当前位置: 仪器信息网 > 行业主题 > >

单分子双光子显微镜

仪器信息网单分子双光子显微镜专题为您提供2024年最新单分子双光子显微镜价格报价、厂家品牌的相关信息, 包括单分子双光子显微镜参数、型号等,不管是国产,还是进口品牌的单分子双光子显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单分子双光子显微镜相关的耗材配件、试剂标物,还有单分子双光子显微镜相关的最新资讯、资料,以及单分子双光子显微镜相关的解决方案。

单分子双光子显微镜相关的资讯

  • 950万!中国药科大学双光子荧光寿命显微镜和分子互作仪采购项目
    一、项目基本情况1.项目编号:WJK24035(代理编号)项目名称:中国药科大学双光子荧光寿命显微镜采购项目预算金额:500.000000 万元(人民币)最高限价(如有):500.000000 万元(人民币)采购需求:南京建凯建设项目管理有限公司(以下简称“招标代理机构”)受中国药科大学(委托单位名称,以下简称“招标人”)委托,就其中国药科大学双光子荧光寿命显微镜采购项目(招标项目名称)进行公开招标,兹邀请符合资格条件的供应商投标。2.项目编号:DCHKZB016240055(校内编号)NJJC-2022ZFCG0307(G)(代理机构编号)项目名称:中国药科大学分子互作仪预算金额:450.000000 万元(人民币)最高限价(如有):450.000000 万元(人民币)采购需求:为满足教学与科研工作的需要,中国药科大学拟采购1套分子互作仪,具体内容详见招标文件“第四章 采购项目需求”。合同履行期限:国产货物:合同签订后三个月之内交付;进口货物:收到信用证或发货通知后八周内交付本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年04月25日 至 2024年04月30日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:请供应商在公告附件下载《供应商报名登记表》,并将填好的登记表发送至邮箱:jiankaijs@126.com,登记表包含如下内容,具体详见登记表格式内容: (1)营业执照副本复印件并加盖公章; (2)法定代表人授权委托书原件(包含授权委托人联系电话)并加盖公章; (3)付款凭证。 售价:500元/份,售后不退。方式:请供应商在公告附件下载《供应商报名登记表》,并将填好的登记表发送至邮箱:jiankaijs@126.com,登记表包含如下内容,具体详见登记表格式内容: (1)营业执照副本复印件并加盖公章; (2)法定代表人授权委托书原件(包含授权委托人联系电话)并加盖公章; (3)付款凭证。 售价:500元/份,售后不退。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国药科大学     地址:南京市江宁区龙眠大道639号        联系方式:陆老师、马老师:025-86185029、13774209736      2.采购代理机构信息名 称:南京建凯建设项目管理有限公司            地 址:江苏自贸区南京片区江浦街道浦口大道1号新城总部大厦B座515室            联系方式:陈工:17301480661            3.项目联系方式项目联系人:陈工电 话:  17301480661
  • 首款可探测紫外自体荧光团的新型双光子显微镜
    中国科学院深圳先进技术研究院生物医学与健康工程研究所研发团队研发了首款短波长激发时间与光谱分辨新型双光子显微镜,该显微镜创新性地采用中心波长为520 纳米的锁模飞秒光纤激光器作为双光子激发光源,可以有效地激发短波长波段荧光团,利用连接光谱仪的时间相关单光子计数模块,可实现荧光光谱和荧光寿命的同时检测。该技术可以实现紫外波段自体荧光的有效激发与探测,极大地拓展了双光子成像技术的应用范围,为无创观测生物样品及生命过程提供了一种新的研究工具。该成果于近日发表于生物医学光学领域知名期刊《生物医学光学快报》上。生物体中,普遍存在着具有内源性荧光团的生物分子,内源性荧光团的三维成像可以在不干扰生物环境的情况下对重要生物过程进行无创体内检查,如代谢变化、形态改变和疾病进展,是组织成像和跟踪细胞代谢过程的有力工具。双光子显微镜具有天然的光学切片能力,无需物理切割就可以实现生物组织的三维高分辨成像。双光子显微镜跟内源性荧光团的结合可以实现活体生物组织无标记成像,对很多生命活动的研究具有非常重要的意义。然而,传统的双光子显微镜是以钛宝石激光器作为光源,只能对可见光波段的内源性荧光团进行探测,很难探测到信息更丰富的短波长荧光团。 深圳先进院郑炜团队首次研制出采用520纳米超快激发源搭建光谱分辨的双光子荧光寿命成像系统,可以有效激发和探测传统双光子显微系统无法成像的一系列短波长荧光团。为了验证该系统的实用性,研究团队首先系统地评估了生物组织中典型的短波内源性荧光团纯化学样品在520纳米激发下的荧光寿命和光谱特性,包括荧光分子酪氨酸、色氨酸、血清素、烟酸、吡哆醇和NADH,以及角蛋白、弹性蛋白和血红蛋白。 随后,研究团队对不同的生物组织进行了成像,包括离体大鼠食管组织和离体大鼠口腔面颊组织。结果表明,该系统可以在不需要任何外加造影剂的情况下,为生物系统提供高分辨率的三维形态信息和物理化学信息。此外,研究人员探索了短波长的内源性荧光团在食管壁中的分布,结果表明,该系统可以很清晰展示食管的不同分层结构。结合寿命和光谱信息,系统可以明确识别食管内部多层结构的不同信号来源,定量区分不同组织成分在食管壁的位置和数量,区分食管分层结构。 最后,研究团队进一步对小鼠皮肤进行了活体三维扫描成像,并基于短波内源荧光团在体内捕获了小鼠耳廓内白细胞的迁移,实现了典型免疫反应微环境中白细胞募集和变形运动的动力学过程的可视化,以及随时间的荧光寿命测量。“紫外荧光强度图像可以显示生物组织的精细结构,紫外荧光寿命信息可以区分红细胞和白细胞,两者结合可以无标记追踪免疫细胞在伤口和正常组织的运动情况,这些结果验证了我们开发的系统在天然组织环境中监测免疫反应的能力。”郑炜介绍。深圳先进院医工所助理研究员吴婷为文章第一作者,深圳先进院医工所郑炜研究员、李慧副研究员,北京大学物理学院施可彬研究员为共同通讯作者
  • 北大程和平院士团队自研空间站双光子显微镜登上中国空间站
    神舟十五号航天员乘组日前使用由我国自主研制的空间站双光子显微镜开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。  人脑包含百亿级神经元和百万亿级的神经突触,其结构和功能上极其复杂精密的连接和相互作用,是意识和思想涌现的物质基础。为了能清晰看到活体大脑里面的神经元、神经突触的结构和信号,科学家们需要借助双光子显微镜。当代前沿的脑科学研究希望在大脑正常工作时、在自由活动的动物上观察大脑神经元变化,然而,体积重量庞大的传统双光子显微镜难以满足这种在体实时观察神经元信号的需求。  “如何才能创造出一种显微镜,能够在小动物自由行走的条件下,看到一颗一颗神经元,一闪一闪的动态变化,这是藏在我心底的一个梦想。”中国科学院院士、北京大学国家生物医学成像科学中心主任、北京大学未来科技学院教授程和平如是说。  2019年,在中国载人航天工程办公室大力支持下,由北大程和平、王爱民团队,中国航天员科研训练中心李英贤团队,北京航空航天大学冯丽爽团队联合相关企业及院所组建空间站双光子显微镜项目团队,程和平担任总负责人。项目组攻克多项显微镜小型化技术难题,于去年9月成功研制空间站双光子显微镜。  去年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。近日,神舟十五号航天员乘组完成了双光子显微镜的安装、调试和首次成像测试,成功获取了在轨状态下航天员脸部和前臂皮肤的在体双光子显微图像。  项目团队成员、北京大学未来技术学院助理研究员王俊杰介绍,空间站双光子显微镜能以亚微米级分辨率清晰呈现出航天员皮肤结构及细胞的三维分布,具备对皮肤表层进行结构、组分等无创显微成像的能力。成像结果显示,皮肤的角质层、颗粒层、棘层、基底细胞层、真皮浅层等三维结构清晰可辨。双光子显微成像的信号来源于细胞及胞外基质中具有自发荧光的物质,这些信号有助于实现对航天员细胞线粒体代谢应激反应功能探测。通过对具有自发荧光的细胞代谢产物的量化观测可以反映出航天员机体代谢功能。  程和平表示,空间站双光子显微镜是体现我国高端精密光学仪器制造水平的重要成果。“此次在轨验证实验实现了多项第一,例如世界上首次实现双光子显微镜在轨正常运行;国内首次实现飞秒激光器在轨正常运行;国际上首次在轨观测航天员细胞结构和代谢成分信息。这些不仅为从细胞分子水平开展航天员在轨健康监测研究提供了全新工具和方法,也为未来利用中国空间站平台开展脑科学研究提供了重要的技术手段。”
  • 微型化双光子显微镜研制十年路
    今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。 在南京脑观象台投入使用的微型化双光子显微镜成像系统。  “第三次双光子显微镜测试顺利结束!”  “无比完美!”  “这一次的曲线如此丝滑!”  ……  4月1日上午,中国科学院院士、北京大学未来技术学院教授程和平的微信对话框,被同事们发来的这些评论不断刷新。而在中国航天员科研训练中心内,掌声此起彼伏。让大家欢欣鼓舞的,是中国空间站再次传来的好消息。  当日,神舟十五号航天员乘组,使用空间站双光子显微镜进行成像测试。他们用探头轻轻掠过脸部和前臂,一旁的电子屏幕上立即显示出皮肤结构及细胞的三维分布影像。  这不是显微镜第一次在轨成像测试。今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。  “如果能从这些图像中发现空间环境中人体变化规律,就更好了!”程和平捧着手机与记者分享这些科学图像时说。  只有了解程和平团队十年来经历的艰难曲折,才能体会这些图像的来之不易。2013年,程和平带领团队开启微型化双光子显微镜研究时,“全世界都不看好”。  历经10年,该团队完成了从科研仪器技术创新,到技术产品化,再到技术服务平台化的跃迁。他们将中国带到全球大脑成像研究的前沿,让微型化双光子显微镜在中国的高校院所、企业得到推广应用,为脑科学研究搭建起重要实验平台、提供了海量数据支持。  程和平希望,用微型化双光子显微镜拓展人类对脑宇宙的认知疆域,为探索脑机接口原理、深化对大脑疾病机制的了解、推进药物研发开辟一片新天地。神舟十五号航天员乘组在轨使用空间站双光子显微镜(视频截图)  一束光的启迪  意识的生物学基础是什么,记忆是如何存储和恢复的……在世界各国的脑科学计划中,这些问题吸引着全球科学家们不断上下求索。  在2021年国际权威学术期刊《科学》发布的125个最前沿的科学问题中,有22个问题与脑科学相关。  双光子显微镜的出现,仿佛是照在生命科学研究领域的一束光。  1992年,程和平用世界上第二台双光子显微镜,首次实现了心肌线粒体成像。  “双光子显微镜,是用两个光子同时激发同一个荧光分子的光学成像技术。它具有天然的光学断层扫描效果,能看到的组织深度更深,成像的清晰度更高,像一个高性能的X光机。”程和平说,与单光子显微镜相比,双光子显微镜看得准、看得深、光损伤小。但传统的台式双光子显微镜非常笨重,足有房间那么大,所以只能观察头部固定的动物或者动物的脑切片。  研究一款微型化双光子显微镜,观察自由行走的小动物脑袋中的一颗颗神经元的动态变化,成为程和平藏在心底的一个梦想。  一个梦想的点燃,有时只需一个使命的召唤。  2013年,国家自然科学基金委员会启动了国家重大科研仪器研制项目。程和平带队申请了“超高时空分辨微型化双光子在体显微成像系统”项目。  那一年,美国启动“创新性神经技术推动的脑计划”,欧盟启动了旨在建立大型脑科学研究数据库和脑功能计算机模拟平台的“人脑计划”。  而此前,我国在《国家中长期科学和技术发展规划纲要(2006—2020年)》中,已把“脑科学与认知”列入基础研究8个科学前沿问题之一。  “中国科学家只有用自己研发的观测仪器,做出原创性的脑科学成果,国际科学界才会认可。我们希望研制一款成像仪,率先让中国科学家用起来。用国外的仪器做研究,都是在别人建设的四梁八柱上做文章。”程和平用使命必达的决心来筹备项目的启动。  一场跨越山海的探索  想实现双光子显微镜在自由活动的动物体上的高清成像,必须为它“瘦身”。  然而,极大的技术难度,让团队一度面临质疑。程和平向科技日报记者坦言,7200万元的投入“相当于一吨百元大钞”,究竟能不能收获一个看得见的未来,大家当时心里很忐忑。“那时世界多国尝试微型化双光子显微镜的研制,但都没有实质性突破,尝试十几次都无疾而终。”他说。  程和平所言非虚。2008年,瑞士有课题组公布了他们的微型双光子系统,仅重0.9克,并实现了大鼠在体钙成像信号。但其空间分辨率极低,也未实现真正的自由运动下的成像。  2009年,德国有课题组展示了它们的微型双光子系统,其理论分辨率接近大型的双光子显微镜。但其探头较重,扫描速度很慢。  程和平身后,有一支不同寻常的团队,团队中有人研究超快激光器,有人专攻高速电路,有人擅长图像处理,有人能做大数据分析……然而,研究起步阶段,团队中无人具备研制系统性科研设备的经验,技术路线也不确定。  “怎么办?只有一点点地认真做。”程和平给团队立下军令状。  在项目开始的前两年,大家争分夺秒地汲取多学科的营养。在北京大学分子医学研究所300平方米的大仪器联合实验室里,来自机械、光学、生物、电路等研究领域的师生汇聚在一起,交流切磋。每周六上午的集体学习,大家分享一周行业动态,介绍各自研究进展。同时,大量的国内外顶尖专家被邀请来作报告。  引进来的同时,团队也频频走出去。仅2014年,他们就涉足美国、俄罗斯、澳大利亚、西班牙。每去一个地方,大家都会在当天晚上写好总结,发给团队共同学习。空间站双光子显微镜对航天员皮肤表层成像。  一场持续十年的攻关  2017年,团队终于迎来了振奋人心的进展。  在如今北京大学膜生物学国家重点实验室设备研发平台内,一个只有拇指大小、重约2.2克的显微镜探头,被珍藏在实验室深处——这是团队于2017年成功研制的第一台微型化双光子显微镜的核心部件。  这台显微镜可以实现高时空分辨微型化成像,能实时记录数十个神经元、上千个神经突触动态信号。这些突破性的进展,使其入选2017年中国科学十大进展。  4年后,该团队推出微型化双光子显微镜的2.0版本,其成像视野扩大到初代显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像。  今年2月,团队又发布了他们研制的微型化三光子显微镜。该显微镜能直接透过大脑皮层和胼胝体,首次实现对自由行为中小鼠的大脑全皮层和海马神经元功能成像,神经元钙信号最大成像深度可达1.2毫米,血管成像深度可达1.4毫米。  致广大而尽精微。10年,微型化双光子显微镜完成了从高清成像,向更广、更深成像的科研布局。然而,这在研制一款“大国重器”的探索之旅中,也许仅仅是开始。  2016年,当第一代微型化双光子显微镜的研究即将“破土”时,一个声音再次在程和平脑海里回响,“如果投入‘一吨百元大钞’,只是交付3台显微镜,性价比太低了。应该先让中国科研院所、企业的实验室用起来,做出领先国际的研究,再向国际市场推广。”  让程和平下定决心办公司的,还有3年来培养起来的一支团队。“国家投入这么大,让我们长了一身本事,项目结题后如果团队散了就太可惜了。”程和平说。  办公司让研究成果产品化,成为程和平团队的共识。2016年,程和平团队创立了北京超维景生物科技有限公司(以下简称超维景)。  一个新时代开启了。  一场自立自强的产业突围  当科学技术的光芒照进产业,不仅砥砺技术创新的成色,也可以点亮一片“暗夜”。