当前位置: 仪器信息网 > 行业主题 > >

背感光制冷型探测器

仪器信息网背感光制冷型探测器专题为您提供2024年最新背感光制冷型探测器价格报价、厂家品牌的相关信息, 包括背感光制冷型探测器参数、型号等,不管是国产,还是进口品牌的背感光制冷型探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合背感光制冷型探测器相关的耗材配件、试剂标物,还有背感光制冷型探测器相关的最新资讯、资料,以及背感光制冷型探测器相关的解决方案。

背感光制冷型探测器相关的资讯

  • 一文了解|制冷型和非制冷型红外探测器的区别
    红外探测器是一种能够探测红外辐射的设备,主要由探测元件和信号处理电路组成。根据其工作原理的不同,红外探测器可以分为制冷型和非制冷型两种类型。本文将详细介绍制冷型红外探测器和非制冷型红外探测器的原理、特性、区别、应用场景等。制冷型红外探测器【原理】制冷型红外探测器采用红外辐射的吸收来产生电信号,其探测元件是一种特殊的半导体材料,例如氧化汞、锑化铟等。当红外辐射照射到探测元件上时,将会激发探测元件中的载流子,进而产生电信号。但由于载流子的寿命非常短,为了保证探测器的灵敏度和响应速度,需要将探测元件制冷至低温,通常为77K。这种制冷技术通常采用制冷剂制冷的方法,例如液氮和制冷机等。【特性】制冷型红外探测器具有高灵敏度、高分辨率、高响应速度和宽波段响应等特点。由于探测元件的制冷温度非常低,因此可以有效减少热噪声的影响,提高探测器的灵敏度和分辨率。同时,制冷型红外探测器具有极高的响应速度,可以实现高速实时探测,非常适合于远距离监测、目标跟踪等应用场景。【应用场景】制冷型红外探测器广泛应用于远距离监测、目标跟踪、导弹导航、航空、航天、军事侦察、安防监控等领域。例如,制冷型红外探测器可以用于导弹的制导和跟踪,对于高速飞行的目标,需要具备高灵敏度和高响应速度,这正是制冷型红外探测器的优势所在。此外,制冷型红外探测器还可以用于医学诊断和科学研究等领域,例如在医学诊断中,可以通过制冷型红外探测器来检测人体的体表温度分布,从而诊断疾病。非制冷型红外探测器【原理】非制冷型红外探测器采用红外辐射的吸收来产生电信号,其探测元件通常是一种半导体材料,例如硅和锗等。当红外辐射照射到探测元件上时,将会激发探测元件中的载流子,进而产生电信号。由于探测元件的电阻随温度的变化而变化,因此可以通过测量探测元件的电阻来实现对红外辐射的探测。【特性】非制冷型红外探测器具有体积小、重量轻、价格低廉等特点,相较于制冷型红外探测器来说,更加便于制造和使用。同时,非制冷型红外探测器还具有响应速度快、适用于宽波段的特点,因此在一些特定的应用场景中具有优势。【应用场景】非制冷型红外探测器广泛应用于热成像、火灾报警、工业检测、安防监控等领域。例如,在热成像领域,非制冷型红外探测器可以用于检测建筑物和设备的热分布,从而提高能源利用效率和安全性。此外,非制冷型红外探测器还可以用于火灾报警,可以及时发现火灾并进行报警处理。在工业检测中,非制冷型红外探测器可以检测工业设备的异常热量,从而及时发现设备故障。在安防监控领域,非制冷型红外探测器可以用于监测人员和车辆等移动目标的热分布,从而提高监控的精度和准确性。区别【灵敏度与精度】制冷型红外探测器由于配备了制冷机组件,可以使红外探测器工作温度降低到很低的水平,从而提高了灵敏度,并具备更高的测量精度,能够实现更高的信号检测和分辨能力【工作波长】制冷式红外热像仪是敏感型红外热成像仪,可探测物体间细微的温差,它们工作在光谱短波红外(SWIR)波段、中波红外(MWIR)波段和长波红外(LWIR)波段。因为从物理学角度来讲在这些波段热对比度较高,热对比度越高就越容易探到那些目标湿度与背景差异不大的场景。非制冷型红外热像仪光谱集中在长波红外(LWIR)波段,8~14um范围。【使用功耗】制冷型红外探测器需要通过制冷机维持较低的工作温度,这个制冷系统通常需要耗费较高的电能来驱动。所以,相对于非制冷红外探测器,制冷型红外探测器的功耗一般较高。【应用】制冷型红外探测器通常具有更高的灵敏度和分辨率,适用于需求更高性能的应用场景,例如远距离探测系统等、科学研究等。非制冷型红外探测器虽然相对于制冷型红外探测器性能较低,但价格更经济实惠,适用于安防监控、消防救援、无人机载荷、户外观测等领域。举例说明以非制冷型红外探测器在安防监控领域的应用为例,一些商业场所需要进行24小时的监控,以确保安全。在这种情况下,非制冷型红外探测器可以用于监测人员和车辆等目标的热分布,从而提高监控的精度和准确性。例如,在停车场的监控中,可以通过非制冷型红外探测器来检测停车位上是否有车辆,以及车辆的数量和位置。当检测到停车位上有车辆时,就可以向管理人员发送相应的通知,以便及时采取措施维护停车场的秩序和安全。另外,非制冷型红外探测器还可以用于火灾报警。在一些需要保持高温的场所,例如电力设施、化工厂等,火灾的风险较高。这些场所可以使用非制冷型红外探测器来监测设备的温度,一旦检测到异常温度变化,就可以及时发出火灾报警信号,通知相关部门进行应急处理。综上所述,红外探测器作为一种重要的光学传感器,在热成像、安防监控、工业检测、医学诊断等领域中发挥着重要作用。制冷型红外探测器和非制冷型红外探测器各有优缺点,在不同的应用场景中都有广泛的应用前景。
  • 非制冷势垒型InAsSb基高速中波红外探测器
    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XBₙn势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。材料生长、器件制备和测试通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(10¹⁸ cm⁻³)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(10¹⁵ cm⁻³)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(10¹⁸ cm⁻³)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm²的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。结果与讨论材料质量表征图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm²的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 Å和2.1 Å。图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片器件的变温暗电流特性图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R₀A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线;(c)R₀A随温度倒数变化曲线器件暗电流的尺寸效应由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R₀A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10⁴ Ωcm。图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R₀A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R₀A随台面直径的变化;(d)(R₀A)⁻¹与周长对面积(P/A)变化曲线器件的结电容图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。器件的射频响应特性通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。结论通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm²,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10⁴ Ωcm,对照的nBn器件的表面电阻率为3.1×10³ Ωcm,而pBn和nBn的R₀A体积项的贡献分别为16.60 Ωcm²和5.27 Ωcm²。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157
  • 国产非制冷红外探测器新型场景校正方法
    现有国产非制冷红外探测器多采用挡板校正进行非均匀性校正,影响了红外探测器的观测效果与目标搜跟。近期,湖北久之洋红外系统股份有限公司的科研团队在《光学与光电技术》期刊上发表了以“国产非制冷红外探测器新型场景校正方法”为主题的文章。该文章第一作者为刘品伟,主要从事红外技术方面的研究工作。本文提出了基于国产非制冷红外探测器的新型场景校正方法。该方法包含两部分:第一部分是基于高频非均匀性的场景校正;第二部分是基于低频非均匀性的场景校正。通过对不同频域非均匀性分别进行处理来去除探测器响应的非均匀性。国产非制冷红外探测器非均匀性分析国产非制冷红外探测器工作过程中,探测器的状态参数会产生缓变,从而导致图像非均匀性的变化。图1所示是以黑体为目标的具有较强非均匀性的非制冷红外图像。图1 具有较强非均匀性的非制冷红外图像非均匀性包括低频非均匀性与高频非均匀性两部分。低频非均匀性表现为全局灰度分布不均匀,在图像中表现为平缓的明暗变化,如图像四周与中心灰度值差别大,如图2所示。低频非均匀性主要是由探测器及镜头不同位置温度变化不均匀引起的。高频非均匀性表现为局部区域灰度值剧烈变化,在图像中表现为亮暗点或条纹。高频非均匀性主要是探测器的响应不均匀引起的,如图3所示。图2 低频非均匀性的三维显示图3 9×9邻域内高频非均匀性的三维显示传统的场景校正方式很少涉及对低频非均匀性的消除,而对高频非均匀性的消除容易产生“鬼影“等副作用,同时消除低频与高频非均匀性才能真正提高图像质量。因此,本文将针对高频与低频非均匀性,采用不同的场景校正方法处理。基于高频非均匀性的场景校正国产非制冷红外探测器在工作过程中,随着探测器整体温度的变化,由于探测器响应的不均匀性,会出现较强的高频非均匀性,具体在图像上表现为散粒及细条纹,如图4所示。图4 高频非均匀性的不同类型目前常用的场景校正算法有恒定统计法、时域高通滤波法、神经网络校正算法、基于图像配准的校正算法等。这些算法能够在一定程度上根据场景的信息自适应地补偿热像仪的增益和偏置的漂移,但是在实际使用过程中,这类算法存在各种各样的使用限制条件。以传统的神经网络场景校正算法为例,该算法要求场景信息不断变化,否则会造成图像退化或者模糊,并且如果图像中存在较强边缘信息,该算法容易导致图像出现“鬼影”现象,严重影响图像质量。对此,提出了一种基于神经网络的新型场景校正算法来消除图像退化和“鬼影”现象。首先分析图像退化与“鬼影”现象产生的原因。当原始图像中存在较强的边缘信息时,低通滤波会使边缘信息产生损失,预测图像会产生模糊失真现象。若场景保持静止不动,随着场景校正参数的不断更新,图像就会逐渐退化失真;若场景长期静止后开始运动,图像就会包含静止图像中损失的边缘信息,也就是“鬼影”现象,如图5所示。图5 传统场景校正算法产生的“鬼影”现象为了解决传统场景校正算法存在的问题,提出了一种基于中值滤波=2。同时采用时空联合阈值作为校正判断条件,选择更新系数与校正区域。时空联合阈值分为两个阈值条件:时域连续运动条件与空域邻域均匀性条件。针对高频非均匀性的场景校正算法流程图如图6所示。的自适应场景校正算法。由于高频非均匀性中包含大量的散粒非均匀性,同时为了更好地保留图像的边缘信息,该算法采用中值滤波作为滤波器,中值滤波半径r。图6 高频非均匀性场景校正算法流程图分别用此算法与传统神经网络场景校正算法对原始图像进行处理,比较两种算法是否具有“鬼影”现象。将热像仪静止工作500帧后,观察两种方法处理后的运动图像。可以看到,该算法基本没有“鬼影”现象,而传统算法“鬼影”现象严重。因此,该算法能够有效地抑制“鬼影”现象。图7 本文方法与传统神经网络“鬼影”现象比较基于低频非均匀性的场景校正高频非均匀性去除后,图像仍残留有大量的低频非均匀性。低频非均匀性在非制冷探测器开始工作时较弱,随着探测器及镜头温度的变化,图像的低频非均匀性会逐渐增加,在图像上表现为四角与中心灰度值差别较大。如图8所示,可以看到,图像灰度分布不均匀,四周有明显的光圈,影响图像观感与图像质量。图8 低频非均匀性对图像的影响这里提出了一种基于时空联合低频滤波的场景校正方法,通过在时域和空域同时进行低通滤波,分离出图像的固定低频非均匀性并进行去除。由于探测器输出图像的低频非均匀性在短时间内位置保持不变,当图像产生运动时,可以通过时域低频滤波对低频非均匀性进行分离去除,因此首先需要判断场景是否处于运动中。这里仍采用上节提到的连续运动条件来判断场景是否处于连续运动中。当场景处于连续运动时,采用基于自适应时间常数的时域低频滤波来筛选图像的低频信息。时域滤波结果包含低频非均匀性与部分边缘细节信息,因此还需要对在空域上进行低通滤波,以消除存在的边缘信息细节,达到获取低频非均匀性的目的。采用均值滤波进行空域的低通滤波。为了验证此场景校正算法的效果,对仅处理高频非均匀性的图像与高频低频非均匀性均处理的图像进行比较,如图9所示。可以看到,此算法对低频非均匀性有良好的处理效果,能够有效地减少图像四周与中央灰度差异较大的问题。图9 运动200帧后是否处理低频非均匀性图像对比为进一步验证此场景校正算法的效果,使用两台相同规格的红外机芯,第一台仅对高频非均匀性进行处理,第二台对高频低频非均匀性都进行处理,均在运动条件下连续工作1 h后,对同一温度黑体成像,计算其图像非均匀性。结果表明,仅处理高频非均匀性的图像非均匀性为2.3%,而对高频低频非均匀性都进行处理的图像非均匀性为0.5%,该算法有利于提高输出图像的均匀性。算法总体流程及效果图本文算法首先通过连续运动条件判断场景是否处于连续运动中,若处于运动过程则分别更新高频与低频非均匀性处理模块校正参数,然后进行非均匀性校正;否则直接进行非均匀性校正,整体流程如图10所示,最终效果如图11所示。图10 本文算法流程图图11 最终校正输出结果结论本文提出了一种基于非制冷红外探测器的新型场景校正方法。首先通过改进的神经网络场景校正方法滤除高频非均匀性,在此基础上通过时空联合的低频滤波去除低频非均匀性,得到最终校正结果。该方法具有良好的校正效果,并且能够有效地抑制“鬼影”现象,有利于非制冷红外探测器的推广应用。
  • 高芯科技长波制冷系列红外探测器量产全记录
    制冷长波红外器件的研制工艺一直是业内公认的顶尖红外技术。高芯科技早在成立初期,就实现了长波制冷红外探测器的攻关和批产。目前,公司全系列长波制冷红外探测器产品的整体量产能力已经稳步跻身业内头部阵营。WHY IS 长波制冷红外?长波制冷红外器件因其较高的帧频、低温响应度以及适应性在高端热像应用领域潜力巨大。长波制冷红外探测器的优势集中在:1. 穿透能力强,适应复杂使用环境(沙尘、海面、云层、反光等);2. 积分时间短,帧频更高;3. 低温响应度高,适合探测室温目标。WHY IS 超晶格?高芯科技完全掌握锑化物超晶格研制工艺,并基于此开发出长波制冷红外探测器全系列产品。作为发达国家一致选择的第三代高性能焦平面探测器的优选材料,锑化物超晶格制备长波探测器具备如下优点:1. 量子效率高;2. 低成本;3. 宽波段精确可调;4. 工作温度高;5. 长波、双色性能优良;6. 大面积材料均匀性好。锑化物超晶格材料的强项是极高的质量,均匀性和稳定性。因此基于其制备的红外探测器在有效像元率、空间均匀性、时间稳定性、可制造性上要比其他材料更有优势,这种优势尤其体现在长波探测器的降低成本和大面阵制备两个方面。WHY IS 高芯科技?高芯科技拥有涵盖材料、芯片、电路、封装、制冷机的完备生产线,超过两万平洁净厂房,上千台(套)精密制程设备。全系长波制冷红外探测器在这里实现了从原材料到整机系统的完全国产化制造。坚实的硬件基底支撑公司实现了覆盖多种面阵规格、多种像元尺寸以及多种波段组合的制冷红外探测器全产品线量产。前沿超晶格技术始终是高芯科技的前进方向。从立项研发到量产交付,从新品导入机制到工艺过程控制,高芯科技娴熟掌握锑化物超晶格长波红外探测器的关键芯片工艺,逐年实现320×256、640×512以及1280×1024百万像素长波红外探测器的规范化批量制造。兼顾性能的同时,产品的应用稳定性也是我们关注的重点。高芯科技的红外探测器在历经严苛贮存环境测试、上千次开关机验证、耐久性工作寿命论证等多项可靠性试验后,产品性能、图像均匀性等各项指标依然满足应用所需。2024年1月,高芯科技以1280×1024/10μm长波制冷红外探测器产品为代表的科技成果一举通过湖北省技术交易所专家评定:“整体达到国际先进水平,部分指标国际领先”。未来,各类制冷红外探测器的市场需求会进一步扩大。高芯科技将深入挖掘红外核心器件底层技术,继续精研热像传感芯片制造工艺,稳步提升制冷红外探测器的量产交付能力,牢牢把握长波、高温、双色制冷红外探测器快速发展的重大市场机遇,持续保持公司在锑化物超晶格探测器产业化领域的领先优势。关于高芯科技武汉高芯科技有限公司掌握了红外热成像技术的核心——红外焦平面探测器,致力于为全球红外热成像用户提供专业的非制冷和制冷红外探测器、机芯模组以及应用解决方案。公司在红外探测器及相关领域获得多项技术专利,可同时提供非制冷和制冷红外探测器。建立了8英寸0.11μm氧化钒非制冷红外探测器、8英寸0.5μm碲镉汞制冷红外探测器、8英寸0.5μm二类超晶格制冷红外探测器三条批产线,自主完成原材料提纯、生长,到芯片的流片、制造、封装与测试的全套工艺。公司产品品类丰富,覆盖多种面阵规格、多种像元尺寸以及多种波段组合 。产品灵敏度高、可靠性好,各项性能指标达到国际先进水平,已广泛应用于人体测温、工业测温、安防监控 、无人机载荷、气体泄漏检测、户外夜视、智能驾驶、物联网、智能家居、智能硬件等领域。
