变化下,大批的植物因为无法适应突变的环境而死去,但是也有少数植物,虽然其生理活动遭到了重创,但是却顽强的活了下来。   周围生存环境的剧变依然在延续,这些顽强生存下来的植物开始逐渐的适应这些环境,于是它们继续开始繁殖,其体内的基因也开始逐渐变化,最后直至完全适应了现有的生存环境。“一些植物可以采取不同的方式去抵抗各种胁迫因子,这就是植物的抗逆性。”张慧告诉记者说,正是因为植物具有这种抗逆性,才能够不断的适应环境,经过数千万年的不断进化,形成了如今我们所看到的各种植物。   “当然,正因为植物具有抗逆性,它们的其他方面就会减弱,比如说仙人掌,虽然耐旱耐高温,但是生长缓慢。”从事植物抗逆性基因研究多年的张慧不由得感慨造物主的神奇:“这就好像人一样,你的某一方面突出的同时,另一方面可能就会弱化,所以说我们这个世界没有全能型人才就是这个原因。”
  • 动植物检疫实验室常见废弃物的危害和处理方法!
    动植物检疫实验室常见废弃物的危害和处理方法!百欧博伟生物:本文说明了一般的动植物检疫实验室所产生的废弃物对人类和环境所带来的危害,并参阅有关资料,整理和总结出一些对废弃物处理的方法,并提出一些减少实验室废弃物的建议,使实验室人员能够认识并重视到废弃物的危害,在处理废弃物时可以借鉴和参考,从而减少实验室废弃物所带来的环境污染和生态破坏,保护生物安全。一、前言随着世界贸易的进一步发展,我国进出口贸易的范围也在进一步扩大,作为一般的动植物检疫实验室,所检测的商品将会更多,所用到与检疫实验有关的药品、试剂、一次性用具、实验器械等将会增多,因此所产生的废弃物也将会随之增加。近年来,实验室所产生的废弃物由于没有进行必要的处理而直接排入外界所造成的危害,已经崭露头角,实验室已经成为一个不容忽视的污染源,特别是生物性实验室,所产生的废弃物或检疫样,可能携带一些危害性生物,极有可能造成疾病的流行或某些有害生物的疯狂生长,破坏生态环境。二、动植物检疫实验室废弃物的分类动植物检疫实验室的废弃物可以分为:⒈化学性废弃物:有氰化物、硝酸盐、邻苯二胺、砒霜等;⒉生物性废弃物:有作废的动植物标本、动植物检疫样品、微生物培养物、染色液等;⒊一般的废物:打碎的玻璃器皿、废纸、废纱布、橡胶以及塑料制品。三、动植物检疫实验室废弃物的危害⒈化学性废弃物⑴氰化物和硝酸盐:氰化钾和硝酸盐常用作微生物培养剂的制作。①氰化物属于剧毒物质,在酸性条件下易产生氰化氢,氰化氢为剧毒气体,在实验现场的z高含量须≤0.3 mg/m3;在居民大气中z高含量须≤0.8mg/m3。CN—能与细胞色素酶牢固结合阻止Fe+3还原,是组织细胞缺氧而窒息,从而抑制多种酶的活性。②硝酸盐容易诱发糖尿病,易造成肾脏的损害,如果人们摄取了高浓度的硝酸盐,肾脏的负担加重,容易引起溶血性贫血。并且硝酸盐可以在酶和细菌的作用下,被还原成亚硝酸盐,亚硝酸盐与人体血液作用,形成高铁血红蛋白,从而使血液失去携氧功能,使人缺氧中毒,轻者头昏、心悸、呕吐、口唇青紫,重者神志不清、抽搐、呼吸急促,抢救不及时可危及生命。不仅如此,亚硝酸盐在人体内外与仲胺类作用形成具有“三致” 作用的亚硝胺类,可严重危害人体健康。⑵邻苯二胺:邻苯二胺是ELISA实验常用的化学药品,可经过吸入、食入和皮肤侵入,对眼睛、粘膜、呼吸道有刺激作用;可以致微生物突变,遇火、高热可燃,受热分解放出有毒的氧化氮烟气。