要将高端精密科研仪器产品化,元器件的可靠性、稳定性必须过硬。  微型物镜,是微型化双光子显微镜的关键核心零部件。团队核心成员、北京大学未来技术学院特聘副研究员吴润龙记得,最初做原理样机时,团队从国外一家公司进口微型物镜。  但当团队进入显微镜产品化阶段后,对方的发展战略也发生变化。“对方要求我们购买他们合作伙伴的单光子显微镜系统,物镜不再单独售卖,而这个系统的价格要100多万元。代价太大,我们不能被‘卡脖子’。”吴润龙说,自此,团队开始自行设计高数值孔径的微型物镜,并联合国内企业加工,在超维景进行装配和测试。  自胜者强。2018年,赵春竹到北京大学未来技术学院做博士后研究,为助力物镜的自主研发按下了快进键。  “经过三代技术攻关,我们已经掌握了高端物镜的设计技术。但在自主设计、加工的基础上,还要形成高精度自主装配的流程和方法。微型物镜由多个镜片叠加而成,每片直径约3毫米,最初我们将所有的镜片一起装配完后,统一调试,但发现精度相差太大。后来,我们优化了装调工艺,每安装一片镜片,都用仪器检测光轴偏移量、焦距等参数。由于物镜直径太小,一开始,调整几微米的误差,都要耗时一两天。”赵春竹回忆,最艰难的时候,大家几乎绝望。但抱着不破楼兰终不还的信念,大家几微米几微米地死磕,想办法迭代技术,最终攻克了高端微型物镜装配技术。  光纤是显微镜微型化的另一个瓶颈。团队成员、北大电子学院副教授王爱民设计了一款蜂窝状的空芯光子带隙光纤,让激光通过光纤传输到微型化探头的过程中,脉冲不发生畸变、能量几乎不损耗,以有效激发小动物体内的荧光分子。  但让王爱民措手不及的是,设计方案有了,国内却没有厂家能生产这种光纤。“我们最初找了一家外国公司订制。但一年后,这家公司提出翻番的价格,每米光纤的价格接近万元,仅光纤的成本就增加了几百万元。”他回忆说,团队被“逼上梁山”,转而联袂上海光机所的一位青年学者一起摸索加工工艺,进行国产化。  在北京大学未来技术学院教授陈良怡看来,科研仪器国产化过程中的突围,也将带动应用基础研究与产业发展“双向奔赴”。  “我们的论文发表后,很多技术被公开了,但很多人做重复实验时无法再现,是因为加工中有很多细节问题难以解决,这些细节在学术论文中也难以呈现。”陈良怡说,如果想将这款显微镜尽快用起来,就要将科研成果产品化,带动产业的发展。而产品化的过程,也促使他们思考,如何用成像技术推动神经科学、脑科学乃至整个生命科学基础研究的发展。  目前,超维景研制的微型化双光子显微镜已服务了150余家国内实验室,年平均销售额达5000万元。今年,公司还将拓展国际市场。  一项世界首创的应用  10年前项目启动时,程和平抱着“从幼儿园开始读一个博士学位”的心态,研制微型化双光子显微镜。  时光浩荡向前,多年的厉兵秣马是否能支撑国家重大战略需求?团队将答卷写进宇宙苍穹。  2019年,在中国载人航天工程办公室大力支持下,程和平团队、中国航天员科研训练中心李英贤团队、北京航空航天大学冯丽爽团队联合相关企业及院所,组建了空间站双光子显微镜项目团队,由程和平担任总负责人。  “中国要发展载人航天、要研究生命科学,太空是一个难得的实验室。在失重环境下,人体细胞是如何完成新陈代谢的,大脑的神经元又将发生什么变化,都是很好的研究课题。双光子显微镜成像深度深,可以帮助我们逐层扫描、分析航天员的细胞结构和代谢成分信息。”程和平说。  2022年9月,空间站双光子显微镜研制成功。当年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。  今年2月上旬的一天,空间站双光子显微镜终于开机。坐在中国航天员科研训练中心看到航天员操作画面传回,程和平松了一口气:“终于成功了。”  消息传来,整个团队沸腾了。“这辈子能做这么一件事情,值了!”王爱民至今回忆起来仍激动不已。  鲜为人知的是,为了达到航天应用的标准,显微镜经历了一次次蜕变。  精密的显微镜,要能承受飞船发射时的剧烈振动,这要求它足够抗振。“最初,激光器的核心部件被振得粉碎。”北京大学未来技术学院助理研究员王俊杰记得,为了让显微镜“强健筋骨”,他们将激光器的核心部件设计为固态结构,以增强激光器的机械强度,同时在激光器外部增加了减震装置,相当于给其上了一层保险。  超维景的团队也参与进来。超维景超快激光事业部经理陈燕川介绍,他们将激光器核心部件置于-40℃至80℃的温度下循环试验,使部件在短期内反复承受极端高低温变化应力以及极端温度交替突变的影响,以排查隐患。为了确保万无一失,团队还制作多组关键部件样品,进行加量级、破坏性的振动冲击试验,保证显微镜能满足航天发射环境各种极端条件的挑战。  最终,团队实现了多项突破:首次在轨验证实验实现了世界上首次双光子显微镜在轨正常运行,国内首次实现飞秒激光器在轨正常运行,国际上首次在轨、在体观测航天员细胞结构和代谢成分信息。  一个梦想的启航  从突破理论研究瓶颈,到试水产业蓝海,再到支撑国家重大战略需求,程和平团队将科技创新的底色写在从技术创新到产业应用的跃迁中。如今,一个更宏大的构想正在渐次舒展。  在南京江北新区,成立近4年的北大分子医学南京转化研究院(以下简称转化院),已搭建起高端脑成像的公共技术服务平台“南京脑观象台”。后者可以提供微型化双光子显微镜、超灵敏结构光超分辨显微镜及高速三维扫描荧光成像系统等设备,帮助科研团队获得从大脑突触、神经元集群、神经环路,再到全脑水平的全景式脑功能成像。  科研团队的身后,还有一群人与他们并肩作战。  几乎每天,实验员陈雪莉都要为小鼠注入观测所需的荧光蛋白,对小鼠进行行为训练。  当她为小鼠戴上显微镜探头后,一旁的屏幕上会立即呈现出小鼠大脑的钙活动影像。  “脑观象台有一支技术团队。对于遴选通过的研究项目,技术团队会与科研团队一起制订实验计划,为学者们制备、训练小鼠,采集小鼠的脑活动成像数据,再将小鼠的行为学数据和脑活动数据匹配,供科研人员分析小鼠在表现出某种行为时,大脑发生了什么变化。”转化院副院长赵婷解释,脑观象台希望将学者们从繁琐高难的实验技术细节中解放出来,加速从理论设想到实验发现的进程。  凭借南京脑观象台成像技术的支持,科学家们已经开始收获惊喜、成果迭出:小鼠有喜新厌旧的行为,而孤独症小鼠却存在这一行为缺陷;清醒状态下小鼠癫痫发作时,神经元异常放电……  赵婷介绍,如今,脑观象台已经服务了100多家单位的180余个课题组,开机时间累计超过2万小时。脑观象台与江北新区联合发起的两期“探索计划”,也已累计支持48项课题研究。  十年春华秋实。一颗在未名湖畔种下的种子,如今正在千里之外的扬子江畔落地生根、开枝散叶,荫泽全国的脑科学、神经科学等领域的研究。  40多年前,少年程和平曾在他的笔记本上写下带有科幻色彩的理想——“做一款思维记录器”。  跨越万水千山,如今,理想照进现实,中国脑科学研究风华正茂。
  • 宗伟健:新一代微型双光子荧光显微镜(多图)
    p   从石器时代原始部落的祭师对灵魂的崇拜,到中世纪后期哲人对大脑意识的产生溯源,到近代解刨学家发现井然有序的大脑功能分区,再到20世纪初Santiago Cajal得到了人类第一张清晰的大脑皮层神经元的照片,直至现在神经学家通过电生理,电子显微镜,光学显微镜等手段,在亚细胞,分子,基因水平对大脑的结构和功能进行研究,神经科学(neurosciences)这一门古老的学科,直至今日,仍然是全世界投入最大,最活跃的科学研究领域之一。 /p p   限制科学家去理解和探索大脑的最主要因素是技术。每一次神经领域的重大突破,都是以技术的一次次革命与飞跃作为基础随之而来。19世纪末高尔基染色和尼斯染色技术的发明,使得单个神经元的结构得意完整清晰的呈现,并由现代神经学之父圣地亚哥· 拉蒙· 卡哈尔(Santiago Ramon y Cajal,1852-1934)总结并开创了神经元理论,至今仍是现代神经科学的基础。计算机体层扫描(CT)、磁共振成像(MRI)、经颅多普勒(TCD)、单光子发射计算机断层(SPECT)、正电子发射断层扫描(PET)等无创性影像学技术的发展,使得人类对大脑整体水平结构和功能的认识不断提高,并且对于大脑创伤和疾病的治疗提供了有利的参考工具。在实验神经科学领域,以模式动物作为研究对象,避免了把人作为研究对象在有创,改造等伦理方面的限制,使得更多的技术手段得以大显身手。其中包括电生理学方面,脑电图(EEG),多电极记录(MER),膜片钳技术(patch clamp)等技术的发明和有效使用,得以使科学家在亚微米空间尺度(单个神经突触连接),亚毫秒时间尺度(单次神经冲动电位)对神经元的功能进行研究。而最令人激动人心的是,近几年来蓬勃发展的光学显微成像技术,给实验神经科学带来了很多前所未有的思路和成果。2008年钱永健等人由于荧光蛋白(GFP,绿色荧光蛋白)的发现和使用,获得了诺贝尔化学奖,是对荧光成像技术的一次巨大肯定和推动。光学成像本身具有高分辨率、高通量(高速)、非侵入、非毒性等特点,再与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,使得科学家可以特异性的分辨生物体乃至细胞内部不同结构与成分,并且能够在生命体和细胞仍具有活性的状态下(活体状态)对其功能进行动态观察。这就使得荧光成像技术成为了无可替代的,生物学家现今最为重要的技术手段之一。而随着近些年来各种新型的显微技术的出现,共聚焦显微镜(confocal microscopy),相干拉曼成像(CARS),超分辨率显微技术(super-resolution microscopy),光片显微技术(lightsheet microscopy)等使得荧光显微镜的分辨率,速度,成像深度等进一步提高。 /p p   对于荧光成像技术在神经科学中应用,离不开双光子荧光显微镜(Two-photon Microscopy,简称TPM)1。目前,大多数细胞生物学,生理学研究主要还是在离体培养的细胞体系中研究。然而与细胞生物学研究有所不同的是,大脑的功能研究的整体性和原位性显得更加关键:仅研究分离的神经元无法解释神经系统的功能和规律。换句话说,必须要求神经元处在其正常生存的大脑环境中才能使其正常运转。然而,大脑是一个高度复杂的器官。即使是小鼠的大脑皮层也有将近1mm的厚度,海马,丘脑等深脑区核团更是深达3-5mm2,而且并不透明,充满了数以亿计的神经元胞体和突触,此外还有丰富的血管,粘膜(脑膜),最外层还有厚厚的颅骨和头皮包裹。使用包括共聚焦显微镜在内的传统的荧光显微镜,由于被观测的信号会受到样本组织的散射和吸收,根本无法穿透如此深的组织进行成像。而双光子显微镜的发明,则为此类研究带来了希望。双光子显微镜特有的非线性光学特性,再加上其工作波长处在红外区域等特点,令其在生物体组织内的穿透深度大大提高3,使得双光子显微镜成为神经科学家进行活体神经成像最理想的工具。神经动作电位(action potential)本身很难被光学信号捕获,但是动作电位产生的去极化会引起神经元Ca2+浓度的变化(钙内流现象)。科学家已经开发出多种Ca离子浓度的荧光探针,进而通过这种钙离子浓度的变化引起的荧光信号的变化来反映出神经活动。于是,双光子显微镜与在体的神经元Ca离子浓度指示剂标记技术相结合,碰撞出了耀眼的火花: 使得人们可以研究处于生理状态时的动物大脑内的神经元活动4。 /p p   大脑的最重要功能是对生物体的行为活动进行调控,而反过来,最能反应大脑工作状态的同样是生物体的行为活动。所以说,为了了解大脑,研究者不仅要求在体状态下对神经元进行高分辨率观测,而且也希望生物体在被观测的阶段里,能够进行正常的行为活动。所以,在成像技术不断地提高分辨率和速度等性能的同时,科学家们也在积极开改进和革这些成像技术手段,使其进行成像时尽可能小的限制被观测对象的行为活动,以求得到最接近生理状态下的数据。但是这一目标始终存在诸多的技术瓶颈: 以啮齿类动物(大鼠或小鼠)神经元的双光子钙成像为例。早些年由于动物身体运动产生的晃动剧烈,而当时双光子显微镜成像速度又很低,所以科学家只能在麻醉状态下对头部固定的动物进行成像。后来随着成像速度的提高,并且对开颅手术技术的很大改进,使得科学家可以在清醒状态下对动物的神经活动进行观察(仍然需要头部固定)。近些年来,随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium indicator, 简称GECI)”成为神经元钙成像的大趋势4。这种由神经元自身产生钙指示剂的方法与之前的钙染料技术相比有着巨大的优势: 信噪比提升了一个数量级 对神经元特异性好,可以区分不同的神经元类型 并且可以在大脑神经元内持续表达数月(病毒转染)甚至整个生命历程(转基因动物)。于是,大概10年前开始,科学家就开始利用双光子成像结合GECI技术对神经元的活动和结构变化进行长期的观测和追踪,从而对记忆的形成,神经元病变等问题有了更深入的认识。其中,现在性能最好,使用最为广泛的GECI为绿色荧光钙调蛋白Gcamp家族4。目前已经改进到第六代,Gcamp6f,Gcamp6f已经成为神经成像里最受欢迎的指示剂之一。目前科学家最流行的对小动物行为过程中大脑活动进行成像的方法,是将虚拟现实与双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中5。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用(如图1)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/e167bfbc-be4e-4b26-aa38-6f15b1fdca08.jpg" title=" 1.png" width=" 600" height=" 429" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 429px " / /p p style=" text-align: center " 图1 双光子成像结合虚拟现实场景,对头部固定,身体活动的动物进行研究。图片来自 sup 5 /sup /p p   然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,因此无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家还未能得到解决终极的诉求。 /p p   一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”6。这种尝试大概从20年前开始。起初,科学家只是将一根或几根光纤插到小鼠头上,用以激光导入和荧光信号采集。然而,这种方式而只是记录某个区域内信号的总和,不具有空间分辨率,算不上真正意义上的成像。在最近的十几年里,由于光学,电子,材料技术的发展,人们开始尝试研制真正意义上的微型显微镜。其中,微型单光子宽场显微镜(miniature wide-field microscope),由于其原理与结构相对简单,是目前人们主要尝试研制的微型显微镜技术。例如由Ghosh及其同事开发的显微镜,通过将小型LED光源,微型CCD和自聚焦透镜整合到一个小于25px3的框架之中,研制出了一个重量为1.9g的微型宽场显微镜。该技术被用于研究大脑海马区place cell等与记忆和本能相关的实验当中7。然而,宽场成像方式由于不能很好的对离焦区域的背景信号进行过滤,并且对光的散射敏感,所以其无法达到细胞分辨率。更难以对更精细的诸如树突,轴突,树突棘等结构进行观察。所以一直难以达到神经科学家满意。 /p p   于是,从大概15年前开始,世界上一些研究和开发双光子成像技术的研究组开始尝试将双光子显微镜这种在神经成像领域已经获得广泛应用的技术进行微型。然而,目前只有为数不多的几个课题组报道了他们在微型双光子显微镜研制方面的进展: 在2001年,Denk等的工作被认为是研制微型双光子显微镜的第一步8。