  • 全球首发!高德红外成功研制500万像素HOT全中波制冷红外探测器
    大面阵和高工作温度(HOT)都是红外热成像技术发展的趋势,在不同像元尺寸的百万像素红外焦平面探测器逐步取得突破的今天,百尺竿头,再进一步:高德红外研制成功——500万像素HOT全中波制冷红外探测器,并在2024深圳光博会现场面向全球用户首次公开亮相!超大面阵红外探测器的研制一直是业内厂商你追我赶的主赛道。本次发布的500万像素高温中波制冷红外探测器,横跨芯片材料、集成电路、低温制冷和封装测试等多个学科,科技含金量极高。超大面阵规格 还原目标本真500万像素高温中波制冷红外探测器堪称业内顶尖红外热成像解决方案:2560×2048超高分辨率实时监视图像视野更宽广,视场覆盖率更高;10μm像元尺寸,器件架构更紧凑,空间分辨率更大,更加适用于广域远距探测,赋予用户超越以往的全景探测和态势感知能力。大面阵高温红外探测器是第三代红外探测器技术的重要发展方向,随着基于该类器件的热成像整机组件在体积重量、性能成本方面的优势持续凸显,未来相关器件在先进光电系统领域的应用前景愈发广阔。制冷红外芯标杆 探测性能新高度高清成像必须匹配高灵敏度。在标准测试环境下,500万像素高温中波制冷红外探测器的噪声等效温差(NETD)不超过20mK,更细微的温度差异一眼可辨,更渺小的目标细节尽在眼前。500万像素高温中波制冷红外探测器集高分辨率、高性能和高可靠性于一体,可以在相同场景下提供4倍于1280×1024的像元数量,3.7至4.8μm的全中波光谱响应范围,实现更宽视场,更多细节的超高清红外图像,是超远距离探测和细微图像识别的理想选择。更高焦平面温度 关键技术再提速随着先进光电系统对SWAP性能的愈发关注,体积更紧凑、功耗更低、成本更低的高工作温度(HOT)探测器逐渐成为高端制冷红外光电系统的标配,也为超大面阵实现SWAP创造了可能。目前,500万像素高温中波制冷红外探测器的焦平面工作温度可达150K,HOT性能处在同级别产品中的头部行列。500万像素高温中波制冷红外探测器基于成熟的Ⅱ类超晶格材料制备,易于实现批量化制造,产品均匀性、稳定性良好,高德红外凭借多年在Ⅱ类超晶格探测器上技术储备,多款HOT红外探测器产品已经在稳定供应中。大面阵高温红外探测器可提供更清晰更细腻的红外图像,满足高动态、宽视场、全天候监控应用等光电平台的高端红外应用需求,适用于航空航天、边海防等应用场景。高德红外作为国内红外焦平面探测器研发的头部厂商,早已构建成从底层红外核心器件,到综合光电系统,再到顶层完整光电系统总体的全产业链研发生产体系,确保多品类多形态光电产品的稳定量产并批量交付。未来,高德红外将继续眺望光电科技前沿,瞄准材料与器件技术趋势,加大科研投入力度,持续保持行业领先地位。
  • 国科大杭州高等研究院陈效双团队:基于六方氮化硼封装技术的钽镍硒非制冷红外光电探测器
    近日,国科大杭州高等研究院物理与光电工程学院陈效双研究员团队提出了一种通过六方氮化硼封装技术,实现从520 nm到4.6 μm工作波长的钽镍硒(Ta2NiSe5)非制冷红外光电探测器(PD)。该探测器在室温空气环境条件下具有较低的等效噪声功率(4.5 × 10−13W Hz−1/2)和较高的归一化探测率(3.5× 1010cm Hz1/2W−1),而且通过表征时间、偏置、功率和温度依赖等多方面因素,研究其不同波长辐射产生光电流的多重机制。此外,还展示了器件的偏振灵敏度和在不同的可见光、近红外、中波红外波长范围内的多功能成像应用。这些结果揭示了多功能的探测模式,为设计新型的纳米光电器件提供了一种新的思路。该成果以“H-BN-Encapsulated Uncooled Infrared Photodetectors Based on Tantalum Nickel Selenide”为题发表在期刊Advanced Functional Materials上(IF=19)。本工作也得到了国家自然科学基金委、上海市科委、中国科学院和浙江省自然科学基金委等项目的资助。本文利用干法转移堆叠,采用平面h-BN封装的金属-Ta2NiSe5-金属(源极和漏极)结构设计了Ta2NiSe5基PDs,如图1a所示。图1b的左侧面板显示了横截面透射电子显微镜图像,并证明原子堆中没有污染或无定形氧化物。图1d显示了在黑暗条件下和不同功率强度的激光照射(1550nm)下的I-V特性的比较,显示了近线性行为,表明Ta2NiSe5薄片和Cr/Au电极之间具有良好的欧姆接触。如图1e所示,对于窄带隙半导体Ta2NiSe5,光激发载流子的短瞬态寿命减少了电荷分离时间。Ta2NiSe5的高迁移率可以实现电场驱动的光生载流子的快速传输,降低复合的概率。520 nm至2 µm范围内的光响应机制被认为是光电导效应(PDE)。由于PDE,带间跃迁产生的电子-空穴对被施加的电场分离,并被图1h左侧面板中的电极收集。在可见光和近红外光谱中吸收光子,只要它们具有超过带隙的能量,就会触发电子-空穴(e-h)对的产生,从而调节材料的电导率。随后,这些产生的e-h对在外部电场的诱导下分离,产生光电流。基于Ta2NiSe5的PD在1550 nm处0 V和±1 V的扫描光电流映射(图1h)很好地验证了上述光电流起源的推测。图1. Ta2NiSe5基PD在大气环境中不同激光波长和功率下的光电特性。(a)基于Ta2NiSe5的PD的示意图。(b)Ta2NiSe5基PD的横截面TEM图像和相应的元素映射。(c)剥离的Ta2NiSe5纳米片的SEM图像和EDS元素图谱。(d)在1550 nm激光照射下,不同功率下的Iph-Vds曲线。(e)基于Ta2NiSe5的PD的单个响应过程,Vds为1V。(f)从具有绝对值的I-t曲线中提取的Vds和Plight相关光电流。(g)在1V偏压下基于Ta2NiSe5的PD下的光电流的线性功率和亚线性功率依赖性。(h)1550 nm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下从Ta2NiSe5到电极的光生载流子传输过程的说明。泡利阻塞抑制了在4.6 μm(0.27 eV)处产生电子-空穴对的直接光学跃迁。热效应机制被认为是控制MWIR区域光探测过程的潜在物理机制,如光热电效应和辐射热效应。对于辐射热效应的贡献,不需要外部偏置来产生光电流,如图2a所示,而不是依赖于自供电的工作模式。辐射热效应是指沟道材料由于吸收均匀的红外辐射而引起温度升高,从而导致电导率或光吸收等电学或光学性质变化。值得注意的是,辐射热效应需要外加电场。为了确定控制MWIR探测过程的主要机制,光响应被记录为功率和Vds的关系。光电流呈现负极性、零极性和正极性三个特征区域,分别对应图2a中的区域I、II和III。通过测量Ta2NiSe5基PDs电阻的温度依赖性(4-400 K),器件电阻的温度依赖性表现出典型的半导体热激发输运性质,表明热效应可以有效地增强器件电导(图2b)。电阻的温度系数(TCR)是辐射热效应的一个关键指标,在Vds=1 V时,Ta2NiSe5基PDs的TCR为-1.9% K-1。与快速的可见光-近红外光响应相反,在关闭光后漏极电流缓慢恢复,响应时间≈24 ms(图2c)。辐射热效应可以解释明显的光响应与缓慢的下降和上升时间,而不是光电导效应。该值是典型的辐射热特性(1-100 ms),因为吸收MWIR光子后热电子的能量转移到晶格,进一步改变沟道电导。此外,在传热和耗散过程中,h-BN利用极高的导热系数有效地消散探测器产生的热量。光电流的产生分为两种状态。首先,沟道材料在吸收MWIR光子后改变自身电导率,其次,通过驱动外电场产生光电流(图2d)。与PTE中取决于塞贝克系数的光电流符号不同,辐射热光电流的符号取决于外部电场。为了直观地揭示Ta2NiSe5基PDs的光响应机制,本文利用扫描光电流成像技术对光电流分布进行成像(图2e)。在0 V偏置照射下,几乎没有观察到光电流,而在±1 V的外偏置照射下,整个沟道的光电流相当均匀。诱导的电导变化可能是入射光下温度升高期间产生电流的载流子数量变化的结果。Ta2NiSe5基PDs具有独特的性能,它们可以在室温下工作而不会性能下降,这使得它们有希望用于辐射热探测应用。此外,该器件无需p-n结即可工作,简化了制造过程。图2. 基于Ta2NiSe5的PD在4.6 µm光照下的光响应。(a)从I-t曲线中提取的Vds和Plight相关光电流。(b)Ta2NiSe5纳米片电阻的温度依赖性。(c)Vds为1V的基于Ta2NiSe5的PD的单个响应过程。(d)基于Ta2NiSe5的器件在4.6 µm激光照射下的晶格加热的典型示意图。(e)4.6 µm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下测辐射热机制器件的能带对准。接下来,520nm-4.6 µm波长范围内的光的光谱响应度如图3a(左纵轴)所示,在4.6 µm处峰值为0.86 A W−1。在图3a(右纵轴)中,在不同激发波长上进行的EQE测量表明,随着波长的增加,EQE逐渐下降。由入射光子和晶格振动之间的相互作用产生的有限的能量转换效率,以及两端电极的有限收集,通过阻碍入射光子到光生载流子的有效转换,降低了材料的量子效率。重要的是,从可见光到MWIR光谱范围(520 nm-4.6 µm)实现了0.23至82.22的EQE值。与许多传统报道的基于低维材料的PD相比,基于Ta2NiSe5的PD的EQE显著更高,如图3b所示。从1 Hz到10 kHz测量的电流噪声功率谱如图3c所示,然后将NEP计算为NEP=in/RI(图3d),其中在520 nm处获得的最小NEP≈0.45 pW Hz−1/2,在4.6 µm处获得的最低NEP≈18 pW Hz−1/2。基于Ta2NiSe5的PD的较低NEP证明了它们区分信号和噪声的优异能力。图3e显示了与传统大块材料和基于2D材料的PD相比,基于Ta2NiSe5的PD在不同偏压下的波长依赖性特异性检测。对于光电导和测辐射热计响应,D*显示出3.5×1010至8.75×108cm Hz1/2W−1的轻微波动。我们的PD的D*与最先进的商业PD相当,并且高于基于可见光到中红外区域的2D材料的PD。图3. 基于Ta2NiSe5的PD的可见光至MWIR区域的宽带光响应。(a)Vds=1时RI(蓝色实心正方形)和EQE(红色实心圆)的波长依赖性。(b)基于Ta2NiSe5的PD与2D和块体材料PD的EQE的比较。(c)从1 Hz到10 kHz测量的电流噪声功率谱。(d)基于Ta2NiSe5的PD与以前的PD的NEP性能比较,插图显示了NEP的波长依赖性。(e)不同波长下的比探测率(D*)与基于2D材料的最先进的其他PD以及商用红外PD的比较。为了确定基于Ta2NiSe5的PD的偏振依赖性,我们进行了如图4a所示的实验。垂直入射光使用格兰泰勒棱镜进行偏振,通过旋转半波片同时保持恒定的激光功率来改变样品的激光偏振方向和b轴之间的关系。对最具代表性的638 nm激光偏振特性进行研究,图4b,c显示,随着极化角的变化,光电流表现出显著的周期性变化,最大值和最小值分别沿Ta2NiSe5纳米片的b轴和a轴方向获得。值得注意的是,图4c中的偏振依赖性光响应图显示了由于Ta2NiSe5晶体的[TaSe6]2链的潜在1D排列而导致的两片叶子的形状。最终结果显示,各向异性比(Iph-max/Iph-min)达到约1.47,表明基于Ta2NiSe5的PD的整体性能优于大多数其他报道的PD,如图4f所示,并为设计未来的多功能、空气稳定的光电子器件提供了广阔的前景。图4. 基于Ta2NiSe5的PD的偏振敏感光电检测。(a)利用Ta2NiSe5材料的基于纳米片的偏振敏感光电探测器的示意图。(b)在638 nm激光源下记录的光偏振方向为0°至360°的时间分辨光响应。(c)在638 nm偏振激光下,Vds为−1至0V的光电流中各向异性响应的各向异性响应图。(d)通过在638 nm激光下扫描Ta2NiSe5基PD获得的光电流图,偏振角从0°到180°不等。(e)创建极坐标图以显示在638 nm线性偏振激光照射下在40、36和17 nm厚度下产生的角度分辨光电流。(f)与其他常用的2D和1D材料相比,光电流各向异性比和光响应范围。为了充分探索基于Ta2NiSe5单元的PD在多应用成像中的潜力,如图5a所示构建了一个成像系统。采用逐点或逐像素覆盖整个物体区域,用聚焦的可检测光束照射物体,PD检测到的光电流信号由锁定放大器、前置放大器和计算机收集,计算机记录位置坐标生成高质量图像。为了测试基于Ta2NiSe5的PD的成像能力,将具有“HIAS”图案(15 cm×5 cm)的中空金属板放置在520 nm激光器前面,并以优于0.5 mm的高分辨率成功捕获了所产生的成像,如图5b所示。通过控制外部偏置,可以改变PD在638 nm照明下的响应,并成功实现物体成像清晰度,如图5c所示。在NIR范围内,在基于Ta2NiSe5的PD中获得了覆盖载玻片的钥匙锯齿状边缘的高对比度图像(图5d)。此外,基于Ta2NiSe5的设备在近红外和MWIR区域都表现出高度稳定的响应,确保了高对比度成像以智能识别宏观物体。为了证明这一特性,在1550 nm和3.2 μm处实现了复合物体(硅片和长尾夹)的双通道成像。如图5e所示,近红外光只能检测到一半的长尾夹,而MWIR辐射可以显示整个长尾夹。结果证明了基于Ta2NiSe5的PD在军事和民用应用中检测隐藏物体的潜力。图5. Ta2NiSe5基PD的光电成像应用。(a)使用PD作为成像像素的成像系统的示意图。(b)520 nm处的“HIAS”物体(上图)和相应的高分辨率成像图(下图)。(c)在638 nm处,Vds为0.05、0.1、0.5和1 V的“H”对象。(d)1550 nm覆盖载玻片的钥匙成像。(e)在1550 nm和3.2 µm处被硅片部分隐藏的长尾夹的成像。本文揭示了h-BN封装的Ta2NiSe5基PD在环境条件下在520 nm至4.6 µm的宽光谱范围内工作的特殊光电特性,受光电导和测辐射热效应的控制。光电探测器同时表现出宽带和快速的光电探测能力,具有显著的响应性,超过了现有商业室温探测器的性能。基于Ta2NiSe5的PD的室温响应度达到了34.44 AW−1(520 nm)、32.14 AW−1(638 nm)、29.81 AW−1(830 nm)、20.92 AW−1(1550 nm),16.58 AW−1(2 µm)和0.86 AW−1(4.6 µm)。基于Ta2NiSe5的PD的独特光学特性使其适合于各种应用,包括传感、成像和通信,并且它们与其它2D材料的集成可以进一步增强它们的性能和功能。因此,这项工作的研究为利用2D材料设计稳定的光电探测器铺平了道路,为推进下一代红外光电子研究的发展做出了贡献。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305380
  • 制冷型探测器+高灵敏度模式,在安全距离内也能轻松查看微小VOCs泄漏