⑶砒霜(As2O3):为剧毒物质,砷化合物易和体内酶的巯基(-SH)结合,使酶失去活性,阻碍细胞正常代谢,使细胞变性坏死,从而损害神经系统、肝脏和肾脏。慢性砷中毒可伴随“三致”的发生。⒉生物性废弃物⑴动植物标本:动植物标本一般都用福尔马林作为防腐剂,被浸泡过的标本废弃后,上面会有甲醛气体散出。甲醛对神经系统、免疫系统、肝脏等有严重的损害,还会刺激眼结膜、呼吸道粘膜和皮肤,引起过敏性皮炎、结膜炎、咽喉炎、支气管炎等,损害视神经和视网膜,引起头痛、视力下降或失明,并且具有致癌、致畸作用。目前,世界卫生组织(WHO)和美国环境保护局(EPA)已将其列为具有潜在危险的致癌、致畸物质和重要的环境污染物。风干的标本可能因为保存不当而孳生一些病原生物(如:虫子、虫卵或霉菌等)而成为一个传染源,若不进行熏蒸或再烘干处理,则有可能损害其它标本或物品。⑵检疫样品①植物性检疫样:棉花、棉短绒、废丝、水果、花卉、木材等上面可能携带一些杂草籽、霉菌、细菌、病毒以及一些害虫等,检疫实验室对于这些检疫样品一定要妥善保管和处理,若使有害生物进入到外界环境,就有可能在新的地方疯狂生长,从而形成“生物入侵” 。如19世纪美洲仙人掌传入澳大利亚,z初是用来做篱笆,圈养牛羊,但是它迅速生长,到了1925年已侵染牧场,使得其中很大部分不能放牧,土地不能耕种,并且还以惊人的速度扩散。还有就是发生在我国的,在上世纪90 年代初,我国在大量引进观赏植物巴西铁(Dracaena fragrans )时,蔗扁蛾(Opogona sacchari )随之传入,并随巴西铁迅速扩散,现已分布于北京及南方各省,并且由南向北蔓延。经调查,蔗扁蛾目前在北京各花卉生产基地均有不同程度的发生,严重时,每年巴西铁因此虫的淘汰率达50%以上,现已成为北京温室花卉生产中的主要害虫之一。外来生物入侵的危害:diyi,造成严重的生态破坏和生物污染。比如,原产于南美洲的水葫芦现已遍布华北、华东、华中、华南的河流、湖泊、水塘,疯长成灾,严重破坏水生生态系统的结构和功能,导致大量水生动植物的死亡,并且阻塞河道。第二,外来物种通过压制或排挤土著物种,形成单优势种群,导致生物多样性的丧失。第三,生物入侵导致生态灾害的频繁爆发,对农、林、渔业等造成严重损害,给国民经济带来巨大损失。近年来,松材线虫、湿地松粉蚧、美国白蛾等森林入侵害虫严重发生与危害的面积,每年达150万公顷;稻水象甲、非洲大蜗牛、美洲斑潜蝇等农业入侵害虫每年超过140万公顷,据保守估计,全国主要外来物种造成的农林业经济损失平均每年达574亿元。第四,直接威胁到畜禽和人类的健康。如豚草、三裂叶豚草的花粉就是引起人类花粉过敏的主要病原物;紫茎泽兰含有的毒素能使马匹和羊患上气喘病,四川省凉山彝族自治州曾因紫茎泽兰入侵而在一年内减少了6万多头羊,畜牧业损失达2100多万元。由于紫茎泽兰对土壤肥力的吸收力强,能极大地耗尽土壤养分,对土壤可耕性的破坏也极为严重。②动物性检疫样:血液、呕吐物、分泌物、皮张、蚕茧、精液、胚胎、肉、奶、蛋等也可能携带一些我国没有而其它国家有的动物疾病,或者是国家明文规定的一、二类传染病病原(有细菌、病毒、支原体、衣原体、寄生虫等),这些疫病,一旦爆发或流行,将会对我国的畜牧业养殖造成巨大的危害。