然而,它仍然太过“巨大”(长7.5厘米,重25克),而且成像速度很慢(2 Hz 128x128的尺寸下速度为2 Hz, 512x512的尺寸下为0.5 Hz,如图2a)。之后,其他一些课题组相继报道了不同的微型双光子系统。 Helmchen课题组在2008年报道了他们的微型双光子系统,仅重0.9克9。它实现了512X512幅面下的8 fps的成像速度速度,并展示了利用该系统实现的大鼠在体钙成像信号。然而,从展示的效果来看,其空间分辨率极低,而且并没有实现真正的自由运动下的成像(如图2b)。Mark Schnitzler课题组在2009年也发表了他们的微型双光子系统10。他们的系统首次使用了微机电扫描镜(MEMS)来进行扫描,并将Z聚焦模块集成在了探头之中(如图2c)。但是扫描频率仍然很低(400x135约为4Hz) 空间分辨率也远远达不到要求(横向1.29 μm,轴向10.3 μm)。这些方面限制了其在神经元细胞核亚细胞水平成像中的应用。 Kerr课题组在2009年展示了它们的系统11,跟之前的微型双光子显微镜相比较,由于应用了微型透镜组构成的微型物镜(NA达到了0.9),这套系统的空间分辨率更高。然而,这套探头的重量也随之提高(5.5g)。此外,由于其仍然使用振动光纤的方式来进行扫描,所以其成像速度仍然比较慢。(对于64x64为10.9Hz,对于理论上的512x512为1.25Hz)(如图2d)。此外,还有一个之前所有的微型双光子系统都没有解决的问题。由于微型双光子显微镜一般需要利用光纤将飞秒激光导入到探头之中,而光纤由于存在诸如色散、截至模式、导通带宽等一系列限制,所以某一款光纤一般只允许一定带宽(一般为几十纳米)和特定中心波长的光传播。那就需要在制作微型显微镜的时候,结合使用的荧光指示剂所需要的激光波长对光纤进行选择。但是,目前商业化的,可以用来进行飞秒光传输的空心光子晶体光纤(hollow-core Photonic Crystal Fiber, HC-PCF)种类非常有限。例如,全球最大的光子晶体光纤生产商NKT公司仅提供中心波长为800nm,1030nm,1300nm和1550nm的HC-PCF。所有现有的微型双光子显微成像系统都是基于这几款光纤所限定的中心波长进行开发的。但是很遗憾的是,本文上述所提到的目前最广泛使用的GcamP指示剂需要920 nm的激光进行激发。所以先前的所有微型双光子都不能对Gcamp进行有效的成像。这限制了微型双光子显微镜的发展。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/4c1d7c1d-53eb-4a41-96d0-98ecb5ebda8d.jpg" title=" 2.png" / /p p style=" text-align: center " 图2 微型双光子发展史上的几个典型工作。a、b、c、d分别选自参考文献 sup 8、9、10 /sup 和 sup 11 /sup /p p   之所以这些早期的微型化双光子显微镜都无法得到真正的使用和推广,其原因在于,若要制造出具有实用价值的微型双光子显微镜,比研制单光子微型显微镜复杂和困难的多得多。微型双光子显微镜需要需要解决如下几个关键技术难题: /p p   1 如何将飞秒激光有效的导入微型显微镜 /p p   2 如何在微型显微镜内进行扫描/图像重建 /p p   3 如何在微型显微镜中进行高质量的激光汇聚,高效激发双光子信号。 /p p   4 如何有效的对荧光信号进行收集 /p p   5 如何使整个系统在动物剧烈运动时仍保持稳定 /p p   6 在满足前5项条件下,重量是否足够轻,以致尽量小地对动物的活动造成影响 /p p   本文作者所在的课题组,是由北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队。我们在程和平院士的带领下,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,历经三年多的协同奋战,成功研制了新一代高速高分辨微型双光子荧光显微镜,并将其取名为FHIRM-TPM。原始论文于5月29日在线发表于自然杂志子刊Nature Methods (IF 25.3)12。在这项成果中,我们解决了上文所提及的早先微型化双光子显微镜研制中存在的问题,获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0418a0a6-f357-4e18-91b0-ef1c23d670bd.jpg" title=" 3.png" width=" 600" height=" 470" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 470px " / /p p style=" text-align: center " 图3 FIRM-TPM示意图,来自 sup 12 /sup /p p   新一代微型双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小型动物头部,通过颅窗实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,所以成像质量远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。其横向分辨率达到0.65μm,与商品化大型台式双光子荧光显微镜可相媲美 采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。最为重要的是,FHIRM-TPM克服了先前限微型双光子显微镜应用的两个障碍。首先,我们定制设计的HC-PCF为 920纳米飞秒激光脉冲提供了无畸变传输,这种改进让有效的激发例如Thy1-GFP和GCaMP-6f等常用荧光指示剂成为可能。第二,由于双光子点扫描显微镜的高空间分辨率和层切能力,安装到动物头上的微型双光子显微镜非常容易受到运动伪影的影响。为了解决这个问题,我们对整个系统进行了充分的优化:(a)使用柔软的新型光纤束SFB来使得动物运动引起的扭矩和拉拽力最小化,并不降低光子收集效率 (b)采用独立的可旋转连接器来连接光学探头上的光纤和电线,以使动物在自由探索期间线的扭曲和缠绕最小化 (c)使用高速成像以减少运动引起的帧内模糊。此外,我们在实验之前预先训练动物适应安装在其头骨上的微型显微镜,并滴加1.5%低熔点琼脂糖使其充满物镜和脑组织之间,这些措施都显著降低了探头与大脑之间的相对运动,进而改善了实验短期和长期的稳定性,于是实现了在动物进行包含大量身体和头部运动的行为学试验中中进行高分辨率成像。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0d8849db-62d7-4fdd-b7e0-4e572b3a1b03.jpg" title=" 4.png" width=" 600" height=" 437" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 437px " / /p p style=" text-align: center " 图4 FIRM-TPM实物图,来自 sup 12 /sup /p p   树突棘活动是神经元信息处理的基本事件,利用台式双光子显微镜在头固定的动物上的研究表明单个神经细胞的不同树突棘可以被不同朝向的视觉刺激或不同强度频率的声音刺激所激活。FHIRM-TPM实现了与传统的大型的台式双光子显微镜相同的分辨率和光学层切能力。与微型宽场显微镜相比,FIRM-TPM的高空间分辨率,固有的光学切片能力和组织穿透能力以及相当的机械稳定性都是极有优势的。所以虽然通过微型宽场显微镜可以获得数百个神经元在细胞水平上的活动,但是我们的 FHIRM-TPM无疑提供了一个更加强大的工具,即在自由活动的动物中对更加基本的神经编码单位——树突棘的时空特性进行观测。它能够在对小鼠依次进行的行为学试验(例如悬尾,跳台,以及社交行为)的过程中长时间观察位大脑中的神经元胞体、树突和树突棘的活动。这些功能的展示充分证明了FHIRM-TPM具有良好的性能和稳定性。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和大脑神经回路的活动。微型双光子荧光显微镜整机性能十分稳定,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/90a13003-d9fd-404d-8df3-64926f598012.jpg" title=" 5.png" width=" 600" height=" 283" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 283px " / /p p style=" text-align: center " 图5 三种模式在结构学成像中的成像质量对比,来自 sup 12 /sup /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/44bc19d8-0a51-4583-8784-2f9240ac1cdd.jpg" title=" 6.png" / /p p style=" text-align: center " 图6 FHIRM-TPM在三种不同的行为学范例对小鼠大脑皮层神经元活动进行成像,来自 sup 12 /sup /p p   从2001年Denk发表第一篇微型双光子显微镜的原型机以来,微型双光子显微镜的发展已经走过了15年的时间。15年的发展历程,微型双光子显微镜从最开始的25克笨重的身躯,只能在分离的组织中进行验证性的实验8到如今重量仅两点几克重,可以对自由活动的小鼠神经元进行树突棘级别的成像,可以说取得了一定的进步。然而,在看到这个领域取得的成就的同时,也应看到,至今为止,微型双光子显微镜还未像共聚焦显微镜或者是荧光光片显微镜一样被生物学家广泛认可和应用。而后者(光片显微镜)的发展时间更短(2008年Science的一篇文献一般被认为是现代荧光光片显微镜镜的开端13)。究其原因,除了技术本身的限制以外,整个研究领域的气氛和投入,也是重要的影响因素之一。 /p p   纵观这15年来微型双光子显微镜的发展道路,开疆拓土者有之 改革创新者有之 另辟蹊径者有之 浑水摸鱼、指鹿为马者亦有之。然而遗憾的是,愿意心无旁骛、全情投入者鲜有之 有意愿和能力建立为这个研究的领域建立范式者亦鲜有之。而中国,在不久前在这个领域基本上属于完全的空白。更不要说什么领先世界。 /p p   然而令人十分兴奋的是,中国国家基金委国家重大科研仪器设备研制专项在2014年正式将“超高时空分辨微型双光子在体显微成像系统”立项。以5年七千两百万人民币的研究经费对这一项“世界上做的还并不怎么好,中国基本没人做过”的技术进行攻关研发。这样的大力投入无疑为这一领域注入了新鲜血液和十足动力。而我也有幸在博士五年期间全程参与了这个项目的工作。从2012年来到该项目首席负责人程和平院士和陈良怡研究员的联合课题组至今,我见证了这个项目从无到有,团队从幼小稚嫩到壮大成熟的整个过程。如今,我们有了初步的成果,不仅让我们这样一支完全由中国本国科研工作者建立的团队在世界上处在了较为领先的位置,同时也把这个领域向前推动了一些,我感到无比激动和自豪。 /p p   该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。” /p p   1. Denk, W., Strickler, J. & amp Webb, W.Two-photon laser scanning fluorescence microscopy. Science248, 73-76(1990). /p p   2. Gewin, V. A goldenage of brain exploration. PLoS Biol3, e24 (2005). /p p   3. Zipfel, W.R.,Williams, R.M. & amp Webb, W.W. Nonlinear magic: multiphoton microscopy in thebiosciences.Nat Biotechnol21, 1369-1377 (2003). /p p   4. Chen, T.W. et al.Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature499, 295-300 (2013). /p p   5. Minderer, M.,Harvey, C.D., Donato, F. & amp Moser, E.I. Neuroscience: Virtual realityexplored. Nature533, 324-325 (2016). /p p   6. Hamel, E.J., Grewe,B.F., Parker, J.G. & amp Schnitzer, M.J. Cellular level brain imaging inbehaving mammals: an engineering approach. Neuron86, 140-159 (2015). /p p   7. Ghosh, K.K. et al.Miniaturized integration of a fluorescence microscope. Nat Methods8, 871-878(2011). /p p   8. Helmchen, F., Fee,M.S., Tank, D.W. & amp Denk, W. A Miniature Head-Mounted Two-Photon Microscope.Neuron31, 903-912 (2001). /p p   9. Engelbrecht, C.J.,Johnston, R.S., Seibel, E.J. & amp Helmchen, F. Ultra-compact fiber-optictwo-photon microscope for functional fluorescence imaging in vivo. Optics Express16, 5556 (2008). /p p   10. Piyawattanametha, W.et al. In vivo brain imaging using a portable 2.9 g two-photon microscope basedon a microelectromechanical systems scanning mirror. Optics Letters34, 2309(2009). /p p   11. Sawinski, J. et al.Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy ofSciences106, 19557-19562(2009). /p p   12. Zong, W. et al. Fasthigh-resolution miniature two-photon microscopy for brain imaging in freelybehaving mice. Nat Methods (2017). /p p   13. Keller, P.J.,Schmidt, A.D., Wittbrodt, J. & amp Stelzer, E.H. Reconstruction of zebrafishearly embryonic development by scanned light sheet microscopy. Science322, 1065-1069 (2008). /p
  • 这款我国自主研制双光子显微镜销售额已过亿!
