显微镜变倍比什么意思
光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。 1.双目体视显微镜 双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。
想采购一台显微镜,但是外行,对这个没有一点概念,搜了很久,都是要一家一家询价,今天终于搜到一个报价,可供与我有同样想法者参考,各位有买了的,也可以比较一下,看这个报价是否与实际复合.[B]注意这个帖子是2006年12月发布的了[/B].一、生物类显微镜 (单位:台/元) 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XSP-12型500倍单目生物显微镜 360 27 XSP-24N-101型单目生物显微镜 8102 XSP-15型640倍单目生物显微镜 370 28 XSP-24N-102型单目生物显微镜 9003 XSP-13A型1250倍单目生物显微镜 660 29 XSP-24N-103型单目生物显微镜 11804 XSP-16A型1600倍单目生物显微镜 670 30 XSP-24N-201型双目生物显微镜 85005 XS-011型200倍单目生物显微镜 200 31 XSP-24N-111型示教显微镜 16006 ESM100型生物显微镜(全塑) 98 32 Nikon YS100型双目生物显微镜 92007 XS-100型200倍学生用显微镜(全塑) 75 33 Nikon YS50型单目生物显微镜(自然光源) 85008 XS-212-201型双目生物显微镜 2600 34 Nikon YS50型单目生物显微镜(电光源) 88009 XS-212-202型双目生物显微镜 2550 35 Nikon YS100型三目摄影生物显微镜(相机选购) 1690010 XS-212-103型双目生物显微镜 1580 36 Nikon E200(MCA74401C)临床实验室 用双目生物显微镜 1590011 XS-212-104型双目生物显微镜(自然光源) 1460 12 XS-212-105型双目生物显微镜 1790 37 Nikon E200(MCA74411C)临床实验室 用双目生物显微镜(视场光栏) 1661013 XS-212-301型双目生物显微镜 3100 14 XS-200型双目生物显微镜 2780 38 Nikon E200(MCA74402C)临床实验室 用三目生物显微镜 1905015 XS-200型双目平场生物显微镜 4150 16 XS-201型双目生物显微镜 2880 39 Nikon E200(MCA74412C)临床实验室 用三目生物显微镜(视场光栏) 1976017 XS-201型双目平场生物显微镜 4250 18 XS-402型实验室用双目生物显微镜 6500 40 GAILEM型单目生物显微镜 300019 XS-402型实验室用荧光双目生物显微镜(二波段) 17500 41 GAILEM型单目生物显微镜(自然光源) 280020 XS-402型实验室用荧光三目生物显微镜(二波段) 19000 42 GAILEM型双目生物显微镜 380021 XS-402型实验室用荧光三目生物显微镜(四波段) 25000 43 GAILEM型双目平场生物显微镜 540022 XS-213-201型双目生物显微镜 4200 44 GAILEM型双目相衬生物显微镜 660023 XS-213-202型双目平场生物显微镜 5200 45 GAILEM型双目暗场生物显微镜 485024 XS-213-301型单目生物显微镜 4700 46 GAILEM型摄影生物显微镜(相机选购) 510025 XSP-24S-106型单目生物显微镜 1150 47 XD-101型倒置式生物显微镜(相机选购) 995026 XSP-24S-206型单目生物显微镜 1800 48 XD-101改型倒置式生物显微镜(相机选购) 17500二、体视类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XTX-2型40倍小型体视显微镜 470 6 JSZ4(1:7)连续变倍体视显微镜(无光源) 42002 XTB-1型160倍连续变倍体视显微镜 2350 7 JSZ4(1:7)连续变倍体视显微镜(上下光源) 47003 XTL-1型200倍摄影体视显微镜(相机选购) 3650 8 JSZ4(1:8)连续变倍体视显微镜(无光源) 48004 JSZ4(1:4.3)连续变倍体视显微镜(无光源) 2850 9 JSZ4(1:8)连续变倍体视显微镜(上下光源) 53005 JSZ4(1:4.3)连续变倍体视显微镜(上下光源) 3350 三、偏光类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XPT-7型偏光显微镜(附光源) 3600 4 XP-201型双目偏光显微镜 99502 XPT-8型偏光显微镜(附光源及摄影仪DP相机) 5880 5 Nikon YS2型双目偏光显微镜 230003 XP-201型单目偏光显微镜 8000 6 Nikon YS2型三目偏光显微镜(相机选购) 25500四、金相类显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XJX-1型单目正置式金相显微镜 3250 6 XJL-03型立式金相显微镜 320002 XJX-2型双目正置式金相显微镜 4100 7 XJG-05型卧式大型金相显微镜 415003 XJP-100型倒置单目金相显微镜 3400 8 XJZ-6型正置透反两用金相显微镜(相机选购) 230004 XJP-200型倒置双目金相显微镜 4250 9 XJZ-6A型立式金相显微镜 185005 XJL-5型立式金相显微镜 22000 五、大型仪器设备 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 DLT2000多媒体显微实验• 示教系统 待询 5 XQF-2000型半自动金相图像分析仪 980002 DXT-100G型透射电子显微镜 285000 6 XQF-2000型全自动金相图像分析仪 1800003 