当前位置: 仪器信息网 > 行业主题 > >

大小鼠异氟烷麻醉机

仪器信息网大小鼠异氟烷麻醉机专题为您提供2024年最新大小鼠异氟烷麻醉机价格报价、厂家品牌的相关信息, 包括大小鼠异氟烷麻醉机参数、型号等,不管是国产,还是进口品牌的大小鼠异氟烷麻醉机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大小鼠异氟烷麻醉机相关的耗材配件、试剂标物,还有大小鼠异氟烷麻醉机相关的最新资讯、资料,以及大小鼠异氟烷麻醉机相关的解决方案。

大小鼠异氟烷麻醉机相关的论坛

  • 【分享】【生活试剂】麻醉剂

    【分享】【生活试剂】麻醉剂

    [color=#DC143C]麻醉剂[/color][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911112056_183884_1610969_3.jpg[/img][color=#DC143C]【一、麻醉剂定义】[/color]  麻醉是指用药物或非药物方法使机体或机体一部分暂时失去感觉,以达到无痛的目的,多用于手术或某些疾病的治疗。[color=#00008B]古代麻醉剂[/color]  麻醉剂是中国古代外科成就之一。早在距今2000年之前,中国医学中已经有麻醉药和醒药的实际应用了。《列子汤问篇》中记述了扁鹊为公扈和齐婴治病,“扁鹊遂饮二人毒酒,迷死三日,剖胸探心,易而置之;投以神药,既悟如初……。”用“毒酒”“迷死”病人施以手术再用“神药”催醒的故事。   东汉时期,即公元2世纪,我国古代著名医学家华佗发明了“麻沸散”,作为外科手术时的麻醉剂。据《后汉书》记载,华佗发明了麻沸散,“若疾发结于内,针药所不能及者,乃令先以酒服麻沸散,既醉无所觉,因刳破腹背,抽割积聚。若在肠胃,则断截湔洗,除去疾秽,既而缝合,傅以神膏,四五日创愈,一月之间皆平复。”这段关于割除肿瘤或肠胃吻合手术的描述与现代外科手术的情景惊人地一致,无怪华佗一直被尊为世界上第一个使用麻醉药进行胸腔手术的人。中药麻醉剂“麻沸散”问世,对外科学发展起了极大的推动作用,对后世的影响是相当大的。华佗发明和使用麻醉剂,比西方医学家使用麻醉剂进行手术要早1600年左右。因此说,华佗不仅是中国第一个,也是世界上第一个麻醉剂的研制和使用者。遗憾的是华佗的著作及麻沸散的配方均已失传。  西医用笑气、乙醚、氯仿等化学麻醉剂进行外科手术仅有150年左右的历史,然而在中世纪,欧洲也在秘密使用类似麻沸散或蒙汗药一类的药剂。美国人拉威尔(Lawall)在1926年出版了《世界药学史》,他认为中古时代阿拉伯人所用的一种麻醉剂,可能是中国传去的,因为中国名医华伦擅长此术,他还尊称华伦为“中国的希波克利特”(Hippocrates,公元前5世纪的希腊医药之父)。  在这里,我们可以从西方的笔记和小说中追述一下麻沸散西传的蛛丝马迹。  1298年意大利人马可波罗在他的游记中记述了阿拉伯国家关于“山老”阿拉亭的传说。“山老”为了训练刺客,用一种麻药酒将青年人麻醉,送到“极乐国”中去享乐,过一段时候再麻醉了送回来训练《马可波罗游记》第一卷,第二十三、二十四章),这种麻药酒是否由中国传去虽然没有明证,但这种做法与《聊斋志异》中的“天宫”中的情节极其相似。  较马可波罗略晚一些的卜伽丘在名著《十日谈》中曾讲到一个修道院长从莱望的王公那儿得到一种药粉,据说就是“山老”用的药粉。依照用量多少,可以随意让服药的人睡的时间长些或短些,睡的像死去无二《十日谈》第三天,故事第八)。在另一个故事中则讲到一个名叫马才奥台柱蒙太的医生,提炼了一种麻醉药,让病人喝了就可以要他睡多少时候都成,以便顺利开刀(《十日谈》第四天,故事第十)。这说明麻醉药已从阿拉伯国家传到欧洲。  较卜伽丘又晚一些的意大利作家斑德洛在16世纪中写出短篇小说集,在第二卷故事九中叙述了罗密欧与朱丽叶的爱情悲剧,其中教士给朱丽叶服了药粉而假死。后来英国莎士比亚据此故事写出了名剧《罗密欧与朱丽叶》。从这些材料中可以进一步看到口服麻醉剂西传的蛛丝马迹。  实际上,这种口服麻醉剂在欧洲并未广泛流传和应用。长期以来,欧洲在拔牙、截肢或医疗战伤时大多是捆住病人或用棍击头部将病人打昏后硬做。只是150年前才创立了化学麻醉法开拓了西医外科,后来又发展为注射用的麻醉针剂,并在世界广泛传播。  麻醉汤剂是中国的独创,用量多少可以控制麻醉的深度和时间,服过量会出现假死现象,这也曾为坏人利用,南宋周密在《癸辛杂识续集》中曾指出:“或云,今之贪官污吏,脏过盈溢,被人所讼,则服百日丹者,莫非用此?”贪官污吏用口服麻醉剂搞假死以逃应得的惩罚,这应该是麻醉剂的又一种不正当用途,但也说明中医麻醉剂的药性已被更多人所掌握。

  • 【分享】美使用动物用麻醉剂处决死囚 只因常用药剂缺货

    【分享】美使用动物用麻醉剂处决死囚 只因常用药剂缺货

    http://ng1.17img.cn/bbsfiles/images/2010/12/201012190054_268140_2193245_3.jpg 被使用动物用安乐死药剂处决的约翰-戴维-迪蒂 北京时间12月18日消息,日前,由于司法单位惯用的死刑注射剂硫喷妥纳缺货,美国俄克拉荷马州于当地时间12月16日,首次使用动物用安乐死药剂戊巴比妥处决了一名死刑囚犯。  据美国媒体报道,硫喷妥纳(sodium thiopental)是美国常用的死刑执行用药,是一种快速见效的巴比妥盐类麻醉药,能够使被注射者迅速丧失意识。但由于近期美国严重缺乏注射死刑所需的麻醉剂硫喷妥钠,且此麻药的美国生产商也已无库存,要等到明年开始新的生产,这使得许多州监狱或者暂停死刑,或者从国外进口,或者找替代品。  俄克拉荷马州在得到上级法院批准的情况下决定采用替代药剂戊巴比妥(pentobarbital)来进行这场处决。据了解,这种药也属于巴比妥盐类麻醉药,经常用于动物安乐死。被处决囚犯约翰·戴维·迪蒂的律师曾以硫喷妥胺没有在人类身上使用过、不够安全为由要求暂缓执刑。但俄克拉荷马州法官驳回了这一请求,并在上月裁决允许使用替代药剂戊巴比妥。  俄克拉荷马州劳改局称,死刑于当地时间18:12开始,Duty18:18死亡。美国死刑资讯中心表示,Duty是首位使用动物麻醉剂的罪犯。他在1978年因强奸、抢劫和蓄意谋杀被判处三个终身监禁,之后又在服刑期间杀害狱友被处以死刑。  此举引来了各方的争议和担忧。加州大学伯克利分校一名教授指出使用新药不能确定效果,也不能确定执行人员是否能够正确使用。罪犯律师表示他的委托人像是一只用来测试新药的天竺鼠。死刑专家也指出戊巴比妥没有经过常规的检验,或许不能让罪犯安全地失去意识。

  • 蜜蜂是天然“麻醉师”

    新华社巴黎11月15日电 蜜蜂不仅会用尾刺蜇人,还会咬人。欧洲研究人员新近发现,蜜蜂咬伤动物后,会向伤口分泌一种毒性很低的物质,对“受害者”具有天然麻醉作用。 希腊、塞浦路斯与法国研究人员日前在美国在线科学杂志《科学公共图书馆综合卷》上报告说,如果蜂巢有入侵者,蜜蜂将它们咬伤后,其下颌腺会向伤口处分泌一种名为2-庚酮的化合物,使入侵者瘫痪长达数分钟,便于将其驱逐出去。这种天然麻醉剂对某些小型捕食性动物与寄生虫特别有效,比如大蜡螟和狄氏瓦螨等。 研究人员以大蜡螟幼虫和老鼠坐骨神经标本为麻醉对象,比较2-庚酮与常用局部麻醉剂利多卡因的特点,发现二者的特性极为相似,作用原理也一样,都是通过阻断某些钠离子通道来达到麻醉效果,但前者的毒性更低。 研究人员认为,作为一种比传统麻醉剂毒性更低的天然物质,2-庚酮具有很高的使用价值,未来有望以2-庚酮生产供人类与动物使用的新型局部麻醉剂。(记者黄涵)

  • CO2果蝇麻醉仪优势特点

    [url=http://www.f-lab.cn/drosophila/dros-1.html][b]CO2果蝇麻醉仪[/b][/url],D[b]rosophila Anesthesia[/b]是精准,便利而安全地麻醉果蝇的二氧化碳果蝇麻醉仪器。[img=CO2果蝇麻醉仪]http://www.f-lab.cn/Upload/MINJ-DROS-1.jpg[/img][url=http://www.f-lab.cn/drosophila/dros-1.html][b]CO2果蝇麻醉仪[/b][/url]能提供一种电子踏板开关,精密控制输送适量的二氧化碳,使蝇保持睡眠状态。与连续流动系统相比,该[b]二氧化碳果蝇麻醉仪[/b]节省了大量的CO 2,减少了由于过度麻醉不慎杀死重要标本的可能性;在遗传学实验中间,比需要用户在场并手动操作阀门的系统更方便;综合考虑,也比使用有机溶剂作为麻醉剂更安全。

  • 【实验】有机实验之麻醉剂苯佐卡因的合成

    麻醉剂苯佐卡因的合成目的原理实验目的1.学习多步骤有机合成实验线路的选择和实验方法;2.学习掌握回流、过滤等操作技术。实验原理苯佐卡因(Benzocaine)是对氨基苯甲酸乙酯的俗称,可作为局部麻醉药物,以甲苯为原料可以有三种不同的合成路线制的苯佐卡因。第一条合成路线步骤多,产率较低;第二、三条战线则步骤较少,产率高。尤以第二条线路效果最佳,具有实验步骤少、操作方法、产率高的优点,也可利用前面一般合成中的产品(对硝基苯甲酸)作为原料,可节约药品。采用第二条路线,以对硝基苯甲酸为原料,通过先还原后酯化制得苯佐卡因,反应分为两步:第一步是还原反应HOOC-Ar-NO2 +Sn + HCl → HOOC-Ar-NH2HCl + SnCl4以对硝基苯甲酸为原料,锡粉为还原剂,在酸性介质中,苯环上的硝基还原成氨基,产物为对氨基苯甲酸。这是一个既含有羧基又含有氨基的两性化合物。故可通过调节反应液的酸碱性将产物分离出来。还原反应是在酸性介质中进行的,产物对氨基苯甲酸形成盐酸盐而溶于水中还原反应后锡生成四氯化锡也溶于水中,反应完毕加入浓氨水至碱性,四氯化锡沉淀可被滤去SnCl4 + 4NH3H2O → Sn(OH)4 + 4NH4Cl而对氨基苯甲酸在碱性条件下生成羧酸铵盐仍溶于水。然后再用冰乙酸中和过滤,而氨基苯甲酸固体析出。对氨基苯甲酸为两性物质,酸化或碱化时都必须小心控制酸碱用量,否则严重影响产量与质量,有时甚至生成钠盐而得不到产物。第二步是酯化反应COOH-Ar-NH2 + C2H5OH + H2SO4 → C2H5OOC-Ar-NH2由于酯化反应有水生成,且为可逆反应,故使用无水乙醇和过量的硫酸。酯化产物与过量的硫酸形成盐溶于溶液中,反应完毕后加入碳酸钠中和即得苯佐卡因固体。仪器药品对硝基苯甲酸,锡粉,浓盐酸,浓氨水,冰乙酸;对氨基苯甲酸(自制),无水乙醇,浓硫酸,硫酸钠;100ml圆底烧瓶,球形冷凝管,250ml烧杯,布氏漏斗,吸滤瓶,培养皿。过程步骤(1) 还原反应称取4g(0.02mol)对硝基苯甲酸,9g(0.08mol)锡粉加入到100ml圆底烧瓶中,装上回流冷凝管,从冷凝管上口分批加入20ml(0.25moL)浓盐酸,边加边振荡反应瓶,反应立即开始(如有必要可用大火加热至反应发生)。必要时可再微热片刻以保持反应正常进行,反应液中锡粉逐渐减少。当反应接近终点时(约20~30min),反应液呈透明状,稍冷,将反应液倾斜倒入250ml烧杯中,用少量水洗涤留存的锡块固体。反应液冷至室温,慢慢的滴加浓氨水,边滴加边搅拌,使溶液刚成碱性。过滤除去析出的氢氧化锡沉淀,用少许水洗涤沉淀,合并滤液和洗液,注意总体积不要超过55ml。若体积超过55ml,可在水浴上浓缩。向滤液中小心地滴加冰乙酸,有白色晶体析出。再滴加少量冰乙酸,有更多的固体析出,用蓝色石试纸检验到呈酸性为止。在冷浴中冷却,过滤得白色固体,晒干后称重,产量约为2g。(2) 酯化反应将自制的2g(0.5mol)对氨基苯甲酸放入100ml圆底烧瓶中,加入20ml(0.34mol)无水乙醇和2.5(0.045mol)浓硫酸(乙醇和浓硫酸的用量可根据每人得到的对氨基苯甲酸的多少而作相应调整)。将混合物充分摇匀,投入沸石,水浴上加热回流一小时,反应液呈无色透明状。趁热将反应液倒入盛有85ml水的250ml烧杯中。溶液稍冷后,慢慢加入碳酸钠固体粉末,边加边搅拌,使碳酸钠粉末充分熔解,当液面有少许白色沉淀出现时,慢慢加入10%碳酸钠溶液,将溶液pH值调至成中性,过滤得固体产品。用少量水洗涤固体,抽干,晾干后称量。产量1~2g。分析思考 1.如果判断还原反应已经结束?为什么?2.酯化反应为何先用固体碳酸钠中和,再用10%碳酸钠中和反应液?