    FLIR VOCs红外热像仪(光学气体成像热像仪)已在石油天然气、石化和相关行业中使用多年。众所周知,大部分化合物和气体是肉眼看不见的。然而,许多公司在其生产过程中会大量使用这些物质。实地检测挥发性气体化合物的泄漏可能很危险,因此使用光学气体红外热像仪就变得很有必要。由于是在潜在的危险区域运行,因此安全对维护工程师至关重要。借助VOCs红外热像仪,检测人员可以进行快速的非接触式测量,甚至可以检测几米外的微小泄漏和数百米外的大泄漏。更具体地说,他们可以从安全区域或几乎没有危险分类的区域查看位于受限危险区域的泄漏。全球范围内广受好评世界各国政府都在接受FLIR OGI热像仪的使用,并在专门的法规中采用了这些热像仪。在美国,环境保护局(EPA)于2011年1月在其子部分W法规中规定了光学成像热像仪的使用。在欧洲,该技术被纳入石油和天然气精炼行业最佳可用技术参考(BREF)文件的最终草案,并作为工业排放75/320/EU(IED)新指令的一部分。这些法规建议的基础是由使用FLIR OGI热像仪的最终用户运营商和服务提供商公司提供的。下面就以FLIR GFx320本质安全型光学气体热像仪为例,详细述说一下选择FLIR VOCs红外热像仪的优势。FLIR GFx320体现了天然气井场、海上平台、液化天然气站等场所的散逸烃泄漏可视化方面的技术突破。该产品已被批准用于危险场所,使测量人员能够在保证安全的情况下放心地工作。选择气体泄漏检测工具的标准从安全距离观察泄漏需要专用技术。在为此类应用选择OGI热像仪时,两个主要标准很重要。首先,需要考虑探测器的性能和调谐的可能性。其次,热像仪需要具有适当的灵敏度和相关的灵敏度增强功能。以下讨论用于说明FLIR G系列VOCs红外热像仪如何满足这两个标准。探测器FLIR GFx320是一款制冷型OGI热像仪,其配备的锑化铟(InSb)探测器是光电探测器,当暴露于红外辐射时会产生电流。这款高灵敏度探测器用于FLIR GFx320红外热像仪,可在3.2-3.4微米波段内观察气体。它不仅能使气体显现,而且会使最小的温差清晰可见。FLIR开发的InSb探测器比大多其他低温冷却探测器应用得更广泛。InSb探测器可观察 3.2–3.4 μm 波段内的气体气体检测热像仪中使用的探测器是需要冷却到非常低温度的量子探测器。光谱调谐或冷滤波技术对光学气体成像热像仪至关重要。冷滤波通过消除不需要的波长区域的背景辐射,显著提高了检测能力。对于许多气体来说,吸收红外辐射的能力取决于辐射的波长。冷滤光片让FLIR热像仪仅在VOCs具有非常高吸收尖峰的波长下工作,从而增强气体的可见性。冷滤光片让FLIR热像仪仅在VOC具有非常高吸收尖峰的波长下工作,从而增强气体的可见性。FLIR GFx320可以应用优化的积分时间,特别是在室温及以下温度。因此,与使用带有热过滤器的相同探测器相比,它可以显示更小的细节,并检测更低的气体浓度,它还提供了更稳定的辐射测量和更高的精度。辐射测量或热成像(使用红外热像仪进行非接触式温度测量)对于OGI技术也至关重要,因为这将帮助用户确定VOCs气体吸收的背景辐射温度。高灵敏度模式全新FLIR G系列VOCs红外热像仪中均配备一种名为高灵敏度模式(HSM)的成熟技术,该技术是检测最小泄漏的基石。这是FLIR OGI热像仪中的一项功能,即使不使用三脚架也可以检测气体,并显着提高灵敏度。因此,与“正常”红外模式相比,用户可以从更远的距离看到更小的泄漏。正常模式高灵敏度模式HSM 模式下泵的气体泄漏更明显高灵敏度模式(HSM)是一种获得专有的图像相减视频处理技术,可增强热像仪的热灵敏度。HSM功能从后续帧的视频流帧中减去一定百分比的单像素信号(增强了帧之间的差异),使泄漏在最终图像上更清晰突出地显示出来。使用HSM,用户可以控制应用于视频流的补偿量,从而控制热灵敏度的增加程度。例如,在下面的动图中,当热像仪切换到HSM时,洗手液散发出的蒸汽变得更加明显:设置适当的温度范围和水平(中点)对于获得所需的光学气体成像结果至关重要。范围较宽将提供较少的图像细节;更窄、更精细的范围将提供更多细节。由于FLIR GFx320是一款经过校准的辐射测量热像仪,因此它具有这些最基本的功能。事实上,HSM模式使用户能够搜索气体,而无需在缩小范围之前设置图像的级别。由于将液位设置为背景温度是一个复杂的过程,而且不可能一次处理多个背景,HSM模式让维护工程师或操作员节省大量时间,并使他们更容易、更快地搜索小泄漏。全新FLIR VOCs红外热像仪FLIR GFx320红外热像仪的两大特点使其成为在更远、更安全的距离检测较小VOCs泄漏的理想选择。当然全新FLIR G系列VOCs红外热像仪中,还有很多其他型号可选。作为气体泄漏检测工具中的佼佼者,FLIR G620、GFx320和Gx620三个型号可用于检测和准确量化油气行业中的碳氢化合物、易挥发气体和其他挥发性有机化合物 (VOCs) 排放情况。热像仪集成了量化功能,用户可将排放测量功能无缝融合到日常泄漏检测和维修工作流程当中,因此开展检测工作时无需另外携带一台辅助设备。此外,全新FLIR G系列VOCs红外热像仪通过了ATEX认证,其灵敏度符合OOOOa标准,同时还配备了旋转式人体工学触摸屏,确保专业人员能更安全、更高效地完成工作。FLIR G系列VOCs红外热像仪凭借专业的技术和贴心的设计在全球范围内获得了广大用户的认可
  • 赛默飞发布新型UltraDry硅漂移(电制冷)探测器
    -- 为NORAN System 7微区分析系统提供最优的探测器尺寸、分析速度和分辨率 中国上海,2012年8月10日 &mdash &mdash 7月30日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在2012显微镜学和微区分析大会上发布新型赛默飞UltraDry硅漂移(电制冷)X射线探测器。该探测器为同类最优,为金属和矿物、先进材料和半导体等行业应用提供更快速、准确的(微区)X射线分析。它进一步提升了广受赞誉的赛默飞NORAN System 7 X射线微区分析系统的性能。 赛默飞副总裁兼分子光谱和微区分析产品总经理John Sos指出:&ldquo 我们的UltraDry硅漂移(电制冷)探测器在超高的采集速率下具有优异的分辨率,这在当今的纳米技术和先进材料应用分析中是至关重要的!我们对该探测器的卓越改进使我们NORAN System 7系统整体能以最快的速度获得最多的数据。加之使用我们独有的高级数据处理工具 &mdash &mdash COMPASS软件和直接倒相软件,用户可以满怀信心地将其EDS分析结果提升至全新的水平。&rdquo UltraDry硅漂移(电制冷)探测器性能的提升是其设计和技术工艺改进的直接成果。该探测器提升了能量分辨率的界限,在Mn-K&alpha 的能谱谱峰分辨率高达123eV。采用尺寸较小先进的场效应晶体管(FET)与晶体一体化的卓越设计在最大程度上减小了导致电噪声的分布电容。UltraDry探测器能够高效地操控脉冲堆积处理,使其在高速处理中具有最佳的分辨率和最小的死时间比率。无需外部附属设备或液氮制冷。 新型的UltraDry探测器提供宽范围的晶体有效面积选择(10mm2,30mm2,60mm2 和100mm2),并具有先进的窗口工艺技术和独一无二的可分析至元素铍的轻元素完整的分析算法。其他关键特征包括: &bull 旨在使样品至探测器距离最小化和探测器立体角最大化的用户定制设计 &bull 独有的旨在创造最大工作距离范围的垂直开槽的准直器 &bull 操作环境温度至35° C NORAN System 7是非常适用于金属和采矿、先进材料、学术研究、半导体和微电子、失效分析、缺陷审查等材料电子显微微区应用分析的卓越平台! 欲了解更多有关NORAN System 7和UltraDry(电制冷)探测器的信息,请访问网站www.thermoscientific.com。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 焜腾红外推出全系列T2SL制冷红外探测器,全面覆盖中波和长波多种面阵规格
    ——记HOT T2SL Ⅱ类超晶格探测器量产第三年 致力于Ⅱ类超晶格制冷型红外探测器产业化的焜腾红外,在过去三年已经完成Ⅱ类超晶格红外探测器工程化批产超千支。尽管已是焜腾红外120k高工作温度制冷型探测器实现量产的第三年,但是在技术迭代和产品开发方面,焜腾红外却从未止步。在稳定批产的同时,焜腾红外也在逐步发力150k制冷探测器的批量生产以及长波Ⅱ类超晶格制冷型探测器的工程化工作。现阶段已经研发出温度更高(160K)、面阵更大(2Kx2K)、重量更轻(260 g)、波长更长(12 μm)、寿命更久(45000小时)的Ⅱ类超晶格制冷型红外探测器,全面覆盖中波和长波多种面阵规格。 经过技术研发人员过去三年的持续努力,焜腾红外现已研制出适用于不同场景和应用条件的多种T2SLⅡ类超晶格探测器。仅重量方面就已经研制出550 g、350 g、和260 g三种规格,其中重量仅重260 g的探测器其芯片的工作温度已经能达到150K,部分甚至可达160K的芯片工作温度。在制冷机的配置上,除了旋转式斯特林制冷机外,还可以根据客户需求搭配线性制冷机,以实现挥发性有机化合物(VOCs)气体在线泄漏检测系统应用高达45000小时的寿命的特殊需求。除了重量和制冷机配置上可以适配用户的不同需求外,焜腾红外在探测器面阵上也已经可以做到2Kx2K,覆盖范围除中波之外,也已研制出最长波长达12 μm的长波探测器。焜腾红外能为广大客户提供多种阵列规格和响应波长的产品,分别为320x256、640x512、1280x1024以及2048x2048,其光谱响应范围涵盖3.2 μm – 3.5 μm、3 μm – 5 μm、7.5 μm – 9.5 μm及10.3 μm – 10.7 μm多个波段,基本上实现了中波和长波全规格探测器的技术供应。 焜腾红外的技术研发路线集中于深耕Ⅱ类超晶格制冷红外探测器这一新型探测器技术路线,研制出并生产覆盖中长波的Ⅱ类超晶格制冷型红外探测器,下一步的研发方向将会向着更长波发力,以及研发覆盖波段更全、应用范围更广、在有害气体检测方面能检测到更多气体种类的II类超晶格探测器。除了现有生产基地之外,焜腾红外在嘉兴的新厂(占地35亩的焜腾光电芯片产业园项目)已经结顶并即将落成投入使用,届时该产业园将会成为国内最具竞争力的覆盖Ⅲ-V族化合物半导体制冷型芯片与探测器组件及VCSEL芯片的重要基地,预计达产后年产红外探测器一万支,最终实现国产化探测器的全规格批产。 在第24届中国国际光电博览会中(9月6-8日),焜腾红外将携自研和生产的各类探测器、探测器组件和VCSEL芯片亮相,展位在深圳国际会展中心(宝安新馆)CIOE红外技术及应用8号馆8B023,欢迎各位莅临展位进行洽谈合作!本次展会展品介绍V340红外热成像气体泄漏检测仪V340红外热成像气体泄漏检测仪是一款针对VOCs的非接触式泄漏检测设备,产品工作波段为3.2 µm – 3.5 µm,可检测甲烷、乙醇、汽油、苯等400余种VOCs气体或挥发性液体的微小泄漏。机载式VOCs气体泄漏可视化巡检系统U-330机载式VOCs气体泄漏可视化巡检系统U-330应用于甲烷及其他VOCs的泄漏检测,整套系统由大疆M300RTK无人机搭载吊舱式VOCs气体泄漏红外成像仪D330组成。在线式VOCs气体泄漏可视化检测系统M330在线式VOCs气体泄漏可视化检测系统M330应用于甲烷及其他VOCs的泄漏检测。探测终端内采用高灵敏度320x256高工作温度的二类超晶格中波制冷红外焦平面探测器、通过有线网络可实时观测VOCs气体泄漏状态的双光图像,系统适用于工业领域VOCs气体泄漏的实时在线监测。
  • 海尔欣光电HPPD-M-B探测器性能介绍
    1. 概述MCT 中红外探测器是一种热电冷却光电导 HgCdTe(碲镉汞,MCT)探测器, 这种材料对 2 到 12um 的中红外光谱波段光波敏感。海尔欣的中红外探测器可采用直流或交流耦合输出,直流耦合方便用户实时观测探测器上的光强信号,继而方便系统对光调试;交流耦合输出可以让用户解调微弱的交流小信号,一定程度上避免过高的直流光信号将探测器饱和。探测器与热电冷却器(TEC)相连接, TEC 采用一个热敏电阻反馈电路对探测器元件的温度控制在-30℃甚至更低温度,从而将热噪声和背景辐射对输出信号的影响最小化。为有效地减少电磁噪声对检测输出信号的影响, 探测器外壳采用了铝合金屏蔽壳体制作,同时起到散热的作用。2. 性能• 半导体冷却型碲镉汞红外光电探测器;• 对2~12 um的中红外光谱波段光波敏感;• 内部一体化集成低噪声前置运放+TEC控制单元;• TEC热电冷却稳定 -80℃ 至-30℃ ,极大地降低了热噪声;3. 优势l • 前放+制冷控制一体化,噪声能进一步降低,使用也更为便捷l • 性价比高于同款进口产品,波长覆盖也更宽l • 海尔欣针对红外探测应用自主研发,更适合系统集成,更及时完善的售后服务4 探测器噪声测试l 测试原理待测噪声A,频谱分析仪基底噪声为B,噪声A 接入频谱分析仪后,测得噪声为频谱分析仪总噪声C(探测器放大后噪声A和频谱分析仪基底噪声B)。它们之间关系如下:A2+B2=C2图.1 HPPD-M-B探测器噪声测试系统 由于HPPD-M-B探测器感光单元噪声Ain信号较小,需要对噪声信号Ain进行放大处理,图.1 中间框HPPD-M-B专指探测器前置放大电路,实际探测器芯片已集成到HPPD-M-B探测器产品中。 其中Ain为归一化到探测器输入端的电流噪声密度(单位为pA/√Hz),为我们的待求结果,A0为Ain经探测器HPPD-M-B放大N倍后的信号,Rout为探测器的输出阻抗(Ω),A为频谱分析仪输入端信号,Rin为频谱分析仪的输入阻抗(Ω),B为频谱仪基底噪声(与测量系统基底噪声相同),C为频谱分析仪的频率扫描结果。可以得到系统中存在如下关系:A0=Ain*NA=A0*Rin/(Rin+Rout)A2+B2=C2 注:功率dBm转volts:http://wera.cen.uni-hamburg.de/DBM.shtmlvolts转噪声密度:噪声密度(nV/√Hz)= RMS volts/√RBW故通过频率分析仪测试探测器输出端噪声,便可容易的推算出归一化到探测器输入端的电流噪声密度。l 测试系统参数说明:放大倍数N = 15000V/A,探测器输出阻抗Rout =16Ω,频谱分析仪输入阻抗Rin = 50Ω频率扫描范围0-100 kHz,分辨率带宽RBW = 10Hzl 测试过程:1.短路频谱分析仪的信号输入端口,为频谱仪噪声基底的频率扫描结果得到系统基底噪声B1;2.按图1连接测试系统,将配套SMA转BNC同轴线缆一端连接到探测器的SMA输出端口,另一端连接到频谱分析仪(型号N9320B)的信号输入端口;得到未供电时的测试系统频率扫描结果,为测试系统的噪声基底B,可以发现测试系统的噪声基底B与频谱仪输入端短路时噪声B1相同,如下图2中的曲线V1(该曲线为系统的基底噪声B)。3.系统供电,将配套+5V电源适配器一端插入探测器电源供电口,另一端插入市电插座,拨动电源开关上电,此时风扇将正常工作,探测器开始温度调节,热机约10分钟后,温控指示灯亮,温度稳定于预设值。此时,可得到供电状态下,测试系统的频率扫描结果,如下图2中的曲线V2(该曲线为系统的总噪声C)。注意:测试过程中,探测器感光单元一直为遮光状态。l 计算结果读图:100kHz时,频谱仪基底B =-120dBm,扫频结果C = -117dBm,两者RMS均为10Hz。功率dBm转RMS volts:查表http://wera.cen.uni-hamburg.de/DBM.shtml-120dBm对应RMS volts为223.607nV;-117dBm对应RMS volts为315.853nV。根据RBM volts转噪声密度公式:噪声密度(nV/√Hz)= RMS volts/√RBW计算噪声密度B 为70.71nV/√Hz ,噪声密度C 为99.88nV/√Hz。根据计算公式:A2+B2=C2可以等到A=70.54nV/√Hz根据计算公式 :A=A0*Rin/(Rin+Rout);Rin=50?、Rout=16? 可以得到A0=93.11nV/√Hz 。通过公式:A0=Ain*N其中N为放大倍数15000V/A 可以得到Ain=6.2pA/√Hz。l 附1.探测器芯片的电流噪声密度HPPD-M-B编号:96610,芯片电流噪声 4.7 pA/√Hz5V适配器编号:01191027140测试结果表明,归一化到探测器输入端的电流噪声密度Ain为6.2pA/√Hz,则海尔欣的前置低噪声运放的噪声系数仅为2.4dB。计算方法为:信噪比:信号功率/噪声功率(下述计算提到的功率都以归一化噪声电流同比表示)噪声系数NF = 输入端信噪比/输出端信噪比 噪声系数可由下列式表示:Si为输入信号功率,即为光电流信号;Ni 为输入噪声功率,即为芯片电流噪声 4.7 pA/√HzS0为输出端信号功率,即为S0=Si*NN0为输出噪声功率,即为Ain*N通过上计算可以得到噪声系数NF=Ain/Ni根据上面计算结果可知Ain=6.2 pA/√Hz,Ni=4.7 pA/√Hz则噪声系数NF=1.32,根据噪声系数转换噪声dB公式:dB=20lgNF=2.4可以得到噪声系数为2.4 dB.(关于低噪声前置运放的噪声系数概念,请参考:http://www.ti.com.cn/cn/lit/an/zhca525/zhca525.pdf) l 附2.与进口探测器比较 图.3 VIGO探测器与HPPD-M-B噪声比较V3为HPPD-M-B ,适配器供电(放大15000倍)V2为某进口探测器,本底比HPPD-M-B低是因其放大倍数较低的缘故。 5 结论综合来看,海尔欣的HPPD-M-B型中红外探测器噪声与进口探测器处于同一水平,从功能上来讲没有太大差别。再结合其运放与TEC制冷高度集成的设计,HPPD-M-B型探测器极大地方便了用户的使用和系统集成,是一款小巧、出色的制冷型单像素红外探测器。
  • 综述:可变冷光阑红外探测器研究进展和关键技术分析