H-600A-2型透射电子显微镜(进口组装) 880000 7 MIAS2000型图像分析通用软件(含图像卡) 280004 DXS-2B扫描电子显微镜 168000 8 HS88/23航空摄影仪 545000六、电视显微镜 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 XS-213型电视生物显微镜(配25寸国产彩电) 18500 3 NikonYS2-TV型电视生物显微镜(配25寸国产彩电) 260002 GAILEM/TV型电视生物显微镜(配25寸国产彩电) 18500 4 XTL-1/TV型电视生物显微镜(配26寸国产彩电) 18500七、附件(选购) 序号 产 品 名 称 出厂价 序号 产 品 名 称 出厂价1 X11-3型体视透射光源 280 16 JSZ7体视 2X大物镜 4002 环形体视光源 340 17 JSZ7体视 10X目镜 1803 X11-5型斜照光源 280 18 JSZ7体视 20X目镜 2004 偏光光源 280 19 JSZ7体视 25X目镜 2505 冷光源 2650 20 JSZ8体视 2X大物镜 5306 X17-1型压平机 345 21 JSZ8体视 10X目镜 3007 显微镜修理工具 280 22 JSZ8体视 16X目镜 3508 移动尺(黑漆) 77 23 JSZ8体视 25X目镜 4009 移动尺(镀铬) 88 24 JSZ8体视 摄影附件(摄影目镜 2.5X,MD 卡口) 280010 NIDS-光标发生器(手动) 2800 25 数码相机附件 待询11 05型金相135摄影仪(配DF-300相机) 3800 26 XS-212、XS-213摄影装置(不含相机) 120012 JSZ4体视 2X大物镜 480 27 XS-212、XS-213相衬装置 280013 JSZ4体视 10X目镜 180 28 XS-212、XS-213偏光附件 600元14 JSZ4体视 15X目镜 200 29 XS-212、XS-213暗场聚光镜(干、油各一只) 105015 JSZ4体视 20X目镜 200 30 XS-212、XS-213暗场聚光镜(干、油各一只) 650元/套来源:中国教育装备采购网(来源:中国生物仪器网)
共聚焦显微镜与普通光学显微镜的比较显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。普通光学显微镜与激光共聚焦显微镜同属于光学显微镜。 一、普通光学显微镜 普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。 显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为: R=0.61λ /N.A. N.A.=nsinα/2 式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180?,所以sina/2的最大值必然小于1。 制作光学镜头所用的玻璃折射率为1.65~1.78,所用介质的折射率越接近玻璃的越好。对于干燥物镜来说,介质为空气,镜口率一般为0.05~0.95;油镜头用香柏油为介质,镜口率可接近1.5。 普通光线的波长为400~700nm,因此显微镜分辨力数值不会小于0.2μm,人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。
①照明源不同。电镜所用的照明源是电子枪发出的电子流,而光镜的照明源是可见光(日光或灯光),由于电子流的波长远短于光波波长,故电镜的放大及分辨率显著地高于光镜。 ②透镜不同。电镜中起放大作用的物镜是电磁透镜(能在中央部位产生磁场的环形电磁线圈),而光镜的物镜则是玻璃磨制而成的光学透镜。电镜中的电磁透镜共有三组,分别与光镜中聚光镜、物镜和目镜的功能相当。 ③成像原理不同。在电镜中,作用于被检样品的电子束经电磁透镜放大后打到荧光屏上成像或作用于感光胶片成像。其电子浓淡的差别产生的机理是,电子束作用于被检样品时,入射电子与物质的原子发生碰撞产生散射,由于样品不同部位对电子有不同散射度,故样品电子像以浓淡呈现。而光镜中样品的物像以亮度差呈现,它是由被检样品的不同结构吸收光线多少的不同所造成的。 ④所用标本制备方式不同,电镜观察所用组织细胞标本的制备程序较复杂,技术难度和费用都较高,在取材、固定、脱水和包埋等环节上需要特殊的试剂和操作,最后还需将包埋好的组织块放人超薄切片机切成50~100nm厚的超薄标本片。而光镜观察的标本则一般置于载玻片上,如普通组织切片标本、细胞涂片标本、组织压片标本和细胞滴片标本等。 电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替。光子“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。 光学显微镜的分辨率与光波的波长有关。对于接近和小于光波波长的物体光学显微镜就无能为力了。电子运动的波长比光波波长短的多,就可以看到更细小的物体。光学显微镜是由一组光学镜头组成的放大成像系统,而电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替光子,这样就可以看到比光学系统能看到的更小的物体。 所谓“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。
光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.双目体视显微镜双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.偏光显微镜(Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.荧光显微镜荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.相衬显微镜(Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.微分干涉对比显微镜(DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.倒置显微镜(Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.数码显微镜数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。