  • 大鼠麻醉面罩

    [url=http://www.f-lab.cn/stereotaxis/gm-3.html][b]大鼠麻醉面罩GM-3[/b][/url]是与[b]麻醉蒸发器[/b]或大鼠立体定位仪器配套使用,用于对大鼠实施麻醉的[b]麻醉面罩。大鼠麻醉面罩GM-3特点[/b]*麻醉面罩可以轻松地安装在Narishige公司立体定位仪器SR-5M,SR-5R,SR-6M和SR-6R上*麻醉面罩有不会移动的三点夹持装置,可以夹鼻和确保牢固固定。紧凑的设计不会影响实验进程*如果你想要把麻醉面罩安装在头固定适配器或是旧型立体定向仪器这样的装置上,请向我们咨询[img=大鼠麻醉面罩]http://www.f-lab.cn/Upload/gm_3_.jpg[/img]大鼠麻醉面罩:[url]http://www.f-lab.cn/stereotaxis/gm-3.html[/url]

  • CO2果蝇麻醉喷枪

    [url=http://www.f-lab.cn/drosophila/blowgun.html][b]CO2果蝇麻醉喷枪[/b][/url]专业为[b]麻醉果蝇[/b]而设计的[b]果蝇麻醉枪[/b],它使得遗传学研究中的解剖立体显微镜下的果蝇分类更容易,更方便,成本效益更高!任何研究人员都能够轻松使用[b]CO2果蝇麻醉喷枪[/b]。用果蝇麻醉喷枪将蝇麻醉后,再放置在显微镜台或麻醉垫上即可。[img=CO2果蝇麻醉喷枪]http://www.f-lab.cn/Upload/MINJ-DROS-GUN.jpg[/img][b]CO2果蝇麻醉喷枪[/b]方便控制CO2流量,并且重量轻,符合人体工程学,使用起来非常直观。用户使用简单扳机,输出适量二氧化碳,保持蝇的睡眠状态。针尖的设计,方便针穿过棉塞(棉花,人造丝,或Flugs)或盖帽滑入蝇瓶,使麻醉变得容易。与连续流动系统相比,该喷枪将节省实验室的CO2成本,减少由于过度麻醉不慎杀死重要标本的可能性。比使用有机溶剂作为麻醉剂更安全。更多果蝇麻醉仪器:[url]http://www.f-lab.cn/drosophila.html[/url]

  • 【分享】麻醉往事!

    要开刀,必麻醉!今天这是再正常不过的事情,但150多年前,医学界对手术疼痛的控制却一筹莫展。19世纪40年代,美国波士顿的一群年轻牙医,开创性地为人类找到了止痛良方,全身麻醉自此出现。在对付疼痛这一恶魔时,人类走过太长的夜路。有趣的是,在麻醉发展的道路上,也写满了医学家的争名斗利。“疾病是死亡先锋,它引导你严肃思考并反省一生所为。人之一生充满悲伤苦痛,大多时候苦痛是短暂的,但也可能一直持续下去。”http://songshuhui.net/wp-includes/js/tinymce/plugins/wordpress/img/trans.gif很难想像,这段哲思妙语是说给要开刀的病人。十九世纪上半叶,英国圣托马斯医院手术室外,牧师要对每位即将走向手术台的病人进行如此一番布道式的疼痛宣教。彼时的外科教科书,很少谈论解除疼痛的方法,没人关心病人是否舒适。疼痛被认为是不可避免的宗教苦难。

  • 【讨论】给鱼吃麻醉药成“潜规则” 空运海鱼大多都喂药

    给人吃的麻醉药,竟然喂给鱼吃,让它们先晕倒,醒来后出现在市场上能够活蹦乱跳。11月2日,厦门渔业部门对饲喂人用药品的一家海钓场处以1万元罚款。据悉,这是厦门查获的首起“给鱼喂食麻醉药”案件。 玄机 牙齿麻醉药来喂鱼 今年8月初,厦门某海钓场的养殖池旁边,一个配药桶引起检查水产品质量安全的中国渔政厦门市支队注意。他们发现,工作人员正在配置药剂,配药桶内有2瓶人用药品丁香酚和不明成分的液体。 令人意外的是,该海钓场的鱼药仓库内,被发现存有大量类似的药品——— 丁香酚十盒、无任何标签的玻璃瓶液体五瓶。国家食品药品监管局网站的资料显示,丁香酚是一种麻醉用药,主要用于人类治疗牙齿疾病时所用。 为什么这些牙齿的麻醉用药,会出现在养鱼池旁?该海钓场的负责人坦言,这些麻醉药喂给鱼吃,让它们在称重、运输过程中不会挣扎,以减少伤亡。 爆料 空运海鱼大多都喂药 对于外行人来说是稀奇事,但对于渔业从业人员来说,喂食麻醉药已经是公开的“秘密”,一种潜规则。 “这太平常了,从北海空运过来的大鱼,基本都要喂麻醉药!”从事多年淡水鱼养殖和海鱼销售的老郑告诉导报记者,目前厦门市场销售的,如果有从北海那边诸如青岛、大连等地运来的大型海鱼,因价格较高为减少死亡,差不多都有被喂食麻醉药。 老郑说,这类鱼通常体形较大,在运输过程中活蹦乱跳地挣扎容易死,比如运老虎斑等大型海鱼时,加氧既费用高又不实际,所以业者为了减少损失,都会在水里撒上一定剂量的麻醉药,这样在空运过程中鱼就昏昏沉沉地“睡”过去了。到了目的地,药劲儿一过,又苏醒了。 部门 此类药品禁止使用 为何给鱼喂麻醉药会成为行业“潜规则”?导报记者多方求证了解到,由于缺乏检测标准和检测,致使这一现象默默地被业内接受。 集美大学水产学院副院长王艺磊证实,丁香酚作为一种麻醉剂,在做实验中经常使用,而鱼贩多数是将它撒在水里或者抹在鱼腮上,只要极微小的量,就能将鱼麻醉了。如果鱼贩掌握不好剂量,放多了鱼会被药死。 王艺磊认为,这种药是应用在牙齿治疗过程中的,药物本身对人并没有什么危害。 但是,导报记者了解到,对于鱼服用丁香酚这种神经麻醉产品后,会不会吸收,引发鱼的变异,并危害到食用者的健康,目前学界尚无定论,亦无检测标准。对此,渔政执法部门明确表示,严禁此类药品用来喂鱼。

  • 【求助】麻醉乙醚做为药,有有效期吗?

    [size=4] 近日看冬冬发的一帖子:[url=http://bbs.instrument.com.cn/shtml/20100604/2593481/]【一天一知识】怎样认识兽药有效期?有什么作用?[/url] [/size][size=4]中说到:[i]有些药品有使用期的规定,其含义与有效期不同。例如麻醉乙醚规定的使用期为2年,到期后应重新检验,符合质量要求才能使用。[/i] [b]土豆有疑问了[/b]:那是不是2年到后,检验合格继续使用,又过2年,检验合格再继续使用,这样只要检验合格,就可以无限期使用了???[/size]

  • 资料 实验动物的基本技术

    1.实验动物的抓取和固定小鼠性情较温顺,一般不会咬人,比较容易抓取固定。通常用右手提起小鼠尾巴将其放在鼠笼盖或其它粗糙表面上,在小鼠向前挣扎爬行时,用左手拇指和食指捏住其双耳及颈部皮肤,将小鼠置于左手掌心、无名指和小指夹其背部皮肤和尾部,即可将小鼠完全固定。在一些特殊的实验中,如进行尾静脉注射时,可使用特殊的固定装置进行固定,如尾静脉注射架或粗的玻璃试管。如要进行手术或心脏采血应先行麻醉再操作,如进行解剖实验则必须先行无痛处死后再进行。2.实验动物的麻醉方法麻醉(anesthesia)的基本任务是消除实验过程中所至的疼痛和不适感觉,保障实验动物的安全,使动物在实验中服从操作,确保实验顺利进行。(一)常用局部麻醉剂:普鲁卡因,此药毒性小,见效快,常用于局部浸润麻醉,用时配成0.5%~1%;利多卡因,此药见效快,组织穿透性好,常用1%~2%溶液作为大动物神经干阻滞麻醉,也可用0.25%~0.5%溶液作局部浸润麻醉。(二)常用全身麻醉剂:1. 乙醚 乙醚吸入法是最常用的麻醉方法,各种动物都可应用。其麻醉量和致死量相差大,所以其安全度大。但由于乙醚局部刺激作用大,可刺激上呼吸道粘液分泌增加;通过神经反射还可扰乱呼吸、血压和心脏的活动,并且容易引起窒息,在麻醉过程中要注意。但总起来说乙醚麻醉的优点多,如麻醉深度易于掌握,比较安全,而且麻醉后恢复比较快。其缺点是需要专人负责管理麻醉,在麻醉初期出现强烈的兴奋现象,对呼吸道又有较强的刺激作用,因此,需在麻醉前给予一定量的吗啡和阿托品(基础麻醉),通常在麻醉前20-30分钟,皮下注射盐酸或硫酸吗啡(每公斤体重5~10mg)及阿托品(每公斤体重0.1mg)。3.实验小鼠的给药方法在动物实验中,为了观察药物对机能功能、代谢及形态引起的变化,常需将药物注入动物体内。给药的途径和方法是多种多样的,可根据实验目的、实验动物种类和药物剂型等情况确定。  (一)给药方法1.注射给药(1)皮下注射给药皮下注射给药是将药液推入皮下结缔组织,经毛细血管、淋巴管吸收进入血液循环的过程。作皮下注射常选项背或大腿内侧的皮肤。操作时,常规消毒注射部位皮肤,然后将皮肤提起,注射针头取一钝角角度刺入皮下,把针头轻轻向左右摆动,易摆动则表示已刺入皮下,再轻轻抽吸,如无回血,可缓慢地将药物注入皮下。拔针时左手拇、食指捏住进针部位片刻,以防止药物外漏。注射量约为0.1-0.3ml/10g体重。(2)皮内注射给药是将药液注入皮肤的表皮河真皮之间,观察皮肤血管的通透性变化或皮内反应,接种、过敏实验等一般作皮内注射。先将注射部位的被毛剪掉,局部常规消毒,左手拇指和食指按住皮肤使之绷紧,在两指之间,用结核菌素注射器连接4.5针头穿刺,针头进入皮肤浅层,再向上挑起并梢刺入,将药液注入皮内。注射后皮肤出现一白色小皮丘,而皮肤上的毛孔极为明显。注射量为0.1ml/次。(3)肌肉注射给药小鼠体积小,肌肉少,很少采用肌肉注射。当给小鼠注射不溶于水而混悬于油或其他溶剂中的药物时,采用肌肉注射。操作时1人保定小鼠,另一人用左手抓住小鼠的1条后肢,右手拿注射器。将注射器与半腱肌呈90°角迅速插入1/4,注入药液.用药量不超过0.1ml/10g体重.