比如:血液中可能含有致病菌、病毒或者一些血液源性寄生虫(疟原虫、血吸虫、焦虫、边虫、锥虫等);皮张中极有可能含有炭疽;动物的呕吐物、分泌物中含有大量的病原微生物;精液和蛋中可能含有一些垂直传播的疾病(如:精液可以携带猪瘟、PRRS、非洲出血热、口蹄疫等病原微生物;蛋中会携带沙门氏菌、禽白血病、EDS-76等病原微生物… … 这些传染病随时有可能传入我国,作为检验检疫机构,检疫是重中之重,并且检验检疫时,工作人员一定要早好自身的防护。⑶微生物培养物、染色液:微生物的培养、鉴定以及染色观察是实验室常用的用于微生物的观察、研究和判定,废弃后的培养基、染色液上会携带微生物,还有与微生物有过接触的废弃物,如一次性用品:手套、帽子、口罩、工作服、移液器的枪头以及玻璃仪器,均要做好管理和消毒灭菌处理,否则,会造成疾病的流行。例如:2003年非典流行过后,许多生物实验室加强对SARS病毒的研究,之后所报道的非典感染者,多是科研工作者在实验室研究时,由于没有做好自身的保护以及这些危险物的管理和处理工作而被感染的。⒊一般性废物:在实验室,许多打碎的玻璃器皿、废纸、废纱布、橡胶或者塑料制品被直接装进垃圾袋,扔进垃圾堆,z后再掩埋或焚烧。焚烧后,有的燃烧不彻底,又会产生新的固体废物和有害气体,造成二次污染;直接掩埋后,许多在环境中不易或不能降解,因此对土壤和作物的生长发育产生不良影响:①由于这些物质的阻隔,土壤水分运动受阻,孔隙度、通透性降低,不利于土壤空气的循环及交换,致使土壤中CO2含量过高,不利于作物正常生长发育。有些含有有害成分(如聚氯乙烯类塑料),接触种子或幼芽后,会抑制种子萌发,或会使芽、幼苗灼伤。②使土壤物理性能不良而导致作物扎根困难,吸肥、吸水性能降低而减产。③如果不回收利用或回收不彻底,将会造成资源的浪费。四、动植物检疫实验室废弃物的处理动植物检疫实验室所产生的废弃物因具有潜在的感染性、传播性以及危害性,若处理不当,将会严重的污染环境,危及人类、动物和自然的安全,因此需要进行必要的处理,才能废弃,除了焚烧和深埋以外,还应该提倡回收和综合利用的方式,减少资源浪费。⒈实验室废弃物处理的一般原则为防止污物扩散、污染,应该分类收集、存放,分别集中处理,尽可能采取废物回收以及固化、焚烧或深埋等方法处理。在实际工作中,选择合适的方法进行处理,尽可能减少废物量,减少污染。⒉动植物检疫实验室废弃物的具体处理措施生物类废物应根据其病源特性、物理特性选择合适的容器和地点,专人分类收集进行消毒、烧毁处理,日产日清。液体废物一般可加漂白粉进行氯化消毒处理。固体可燃性废物分类收集、整理,z后作焚烧处理。固体非可燃性废物分类收集,可加漂白粉进行氯化消毒处理,满足消毒条件后作最终处置。⑴生物性废弃物的处理①一次性使用的制品如手套、帽子、工作物、口罩等使用后放入污物袋内集中烧毁或及时用消毒剂浸泡,彻底消毒后,统一上交,集中存放,重新回收,再利用,减少资源浪费。 ②植物检疫样,如没有发现病虫害,则可以利用;若发现有病虫害,可以装于密闭容器内,在60-120℃下烘干1-2 h后,做焚烧或深埋处理。③动物检疫样,肉、蛋、奶、精液、胚胎、蚕茧等在没用异常的情况下可以加以利用,若有病变或异常,则应集中销毁,或焚烧或深埋。对于利用效 率不大或不能利用的检样(小块皮张等),高压灭菌后,应集中储存,妥善保管,z后统一作深埋或焚烧处理。如果量大,可以化制处理,生产一些有用的工业副产品,减少资源浪费,变废为宝、化害为利。④微生物检验接种培养过的琼脂平板或不能回收的染色液应高压灭菌30min,趁热倒掉废弃处理。尿、唾液、血液、分泌物等生物样品,加漂白粉搅拌后作用2-4h,倒入化粪池或厕所或者进行焚烧处理。