[font=宋体][size=3][b]光学显微镜有多种分类方法:[/b][/size][/font][font=宋体][size=3] 按使用目镜的数目可分为双目和单目显微镜;[/size][/font][font=宋体][size=3] 按图像是否有立体感可分为立体视觉和非立体视觉显微镜;[/size][/font][font=宋体][size=3] 按观察对像可分为生物和金相显微镜等;[/size][/font][font=宋体][size=3] 按光学原理可分为偏光、相衬和微差干涉对比显微镜等;[/size][/font][font=宋体][size=3] 按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;[/size][/font][font=宋体][size=3] 按接收器类型可分为目视、数码(摄像)显微镜等。[/size][/font][font=宋体][size=3] 常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。[/size][/font][size=3][b][font=Times New Roman]1[/font][font=宋体].双目体视显微镜[/font][font=Times New Roman] [/font][/b][/size][size=3][font=宋体] 双目体视显微镜又称[/font][font=Times New Roman]"[/font][font=宋体]实体显微镜[/font][font=Times New Roman]"[/font][font=宋体]或[/font][font=Times New Roman]"[/font][font=宋体]解剖镜[/font][font=Times New Roman]"[/font][font=宋体],是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角[/font][font=Times New Roman]--[/font][font=宋体]体视角(一般为[/font][font=Times New Roman]12[/font][font=宋体]度[/font][font=Times New Roman]--15[/font][font=宋体]度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。[/font][/size][size=3][font=宋体] 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜[/font][font=Times New Roman]----[/font][font=宋体]变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为[/font][font=Times New Roman]"[/font][font=宋体]连续变倍体视显微镜[/font][font=Times New Roman]"[/font][font=宋体]([/font][font=Times New Roman]Zoom-stereomicroscope[/font][font=宋体])。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。[/font][font=Times New Roman] [/font][/size][size=3][b][font=Times New Roman]2[/font][font=宋体].金相显微镜[/font][font=Times New Roman] [/font][/b][/size][font=宋体][size=3] 金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。[/size][/font]
分子级高分辨率的激光扫描共焦显微镜和结构照明显微镜是在细胞生物学和其他相关领域强有力的研究工具,但是它们高昂的价格也使很多潜在用户望而却步。波士顿大学的科学家最近开发出一种显微新技术 (HiLo Microscopy),能够将普通的广域荧光显微镜变成可与激光扫描共焦显微镜和结构照明显微镜相媲美的高分辨率生物显微镜。这一技术包括一个简单的可以在均衡光源和结构光源之间自由转换的显微镜附件和一套功能强大的图像处理软件。该软件仅通过处理在均衡光源和结构光源条件下拍摄的两张分辨率不同的照片就可以得到全分辨率的三维图像。这一技术可用于任何现有的广域荧光显微镜,而成本大大低于激光扫描共焦显微镜和结构照明显微镜。由于成像机理简单,该技术的成像速度是常用的生物显微技术中最快的,而且操作简便,不受样本移动的影响。波士顿大学目前正在积极寻求企业合作,争取早日将这一突破性的技术推向市场。
珠宝视频显微镜是通过视频显微镜技术、先进的光电转换技术、成熟的电视成像技术完美结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通双眼观察到通过显示屏成像来再现,实现了人视觉到仪器视觉的转变和定性检查到定量检查的转变,克服了人为检查的不确认性,极大的提高了工作效率。珠宝视频显微镜的主要特点和用途:视频显微镜使用范围相当广泛,用它观察物体时能产生正立的三维空间图像,立体感强,成像清晰和宽阔,具有较长的工作距离,对同一物体可实现连续放大倍率观看,并可直接在现实器上观察实物图像,本仪器可作教学示范,宝石鉴定,钻石腰围编码查看以及钻石切工的八箭八心观察等使用。由于本显微镜具有很高的分辨率以及较大的观察范围,因此在钻石腰围GIA编码的观察中,效果非常显著。