  • 转基因小鼠制备实验

    1、 选取7~8周龄雌性小鼠,阴道口封闭,作为供体,下午3:00左右,每只小鼠腹腔注射PMSG(10 IU)。2、 47~48小时后,每只小鼠腹腔注射HCG(0.8 IU),并与正常公鼠合笼;另取数只适龄母鼠(2月龄以上)作为受体,阴道口潮红,与结扎公鼠合笼。3、第二天上午9:00前观察供体、受体,有精栓者拿出备用。受体笼拿出作好隔离措施。4、10:30左右,断颈处死供体,手术取出整个输卵管,放入透明质酸酶~0.3mg/M2液中。显微镜下,用镊子撕开输卵管壶腹部,受精卵随同颗粒细胞即一同流出。5、仔细观察放在透明质酸酶M2液中的受精卵,当受精卵周围的颗粒细胞脱离时,将受精卵吸出,放入M2液中洗涤,最后放在M16液中放入5% CO2,37C0培养箱培养。6、在显微镜下观察,挑选细胞饱满,透明带清晰,雄原核清晰可见的受精卵待用。7、安装持卵针和注射针,使其末端平行于载物台,在凹玻片的中央滴入一滴M2液,覆盖石蜡油,移入待注射的受精卵。DNA在注射针中的气泡应在先前全部弹走。8、在高倍镜下,将注射针轻触持卵管,使DNA缓慢流出并控制其流量;反复吹吸受精卵,使其处于最佳位置,将注射针刺入受精卵的雄原核,直至看到原核膨大即退出。将注射过的和未注射过的受精卵上下分开放置,不致于混搅,注射完毕后,放入5% CO2,37C0培养箱培养。9、将受体麻醉,注射计量为1%戊巴比妥钠0.01ml/g,腹腔注射。手术取出卵巢连接输卵管,用脂肪镊固定,在显微镜下找到输卵管开口。吸取注射后经培养成活的受精卵,吸取方法是先吸一段较长的M2,吸一个气泡,然后吸取受精卵,尽量紧密排列,再吸一段液体,吸一个气泡,再吸一段液体,共四段液体三个气泡。除较长的那段液体,其余的液体大致1cm左右,气泡0.2cm左右。将移植管口插入输卵管口,轻轻将移植管内的液体吹入,看到输卵管壶腹部膨大并清晰地看到三个气泡,即移植成功。将卵巢连同输卵管放回腹腔,缝合肌肉和皮肤。10、受体每隔一个星期称体重一次,当第二次比第一次称重增加时,即可初步判断怀孕。手术后19~21天仔鼠分娩,待仔鼠3周后,剪耳、编号,剪尾,交分子组检测。(一般选取4-5周龄的雌鼠作为供体,此时的小鼠卵数较多,状态较好。用pms诱导卵细胞成熟,用hcg超排。)

  • 资料 小鼠养殖环境

    小白鼠俗称“小鼠”、尖嘴鼠,由于颜色纯白而得名。我国饲养小白鼠历史最早,据记载,公元307~1641年就有人捕获野生小鼠进行饲养,并作为古代僧侣们的祭物。据资料介绍,从18世纪开始,小鼠开始成为实验动物,有的也进行观赏饲养。一、生物学特性(一)分类学地位小白鼠是野生鼷鼠的变种,隶属于动物界,脊椎动物门,哺乳纲,啮齿目,鼠种。我国目前饲养最广泛的是1946年从印度某研究所引入到云南昆明饲养的品种,又名昆明种。50年代由昆明引到北京生物制品研究所,以后输送到全国各地饲养。(二)形态特生小白鼠经过人们长期选择,定向培育,已形成许多品种类型。一般人们把它分为普通常用小白鼠和满足特殊需要的特种小白鼠两种。特种小白鼠有高癌鼠、低癌鼠、糖尿病鼠及先天性肌肉萎缩病鼠等。有的将小白鼠根据不同杂交方法和获得遗传特性而划分为近交品系、突变品系、远交和杂交群等。1972年以前,国际上公认的小白鼠近交系已有250多个。各品种小白鼠形态特征略有差异,但基本上相差不多。普通小白鼠体长约8厘米,尾略短或略长于体长,面部尖实,嘴前部有长长的触毛,耳耸立呈半圆形,眼睛大,嘴尖,被毛有纯白色和白斑色。90日龄昆明种小白鼠,体长9~11.0厘米,一般雄鼠大于雌鼠,尾有四小白鼠经过人们无数代的定向选择,生活习性有了一定的改变,环境适应性较差。如果把它们放回到室外环境,往往会因缺乏竞争力而难以生存。在人工饲养条件下的小白鼠,胆小怕惊,温顺,较易捕捉。当它受惊时,尾巴挺直并猛力甩动。夜间比白天活跃,喜群居。白日常集群而卧,下午4~5点钟以后活动加强,尤其在晚上更加活跃。当人在晚上进入鼠舍,即可听到小鼠不停地活动与啃咬所发出的沙沙响声。小白鼠喜阴暗、安静的环境,对环境温度、湿度很敏感,经不起温度的骤变和过高的温度。夏季温度过高常影响种母鼠的受胎率和仔鼠生长发育。冬季室温过低,不仅会影响种鼠的生长繁殖,且易发生多种疾病。小白鼠最适宜的室温是18~22℃,相对湿度为50~60%时较理想。此外,小白鼠尚有在干燥角落营巢的习性。白化小白鼠怕强光,在比较强烈光照下,哺乳母鼠易发生神经紊乱,可能发生吃仔鼠的现象。受到噪音的刺激,也会吃仔鼠。雄鼠好斗,性成熟的雄鼠放在一起,常发生互斗咬伤。雄鼠具有分泌醋酸氨臭气的特征,是引起饲养室内特殊臭气的原因。小白鼠为杂食性动物,可供利用的饲料很多,但作为实验动物饲养,应针对不同类型的小白鼠和各个生长发育阶段来制定合理的日粮标准。健康小白鼠一般能活存18个月至20个月,最长的可活至二年半。但年老的小鼠常体弱毛稀,多死于各种疾病,尤以肿瘤为多。(一)饲养设施经过长期入工饲养的小白鼠,对环境的适应性差,不耐冷热,要求生活在清洁无尘,空气新鲜,温度在18~22℃,相对湿度50~60%,噪音85分贝以下,氨浓度20PPm.通风换气8~12次/小时的环境中。因此,它对饲养房舍的建筑、环境条件要求比较严格。目前,国外饲养实验小白鼠多采用全封闭式的饲养设施,室内温度。湿度、光照、通风全部自动控制。国内饲养条件,尽管因陋就简,也要满足小白鼠对生活环境的基本要求。此外,笼具是小白鼠的生活场所,也是从事饲养人员每天都得操作的用具,因而笼具的结构、质量、式样以及重量等,是否合乎科学饲养要求,这对动物的生长繁殖,改善工作人员的劳动条件和提高工作效率等,都是十分重要的。1.鼠舍饲养小白鼠的房舍不宜过大,以20~25平方米为宜。这样有利于鼠群的调整及房舍的消毒。如果是平房,每幢房舍之间应有一定的距离,至少不少于15米,这样既可保证周围环境的宽敞,又可较有效地控制疾病的传播。除饲养房舍之外,还应合理设计辅助设施。例清洁消毒室,饲料、笼具、垫料贮藏室以及工作人员的更衣室、消毒室等。2.鼠罐当前在国内使用的有白瓷罐。泥瓦罐和塑料罐3种,还包括配备相应的罐盖。白瓷罐外形呈桶状,上口直径22厘米,下底直径18厘米,罐高吸厘米。其优点是上口较大,空气流通,夏季小白鼠居住凉爽,因其不渗水,不易引起铁鼠架的腐蚀。缺点是冬季保温性能差,笨重不易操作。泥瓦罐外形呈鼓状,有二个耳把。上口直径16厘米,下底直径15厘米,中间直径18厘米,罐高17厘米。优点是冬季保温性能好,使用轻便,价格便宜。具有防潮、暗光、价廉以及减少疾病传播等优点,是我国饲养小白鼠的传统用具。缺点是易渗水,腐蚀铁架,长期使用时,鼠粪和鼠尿熏染的臭气大。经过洗刷煮沸消毒,其臭味仍不易除去,有的破损率较大,过于笨重。塑料罐外形呈桶状,上口直径23厘米,下底直径19厘米,罐高14厘米,罐口上缘有卷边,罐重约150克。原料为聚乙烯塑料。其优点是使用轻便,不吸水,耐磨损,便于洗刷消毒,易干燥,贮存方便,耐腐蚀,耐用,破损少,老化后仍可回收,劳动强度轻。各种罐盖的外形结构及其大小都是按照鼠罐上口边缘的外形大小用铁丝编制而成。盖面上有填装饲料及饮水瓶的同斗,其孔大小,以逃不出仔鼠为原则。3.鼠盒小型盒长37厘米,宽26厘米,高17厘米。鼠盒可用于一公多母配种生产使用,也可用作待发小白鼠或饲养试验用鼠。利用鼠盒饲养小白鼠,其活动面积较大,但铁皮制作的盒底,容易被鼠的粪尿腐蚀。鼠盒盖的制法与要求同鼠罐。4.鼠架鼠架有木制及铁制两种。现在多为铁制的,材料多选用三角铁和薄铁皮(或塑料板)焊接而成。鼠架的大小根据条件、饲养数量等情况而定。一般的尺寸为高171厘米,长160厘米,宽50厘米,连同架盖分为五层。除顶盖外,每层鼠架可容纳鼠罐12个,每个鼠架分4层,共容纳鼠罐48个。目前国外已推广使用能够拆开的活动鼠架,用不锈钢制成,有很好的防腐性能。5.饮水器饮水器是饲养小白鼠的必备用具。常用的有玻璃瓶、塑料瓶和乳头式自动饮水器3种。其中以玻璃瓶使用最为广泛,一般采用容量250毫升和5吗毫升两种型号的玻璃瓶,瓶口使用生理盐水瓶上的瓶塞,从中间打孔插入铝管或玻璃管,其内径为0.5厘米,外径0.7厘米。6.铺垫物垫料,能吸附水分、动物的排泄物,维持笼内和动物本身的清洁卫生,垫料应不含挥发性、刺激性物质,无毒性,不会干扰动物实验。垫料的原料常用锯末、木刨花、木屑、碎玉米芯等。垫料的原材料常会携带各种微生物和寄生虫,使用前要经加工处理、消毒灭菌、除虫等。欧洲国家多用白杨木屑做垫料,而美国多用碎玉米芯,考虑到了材料的毒性因素和取材的难易。目前我国实验动物垫料尚未标准化,多采用混合木屑,其成分和毒性都不确定,可喜的是,现已开展了相关的研究,莎适合国情的标准化垫料,指日可待。

  • 求购一台沸点测定仪(测氢氟醚)

    [font=&]求购沸点测定仪,能测氢氟醚的请联系我氢氟醚(HFE)是一种分子中含有氧原子等杂原子的醚类化合物的总称。其臭氧消化值(ODP)为零,全球温室潜值(GWP)低,且大气停留时间很短,被认为是一种新型的理想的氯氟烃(CFCs)替代品。除优良的环境性质外,氢氟醚无腐蚀性、不燃、不产生烟尘等特点。氢氟醚应用领域广泛,可作为麻醉剂、发泡剂、润滑油、制冷剂、溶剂以及清洗剂使用。[/font]