    为了进一步提高红外变焦光学系统的性能,兼顾其空间分辨率和灵敏度的要求,基于可变冷光阑技术的制冷型变F数红外探测器需求迫切。相较于传统的红外变焦光学系统,变F数红外变焦光学系统可在大视场和小视场切换时保持分辨率和灵敏度的平衡,提高光学系统的孔径利用率,进而缩小光学系统的径向尺寸,有利于红外光学系统成像质量的提升和小型化设计。昆明物理研究所科研团队对变F数与变焦之间的关系进行研究,概述了国内外在可变冷光阑红外探测器技术领域的研究进展,并对主流技术路线的关键技术难点进行了分析。相关研究内容以“可变冷光阑红外探测器研究进展和关键技术分析”为题发表在《红外技术》期刊上。变焦和变F数的关系变焦光学系统的理论依据:光学系统的焦距是一项重要的设计指标,其关系到系统的视场角、空间分辨率等关键性能。变F数与变焦的关系:为了理清变焦与变F数的关系,首先对传统的红外变焦系统进行分析。传统变焦系统中,探测器的F数是固定不变的,而光学系统(为方便讨论,将冷屏作为光学系统的一部分)的F数则分以下几种情况:① 假设系统在最长焦距时入瞳尺寸与物镜尺寸相等:该种情况下,光学系统的F数由最长焦距和物镜尺寸的比值决定,此时冷屏开口即为系统的孔径光阑。在系统由最长焦距切换到短焦状态时,孔径光阑及其尺寸均保持不变,入瞳由原来占满整个物镜逐步等比例缩小。由F数的公式可知,此时光学系统的F数保持不变。如图1所示,探测器的F数固定不变,为F/3,在长焦窄视场时,通光孔径被完全利用,见图中浅蓝色部分;当系统切换至短焦大视场状态时,通光孔径大幅减小,见图1中深蓝色部分。图1 传统变焦红外光学系统的孔径利用率示意图② 假设系统在最短焦距时入瞳尺寸与物镜尺寸相等:该种情况下,系统的F数由最短焦距和物镜尺寸的比值决定。在系统由短焦向长焦切换时,由于物镜尺寸固定,孔径光阑不再是冷屏开口,物镜边框成为了新的孔径光阑,也就是说此时虽然焦距在变大,但是入瞳直径保持不变,使得光学系统的F数逐步增加,并大于探测器的F数,造成冷屏效率的下降。如图2所示,光学系统的F数为F/6,探测器的F数为F/3,光学系统的F数大于探测器,光学系统自身产生的红外辐射大量的进入焦平面,大幅增加系统的NETD,干扰成像。图2 25%冷屏效率系统的辐射示意图实际的变焦光学系统设计时,往往是上述两种情况的平衡,通常不会只考虑某一个状态的性能。而对于变F数光学系统来说,在设计时保证系统在各个焦距下的孔径光阑均为探测器冷光阑,则当系统由长焦变换到短焦时,通过等比例增大冷光阑尺寸,可保证入瞳尺寸保持不变,通光孔径被充分利用,如图3所示。图3 变F数红外光学系统的孔径利用率示意图当系统由短焦变为长焦时,变F数光学系统可以通过等比例减小探测器冷光阑开口尺寸,使得探测器的F数变大,从而保持100%的冷屏效率,避免系统自身的杂散辐射进入焦平面,如图4所示。图4 100%冷屏效率系统的辐射示意图变焦光学系统可兼顾大视场搜索目标和极小视场识别目标的需求,但是由于探测器的F数固定不变,因此要么不能充分利用通光孔径,要么引入大量杂散辐射,不能达到最佳的成像质量。而变F数光学系统则可以很好地解决上述问题。因此理论上,凡是红外变焦光学系统应用的场合,变F数光学系统均可应用,具有广泛的应用前景。可变冷光阑红外探测器的研究进展可变冷光阑的优势可变冷光阑红外探测器技术是目前实现变F数红外系统的重要技术路线。相对于温阑来说,其具有以下几个优势:F数调节范围大且可连续调节。为了解决温阑自身及反射的杂散辐射对成像的影响问题,通常做成球面温阑,这使得F数调节范围小,通常只有两个F数可以选择,或者只能在某两个接近的F数之间进行调节,而可变冷光阑红外探测器可实现系统F数的连续可调,且调节范围较大。可降低系统的复杂度。在传统变焦光学系统中增加温阑设计,将大幅增加光学系统的复杂度和成本。而采用可变冷光阑红外探测器,只需针对探测器杜瓦封装结构进行设计和装配,可大幅降低系统的复杂度。可提升系统的灵敏度。长春光机所的常松涛等人研究了球面温阑对中波640×512(15 μm)红外探测器的NETD的影响,假设球面温阑的温度为20℃,球面温阑的发射率为0.01,当温阑发生0.5℃的温度变化时,温阑引入的NETD达到3.6 mK,虽然引入的NETD很小,但也接近目前探测器本身的NETD。而采用可变冷光阑探测器的方法,引入的NETD可进一步降低。可变冷光阑红外探测器的研究进展国外研究进展:美国弹道导弹防御局(BMDO)在2000年为高空观测系统(HALO)进行更新时设计了一个双波段红外分光系统。如图5所示,该系统在中波和长波的焦平面前端分别设置滤光片转盘,每个转盘上可放置5片不同带通的滤光片以及一片用于背景测试的空白片。美国OKSI公司的Nahum Gat等人先后开发了两套中继光学系统,如图6所示。2013年Nahum Gat等人提出了与杜瓦集成封装的内置式可变冷光阑结构,该结构相较于外置可变冷光阑结构来说结构紧凑,如图7所示。2014年,雷神公司的Jeffrey和Eric等人在Nahum Gat的基础上改进了刀片虹膜式的可变冷光阑结构,其结构示意图如图8所示。雷神公司的第三代前视红外系统是可变冷光阑探测器技术的集大成者。其冷光阑结构如图9所示。此外,雷神公司将中长双波段探测器芯片、双F数可变冷光阑、制冷机、制冷机驱动电路、成像控制电路、冷光阑控制电路等均集成为一个前视红外系统,该系统的体积和重量相对于第二代长波标准先进杜瓦组件(SADA Ⅱ)来说反而更小。包含中长双波段探测器芯片、双F数可变冷光阑、制冷机、成像控制电路、冷光控制电路等均在内的第三代前视红外系统的组成以及实物如图10所示。图5 HALO的双色红外系统图6 带可变冷光阑的真空密封结构和外置可变光阑与滤光片转盘的集成结构图7 刀片虹膜式可变冷光阑图8 双稳态螺线管驱动的可变冷光阑示意图图9 雷神公司可变冷光阑杜瓦俯视图图10 第三代前视红外系统的主要组成部件及系统的实物图国内研究进展:国内对基于可变冷光阑的变F数红外探测器研究较少。上海技物所于2001年发明了一种带可变冷光阑功能的用于红外探测器芯片中测的杜瓦(如图11所示),上海技物所的可变冷光阑结构用于芯片的中测筛选,对结构的小型化以及制冷时间、制冷量的要求不高,因此不适合正式的红外探测器。2014年长春光机所发明了一种与滤光片转盘相似的可变光阑机构(如图12所示)。在光学系统设计方面,613所于2017年设计了可以匹配不同F数探测器的中波大视场光学系统;中电科11所于2022年设计了F/2和F/4可调的变F数光学系统。图11 用于中测杜瓦的可变冷光阑图12 可变式的固定光阑目前国内对于可变冷光阑红外探测器的研究较少,相关产品不够成熟;国外也只有美国雷神公司对该技术进行深入研究,目前产品已进行小批量试制。通过对国内外研究现状的对比,可以发现雷神公司采用的与杜瓦集成封装的内置式可变冷光阑是实现变F数红外探测器的可行的技术路线。该技术路线有如下几点优势:1)集成度高:针对640×480(20 μm)的芯片封装,雷神公司的探测器体积和重量甚至还略小于SADA II探测器;2)可靠性高:可变冷光阑在制冷状态下可进行1万次的开合运动,在非制冷状态下可进行10万次的开合运动;3)功耗低:由于可变冷光阑机构与杜瓦进行集成封装,无需单独为其再配备制冷机,因此功耗不大于75 W,且常温降温时间小于10 min;4)响应时间快:虽然雷神的报道中没有明确说明F数的切换时间,但是根据其使用的压电电机的特性,F数的切换时间可满足光学系统视场切换时间的要求。可变冷光阑红外探测器的关键技术采用刀片虹膜式的可变冷光阑结构,并将其与杜瓦进行集成封装,存在以下关键技术:1)可变冷光阑杜瓦的整体设计技术可变冷光阑杜瓦与传统的固定光阑杜瓦在设计上有很大的不同,需从整体设计上来保证功能的实现。主要需考虑整体结构设计、光阑片的设计、驱动方式的选择、结构的温度控制、整体装配集成、小型化以及可靠性等多方面的技术。2)可变冷光阑精密装配技术可变冷光阑涉及到光阑片的精密装调、驱动电机的隔热装配以及整体结构的精密封装等装配步骤,由于其结构比传统冷屏结构复杂得多,且存在运动部件,其装配更加困难。而光阑片的装配精度关系到运动机构的长期可靠性以及运动过程中的摩擦力,同时影响驱动功率的大小;而驱动电机的装配精度关系到光阑片的受力均匀性以及温控效果;整体结构的装配精度关系到成像的质量。因此需从设计和工艺等多方面进行综合考虑,保证其装配精度及长期可靠性。3)微型电机设计和制造技术对于可变冷光阑来说,压电陶瓷电机是一种比较适合的驱动方式。压电陶瓷电机单位体积下的力矩较大,没有电磁干扰,具有断电自锁功能。一方面,为了缩小可变冷光阑红外探测器的体积,压电陶瓷电机的体积必须很小,另一方面,光阑片的运动阻力要求压电电机的力矩不能过小。因此需通过电机结构设计优化、高性能压电陶瓷的制造、电机制造工艺的改进等多个方面实现小型化大力矩电机的研制,将杜瓦的体积控制在可接受的范围内。4)杜瓦热固耦合设计技术可变冷光阑由于引入了复杂的运动机构,冷头热质量大幅增加,因此,需从结构设计以及材料选择等多方面进行研究和考虑,减小杜瓦热质量,解决快速制冷的问题。此外,可变冷光阑通过电机与杜瓦外壳热连接,需通过结构设计减小杜瓦的漏热。最后,光阑片之间通过叠加的方式互相贴合,热阻很大,需减小光阑片之间以及光阑片与冷屏之间的热阻,从而使光阑片温度降低至不影响焦平面成像的水平。5)可变冷光阑运动控制技术探测器的F数由冷光阑的开口尺寸决定,因此需精确控制冷光阑的运动,从而精确控制探测器的F数。压电陶瓷电机具有断电自锁的功能,即电机断电后可变冷光阑将立即停止运动,停在断电瞬间的位置,因此在控制方面只需要考虑可变冷光阑运动的反馈问题即可,这关键在于选择合适的小型化位置传感器,并结合可变冷光阑的结构设计,将传感器安装固定在合适的位置。6)光阑片表面镀膜技术光阑片表面需进行镀膜处理,膜层需满足摩擦系数小、耐磨以及反射率低3个条件。摩擦系数小可以减小光阑片之间的摩擦力,减小压电电机的力矩需求,有利于电机的小型化;耐磨性高则有利于可变冷光阑机构的可靠性,防止出现膜层脱落干扰成像的现象;反射率低则可以防止芯片的冷反射。结论这项研究从变焦和变F数的关系出发,阐述了变F数光学系统的优势。与传统的变焦光学系统相比,具有可变F数功能的变焦光学系统可兼顾系统的空间分辨率和灵敏度需求,提高系统的孔径利用率,有利于成像质量的提升和系统的小型化。对可变冷光阑的研究进展进行了分析,发现雷神公司的内置刀片虹膜式可变冷光阑是可行性高、性能优异的技术路线,并对该技术路线的关键技术进行了详细分析。对可变冷光阑红外探测器的研究和应用提供了参考。论文信息:http://hwjs.nvir.cn/cn/article/id/7222d189-ab24-490d-9bd9-98f665c31ed1
  • 提前布局,突破封锁|上海技物所:红外探测器的自主创新之路
    1951年初夏,“戈登将军”号海轮从美国旧金山码头出发,驶向中国。当祖国大陆在眼前逐渐浮现,甲板上一个年轻人眼噙热泪:“祖国,您的游子终于回来了!”这位对祖国母亲日思夜想的年轻人,便是日后成为中国半导体及红外学科奠基者、引路人和中国科学院院士的汤定元。往后很多年里,每每有人问他“为什么放弃那么好的科研条件回国”,汤定元的答案只有一个——为振兴中华尽自己的绵薄之力。1 写给元帅的三封信现代红外科学技术研究起步于20世纪40年代的德国。二战后,德国红外技术研究中断,相关成果成为美国和苏联的战利品。由于红外技术最初主要应用于军事,美国长期在保密条件下开展相关研究,直到1959年9月才首次公开发表部分研究进展。汤定元是新中国成立后第一批归国的留学生之一。回国后,他来到中国科学院工作,以半导体光学及光电性能为研究方向。那时,国内对于“红外探测器”还处于认知启蒙阶段,技术研究更是一片空白。就连汤定元本人也仅仅是“听说它很重要,但不知道重要在哪里”。但时刻关注国际前沿的汤定元知道,红外技术是一项必须跟进的新兴技术。他带领项目组在国内最早开展硫化铅红外探测器研究,“开展硫化铅等红外探测器的研究”被列入了“十二年科技规划”。为响应党中央“向科学进军”的号召,汤定元提出,科学研究要基于国家实际,面向国家的现实需求;中国科学院不仅要做机制研究,也要承担产品的试制甚至生产任务。1958年,汤定元给时任国防科学技术委员会主任聂荣臻元帅写了一封信,力陈红外探测器对于国防及经济建设的重要性。很快,红外技术的研究任务被正式提出。但不久后,由于经济困难,国内很多研究被迫停滞。忧心忡忡的汤定元再次致信聂荣臻:“红外技术研究是大有发展前途的,不能让它中断,但也不能搞‘一窝蜂’,要聚散为整,集中全国的科研力量进行攻关。”在他的倡议下,国家将红外技术和应用光学并列作为我国科研发展重点。中国科学院决定整合院内红外研究力量,并在1964年年初进行了布局调整——将昆明物理研究所及中国科学院上海技术物理研究所(以下简称:上海技物所)转为红外技术研究专业所,同时将中国科学院物理研究所和中国科学院半导体研究所红外方面的工作分别调整到这两个所中。肩负着“使上海技物所工作全面转向红外技术”的重任,汤定元同十余位同事共同前往上海技物所。在早期的探索阶段,美国送来了“礼物”。1965年,一架美国战斗机在我国境内被击落,残骸中有机载红外探测器等部件。汤定元获悉后,再次致信聂荣臻,恳请由上海技物所承担该战斗机同类型红外雷达的研制任务,他的信心和决心再次得到支持。从此,一部扎根于上海技物所的红外传奇徐徐展开。汤定元(左二)在实验室与学生交流科研进展2 冲向蓝天上海技物所红外技术的生根发芽还离不开一个人——中国科学院院士匡定波。在上海电子学研究所红外技术研究室工作期间,匡定波和同事接到一项紧急任务——研制出一种微波雷达以外的夜间飞机探测技术。后来,匡定波转入上海技物所工作,这项任务也随之移交至上海技物所。研制过程中,匡定波深刻认识到探测器作为红外装置“心脏”的重要性,“要做红外装置,首先要有红外探测器”。没有任何资料可借鉴,也没有像样的仪器设备,团队下了很大功夫,终于了解到上海自动化仪表厂和中国科学院上海冶金研究所(现中国科学院上海微系统与信息技术研究所)有人在研究,便专门派人去学习,再回来自己做。有了探测器,自主研制红外装置就有了可能。慢慢地,团队做出来的探测器可以接收到2米外一根点燃的卫生香的信号了,再往后,10米、70米……最终,我国首套用于歼击机的红外探测装置在上海技物所诞生!20世纪60年代,上海技物所还参与了另一项重大任务——研制搭载于“东方红一号”人造卫星的红外敏感光学探头。“东方红一号”人造卫星发射升空后,红外探头传来了清晰的信号。自此,我国自研航天用红外器件的实力得到证实。3 拔“碲”而起在周恩来总理“要搞我们自己的气象卫星”的倡议下,1972年,气象卫星预研工作开始。上海技物所承担了卫星红外扫描辐射计的研制任务,匡定波为主任设计师。这颗卫星就是后来的“风云一号”。匡定波参加“风云一号”气象卫星B星发射随着卫星参数逐步确定,匡定波等人关注到,美国预告发射的新气象卫星搭载的扫描辐射计信号全部从模拟制式改成数字制式,地面分辨率提高64倍,将完全取代我国在研方案对标的高分辨率扫描辐射计。“如果按原定指标,在发射前完成研制是有把握的。但方案已经在技术上落伍了,等卫星上天以后,世界各国不会再接收这样的云图。”匡定波指出,“必须提升指标,采用新一代技术方案。”上海技物所的研究人员主动“自我加压”,着手提升核心部件的性能指标。其中,研究员龚惠兴(1995年当选为中国工程院院士)负责扫描辐射计整体研制工作,红外探测器的任务交给了研究员方家熊(2001年当选为中国工程院院士)。多番研讨后,团队决定选用与国际接轨的先进方案,用碲镉汞器件观测地球。碲镉汞被誉为红外探测器的“天选”材料,其禁带宽度随组分变化,可以制备各种波段的红外探测器。尽管上海技物所是国内最早开始研制碲镉汞的单位,但当时材料指标离要求还有很大差距,其中最突出的是工作温度问题。实验室研制的碲镉汞红外探测器在液氮制冷——即零下196.15摄氏度下工作性能良好,但在太空中,辐射制冷器只能为探测器提供零下168.15摄氏度的环境,在该温度下,探测器的性能急剧下降。本着一股不服输的劲儿,方家熊带领29人的小组迎难而上。为了以最高效率攻克难题,他给团队立下了规矩:“全力配合总体,出问题从自己身上反思原因。”他们一一攻克材料提纯、合成、检测、应用环境模拟等难关,并专门搭建了测量温度变化的设备,详细分析碲镉汞器件在不同温度下的性能,仔细研究参数和工艺。当温度问题被基本解决后,团队又夜以继日地攻克了探测器封装难题。1988年9月7日,上海技物所建所30周年之际,“风云一号”气象卫星在太原卫星发射中心成功升空,不久后,红外扫描辐射计顺利获取清晰图像。这意味着我国成为继美国之后第二个同时掌握光导型碲镉汞和辐射制冷技术的国家。同时期的欧洲早于我国起步,却迟迟未能做成。1988年“风云一号”气象卫星发射任务试验队员凯旋4 自我施压,瞄准国际前沿为何我国能在基础薄弱、技术被封锁的情况下,一举攻下碲镉汞器件难题?这靠的是科学家自我施压、自我超越的拼搏精神。随着红外探测器应用范围的不断拓展,为了集中力量保证航天工程等国家重大任务的顺利完成,上海技物所将碲镉汞的材料与器件研究工作统一归并到第十研究室,由方家熊担任室主任。研究室先后解决了材料预处理、质量控制和工艺规范等问题,建立了从碲镉汞材料生长到红外探测器元件制备的全链条流程。“七五”期间,多元长波碲镉汞探测器预研项目的目标是做出一个超过10像元(探测器扫描采样的最小单元)的线列器件。但方家熊瞄准当时国际先进水平,决定把目标定为60像元。上海技物所研究员龚海梅回忆道:“当时能做出十几像元的红外探测器已经很不容易了,且有几家单位同时在做,竞争十分激烈。”但方家熊并不畏惧。他带领实验室同事克服经费不足、设备条件差等困难,成功研制出60像元器件。