电子显微镜能够实现极高的放大倍数,普通型号可以提供从几百倍到一百万倍的放大效果,而高端的研究级透射电子显微镜(TEM)在扫描透射模式下的标称放大倍数更是可以达到上亿倍。不过,实际上放大倍数并非衡量显微镜能力的最佳指标,分辨率才是关键;现代电子显微镜的分辨率已经可以达到原子尺度,即约0.1至0.2纳米的水平。这使得科学家能够观察到物质的微观结构,包括单个原子及其排列情况。
光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.[b]双目体视显微镜[/b]双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.[b]金相显微镜[/b]金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.[b]偏光显微镜[/b](Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.[b]荧光显微镜[/b]荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.[b]相衬显微镜[/b](Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.[b]微分干涉对比显微镜[/b](DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.[b]倒置显微镜[/b](Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.[b]数码显微镜[/b]数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。
[url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E7%AB%8B%E4%BD%93%E6%98%BE%E5%BE%AE%E9%95%9C%E5%8F%8A%E5%AE%8F%E8%A7%82%E6%98%BE%E5%BE%AE%E9%95%9C]体视显微镜[/url]又称“实体显微镜”或“解剖镜”,是一种具有正像空间立体感的目视显微镜,主要有以下几种类型:单目体视显微镜,双目体视显微镜,连续变倍体视显微镜, 视频体视显微镜等。其应用也相当广泛:1、动物学、植物学、组织学、矿物学、考古学、地质学和皮肤病学等领域的研究;2、用于纺织工业中原料及棉毛织物的检验;3、用于电子工业中晶体管点焊、检查等操作工具;4、在材料分析领域中,用于裂缝构成,气孔形状腐蚀情况等表面现象的检查。
对于我们这些刚刚入行的检测人员来说,操作水平提高得动手练,数据处理就得多动脑子总结,所以今天分享一个常常困扰我们的问题—显微镜的倍数,到底总放大倍数是怎么计算的,所得到的拍摄的照片又是放大了多少倍。===============================================================总放大倍数有两种概念,一种是光学放大倍数,一种是数码放大倍数(只有连接成像设备时才会涉及到数码放大倍数)。 1.光学放大倍数。是指我们从显微镜目镜中观测到物体被放大后的倍数。光学放大倍数的计算方式比较简单,即物镜倍数*目镜倍数。例如:体视显微镜的放大倍数计算,连续变倍体视显微镜的物镜通常是0.7-4.5倍,那在10倍目镜的情况下,这台显微镜的总放大倍数为7-45倍;生物显微镜、金相显微镜的计算则更为简单,一般的物镜配置是4倍、10倍、40倍、100倍,目镜常规配置是10倍,另外还有16倍、20倍等,只要将目镜和物镜的倍数分别相乘就可得到总放大倍数。 2.数码放大倍数。数码放大是指外接设备后,显示到图像上的放大倍数,目前市场上较多的是用三目显微镜,通过CCD设备连接至电脑、监视器或者电视机上进行成像观察,以减轻眼睛的疲劳,同时也便于与他人分享。但是显示到图像上的物体到底是放大了多少倍呢?现向大家推荐两种计算数码放大的方法。 (1)直接对图像进行测量。将测微尺放到显微镜下,然后拿直尺直接测量显示器上测微尺的长度,将显示器上一格的测量结果 /测微尺每格的实际长度(一般在测微尺上都会直接标有每格的长度)=物体被放大的倍数。物体被放大的倍数/当前物镜的倍数=数码放大倍数。通常情况下,会在图像中加比例尺来表示改物体被放大的倍数。 注:如果没有测微尺,可以用直尺代替,同时在计算时可以多测量几格,以减少误差。 (2)通过公式计算实际的放大倍数。 数码放大倍数=物镜倍数**适配器的放大倍数,如果系统放大倍数,还需要乘以系统放大倍数。 注: 1:物镜倍数指的是您现在使用的显微镜的物镜镜头的倍数,如20倍; 2:适配器的放大倍数:指的显微镜与成像设备连接部分的放大倍数,通常为1倍,也有0.35、0.5、0.63倍的; 3:25.4*屏幕尺寸(英寸):这里是把屏幕尺寸换算成毫米计算,1英寸=25.4mm; 4:CCD对角线的长度:指的是CCD的芯片尺寸,常有的是1/3英寸、1/2英寸、2/3英寸的,相对应的长度分别为6mm;8mm;11mm,这个是行业内统一规范的。
[b]看自己的需求和预算[/b]目前市场上的显微镜主要有国产和进口之分,一般来讲价格差距再几倍到十几倍不等。如何选购显微镜,你没有说明自己工作者还是学生这点用重要,主要是根据您[b]现有的预算[/b]来决定是购买国产或是进口,低中高端不同的显微镜价格在几千元到数万元不等。[align=center][img=,700,]http://www.gdkjfw.com/images/image/53831530585657.jpg[/img][/align][b]选择显微镜前提要是有钱,玩的要求高点的话,就买奥林巴斯(OLYMPUS)、徕卡(Leica))、蔡司(Zeiss)、尼康(NIKON),通常是5000-50000左右吧!这都是老牌。[/b]要是纯爱好,又不想花太多钱的,就买学生型的,但是网上的显微镜种类形式各异,很难做出选择。[align=center][img=,690,]http://www.gdkjfw.com/images/image/14651530585657.jpg[/img][/align][b]学生型显微镜主要有两种:生物显微镜和体视显微镜[/b]1、生物显微镜倍数一般:40X,100X,400X,1000X最高配置可以到2000倍(20X目镜和100X物镜)入门显微镜没有必要1000倍和2000倍这么高倍。