  • 微操作立体定位仪优势

    [url=http://www.f-lab.cn/stereotaxis/sr-9m.html]微操作[b]立体定位仪[/b]SR-9M[/url]是专门为小鼠慢性实验设计的[b]小鼠定位仪器[/b],它可以在小鼠非麻醉状态下在相同位置重复固定,使得小鼠慢性实验或急性实验可以在不造成动物损害情况下顺利地完成。微操作[b]立体定位仪[/b]SR-9M可用于视觉和听觉实验。头部固定器可以从基板移出,因此可以放置在显微镜下。提供一个AP框架槽,可以连接许多不同类型的配件比如显微SM-15 L / R。通过将室框架连接到小鼠头部,在非麻醉状态在同一位置重复定位成为了可能。一旦室框架被固定在头上,不需要麻醉,无需使用口、鼻夹或耳棒小鼠可以被立体定位固定而,使SR-9M可以用于视觉和听觉实验。 [img=微操作立体定位仪]http://www.f-lab.cn/Upload/sr-9m_.jpg[/img]微操作[b]立体定位仪[/b]SR-9M需要不带立体定位显微操作器SM-15的版本,请访问SR-9M-HT。自从NARISHIGE的立体定位操作器根据新标准制作后,AP框架具有18.7mm的方形形状。微操作[b]立体定位仪[/b]SR-9M[b]规格[/b][table=610][tr][td] [/td][td]SM-15 R/L 立体定位显微操作器EB-3B 小鼠耳柱(一对)EB-5N 小鼠辅助耳柱CF-10 室框架 x 5件.[/td][/tr][tr][td]尺寸大小,重量[/td][td]宽400 x 深300 x 高110mm, 9.2kg [/td][/tr][/table]微操作立体定位仪:[url]http://www.f-lab.cn/stereotaxis/sr-9m.html[/url]

  • 【分享】一、二、三、四、五、六乙烷

    [color=#DC143C]一氯乙烷[/color][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911211722_185774_1610969_3.gif[/img][color=#00008B]一氯乙烷[/color]  国标编号 21036   CAS号 75-00-3   分子式 C2H5Cl CH3CH2Cl  分子量 64.52  无色气体,具有类似醚样的气味  蒸汽压 53.32kPa/-3.9℃   闪点-43℃/开杯  熔点-140.8℃  沸点12.5℃  溶解性:微溶于水,可混溶于多数有机溶剂  密度:相对密度(水=1)0.92  相对密度(空气=1)2.20  稳定性:稳定   危险标记 4(易燃液体)  主要用途:用作聚丙烯的催化剂,也用作冷冻剂、麻醉剂、杀虫剂等 [color=#6495ED]健康危害[/color]  侵入途径:吸入。  健康危害:有刺激和麻醉作用。高浓度损害心、肝、肾。吸入2%-4%浓度时可引起运动失调、轻度痛觉消失,但其刺激作用非常轻微 高浓度接触引起麻醉,出现中枢抑制,可出现循环和呼吸抑制。皮肤接触后可因局部迅速降温,造成冻伤。 [color=#00008B]毒理学资料及环境行为[/color]  毒性:属中等毒类。  急性毒性:LC50160000mg/m3,2小时(大鼠吸入) 人吸入35mg/L×17分钟,有微弱作用 人吸入50mg/L×1分钟,开始有麻醉作用 人吸入90mg/L×7.5~8分钟,生理机能障碍,发绀。  亚急性和慢性毒性:大鼠吸入5300ppm×2小时/日×60日,淋巴细胞吞噬能力降低,肺损害。  致突变性:微生物致突变:鼠伤寒沙门氏菌10µ g/皿。  致癌性:IARC致癌性评论:动物为可疑阳性,人类无可靠数据。  危险特性:易燃,与空气混合能形成爆炸性混合物。遇热源和明火有燃烧爆炸的危险。与氧化剂接触会猛烈反应。气体比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。  燃烧(分解)产物:一氧化碳、二氧化碳、氯化氢、光气。

  • 【转帖】常用有机物的毒性以及处理

    1.甲烷理化性质】 甲烷(methane,CH4)为无色、无臭、易燃气体。分子量16.04,沸点-161.49℃,蒸气密度0.55g/L,饱和空气浓度100%,爆炸极限4.9%~16%,水中溶解度极小为0.0024g%(20℃)。 甲烷由于C-H键比较牢固,具有极大的化学稳定性,不与酸、碱、氧化剂、还原剂起作用。但甲烷中的氢原子可被卤素取代而生成卤代烷烃。【职业接触】 甲烷是油田气、天然气和沼气的主要成分,也存在于煤矿废气内。作为原料主要用于制造乙炔、氢气、合成氨、炭黑、硝基甲烷、二硫化碳、一氯甲烷、二氯甲烷、三氯甲烷、四氯化碳和氢氰酸等,并可直接用作燃料。在生产和使用过程中均有机会接触。【毒性】 甲烷对人基本无毒,只有在极高浓度时成为单纯性窒息剂。甲烷浓度增加能置换空气而致缺氧。87%的浓度使小鼠窒息,90%使致呼吸停止。80%甲烷和20%氧的混合气体可引起人头痛。当空气中甲烷达25%~30%时,人出现窒息前症状,头晕、呼吸增快、脉速、乏力、注意力不集中、共济失调、精细动作障碍,甚至窒息。煤矿的“瓦斯爆炸”是甲烷的最大危害。有人报告58名甲烷中毒患者均有中毒性脑病,以全身电流计和心电图测定脑循环容量,发现容量减少26.1%。皮肤接触液化气可引起冻伤。【防治】 甲烷中毒者应立即脱离现场,解开上衣及腰带,注意保温,对症治疗,间歇性吸氧,控制抽搐。心跳、呼吸停止时应立即进行复苏。禁用抑制呼吸的药物如吗啡、巴比妥类等。 接触甲烷的生产环境,特别是矿井中,要注意通风,使甲烷浓度在安全限值以下。建立瓦斯检查制度,甲烷浓度达到2%时,工作人员应迅速撤离现场。2.乙烷【理化性质】 乙烷(ethane,C2H6) 为无色、无臭气体。易燃。分子量30.069,沸点-88.63℃,闪点-135℃,爆炸极限为3.2%~12.45%,蒸气密度1.04g/L。【职业接触】 乙烷主要用于制造乙烯及氯乙烷、溴乙烷等卤代烃,也可用作冷冻剂和燃料。它存在于油田气、天然气、炼厂气和焦炉气中。生产和使用过程中均有机会接触。【毒性】 乙烷浓度在50%以下时,无任何毒作用,高浓度时,由于能置换空气而致缺氧,引起单纯性窒息。 豚鼠接触乙烷浓度2.2%~5.5%,2h,表现轻度呼吸不规则,但停止接触可迅速恢复。15%~19%的乙烷与氧气混合时,为心脏致敏剂。 空气中浓度大于6%时,人可出现眩晕轻度恶心轻度麻醉和惊厥等缺氧症状。3.丙烷【理化性质】 丙烷(propane,C3H8)常温下为无色、无臭气体。易燃、易爆。化学性质稳定。分子量40.09,熔点-187.7℃,沸点-42.17℃,蒸气密度1.52g/L,爆炸极限为2.1%~9.5%,在650℃时分解为乙烯和乙烷.【职业接触】 丙烷主要存在于油田气、天然气、炼厂气中。用于制造乙烯、丙烯、含氧化合物和低级硝基烷。在生产或使用过程中均有机会接触。【毒性】 丙烷属微毒类,为单纯麻醉剂,对眼和皮肤无刺激,直接接触可致冻伤。 1.急性毒性 当丙烷浓度〈3600mg/m3时无明显作用。1%浓度使狗血液动力学改变,3.3%时可降低心肌收缩力,致使平均主动脉压心搏出量减少,肺血管阻力增加。对猴,10%浓度对心肌产生影响,20%时加重,且出现呼吸抑制。大鼠和小鼠吸入混合气体(丙烷占50.15%,乙烷占19.3%,丙烯占15.1%)50g/m3,均无中毒症状 5~65g/m3时条件反射异常 110~126g/m3时,轻度麻醉 达到400~500g/m3时,表现为麻醉状态,部分动物出现深度麻醉,但均无死亡。 人在1%浓度下无影响,10%可出现轻度头晕,但无刺激症状。 2.慢性毒性 每日暴露于丙烷为主的混合气8.5~12.16g/m3,2h,连续6个月,动物除体重略低于对照组外,一般情况尚好,浮游试验时间缩短,神经活动早期2个月以抑制为主,后以兴奋为主。体温调节有轻度改变,早期低,后趋正常。血红蛋白轻度减少,脱离接触后可以恢复。组织学仅有轻微变化,表现为肺少量出血,肝肾有不明显的蛋白变性。

  • zeta电位的药物定位和传送体系

    乳剂也被用在药物的传送体系中。在许多配方设计的情况中,对zeta电位电泳性能的了解是至关重要的。尽管许多药物是水溶性的,但是有越来越多的药物是表面活性的,甚至是不溶于水的。这些原料给配方技术提出重要的难题。因此,不溶于水的药物候选方案经常被退回化学部门,并要求换成可溶于水的类似品。但有些情况下这是不可能的,例如:一些自然产品或者生物工艺材料 ,或是具有亲脂行为模式的药品,如 :麻醉剂,催眠药和安定药。这些情况下乳剂传送被广泛运用(如:静脉麻醉剂(ICI的 Diprivan)和止痛药(Kabi的 Diazemuls))。这一方法中会遇到的问题实例见图5,含药物乳剂的zeta电位pH曲线在pH7处絮凝。这类数据允许合理选择配方的pH值和乳化剂以达到最大的zeta电位和乳剂稳定性。非水体系在利用zeta电位了解悬浮液稳定性中更进一步的例子是利用气溶胶喷雾传送吸入药物的悬浮剂。微粒化的药物悬浮在气溶胶喷雾剂内,当气溶胶喷出时,药物颗粒也会喷出,而且可被吸入人体内。通过控制zeta电位来控制颗粒的大小是很重要的,它可以保证病人服用剂量的重现性。在这种情况下,测量悬浮在非水媒介(如CFC喷雾剂)中颗粒的zeta电位变得极度困难,原因是颗粒的迁移率非常小。然而,通过对电泳池的适当设计可以解决这一问题。乳糖(固体分散模型)在氯仿(非水媒介)中的zeta电位作为蛋黄素离子型表面活性剂浓度的函数。即使浓度很小时,蛋黄素也明显的引起了电位的大幅改变。缺乏蛋黄素时,悬浮液产生絮凝,但是在蛋黄素浓度超出大约10%时颗粒能被分散的很好。虽然我们对无水体系中电泳现象的理解仍旧是肤浅的,但是这样的研究至少能让我们对这些体系中稳定性和表面活性吸附能力有了感性的了解。