对此,原国防科工委发来贺信:“60像元碲镉汞线列红外探测器的研制成功,证明了我们中国的科技人员完全有能力打破国外的禁运和封锁,完全能够依靠自己的智慧和创造力攻克这一难关……你们为国防工业的研究单位做出了榜样。”60像元长波红外探测器随后,180像元的碲镉汞器件研制任务也交给了上海技物所。关关难过,关关过。从10像元到60像元,再到180像元,方家熊带领团队在不到10年时间里出色完成了这些看似不可能完成的任务。回忆起那段持续攻关的日子,方家熊忍不住感慨道:“精神上的高压让我常常感到腿像灌了铅似的,拖也拖不动。”红外探测器是遥感卫星能够“看得清”的关键。60像元和180像元器件,为后续应用于“风云二号”气象卫星、“神舟三号”飞船等的碲镉汞红外探测器组件奠定了基础。180像元长波红外探测器“我们有一批愿意为国家服务的工程师和科学家。”上海技物所研究员李向阳表示,“研究所‘垂直整合’的架构为科研人员提供了一个舞台。同等条件下,我们可以通过付出尽可能少的时间和人力,做出满足不同应用需求的红外探测器。”随着我国探测技术的发展和使用要求的提高,上海技物所“以任务带学科”,持续提升碲镉汞红外探测器性能,同时拓展铟镓砷、氮化镓等探测器的基础研究和应用。5 “摸着石头过河”红外焦平面探测器主要由红外像元芯片和读出集成电路两部分组成,兼具感应红外辐射信号和信息处理功能。早在多元红外探测器阵列研制的起步阶段,汤定元便强调:“由于我国红外技术起步比发达国家晚,应先增加这方面的投入,加快‘红外焦平面阵列’的研制速度。”1987年至1996年间,上海技物所组织专家共同论证了红外焦平面成像等技术开发的重要性与紧迫性。历史在此刻重演。1994年,在半导体材料和器件领域颇有建树的科学家何力毅然放弃国外的高薪工作,加入上海技物所,并在4年后成为新成立的材器中心的首任主任。发展红外焦平面探测器,必须先有大尺寸的碲镉汞材料。何力认为,分子束外延技术或许可以满足条件。“薄膜材料的外延生长得先有一个‘桌面’,再在上面生长材料,这个‘桌面’就是衬底。”上海技物所研究员周易解释说,“以往都用碲锌镉,因为它和碲镉汞的性质比较接近,材料容易生长,但大尺寸碲锌镉材料极难制备。”考虑到硅的晶圆可以做得很大,除了发展大尺寸碲锌镉衬底材料外,何力创新性地提出采用砷化镓和硅基晶圆作为衬底的碲镉汞材料制备技术。同前辈们一样,他带领团队“摸着石头过河”,从琢磨路线、采购设备做起,不断摸索材料生长的最优方案。把红外像元芯片和集成电路合二为一的工作,也在有条不紊地并行。上海技物所研究员丁瑞军回忆,项目最初,他所在的团队经过两年多辛苦努力,终于攻克了倒焊互连等技术难题,测试结果一切正常。当他兴致勃勃地将一块芯片送去封装,却瞬间傻了眼——当被放入模拟的真空、低温环境中时,芯片碎了。“我向龚惠兴院士汇报了这件事。他提醒我,先调研低温下材料的各种参数,再做仿真模拟,把问题都分析清楚后,最后做实验验证。”丁瑞军马上集合所有相关小组,经过3个月的分析调研,终于找到了问题所在。在各个攻关小组的共同努力下,2005年,由上海技物所团队研制的大面积碲镉汞材料跟随卫星进入太空。这也是我国红外焦平面碲镉汞探测器首次应用于航天领域。材器中心研制团队在实验室进行检测(上海技物所供图)2014年,伴随着航天用红外探测器需求井喷式爆发,原有的实验室工艺生产线已无法满足大面积、超长阵列产品生长需要,上海技物所决定在上海嘉定建立一条红外焦平面器件的工艺生产线。上海技物所研究员林春、陈路和青年职工周昌鹤等人齐上阵、两头跑,兼顾日常研究工作的同时,集中搭建、调试生产线上的上百台设备,跟踪每一道工艺。正是在这条生产线上,诞生了迄今公开报道的国际上最长的红外焦平面探测器。“我很幸运地参与并见证了这个领域的蓬勃发展。”林春感叹道。6 “扛红外大旗”1983年,以7位中国科学院院士为首的专家团队,对上海技物所进行了为期6天的深入考察与评议。评议报告指出:“该所在国内红外技术发展中成绩显著,有一支具有一定水平的科研队伍,能承担国家有关的重大科研任务。”近年来,上海技物所持续攻克大规模、高灵敏、高定量红外探测器关键技术,相关成果成功应用于民用气象卫星、探月探火、载人工程、高分专项、国家安全、科学卫星等领域的遥感仪器,保障了航天红外装备核心部件的自主可控。2023年,上海技物所牵头组建的红外探测全国重点实验室正式揭牌成立,以期进一步汇聚全国红外技术领域的顶尖力量,深入开展红外领域高水平应用和前沿研究,推进相关技术深入融合。从早期艰难追赶外国,到如今多点开花,在这部跨越70年的红外史诗中,国家需求是上海技物所不断发展核心关键技术的最大动力。上海技物所响亮地提出了“扛红外大旗”的努力方向,红外探测器也逐渐成为上海技物所的“法宝”。“未来,我们不仅要解决现有难题,还要主动挖掘新问题,并且冲在最前面。”龚海梅期待越来越多的年轻人加入进来,“一起为国家作贡献”。
  • 小菲课堂|详细解读制冷型与非制冷型光学气体成像热像仪
    十多年来,FLIR光学气体成像(OGI)热像仪一直用来可视化各种气体泄漏。这些OGI热像仪的开发是为了“看到”各种气体,包括碳氢化合物、二氧化碳、六氟化硫、制冷剂、一氧化碳、氨等。FLIR OGI热像仪被应用于各行各业,包括减少排放、提高生产效率和确保安全的工作环境。与其他检测技术相比,OGI热像仪的一大优势是该技术能够在不中断工业过程的情况下精准定位气体泄漏部件。从历史上看,OGI热像仪一直采用制冷型红外探测器,与非制冷型红外探测器相比具有多个优势,但成本往往更高。非制冷型红外探测器技术的进步使得像FLIR OGI热像仪这样的制造商,能够为相关行业设计和开发成本较低的OGI解决方案。尽管成本较低,但与使用制冷型探测器的热像仪相比,使用非制冷型红外探测器的热像仪存在一定局限性。光学气体成像背后的科学在我们讨论OGI热像仪中制冷或非制冷探测器的问题之前,我们可以先解释这项技术背后的理论。光学气体成像可以比作通过普通的摄像机进行观察,但操作员看到的是一股类似烟雾的气体喷出。如果没有OGI热像仪,这将是肉眼完全看不见的。为了能看到这种气体飘动,OGI热像仪使用了一种独特的光谱(依赖于波长)过滤方法,使它能够检测到特定的气体化合物。在制冷型探测器中,滤波器将允许通过探测器的辐射波长限制在一个非常窄的波段,称为带通,这种技术被称为光谱自适应。光谱自适应OGI热像仪利用某些分子的吸收特性,将它们在原生环境中可视化。热像仪焦平面阵列(FPAs)和光学系统专门调整到非常窄的光谱范围,通常在数百纳米左右,因此具有超选择性。只能检测到由窄带通滤波器分隔的红外区域中的被气体吸收的红外波段。大多数化合物的红外吸收特性取决于波长。氢、氧和氮等惰性气体无法直接成像。黄色区域显示了一个光谱滤波器,设计用于对应大部分背景红外能量将被甲烷吸收的波长范围。(图中横坐标代表波长,纵坐标代表甲烷气体的透射率)如果将OGI热像仪对准没有气体泄漏的场景,视野中的物体将通过热像仪的镜头和滤光片透射和反射红外辐射。如果物体和热像仪之间存在气体云,并且该气体吸收滤波器带通范围内的辐射,那么通过气体云到达探测器的辐射量将减少或增加。具体情况要看气体云与背景的关系,云与背景之间必须有一个辐射的对比。总而言之,让气体可见的关键是:气体必须吸收热像仪看到的波段中的红外辐射;气体云必须与背景形成辐射对比;气体云的表面温度必须与背景不同。此外,运动使气体云更容易可视化。熟悉光学气体成像相关的波长为了解决理解“制冷与非制冷”光学气体成像热像仪的挑战,您需要了解与光学气体成像相关的波长以及这些热像仪中使用的探测器。OGI热像仪的两个主要波长通常被称为中波(3到5微米)和长波(7到12微米)。在气体成像领域,这些区域也可以称为“功能区”和“指纹区”。在功能区,一个热像仪可以看到单一类别的更多气体,而许多单独的气体在指纹区有特定的吸收特征。几乎所有碳氢化合物气体都在FLIR GF320的过滤区域(黄色部分)吸收能量,但在长波或指纹区域(蓝色部分)有不同的吸收特征虽然许多气体在中波和长波区域都有吸收特性,但也有气体仅在一个红外波段发射和吸收。有些气体在中波而非长波光谱中发射和吸收(如一氧化碳/CO)和吸收,另一些仅在长波光谱中发射和吸收(如六氟化硫/SF6)。这些气体不属于指纹或功能区,通常指烃类气体。下面是CO和SF6气体的红外光谱图。制冷与非制冷型探测器制冷型OGI热像仪使用需要冷却到低温(约77K或-321°F)的量子探测器,可以是中波或长波探测器。检测功能区碳氢化合物气体(如甲烷)的中波热像仪通常在3-5μm(微米)范围内工作,并使用锑化铟(InSb)探测器。检测SF6等气体的制冷型长波热像仪在8-12μm范围内工作,可以使用量子阱红外光电探测器(QWIP)。制冷型OGI热像仪有一个集成了低温冷却器的成像传感器,其可以将传感器温度降低到低温。传感器温度的降低对于将探测器噪声降低到低于被成像场景的信号水平是必要的。制冷机运动部件的机械公差非常小,随着时间的推移会磨损,氦气也会慢慢通过气体密封。最终,在运行1万至1.3万小时后,需要对冷却器进行重建。带有制冷探测器的热像仪有一个与探测器连接的滤波器。这种设计可以防止滤波器和探测器之间的任何杂散辐射交换,从而提高图像热灵敏度,进而会使光学气体成像仪更有效地可视化某些气体,甚至使OGI热像仪符合美国环保局的OOOOa或其他要求等监管标准。用制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像用非制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像非制冷OGI热像仪使用微测辐射热计探测器,不需要制冷探测器所需的额外零件。它们通常由氧化钒(VOx)或非晶硅(a-Si)制成,在7-14μm范围内具有响应性。它们比制冷型热像仪更容易制造,但热灵敏度或噪声等效温差(NETD)较差,这使得更难以可视化较小的气体泄漏。NETD是一个指标,表示热像仪可以探测的最小温度差异。上图显示了制冷和非制冷探测器灵敏度的差异。更好的NETD将使制冷型OGI热像仪检测气体的效果至少是非制冷的五倍。用于确定OGI热像仪检测气体效果的类似标准是噪声等效浓度长度(NECL),该标准确定在定义的拍摄距离上可以检测到多少气体。例如,用于甲烷检测的FLIR GF320制冷型OGI热像仪(3-5μm探测器)的NECL小于20 ppm*m,而非制冷型(7-14μm探测器)的NECL大于100 ppm*m。对于非制冷型的OGI热像仪,另一个需要考虑的是滤波器。有些热像仪没有在长波光谱中过滤,这意味着它们只是一个完全开放的探测器,使用独特的分析来可视化气体。FLIR的高灵敏度模式(HSM)是利用软件和分析来增强气体可视化的热像仪示例。有些热像仪内部设置更有针对性的过滤器。这些滤波器可能与镜头有关,在探测器和镜头之间,以多种方式设计。使用非制冷过滤,由于限制到达热像仪探测器的辐射,您会失去热灵敏度。这将导致产生更高的NETD热灵敏度值,但可以提供与气体成像相关的更好图像。随着光谱滤波器宽度变窄以聚焦于特定气体时,来自场景的辐射减少,而探测器的噪声保持不变,来自滤波器的反射辐射增加。这会产生与气体成像相关的更高质量的图像,但会降低热像仪用于温度测量(辐射测量)的热灵敏度。当你使用冷滤镜时,比如制冷型OGI热像仪,这种现象就可以避免,因为反射的辐射量非常小。如何选择制冷与非制冷型OGI热像仪FLIR GF320甲烷和VOC检测用红外热像仪
  • 小菲课堂|制冷型or非制冷型红外热像仪,我们该如何抉择?
    多年来,科学家、研究人员和研发专家热衷于将红外热像仪运用在广泛的应用领域中,包括工业研发、学术研究、无损检测(NDT)和材料检测,以及国防与航空航天等。但是,并非所有的红外热像仪均具有同等的品质功能,或者可用于一些专门的应用。譬如,要想获得精确的测量值,则需要配备高速定格动画功能的先进红外热像仪。今天,小菲就教大家如何选择制冷型和非制冷型红外热像仪!各有千秋制冷型红外热像仪先进的制冷型红外热像仪配有集成低温制冷机的成像探测器。这是一款可将探测器温度降低至制冷温度的设备。为了将热噪声降至场景成像信号水平之下,探测器温度的下降必不可少。制冷型红外热像仪是最敏感型红外热像仪,可探测物体间最细微的温差。它们工作在光谱中波红外(MWIR)波段和长波红外(LWIR)波段,因为从物理学角度来讲在这些波段热灵敏度较高。热灵敏度是指信号变化相对于目标温度变化。热灵敏度越高,就越容易探测那些目标温度与背景差异不大的场景。FLIR A6700sc是一款科研级中波红外锑化铟热像仪,能生成细节丰富的327,680像素热图像。非制冷型红外热像仪非制冷型红外红外热像仪是一款其中配备的成像探测器无需低温制冷的红外热像仪。常见的探测器设计基于热释电探测器,这是一种拥有较大温度测量系数的小型氧化钒电阻,表面积较大、热容量低,以及热绝缘效果佳。场景温度变化会导致红外探测器温度变化,从而将转化为电信号,并经过处理产生图像。非制冷型探测器用在长波红外(LWIR)波段中,与地面温度类似的目标在该波段中放射出的红外热能最多。相比制冷式探测器,非制冷型探测器的制造步骤更少,产率更高,真空包装成本更低,而且非制冷型红外热像仪无需极其高昂的低温制冷机设备。非制冷型红外热像仪配有较少的活动部件,在类似的工作条件下,其往往较制冷型红外热像仪具有更长的使用寿命。FLIR T650sc配备一台非制冷型氧化钒(VOx)微测辐射热计探测器,能生成640×480像素的热图像。非制冷型红外热像仪展现的优势带来了两难的问题:研发/科学应用什么时候使用制冷型红外热像仪?答案是:取决于应用需求。实例对比如果你想要发现微小的温差变化,需要图像质量,拍摄快速移动或发热目标;如果你需要看清热变化过程,或者测量极小目标的温度;如果你希望在非常明确的电磁波谱部位可见热对象;抑或你希望将红外热像仪与其他测温设备同步工作,制冷型红外热像仪则是适合你的仪器。01速度制冷型红外热像仪的成像速度快于非制冷型红外热像仪。高速热像成像的曝光时间可达到微秒,能够停止动态场景的表观运动,并可捕获每秒62,000帧以上的帧速率。其应用包括热分析和动态分析喷气式发动机涡轮叶片、汽车轮胎或安全气囊检测、超音速弹丸,以及爆炸等。制冷型红外热像仪具有极快的响应速度,并充分利用全局快门优势。这意味着它们能够同时读出所有的像素,而并非如非制冷型红外热像仪一样逐行读取,从而使制冷型红外热像仪能够捕获清晰的图像和对移动物体进行测温。这些红外图像对比了以20 mph速度旋转的轮胎的拍摄效果。左边这张是用制冷型红外热像仪拍摄的。您可能会觉得轮胎并未在转动,但这是制冷型红外热像仪在极其高速条件下的拍摄结果,它会“定格”轮胎的转动。非制冷型红外热像仪的拍摄速度太慢,无法捕捉到轮胎旋转时使得轮辐显得透明的瞬间。02空间分辨率下面热图像对比了采用制冷型和非制冷型红外热像仪系统可实现的特写放大效果。左边的红外图像是用带4倍近焦镜头和像元间距13μm制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为3.5μm。右边的红外图像是用带1倍近焦镜头和像元间距25μm非制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为25μm。由于传感红外波长较短,制冷型红外热像仪通常具有比非制冷型红外热像仪更强的放大功能。由于制冷型红外热像仪的灵敏度更高,因此可使用带更多光学元件或更厚元件的镜头而不降低信号噪声比,从而提升了放大功能。03灵敏度制冷型红外热像仪灵敏度改善带来的价值往往并不显而易见。为了对比灵敏度的优势,我们做了一个快速的灵敏度实验。我们将手按在墙上停留几秒钟来创建手印的热图像,以此进行对比。开始的两张图像显示了手移开瞬间的手印。第二组图像显示了两分钟后手印的热特征。您可看见:制冷型红外热像仪仍能捕捉手印的大部分热特征,而非制冷型红外热像仪仅能捕捉其部分热特征。显而易见,制冷型红外热像仪比非制冷型红外热像仪能检测到更细微的温差,其检测的持续时间也更长。这意味着:制冷型红外热像仪能更清晰地显示被测目标的细节,并能帮助您检测到最微弱的热异常。04光谱滤波制冷型红外热像仪优势之一是能够轻松进行光谱滤波,以便侦测细节和测温,而这两点使用非制冷型红外热像仪则难以做到。实例一:我们使用了滤片,将其置于镜头后的滤片支架内或者内置在杜瓦探测器组件内,以便让火焰完整成像。过去,终端用户希望测量和表征火焰内的煤颗粒的燃烧现象。借助“看穿火焰”的光谱红外滤片,我们对制冷型红外热像仪进行了光谱波段滤波处理,在该波段中火焰为穿透式,因而我们能够对煤颗粒进行成像。图一为不带火焰滤片拍摄的图像,我们看到的都是火焰本身。第二张图为带火焰滤片拍摄的图像,我们能够清晰地看清煤颗粒燃烧情况。05同步精确的红外热像仪同步和触发功能使红外热像仪成为高速、高热灵敏度应用的理想之选。通过快照模式工作,FLIR A6750sc能够同步捕捉热活动中的所有像素。这对于监测快速移动物体时尤其重要,在这种时候,标准的非制冷式红外热像仪会使图像变得模糊。图中的图像即是良好的示例。在该例中,我们扔下一枚硬币,并通过传感器触发红外热像仪拍摄图像。两次抛扔相同硬币时,同时触发红外热像仪,你每次都会看到物体处于相同的位置。借助非制冷式红外探测器红外热像仪,你根本无法捕获硬币,因为其无法触发此类型探测器。如果不走运的话,图像可能模糊不清。FLIR红外热像仪配备制冷型探测器的红外热像仪比配备非制冷型探测器的红外热像仪具有更多优势,但是这类热像仪价格更昂贵。FLIR高性能制冷型红外热像仪有FLIR A6750sc、A8300sc、SC6000、SC7000、SC8000、X6000sc和X8000sc,它们在红外中波和红外长波光谱波段中具有超快速、超灵敏性能,而FLIR A6250sc则可在近红外光谱波段中操作。FLIR还提供各种非制冷式红外热像仪,包括入门级桌面实验套件和像FLIR T650sc一样的高端系统。专用镜头和软件将让您的红外热像仪解决方案满足特定的应用。选择制冷型与非制冷型红外热像仪主要是根据您的用途