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’”专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为北京超维景生物科技有限公司(以下简称“超维景”)供稿。 超维景研发和生产的微型化双光子显微镜基于自主研发的核心技术,在世界上第一次获取了自由行为小鼠大脑细胞和亚细胞结构的清晰、稳定的动态图像。这项发明曾被Nature Methods 评为“2018年度方法”,被国家科技部评为“2017度中国十大科学进展”。仪器信息网: 请回顾一下贵公司光学显微镜技术的发展历程。当前,最流行的对小动物行为过程中大脑神经元活动和结构变化进行长期观测和追踪的成像方法,是将虚拟现实与现有商品化台式双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用。然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家亟待解决的诉求。美国和欧洲脑计划及连接组计划在不断快速推进,我国的脑计划也将在年内启动,最新神经科学需要针对清醒动物的典型实验会越来越多。现有传统厂家的双光子设备上都只能做麻醉或固定头部的动物成像,实验的结果无法描述在正常行为模式下的神经功能变化。一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”。2017 年由北京大学程和平院士和陈良怡教授牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。研究成果已表于自然杂志子刊 Nature Methods,2014 诺贝尔生物学或医学奖得主 Edvard I. Moser 称之为研究大脑空间定位神经系统革命性的新工具。只有通过原型机转化为产品的方式,才能让更多科学家、实验室使用到高端技术,但这是在实验室无法完成的。在校方、政府政策、资本等要素多方助力下,团队成立了北京超维景生物科技有限公司推动这一成像装备商业化,形成微型化双光子荧光显微镜,微型化双光子荧光显微成像系统主要包含:微型化双光子显微成像模块、激光耦合模块、飞秒激光器、荧光采集模块、主控制器、宽视场观测模块、ScienceDesk 工作台,共 7 大模块。目前,超维景在面向脑科学的产品成型并已小批量出货。国内产品销售额过亿,国内用户有复旦大学、中科院深圳先进技术研究院、南京脑观象台、西湖大学、西京医院、空军军医大学、中科院脑科学与智能技术卓越创新中心、北京大学、中山大学中山眼科中心、广东粤港澳大湾区协同创新研究院、浙江大学城市学院和中山大学孙逸仙纪念医院等。国际产品销售额超千万,已经达成的国际合作有德国马普神经所、德国波恩大学、德国马普鸟类研究所、美国纽约大学、美国马普神经所等。未来超维景会充分调动所拥有多项核心技术,即累计拥有发明专利、实用新型、软件著作权等60余项知识产权以及双光子显微成像系统发力于千亿级的临床医疗检测和诊断市场,例如手持式双光子或穿刺式双光子设备直接作用于皮肤、口腔、浅表淋巴;结合小型化技术稍作改进可以实现宫腔成像的宫腔镜;在开腹/微创手术过程中,硬性腔镜可以实现术中指导,实现肺、胸、肾、肝、脑等组织病变的辅助诊断的手持/腔镜;结合传统内窥技术打开胃肠癌症筛查市场的内腔软镜。仪器信息网: 请介绍当前贵公司主推的产品和技术。贵公司的高端光学显微镜技术有哪些独特优势?超维景自主研制的快速微型化双光子显微成像系统FIRM-TPM,在世界上第一次实现了自由运动小鼠单个树突棘水平神经元功能活动的高速高分辨实时成像,解决了“脑计划”的核心痛点。而且超维景生产的微型化显微镜分辨率、扫描速度、重量、GFP/GCaMP 成像等方面均优于其他文献报道的微型化显微镜。这款头戴式双光子显微镜可实时记录自由行为动物的大脑神经元和树突棘活动,支持钙成像,并可在同一视野长时程反复成像。系统能够配置移动的轴向扫描模块,实现三维成像和多平面快速切换实时成像,用于脑神经回路观察;还可配置光遗传模块,对神经元和大脑神经回路活动进行精确控制。今年1月,继第一代微型化双光子显微镜在全球首次获取了小鼠在自由行为过程中大脑神经元和神经突触活动的动态图像后,超维景通过对微型光学系统的重新设计,成功研制了第二代产品。其成像视野更大,工作距离更远,操作简便,并具备实时三维成像能力,可在自由运动的小鼠上对大脑三维区域内上千个神经元进行清晰稳定的动态成像,并且实现了针对同一批神经元长达一个月的追踪记录。该成果于2021年1月6日在线发表于Nature Methods上。新一代微型化双光子荧光显微镜体积小,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到 850 nm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。除此之外,超维景生物基于生物医学显微镜研发生产的背景以及拥有的多项技术专利,结合市场需求和实验需要,开发了包括脉冲激光器在内的一系列光电产品,其性能稳定、操作简单,适用于高端光学显微镜的研制和工业生产。仪器信息网: 请举例介绍贵公司的产品和技术是如何助力生命科学研究的?生命科学是一门极其复杂、极富挑战的科学,是一个可以做出重大科学发现的领域。在中国“脑计划”即将启动的今天,为满足脑计划对于脑认知原理解析的重大需求,助力中国脑科学家、脑医学家、脑药学家的探索与发现,超维景创始人程和平院士团队与南京江北新区合作建立了“南京脑观象台”。“南京脑观象台”有三方面的特色:一是改变手工作坊式的科研方式,有标准化、流程化分解技术流程;二是降低功能成像的“准入门槛”,集成最先进的成像装备,节约“设想”到“验证”的时间;三是改变功能成像的研究方式,有高通量、工程化的实验设计,可以回答“大科学”问题。南京脑观象台作为超维景双光子产品的集中应用基地和演示中心于2021年8月2日推出了免费服务计划——“探索计划”,计划启动期间收到了广大科学家的积极响应,共收到符合条件的申请67份。 综合申请者前期实验基础,以及项目的创新性、可行性因素,在专家评审委员会的推荐下,我们首批支持项目共计24个,资助总金额300万元。此外,超维景微型化双光子显微成像技术帮助许多科研团队取得了一些重要的研究成果,比如,11月18日,浙江大学医学院脑科学与脑医学学院/教育部脑与脑机融合前沿科学中心的胡海岚教授团队,在国际知名期刊Neuron在线发表了论文《 Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition》,这篇文章通过在显性管测试中应用光遗传学和化学遗传学操作,发现由VIP-PV-PYR 组成的微环路通过抑制与去抑制的功能性连接,在社交情境下精细地协作调控dmPFC锥体神经元的活动,从而影响小鼠在面对社会竞争时的行为表现。研究团队在探索这两种神经元如何影响mPFC的活动时,正是使用我们的2.2克可佩戴式微型双光子荧光显微镜(FHIRM-TPM)在清醒活动的动物中观察脑内单个神经元水平的发放。仪器信息网: 请您介绍一下目前高端光学显微镜的市场现状。根据中国仪器仪表行业协会统计,2015 年至 2017 年我国显微镜出口量在 220 万台-300万台之间,年均进口5万台左右,出口数量远高于进口数量,但出口金额远低于进口金额,反映了中国进口的光学显微镜单台平均价格远高于出口显微镜,国内高端显微镜市场依赖于进口产品。自上世纪七、八十年代以来,中国显微镜制造逐渐承接了来自欧洲和日本的产业转移,已能生产95%的教育类和普及类显微镜。世界高端显微镜产业主要布局在德国和日本,德国是以徕卡显微系统和蔡司为代表,而日本以尼康和奥林巴斯公司为代表,上述企业占据着世界显微镜市场50%以上的市场份额,其发展战略左右着显微镜市场的走向。目前世界市场对高端显微镜的需求在增长,中国市场这方面的需求增长更快,超分辨显微镜在中国市场的增长更是超过20%。未来五年显微镜市场的发展在亚太地区将围绕中国、印度、澳大利亚和中东国家。近年来,全球科研经费持续增加,医疗卫生的投入也将进一步加大。基于分辨率、对比技术、荧光技术和数字影像等技术的更新,显微镜在生物医学等领域得到越来越广泛的应用。高分辨率光学显微镜是近年来增长较为快速的产品,主要应用于科研开发与医疗卫生领域。医院场景国产高端显微镜替代空间大。目前中国三甲医院所使用的高端光学显微镜几乎被徕卡、蔡司、尼康和奥林巴斯垄断。国内有能力开始生产高端显微镜的企业较少,目前有永新光学、麦克奥迪、舜宇光学等。国内制造的高性能、高可靠性的高端光学显微镜,充满了极大的市场机遇。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?您认为目前高端光学显微镜的国产化进程如何?我国显微镜行业发展缺乏技术沉淀,20 年以上经营积累的企业十分稀缺,深度精密制造及光学核心部件设计及工艺严重制约产业升级,具备生产高端显微镜的企业屈指可数。光电产业新产品层出不穷,应用范围逐步扩大,对光学元件组件加工技术要求越来越高。目前,国内少数厂商能实现精密光学元件组件量产,但特殊光学元件组件的加工技术(如光学玻璃非球面加工技术)、配套材料及高精度检测技术基本上由国外厂商掌握,国内厂商仍与国际高端水平有相当差距,在国际竞争中技术上处于相对劣势。在生命科学和医学研究中,成像技术至关重要,它是推动生命科学进步的核心动力,生物医学发展的历史大半部是成像技术的发展史。进入新千年,脑科学研究成为热点,根据《“十四五”规划纲要和2035年远景目标纲要》,我国脑科学与类脑研究将以脑认知原理解析、脑介观神经联接图谱绘制、脑重大疾病机理与干预研究等方向作为重点。中国要做原创科学,必须要有自己的仪器。超维景作为科技成果产业化的典型公司,将以自主创新的核心技术,将继续为我国的脑科学研究做出重要贡献,利用神经科学的基础研究成果来造福社会。
  • 单套664.5万!蔡司中标南科大双光子激光共聚焦显微镜采购项目
    近日,南方科技大学公布其双光子激光共聚焦显微镜中标公告,德国蔡司LSM 980以单价664.5万的价格中标,从发布公告到招标结束仅半月左右。此前在发布招标公告时,已有网友猜测中标者或将为蔡司。一、项目编号:0868-2144ZD090H(招标文件编号:0868-2144ZD090H)二、项目名称:双光子激光共聚焦显微镜三、中标(成交)信息供应商名称:广州千江生物科技有限公司供应商地址:广州市越秀区广州大道中301号201房自编09室中标(成交)金额:664.5000000(万元)四、主要标的信息序号供应商名称货物名称货物品牌货物型号货物数量货物单价(元)1广州千江生物科技有限公司双光子激光共聚焦显微镜德国ZeissLSM 9801台¥6,645,000.00五、评审专家(单一来源采购人员)名单:卓菲、赵卓、易娟、李大圣、万峻六、代理服务收费标准及金额:本项目代理费收费标准:按招标文件要求执行本项目代理费总金额:4.3296000 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜一、投标供应商名称及报价:序号投标人名称投标报价资格审查1深圳市博诚生化试剂仪器有限公司¥5,800,000.00合格2莱华尔科技(深圳)有限公司¥6,649,700.00合格3深圳市森维凯科技有限公司¥6,649,800.00合格4广州千江生物科技有限公司¥6,645,000.00合格二、候选中标供应商名单:1.广州千江生物科技有限公司九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:南方科技大学     地址:深圳市南山区西丽学苑大道1088号        联系方式:万老师 0755-88018674      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号            联系方式:李先生、黄先生 0755-82786018/82786038-821/822            3.项目联系方式项目联系人:李先生、黄先生电 话:  0755-82786018/82786038-821/822
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。   美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。   在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 我国自主研制空间站双光子显微镜首获航天员皮肤三维图像
    神舟十五号航天员乘组近日使用由我国自主研制的空间站双光子显微镜开展在轨验证实验任务并取得成功。记者27日从空间站双光子显微镜项目团队获悉,这是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。  双光子显微成像技术是基于双光子吸收及荧光激发的一种非线性光学成像技术,具有高分辨率、强三维层析能力、大成像深度等特点。由于传统的双光子显微镜整机系统庞大,不能满足在轨实验仪器设备对可靠性、体积、重量、抗冲击和振动性能等的苛刻要求,此前国际上还未能实现双光子显微成像技术在空间站在轨运行与应用。  2017年,北京大学国家生物医学成像科学中心主任程和平院士带领团队成功研制探头仅重2.2克的微型化双光子显微镜,为空间站双光子显微镜的开发奠定基础。2019年,在中国载人航天工程办公室大力支持下,由北大程和平、王爱民团队,中国航天员科研训练中心李英贤团队,北京航空航天大学冯丽爽团队联合相关企业及院所组建空间站双光子显微镜项目团队,由程和平担任总负责人。项目组攻克多项显微镜小型化技术难题,于去年9月研制成功空间站双光子显微镜。  项目团队成员、北京大学未来技术学院助理研究员王俊杰博士介绍,去年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。近日,神舟十五号航天员乘组完成了双光子显微镜的安装、调试和首次成像测试,成功获取了在轨状态下航天员脸部和前臂皮肤的在体双光子显微图像。  据悉,空间站双光子显微镜能以亚微米级分辨率清晰呈现出航天员皮肤结构及细胞的三维分布,具备对皮肤表层进行结构、组分等无创显微成像的能力。成像结果显示,皮肤的角质层、颗粒层、棘层、基底细胞层、真皮浅层等三维结构清晰可辨。  “空间站双光子显微镜是体现我国高端精密光学仪器制造水平的重要成果。”程和平介绍,此次在轨验证实验实现了多项第一,例如世界上首次实现双光子显微镜在轨正常运行;国内首次实现飞秒激光器在轨正常运行;国际上首次在轨观测航天员细胞结构和代谢成分信息。“这些不仅为从细胞分子水平开展航天员在轨健康监测研究提供了全新工具和方法,也为未来利用中国空间站平台开展脑科学研究提供了重要的技术手段。”
  • 370万!清华大学高速双光子显微镜采购项目
    项目编号:清设招第2022214号项目名称:清华大学高速双光子显微镜采购项目预算金额:370.0000000 万元(人民币)最高限价(如有):370.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高速双光子显微镜1套是设备用途介绍:1)可以进行小型动物如小鼠、大鼠等的活体成像及结合行为学的相关成像;2)实现更深的、低热损伤、高信噪比的活体成像,以保证斑马鱼、果蝇、小鼠等小型动物的长时程、反复成像;3)支持在清醒小动物中进行光遗传实验和成像同步、行为和在体成像实验同步;4)能够实现活体或活细胞超高速、超敏感成像,如血流、离子浓度、钙火花检测等快速变化的应用。简要技术指标 :龙门型正置荧光显微镜系统 :① 电动激发块转盘≥7孔,无需拆卸可更换激发块,内置电动光闸;配置蓝紫、绿、GFP激发块;② 具有压电陶瓷快速电动Z模块。2) 双光子光路及光路自动调节系统:① 光轴自动校正模块,≥3轴可调,激光光斑位置X、Y位移和X、Y倾斜角度θX,θY中≥3个参量均能独立自动调节;② 具有深焦观察模式,激光光束自动调整模块,可以在高分辨率和高成像深度模式之间自主选择,不少于五档可调。3)清醒小动物电生理同步设备:① ANALOG模拟信号输入≥4通道,TTL数字信号输入≥6通道,TTL数字信号输出≥5通道。与双光子显微镜为同一品牌的数模转换控制系统,触发控制能通过双光子软件界面统一控制,不需调用第三方控制软件;4)同步光刺激及光遗传系统:① 固体可见光激光器通过激光整合器整合,由光纤导入,通过AOTF进行0.1-100%强度控制和快速开关。合同履行期限:合同签订后5个月内交货。本项目( 不接受 )联合体投标。
  • 北大研制新一代微型化双光子荧光显微镜 重量仅2.2克
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/61f92578-2a77-4450-bae3-0909e6aa5712.jpg" title=" 微信图片_20170604220236_副本.jpg" / /p p style=" text-align: center " 程和平院士在发布会上介绍研究成果 /p p   历经3年多的协同奋战,北京大学分子医学研究所、信息科学技术学院、生物动态光学成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,成功研制新一代高速高分辨微型化双光子荧光显微镜,重量仅为2.2克。 /p p   原始论文于5月29日在线发表于《自然》杂志子刊Nature Methods(IF 25.3),相关技术文档同步发表于Protocol Exchange(DOI: 10.1038/protex.2017.048),并已申请多项专利。新一代微型化双光子荧光显微镜的成功研制是世界成像仪器领域的重大突破,为脑与认知科学、人工智能研究的推进提供了重要工具。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/93671403-0d47-4f16-a918-f9e51a10842b.jpg" title=" 微信图片_20170604220241_副本.jpg" / /p p style=" text-align: center " 新闻发布会现场 /p p   据介绍,该科研团队通过这一微型显微镜获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。该显微镜适于佩戴在小动物头部,可实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。 /p p   研究团队主要成员、北大分子医学研究所研究员陈良怡说道:“这是我们第一次观察到自由活动状态下的小鼠是‘怎么想的’。通过这套新型显微镜,可以在自由活动的哺乳动物上对其神经活动进行更精准研究。” /p p   美国著名神经科学家阿尔西诺· 席尔瓦教授评论称:“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/3180638f-621d-4745-b274-e1bea7ef57a2.jpg" title=" 微信图片_20170604220248_副本.jpg" / /p p style=" text-align: center " 程和平、陈良怡、王爱民、张云峰、宗伟健、吴润龙、李明立等研发团队成员在发布会上与听众交流 /p p   作为国家重大科研仪器研制专项的一个硕果,新一代微型化双光子荧光显微成像系统的成功研制彰显了北京大学在生物医学成像领域先期布局的前瞻性,锻炼了一支以年轻PI和硕博研究生为主体、具有学科交叉背景和核心技术创新能力的“中国智造”队伍。目前,该研发团队正在领衔建设“多模态跨尺度生物医学成像”“十三五”国家重大科技基础设施,积极参与即将启动的中国脑科学计划。可以期待,微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥不可或缺的重要作用。 /p p    strong 延伸阅读 /strong /p p   相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm。新一代微型化双光子荧光显微镜的成像质量可与商品化大型台式双光子荧光显微镜相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和神经回路的活动。 /p p   新一代微型化双光子荧光显微成像改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。 /p p   该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。 /p
  • 新一代微型化双光子荧光显微镜研制成功
    p   膜生物学国家重点实验室(中国科学院动物研究所、清华大学、北京大学)程和平院士团队研制成功了新一代高速高分辨微型化双光子荧光显微镜,获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。 /p p   新一代微型化双光子荧光显微镜体积小,仅重2.2 克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量可与商品化大型台式双光子荧光显微镜相媲美,优于目前该领域内主导的、美国脑科学计划研发的微型化宽场显微镜。该显微镜采用双轴对称高速微机电系统转镜扫描技术,具备多区域随机扫描和每秒1 万线的线扫描能力,首次采用了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)技术,解决了动物的活动和行为由于荧光传输光缆拖拽所干扰的难题。 /p p   相关成果于2017年5 月29 日在线发表于自然杂志子刊Nature Methods和Protocol Exchange,已申请多项专利。新一代微型化双光子荧光显微成像系统的成功研制彰显了膜生物学国家重点实验室在生物医学成像领域先期布局的前瞻性。微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥重要作用。 /p p /p
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p   在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。 /p p   受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。 /p p   目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。 /p p   根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title=" 首台复合显微镜.png" alt=" 首台复合显微镜.png" / /p p style=" text-align: center " strong 国内外首台双光子-STED复合显微镜样机 /strong /p p   在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。 /p
  • 1128万!清华大学大视野双光子显微镜和在体神经元双光子成像系统采购项目
    一、项目基本情况1.项目编号:清设招第20230369号(TC23190EE)项目名称:清华大学大视野双光子显微镜采购项目预算金额:630.000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量简要技术要求1大视野双光子显微镜1套详见采购需求本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。(2)本项目接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:在视野双光子显微镜主要用于在≥5 mm直径的大视场下对单个神经元进行亚细胞级分辨率、视频帧频的功能成像,实现对空间上分离但在功能上关联的大脑区域的在体功能成像。该设备被用于跟踪具有钙指示剂的神经元群以获取小动物活体高分辨率高对比度的钙成像结果、小鼠全脑功能性活动和分布成像、小鼠全脑范围内跨区成像等方向,尤其在研究跨脑区的活体动物脑皮层神经元活动方面具有不可替代的作用。合同履行期限:交付时间为合同签订后90日内。2.本项目( 不接受 )联合体投标。项目编号:清设招第20230343号(TC23190EJ)项目名称:清华大学在体神经元双光子成像系统采购项目预算金额:498.000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量简要技术要求1在体神经元双光子成像系统1套详见采购需求本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。(2)本项目不接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:在体神经元双光子成像系统结合双光子成像技术和探头微型化设计,用于活体条件下长时间观察动物体内多个尺度、多层次的动态变化,以克服传统活体成像方式对动物的束缚压力、满足动物的自然行为需求如觅食、哺乳、休息等,以更真实地反映生物体内的生理动态过程。拟采购的设备在结合动物行为学特征研究活体动物的脑皮层神经元活动方面具有不可替代的作用,将服务于活体动物脑皮层神经元活动和动物行为学机制方面的研究。合同履行期限:交付时间为合同签订后90日内。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月29日 至 2024年01月08日,每天上午9:00至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:http://www.365trade.com.cn方式:本项目标书发售期内,请供应商通过汇款方式购买标书。纸质版文件请至中招国际招标有限公司9层911A领取(北京市海淀区学院南路62号中关村资本大厦)。电子版招标文件请在线上获取,获取网址http://www.365trade.com.cn。(详见特别告知)售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:清华大学     地址:北京市海淀区清华大学        联系方式:肖老师,010-62780052      2.采购代理机构信息名 称:中招国际招标有限公司            地 址:北京市海淀区学院南路62号中关村资本大厦            联系方式:张涵睿、陈思佳、蒋雪娜、邓嘉莹,010-61954121、4120、4122            3.项目联系方式项目联系人:张涵睿、陈思佳、蒋雪娜、邓嘉莹电 话:  010-61954121、4120、4122
  • 700万!西南大学双光子显微镜采购项目
    一、项目基本情况项目编号:AZF202300063项目名称:双光子显微镜采购预算金额:700.000000 万元(人民币)最高限价(如有):700.000000 万元(人民币)采购需求:项目名称最高限价(万元)数量(套)中标人数量(名)双光子显微镜采购70011注:1.投标人报价不得超过本项目“最高限价”;2.以上采购项目内容的具体要求,见“第二篇 采购需求”;3.本项目允许采购进口产品(进口产品指通过中国海关报关验放进入中国境内且产自关境外的产品),进口产品若非制造商参与投标,则须提供制造商授权函。 4.本项目采购标的对应的《中小企业划型标准规定》所属行业为:工业 合同履行期限:自合同生效之日起至合同全部权利义务履行完毕之日止。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年10月18日 至 2023年10月25日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:《中国政府采购网》(http://www.ccgp.gov.cn/)或西南大学采购与招投标管理中心网页(https://ecaigou.swu.edu.cn:30910/bid/index?redirect=%2F)方式:凡有意参加本项目投标的投标人,请于 2023 年10月18日起在《中国政府采购网》(http://www.ccgp.gov.cn/)或西南大学采购与招投标管理中心网页(https://ecaigou.swu.edu.cn:30910/bid/index?redirect=%2F)网上下载本项目招标文件、图纸(如果有)、补遗等开标前公布的所有项目资料,无论投标人领取或下载与否,采购人和采购组织机构都视为投标人全部收到以上资料并全部知晓有关招标过程和事宜,若未及时登录前述网站下载获取相关资料,所产生的一切后果由投标人自行负责。售价:¥400.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:西南大学     地址:重庆市北碚区天生路2号        联系方式:龚老师 袁老师,023-68250189 023-68252007      2.采购代理机构信息名 称:中招国际招标有限公司重庆分公司            地 址:重庆市渝北区高新园黄山大道中段53号5-1(双鱼A座5楼)            联系方式:秦佑琼、雷九红,(023)68881331-9071 18502305170            3.项目联系方式项目联系人:龚老师 袁老师电 话:  023-68250189 023-68252007
  • 复旦大学研究团队自主研发国产高端多光子显微镜!