⑤可重复利用的玻璃器具如玻片、吸管、玻璃瓶等可以用1-3g/L有效氯溶液浸泡2-6h.然后清洗灭菌后重新使用。⑥盛标本的玻璃、塑料、搪瓷容器可煮沸15min.或者用1g/L有效氯漂白粉澄清液浸泡2-6h,消毒后用洗涤剂及流水刷洗、沥干;用于微生物培养的,用压力蒸汽灭菌后使用。⑵化学性废弃物的处理①氰化物用NaOH调节PH10,加入KMnO4或者漂白粉,经充分搅拌,静置,使氰化物完全被氧化分解。②硝酸盐或者亚硝酸盐类可以,加入尿素,调为酸性条件,充分搅拌,使反应生成氮气。③邻苯二胺可以在酸性条件下加入高锰酸钾,使其氧化分解;也可以利用H-103树脂吸附处理,再用稀盐酸作为脱附剂回收或利用磷酸三丁脂萃取等。奇兵等人应用液膜处理高浓度的邻苯二胺废水,效果较好,主要过程包括制备乳液、液膜萃取、澄清分离等过程,用氯仿作为传质介质,将邻苯二胺以盐的形式回收,乳液可以重复利用或破乳后在制乳。④含砷废液:在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的PH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。静置,分离沉淀,上清液达标后可排放。⑶化学性废弃物的处理一般性废弃物如打碎的玻璃器皿、废纸、废纱布、橡胶或者塑料制品,应经消毒和灭菌后,分类装进垃圾袋,统一深埋或焚烧或做回收处理。五、减少生物性废弃物的措施⒈不要购买暂时不用的药品和试剂,不要购买过多的药品和试剂。⒉促进实验室人员的知识更新,加强技术培训,避免在实验工程中污染。⒊提高实验室人员的环境保护意识,加强责任心教育和废弃物的管理,做好回收利用工作。⒋制定相应的实验室废弃物管理和处理的制度和措施,使其更加制度化和规范化。⒌研究无毒害、无污染的替代品,减少剧毒物的利用。⒍采用微型实验,开发绿色实验室。六、小结实验室是实践学习和科学研究的试验基地,检疫实验室除此作用外,在进出口贸易中还具有检测货物中的病虫害,发出预警通知,防止外来疫情或有害生物的侵入的作用。所以,检疫实验室产生的废弃物,更应该先处理,后废弃,切实做好国门卫士的角色。为避免检疫实验室的污染危害,实验室要更加完善废弃物的管理和处理制度(保证生物性废弃物能够专库贮存,专人看管,分类存放,贮存废物的容器或垃圾袋必须贴上标签,标明废弃物种类、贮存时间等,贮存时间不能太长,贮存数量也不能太多,合理及时有效的处理生物性废弃物,z大限度地保护实验工作人员的健康,保护我们的生存环境,保护我国的农业、林业、畜牧业及山产养殖业的健康发展,这样才能更好的保护人民的生命财产安全,充分体现社会主义以人为本、以民为贵的优良作风。现今,我们对于废弃物的z终处理,最常用的是焚烧和深埋两种。我国还应该加强对废弃物处理这一领域的研究工作,寻求更彻底、更简便的方法,避免焚烧和深埋带来的二次污染,并且要回收可以重复利用的废弃物,做到既不污染环境又不浪费资源。北京百欧博伟生物技术有限公司拥有对菌种、细胞、培养基、配套试剂等产品需求者的极优质服务,对购买项目的前期资料提供,中期合同保证,后期货物跟踪到z终售后的确保项目准确到位,都有相关人士进行维护,确保您在中国微生物菌种查询网中获得z优质服务!也正因为此,北京百欧博伟生物技术有限公司与国内外多家研制单位、生物制药、第三方检测机构和科研院所院校、化工企业有着良好、长期和稳定的合作关系!