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 德国Greateyes全新平台ELSE!全帧、深度制冷CCD 相机
    全新升级 greateyes CCD相机 2019年12月 全帧转移,深度制冷,高性能科研级CCD 相机全新平台出身于柏林的ELSE是德国greateyes公司最全新研发,应用于紫外-可见-近红外波段的光谱及影像相机。ELSE集成了目前最前沿的低噪声电子系统和超低温制冷技术,同时保持了紧凑小巧的设计。全新的设计允许从50kHz至4MHz灵活地选择所需读出速度。18-bit的模数转换能够利用CCD传感器的全动态范围,以达到更好表现和更高的信噪比。为匹配不同应用的需求,该相机包括多种类型的传感器可供用户选择。同时ELSE的低噪声使之成为极弱信号条件下所需的理想相机,它将给您的光谱学和影像研究带来前所未有的机遇。主要特点• 超低温半导体制冷系统产生极低的暗电流来达到更佳检测限• 严密的真空封装保护传感器且维护需求较低• 千兆以太网GigE 及 USB 3.0 数据接口您可选择本地或远程进行操作• 多种传感器类型不同尺寸均提供使用紫外,可见或近红外的镀膜• 高达 95% 的量子效率灵敏的传感器适合弱光应用• 用户可选择增益在最适合信噪比和动态范围间平衡传感器• 快速读取速度高帧率搭配低噪声电子系统• 灵活的软件选项原装 Vision 软件或各类开发包 SDK光谱应用成像应用ELSEsELSEi典型示例拉曼光谱近红外光谱荧光光谱吸收,透射及反射光谱活体荧光生物成像天文观测LIBS 光谱仪中子层析成像EL / PL 成像超冷量子研究典型型号ELSEsELSE 1024x128ELSE2048x512ELSE1024x256像素规格1024 × 1281024 × 2562048 × 512 感光区域26.6mm × 3.3 mm26.6 mm × 6.7 mm27.6 mm × 6.9 mm像素尺寸26 μm × 26 μm26 μm × 26 μm13.5 μm × 13.5 μmELSEi(图片为4096x4096)ELSE 1024 x1024ELSE 2048x2048ELSE 4096x4096像素规格1024 × 10242048 × 20484096 × 4096感光区域13.3 mm × 13.3 mm27.6 mm × 27.6 mm61.4 mm × 61.4 mm像素尺寸13 μm × 13 μm13.5 μm × 13.5 μm15 μm × 15 μm量子效率曲线德国Greateyesgreateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。成立于2008年的greateyes,以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。 北京众星联恒科技有限公司作为Greateyes公司中国区授权代理商,为中国客户提供Greateyes所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的x射线产品及解决方案。
  • 大连化物所开发出柔性可穿戴长波红外光热电探测器
    近日,大连化物所催化基础国家重点实验室热电材料与器件研究组(525组)姜鹏研究员、陆晓伟副研究员、包信和院士团队开发了柔性、可穿戴长波红外光热电探测器,并将其用于电子皮肤非接触温度感知。仿生触觉是智能机器人感知外部环境刺激的基础。在传统触觉系统中,触觉传感器需要与外部环境物理接触进而获取温度信息,无法在接触前对外部刺激作出预判。因此,发展具有非接触温度感知能力的先进触觉传感技术,将有助于为机器人交互感知领域带来全新的体验。光热电探测器是基于光热、热电两个能量转换过程,可在无需制冷、无需偏置电压、无接触的条件下实现对长波红外辐射(8至14μm)的灵敏探测。本工作中,研究团队在前期光热电探测器工作(Adv. M ater. ,2022;Adv. Mater .,2019;Nat. Commun. ,2019)的基础上,在具有长波红外吸收能力的柔性聚酰亚胺(PI)衬底上构建了Te/CuTe热电异质结,制备出高灵敏度、柔性、可穿戴长波红外光热电探测器。Te/CuTe热电异质结一方面可以提升复合薄膜的热电功率因子,起到降低器件噪音的作用;另一方面可以通过降低其光学反射损耗,并将其光学反射极小值与PI吸收峰对齐,增强光热电耦合,提升器件灵敏度。在非接触式温度感知测试中,当目标温度从零下50°C上升至110°C,所制备的柔性光热电探测器灵敏度均优于商业刚性热电堆,温度分辨能力可达0.05°C。以此为基础,研究团队利用该红外探测器在接近辐射源过程中响应电压的斜率变化,开发了动态温度预警系统,使得软体机械手可对热源进行预先判定。该工作为在仿生触觉系统中引入红外探测技术提供了可行的解决方案,在机器人交互感知、虚拟现实等领域具有重要的应用前景。相关研究成果以“Touchless thermosensation enabled by flexible photothermoelectric detector for temperature prewarning function of electronic skin ”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金、大连化物所创新基金等项目的资助。(文/图 郭晓晗、陆晓伟)文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911
  • 中国红外探测器产业:百舸争流千帆竞,乘风破浪正远航
    9月11日至13日,第25届中国国际光电博览会(简称:CIOE中国光博会)在深圳国际会展中心成功举办,全球超过3700家优质光电企业汇聚一堂,紧密链接全球光电资源,全方位展示前沿创新技术及成果,为光电产业及其下游应用领域带来了前沿的新技术、新模式,激发行业的新思考,共同探寻红外探测器发展的新方向。在本次CIOE中国光博会的红外技术及应用展中,上百家红外探测器上下游厂商汇聚一堂,探讨产业现状及未来发展趋势。同期还有系列行业论坛举行,促进红外产学研交流合作,展示科研成果、实践经验和技术方向。中国红外探测器厂商“百舸争流,各展其长”红外探测是一种可将接收到的红外辐射转换为便于使用的电信号的传感技术。根据能量转换方式,红外探测器通常分为光子探测器和热探测器两大类。随着科技的不断进步,红外探测器也从敏感材料、探测灵敏度、分辨率、微型化、AI+等方向不断提升,在国家安全、军用装备、国民经济中发挥着越来越重要的作用。本次CIOE中国光博会中,中国厂商以破竹之势成为红外探测技术及应用展的中坚力量。热探测器,民用红外领域的首选利器相较于通常需要制冷的光子探测器,热探测器无需制冷,具有价格便宜、尺寸小巧、技术成熟等优势,是测温仪器、安防监控、执法搜救等民用产品的首选利器。高德红外、睿创微纳、大立科技、海康微影以及光智科技等国内热探测器领先厂商都带来了其核心及创新产品。武汉高德红外股份公司(简称:高德红外)展出了多款非制冷红外探测器及红外机芯。高德红外FLEXA1212高清非制冷红外机芯是首次展出的晶圆级超小尺寸机芯,分辨率为1280 × 1024,像元尺寸12 μm,尺寸为27.8 × 27.8 × 19.6 mm,具有超轻重量、超低功耗的特性,主要应用于电力巡检、安防监控等领域。高德红外拥有8英寸0.11 μm工艺节点的氧化钒非制冷红外探测器批产型MEMS生产线,提供从探测器、机芯模组到应用的全套解决方案。高德红外的非制冷红外探测器及红外机芯展示烟台睿创微纳技术股份有限公司(简称:睿创微纳)展品中最为突出的是全球首款6 μm 640 × 512非制冷红外探测器,同时还展出了10 μm 500万像素非制冷红外机芯和120 Hz非制冷红外机芯。6 μm小像元技术的突破,为无人机、汽车智能驾驶、机器人、AI智能、元宇宙等领域带来了全新的发展机遇与广阔的应用前景。睿创微纳从红外热成像领军者到多维感知布局,在深耕长波非制冷红外热成像领域的基础上,不断拓展制冷长波/中波/短波红外、激光、微波等光谱传感研究。睿创微纳的非制冷红外探测器及红外机芯展示浙江大立科技股份有限公司(简称:大立科技)展出了从设计到生产具有完全自主知识产权的200万像素非制冷焦平面探测器及红外机芯,并现场做了2 K高清红外成像。非制冷焦平面探测器应用范围非常广泛,为电力巡检、安防监控、无人机、汽车智能驾驶、机器人等领域增添助益。大立科技具有批产非制冷红外焦平面探测器的能力,拥有国内唯一的军品非制冷焦平面红外探测器(非晶硅技术路线)产业化基地。大立科技的非制冷红外探测器及红外机芯展示杭州海康微影传感科技有限公司(简称:海康微影)展出了多款非制冷红外探测器,同时推出了1920像素8 μm红外机芯和1280像素红外机芯两颗新品,本次展品中像元尺寸最小为1280像素12 μm红外机芯。海康微影是海康威视(HIKVISION)子公司,以IDM模式运营,主要生产以氧化钒为敏感材料的非制冷红外探测器,是以MEMS技术为核心的红外探测器解决方案提供商。海康微影的非制冷红外探测器及红外机芯展示安徽光智科技有限公司(简称:光智科技)展出了多款金属封装、陶瓷封装和晶圆级封装的非制冷红外探测器。光智科技已建设8英寸硅基MEMS非制冷红外探测器芯片生产线,并掌握了MEMS芯片设计和制造工艺技术及金属、陶瓷和晶圆级封装技术,非制冷探测器已实现最高百万像素级别。光智科技的非制冷红外探测器及红外机芯展示光子探测器,高端红外领域的“先锋军”在红外技术及应用领域,光子探测器一直以“更高、更快、更远”的目标不断突破,始终占据红外技术前沿的高地。中国科学院上海技物所、夜视集团、中国电科11所、高德红外、睿创微纳、中航红外、焜腾红外、珏芯微电子、光智科技、中科爱毕赛思以及国惠光电等中国光子探测器厂商都竞相“秀出肌肉”,带着最新产品和创新技术与产业人士交流。中国科学院上海技术物理研究所(简称:中国科学院上海技物所)展出了系列中波制冷红外探测器及机芯,其中最为突出的是超晶格1280 x 1024中/中波双色红外焦平面探测组件。另外,中国科学院上海技物所还展示了在国际上能直接参与竞争的国内首款天文用短波红外探测器,代表前沿发展和研究方向的中波红外探测器、类视网膜的红外感算芯片以及红外智能识别芯片等,为高端商业应用、红外探测技术创新和发展打下了基础,代表了我国红外探测技术的前沿和科研实力。中国科学院上海技物所的超晶格1280 x 1024中/中波双色红外焦平面探测组件展示北方夜视科技研究员集团有限公司(简称:夜视集团)展出了多款中波和长波制冷红外探测器及制冷机组件,其中,中波1280 × 1024 7.5 μm制冷红外探测器最为亮眼。夜视集团下属的昆明物理研究所,专门从事红外材料、红外探测器、红外热像仪研发、生产的研究。夜视集团红外探测器中心是国内规模化红外探测器组件生产和研发中心,具备现代化的柔性生产线,实现了第一代、第二代红外探测器产品的批量生产和工程化应用,并致力于第三代红外探测的研发,掌握多项红外探测器关键技术,具备多项自主知识产权。夜视集团的制冷红外探测器展示中国电子科技集团公司第十一研究所(华北光电技术研究所,简称:中国电科11所)展出了多型号中波和长波碲镉汞(MCT)、锑化铟(InSb)/碲镉汞探测器,高温工作中波红外探测器组件以及小型化中波探测器组件。中国电科11所是从事激光与红外技术的综合性研究所,主要产品包括激光与红外材料、器件、整机及系统等,是我国主要的光电技术研究所之一。中国电科11所的多款制冷红外探测器展示高德红外全球首发500万像素高温中波制冷红外探测器。2560 × 2048超高分辨率实时监视图像,视野更宽广,视场覆盖率更高;10 μm像元尺寸,器件架构更紧凑,空间分辨率更大,更加适用于广域远距探测,赋予用户超越以往的全景探测和态势感知能力;焦平面工作温度可达150 K,高温工作性能处在同级别产品中的头部行列。高德红外拥有8英寸0.5 μm工艺节点的碲镉汞制冷红外探测器批产线、8英寸0.5 μm工艺节点的二类超晶格制冷红外探测器批产线,自主完成原材料提纯、生长,到芯片的流片、制造、封装与测试的全套工艺。高德红外的中波和长波制冷红外探测器及机芯展示睿创微纳展出15 μm 640 × 512长波、中波Ⅱ类超晶格制冷红外探测器、碲镉汞(MCT)制冷探测器以及短波红外焦平面探测器等。相较于非制冷红外探测器,制冷红外探测器灵敏度更高、响应速度更快,适用于更远距离成像、更高速度的运动目标追踪,可用于特种装备,为光谱传感、空间通信、机器视觉、红外夜视、气体成像、泛半导体检测、生物医学成像等行业带来了全新的解决方案。睿创微纳的Ⅱ类超晶格、碲镉汞制冷红外探测器及短波红外焦平面探测器展示中航凯迈(上海)红外科技有限公司(简称:中航红外)展出了自主研发生产的锑化铟(InSb)、铟砷锑(InAsSb)、超晶格(InAs/GaSb)等各型制冷红外探测器,并首次展出了全系列自研读出电路(ROIC)。中航红外主要从事军民两用红外探测器及红外光学研发生产,锑化物探测器科研生产能力处于国内领先水平。中航红外的各型制冷红外探测器展示浙江焜腾红外技术股份有限公司(简称:焜腾红外)重磅推出了具有绝对技术优势的2024年新品2 K x 2 K Ⅱ类超晶格高工作温度制冷探测芯片;展出了中波、长波、双色、气体泄漏检测(OGI)共四大系列多款目前市场上最先进的自主研发的高工作温度制冷Ⅱ类超晶格探测器。焜腾红外的制冷Ⅱ类超晶格探测技术攻克了Ⅱ类超晶格材料外延生长、器件结构设计、芯片制备工艺及探测器规模化工艺等方面“卡脖子”关键技术,在Ⅱ类超晶格材料结构的优化设计、器件制备、高真空封装处于国内领先水平。焜腾红外的Ⅱ类超晶格高工作温度制冷探测器展示浙江珏芯微电子有限公司(简称:珏芯微电子)展出了包括长波探测器、超小型高温探测器、大面阵探测器、气体探测器等在内的多款特色产品,以及系列特色制冷机。珏芯微电子是一家集化合物半导体晶体及外延材料、集成电路设计、器件工艺、高真空封装、精密制冷机等半导体全产业链的高科技公司,军工资质齐全。珏芯微电子的各类制冷红外探测器展示光智科技展出了中波碲镉汞(MCT)、锑化铟(InSb)和长波Ⅱ类超晶格等制冷红外探测器。光智科技已建设2~6英寸中波碲镉汞、锑化铟和长波Ⅱ类超晶格等探测器芯片等多种制冷红外探测器芯片生产线,搭配自主研发生产的制冷机和杜瓦,形成了从制冷红外材料、芯片、封装到器件完整的制冷红外探测器产业链。光智科技的制冷红外探测器展示中科爱毕赛思(常州)光电科技有限公司(简称:中科爱毕赛思)展出了三款自主研发和生产的长波和中波超晶格红外焦平面探测器。中科爱毕赛思主要从事III-V族半导体光电材料、器件的研发与生产,掌握了分子束外延生长(MBE)与芯片制备的关键核心技术,具备新一代高性能光电子器件从结构设计、材料外延、器件制备到组件封装的全产业链技术能力。中科爱毕赛思的超晶格红外焦平面探测器展示山西国惠光电科技有限公司(简称:国惠光电)展出了多款铟镓砷(InGaAs)短波红外探测器及机芯。国惠光电自主研发生产的15 μm像元的多分辨率InGaAs短波红外芯片将传统的InGaAs探测器光谱响应范围从900 - 1700 nm延展到400 - 1700 nm,可同时实现对可见光、近红外和短波红外的探测和成像,并可根据要求提供半导体制冷器(TEC)制冷,提高探测器的灵敏度。国惠光电拥有国际水准的4英寸III-V族半导体化合物芯片生产线,自主研发并实现工程化生产的红外焦平面探测器芯片及其成像系统,其指标已达到国际先进水平。国惠光电的多款InGaAs短波红外探测器展示热门应用群芳竞艳,独具匠心丰富的多维感知技术与创新的解决方案是本次红外技术及应用展的亮点,也是突破红外产业增速放缓局面的重要手段。各大厂商均各展其能,充分拓展了红外技术在应用端的成果及创意,为后续红外产业发展带来了更多“新想法”和“新可能”。高德红外、睿创微纳、大立科技在车载红外感知领域的应用展示高德红外、睿创微纳、大立科技、海康微影在智慧物联领域的应用展示睿创微纳、海康微影在智慧工业领域的应用展示高德红外、飒特红外在无人飞行器领域的应用展示海康微影在半导体检测及生物医学检测领域的应用展示近些年,随着光电技术的长足发展,中国在各波段红外探测器方面都有着显著的技术进展和广泛的应用探索。CIOE中国光博会为红外产业提供了大型的交流和展示平台,促进红外产业步入发展的快车道,系列行业论坛的加成也为技术创新擦出更多火花。红外探测技术正处于快速发展阶段,拥有无限可能,我们满怀期待!