400倍已经够用,目镜用10X的,物镜就用4X/10X/40X。倍数达到1000倍时,要用100X物镜时需要香柏油的,而且还要清洗,对样品的制备要求很高,也没有必要用。[b]兴趣培养,买电光源或反光镜型的都可以。[/b]稍微大点的学生,初中生买显微镜最好购买单筒型带反光镜的,一般初中学校教学用的都是这种,如果买高端或是其它类型的,很多部件和结构都不一样,对不上教科书,容易让初学者混淆。单筒生物显微镜,最好是配置上一个移动尺,方便样品移动。[b]星明光学单筒生物显微镜[/b]推荐配置:目镜10X,物镜4X/10X/40X,带移动尺,反光镜,五孔光栏。这种配置适合小学生和初中生用。[b]要是就玩下的,直接用可以买电光源形式的,插电的话视野还是方便[/b]2、体视显微镜(立体显微镜、解剖镜、实体显微镜)有定倍和连续变倍两种。倍数一般是10X-50X左右。体视显微镜没有做教学使用。体视显微镜倍数小,立体感强,初学者兴趣培养很合适,样品不需要制备,拿到标本直径放在显微镜下观察。如蚊子、盐、味精、皮肤、头发等等,可以让初学者了解更多的显微世界。3、显微镜图像拍照显微镜成的图像都可以通过电子目镜或显微镜CCD呈现到电脑上面。但是图像清晰度会有损耗。1)好一些的可以买显微镜专用相机接电脑,带软件可以拍照、录像等;2)电子目镜一般效果不太好,而且不带软件,只有显像和拍照功能;[b]3)也可以直接用手机对着目镜拍图片。[/b]
无式镜在从未被文字记录下来的那段历史中的某一天,一个腰上挂着树叶串、头上长发飘飘的人一脚飞起一块石子。他用类似于尖叫的语言说:“咦,这是什么东西亮闪闪在地下?”他捡起这块大致像颗棋子的透明石头瞅瞅,“石子对面的世界放大啦~”他的同类还试着用透明圆石头在炎炎烈日下长时间凝视地上一些烂草棍,结果草棍呼的一下烧着了!对大自然打磨的奇妙石头的记忆一直延续到公元1世纪初,在罗马哲学家的笔记中,它们被称为“放大器”(magnifier)或“点火石”(burning glasses);直到13世纪,这些石头终于从脚下一路登鼻子上脸,被赐名透镜(lense),因为它们长得好像一颗小扁豆(lentil)。 随后,“小扁豆”又被人们粘进一根细长筒里。人们就像看万花筒一样,举着这个小筒偷看跳蚤打架,所以这只筒名叫“跳蚤镜”(flea glasses)。它就像眼镜的衍生物,然而已从人脸向前迈出一大步,是未来单式显微镜的雏形。谓之“单式”,因为它不同于你生物课上用过的显微镜,没有目镜、物镜之分,放大多少只由一颗“小扁豆”决定。单式镜现代实验室显微镜即使配以“雕梁画栋”,也未必可以卖得更贵,因为雕梁画栋违背了现代人讲究目的和实用的原则。因此我们常常难以理解为什么历史上许多划时代的发明刚刚出现的时候,人们想不到用这些发明改变世界,却只把它们当成丰富视觉享受、甚至象征贵族生活的道具。当我看到十七世纪初那做工精美的“单式镜”,真想搞一个来摆在家里——纯装饰。当时,人们却可以用它来观察桔子表皮,具体做法是:取一只桔子,噗地一声扎在针尖一样的“载物台”上,从直立的单片镜片背后即可观看一只疼痛的桔子。前后移动桔子可以改变放大倍率,只是她挺沉的,晃晃悠悠地不太稳当。(图一)[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912311537_193327_1601358_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003311212_209200_1601358_3.jpg[/img]单式显微镜达到登峰造极的水平是在列文虎克。如果我没有记错,中学的生物是从列文虎克发明显微镜开始的。其实,不论“单式”还是今天普遍应用的“复式”(即多个镜片前后排列,如目镜+物镜),发明者都不是他。只是这一点损失对于列文虎克作出的贡献无伤大雅。前边提到,单式显微镜的放大本领只能依靠一颗“小扁豆”来实现,要想让镜片放大率增大,镜片焦距必须很短,扁豆必须很小,这就需要很高的打磨工艺——如果你是用打磨的方法。一般人能磨出放大率几十倍的镜片已经很了不起,于是列文虎克来了。
光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。 早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。 1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。 17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。 1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。 19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。 表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。 光学显微镜的组成结构 光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。 聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。 物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。 物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。 目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。 载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。 显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。 当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。 聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。 改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。 光学显微镜的分类 光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体 感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。 双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。 金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。 紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。 电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。 扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。