  • 【分享】实验室常用溶剂对身体的伤害

    1. 石油醚侵入途径:吸入、食入。健康危害:其蒸气或雾对眼睛、粘膜和呼吸道有刺激性。中毒表现可有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。本品可引起周围神经炎。对皮肤有强烈刺激性。急性毒性:LD5040mg/kg(小鼠静脉);LC503400ppm,4小时(大鼠吸入)危险特性:其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。燃烧时产生大量烟雾。与氧化剂能发生强烈反应。高速冲击、流动、激荡后可因产生静电火花放电引起燃烧爆炸。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。燃烧(分解)产物:一氧化碳、二氧化碳。2. 正已烷正己烷虽可经呼吸道、消化道、皮肤进入机体,但职业中毒仅见于经呼吸道吸收者。正已烷吸收入血有剂量-反应关系。大鼠暴露于浓度1800、3600、10800 和3600Omg/m3,6h后血中正已烷半减期为1~2h 人接触360mg/m3,安静下4h血半减期为1.5h 生理负荷3h后,半减期为2h。人按触正已烷313.2~439.2mg/m3及其他溶剂,测定呼出气,平均吸收27.8%± 5.3%,呼吸道存留5.6%±5.7%。2.分布正已烷在体内分布与器官的脂肪含量有关,主要分布于脂肪含量高的器官,如脑、肾、肝、脾、睾丸等。3.转化正已烷的生物转化主要在肝脏,微粒体细胞色素P450及细胞色素C直接参与其氧化代谢。代谢产物有2-已醇、3-已醇、2-已酮 (甲基正丁基甲酮)、2,5-已二酮等。【毒性】正已烷属低毒类,但其毒性较新已烷大,且具有高挥发性、高脂溶性,并有蓄积作用。毒作用为对中枢神经系统的轻度抑制作用,对皮肤粘膜的刺激作用。长期接触可致多发性周围神经病变。l.急性毒性正已烷小鼠吸入LC为120~15Og/m3(2h),麻醉浓度为100g/m3 (lh)。大鼠经口LD50为24~29ml/kg。兔涂皮2~5ml/kg(4h),引起共济失调与躁动。人吸入单纯正已烷180Omg/m3,3~5min无刺激 2880mg/m3,l5min眼及上呼吸道有刺激 5040~720Omg/m3,lOmin,有恶心、头痛、眼及咽刺激 1800Omg/m3,lOmin, 出现眩晕、轻度麻醉。经口中毒可出现恶心、呕吐等消化道刺激症状及急性支气管炎,摄入50g可致死。溅入眼内可引起结膜刺激症状。2.慢性毒性正已烷慢性毒作用主要为多发性神经病。神经传导速度减慢,甚至肌肉萎缩。严重者可引起肝肾损害。大鼠每日大入2.76g/m3,143天,仅有夜间活动减少,但体重、血象、血清蛋白与对照组无明显差异,处死后组织学检查见网状内皮系统有轻度反应,末梢神经有髓鞘退行性变、轴突轻度变性,腓肠肌肌纤维轻度萎缩。18000mg/m3,每周16h,共4周,周围神经运动传导速度明显下降,肌力降低。小鼠 吸入360mg/m3,每周6天,经1年,未引起神经病 9OOmg/m3,引起轻度神经病 180Omg/m3,出现步态不稳、肌萎缩。长期职业性低浓度接触正已烷的工人,可发生周围神经病,特点是隐匿性和进展缓慢。轻症者多为远端感觉型周围神经病 较 重者出现运动型周围神经病 严重者可发生下肢瘫痪及肌肉萎缩,并可伴有自主神经功能障碍。正已烷可刺激皮肤,引起潮红、水肿、水疱、皮肤粗糙。正已烷无致癌活性。也未见致畸报告。1.急性中毒急性吸入高浓度正已烷可引起眼与呼吸道刺激及中枢神经系统麻醉症状。口服中毒可出现急性消化道和上呼吸道刺激。2.慢性中毒长时间接触低浓度正已烷可引起多发性周围神经病。起病隐匿而缓慢。(1)轻症:主要表现为肢体远端感觉型神经病,出现指趾端感觉异常和感觉低下 即麻木,触、痛觉和震动、位置觉减退,以下肢为重,肌肉疼痛,登高时明显,肌无力,腱反射减退。感觉减退一般呈手套、袜 套样分布。(2)重症:出现运动型神经病。首先表现下肢远端无力,合并肌肉疼痛或痉挛,腓肠肌压痛。腱反射消失较少,且仅限于跟腱反射。上肢较少受累。感觉运动型多发性周围神经病也以运动障碍为主,触、痛觉消失限于四肢远端手足部,震动觉、位置觉仅轻度减退。严重者出现下肢瘫痪及肌肉萎缩,并伴有自主神经系统功能障碍。此外,正已烷可抑制血胆碱酯酶,并可用解磷定复能。3. 乙酸乙酯侵入途径:吸入、食入、经皮吸收。健康危害:对眼、鼻、咽喉有刺激作用。高浓度吸入可引起进行性麻醉作用,急性肺水肿,肝、肾损害。持续大量吸入,可致呼吸麻痹。误服者可产生恶心、呕吐、腹痛、腹痛、腹泻等。有致敏作用,因血管神经障碍而致牙龈出血;可致湿疹样皮炎。慢性影响:长期接触本品有时可致角膜混浊、继发性贫血、白细胞增多等。

  • 【求助】消解小鼠器官侧金属含量

    我现在想要消解小鼠器官,测器官里面金属“金”的含量。由于实验室没有微波消解。所以想采用湿法消解。想请教一下各位该怎么做?直接加入王水,加热,至澄清?还是用高氯酸和双氧水,再加入王水?我是第一次做,实验室以前也没人做过。比较着急,大家能不能给一个现成的操作步骤?万分感激!!!

  • 【原创大赛】姜黄素对β-淀粉样蛋白致小鼠空间学习记忆障碍的改善作用

    【原创大赛】姜黄素对β-淀粉样蛋白致小鼠空间学习记忆障碍的改善作用

    姜黄素对β-淀粉样蛋白致小鼠空间学习记忆障碍的改善作用阿尔茨海默病(Alzheimer’s disease,AD)是一种常见的慢性进行性精神功能衰退性疾病。近年来,研究发现AD患者大脑中的主要成分β-淀粉样蛋白(Aβ)明显增多,Aβ可能是该病发病机制的起始因素和关键环节。 姜黄素为二苯庚烷类化合物具有较明显的抗炎、抗菌、降血脂、抗老年痴呆,但其是否可以对抗Aβ引起的神经毒性未见报道。本文通过研究其对Aβ引起的记忆障碍模型小鼠的保护作用],为临床可能应用姜黄素治疗老年性痴呆症提供依据。 本题为探讨姜黄素对β[font=Times New Roman]-[font=宋体]淀粉样蛋白[font=Times New Roman]25-35[font=宋体]致小鼠空间学习记忆障碍的改善作用。方法采用侧脑室一次性注射[font=Times New Roman]β-[font=宋体]淀粉样蛋白4μl[font=宋体]导致小鼠空间学习记忆障碍模型,采用隐藏平台获得实验和空间搜索实验,观察姜黄素[font=Times New Roman]J(5、2、1 mg·kg-1[font=宋体])对空间学习记忆障碍模型小鼠的保护作用。结果显示姜黄素各个剂量组均能明显改善β-淀粉样蛋白致小鼠空间学习记忆障碍,能明显缩短寻找站台潜伏期和游泳路径。材料与方法1 材料与仪器1.1 [font=楷体_GB2312]动物 雄性昆明种小鼠,上海实验动物中心提供。1.2 药品和试剂[font='Times

  • 48.10 5'-DFUR在小鼠结直肠癌模型内转化分析

    48.10 5'-DFUR在小鼠结直肠癌模型内转化分析

    【作者】 但操;【导师】 张继民; 【作者单位】 广州医学院, 外科学,【摘要】 研究背景:5’-脱氧氟尿苷(5’-deoxy-5-fluorouridine, 5’-DFUR)是临床治疗消化道恶性肿瘤的口服抗癌药物,为5-氟尿嘧啶(5-FU)的前体药物。其本身没有细胞毒作用,需要在细胞内经过胸苷磷酸化酶(thymidine phosphorylase,TP)转化为5-FU才能发挥抗肿瘤作用。已有文献报道乳腺癌和胃癌细胞可以表达TP活性,而大肠癌细胞是否表达TP则持论不同。我们在前期研究中发现大肠癌组织中TP活性主要由间质细胞中的巨噬细胞表达,而测定6株结肠癌细胞系也几乎没有TP蛋白表达。在癌细胞不表达TP的情况下5’-DFUR在结直肠癌组织中如何转化尚属疑问。我们前期体内实验对结肠癌小鼠动物模型应用化疗药物5’-DFUR进行治疗,结果发现与5-FU相比平均荷瘤生存期更长,平均瘤重轻,同期平均体重下降缓慢,提示5’-DFUR在小鼠结肠癌组织比正常组织中转化率高,抗癌选择性高。其原因可能是TP酶在癌组织中分布较正常组织多。前期体外实验把5’-DFUR加入培养基中同人血单核细胞一起培养24h,5’-DFUR对4种癌细胞的IC50明显下降,提示血液中单核细胞也可表达TP。由于尚未发现实验比较在癌组织和血液中TP含量,故两者TP的含量高低尚需要实验进一步证实。本实验应用高效液相色谱法(high performance liquid chromatography,HPLC)测定应用5’-DFUR后癌组织和血液中5-FU的转化情况,间接推断TP酶在癌组织和血液中分布差异,为进一步研究5’-DFUR在结直肠癌组织中转化及TP酶调控机制提供资料。实验材料:1、实验动物SPF级近交系BALB/c小鼠28只,6-8周龄,雄性,体重20.00±2.34g,购自广东省医学实验动物中心。2、肿瘤细胞株BALB/c小鼠结肠腺癌细胞株(CT26),购自美国菌种保藏中心(American Type Culture Collection, ATCC)。3、实验药物5’-DFUR由Roche公司日本研究中心提供; 5-FU注射液,江苏南通精华制药有限公司生产(批号: 080607);5-FU标准品购自Sigma有限公司提供(批号: 097K1352)。4、实验仪器岛津高效液相系统;色谱柱:Diamonsil C18柱(250mm×4.6mm,5μm)实验方法:1、小鼠结肠癌CT-26细胞株的培养10%胎牛血清1640培养基,含青霉素100×103 U/L和链霉素100 mg/L,37℃,5%CO2水浴恒温培养箱中培养,隔日换液,2-3天酶消化法传代。2、细胞悬液制备制备模型当天取指数生长期的细胞,用0.25%胰蛋白酶消化,机械吹打成细胞悬液,2 000r/min离心5 min,弃上清液,加适量生理盐水调整细胞浓度至1×107个/ml,以台盼蓝测定细胞活力在95%以上。3、结肠癌模型制作方法将体外培养的CT26细胞悬液0.2ml注入小鼠(BALB/c)背部皮下,约2周后基本可以形成肉眼可见的肿瘤隆起。4、动物分组及给药荷瘤小鼠28只随机分为4组:①5’-DFUR给药15分钟组;②5’-DFUR给药30分钟组;③5-FU给药15分钟组;④5-FU给药30分钟组。根据动物体重,5-FU用量0.020mg/g ,配制浓度为1.0 mg/ml。5’-DFUR用量0.038mg/g;配置浓度为2.0mg/ml。各组分别腹腔注射给药15分钟、30分钟后处死小鼠立即取血和瘤组织。5、标本处理小鼠眼眶动静脉取血0.5 ml后放置入37℃水浴30分钟,3200rpm离心5min,取上清液4℃保存。肿瘤组织用滤纸吸干血迹后称重,然后按0.5g组织与4 ml生理盐水(1:8)加入匀浆器匀浆5min, 3200rpm离心5min,取上清液4℃保存。6、制作血液和肿瘤组织的5-FU药物标准曲线取未给药小鼠血清7份,每份90μL,分别加入由5-FU对照品和蒸馏水配制的系列标准液适量并混匀配成100μL,使血清中药物浓度分别为6.25,12.5,25.0,50.0,100.0,200.0,400.0μg·mL-1,制作血清标准曲线;取未给药小鼠肿瘤组织匀浆液7份,每份90μL,分别加入由5-FU对照品和蒸馏水配制的系列标准液适量并混匀配成100μL,使肿瘤匀浆液中药物浓度分别为1.0,2.0,4.0,8.0,16.0,32.0,64.0μg·mL-1,制作肿瘤标准曲线。7、测量各标本浓度取血清100μL,置于5mL玻璃试管中,加入乙酸乙酯2mL,漩涡振荡2min后,3200rpm离心5min,取上层析液置于另一玻璃试管中。再次加入乙酸乙酯2mL进行第二次提取,漩涡振荡2min后,3200rpm离心5min,取上层析液,然后合并两次提取的上层析液,离心浓缩挥干。加入100μL流动相定容,混匀取出,置于EP管中,10000rpm离心7min,取上层析液20μL进样。记录药物峰面积,代入相应标准曲线计算药物浓度;取肿瘤匀浆液100μL,以同样方法处理标本测量浓度。8、观测指标给药15分钟、30分钟处死组5’-DFUR组和5-FU组小鼠血液与癌组织5-FU浓度。9、统计学方法应用统计软件SPSS13.0数据包对5’-DFUR组和5-FU组小鼠血液与癌组织5-FU浓度采用配对样本t检验进行比较。当P0.05时,认为差异有统计学意义。结果:1、注射药物5’-DFUR 15、30分钟后,癌组织转化的5-FU浓度分别54.64μg/g±12.80μg/g和45.58μg/g±18.82μg/g,血清中中5-FU浓度分别为8.83μg/ml±1.68μg/ml和9.82μg/ml±2.93μg/ml,15分钟、30分钟组癌组织5-FU浓度分别为血清的6.36、4.47倍(P0.05);2、注射药物5-FU 15、30分钟后,癌组织转化的5-FU浓度分别86.13μg/g±15.42μg/g和94.68μg/g±39.89μg/g,血清中5-FU浓度分别为133.35μg/ml±20.69μg/ml和112.70μg/ml±26.27μg/ml,15分钟、30分钟组血清5-FU浓度分别为癌组织的1.59、1.62倍(P0.05)。结论:小鼠结肠癌模型体内,癌组织内5’-DFUR转化率高于血液,考虑分布在癌组织中的PyNPase酶比血液高。 【谱图】http://ng1.17img.cn/bbsfiles/images/2012/08/201208142214_383901_1609970_3.jpg