  • 国产红外探测器厂商中科爱毕赛思完成数亿元融资
    近期,高性能制冷红外探测器生产厂商中科爱毕赛思(常州)光电科技有限公司(以下简称“中科爱毕赛思”)完成数亿元融资,资金将用于二期产线建设、新一代产品研发及市场拓展。本次融资由海通证券旗下海通创新资本领投,方广资本、常金控、元科投资跟投;老股东昇和资本、国海创新资本、常州高新投持续投资。锑化物II类超晶格技术自从20世纪70年代锑化物II类超晶格的理论被提出以来,基于InAs/GaSb 体系的II类超晶格材料受到了极大的关注,其基本原理是通过InAs层与GaSb层的重复交替排列形成一维周期性结构。类似于周期性排列的晶格,超晶格周期性的长短变化使超晶格表现出从半金属到窄带隙半导体的特性。InAs/GaSb超晶格的特点是InAs与GaSb之间形成II型离隙型能带结构,电子与空穴被分别限制在InAs与GaSb层中,相邻InAs层中电子波函数的交叠形成电子微带,同样地,相邻GaSb层中空穴波函数的交叠形成空穴微带。通过电子吸收光子在最高空穴微带(重空穴带)与最低电子微带(第一电子微带)之间的跃迁来实现对光信号的响应。红外探测器“一代器件,一代整机,一代装备”,红外探测器是红外产业链的核心器件。红外探测器性能高低直接决定了红外成像的质量。红外探测器在红外成像系统中的地位类似于人视觉系统中的视网膜,将从环境中检测的红外辐射的信号,转变为机器可以识别的电流或电压的信号,是探测、识别和分析目标物体红外信息的关键。据具体的需求和应用,红外探测器会有不同的分类,最为常见的是根据制冷需求,分为制冷红外探测器和非制冷红外探测器。制冷型红外探测器一般指的是利用半导体材料的光子效应制成的探测器,光电效应需要半导体冷却到较低温度才能够观测,所以红外系统需要制冷后才能使用。制冷型红外探测器具有温度灵敏度高、响应速度快、探测器距离远等优点,因此应用广泛,主要包括:(1)科学研究:在科学研究领域,制冷型长波红外探测器可用于天文学、气象学、地球物理学等学科的研究。它能够探测到来自宇宙的红外辐射,为科学家提供有关宇宙起源、星体演化等重要信息。(2)野生动物研究:中长波双色制冷红外探测器可以用于野生动物研究中,通过探测动物的红外辐射来观察和研究动物的行为和习性,对于生态保护和动物学研究具有重要意义。(3)工业应用:在工业领域,制冷型长波红外探测器可用于检测机器设备的工作状态和故障预警,例如对发动机、涡轮机等进行检测。它能够实时监测机器设备的运行状态,及时发现潜在的故障和问题,从而提高生产效率和设备使用寿命。(4)环境监测:在环境监测领域,制冷型长波红外探测器可用于检测空气污染、气体泄漏、森林火灾等环境问题。它能够快速准确地检测到环境中的异常变化,为环境保护和应急响应提供及时准确的信息支持。(5)安防应用:在安防领域,制冷型长波红外探测器可用于安全监测、防止非法入侵和犯罪活动。它能够进行24小时不间断的红外监测,对目标进行精确的探测和识别,从而有效地保障公共安全和财产安全。(6)消防救援:在火灾发生时,中长波双色制冷红外探测器可以通过探测火焰和烟雾的红外辐射来及时发现火源,从而帮助消防人员快速定位火点并进行救援。(7)特殊应用:制冷型长波红外探测器可用于侦察、目标跟踪等任务。它具有抗干扰能力强、探测距离远、探测精度高等优点。展望未来中科爱毕赛思正式成立于2020年,是一家专注于光电技术领域的高科技企业,致力于锑化物超晶格技术产业化,推动高性能半导体光电子技术产业的发展。公司已经掌握了分子束外延生长(MBE)与芯片制备的核心技术,并具备新一代高性能光电子器件从结构设计、材料外延、器件制备到组件封装的全产业链技术能力。未来,中科爱毕赛思(常州)光电科技有限公司将持续推动锑化物超晶格的发展,坚持科技创新、自立自强的理念,不断追求卓越,努力成为一流的高性能红外探测器供应商。
  • 德国Greateyes全新平台Alex!全帧、深度制冷CCD 相机
    全帧转移,深度制冷,高性能科研级CCD 相机全新平台ALEX,这是德国greateyes为您提供的新平台 ,适用于在VUV,EUV,软X射线和硬X射线范围中的光谱和成像应用。ALEX集成了先进的低噪声电子设备和超深冷却技术,同时保持了紧凑的相机设计。可以选择多种读出速度,以支持从50KHz到5 MHz的像素速率。真正的18bit AD转换允许利用CCD传感器的全部动态范围,以实现高性能和SNR。ALEX非常适合用于探测弱信号,这种情况下低的本底噪声是非常重要的。ALEX为您的科学研究提供了前所未有的可能性。下图是由Max Born Institute的成像和相干X射线小组与柏林Helmholtz-Zentrum(BESSY)的X射线显微术部门合作,使用ALEX得到的硅藻在软X射线显微镜下纳米图像。主要特点• 超低温半导体制冷系统(-100°)产生极低的暗电流来达到更佳检测限• 千兆以太网GigE 及 USB 3.0 数据接口您可选择本地或远程进行操作• 高达 98% 的量子效率灵敏的传感器适合弱光应用• 用户可选择增益在优信噪比和动态范围间平衡传感器• 快速读取速度可达5MHz高帧率搭配低噪声电子系统• 灵活的软件选项多种 软件或各类开发包 SDK可选光谱应用成像应用ALEXsALEXiEUV光刻技术软x射线光谱近边精细吸收光谱等离子体发射光谱高谐波光谱共振非弹性x射线散射X射线断层扫描成像傅里叶变换全息术X光透射成像相干衍射成像叠层衍射显微光谱成像掠入射小角度x射线散射典型型号ALEXs系列ALEX1024x256ALEX 2048x512芯片种类FIFI DDBI UV1BI DDFIBIBI UV1像素规格1024 × 2562048 × 512感光区域26.6 mm × 6.7 mm27.6 mm × 6.9 mm像素尺寸26 μm × 26 μm13.5 μm × 13.5 μm(图片为4096x4096)ALEXi系列ALEX 1024 x1024ALEX 2048x2048ALEX4096x4096芯片种类FIBI/BI DDBI UV1FIBI/BI DDBI UV1BIBI UV1像素规格1024 × 10242048 × 20484096 × 4096感光区域13.3 mm × 13.3 mm27.6 mm × 27.6 mm61.4 mm × 61.4 mm像素尺寸13 μm × 13 μm13.5 μm × 13.5 μm15 μm × 15 μm量子效率曲线★ 可选/定制配置 ★01不同型号法兰02芯片倾斜角度/突出03快门等机械配置04软件及SDK特殊开发客户发表文章不断在勤奋、专业、精益求精和追求卓越的Greateyes团队的共同努力下,继发布适用于紫外-可见-近红外波段的全帧转移、深度制冷科研级CCD相机:ELSE系列和适用于在VUV,EUV,软X射线和硬X射线波段的全帧转移、深度制冷科研级CCD相机:Alex系列。同时我们相机在客户现场也表现卓越,仅仅在2020年初就主力了4片论文的发表。简要信息如下:1. Arikkatt, A., et al. "Spectral Investigation of Laser Plasma Sources for X-Ray Coherence Tomography." Acta Physica Polonica, A. 137.1 (2020).波兰军事科技大学光电子研究所的A. Arikkatt团队对于专用于X射线相干断层成像研究所的激光驱动高原子序数等离子源辐射的EUV和SXR光谱进行了研究。该源使用了4ns,650mj的激光器来驱动双气体靶的结构。坐着使用了三个光谱仪来表征1-70nm的辐射光谱:掠入射光谱仪用于测试1-5nm和10-70两个波、透射光栅光谱仪用于测试4-16nm波段。作者标定了光源适用于SXR和EUV相干断层层析实验的波段。整个实验装置非常紧凑,约1.5m*1.5m,非常适用于实验室环境。2. Varvarezos, Lazaros, et al. "Soft x-ray photoabsorption spectraof photoionized CH4 and CO2 plasmas." Journal of Physics B: Atomic, Molecular and Optical Physics 53.4 (2020): 045701.爱尔兰都柏林城市大学和波兰军事科技大学的研究团队对中性甲烷和二氧化碳分子及它们的光电离等离子体的软X射线的吸收光谱进行了测量。SXR是激光驱动双气体靶产生的。在低的软X射线强度下,吸收光谱中只有与中性分子有关的特征。另一方面,随着辐射强度的增加,我们在光谱的低量一侧观察到新的吸收特征。在这种情况下,中性和电离的分子、原子和原子离子等碎片对等离子体的吸收光谱有贡献。作者还提到,这是首次利用这种激光等离子体为基础的SXR源用于创建和探测分子等离子体。重点是确定片段种类和相应的转变。3. Wachulak, P., et al. "EXAFS of titanium L III edge using a compact laboratory system based on a laser-plasma soft X-ray source." Applied Physics B 126.1 (2020): 11.作者利用激光等离子体软x射线源建立的小型实验室系统,对钛在LIII吸收边缘附近的扩展x射线吸收精细结构(EXAFS)光谱进行了研究。使用激光激发氪气/氦气双流充气靶等离子辐射源,其光谱范围优化为200 ~ 700 eV。在EXAFS研究中,宽的SXR谱和高的光子通量是必不可少的。实验装置保证了同时获取参考光谱和吸收光谱。用掠入射平场谱仪记录了它们的光谱。薄(200纳米厚)钛样品的吸收光谱揭示了EXAFS区域的特征,可以相当准确地测定原子间的径向距离。结果与基于光电子波函数散射的数值模拟输出及同步加速器源的数据吻合较好。这证实了这种光源,在标准的EXAFS方法中的适用性。4. Baumann, Jonas, et al. "Toroidal multilayer mirrors for laboratory soft X-ray grazing emission X-ray fluorescence." Review of Scientific Instruments 91.1 (2020): 016102.作者报道了一种用应用于激光驱动等离子体(LPP)射线源的超环面多层膜镜片的设计,并对镜片进行了表征。将此种镜片与已有光源耦合后在热电掺杂金氧化铜纳米膜上实现了无扫描掠射x射线荧光测量。德国Greateyesgreateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。成立于2008年的greateyes,以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。About us:北京众星联恒科技有限公司作为Greateyes公司中国区授权总代理商(EUV-SXR-X ray range),为中国客户提供Greateyes所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的x射线产品及解决方案。
  • 北理工团队在室温运行中波红外探测器技术领域取得重大突破
    北京理工大学郝群教授团队在室温运行中波红外探测器研究方面取得突破性的进展,相关论文于2023年1月发表于光学顶刊Light:Science & Applications,获得封面论文。近日该论文入选ESI高被引。 中红外波段是重要的大气窗口,相比可见光波段提供额外的热信息,在医学检测、气象遥感、航天探测等方面均具有重要价值。然而,该波段却不能被人眼直接感知。红外光电探测器运用光电技术,突破人类视觉障碍,以被动的方式探测物体所发出的红外辐射。目前,中红外光电探测器主要基于外延生长材料,与读出电路耦合的倒装键合工艺复杂,,并且其高性能需要斯特拉制冷机等设备制冷,无法满足轻量化、低成本需求。胶体量子点作为新兴红外材料,化学热注射法大规模合成易,“墨水式”液相加工可以与读出电路直接耦合,并且其“量子限域”效应在三维尺度限制了热激发载流子的产生,有望实现非制冷、低成本、高性能的中波红外探测器。然而,目前胶体量子点并且异质结设计导致的界面传输和能带不匹配,使探测器依然必须在液氮(80K)温度下才能达到背景限,理论预测的室温运行依然遥远。量子点表面偶极子调控过程郝群教授团队创新性的提出量子点表面偶极子掺杂方法,开发混相配体交换技术,首次在红外量子点领域提出并制备了“强P-弱P-本征-弱N-强N”梯度堆叠同质结器件。该新型器件:1. 工作温度优。通过大幅优化内建电场,使量子点中波红外探测器的“背景限”工作温度提升了百开尔文,成功实现了室温运行。2. 制备成本低。该红外材料化学合成、液相涂敷硅基耦合、无需斯特林制冷,从材料、工艺、工作机理等各个层面降低成本至传统红外探测器的十分之一。3. 探测性能高。梯度同质结器件结构,避免了界面输运不匹配导致的光生载流子损耗,优化了光生载流子的传输与收集过程。量子点梯度同质结器件与能带示意图该工作极大提升了探测器的工作温度,中波4-5微米探测器在200 K下,比探测高于1011 Jones,性能达到背景限制;280 K下,仍能保持1010比探测率。 梯度同质结量子点探测器的外量子效率相比常规量子点探测器提升近1个量级,达到77%。本工作同时验证了探测器的热成像及气体检测等实际应用功能。该论文的第一作者为北京理工大学博士生薛晓梦、陈梦璐准聘教授,通讯作者为北京理工大学陈梦璐准聘教授、唐鑫教授及郝群教授。原文链接:https://www.nature.com/articles/s413 7 7-022-01014-0 附作者简介:郝群,北京理工大学特聘教授。国家级高层次人才,高校创新引智基地负责人,科技部重点领域创新团队负责人,教育部跨世纪优秀人才,北京市教学名师,全国“巾帼建功”标兵。长期在新型光电成像传感技术和光电精密测试技术领域从事教学和科研工作,主要研究方向包括新型光电成像技术、仿生光电感测技术、抗振干涉测量技术及仪器等方面。主持国家自然科学基金仪器专项/重点项目、科技部重点研发计划等。担任中国光学学会常务理事、光电专业委员会主任委员,中国仪器仪表学会常务理事、光机电技术与系统集成分会常务副理事长,中国计量测试学会常务理事,中国兵工学会理事、光学专业委员会主任委员,中国光学光电子协会理事、红外分会副理事长等社会兼职。担任《Defense Technology》杂志副主编。
  • 大连化物所研制出可用于非接触人机交互系统的高灵敏长波红外探测器
    近日,大连化物所二维热电材料研究组(DNL2104组)陆晓伟副研究员、姜鹏研究员、包信和院士团队在高灵敏、低功耗人体红外热辐射探测器研制及其在非接触人机交互系统中的应用方面取得新进展。人体自发热辐射主要位于长波红外(8至14 μm)波段,呈现出光子能量低(~0.1 eV)、光强弱(~5 mw/cm2)等特点。实现人体红外热辐射的高灵敏探测,对构建低功耗、非接触人机交互系统具有重要意义。作为一种热敏型探测器,光热电探测器是基于光热转换、热电转换两个能量转换过程,具有光谱响应范围宽、无需制冷、功耗低等优点。目前,商业的光热电探测器通常采用分立式的热电堆结构,需要复杂的MEMS微机械加工制备工艺,且在探测人体热辐射时,其输出电压相对较小(数十至数百微伏),需要额外的高信噪比信号采集电路。本工作中,该研究团队突破传统热电堆材料和构架的限制,构建了基于SrTiO3-x/CuNi异质界面结构的一体式热电堆。该异质界面结构一方面将SrTiO3-x高的Seebeck系数(-737 μV/K)与CuNi高的电导率(5×105 S/m)协同耦合,在降低器件内阻的同时,可保持高的电压输出;另一方面,通过结合声子共振吸收和自由载流子吸收,该异质结展现出优异的吸光能力,其在长波红外波段的吸光率最高可达98%。结合这些优势,基于SrTiO3-x/CuNi的热电堆在探测人体辐射时展现出高灵敏度、低噪音、高稳定性等特征,其输出电压最高可达13 mV,相比商业热电堆有数量级的提升。通过进一步构建热电堆阵列,团队还实现了实时手势识别、非接触式数字/字母输入等功能。该研究为开发低功耗非接触人机交互系统提供了新思路,在人工智能技术、公共卫生安全领域具有广阔的实际应用价值。相关研究成果以“SrTiO3/CuNi Heterostructure-based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-machine Interaction”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、中国科学院创新交叉团队、大连化物所创新基金等项目的资助。
  • 大连化物所新型光热电探测器研究取得新进展
    p style=" text-align: justify "   近日,中国科学院大连化学物理研究所研究员姜鹏、中科院院士包信和团队在新型光热电探测器开发研究中取得新进展,相关成果发表在《自然-通讯》(Nature Communications)上。 /p p style=" text-align: justify "   光热电探测器是基于光热转换和热电转换两个基本能量转换过程的一种探测器。当光照射在热电材料的一端时,光能经过光热转换首先转化为热能,从而在热电材料两端建立温差(ΔT)。在温差的驱动下,载流子会向冷端扩散(即热电转换中的Seebeck效应),进而在材料两端建立电势差。光热电探测器具有自供电、非制冷、响应波长范围宽等优点,在光探测、红外热成像、温度监测等领域具有重要的应用前景。 /p p style=" text-align: justify "   光热电探测器的响应度正比于材料的Seebeck系数(S)和材料两端的ΔT。传统光热电探测器采用的是Seebeck系数较低(通常小于200μV/K)的传统热电材料,例如Bi2Te3、Sb2Te3等,为了提高响应度,通常需采用微加工工艺来构造阵列结构,这显著增加了制备工艺的复杂性,提高了产品成本。该研究团队突破传统热电材料体系的限制,采用了具有较高室温Seebeck系数(约1000μV/K)的钛酸锶(SrTiO3),同时借助SrTiO3在长波红外大气窗口(8~14μm)的声子吸收来增强光热转换效率。结合这两个优势,单个SrTiO3光热电元件在10μm波长附近的响应度可达1.2V/W。进一步研究表明,SrTiO3光热电探测器的响应波长可从深紫外延伸至远红外,可承受光功率密度可以达到103W/cm2。 /p p style=" text-align: justify "   该研究为开发新型高性能光热电探测器提供了全新的思路。另外,相比传统光热电探测器,SrTiO3光热电探测器价格便宜,环境友好,耐高温,器件性能优异且制备工艺简单,意味着SrTiO3光热电探测器具有广阔的实际应用价值。 /p p style=" text-align: justify "   以上研究工作得到国家重点研发计划、大连化物所创新基金等的资助。 /p p style=" text-align: center " img title=" W020190116663872266104.jpg" alt=" W020190116663872266104.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/681b15ba-eeb0-4d8f-94dc-0caddc8613a8.jpg" / /p p style=" text-align: center " 大连化物所新型光热电探测器研究取得新进展 /p p 附件: /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" 10.1038@s41467-018-07860-0.pdf" href=" https://img1.17img.cn/17img/files/201901/attachment/727fe75d-5c96-42a6-b085-a04d5b9bff55.pdf" target=" _blank" textvalue=" Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector" Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector /a /p p style=" text-align: justify " & nbsp /p p /p