    进入21世纪,脑科学领域受到越来越多的关注。脑科学研究的不断发展,让人类得以探索脑的基本工作原理,发现脑疾病的治疗新策略,为人类认知、学习、记忆、情感、行为等方面的理解提供基础支持。对脑科学家而言,观测神经元结构与功能是脑研究最重要的步骤之一。其中,多光子显微成像技术是进行活体深层成像的主要工具。7月底举办的中国神经科学学会第十六届全国学术会议上,复旦大学脑科学转化研究院的李博团队与工程与应用技术研究院(以下简称“工研院”)的董必勤团队,同蔡司联合推出一款中国自主创新研发的产品——DeepVision多光子成像与全息光刺激系统,致力于为活体深层组织成像提供多样化的解决方案。该系统采用多光子荧光激发技术,能够实现对深层组织的高分辨率成像,并配合全息光刺激技术,实现了对神经元的精确控制和调控,是神经科学、肿瘤免疫和药物代谢等研究领域的理想显微成像平台,将为脑科学研究和生命科学研究提供更精准和全面的观察方法。DeepVision多光子成像与全息光刺激系统(图片来源于复旦大学公众号)据董必勤介绍,市场上现有的高端科研显微镜基本由海外公司垄断,国内多光子成像市场空白,需长期引入海外公司的设备。这些设备大多是整机设计,各个部件无法定制细节。大脑是不透明的,目前的光学成像技术局限于观测最表面的皮层结构,光在组织中会产生强烈的散射,因此光学成像很难深入表皮直达内部,而多光子显微镜能够弥补光的这一短板。现有的多光子显微镜视野小、样品空间有限以及对新技术的兼容性低,已经很难满足生物医学前沿研究的需求。基于此,李博和董必勤团队决心研发一套全新设计的多光子显微镜。这款由模块化设计搭建起来的多光子显微镜,将各种各样具体的前沿技术做成一个个模块,在后期根据需求把这些模块拼装在一起组成整机,可以避免受制于光学系统复杂的整体性。李博介绍,大部分实验室需要双光子机型对脑部做浅层扫描,但也有相当一部分需要三光子机型的深层成像。多光子显微镜的模块化设计灵活,兼顾了实验室科研和市场需求。团队分别在双光子和三光子两个机型基础之上,在全息光刺激、载物台空间、多脑区成像等模块进行技术升级,并最终组建符合客户订单需求的成品。应用方面,除可用于脑部研究,该仪器在生命科学和医疗卫生领域的一些研究中也高度适用,例如观察肿瘤、胚胎或皮肤深层细胞以及扫描植物样品。此外还可广泛应用于材料、化学、物理等多个领域,帮助人们深入材料表层,观察内部结构细节。据了解,研究团队与蔡司合作,蔡司负责DeepVision多光子成像与全息光刺激系统的销售和售后工作,同时也会在产品搭建过程中根据客户需求提出建议,而核心研发工作由复旦大学科研团队主导。目前团队在攻克核心部件的生产技术,董必勤还在积极寻找多光子显微镜的关键零部件国产可替代品。写在最后:看到这个产品的推出,笔者脑中跳出一句话:国产高端光学显微镜的队伍又壮大了。曾有技术工作者告诉笔者,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作;北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。如今DeepVision多光子成像与全息光刺激系统的推出,对于脑科学和神经科学研究工作无疑又是一则好消息。
  • 南方科技大学665万预采购1套双光子激光共聚焦显微镜
    1月28日,南方科技大学发布一则招标公告,预算665万,采购一套双光子激光共聚焦显微镜,要求招标项目的潜在投标人于2021年02月08日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:0868-2144ZD090H项目名称:双光子激光共聚焦显微镜预算金额:665.0000000 万元(人民币)最高限价(如有):665.0000000 万元(人民币)采购需求:序号设备名称数量单位是否接受进口设备1双光子激光共聚焦显微镜1台是合同履行期限:签订合同后【180】日内交货本项目( 不接受 )联合体投标。二、获取招标文件时间:2021年01月28日 至 2021年02月05日,每天上午9:00至12:00,下午14:00至18:00。(北京时间,法定节假日除外)地点:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号方式:现金售价:¥300.0 元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2021年02月08日 09点30分(北京时间)开标时间:2021年02月08日 09点30分(北京时间)地点:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号四、公告期限自本公告发布之日起5个工作日。五、其他补充事宜1.获取招标文件相关事项:(1)凡有意参加投标者,请在“三、获取招标文件”所述时间内进行登记。如确认参加本项目投标,请于报名截止日前携带供应商获取招标文件时应提供材料(见下方要求)到深圳市振东招标代理有限公司进行现场报名,并缴纳标书费(仅接受现金或对公转账,招标文件售后不退不换),逾期不接受报名;若邮购,所产生费用由投标人自行承担)。采购代理机构将不对邮寄过程中可能发生的延误或丢失负责。(2)联系人:杨小姐。联系电话/传真:0755-82786028(仅提供招标文件获取相关咨询服务,其它投标事宜请联系下方采购代理机构联系人)。电子邮箱:339288519@qq.com(3)《投标登记表》下载地址:http://www.szzdzb.cn/ “下载中心”。2.获取招标文件需提供的资料:(1)投标登记表;(2)法定代表人授权书;(3)投标人须提供营业执照(法人证书或执业许可证等)副本扫描件;以上资料均需加盖投标人公章。注:需邮寄报名应将以上资料扫描后发至邮箱:339288519@qq.com邮件中标明项目名称、项目编号、联系人及联系方式,并与我公司杨小姐联系确认同时3个工作日内快递至采购代理机构留存备案,否则报名无效。3.采购代理机构开户银行及相关信息:开户银行:招商银行深圳分行安联支行开户名称:深圳市振东招标代理有限公司银行账号:755914788210601公示网址:①中国政府采购网(http://www.ccgp.gov.cn)②深圳公共资源交易中心市区政府采购统一平台(http://www.szzfcg.cn)③深圳市政府采购监管网(http://www.zfcg.sz.gov.cn)④深圳市振东招标代理有限公司网站(http://www.szzdzb.cn)投标人有义务在招标活动期间浏览以上网站,在以上网站公布的与本次招标项目有关的信息视为已送达各投标人。5.其他事项①为避免病毒传染的风险,各供应商法定代表人或其授权代表可通过“中国邮政”、“EMS”、“顺丰速运”的邮寄方式,按照规定的递交投标文件截至时间前”向我公司邮寄投标文件,快递单上写明供应商名称、招标编号,通过邮寄方式递交的投标文件递交时间以我公司代表签收时间为准。逾期或不符合规定的投标文件不予接受。②为确保项目顺利开展,通过邮寄方式递交投标文件的各供应商需盖章签署《供应商邮寄标书承诺书》(下载地址:http://www.szzdzb.cn/ “下载中心”),扫描件优先发送至项目负责人邮箱2778757549@qq.com,原件(无需密封)同投标文件一并邮寄至我公司。六、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南方科技大学     地址:深圳市南山区西丽学苑大道1088号        联系方式:万老师 0755-88018674      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号联系方式:李先生、黄先生 0755-82786018/82786038-821/822            3.项目联系方式项目联系人:李先生、黄先生电 话:  0755-82786018/82786038-821/822
  • 530万!深圳湾实验室双光子显微镜采购项目
    项目编号:0733-22204537项目名称:深圳湾实验室双光子显微镜采购项目预算金额:530.0000000 万元(人民币)最高限价(如有):530.0000000 万元(人民币)采购需求:序号标的名称数量单位简要技术需求1双光子显微镜1套深圳湾实验室双光子显微镜采购项目,具体要求详见招标文件。合同履行期限:签订合同后 90 天(日历日)内。本项目( 不接受 )联合体投标。
  • 1340万!清华大学高通量全自动切片成像系统和双光子显微镜采购项目
    一、项目基本情况1.项目编号:清设招第20230367号(TC23190EG)项目名称:清华大学高通量全自动切片成像系统采购项目预算金额:850.000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量简要技术要求1高通量全自动切片成像系统2套详见采购需求本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。(2)本项目不接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:高通量全自动光学切片成像系统是一种基于机械切削的全脑成像系统,该系统利用成像系统对样本表面进行成像,利用切片机对塑性包埋的样本进行表面组织切除,继续对新的表面荧光成像,最终实现了轴向分辨率为1um的完整鼠脑数据集的采集。本次拟采购的高通量全自动光学切片成像系统将被应用于全脑皮层神经元胞体与投射结构的重建与功能机制方向的研究。合同履行期限:交付时间为合同签订后90日内。2.本项目( 不接受 )联合体投标。项目编号:清设招第20230354号(TC23190EH)项目名称:清华大学双光子显微镜采购项目预算金额:490.000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量简要技术要求1双光子显微镜1套详见采购需求本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。(2)本项目接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:双光子显微镜使用长波长超快飞秒脉冲激光激发标本,在焦点部位产生特异荧光,从而得到荧光信号标记的对象在生物标本的分布,可以将实验扩展到在体和毫米厚度样品水平,在活体情况下进行深层次的光学成像,用于分析不同小动物模型蛋白、细胞和组织器官水平的动态微观结构,监控生理生化活动及各种治疗方法的效果,其配备的光刺激模块可应用于光遗传学实验,双波长飞秒脉冲激光可用于同时进行光刺激和双光子成像。设备在研究活体动物的脑皮层神经元活动和形态学方面具有不可替代的作用。合同履行期限:交付时间为合同签订后90日内。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月29日 至 2024年01月08日,每天上午9:00至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:http://www.365trade.com.cn方式:本项目标书发售期内,请供应商通过汇款方式购买标书。纸质版文件请至中招国际招标有限公司9层911A领取(北京市海淀区学院南路62号中关村资本大厦)。电子版招标文件请在线上获取,获取网址http://www.365trade.com.cn。(详见特别告知)售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:清华大学     地址:北京市海淀区清华大学        联系方式:肖老师,010-62780052      2.采购代理机构信息名 称:中招国际招标有限公司            地 址:北京市海淀区学院南路62号中关村资本大厦            联系方式:张涵睿、陈思佳、蒋雪娜、邓嘉莹,010-61954121、4120、4122            3.项目联系方式项目联系人:张涵睿、陈思佳、蒋雪娜、邓嘉莹电 话:  010-61954121、4120、4122
  • 价值56万美元的双光子深层光激活成像显微镜落户中科院生物物理所
    中国科学院生物物理研究所膜蛋白结晶自动化加样工作站及双光子深层光激活成像显微镜采购项目中标及成交结果公告   采购人名称:中国科学院生物物理研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院生物物理研究所膜蛋白结晶自动化加样工作站及双光子深层光激活成像显微镜采购项目   招标编号:OITC-G11022117   定标日期:2011年6月16日   招标公告日期:2011年5月5日   中标结果: 包号 设备名称 中标供应商名称 中标/成交金额 1 膜蛋白结晶自动化加样工作站 上海腾泉生物科技有限公司 USD 149,000.00元 2 双光子深层光激活成像显微镜 徕卡仪器有限公司 USD 560,000.00元   评标委员会成员名单:杨新科 戴琳 张连清 郝艾芳 李雪梅   本项目联系人:吴旭 徐薇薇   联系电话:68729913   感谢各供应商对于本项目的积极参与,并请未获中标的供应商于即日起5个工作日内来我公司办理保证金退回事宜(来前请先电话联系)。   东方国际招标有限责任公司   2011年6月17日
  • 温州某大学上千万采购质谱、双光子显微镜等多套仪器
    p   双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子显微镜比单光子显微镜更适合用来观察厚标本、更适合用来观察 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 活细胞 /span /a 、或用来进行定点光漂白实验,可以说是专为活体标本及电生理而设。 /p p style=" text-align: center " strong 温州 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 医科大学 /span /a 关于双光子激光共聚焦显微镜等5项设备的公开招标公告 /strong /p p   温州医科大学采购五套设备,包括三套质谱:三重四级杆气质联用仪,三重串联四级杆液质联用仪,液相色谱单四级杠质谱联用仪, a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 流式细胞分选仪 /span /a ,双光子激光共聚焦显微镜,共计预算1037.325万元人民币,其中双光子激光共聚焦显微镜预算458.325万元。   /p p    strong 一、招标项目编号: WMU-2015037 /strong /p p style=" text-align: center " img width=" 600" height=" 209" title=" QQ图片20151217094218.jpg" style=" width: 600px height: 209px " src=" http://img1.17img.cn/17img/images/201512/insimg/837362ad-62e9-4fe0-b683-f82003021c52.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong 二、采购组织类型:分散采购自行组织 /strong /p p    strong 三、联系方式: /strong /p p   采购人名称:温州医科大学 /p p   联系人:刘老师 /p p   联系电话:0577-86689891 /p p   传真:0577-86689891 /p p   地点:温州医科大学茶山校区同心楼401室 /p
  • 410万!中国农业大学双光子激光共聚焦扫描显微镜采购项目
    一、项目基本情况项目编号:XHTC-HW-2023-0002项目名称:中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目预算金额:410.0000000 万元(人民币)采购需求:本项目为中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目,简要技术参数:激光光源系统等,详见附件采购需求。本项目允许采购进口产品。合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年03月22日 至 2023年03月29日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:北京市海淀区莲花池东路39号西金大厦11层方式:需携带法人授权书原件及被授权人身份证复印件加盖公章。文件售后不退。未从采购代理机构获取招标文件并登记在案的潜在供应商均无资格参加投标。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:中国农业大学地址:北京市海淀区圆明园西路2号联系方式:吴老师 010-62731314-8052.采购代理机构信息名称:新华招标有限公司地址:北京市海淀区莲花池东路39号西金大厦11层联系方式:张云驰010-63905857、刘佳 010-639059263.项目联系方式项目联系人:刘佳电话:010-63905926采购需求.docx
  • 三维成像有了共聚焦、双光子,为何还要光片显微镜?