  • 【经典精读】一篇小鼠造血干细胞研究方法综述的精读笔记

    原文是Purton, L.E., and Scadden, D.T. (2007). Limiting Factors in Murine Hematopoietic Stem Cell Assays. Cell Stem Cell 1, 263-270.发表在2007年cell stem cell 杂志上,最近由于要进行相应的课题研究,拿来精读了一番,做了一个笔记,发上来和大家分享,由于初涉小鼠造血干细胞这个领域,肯定有很多地方理解不全和错误,请大家指正。下面是我的精读笔记:小鼠造血干细胞研究方法综述一.关于HSC 免疫表型1. Thy1.1lo,Lin-Sca-1+Cells:其缺点是Thy1.1只表达于C57BL/Ka-Thy1.1小鼠,不表达于常用的C57BL/6小鼠;2. Lin- c-Kit+ Sca-1+ Cells(LSK):异质性,含有祖细胞,HSC含量不超过10%;结合CD34和Flt3可以分为long-term repopulating HSCs (LKS+ CD34- Flt3-) ,short-term repopulating HSCs (LKS+ CD34+ Flt3-) ,以及multipotent progenitors(LKS+ CD34+ Flt3+);3.荧光染料标记HSC: Rhodamine 123, Hoescht 33342, 以及Side Population,Rhodamine 123为线粒体染料,Hoescht 33342为DNA染料,HSC能够更多地将这两种染料泵出细胞外,所以染色较浅;4. SLAM Family Members:SLAM antigens (CD150+ CD244-CD48- cells),其优点是不像Thy1.1和Sca-1其表达受到品系和发育阶段等的影响,在更多的种系的小鼠中适用二.克隆形成实验:主要反映的是祖细胞的造血能力,不反映HSC,检测T系和B系需要另外特定的培养条件;三.Cobblestone Area-Forming Cells/Long-Term Culture-Initiating Cells,鹅卵石样区域形成细胞实验/长期培养-启动细胞实验:体外检测更早期造血干/祖细胞的方法,但由于feeder layers和培养条件不同,实验结果在不同实验室间稳定性较差,对于其是否真正能检测造血干细胞也比较有争议,不过在一些情况下,比如归巢(homing)或植入(engraftment)有缺陷导致体内造血重建实验无法进行时,这两个方法是较好的替代方法;四.Colony-forming unit-spleen (CFU-S)脾集落单位形成实验:属于短期(1-3周)体内重建实验,检测的干祖细胞比体外CFC早,但比HSC晚;五.long-term repopulating assays,长期重建实验,包括:1. competitive repopulation assay:竞争重建实验:属于定性或者半定量研究HSC重建能力的方法,不能区别是HSC的数量还是质量造成的结果差异,得到的结果为RU即重建单位;2. limiting dilution assay:统计的指标是造血重建失败的小鼠数目,采用泊松分布来计算HSC的频率,得到的结果为CRU即竞争重建单位;Stem Cell公司的免费软件L-Calc,可用于分析实验结果。limiting dilution assay有两种方法:1CRU assay,采用最小数的HSC作为竞争细胞,可以在单细胞水平检测HSC;2也称为CRU assay,采用标准的,足量的HSC作为竞争细胞,不能在单细胞水平检测HSC;3serial transplant assay,多代移植,最为严格的检测造血干细胞的方法;六:Limiting Dilution Assays需要考虑的几个重要因素:1.竞争细胞:1compromised bone marrow,即连续两代重建成功的骨髓细胞,比较耗时2W41/W41受体小鼠:c-kit基因发生突变,具有更加敏感的宿主微环境,能够检测更少的植入的HSC,不需要另外的HSC作为支持细胞(竞争细胞);3全骨髓细胞(whole bone marrow cells):经验表明2 X105 competing bone marrow cells比较适合2.受测细胞(Test Cells, Unknown HSC Potential):有人用LKS+ CD34- cells,但作者认为全骨髓细胞最好,原因是这种方法是在功能上评价HSC,避免了HSC在基因修饰的小鼠中免疫表型发生变化导致的结果的不可靠,在作者实验室通常采用的受测全骨髓细胞数为8 X 103到2 X106;3.重建失败的标准:现在一般认为受测细胞的重建比例小于1%为重建失败;在重建比例中,红细胞是不计算在内的,因为其不表达CD45,但一般认为只要其他系重建成功,红系应该也会重建成功;4.分析重建的时间点:看长期造血重建,最少要16周,最佳是六个月;5.其他考虑因素:归巢,HSC各系分化阻滞或减弱,祖细胞增殖动力学特性的改变,造血微环境对HSC的影响等等七.区分供体,受体的遗传学标志:最常用的是CD45.1,CD45.2系统,还有可以通过性别(Y染色体)来区分。

  • 【金秋计划】牛黄清心丸通过调节TrkB/ERK/CREB信号通路改善小鼠抑郁样行为,促进海马神经发生

    [b][size=15px][color=#595959]抑郁症[/color][/size][/b][size=15px][color=#595959]是全球范围内高患病率的慢性精神障碍,抑制血清素再摄取、单胺氧化酶、吲哚洛尔和电休克疗法是改善抑郁症状的主要治疗方法。然而,令人不满意的效果和副作用阻碍了它们在抑郁症治疗中的应用。慢性应激相关的激素失衡损害[b]海马神经发生[/b],导致抑郁和焦虑行为。因此,靶向神经发生是一种很有前途的[/color][/size][size=15px][color=#595959]抗抑郁[/color][/size][size=15px][color=#595959]治疗策略。[/color][/size] [b][size=15px][color=#595959]牛黄清心丸(NHQXW)[/color][/size][/b][size=15px][color=#595959]是一种治疗精神障碍的中药方剂,几项体外和体内实验表明,几种活性化合物和草药提取物具有潜在的神经原性作用,但其抗抑郁作用及其机制尚未得到证实。[/color][/size] [size=15px][color=#595959]该研究通过慢性约束应激(CRS)小鼠模型和慢性皮质酮(CORT)应激(CCS)小鼠模型,验证了NHQXW通过调节[b]TrkB/ERK/CREB信号通路[/b]改善抑郁样行为和海马神经发生的假设。抑郁样小鼠模型口服NHQXW,阳性对照组氟西汀。评估了NHQXW对抑郁和焦虑样行为的影响,并确定了NHQXW对诱导海马神经发生的影响。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size] [align=center] [/align] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]NHQXW治疗可显著改善慢性应激小鼠的抑郁样行为。NHQXW显著改善CRS小鼠和CCS小鼠海马神经发生。通过调节CCS小鼠海马区BDNF、TrkB、p-ERK (T202/T204)、p-MEK1/2 (S217/221)和p-CREB (S133)的表达水平,确定NHQXW的潜在神经源性机制。NHQXW显示其抗抑郁和神经源性作用与氟西汀相似。此外,NHQXW治疗在预防CCS小鼠戒断相关的反跳症状方面显示出长期效果。此外,在生物活性指导的质量控制研究中,[b]甘草苷被鉴定为NHQXW的生物活性化合物之一,具有促进神经发生的生物活性[/b]。[/color][/size][size=15px][color=#595959][/color][/size][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#595959][/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#595959][/color][/size][/font] [size=15px][color=#595959][/color][/size][color=#3573b9]讨论[/color][b][size=15px][color=#595959][/color][/size][/b][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#595959][/color][/size][/font] [b][size=15px][color=#595959]NHQXW可能是一种很有前途的中药配方,可以减轻抑郁和焦虑样行为,对抗慢性压力和抑郁[/color][/size][/b][size=15px][color=#595959]。潜在的抗抑郁机制可能通过刺激TrkB/ERK/CREB信号通路与其神经源性活动相关。[/color][/size] [size=15px][color=#595959]对于选择性标记化合物如芍药苷、甘草素、胆红素、黄芩苷等,为了确定其在整个方剂中的生物活性,还需要进一步研究其[b]口服NHQXW后的生物利用度、药代动力学和药效学[/b]。因此应该进一步探索NHQXW抗抑郁和神经发生作用的潜在机制和活性成分,为未来的临床试验提供坚实的实验证据。[/color][/size]

  • 【原创大赛】一种简便测定小鼠耗氧量的实验方法

    【原创大赛】一种简便测定小鼠耗氧量的实验方法

    [align=center]一种简便测定小鼠耗氧量的实验方法[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]安评中心:苏敏[/align][b] 1引言[/b]小鼠在密闭的缺氧瓶内不断消耗氧气,而产生CO[sub]2[/sub],CO[sub]2[/sub]被缺氧瓶中的钠石灰所吸收,瓶内氧分压逐渐降低而产生负压,缺氧瓶与水减压计接通,由于负压吸引将水柱内侧液面上升。及时由滴定管中滴入一定水,使水减压计恢复至原先的压力水平,保持小鼠处于常压状态下,记录所滴入装置中的水容积,以此表示在一定时间内,小鼠吸取的O[sub]2[/sub]的容积。黄芪是经典的补气药,具有利尿,强壮,降压,提高机体免疫功能等作用。本实验通过黄芪降低耗氧量的实验研究,介绍了小鼠整体耗氧量的测定的装置。[b]2材料与方法[/b]2.1材料动物:小鼠,体重18~22g,雌雄均有。器材:小鼠氧耗量装置(125ml缺氧瓶,200ml具塞广口瓶和微量滴定管,水减压计),秒表。药品及试剂:黄芪水煎液(2g/ml),普萘洛尔,钠石灰,凡士林。2.2方法2.2.1分组及给药选取体重18~22g健康小鼠48只,雌雄兼用,分别称重,编号,按体重和性别均分为4组: 生理盐水组,黄芪水煎液组,普萘洛尔组。生理盐水组小鼠每只腹腔注射等容量的生理盐水,黄芪水煎液组每只腹腔注射黄芪水煎液3g/kg,每只皮下注射ISP20mg/kg 普萘洛尔组,每只皮下注射普萘洛尔30 mg/kg。2.2.2测定方法 在室温25℃条件下,将微量滴定管及通气管插入200ml具塞广口瓶内;125ml缺氧瓶内,插上水减压计;用导管将缺氧瓶与广口瓶相接,如图1所示。20~45分钟后,测定小鼠5分钟内的耗氧量。将小鼠放入缺氧瓶内,盖好盖子,关闭与大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通的地方(空气入口处和滴定管活塞,水减压计开口处),通入空气,此时水减压计的压力即为常压状态下的压强。立即停止通气,此时开始记录时间,当小鼠呼出的CO[sub]2[/sub],被钠石灰吸收时,装置内的气体容积减少,水减压计压力降低,及时从滴定管加水至装置中,使水减压计恢复至常压状态下压强。由滴定管放入装置中的水容积,即代表5分钟内该小鼠吸取O[sub]2[/sub]的容积,可以毫升表示,从而判断药物有无降低机体的氧耗量作用。 [align=center][img=,690,512]http://ng1.17img.cn/bbsfiles/images/2018/07/201807011428075958_3362_2904018_3.png!w690x512.jpg[/img] [/align][align=center]图1 氧耗量测定装置[/align][align=center]1.缺氧瓶2.水减压计3.滴定管4.广口瓶[/align][b]3结果[/b]普萘洛尔和黄芪水煎液组耗氧率显著降低,黄芪组的耗氧量降低幅度稍弱于普萘洛尔组。[b] 表1 黄芪水煎液对小鼠整体耗氧量的影响([/b][img=,14,18]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wpsF5F9.tmp.png[/img][b]±ѕ , n=10)[/b][table][tr][td][align=center][b]组别[/b][/align][/td][td][align=center][b]剂量(mg/kg)[/b][/align][/td][td][align=center][b]5分钟累积耗氧量(ml/只)[/b][/align][/td][/tr][tr][td][align=center]生理盐水[/align][/td][td][align=center]10[/align][/td][td][align=center]5.43±0.33[/align][/td][/tr][tr][td][align=center]普萘洛尔组[/align][/td][td][align=center]30[/align][/td][td][align=center]3.2±0.55[sup]**[/sup][/align][/td][/tr][tr][td][align=center]黄芪水煎液[/align][/td][td][align=center]3000[/align][/td][td][align=center]4.25±0.42[sup]**[/sup][/align][/td][/tr][/table]与生理盐水组比较:[sup]*[/sup][i]P[/i]0.05,[sup]**[/sup][i]P[/i]0.01[b]4讨论[/b]本文介绍一种在缺氧实验及抗心肌缺氧药物筛选中简易的方法,所用装置使用方便,耗资少。测定装置各接口处应密封无漏气,可涂少许凡士林于口密封。实验测氧耗量时,计时应准确。动物体重、室温、玻瓶容积等因素对实验结果有一定影响,实验中应加以控制。当小鼠耗氧量较多时,由于水比重小,水很容易通过虹吸现象进入缺氧瓶内,影响实验的进行。因此,连接缺氧瓶与广口瓶的导管不应离液面太近。应及时补充滴入水。由于钠石灰吸收CO[sub]2[/sub]会饱和,每测定1只小鼠要换钠石灰,否则影响实验结果准确性。小鼠整体氧耗量测定还可用小鼠放在密封小瓶内,通过连接测氧仪测定氧耗量。各组实验在一个时间段内进行。也可以用测氧仪来测耗氧量。[align=left][b]参考文献[/b]陈奇.中药药理研究方法学.北京:人民卫生出版社,2006:782.[/align]