有没有放大倍数大.分辨率高的显微镜头???能直接接在CCD上,观测颗粒度在微米量级的物体表面.满足要求,价格好说.!!
1.结构: 标本的放大主要由物镜完成,物镜放大倍数越大,它的焦距越短。焦距越小,物镜的透镜和玻片间距离(工作距离)也小。油镜的工作距离很短,使用时需格外注意。目镜只起放大作用,不能提高分辨率,标准目镜的放大倍数是十倍。聚光镜能使光线照射标本后进入物镜,形成一个大角度的锥形光柱,因而对提高物镜分辨率是很重要的。聚光镜可以上下移动,以调节光的明暗,可变光阑可以调节入射光束的大小。 显微镜用光源,自然光和灯光都可以,以灯光较好,因光色和强度都容易控制。一般的显微镜可用普通的灯光,质量高的显微镜要用显微镜灯,才能充分发挥其性能。有些需要很强照明,如暗视野照明、摄影等,常常使用卤素灯作为光源。光学显微镜是由光学放大系统和机械装置两部分组成。光学系统一般包括目镜、物镜、聚光器、光源等;机械系统一般包括镜筒、物镜转换器、镜台、镜臂和底座等。2.原理: 显微镜的放大效能(分辨率)是由所用光波长短和物镜数值口径决定,缩短使用的光波波长或增加数值口径可以提高分辨率,可见光的光波幅度比较窄,紫外光波长短可以提高分辨率,但不能用肉眼直接观察。所以利用减小光波长来提高光学显微镜分辨率是有限的,提高数值口径是提高分辨率的理想措施。要增加数值口径,可以提高介质折射率,当空气为介质时折射率为1,而香柏油的折射率为1.51,和载片玻璃的折射率(1.52)相近,这样光线可以不发生折射而直接通过载片、香柏油进入物镜,从而提高分辨率。显微镜总的放大倍数是目镜和物镜放大倍数的乘积,而物镜的放大倍数越高,分辨率越高。
瑞典皇家科学院8日宣布,将2014年诺贝尔化学奖授予美国科学家埃里克·贝齐格、威廉·莫纳和德国科学家斯特凡·黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 诺贝尔化学奖评选委员会当天声明说,长期以来,光学显微镜的分辨率被认为不会超过光波波长的一半,这被称为“阿贝分辨率”。借助荧光分子的帮助,今年获奖者们的研究成果巧妙地绕过了经典光学的这一“束缚”,他们开创性的成就使光学显微镜能够窥探纳米世界。如今,纳米级分辨率的显微镜在世界范围内广泛运用,人类每天都能从其带来的新知识中获益。 声明还说,黑尔于2000年开发出受激发射损耗(STED)显微镜,他用一束激光激发荧光分子发光,再用另一束激光消除掉纳米尺寸以外的所有荧光,通过两束激光交替扫描样本,呈现出突破“阿贝分辨率”的图像。贝齐格和莫纳通过各自的独立研究,为另一种显微镜技术——单分子显微镜的发展奠定了基础,这一方法主要是依靠开关单个荧光分子来实现更清晰的成像。2006年,贝齐格第一次应用了这种方法。因此,这两项成果同获今年诺贝尔化学奖。 今年诺贝尔化学奖奖金共800万瑞典克朗(约合111万美元),将由三位获奖者平分。
美国科学家称,利用世界上最先进的高分辨率光学显微镜,他们观察到了H2AX蛋白质在细胞核内的团状分布情况,以及DNA受损后它们如何移动到所需地方对基因进行“急救”或修复。 目前,有许多生物过程都是无法用视觉观察到的,原因是高分辨率电子显微镜常常因样品制备问题出现偏差,而光学显微镜虽然容易制备且能观察活细胞,但其分辨率却比较低。然而,通过对光波进行适当的操作,生物科学家扩展了光学显微镜的能力,成功地研制出4Pi显微镜,并通过它观察到了细胞的成分,其中包括细胞核的内部结构。 在新出版的美国《国家科学院学报》上,美国杰克逊实验室分子生物物理学所研究人员乔尔格• 毕瓦斯多夫及其合作者联合发表文章介绍说,借助4Pi光学显微镜,他们观察到了DNA双螺旋结构断裂情况下细胞的反应,并发现了DNA双螺旋结构断裂(即遗传物质严重受损)后引发的细胞内H2AX蛋白质一系列验证和修复损伤动作。如果细胞成分在修复过程中出现缺陷,则存在着发生癌症和免疫问题的危险,因此细胞内的反应十分重要。 H2AX是一种组蛋白。作为结构蛋白质,它们能缠绕在受损的DNA上,同时它们具有基因管理和基因修复的功能。H2AX在DNA受损后能快速做出反应,转变成γ-H2AX,这对协调发信号和修复等极其重要。 利用选择性着色技术和4Pi显微镜,毕瓦斯多夫还观察到H2AX组蛋白成团状均匀地分布在细胞核内。他认为,这种团状结构或许决定了DNA发生断裂时,γ-H2AX进行对应扩散的边界。 毕瓦斯多夫说:“H2AX团状分布也许为迅速和有效地应对DNA受损提供了平台。下一步,我们将分析H2AX团的位置及与其他细胞核成分的关系。”
低倍显微镜和高倍显微镜的区别
出一台欧洲的高级双筒光学显微镜(自带光源),最大倍数1600倍.研究级.并可作为高档陈列装饰品,全合金材料,是收藏品中的精品,大专院校教学用(绝非医用),三对目镜,四个物镜(全部原装),成色很好(九成新),观察图象清晰,是科技.生物化学.医疗.农业.大专院校.及个人的首选商品.更是收藏爱好者的最佳藏品,各部位可以任意拆卸,便于保养。 双目镜筒带瞳距/屈光度调节,1.6X调中 聚光镜带可变光栏.原配的电源,15W/6V可调卤素光源.这台显微镜光学性能优秀 .大视场目镜5X 7× 10× 各一对(所有镜头均度膜)。平场复消色差物镜:6×0.1,20×0.4,10×0.3,1090X1.25(油) 这台显微镜机械工艺十分精细,它不同于其他镜子有二个可变光栏,这样可以更加方便观看标本.因看中了大毒物,不得已出让收藏.这台IOR的显微镜原价左右要9800左右.现1150元,有意可来电( 0716--8900707)本人对所售显微镜终身提供技术支持。诚信为本,愿成为您的朋友.照片地址---http://photo.163.com/photos/cocokernut/