  • SCD推出世界首款基于事件的短波红外探测器
    据麦姆斯咨询报道,以色列非制冷红外探测器和高功率激光二极管制造商Semi Conductor Devices(SCD),近期推出了一种基于事件(event-based)的新型短波红外(SWIR)探测器Swift-El。Swift-El是一款尺寸、重量、功耗(SWaP)极低且成本低廉的VGA格式10 μm像素间距短波红外探测器。据SCD称,Swift-El是世界首款集成基于事件成像功能的短波红外探测器,使其成为国防和工业领域的“革命性”补充。其先进的焦平面阵列(FPA)探测能力,使战术部队能够探测多个激光源、激光点、敌方火力指示(HFI)等。Swift-El具有的读出集成电路(ROIC)成像器技术,使其可在一个传感器中提供两个并行视频通道:一个标准成像短波红外视频通道和一个极高帧事件成像通道。Swift-El提供支持白天和弱光场景的短波红外成像,可实现全天候态势感知、更好的大气穿透能力,以及为战术级应用提供的低成本短波红外图像。此外,其基于事件的成像通道提供了多种先进的功能,如激光事件点检测、多激光点LST功能和基于事件的短波红外成像等,扩大了目标检测和分类的范围。Swift-El还为生产线分拣机、智慧农业等领域的机器视觉应用开辟了新可能,这些应用需要对先进短波红外图像进行分析以实现自动机器决策。Swift-El能够实现超过1200 Hz的全帧率,这对机器视觉和机器AI算法至关重要。Swift-El探测器的分辨率为640 x 512、像素间距10μm,由该公司位于以色列的晶圆厂生产,目前主要面向国防和工业应用,计划于2024年量产。SCD业务发展与营销副总裁Shai Fishbeing表示:“我们非常注重规模经济,以提高产能和良率,我们拥有世界上最大的热像仪制造厂。”
  • SCD推出世界首款基于事件的短波红外探测器
    据麦姆斯咨询报道,以色列非制冷红外探测器和高功率激光二极管制造商Semi Conductor Devices(SCD),近期推出了一种基于事件(event-based)的新型短波红外(SWIR)探测器Swift-El。据SCD称,Swift-El是世界首款集成基于事件成像功能的短波红外探测器,使其成为国防和工业领域的“革命性”补充。Swift-El是一款尺寸、重量、功耗(SWaP)极低且成本低廉的VGA格式10 μm像素间距短波红外探测器。其先进的焦平面阵列(FPA)探测能力,使战术部队能够探测多个激光源、激光点、敌方火力指示(HFI)等。Swift-El具有的读出集成电路(ROIC)成像器技术,使其可在一个传感器中提供两个并行视频通道:一个标准成像短波红外视频通道和一个极高帧事件成像通道。Swift-El提供支持白天和弱光场景的短波红外成像,可实现全天候态势感知、更好的大气穿透能力,以及为战术级应用提供的低成本短波红外图像。此外,其基于事件的成像通道提供了多种先进的功能,如激光事件点检测、多激光点LST功能和基于事件的短波红外成像等,扩大了目标检测和分类的范围。Swift-El还为生产线分拣机、智慧农业等领域的机器视觉应用开辟了新可能,这些应用需要对先进短波红外图像进行分析以实现自动机器决策。Swift-El能够实现超过1200 Hz的全帧率,这对机器视觉和机器AI算法至关重要。Swift-El探测器的分辨率为640×512、像素间距10μm,由该公司位于以色列的晶圆厂生产,目前主要面向国防和工业应用,计划于2024年量产。SCD业务发展与营销副总裁Shai Fishbeing表示:“我们非常注重规模经济,以提高产能和良率,我们拥有世界上最大的热像仪制造厂。”
  • Henry H. Radamson院士团队在红外探测器方面取得多项重要进展
    01 研究背景随着红外成像技术的不断发展,市场对红外探测器的灵敏度、红外成像的清晰度要求越来越高。由于氧化钒(VOx)探测器的灵敏度要高于非晶硅,目前已成为非制冷探测器领域的主流路线,氧化钒探测器占据非制冷探测器的比例近七成,部分氧化钒探测器甚至表现出了接近制冷型红外探测器的优异性能。缺点是它不兼容标准的 CMOS 工艺生产线,需要有单独的CMOS工艺生产线。国内外多数企业选择氧化钒技术路线。相比于非晶硅和氧化钒等热红外探测器,工作于短波红外波段的探测器具有极强的天气适应性,穿透雾、霾、烟尘的能力更强,识别度更高,目标细节表达更清晰,有效探测距离更长。同时,短波红外成像技术具有在湿热天气下仍表现良好等优势。常见的铟镓砷(InGaAs)、硫化铅(PbS)和碲镉汞(MCT)等短波红外材料存在有毒(砷化物摄入过量会导致中毒,引起贫血、肠胃炎、肺炎肝炎等疾病;铅中毒会严重影响人体的神经系统、心血管系统、骨骼系统、生殖系统和免疫系统等;汞中毒会导致人体肾脏损害、皮肤损害、神经系统障碍、肌肉震颤、肝肾功能不全等)、大面积污染环境、不兼容标准的CMOS制造工艺、良率低、无法大规模量产、不宜进入消费电子领域等劣势,限制了短波红外成像技术的应用场景。在此背景下,研究院首席科学家、光电集成电路研发中心主任Henry教授长期致力于无毒且环保、大面积均匀性良好、高度兼容CMOS工艺生产线、可大批量生产的红外成像技术,相关技术有望逐渐取代现有红外成像技术的军用市场,并将创造红外成像技术在民用领域的新市场(特别是短波红外成像技术),比如汽车辅助驾驶系统、工业检测、医疗诊断、消费电子、智能安防、森林防火和商业航天等应用,对促进国民经济健康发展具有重大的科学价值和现实意义。02 研究进展近期,Henry教授团队在大尺寸硅衬底上异质外延了高质量的SiGe/Si和GeSi/Ge多量子阱传感材料,并采用标准的CMOS制造工艺制备了PIP和PIN两种结构的量子阱红外探测器。结果表明SiGe/Si和GeSi/Ge多量子阱传感材料在长波红外波段展现出了优异的电阻温度系数(如图1所示),超过了商用的氧化钒(VOx)和非晶硅(a-Si)长波红外探测器。同时,GeSi/Ge多量子阱探测器在短波红外波段的光电响应优于Ge半导体材料,它是非常重要的短波红外光电传感材料。相关结果分别以“A SiGe/Si Nanostructure with Graphene Absorbent for Long Wavelength Infrared Detection”和“High-performance GeSi/Ge multi-quantum wells photodetector on a Ge-buffered Si substrate”为题目发表于国际知名期刊ACS Applied Nano Materials和Optics Letters,两篇论文的第一作者均为Henry教授指导的联合培养博士生王贺,两篇论文的共同通讯作者均为研究院赵雪薇博士、中国科学技术大学胡芹研究员和研究院Henry教授。其中,硅基异质材料外延、探测器设计与制造、实验和表征分析方面均是在Henry教授及其团队成员的通力合作下完成。图1 不同温度下GeSi/Ge MQW探测器(直径为10 μm):(a)电流-电压特性曲线(b)TCR曲线此外,Henry教授团队创新性的在大尺寸的绝缘体上锗(GOI)晶圆上制备了谐振腔增强型GOI短波红外光电探测器,证明了谐振腔结构有效的提升了GOI短波红外光电探测器在1550nm波段的光电响应,可与商用的InGaAs短波红外光电探测器相媲美,被认为是颠覆InGaAs短波红外成像技术的重要技术方案(如图2所示)。相关结果以“High-Performance Ge PIN Photodiodes on a 200 mm Insulator with a Resonant Cavity Structure and Monolayer Graphene Absorber for SWIR Detection”为题目发表于国际知名期刊ACS Applied Nano Materials,论文的第一作者为Henry教授指导的博士生余嘉晗,共同通讯作者为研究院赵雪薇博士、研究院苗渊浩副研究员和研究院Henry教授。图2 谐振腔增强型GOI短波红外光电探测器的光响应谱(器件直径为100 μm)综上,Henry教授团队近期开发了多类型兼容CMOS工艺的红外探测器,系统地研究了SiGe/Si多量子阱材料、GeSi/Ge多量子阱材料和GOI谐振腔结构对红外探测器的作用机理,红外探测器的响应度、暗电流、电阻温度系数及量子效率等关键性能指标均处于国际领先水平。此前,Henry教授团队在人民日报展示了应变GOI短波红外成像芯片的高清晰成像效果,实现了廉价且高性能的短波红外成像技术的范式创新,突破了现有技术在民用消费领域的新市场,具有非常重要战略意义与现实价值。迄今为止,Henry教授团队围绕红外成像晶圆、红外探测器结构与制造工艺、红外成像芯片以及芯片集成方法等方面进行了全方位的专利布局,旨在形成完善的专利池。03 Henry H. Radamson院士简介Henry教授,“中国政府友谊奖”获得者,“广东省友谊奖”获得者,欧洲科学院院士,国际知名的纳米光子学、电子学和半导体光电材料研究领域专家,欧洲材料研究协会(E-MRS)执行主席,Springer-Nature期刊编辑,Fundamental Research期刊编委,在国际会议和重要学术期刊上发表了250余篇高水平论文。2023年,Henry教授撰写了名为《Analytical methods and instruments for micro-and nanomaterials》的英文书籍(研究院为第一单位),这本书详细介绍了用于表征纳米结构材料的分析仪器,提供了评估材料质量、缺陷、表面和界面状态、元素分布、应变、晶格畸变以及电光特性的方法。广东省人民政府给Henry教授颁发了2022年度“广东省友谊奖”,感谢Henry教授对促进广东省经济社会发展和对外交流合作做出的重要贡献。Henry教授经广东省人民政府推荐,荣获2023年度中国政府友谊奖,国务院总理李强于2024年2月4日下午在人民大会堂亲切会见了在华工作的外国专家代表,Henry教授作为获奖者受邀参加了座谈。
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and BetterDetectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 投资7000万元 国内首个光电探测器研发平台开建
    航展期间记者获悉,中航工业航电系统公司与电子科技大学将共同投资7000万元,联合建设“光电探测集成器件及应用实验室”,建设国内第一个全状态光电探测器研发平台。   根据协议,中航工业洛阳电光设备研究所以3500万元现金投资,建设非制冷红外探测器封装测试线,与电子科技大学已建成的6英寸MEMS加工线合并。这将成为国内第一个集MEMS设计、MEMS加工、器件封装与测试的全状态光电探测器研发平台。该平台将具备年产3000只非制冷红外探测器的生产能力,通过10-15年的努力,将打造成一个年经营规模100亿元,国际一流的光电探测器供应商。   据了解,光电探测器是利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。   中国航空工业集团公司副总经理张新国表示,光电探测器的研发、生产是光电产业核心价值环节,本次合作将从根本上打破国外公司的产业垄断,对加速我国光电产业核心器件的自主创新进程有着重要战略意义 通过校企创新,将全面实现我国光电产业的产业链延伸与价值链延伸。
  • 投资7000万元 国内首个光电探测器研发平台有望建成
    记者获悉,中航工业航电系统公司与电子科技大学将共同投资7000万元,联合建设“光电探测集成器件及应用实验室”,建设国内第一个全状态光电探测器研发平台。   根据协议,中航工业洛阳电光设备研究所以3500万元现金投资,建设非制冷红外探测器封装测试线,与电子科技大学已建成的6英寸MEMS加工线合并。这将成为国内第一个集MEMS设计、MEMS加工、器件封装与测试的全状态光电探测器研发平台。该平台将具备年产3000只非制冷红外探测器的生产能力,通过10-15年的努力,将打造成一个年经营规模100亿元,国际一流的光电探测器供应商。   据了解,光电探测器是利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器在军事和国民经济的各个领域有广泛用途。   中国航空工业集团公司副总经理张新国表示,光电探测器的研发、生产是光电产业核心价值环节,本次合作将从根本上打破国外公司的产业垄断,对加速我国光电产业核心器件的自主创新进程有着重要战略意义 通过校企创新,将全面实现我国光电产业的产业链延伸与价值链延伸。
  • VOCs及甲烷泄漏检测红外热成像仪(OGI)及探测器工程技术中心在焜腾红外揭牌成立
    近日,VOCs及甲烷泄漏检测红外热成像仪(OGI)及探测器工程技术中心(以下简称“技术中心”)在嘉兴经济技术开发区科创标杆企业——浙江焜腾红外技术股份有限公司(以下简称“焜腾红外”)正式挂牌成立,技术中心揭牌仪式在嘉兴长三角高层次人才创新园隆重举行。该技术中心专门设在浙江焜腾红外技术股份有限公司企业内,利用焜腾红外的技术平台进行技术研发和创新,基于焜腾红外的核心芯片技术,探索新的有毒有害及温室气体排放监测的技术监测手段。同时,焜腾红外董事长詹健龙先生担任该技术中心主任。揭牌仪式上,中国石油化工技术装备专业委员会理事、专委会秘书长丁武先生与浙江焜腾红外技术股份有限公司董事长总经理詹健龙共同为技术中心揭牌。技术中心揭牌该技术中心设在焜腾红外具有深远的意义,焜腾红外将通过积极创新和实践,与各行业共同推进并提高我国的VOCs及甲烷泄漏探测技术在环保和工业领域HSE(健康、安全和环境)中的应用创新发展,并拓展VOCs及甲烷泄漏探测技术在电力、煤矿、天然气储运、农业等各个行业的应用,为全面提升新质生产力、为国家双碳战略作出贡献。下一步,焜腾红外将进一步勇于创新,大胆试点,联合产学研各个领域的专家学者一起合作、一起探讨并实践这一新技术在各行各业中的应用,用科学创新提升运营管理水平。焜腾红外董事长詹健龙发表主旨演讲揭牌仪式上,浙江焜腾红外技术股份有限公司董事长詹健龙先生为广大来宾献上了主题为【制冷红外热成像芯片技术在石油石化行业VOCs及甲烷泄漏监测中的应用】的精彩主旨演讲。特邀嘉宾中国工业环保促进会副秘书长兼化工委员会主任李小平先生、华东理工大学资源与环境工程学院党委书记修光利教授、中石化(大连)石油化工研究院有限公司环保所副所长陈中涛先生等专家学者也分别围绕“双碳”背景下VOCs污染防治新要求、挥发性有机物监管政策进展和监测检测技术发展、VOCs及异味无组织排放监控、预警与溯源等主题进行了精彩的发言。目前,焜腾红外自主研发和生产的制冷型中波、长波气体泄漏探测器可有效监测到一氧化碳、二氧化碳、甲烷、乙烯、氨气、六氟化硫等400多种VOCs气体。焜腾红外自主研发生产的中波标准款(550 g)、小型款(350 g)、微型款(260 g)等不同规格的制冷红外气体泄漏探测器,波段在3.2-3.5 μm、4.2-4.4 μm、4.5-4.7 μm,像元间距为320*256(30 μm)640*512(15 μm),NETD≤15 mk@25℃;制冷型长波标准款及小型款红外热成像气体泄漏检测仪,波段在10.3-10.7 μm和7-10.7 μm,像元间距为320*256(30 μm)640*512(15 μm),NETD达25 mk@25℃;中波、长波气体泄漏探测器均采用高端制冷型高工作温度(HOT)二类超晶格(T2SL)红外探测器,以图像形式快速发现甲烷、一氧化氮、二氧化硫、乙烯、六氟化硫、氨气等气体的泄漏,适用于开放空间的泄漏检测,能远距离、大范围快速筛查电力、石化、化工生产储运装置的泄漏,并能精准定位泄漏或排放源头,极大提升泄漏检测的效率,具有视频录制、拍照和语音录制功能,便于监督执法现场取证。焜腾红外的气体泄漏检测热像仪、气云成像遥测仪、在线式VOCs红外气体泄漏可视化监测系统等系列产品均已上线,探测终端内采用高灵敏度高工作温度T2SL中波制冷红外焦平面探测器,通过有线网络可实时观测VOCs气体泄漏状态的双光图像,系统适用于工业领域VOCs气体泄漏的实时在线检测,例如炼油厂、海上油气开采平台、天然气存储运输场所、化工化工业、生物气体厂、发电站、农业等。焜腾红外的机载式VOCs气体泄漏可视化巡检系统,搭载了先进的自主量产制造的小型化高工作温度T2SL探测器,可对甲烷等400多种挥发性有机物VOCs的泄漏进行检测,快速实时捕捉到VOCs类气体的泄漏。红外热成像仪(OGI)及探测器在各行各业的广泛应用另据悉,7月31日国新办举行的新闻发布会上,财政部副部长王东伟表示:随着我国经济转向高质量发展阶段,亟需改革环境保护税,将挥发性有机物(VOCs)纳入征收范围。这一改革将进一步促进全社会、各行业对于VOCs污染防治的共同关注。焜腾红外紧跟国家政策导向和社会发展趋势,本次技术中心成立后,焜腾红外将充分用好这个技术平台,广泛联合产学研和应用领域各路专家学者,共同推进国产化有毒有害及温室气体排放监测手段和解决方案,进一步促进VOCs及甲烷泄漏检测红外热成像技术的研发、探讨与应用,提升红外热成像技术与探测器工程技术的研发生产能力与综合应用实力,为国家双碳战略助力,为各个行业的安全生产和生态环境保护事业做出不懈的贡献!焜腾红外是国内仅有的几家集生产与研发制冷型红外热成像芯片、探测器组件及激光芯片于一体的国家高新技术企业、国家级专精特新"小巨人"企业,始终坚持立足自主研发制冷型红外芯片技术,聚焦我国在红外芯片核心器件领域的"卡脖子"问题,突破核心关键技术,专注于红外热成像技术在VOCs工业废气治理领域的应用。为实现高端进口装备国产替代,振兴民族工业和能源行业绿色低碳发展作出了新的贡献。焜腾红外现已完全掌握高工作温度(HOT)制冷型二类超晶格(T2SL)光学气体成像红外探测器这一核心技术并真正实现量产。该技术通过了浙江科技评估和成果转化中心的科技成果鉴定:攻克了T2SL材料外延生长、器件结构设计、芯片制备工艺及探测器规模化工艺等方面“卡脖子”关键技术,在Ⅱ类超晶格材料结构的优化设计、器件制备、高真空封装处于国内领先水平,其中120K高温工作制冷探测器技术属国内首创,填补了国内空白。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制