  • 【金秋计划】银杏二萜内酯葡胺注射液对缺血性脑卒中小鼠黑质脑区的调控机制研究

    脑卒中是全球致伤致残致死3大原因之一,据全球疾病负担统计2019年全世界有1 220万人发病[1],我国有394万人首发[2];另一统计称2020年我国有340万人首发并有约220万人留下残疾[3-4]。缺血性脑卒中(ischemic stroke,IS)约占卒中类型的85%[4-5]。IS预后结局差,复发率高而且极有可能造成后遗症如偏瘫、后肢痉挛、震颤等。其病理机制也十分复杂,涉及细胞过度自噬、离子失衡与谷氨酸过度释放、氧化应激与自由基、炎症爆发和神经细胞凋亡[5-7]等。 目前治疗IS的主要方法为重组组织型纤溶酶原激活剂(recombinant tissue-type plasminogen activator,rt-PA)静脉溶栓、手术取栓和神经保护。手术风险高,rt-PA治疗时间窗短,且有出血风险,符合治疗条件的病人不到10%[8],而神经保护的药物在临床上的效果不如动物实验那么有效,目前急需开发更安全可靠的治疗IS的用药。在长期的医学实践中,银杏叶提取物在治疗脑卒中和心肌梗死方面疗效显著[9]。其中,银杏内酯作为天然的血小板活化因子(platelet activating factor,PAF)受体拮抗剂,因其具有抗炎、抗氧化、抗凋亡和神经保护的作用[10-12]而越来越受到关注。 银杏二萜内酯葡胺注射液(Diterpene Ginkgolides Meglumine Injection,DGMI)以银杏叶提取物为原料,主要组成为银杏内酯A(ginkgolide A,GA,35%)、银杏内酯B(GB,60%)、银杏内酯C(GC,2%)、银杏内酯K(GK,2%),含总银杏内酯5 mg/mL[13],银杏二萜内酯成分达98%以上[14]。临床显示,DGMI可有效改善IS发病90 d时患者的神经缺损评分,同时改善患者认知和行动能力,并且在中老年患者中疗效优于银杏叶提取物注射液(金纳多)[15-18],Zhao等[15]认为DGMI与rt-PA联用治疗急性卒中效果更佳。最新一项临床研究发现,单独使用DGMI对急性缺血性脑卒中治疗有效[19]。也有多项体内外实验证明DGMI具有改善脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIRI)的作用,主要与PAF受体[20]、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)- 蛋白激酶B(protein kinase B,PKB)、核因子-红细胞2相关因子2(nuclear factor-erythroid 2 related factor 2,Nrf2)[13]等通路有关。 黑质为重要的运动和感知调节中枢,是脑内合成多巴胺的主要核团,与背侧基底核、底丘脑构成基底运动环路[21],可能通过多巴胺能神经与IS引发的震颤等运动障碍相关。为明确DGMI在黑质脑区抗CIRI的作用通路,本研究通过建立小鼠大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)模型,模拟急性IS时脑内局灶性缺血缺氧的状态,利用转录组测序对小鼠脑样本进行测序,并结合生信分析鉴定DGMI在黑质脑区抗脑缺血损伤的作用通路及功能效应,为深入探索其作用机制提供思路。 1 材料 1.1 动物 SPF级雄性C57BL/6小鼠,6~8周龄,体质量18~22 g,购自南京市江宁区青龙山动物养殖场公司,生产质量合格证SCXK(浙)2019-0002。动物于江苏康缘药业有限公司动物房普通清洁级环境中适应性饲养1周,温度(24±2)℃、12 h光昼交替,自由进食饮水。动物实验经江苏康缘药业有限公司动物委员会批准(批号2023110101)。 1.2 药品与试剂 DGMI(商品名为尤赛金,国药准字z20120024,批号220703)由江苏康缘药业有限公司提供;银杏叶提取物761(Ginkgo biloba extract-761,EGb-761,商品名为金纳多,3.5 mg/mL,国药准字HC20181022,批号P6001)由台湾济生医药生技股份有限公司提供;1800AA型小鼠硅胶线栓购自广州佳灵生物有限公司;舒泰50(货号BN8G4VA)购自法国维克公司;2,3,5-氯化三苯基四氮唑(2,3,5-triphenyltetrazolium chloride,TTC,批号BCCJ6488)购自美国Sigma公司;RNA提取试剂盒(批号AM90890A)购自日本Takara公司;Qubit RNA BR Assay kit(批号2506001)、Qubit 1X dsDNA HS assay kit(批号2483579)购自美国Invitrogen公司;Illumina Poly(A) Capture(批号20733163)、Illumina RNA Prep Ligation(批号20723247)、IDT for Illumina RNA Index Anchors(批号20717954)、IDT for Illumina DNA/RNA UD Indexes(批号20739487)、NextSeqTM 2000 P3 300循环试剂盒(批号20751014)购自美国Illumina公司;RNA Screen Tape(批号02020849-192)、RNA Screen Tape缓冲液(批号0006698095)、D1000 Screen Tape(批号0202853-39)、D1000试剂(批号0006739609)购自美国Agilent公司。 1.3 仪器 DOM-1001型显微镜、RFLSI ZW型激光散斑血流成像系统(深圳市瑞沃德生命科技有限公司);PY-SM5(LCD)型LCD高精度智能温控器(余姚市品益电器有限公司);NanoDrop分光光度计(美国Thermo Fisher Scientific公司);4150型TapeStation自动化电泳系统(美国Agilent公司);Qubit 4.0型核酸定量仪(美国Invitrogen公司);NextSeqTM 2000型测序仪(美国Illumina公司)。 2 方法 2.1 动物分组、造模及给药 小鼠适应性饲养5 d后,随机分为假手术组、模型组、DGMI(25 mg/kg)组及EGb-761(100 mg/kg)组,为确保各组术后存活10只小鼠,假手术组设置10只,模型组设置16只,EGb-761组和DGMI组设置14只。 小鼠ip舒泰50麻醉后,参照LONGA法[22]复制MCAO模型。用线栓阻塞小鼠大脑中动脉血流,缺血1 h时,拔出线栓恢复血流,进行再灌注,并结扎颈外动脉剪口。假手术组小鼠进行颈动脉暴露处理,但不插入栓线。手术过程室温控制在(26±1)℃,术后使用加热垫等设备维持小鼠体温保持37 ℃。线栓进入后,将小鼠俯卧位固定,纵向剪开头皮,充分暴露颅骨,置于激光散斑血流成像系统下进行血流检测,确保造模成功。采用RFLSI Analysis v2.0.29.26606软件分析数据,在缺血侧及对侧一致位置添加相同的区域,得到脑血流量统计结果。对造模小鼠进行筛选,排除造模不成功、大出血、蛛网膜出血及过早死亡的小鼠,最终纳入统计的共有40只小鼠,每组分别10只。 基于本课题组预实验结果,DGMI对小鼠MCAO模型术后24 h脑梗死面积改善程度的最佳剂量为25 mg/kg。因此,本研究采用25 mg/kg剂量开展DGMI的药效评价。DGMI组术后30 min ip药物(DGMI以生理盐水将稀释成2.5 mg/mL的溶液),EGb-761组术前1 h ip药物,假手术组和模型组ip等体积生理盐水。 2.2 神经功能评分与脑组织TTC染色 小鼠再灌注24 h后进行改良版神经功能缺损评分(modified neurological severity score,mNSS)[23]。评分后取血,迅速取脑组织,?20 ℃冰箱中冷冻15 min,随后将冷冻后的脑组织切成厚度为2 mm的冠状切片共6片,使用2% TTC染液于37 ℃恒温水浴锅中避光染色10 min,用4%多聚甲醛溶液对脑片进行固定,24 h后拍照。使用Image-Pro Plus 6.0软件计算脑梗死面积。 脑梗死面积=白色缺血面积/总面积 2.3 脑黑质RNA提取和转录组测序 取小鼠脑黑质,每组4个样本,经高速冷冻研磨机粉碎成匀浆后,按照RNA提取试剂盒说明书提取RNA。经过RNA质量控制后,筛选3个符合条件的样品,按照Illumina文库制备体系,完成文库的构建稀释与上机测序。 2.4 转录组数据分析 2.4.1 转录组数据处理与质量分析 利用Trimmomatic[24]软件对测序数据进行滤过,获取高质量的数据信息,直接从基因组网站下载参考基因组和基因模型注释文件,使用HISAT2[25]和String Tie[26]软件将clean reads与参照基因组进行比对和拼接。 2.4.2 降维分析与模型评价 将各组数据进行降维分析,主要分为主成分分析和tSNE降维分析,比较各组离散程度。 2.4.3 差异表达基因(differentially expressed genes,DEGs)筛选 采用DESeq[27]软件包对各组细胞的基因表达量进行差异分析,模型组DEGs以模型组vs假手术组筛选,给药组DEGs以给药组vs模型组筛选,筛选标准为|log2差异倍数(fold change,FC)|≥2且Padjust≤0.05。 2.4.4 基因集富集分析(gene set enrichment analysis,GSEA) GSEA通路富集分析不局限于某些目标基因集,而是从所有基因的表达丰度出发,分析在不同的通路中的基因的整体表达影响,理论上更容易囊括细微但协调性的变化对生物通路的影响。参照徐小波等[28]研究,计算药物干预后表达趋势逆转的通路数与模型组特征通路总数的比值(响应值),并评价药物抗脑缺血再损伤的能力。 2.4.5 基因本体(gene ontology,GO)功能及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析 运用R语言limma[29]软件包对差异基因进行GO功能和KEGG通路富集分析,并用R语言将相关信息可视化。GO功能包括生物学过程(biological process,BP)、细胞组分(cellular component,CC)和分子功能(molecular function,MF)。使用超几何检验进行富集分析。FDR校正的P≤0.05被认为显著富集。 2.5 qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]验证关键基因表达 按照试剂盒说明书提取脑黑质中总RNA并合成cDNA,进行qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]分析。采用2?ΔΔCt法计算相关关键基因表达。溶质载体家族6成员A3(solute carrier family 18 member A3,Slc6a3)、钙调蛋白样4(calmodulin like 4,Calml4)、G蛋白亚基γ14(G protein subunit gamma 14,Gng14)、C-C基序趋化因子2(C-C motif chemokine ligand 2,Ccl2)、色氨酸羟化酶2(tryptophan hydroxylase 2,Tph2)、C-X-C趋化因子1(C-X-C motif chemokine ligand 1,Cxcl1)、β-actin引物序列见表1。 图片 2.6 统计学分析 实验结果使用Graghpad prism 9.0软件进行统计分析。两组间比较采用独立样本t检验,组间多重比较采用单因素方差分析(One way ANOVA)和Dunnett-t检验,数据以表示。 3 结果 3.1 脑血流成像结果 通过脑血流仪监测小鼠脑皮质血流量变化,如图1和表2所示,发现插入线栓缺血时,与假手术组比较,各组小鼠手术缺血侧脑皮质血流量均显著降低(P<0.001),表明缺血造模成功,建立的小鼠MCAO脑缺血再灌注模型稳定可靠。 图片图片 3.2 DGMI对MCAO模型小鼠的药效评价 3.2.1 DGMI对MCAO模型小鼠mNSS的影响 脑缺血再灌注后24 h,各组小鼠mNSS结果见图2,假手术组为0分,无神经功能损伤;与假手术组比较,模型组小鼠mNSS显著升高(P<0.001),神经功能损伤严重;与模型组比较,各给药组mNSS显著降低(P<0.01、0.001)。表明MCAO造模可导致小鼠神经功能受到损伤,引起小鼠行为学发生变化;EGb-761和DGMI可显著改善小鼠缺血再灌注造成的神经功能损伤。 图片 3.2.2 DGMI对MCAO模型小鼠脑梗死面积的影响 如图3所示,TTC染色后,假手术组脑切片呈均匀的红色,模型组脑切片缺血侧有明显的白色梗死部位;与模型组比较,各给药组小鼠脑梗死面积 显著减小(P<0.001)。表明DGMI和EGb-761可显著改善小鼠脑梗死面积,对小鼠脑梗死有一定治疗作用。 图片 3.3 转录组测序分析 3.3.1 转录组测序数据质量分析 在建立的测序文库中,超过Q30的比例在94%以上,对测序数据中reads进行滤过后,数据质量控制结果显示,与参考基因组的序列比对率在70%以上,表明测序结果较好。 3.3.2 降维分析与模型评价 经主成分分析发现,假手术组和模型组明显分离(图4-A)。对各组进行tSNE降维分析,发现DGMI组与模型组明显分离(图4-B)。 图片 3.3.3 DEGs分析 如图5-A~C所示,与假手术组比较,模型组共筛选得到88个差异表达基因(differentially expressed genes,DEGs),其中78个基因上调,10个基因下调。与模型组比较,DGMI组有21个基因上调,108个基因下调;EGb-761组有92个基因上调,84个基因下调。分别对模型组和DGMI、EGb-761组的DEGs取交集,如图5-D所示,DGMI组与模型组共有32个差异基因重合,EGb-761组与模型组共有31个差异基因重合,三者共有10个DEGs重合。 图片 图6中展示了EGb-761组、DGMI组和模型组DEGs重叠部分的热图,共53个DEGs。可以发现,这部分DEGs在给药后有不同程度的逆转。此外,在Lv等[30]通过131个小鼠和39个大鼠样本MCAO模型筛选出的15个共同DEGs中,模型组DEGs中有活化转录因子3(activating transcription factor 3,Atf3)、组织基质金属蛋白酶抑制剂1(tissue inhibitor of metalloproteinases 1,Timp1)、分化抗原14(cluster of differentiation 14,Cd14)、半乳糖结合凝集素3(lectin, galactoside-binding, soluble 3,Lgals3)、血红素加氧酶(heme oxygenase 1,Hmox1)、Ccl2、上皮膜蛋白1(epithelial membrane protein 1,Emp1)、热休克蛋白家族B成员1(heat shock protein family B member 1,Hspb1)、血小板反应蛋白基序1型去整合素和金属蛋白酶(a disintegrin and metalloproteinase with thrombospondin motifs 1,Adamts1)、波形蛋白(vimentin protein,Vim)共10个基因重合(66.7%)。Lv等[30]发现的与人类卒中易感基因联系最强的基因Adamts1、锌指蛋白(zinc finger protein 36,Zfp36)、核因子κB抑制剂zeta(nuclear factor kappa B inhibitor zeta,Nfkbiz)、Ccl2和Hmox1中,本研究模型组中也有3个重合。 图片 3.3.4 GSEA结果 如图7所示,GSEA结果显示,与假手术组比较,模型组表达相反的通路有35条,定义这些通路为模型组的特征通路;DGMI与模型组趋势相反的通路有7条,如帕金森症、色氨酸代谢、嘧啶代谢等通路,响应值为20%左右。 图片 3.3.5 DEGs的GO功能富集分析 为明确小鼠MCAO造模及药物干预后所涉及的生物学功能变化,对模型组和DGMI组小鼠脑组织DEGs进行GO功能富集分析,见图8。结果显示,模型组主要富集在细胞对白细胞介素-1和γ干扰素的反应、趋化因子互作和免疫细胞的浸润等BP,细胞外空间、细胞外区域等CC,趋化因子受体结合等MF。DGMI干预后,主要富集在分泌颗粒、神经肽激素信号通路等BP,细胞外空间与区域,多巴胺能神经突触等CC,S100蛋白结合、激素与神经肽激素等MF。 图片 3.3.6 DEGs的KEGG通路富集分析 为明确DGMI对MCAO模型小鼠KEGG通路的影响,基于获得的DEGs进行KEGG通路富集分析,见图9。结果显示,模型组前15条KEGG通路主要与炎症、凋亡和免疫反应相关,富集在细胞因子-细胞因子受体相互作用、肿瘤坏死因子(tumor necrosis factor,TNF)信号通路、白细胞介素-17(interleukin-17,IL-17)信号通路、趋化因子信号通路、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路等。DGMI组KEGG通路主要富集在神经活性配体-受体作用、多巴胺能神经突触等。 图片 进一步分析发现,模型组KEGG通路中出现频率较高(≥3)的关键差异基因为Ccl12、Ccl2、Cxcl1等,见表3。DGMI组KEGG通路中出现频率较高(≥3)的关键差异基因是Gng14、Slc6a3、Calml4等,见表4。 图片 Ccl12、Ccl2与免疫细胞趋化浸润脑区有关,Gng14编码的蛋白质参与G蛋白偶联受体通路,而Slc6a3、Calml4与多巴胺在脑内的转运分泌密切相关,提示DGMI治疗IS可能与多巴胺能信号通路密切相关。 3.4 qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]验证关键基因表达 对模型组和DGMI组部分关键基因表达进行qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]验证,如图10所示,与对照组比较,模型组小鼠脑组织Slc6a3、Tph2基因表达水平显著降低(P<0.001),Calml4、Ccl2、Gng14、Cxcl1基因表达显著升高(P<0.05、0.01、0.001);与模型组比较,DGMI组小鼠脑组织Slc6a3、Tph2基因表达显著升高(P<0.01、0.001),Calml4、Ccl2、Gng14、Cxcl1基因表达显著降低(P<0.05、0.01、0.001)。6个基因表达量的qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测结果均与转录组测序结果一致;值得注意的是,Calml4和Gng14 2个基因通过qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]和转录组测序方法获得的表达量在3个受试样本间差异较大,这可能是由于2种检测方法对基因的检测区域不同产生的,因此说明qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测对RNA-seq结果验证的必要性。总之,综合qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]与转录组测序结果,DGMI可能通过影响炎症和多巴胺相关通路改善IS。 图片 4 讨论 目前,银杏叶提取物作为天然药物产物,已被证明具有抗炎、抗氧化等多种药理作用,可以有效治疗IS。DGMI是国内常用的银杏叶提取物制剂之一,目前虽然在临床前和临床研究上都获得一定成果,但是其治疗IS的作用机制尚缺乏深入的探索。在DGMI作用机制探索的初期首先面对3方面主要的问题。第一,缺乏机制研究方向的指导。面对此问题,在组学水平,例如采用转录组测序方法,获得与疾病进程和发展相关,以及药物治疗途径相关的必要信息,将对后续针对性及更深入的研究提供方向指导。第二,对于IS,临床实验样本的获取比较困难,使得目前相关研究集中在细胞和动物实验,目前关于DGMI在动物IS实验上的转录组测序还没有相关研究内容发表以作参考。第三,由于大脑功能的实行分区域进行,且十分复杂,采用全脑均质化样本进行检测难以对获得的结果进行解析,取特定的脑区进行研究可以更精准地反映疾病和药物对脑特定的功能结构造成的变化影响。 4.1 多巴胺能神经、黑质与卒中炎症 CCL2基因编码的单核细胞趋化蛋白,可以吸引单核和淋巴细胞。CCL2/CCR2趋化因子信号通路在卒中急性期中呈现促炎作用[31],临床试验和动物实验都证明CCL2基因高表达是IS的危险因素,而且在临床上CCL2可作为多种卒中亚型急性期的标志物[32-33]。CCL2因子可由小胶质细胞促炎亚型分泌,CCL2还可能与其他趋化因子共同作用,在急性期介导CD8+ T细胞在脑中的活化和浸润[34]。不过在急性期后的慢性期,CCL2可能有利于促进血管生成和卒中恢复[35]。卒中后活化的星型胶质细胞等分泌的CXCL-1是中性粒细胞趋化因子,可以募集中性粒细胞浸润脑区。中性粒细胞会通过胞外诱捕网等方式进一步加剧卒中[36-38]。 DGMI组和模型组黑质脑区DEGs的KEGG以及GO结果显示,DGMI治疗IS可能和多巴胺能神经相关,尤其是多巴胺的转运和代谢。溶质载体蛋白(solute carrier,Slc)是一类跨膜转运蛋白,Slc18a2基因调控的囊泡单胺转运蛋白2(Vesicular monoamine transporter 2,VMAT2)依赖于质子浓度,介导多巴胺在突触前神经元中从胞质溶胶进入囊泡储存[39-41],囊泡经突触小泡循环将多巴胺运至突触前膜附近,释放多巴胺进入突触间隙,多巴胺结合突触后膜的受体后失活,而Slc6a3调控的多巴胺转运蛋白1(dopamine transporter1,DAT1)位于突触前末梢周围,依赖于Na+/Cl?从突触间隙再摄取多巴胺至突触前末梢[42]。包括多巴胺、乙酰胆碱在内的多种神经递质的受体为G蛋白偶联受体,小鼠Gng14编码的蛋白为G蛋白γ亚基,与人类GNG14同源,Gng14可能通过调节G蛋白亚基发挥作用,而Calml4是钙调蛋白,通过与钙离子结合作用于钙离子信号通路对下游信号产生影响。TPH2是5-羟色胺(5-hydroxytryptamine,5-HT)合成的关键酶,同时也会影响多巴胺的浓度,涉及其转运与代谢[43]。 多巴胺能神经元控制着脑内的奖赏系统、成瘾性以及运动功能[44],还能调控疼痛和神经炎症[45-46]。黑质-纹状体通路是主要的多巴胺能通路之一