    组织透明化和光片显微镜诞生的必要性生物组织的三维特性使得生命科学的研究都需基于3D空间信息而进行分析,如脑部神经投射、血管分布以及肿瘤微环境等。传统组织学检测包括对冰冻或者石蜡包埋的组织样本进行切片,从而产生微米级别的切片,研究者可以对该切片进行免疫组化染色从而获得细胞层面信息。生物学家早就认识到组织薄切片比厚组织观察起来更加容易,显微切片机将组织切割成微米厚度的二维切片,通过二维切片我们可以获得单细胞层面的信息(Richardson & Lichtman, 2015)。但是三维组织结构可以让人们全面理解器官在正常功能和病理状态下的关键信息,例如神经系统就迫切需要进行三维结构的成像,因为大多数单个神经元向许多方向延伸,它们的真实性质和功能无法通过二维切片来确定;此外,发育生物学需要在三维结构上才能更好的认识器官甚至整个动物的形态发生(Chung et al., 2013)。因此获取完整生物组织在单细胞分辨率尺度上的三维结构一直是生命科学领域的重要目标之一。怎样才能获得组织的三维层面信息?一种方法是通过将一系列连续的切片输入电脑进行三维结构重建,但是这种方法在技术上具有挑战性,因为组织在此过程会被撕裂、折叠、压缩或拉伸从而导致组织某个部分的损失或变形,由于剖面不完整,最终的体积重建可能无法还原最原始的三维结构(Oh et al., 2014)。还有一种方法是使用光学切片技术进行整体成像,比如激光共聚焦、双光子显微镜和转盘显微镜等成像显微镜的使用,这些成像显微镜可以对小组织进行三维结构成像,但是这些现代的显微技术没办法解决组织太厚带来的严重速度滞后问题,以及强激光造成的光漂白、光毒性等问题。光学成像与细胞荧光标记相结合,因其具有良好的空间分辨率和高信噪比,是收集器官或组织单细胞分辨率信息的实用方法之一。然而,组织不透明是全组织和全器官光学成像的主要障碍之一,因此要进行光学成像就要进行组织透明化。那么是什么原因导致组织不够透明?在组织中,生物物质如水、脂类、蛋白质和矿物质通常以不均匀的混合物存在,它们的不均匀分布导致光发生强烈的横向散射,此外,生物物质有时会在细胞内外形成不均匀的结构,包括脂质颗粒和细胞器(如线粒体)、大的蛋白质簇(如胶原纤维)、甚至全细胞体积(如红细胞),当光被分子、膜、细胞器和组织中的细胞反射时,本来应该以直线传播的光线会发生多次偏移,因此光不能直接穿过组织从而形成光的散射(Tuchin, 2015 Wen, Tuchin, Luo, & Zhu, 2009)。组织不透明的另一个原因是光的吸收,血红蛋白、肌红蛋白和黑色素是生物组织中吸收可见光的主要分子,血红蛋白存在于所有脊椎动物(除了鳄鱼、冰鱼)和许多无脊椎动物中,样品内的光吸收可以限制激发光进入组织和荧光发射返回到探测器(Richardson & Lichtman, 2015)。正是由于光的散射和光的吸收,导致光的分布加宽、光的强度衰减,特别是在组织的深层区域,最终导致组织不透明,无法进行全组织三维结构光学成像。因此,组织透明化的目的主要是减少光的散射和吸收,以获得更好的光学成像效果(图1)(Gracie Vargas, 2001)。图1 实现组织透明化的关键步骤 (Susaki & Ueda, 2016)当光穿过组织时,由于脂质、色素的存在,导致光发生散射和吸收,从而组织不透明;组织透明化最主要的目的是通过脱脂、脱色等步骤从而减少光的吸收和光的散射。三种组织透明化方法类型:有机溶剂型、水溶剂型、水凝胶型经科学家的不断研究和突破,多种组织透明化方法相继被提出和优化。组织透明步骤包括:①样本固定;②样本透化(依据组织特性选择脱脂、脱钙、脱色、脱水或水化);③折射率匹配。有机溶剂型透明化方法还涉及到组织脱水过程,根据组织成像需要还要涉及到样本免疫标记(图2)(Almagro, Messal, Zaw Thin, van Rheenen, & Behrens, 2021);为了避免组织发生形变以及检测目标丢失,在透明化之前必须进行样本固定,但是固定程度需要控制,如果固定太弱,组织会软榻,如果固定过头,会阻碍免疫标记;一般使用多聚甲醛(PFA)、戊二醛(GA)进行组织固定,PFA可以均匀的固定大于500微米直径的样品,GA比PFA固定效果好,但是速度慢(分子较大,扩散速度慢),SWITCH方法通过改变pH提高GA效率,GA一般适合固定脆弱以及蛋白表达较弱的组织;在组织切片中我们通过抗原修复减少醛固定时造成的抗原表位封闭(二硫键),在水性透明化方法SHIELD采用聚甘油-3-聚缩水甘油醚(P3PE)既能固定组织又能保存蛋白质;透化过程中用到的试剂主要有三种类型:①有机溶剂;②高水化试剂;③脱脂试剂;随后用高折射率的物质替换组织液体进行折射率匹配,实现组织透明。(Park et al., 2018)。图2 组织透明化基本流程(Almagro et al., 2021)(a) 不同来源样本获取。(b) 用不同方式(去垢剂、醇类化学试剂、电泳)增加组织通透性。(c) 组织标记(抗体、染料、凝集素)以及透明化(有机溶剂型透明化方法、水溶剂型透明化方法)。(d) 组织成像(三维数据、定量分析)。依据各透明化方法中使用的溶剂及其作用原理将现有的组织透明化方法主要分为三类:有机溶剂型、水溶剂型、水凝胶型(图3)(Matryba et al., 2020 Ueda et al., 2020b)。基于有机溶剂的组织透明化方法通过使用高折射率(RI)的有机溶剂将不同成分的RI均质,从而获得极好的组织透明度。BABB组织透明化方法可以完全透明胚胎和幼鼠大脑(Dodt et al., 2007),但该方法中乙醇脱水作用会导致内源性GFP信号淬灭,无法透明有髓组织。通过引入四氢呋喃(THF)和二苄醚(DBE), 3DISCO能够实现大多数成年啮齿动物器官的良好透明度,并将FPs保存几天,虽然DBE能有效保护内源荧光信号,但是DBE降解产物如过氧化氢、醛类物质会对荧光蛋白产生有害干扰(Erturk et al., 2012)。与3DISCO相比,uDISCO能够实现全身透明化和成像,并在数月内保持内源性FPs(Pan et al., 2016)。a-uDISCO是uDISCO的改良版本,通过调节pH条件提高荧光强度和稳定性(Li, Xu, Wan, Yu, & Zhu, 2018)。然而,uDISCO和a-uDISCO都不能有效的透明化高度着色的器官和硬组织。为了解决这些限制,赵瑚团队开发了聚乙二醇(PEG)相关溶剂系统(PEGASOS),该系统可以透明所有类型的组织,同时保留内源性荧光(Jing et al., 2018)。朱丹教授团队通过温度和pH值调节开发了一种基于3DISCO,称为FDISCO,FDISCO有效的保存了FPs和化学荧光示踪剂,并允许在几个月内重复拍摄样品(Qi et al., 2019)。最近开发的sDISCO通过添加抗氧化剂稳定DBE,进一步保留了荧光信号。蛋白质也可以通过免疫标记来观察。由Renier等人开发的iDISCO可以对小鼠胚胎和成年器官进行全贴装免疫标记和体积成像(Renier et al., 2014)。vDISCO是一种基于纳米体的全身免疫标记技术。该技术将FPs的信号强度增强了100倍以上,并揭示了Thy1-GFP-M小鼠的全身神经元投射(Cai et al., 2019)。虽然有机溶剂方法表现出出色的透明性能,并实现了亚细胞分辨率的全身成像,但也存在一些不足,例如样品的大幅收缩、大多数有机溶剂的毒性和荧光蛋白的猝灭。由于油性透明化方法存在诸多缺点,水性透明化方法诞生,水性与油性透明化方法最大区别在于水性试剂具有强亲水性,更有利于荧光信号的保存,适用于自带荧光的组织样本进行透明化。水性透明化试剂主要包括:单纯浸泡透明化和高水化脱脂透明。ClearT是基于甲酰胺的浸泡型透明化方法,速度快,但是会导致组织膨胀且荧光信号会淬灭。PEG可以稳定蛋白质构象,继而发展了可保留荧光蛋白的ClearT2透明化技术,但该方法透明度比ClearT低。SeeDB技术以果糖和硫代甘油为主要成分,可以在几天内将组织透明化,但果糖粘度过高导致组织内渗透性低,在此基础上衍生出FRUIT透明化方法,尿素的使用降低了果糖粘度,提高试剂流动性和渗透性。浸泡型透明化方法不能去除脂质,因此样本透明度有限。SDS、Triton X-100可以有效去除脂质,水化法通过在透明化过程中去除脂质,利用水化作用降低样本折射率进而实现组织透明化。Scale技术利用尿素水化作用进行透明化,可保留荧光信号,但该方法操作时间较长,易导致组织破碎。CUBIC在Scale基础上添加了胺基醇,可以去除血红素使组织脱色,也可以保留荧光信号(Tian, Yang, & Li, 2021)。水凝胶解决了高浓度去垢剂导致样本形变的问题,水凝胶与样本中蛋白质和核酸分子形成共价连接便可以固定和保护细胞结构。水凝胶型组织透明化方法是一种基于水凝胶的组织透明化方法,利用丙烯酰胺凝胶将生物分子固定在它本来的位置,用水凝胶来替换组织中的脂类,让溶液中的单体进入组织,然后对其稍微加热,上述单体开始凝聚为长分子链,在组织中形成高分子网络,这一网络能够固定组织的所有结构,但不会结合脂类,随后快速将脂类抽出,便获得了完整透明的立体组织,如脑组织中的神经元、轴突、树突、突触、蛋白、核酸等都完好的维持在原位。这种独特的组织脱脂方法能够最小化结构破坏和生物分子损失。该方法的脱脂方式主要有两种:电泳和简单被动脱脂,均能有效去除脂质,从而大大提高了水凝胶组织的光学透明度和大分子通透性(Chung et al., 2013 Treweek et al., 2015)。CLARITY透明化方法利用凝胶包埋样本,并利用电场力去除脂质使样本快速透明;SHIELD通过环氧化物P3PE固定组织实现蛋白的保护,之后使用SDS进行被动或主动脱脂。水性透明化方法虽然可以部分解决荧光蛋白易淬灭的问题,但是也存在透明时间长,透明能力低的缺点,一般适用于小样本组织透明化。水凝胶透明化方法操作过程复杂,且需要一定的设备。图3 组织透明化方法的主要类型 (Ueda et al., 2020b)(A) 有机溶剂型透明化方法通过使用有机溶剂依次将组织进行脱水、脱脂、折射率匹配,在短时间内可使组织完全透明。然而,有机溶剂会快速漂白荧光蛋白的信号并且使组织皱缩。(B) 水溶剂型透明化方法以水溶性试剂对组织依次进行脱色、脱脂、折射率匹配,从而使组织完全透明。该方法具有更高的生物安全性和兼容性。(C) 水凝胶型透明化方法通过凝胶将生物分子固定在原来的位置,随后对组织进行脱色、脱脂、折射率匹配操作,从而使组织透明。基于水凝胶的方法可以保留足够的RNA用于分析,如荧光原位杂交;由于水凝胶网会固定组织,因此会使组织体积扩大几倍。组织透明化方法的选择(对于不同检测目标、不同组织、含有特定化学成分的组织选择的组织透明化方法以及试剂不同)组织透明化从2014年兴起以来,前期主要在神经科学领域广泛应用,随着透明化方法的不断改进,目前在发育生物学、免疫学、肿瘤学研究中也被广泛应用。检测目标不同,透明化方法中的试剂选择不同,水凝胶适用于不稳定分子如RNA的保存,CLARITY方法中用到的化学试剂单丙烯酰胺或双丙烯酰胺对细胞内部结构进行很好的固定,使得在后期脱脂等处理后组织内部结构依然保持;常用的样本固定试剂是甲醇,在使用过程中可以较好的固定蛋白质(表1)(Almagro et al., 2021)。表1 不同试剂适用于不同检测目标(Almagro et al., 2021)水性试剂蔗糖和尿素对内源性荧光试剂、脂类试剂比较友好;而有机溶剂苄醇-苯甲酸苄酯(BABB)会造成脂质洗脱和蛋白质荧光基团淬灭,所以不能用于脂肪组织的检测;聚乙二醇(PEG)是有机溶剂型透明化方法PEGASOS中用到的试剂,可以有效保护内源性荧光;此外在有机溶剂型透明化方法中可以通过调节pH、温度达到保护荧光的效果,如FDISCO在四氢呋喃(THF)中,维持碱性pH和低温下,EGFP荧光信号可以维持数月(表2)。此外,免疫标记中使用的小分子染料(如细胞核染料DAPI、碘化丙啶、RedDot和SYTO)、凝集素、抗体对目标进行标记,其中抗体被动扩散速度非常慢,免疫染色可以通过优化抗体浓度、温度、孵育时间等提高染色效率;我们也可以通过减小样品体积、用小分子荧光染料代替抗体增强染色效果。也可以通过改变荧光标记的亲和属性如SWITICH方法,让它们在组织中自由扩散再进行结合;通过电泳的方式也可以提高染色效率(Almagro et al., 2021)。 表2不同试剂对于荧光信号的保留(Almagro et al., 2021)此外,某些组织中含有较难去除的成分如色素、脂肪,其中血红素是组织中较难去除的色素,仅仅通过灌注PBS不足以去除肾脏、心脏、肌肉、肝脏中的血红素,可以选择含有漂白剂成分的试剂进行脱色如双氧水,并且能去除自发荧光,但是过氧化物处理会损伤目标荧光蛋白,所以荧光标记一般在漂白之后进行;前列腺和乳腺富含脂肪,会阻碍抗体进入、光线穿透,可以选择含有去垢剂成分的组合如TritonX-100、SDS、CHAPS等进行脱脂,去污剂可以破坏脂质双层使组织形成可以运输出组织的胶束,SHANEL方法中的CHAPS能生成较小的胶束,能更快的从组织中析出,具有有效的去脂效果。当组织较大时,被动去脂速度就比较慢,这时可以通过电泳的方式加快进程;电泳组织透明设备(ETC)和随机电子迁移(使用旋转电场或在单向电场内旋转样品)可以加速去脂。其它类型组织如硬组织骨骼,其中含有的钙化矿物质阻碍光的穿透,50%-70%的骨骼由遍布蛋白基质的钙化羟基磷灰石(HAP)晶体组成,这时可以选择含有钙螯合剂组合的方法如乙二胺四乙酸(EDTA)中性缓冲液,进行脱钙处理(表3)(Almagro et al., 2021)。表3不同试剂对于细胞组分去除(Almagro et al.,2021)组织透明化方法的应用范围不同组织在透明化方法的选择上都有所不同,根据组织成分、检测目标、组织类型选择不同的透明化方法,下表是不同透明化方法在不同健康以及肿瘤组织上的应用实例,对于组织在选择方法的时候可以借鉴这些实例,从而更好的避开长时间的摸索(表4)。表4 不同透明化方法应用到不同肿瘤组织举例(Almagro et al., 2021)此外,利用组织透明化方法可以实现人类器官三维成像(图4)(Ueda et al., 2020a)。图4 人类胚胎组织以及器官透明化三维结构图(Ueda et al., 2020a)(a) 胚胎周围神经三维图像。(b) 泌尿系统中的肾脏和Wolffian管。(c) 胚胎背部、手臂、头部肌肉。(d)手部脉管系统。(e)手部三种感觉神经。(f)肺上皮小管。参考文献Almagro, J., Messal, H. A., Zaw Thin, M., van Rheenen, J., & Behrens, A. (2021). Tissue clearing to examine tumour complexity in three dimensions. Nat Rev Cancer, 21(11), 718-730. doi:10.1038/s41568-021-00382-wCai, R., Pan, C., Ghasemigharagoz, A., Todorov, M. I., Forstera, B., Zhao, S., . . . Erturk, A. (2019). Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat Neurosci, 22(2), 317-327. doi:10.1038/s41593-018-0301-3Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., . . . Deisseroth, K. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497(7449), 332-+.Dodt, H. U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C. P., Deininger, K., . . . Becker, K. (2007). Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods, 4(4), 331-336. doi:10.1038/nmeth1036Erturk, A., Becker, K., Jahrling, N., Mauch, C. P., Hojer, C. D., Egen, J. G., . . . Dodt, H. U. (2012). Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc, 7(11), 1983-1995. doi:10.1038/nprot.2012.119Gracie Vargas, M., Kin F. Chan, PhD, Sharon L. Thomsen, MD, and A.J. Welch, PhD. (2001). Use of Osmotically Active Agents to Alter Optical Properties of Tissue: Effects on the Detected Fluorescence Signal Measured Through Skin.Jing, D., Zhang, S., Luo, W., Gao, X., Men, Y., Ma, C., . . . Zhao, H. (2018). Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res, 28(8), 803-818. doi:10.1038/s41422-018-0049-zLi, Y., Xu, J., Wan, P., Yu, T., & Zhu, D. (2018). Optimization of GFP Fluorescence Preservation by a Modified uDISCO Clearing Protocol. Front Neuroanat, 12, 67. doi:10.3389/fnana.2018.00067Matryba, P., Sosnowska, A., Wolny, A., Bozycki, L., Greig, A., Grzybowski, J., . . . Golab, J. (2020). Systematic Evaluation of Chemically Distinct Tissue Optical Clearing Techniques in Murine Lymph Nodes. J Immunol, 204(5), 1395-1407. doi:10.4049/jimmunol.1900847Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., . . . Gerfen, C. R. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207-+.Pan, C., Cai, R., Quacquarelli, F. P., Ghasemigharagoz, A., Lourbopoulos, A., Matryba, P., . . . Erturk, A. (2016). Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods, 13(10), 859-867. doi:10.1038/nmeth.3964Park, Y. G., Sohn, C. H., Chen, R., McCue, M., Yun, D. H., Drummond, G. T., . . . Chung, K. (2018). Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol. doi:10.1038/nbt.4281Qi, Y., Yu, T., Xu, J., Wan, P., Ma, Y., Zhu, J., . . . Zhu, D. (2019). FDISCO: Advanced solvent-based clearing method for imaging whole organs. Sci Adv, 5(1), eaau8355. doi:10.1126/sciadv.aau8355Renier, N., Wu, Z., Simon, D. J., Yang, J., Ariel, P., & Tessier-Lavigne, M. (2014). iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell, 159(4), 896-910. doi:10.1016/j.cell.2014.10.010Richardson, D. S., & Lichtman, J. W. (2015). Clarifying Tissue Clearing. Cell, 162(2), 246-257. doi:10.1016/j.cell.2015.06.067Susaki, E. A., & Ueda, H. R. (2016). Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol, 23(1), 137-157. doi:1
  • 北京大学李文哲博士:双光子显微成像技术应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇为北京大学天然药物及仿生药物全国重点实验室李文哲博士供稿。双光子吸收的理论概念是1931年由德裔美国物理学家Maria Göppert-Mayer在她的博士论文中提出。到1960年,激光器被发明出来后双光子吸收在实验上被验证,但是直到1990年第一台双光子荧光显微镜才被美国康奈尔大学的Denk、Strickler和Webb开发出来,Denk很快就将双光子显微镜用于神经元成像。1997年,美国科学家Svoboda利用双光子显微镜测量完整老鼠大脑的锥体神经元,并记录其感官刺激诱导树突钙离子动态,自此双光子显微镜的潜能开始完全凸显。时至今日,双光子显微系统在神经科学、肿瘤学、心脑血管及药物研究等领域有了极大的发展,近年来,光遗传光刺激也更多地和双光子技术结合,广泛地应用于清醒小动物领域。双光子成像的原理和优势特点双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有 100 飞秒,而其周期可以达到 80至100兆赫兹。在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是最高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。图1.双光子激发原理(左)及双光子吸收现象(右)从双光子现象的原理,我们可以总结出双光子成像的特点及其相对于共聚焦成像的优势:1.光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对活体细胞和组织的光损伤小,适用于长时间的活体研究;2.穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力(图2),因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题,常规情况下,共聚焦的成像深度一般为100微米,双光子则能达到250到500微米,甚至超过1毫米;3.高分辨率:同时吸收两个光子意味只有高强度聚焦点处能被激发,由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收仅局限于焦点处的体积约为波长3次方的范围内;4.荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦针孔),这样就提高了对荧光的收集率;5.图像对比度高:由于双光子激光波长较长,瑞利散射产生的背景噪声只有单光子激发时的1/16,大大降低了散射的干扰(图2);6.避免组织自发荧光的干扰,获得较强的样品荧光:生物组织中的自发荧光物质的吸收波长一般在350-560nm范围内,采用近红外或红外波段的激光作为光源,能大大降低生物组织对激发光吸收(图2)。图2. 不同波长下的光穿透深度、光散射以及内源性物质对光的吸收情况基于以上优势,双光子显微镜自发明30年来,已成为较厚组织及活体动物显微成像中不可或缺的工具。我们平台双光子显微镜常用的应用研究如,在神经科学领域用于脑神经和脑血管成像,通过开颅对麻醉小鼠完整V层锥体神经元和更深层的海马神经元的三维结构进行深层成像,对脑血管进行高速动态实时成像;在肿瘤研究中,对于肿瘤细胞及肿瘤微环境中免疫细胞的行为进行成像;在药物研究中,对于药物在肿瘤或脏器中的靶向、释放及代谢等动力学行为进行实时可视化成像;得益于平台双光子显微镜双脉冲激光(一根700-1300nm可调激光,一根1040nm固定谱线激光)的配置,可进行双通道同时成像,特别是适用于比率型荧光生物传感器的研究,如果利用一根激光作为刺激光源,可进行边刺激边成像实验。双光子显微成像的“搭档”双光子显微镜用于活体动物的原位显微成像,为保证实验动物在成像时保持稳定且维持正常的生理状态,往往需要搭配一些辅助成像的设备或者配件。以下为我们常用的几种双光子成像辅助配件:1、可移动麻醉机进行双光子活体动物成像实验时,为保持动物处于稳定状态,需对其进行持续麻醉。吸入式麻醉起效快,麻醉效果稳定,麻醉的深度和维持时间易控制,麻醉撤离后动物复苏快,最重要的是其不会影响动物的生理指标,被认为是啮齿类动物最可靠的麻醉方式。异氟烷气体吸入式麻醉是目前国际惯用的麻醉方式,研究表明,异氟烷麻醉能维持动物的心率、血氧分压、血液pH等生理功能处于稳定状态,适合情况复杂且持续时间较长的动物实验,包括对小动物进行连续成像。因此小动物可移动麻醉机是双光子显微成像实验中必不可少的辅助设备。本平台配备的小动物可移动麻醉机适用于大鼠、小鼠、豚鼠,可保证动物在成像的同时进行可控的持续麻醉。2、小动物成像视窗由于光吸收和光散射,目前双光子成像深度≤1 mm。因此对于活体动物器官的成像一般需手术暴露成像部位。众所周知,大多数的生理和病理过程发生在较长时间内,需连续几天或更长时间内对同一只动物多次成像。因此对于双光子活体成像,待观察组织的暴露及固定技术非常重要。此外,正置双光子显微镜常用水镜,小鼠活体成像过程中会因稳定性不足发生抖动,造成样品与物镜间的水缺失,而活体动物自身的呼吸和心跳等影响因素也会造成成像焦面的丢失,一旦失焦,重新进行对焦十分耗时,大大影响成像的效率。基于以上问题,对于动物成像部位的维持与固定有非常高的要求,固定装置不能对动物有太大的损伤,既要保证能够得到清晰的图像,还要保证动物生命体征正常。目前已有多项研究通过构建和使用双光子活体成像窗口,实现对不同脏器进行固定和长期成像,其中脑部颅骨薄窗成像技术较为成熟,因其远离心脏的位置优势,前处理和固定相对较容易,结合荧光标记物已广泛应用于脑神经科学相关研究。腹部器官如肝脏、淋巴组织、肠、脾脏和肾等都很软且血管密布,由于解剖位置不同,缺乏可以固定成像窗的骨骼结构,给窗口适配器的固定增加了难度;而且腹部脏器普遍离心脏较近,拉伸距离有限,更需要较好的固定和麻醉来抵抗心跳造成的图像抖动。因此腹部器官的活体成像更具挑战性,固定适配器往往需根据具体实验自制或定制。3、气管插管工具及呼吸机对于小动物肺部成像或心脏成像,需对其进行开胸手术,为维持动物正常的生理活性,满足呼吸代谢的需求,一般借助呼吸机对其进行有节律的肺部供气。呼吸机的本质就是一种气体开关,控制系统通过对气体流路的控制而完成给实验动物肺部供气,保持实验动物生理活性的设备。而气管插管是呼吸机辅助呼吸的重要步骤,顺利的气管插管是实验成败的关键之一。气管插管(以下简称插管)是指将一特制的气管内导管经声门置入气管,进而打开小动物呼吸道,为气道通畅、通气供氧等提供最佳条件。气管插管推荐使用静脉留置针的套管,大鼠一般使用16-18G套管,小鼠一般使用22-24G套管。我们平台一般使用光纤辅助法经口插管,操作过程中先将动物固定到一个倾斜的平板上,光纤插入到气管插管中,然后利用这种带光源的气管插管在明视野条件下经口腔插入动物的气管,然后拔掉光纤,用专用的气泡接到气管插管中,吹泡检测是否气管插管到达需要的位置,如果确认插管到位,再将气管插管与呼吸机的Y型接口相连。光纤辅助法也是目前插管最快,成功率最高的方法,同时对动物的损伤小,对操作人员的技能要求低。国产双光子显微镜的现状和未来双光子显微镜目前已广泛应用于神经科学、肿瘤研究、免疫学、病毒学、化学生物学等研究领域,在基础科研和临床前研究中都有着不可替代的重要地位。一流的科研离不开一流的技术,但由于我国在显微镜行业起步较晚,当前我国高端双光子显微镜市场仍大多依赖进口,深度精密制造、光学核心部件设计及工艺严重制约产业升级,国内具备生产高端显微镜的企业屈指可数,必须承认的是国内厂商仍与国际高端水平有相当差距,在国际竞争中技术上处于相对劣势。我们平台的高端显微镜目前全部为进口品牌,在使用过程中一旦出现核心部件的严重的故障,涉及到需要连线国外厂家维修和维权非常不顺畅,耗费大量的人力和时间成本,严重影响了科研进度,面对此困境,国产高端显微镜的自立自强迫在眉睫。令人欣喜的是,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作。目前产品已销售到以色列耶路撒冷希伯来大学、北京大学分子生物研究所、中国科学院上海生命科学研究院神经科学研究所等国内外多家高校及研究所。2017 年,北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。该成果获得了中国科技部评选的2017年度“中国科学十大进展”,同时与其他自由运动成像技术被Nature Methods杂志评为2018年度方法——“无限制行为动物成像”。2021年,该团队在Nature Methods上报道了第二代微型化双光子荧光显微镜FHIRM-TPM 2.0,其成像视野是该团队于2017年发布的第一代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。目前该技术已产品化并销往海内外,销售额过亿。值得一提的是,2023年2月27日,该团队研制的空间站双光子显微镜随神舟十五号进入太空,航天员乘组使用空间站双光子显微镜开展在轨验证实验任务,成功获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。近五年来,国产高端显微镜科技成果产业化的飞速进步给了我们很多惊喜,也在逐渐努力打破当前被进口仪器垄断的市场格局。但由于我国显微镜行业起步较晚,发展缺乏技术沉淀,因此在核心部件设计、工艺及精密制造上仍与国外拥有百年历史的显微镜厂商有较大差距。未来,随着国内显微镜仪器行业新产品层出不穷,对光学元件组件加工技术(如光学玻璃非球面加工技术)、配套材料及高精度检测技术要求越来越高,只有解决了这些问题,才能将高端显微镜的知识产权和核心技术牢牢掌握在自己手里,以期真正实现高端显微镜的自主创新和国产替代。关于北京大学天然药物及仿生药物全国重点实验室生物影像平台在科技部国家重点实验室仪器专项和双一流学科建设经费的支持下,实验室建立了配套齐全、设备先进的大型仪器研究技术平台,设备总值约3.6亿元,按功能分为10个子平台,可为生物医学研究和新药研发提供全链条技术支持。其中,生物影像平台技术精专、设备一流、开放性强、是一个为科研人员提供合作研究和技术交流的多功能研究技术平台。生物影像平台拥有成熟的高内涵成像分析技术、STED/STORM/Airyscan超高分辨成像技术、共聚焦成像技术、双光子成像技术、多光谱全景组织切片成像及表型分析技术、小动物光学成像技术、多模式小动物光/超声成像技术等,同时平台集成了Imaris、Aivia、inForm、Nis-element、AutoQuant X3等多种智能图像处理分析软件,建立完备的图像分析工作站,获取大量基于图像的生物信息分析数据。平台成功建成从分子到细胞、组织、动物完整的生物成像及分析体系,已广泛应用于校内外的分子及细胞生物学研究、免疫学研究、疾病研究、原创药物研发及高通量药物筛选、新型纳米功能材料研究等领域。主持多项国家级课题和校级技术类开放课题,不断开发或拓展成像技术的应用领域,积累了丰富的生物成像研究经验。本成像平台目前的研究方向及技术服务内容有:1. 核酸、蛋白、糖类等生物分子的成像及相互作用分析;2. 细胞生物学成像及细胞器的动态相互作用超高分辨成像与分析;3. STED、STORM、Airyscan超分辨成像技术;4. FRET、FRAP、TIRF等成像技术及分析;5. FLIM、FLIM-FRET、FCS成像及定量分析;6. 信号传导通路分析及分子定位分析;7. 细胞内药效学及药物动力学可视化评价;8. 组织病理切片制备、染色、免疫组化、多色免疫荧光;9. 组织切片全景扫描、多色免疫组化荧光成像与空间组学分析;10.双光子小动物活体原位细胞动态成像;11. 小动物活体光学/超声/光声成像及活体中的药效、药物动力学评价等。
  • 1130万!山东大学双光子激光共聚焦显微镜等采购项目