无式镜 在从未被文字记录下来的那段历史中的某一天,一个腰上挂着树叶串、头上长发飘飘的人一脚飞起一块石子。他用类似于尖叫的语言说:“咦,这是什么东西亮闪闪在地下?”他捡起这块大致像颗棋子的透明石头瞅瞅,“石子对面的世界放大啦~”他的同类还试着用透明圆石头在炎炎烈日下长时间凝视地上一些烂草棍,结果草棍呼的一下烧着了!对大自然打磨的奇妙石头的记忆一直延续到公元1世纪初,在罗马哲学家的笔记中,它们被称为“放大器”(magnifier)或“点火石”(burningglasses);直到13世纪,这些石头终于从脚下一路登鼻子上脸,被赐名透镜(lense),因为它们长得好像一颗小扁豆(lentil)。 随后,“小扁豆”又被人们粘进一根细长筒里。人们就像看万花筒一样,举着这个小筒偷看跳蚤打架,所以这只筒名叫“跳蚤镜”(fleaglasses)。它就像眼镜的衍生物,然而已从人脸向前迈出一大步,是未来单式显微镜的雏形。谓之“单式”,因为它不同于你生物课上用过的显微镜,没有目镜、物镜之分,放大多少只由一颗“小扁豆”决定。 单式镜 http://www.microimage.com.cn/uploadfile/xwjs/uploadfile/201007/20100702052337407.jpg 现代实验室显微镜即使配以“雕梁画栋”,也未必可以卖得更贵,因为雕梁画栋违背了现代人讲究目的和实用的原则。因此我们常常难以理解为什么历史上许多划时代的发明刚刚出现的时候,人们想不到用这些发明改变世界,却只把它们当成丰富视觉享受、甚至象征贵族生活的道具。当我看到十七世纪初那做工精美的“单式镜”,真想搞一个来摆在家里——纯装饰。当时,人们却可以用它来观察桔子表皮,具体做法是:取一只桔子,噗地一声扎在针尖一样的“载物台”上,从直立的单片镜片背后即可观看一只疼痛的桔子。前后移动桔子可以改变放大倍率,只是她挺沉的,晃晃悠悠地不太稳当。(图一) 单式显微镜达到登峰造极的水平是在列文虎克。如果我没有记错,中学的生物是从列文虎克发明显微镜开始的。其实,不论“单式”还是今天普遍应用的“复式”(即多个镜片前后排列,如目镜+物镜),发明者都不是他。只是这一点损失对于列文虎克作出的贡献无伤大雅。前边提到,单式显微镜的放大本领只能依靠一颗“小扁豆”来实现,要想让镜片放大率增大,镜片焦距必须很短,扁豆必须很小,这就需要很高的打磨工艺——如果你是用打磨的方法。一般人能磨出放大率几十倍的镜片已经很了不起,于是列文虎克来了。
分辨率的计算公式:分辨率(r) = λ/(2NA)------------------------(1) 分辨率(r) = 0.61λ/NA-----------------------(2) 分辨率(r) = 1.22λ/(NA(obj) + NA(cond))-----(3)此处r为分辨率(两目标之间的最小分辨距离);NA为显微镜的数值孔径;NA(obj)为物镜的数值孔径;NA(cond)为聚光镜的数值孔径。公式(1)和(2)中的系数是不一样的,在公式(1)中系数为0.5;在公式(2)中系数为0.61。这是由于计算时对物镜及聚光镜的影响考虑的因素不一样而产生的(包括不同的物理学家使用的计算理论的不一至),并无一绝对的值。通常而言,公式(1)用于自然光照明的显微镜,(2)、(3)用于电光源的显微镜。基本要求用户将聚光镜的数值孔径调至与物镜一致(事实上,因为用户操作的因素以及各厂家聚光镜机械精度的因素,不可能一致),这时,公式(2)、(3)是一致的,因此通常采用公式(2)。 蓝、绿光波长段为450nm—550nm,最适于显微观察照明。我们取λ=450nm,带入公式2,选择不同的倍数物镜的数值孔径,就能得到理想状态下的显微镜的分辨率,如附件图中所示(图中笔误,应该为"平场半复消色差")[img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704252318_50081_1416957_3.jpg[/img]
显微镜包括两组透镜——物镜和目镜。显微镜的的放大倍数主要通过物镜来保证,物镜的最高放大倍数可达100倍,目镜的放大倍数可达25倍。物镜的放大倍数可由下式得出:M物=L/F1式中:L——显微镜的光学筒长度(即物镜后焦点与目镜前焦点的距离);F1——物镜焦距。而A′B′再经目镜放大后的放大倍数则可由以下公式计算:M目=D/F2式中:D——人眼明视距离(250mm); F2——目镜焦距。显微镜的总放大倍数应为物镜与目镜放大倍数的乘积,即:M总=M物×M目=250L/F1*F2在使用中如选用另一台显微镜的物镜时,其机械镜筒长度必须相同,这时倍数才有效。否则,显微镜的放大倍数应予以修正,应为:M=M物×M目×C式中:C——为修正系数。修正系数可用物镜测微尺和目镜测微尺度量出来。放大倍数用符号“×”表示,例如物镜的放大倍数为25×,目镜的放大倍数为10×,则显微镜的放大倍数为25×10=250×。放大倍数均分别标注在物镜与目镜的镜筒上。在使用显微镜观察物体时,应根据其组织的粗细情况,选择适当的放大倍数。以细节部分观察得清晰为准,盲目追求过高的放大倍数,会带来许多缺陷。因为放大倍数与透镜的焦距有关,放大倍数越大,焦距必须越小,同时所看到物体的区域也越小。
普通光学显微镜有许多局限性。对于初学者来说,通常情况下只限于通过目镜来观察显微物体。一眨眼的时间,很有可能就会错过一些刚才观察到的显微图像。另外,观察者除了通过自己的描述外没有其他办法将刚才观察到的显微图像保存下来。用眼睛观察到的显微图像只能通过观察者的文字描述来和他人共享。普通光学显微镜最明显的局限性还在于观察者的视野范围受到了限制。因为镜头尺寸小,所以每次只能研究一小块区域。如果想查看物体表形,就需要不断的移动载物台来查看物体的全貌。以上这些限制通过数码显微镜都能得到有效的解决。数码显微镜通过USB数据线连接到电脑,从显微镜目镜看到的显微图像能在电脑显示器中实时预览。 当然,数码显微镜能做的远远不止这些。 通过数码显微镜你可以建立自己的显微图片库。这意味着你能把显微图片保存下来供日后的观察及满足进一步研究的需要。此外,拍摄的显微图片还可以进行编辑处理。想更近距离的观察显微物体表形的特定区域吗? 通过数码显微镜的数码放大功能,能看到的图像比肉眼通过常规显微镜看到的要大30倍、50倍,甚至100倍。想和他人共享你的发现吗?因为你已经将图片保存下来了,所以共享将会变得十分简单。目前,数码显微镜在世界上许多工业领域已经成为重要的工具。在医学领域,尤其是实测复杂活体活动的研究中,数码显微镜的应用价值也是无价可估的。想要鉴别钱币和邮票的集邮爱好者们将会发现数码显微镜将给他们带来的种种益处。业余爱好者们也将会发现数码显微镜的优势。当然,从事研究事业的朋友们使用数码显微镜将会得更多的多产期。