  • 中国首套机载植物荧光高光谱系统AisaIBIS成功安装试飞
    2020年5月25日,中国套自主集成安装的SPECIM航空机载植物荧光高光谱系统AisaIBIS在海南成功安装试飞,此次试飞是由Quantum Design 中国和合作伙伴中测瑞格共同协助林业和草原局用户进行。芬兰SPECIM AisaIBIS现场安装调试此次安装的芬兰SPECIM AisaIBIS植物荧光高光谱系统,由AisaIBIS高光谱相机、高精度航测相机、GNSS/IMU惯导系统以及控制单元组成。其中,系统的核心部件AisaIBIS 高光谱相机是由芬兰SPECIM和德国尤里希研究中心合作研发,是基于夫琅禾费荧光探测法的原理进行太阳诱导荧光探测。同时,该设备也是针对欧洲太空局(ESA)地球探测计划“荧光探测任务”FLEX研发的预研设备。AisaIBIS在拥有超高光谱采样精度(0.11 nm)和好成像质量的同时,也具有低噪声,高动态采集范围以及的信噪比等优点。可以在地面或空中对小到一片叶子大到整个生态系统进行光合作用活性探测。芬兰SPECIM AisaIBIS成功安装揭开了国内航空遥感植物荧光探测研究的序幕,也标志着国内自主安装集成航空遥感系统的成功。该系统将用于探测植被的高光谱荧光数据,研究植被的光合作用和生长状态,从而弥补林业碳汇计量监测能力不足,为我国陆地生态系统碳监测卫星进行预研工作。林业和草原局用户对芬兰SPECIM和QD中国工程师的专业性以及对待工作高度敬业的态度表达了赞赏,我们也希望SPECIM高光谱设备可以帮助用户在未来的科研工作中取得更大的成就。 Quantum Design中国工程师与用户的现场合影 公司背景:芬兰SPECIM公司是上早研发商用高光谱相机的厂商,从1995年至今已有二十余年的生产历史,累计有5000余套设备应用于全球各个领域,其产品拥有优质的数据质量。AISA 航空高光谱相机系列是针对航空和国防应用开发的专业设备,光谱范围涵盖了VNIR (380-1000 nm), SWIR (1000-2500 nm) 和用于热成像的LWIR (7.6-12.4um)。产品包括:AisaKESTREL系列—高端无人机载高光谱相机;AisaIBIS—超光谱植物荧光探测高光谱相机;AisaFENIX系列—全光谱(400-2500nm)采集高光谱相机;AisaOWL—热红外(7.5-12.5um)高光谱相机。其高光谱传感器无与伦比的性能,使ASIA系统成为在航空高光谱领域的,已有近100套系统在全球范围内使用。为满足我国研究者对高光谱成像采集的需求,Quantum Design中国引进了行业领军企业——芬兰SPECIM的高光谱相机系列,其产品种类多样,包含工业高光谱相机、实验室高光谱成像系统以及机载高光谱遥感系统等,可被广泛应用于农业遥感、环境监测、矿物勘查、工业集成以及国防安全等领域,我们将竭诚为您提供全面的高光谱成像解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制