    一、项目基本情况项目编号:SDJDHF20230033-Z026项目名称:山东大学双光子激光共聚焦显微镜采购项目预算金额:680.0000000 万元(人民币)最高限价(如有):680.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1双光子激光共聚焦显微镜 1台详见公告附件 项目编号:SDJDHF20230027-Z021项目名称:山东大学分选流式细胞仪采购项目预算金额:240.0000000 万元(人民币)最高限价(如有):240.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1分选流式细胞仪 1台详见公告附件 项目编号:SDJDHF20230024-Z018项目名称:山东大学长时间动态细胞监测分析系统采购项目预算金额:210.0000000 万元(人民币)最高限价(如有):210.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1长时间动态细胞监测分析系统 1台详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年04月20日 至 2023年04月26日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:山东省济南市历下区华润置地广场A5-6号楼27层方式:第一步:投标人在海逸恒安项目管理有限公司网站上录入单位名称、联系人及电话等信息;链接:http://www.sdhyha.cn/qpoaweb/prg/gys/baoming.aspx?id=34131pE9Y。第二步:将招标文件工本费网银汇款截图或银行电汇凭证扫描件(备注投标人名称),发送至liyuying@sdhyha.com邮箱。 售价:¥300.0元,缴纳形式:电汇或网银,开户单位名称:海逸恒安项目管理有限公司,开户银行: 中信银行济南龙奥支行。账 号:8112501013101275518。注:本项目实行资格后审,获取招标文件成功不代表资格后审的通过。售价:¥900.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:山东大学中心校区明德楼        联系方式:王老师0531-88369797      2.采购代理机构信息名 称:海逸恒安项目管理有限公司            地 址:山东省济南市历下区华润置地广场A5-6号楼27层            联系方式:陈晓楠、李雨莹0531-82661997、13964159515            3.项目联系方式项目联系人:陈晓楠、李雨莹电 话:  0531-82661997、13964159515
  • 鑫图参与国家重点项目—“双光子-受激发射损耗(STED)复合显微镜”的研发
    2017年10月20日,科技部重点研发计划-数字诊疗专项"双光子-受激发射损耗(STED)复合显微镜"项目(2017YFC0110200)实施交流研讨会在南京举行,鑫图总经理陈兵在会上作了关于"下一代sCMOS相机"的技术汇报。 该项目以研发及产业化双光子-受激发射损耗(STED)复合显微镜为主要目标,力图在"适用于双光子成像的自适应光学技术"、"基于中空贝塞尔淬灭光场调控的STED 成像技术" 等关键技术上有所突破。在长工作距离显微物镜、飞秒激光器和CMOS 相机等核心部件能自主研发,实现高端光学显微镜的技术创新与装备国产化。项目研发团队是由多名在光学显微成像领域有着丰富研究与产业化经验的资深人员组成,在双光子显微成像、STED超分辨成像及仪器化开发方面都有着深厚的基础。在双光子显微成像方面,项目负责人郑炜博士从2006 年起就开始双光子显微成像的相关研究,自主研发了世界首台双光子\谐波\光声三模态显微镜。在STED成像方面,项目核心成员席鹏教授是国内公认的STED技术领航人,是他首次在国内实现了STED超分辨显微成像,并将STED分辨极限推进到19nm的理论极限,刷新了STED在生物成像上的记录。在产业化方面,申报企业南京东利来公司是中国光学与光子学标准技术委员会的委员单位,是中国显微物镜、目镜标准的第一起草单位。福州鑫图光电有限公司依托其在科学相机产业化方面的优势有幸参与其中,承担该项目核心部件sCMOS相机的研制,助力核心部件国产化目标。
  • 1958万!北京师范大学珠海校区双光子激光共聚焦显微镜等采购项目
    项目编号:XHTC-HW-2022-1657项目名称:北京师范大学珠海校区理工实验平台双光子激光共聚焦显微镜等设备采购预算金额:1958.0000000 万元(人民币)采购需求:简要规格描述或项目基本概况介绍数量预算金额(万元)是否接受进口产品本次采购包括:双光子激光共聚焦显微镜、三维成像X射线显微镜、多通道激光共聚焦显微镜,具体详见采购需求。1批1958是合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目( 不接受 )联合体投标。采购需求1657.pdf
  • 1080万!中国科学技术大学三重串联四级杆质谱仪、双光子显微镜系统采购项目
    一、项目基本情况1.项目编号:OITC-G230322034项目名称:中国科学技术大学双光子显微镜系统采购项目预算金额:580.000000 万元(人民币)最高限价(如有):580.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1双光子显微镜系统1是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G230322035项目名称:中国科学技术大学三重串联四级杆质谱仪采购项目预算金额:500.000000 万元(人民币)最高限价(如有):500.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1三重串联四级杆质谱仪1是 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月27日 至 2023年12月04日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学技术大学     地址:安徽省合肥市金寨路96号         联系方式:0551-63602706      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:(北京):北京市海淀区丹棱街1号互联网金融中心20层(合肥):合肥市高新区创新大道2809号置地创新中心28层2815室            联系方式:(北京):窦志超、曹山、王琪 010-68290502(合肥):李文海、郑文彬0551-66030322            3.项目联系方式项目联系人:窦志超、曹山、王琪、李文海、郑文彬电 话:  010-68290502/0551-66030322
  • 北京大学程和平院士等开发深脑成像的利器—微型化三光子显微镜
    2023年2月23日,北京大学程和平/王爱民团队在Nature Methods在线发表题为“Miniature three-photon microscopy maximized for scattered fluorescence collection”的文章。文中报道了重量仅为2.17克的微型化三光子显微镜(图1),首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。图1 小鼠佩戴微型化三光子显微镜实景图解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,为此需要打造自由运动动物佩戴式显微成像类研究工具。2017年,北京大学程和平院士团队成功研制第一代2.2克微型化双光子显微镜,获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像。2021年,该团队的第二代微型化双光子显微镜将成像视野扩大了7.8倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力。此次,北京大学最新的微型化三光子显微镜一举突破了此前微型化多光子显微镜的成像深度极限:显微镜激发光路可以穿透整个小鼠大脑皮层和胼胝体,实现对小鼠海马CA1亚区的直接观测记录(图2,Video 1-2),神经元钙信号最大成像深度可达1.2 mm,血管成像深度可达1.4 mm。另外,在光毒性方面,全皮层钙信号成像仅需要几个毫瓦,海马钙信号成像仅需要20至50毫瓦,大大低于组织损伤的安全阈值。因此,该款微型三光子显微镜可以长时间不间断连续观测神经元功能活动,而不产生明显的光漂白与光损伤。图2 微型三光子显微成像记录小鼠大脑皮层L1-L6和海马CA1的结构和功能动态。CC:胼胝体。绿色代表GCaMP6s标记的神经元荧光钙信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。Video1 这是使用北大微型化三光子显微镜拍摄的小鼠大脑从大脑皮层到胼胝体再到海马CA1亚区的三维重建图。绿色代表GCaMP6s标记的神经元荧光信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。左上角显示成像深度,可以看到,激光进入大脑,以硬脑膜作为0点,向下移动z轴位移台,我们一次看到了皮层L1至L6分层的神经元胞体和微血管,之后我们看到了胼胝体致密的纤维结构。在穿过胼胝体后,我们继续向下,我们终于看到了位于海马CA1亚区的神经元胞体。Video2 左下图是小鼠佩戴着微型化三光子探头,在鼠笼(长29厘米× 17.5厘米宽× 15厘米高)中自由探索。左上图是此时小鼠佩戴的微型化三光子探头正在对深度为978 μm的海马CA1亚区神经元荧光钙信号进行成像(帧率8.35Hz,物镜后的光功率为35.9 mW)。右图展示了左上图中10个神经元的钙活动轨迹,尖峰代表钙信号发放。钙活动轨迹上移动的蓝线与小鼠自由行为视频同步。海马体位于皮层和胼胝体下面,在短期记忆到长期记忆的巩固、空间记忆和情绪编码等方面起重要作用。在啮齿类动物研究模型中,海马距离脑表面深度大于一个毫米。由于大脑组织,特别是胼胝体,具有对光的高散射光学特性,所以突破成像深度极限是长期以来困扰神经科学家的一个极大的挑战。此前的微型单光子及微型多光子显微镜均无法实现穿透全皮层直接对海马区进行无损成像。北京大学微型化三光子显微镜成像深度的突破得益于全新的光学构型设计(图3)。作者通过对皮层、白质和海马体建立分层散射模型进行仿真,发现荧光信号从深层组织到达脑表面时已经处于随机散射的状态,使得显微物镜荧光收集效率降低,从而极大限制了成像深度。针对这一问题,经典阿贝聚光镜结构被引入构型设计中:微型阿贝聚光镜与简化的无限远物镜密接可以提高散射光的通透效率;阿贝聚光镜与激发光路中的微型管镜部分复用,可以进一步简化结构,降低损耗。总体上,新微型化显微镜的散射荧光收集效率实现了成倍的提升。图3 微型化三光子显微镜光学构型同时,利用微型三光子显微镜,作者研究了小鼠顶叶皮层第六层神经元在抓取糖豆这一感觉运动过程中的编码机制:发现大约37%的神经元在抓取动作之前就开始活跃且在抓取时最活跃,大约5.6%的神经元在抓取动作之后开始活跃,说明不同神经元参与了不同阶段的编码(图4,Video 3)。这一结果初步展示了微型化三光子显微镜在脑科学研究中的应用潜力。图4 小鼠顶叶皮层第六层神经元在抓取糖豆任务中的不同反应类型Video3 左图是佩戴着微型化三光子显微镜的小鼠在0.5厘米狭缝中用手抓取糖豆吃。中间图是此时微型化三光子显微镜探头拍摄的PPC脑区皮层第6层神经元(位于650微米深度)荧光钙信号(GCaMP6s标记的神经元,帧率15.93 Hz)。右图是选取中间图中5个神经元的钙活动轨迹,其中每条绿线表示一次小鼠的抓取动作。移动的蓝色线与左图的小鼠行为视频以及中间图中的神经元活动同步。视频以正常(×1)、慢速(×0.5)和快速(×10)的速度播放,以便于查看抓取行为。北京大学未来技术学院博士后赵春竹、北京大学前沿交叉学科研究院博士研究生陈诗源、北京大学分子医学南京转化研究院研究员张立风为该论文的共同第一作者,北京大学程和平、王爱民、赵春竹为论文的共同通讯作者。原文链接:https://doi.org/10.1038/s41592-023-01777-3这是程和平院士领衔发表的又一重大微型化显微成像成果。更早之前,由程和平院士牵头研发的微型化双光子活体成像技术,被Nature Methods评为“2018年度方法”,被国家科技部评为“2017度中国十大科学进展”。该技术将传统双光子显微镜中的核心探头,都缩减在一个仅有2.2克重的微小部件中。这项自主研发的核心技术已经成功商业化生产,产品为配戴式双光子显微镜,目前已经在世界多地实现销售,被国内外科学家应用于神经科学研究的多个领域,并获得了业内知名专家学者的高度认可。
  • 深脑成像的利器:超维景助力北京大学微型化三光子显微镜问世
    2023年2月23日,北京大学程和平-王爱民团队在 Nature Methods 在线发表题为 Miniature three-photon microscopy maximized for scattered fluorescence collection 的文章。 文中报道了重量仅为2.17克的微型化三光子显微镜(图1),首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。 图1 小鼠佩戴微型化三光子显微镜实景图 解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,为此需要打造自由运动动物佩戴式显微成像类研究工具。2017年,北京大学程和平院士团队成功研制第一代 2.2 克微型化双光子显微镜,获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像。2021年,该团队的第二代微型化双光子显微镜将成像视野扩大了 7.8 倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力。 微型化三光子显微镜突破成像深度极限 海马体位于皮层和胼胝体下面,在短期记忆到长期记忆的巩固、空间记忆和情绪编码等方面起重要作用。在啮齿类动物研究模型中,海马距离脑表面深度大于一个毫米。由于大脑组织,特别是胼胝体,具有对光的高散射光学特性,所以突破成像深度极限是长期以来困扰神经科学家的一个极大的挑战。此前的微型化单光子及微型化多光子显微镜均无法实现穿透全皮层直接对海马区进行无损成像。此次,北京大学最新研发的微型化三光子显微镜一举突破了此前微型化多光子显微镜的成像深度极限:1、显微镜激发光路可以穿透整个小鼠大脑皮层和胼胝体,实现对小鼠海马CA1亚区的直接观测记录(图2)。神经元钙信号最大成像深度可达1.2 mm,血管成像深度可达1.4 mm。2、在光毒性方面,全皮层钙信号成像仅需要几个毫瓦,海马钙信号成像仅需要20至50毫瓦,大大低于组织损伤的安全阈值。因此,该款微型化三光子显微镜可以长时间、不间断连续观测神经元功能活动,且不产生明显的光漂白与光损伤。图2 微型三光子显微成像记录小鼠大脑皮层L1-L6和海马CA1的结构和功能动态。CC:胼胝体。绿色代表GCaMP6s标记的神经元荧光钙信号,洋红色代表硬脑膜、微血管和脑白质界面的三次谐波信号。 全新的光学构型设计 北京大学微型化三光子显微镜成像深度的突破得益于全新的光学构型设计。(图3)图3 微型化三光子显微镜光学构型 通过对皮层、白质和海马体建立分层散射模型进行仿真,发现荧光信号从深层组织到达脑表面时已经处于随机散射的状态,使得显微物镜荧光收集效率降低,从而极大限制了成像深度。针对这一问题,经典阿贝聚光镜结构被引入构型设计中:微型阿贝聚光镜与简化的无限远物镜密接可以提高散射光的通透效率;阿贝聚光镜与激发光路中的微型管镜部分复用,可以进一步简化结构,降低损耗。总体上,新微型化显微镜的散射荧光收集效率实现了成倍的提升。 生物应用 同时,利用微型化三光子显微镜,作者研究了小鼠顶叶皮层第六层神经元在抓取糖豆这一感觉运动过程中的编码机制:发现大约37%的神经元在抓取动作之前就开始活跃且在抓取时最活跃,大约5.6%的神经元在抓取动作之后开始活跃,说明不同神经元参与了不同阶段的编码。(图4)这一结果初步展示了微型化三光子显微镜在脑科学研究中的应用潜力。 图4 小鼠顶叶皮层第六层神经元在抓取糖豆任务中的不同反应类型北京大学未来技术学院博士后赵春竹、北京大学前沿交叉学科研究院博士研究生陈诗源、北京大学分子医学南京转化研究院研究员张立风为该论文的共同第一作者,北京大学程和平、王爱民、赵春竹为论文的共同通讯作者,北京超维景生物科技有限公司胡炎辉、李谊军、陈燕川、付强、高玉倩、江文茂、张颖也参与了此项工作的开发。该项目得到科技创新2030-“脑科学与类脑研究”重大项目、中国医学科学院医学与健康科技创新工程—脑疾病的线粒体机制研究创新单元、国家自然科学基金委、国家重大科研仪器研制专项、科技部重点研发计划等经费支持。超维景一直致力于前沿生物医学成像技术的产业转化,为推动生命科学的研究与发展提供优质的、系统化的解决方案。 经过多年的沉淀 我们即将推出自主研发的最新一代微型化三光子显微成像系统敬 请 期 待 !Nature Methods 原文链接:https://doi.org/10.1038/s41592-023-01777-3
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制