以下内容摘自中国分析仪器网,供有兴趣的版友参考。一、显微镜的分类 (一)、按使用目镜的数目可分为单目、双目和三目显微镜。 单目价格比较便宜,可以作为初学爱好者的选择,双目稍贵点,观察的时候两眼可以同时观察,观察得舒适些,三目又多了一目,它的作用主要是连接数码相机或电脑用,比较适合长时间工作的人员选用。 (二)、根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。 1、生物显微镜是最常见的一种显微镜,在很多实验室中都可以见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2、体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有:①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3、金相显微镜主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。 (三)、按光学原理可分为偏光、相衬和微差干涉对比显微镜等。 1、偏光显微是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射性的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。主要用于研究透明与不透明各向异性材料。一般具有双折射的物质都可以用这种显微镜进行观察。双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域,如在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。在人体及动物学方面,常利用偏光显微术来鉴别骨骷、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。 2、相衬显微镜又称为相差显微镜,最大的特点就是可以观察未经染色的标本和活细胞。这些样品在一般的显微镜下是观察不到的,而相差显微镜则利用物体不同结构成分之间的折射率和厚度的差别,把通过物体不同部分的光程差变为振幅差,经过带有环状光阑的聚光镜和带有相位片的相差物镜来实现观测,简单的说它利用的是样品密度差别产生的反差来进行观察的,所以即使样品不染色也可以进行,这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。有相板的物镜称”相衬物镜”,外壳上常有”Ph”字样。相衬法是一种光学信息处理方法,而且是最早的信息处理的成果之一,因此在光学的发展史上具有重要意义。 3、微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图像呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 (四)、按光源类型可分为普通光、荧光和激光显微镜等。 1、普通光显微镜采用的就是普通光源,是最常用的。 2、荧光显微镜是以紫外线为光源,通常是照射被检物体(落射式),使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 3、激光共聚焦扫描显微镜,采用激光做为扫描光源,逐点、逐行、逐面快速扫描成像。因为激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。 (五).按显微镜物镜的位置分正置和倒置显微镜 1、倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为”倒置显微镜”。倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。倒置显微镜由于制作更加严密,价格也是比较贵的。目见倒置显微镜广泛应用于patch-clamp(膜片钳),transgeneICSI等领域。 (六).数码显微镜 1、数码显微镜又叫视频显微镜,它是将显微镜看到的实物图像通过数模转换,使其成像在计算机上。数码显微镜是将精锐的光学显微镜技术、先进的光电转换技术、普通的电视机完美地结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。数码显微镜在观察物体时能产生正立的三维空间影像。立体感强,成像清晰和宽阔,又具有长工作距离,并是适用范围非常广泛的常规显微镜。它操作方便、直观、检定效率高,适用于电子工业生产线的检验、印刷线路板的检定、印刷电路组件中出现的焊接缺陷(印刷错位、塌边等)的检定、单板PC的检定、真空荧光显示屏VFD的检定等等,它将实物的图像放大后显示在计算机的屏幕上,可以将图片保存,放大,打印。
低倍显微镜和高倍显微镜的区别
使用显微镜观察细菌通常需要至少1000倍的放大率,这是因为大多数细菌的尺寸非常微小,一般在0.2至5微米之间,这样的尺寸在更低的放大倍数下难以清晰辨认。光学显微镜下的油浸镜头可以提供必要的放大倍数来观察细菌的形态特征。但对于更细致的结构分析,如细菌的细胞壁或鞭毛等,则可能需要更高放大倍数的电子显微镜。
电子显微镜利用电子束而非光束来成像,因此它可以提供远高于光学显微镜的分辨率和放大倍数。电子显微镜可以放大物体从几千倍到几十万甚至上百万倍,允许研究人员观察纳米级别的细微结构,这对于研究细胞内部构造、病毒颗粒、材料科学等领域至关重要。两种主要类型的电子显微镜——透射电子显微镜(TEM)和扫描电子显微镜(SEM)——分别擅长于展示样品的内部组织和表面形貌。