  • 小动物心电图监测仪特点

    [url=http://www.f-lab.cn/vivo-imaging/ecgenie.html][b]小动物心电图监测仪小动物心电图监测仪[/b]ECGenie[/url]是快速无创记录大鼠心电图,清醒小鼠心电图和豚鼠心电图ECG的动物心电图仪和动物心电图记录仪 ,广泛用于实验鼠类心律失常检测,健康监测以及脆弱的转基因和敲除基因动物监测,包括新生幼犬的药物筛选等。小动物心电图监测仪ECGenie记录2KHZ的心电信号,小鼠心电图的快速提供最佳保真度的时间间隔的持续时间(例如,一个~ 8毫秒QRS间期)。小动物心电图监测仪ECGenie具有专利技术,通过动物的爪子进行非侵入性检测心脏电活动。的大小和可支配的踏板电极间距便于电极和爪子之间的接触提供实验动物的II导联心电图。ezcg分析软件,通过鼠标的细节设置,分析信号来评估动物的健康,心脏疾病,药物毒性。[img=小动物心电图监测仪]http://www.f-lab.cn/Upload/ECGenie-ECGs.jpg[/img]小动物心电图监测仪ECGenie特点:新型铅板信号• 小鼠和较大啮齿类动物的“快速连接”可互换平台• 一次性踏板电极• 高通和低通滤波• SCSI和USB接口连接Windows和MacOS计算机无麻醉-无植入物-无手术ezcg分析软件的特点:ezcg规范PDF下载• 解释心电图从意识活动的小鼠,大鼠,豚鼠公布的心率和血压持续时间的算法• 自定义包含客户特定的算法,包括QT间期• 用于多个电子表格应用程序的HTML和文本格式输出[img=小动物心电图监测仪]http://www.f-lab.cn/Upload/ECGenie-ECGs-signal.jpg[/img]小动物心电图监测仪:[url]http://www.f-lab.cn/vivo-imaging/ecgenie.html[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制