当前位置: 仪器信息网 > 行业主题 > >

等离子体共振显微镜

仪器信息网等离子体共振显微镜专题为您提供2024年最新等离子体共振显微镜价格报价、厂家品牌的相关信息, 包括等离子体共振显微镜参数、型号等,不管是国产,还是进口品牌的等离子体共振显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合等离子体共振显微镜相关的耗材配件、试剂标物,还有等离子体共振显微镜相关的最新资讯、资料,以及等离子体共振显微镜相关的解决方案。

等离子体共振显微镜相关的资讯

  • 等离子体显微镜载玻片“揭示”了癌细胞的颜色
    纳米载玻片为无染色细胞分析提供了一条清晰的途径。图1 一种新的显微镜载玻片可以转换介电常数的微妙变化,显示引人注目的颜色对比度澳大利亚的研究人员开发了一种显微镜载玻片,可以通过“揭示”癌细胞的颜色来改善癌症诊断。由澳大利亚的拉筹伯大学(La Trobe University )高级分子成像研究委员会卓越中心的布莱恩阿贝(Brian Abbey)教授及其同事首创的所谓纳米载玻片(NanoMslide),是一种等离子体活性的显微镜载玻片,可以将样品介电常数的细微变化转化为鲜明的颜色对比。阿贝和他的同事已经使用纳米载玻片在组织中辨别癌细胞,其灵敏度优于一些用于临界诊断的商业生物标志物。正如研究人员在《自然》(Nature)杂志上报道的那样:“这项技术的广泛应用以及它与标准实验室工作流程的结合,可能会证明其应用范围远远超出组织诊断。” 几十年来,研究人员已经知道,由于细胞内蛋白质分布和整体形状的差异等因素,癌细胞倾向于以不同于健康细胞的方式与光相互作用。虽然在生物成像过程中,通常会将染色剂和染料添加到透明的生物样品中,以生成彩色图像,但这些染料往往会改变样品的性质。考虑到这些点,阿贝和同事使用最新的纳米制作技术,来创建一个可以操纵光线和“添加”颜色的等离子体主动显微镜载玻片。图2载玻片在玻璃表面结合了几层精细印刷的金属,以操纵光与细胞的相互作用。结果是在显微镜下观察组织时,大大增强的对比度纳米制剂在墨尔本纳米制造中心(MCN)制作,该中心是澳大利亚国家制造设施(ANFF)的一部分。正如阿贝所强调的:“通过开发一种特殊的纳米涂层,我们改进了普通显微镜载玻片的表面,并将其转化为一个巨大的传感器。”他补充道:“真正引人注目的是,传感器的结构只有几百纳米宽,但在几十厘米或更大的范围内重复的精度惊人。”当样品放置在载玻片上,通过可见光激活载玻片时,就将介电常数转变为颜色对比度的变化。正如阿贝及其同事在《自然》杂志上所写:“非凡的光学对比度涉及光与金属表面自由电子集体振荡的共振相互作用,称为表面等离子体激元。”当透射光通过载玻片上的一组波长光阑时(载玻片与薄电介质试样接触),光谱发生了变化。当使用标准透射亮场显微镜对样品进行成像时,这会导致与局部样品厚度和/或介电常数相关的空间分辨颜色分布,从而产生显著的颜色对比效果。图3 使用纳米载玻片来观察未染色的癌组织。 [拉筹伯大学]根据阿贝的说法,这可能意味着很难通过等离子体增强的颜色对比度在可见光透射图像中清楚地看到光学透明样品中的特征。他说:“纳米载玻片使组织呈现出美丽的全彩对比,使得在一张玻片上更容易区分多种类型的细胞。”。研究人员利用小鼠模型和患者组织,与乳腺癌病理学家一起测试了他们的纳米载玻片。在小鼠模型中,研究人员确信从样本中看到的一些表明癌细胞的特定颜色。在对患者组织进行更复杂的病理学评估时,纳米载玻片也表现强劲,优于一些商业生物标记物,这些标记物被用作边界诊断的辅助手段。“这是我第一次看到癌细胞突然出现在我面前,”艾比的同事、彼得麦克卡勒姆癌症中心的贝琳达帕克(Belinda Parker)教授说。她补充道:“我们所做的只是取一段乳腺癌组织,放在载玻片上,在传统光学显微镜下观察。我们可以很容易地将癌细胞与周围的正常组织区分开来。”。“这张幻灯片还将乳腺癌与其他非癌性异常区分开来,这对早期癌症诊断有很大的希望。”研究人员现在也在测试他们的液体活组织切片载玻片,并希望扩大生产,这将使他们能够探索进一步的应用,并生产出进一步临床验证所需的载玻片数量。阿贝说:“这项技术也可能对不断增长的数字病理学空间产生巨大的好处,在那里,纳米载玻片产生的鲜艳色彩可以帮助开发下一代人工智能算法来识别疾病的迹象。”。该项研究发表在《自然》杂志上。符斌 供稿
  • 新型表面等离子体共振光谱仪研制成功
    4月10日,中科院计划财务局组织专家对长春应用化学研究所承担的院科研装备研制项目“集成电化学方法的表面等离子体共振及其高通量分析仪器”进行了现场验收。验收专家分别听取了项目的结题、财务和用户使用报告,审阅了项目组提交的验收材料,并实地考察了研制样机的示范性实验操作,一致同意该项目通过验收。 专家现场考察样机   表面等离子体共振光谱(SPR)技术是一种全新的生物化学分析方法,具有实时、免标记等独特的检测优点,可广泛应用于生物分析、无机材料、化学分析和材料科学等领域,逐渐成为国际传感器领域的研究热点。实现具有时间分辨采集功能的SPR仪器方法,开发具有我国自主知识产权的新型电化学传感器、检测器和联用仪器是当前科技生产的迫切需求。   项目组以开发研制具有时间分辨测量能力、电化学检测系统、高通量成像分析模块的表面等离子体共振分析检测系统为目标,经过2年多的努力,研制开发出具有自主知识产权的具有时间分辨、电化学联用、成像测量等功能模块的表面等离子体共振光谱仪,可应用于界面小分子吸附反应动力学及涉及小分子相互作用的分析测量中,并可实现与多种电化学暂态、稳态技术方法的联用;该仪器设计新颖,利用二像素光学位置阵列传感器件,极大地提高了SPR光谱测量的时间响应;通过与多种电化学暂态及稳态技术方法的联用,拓宽了SPR光谱仪器的应用领域。   该项目研制开发的表面等离子体共振光谱及其联用仪器设备已经通过长春市产品质量监督检验院技术测试认证,现已小规模研制工程样机15台,并在清华大学、吉林大学、长春应化所、化学所、西北师范大学、东南大学、福州大学等科研和教学单位试用,效果良好。   该集成仪器系统将可广泛应用于电极界面纳米结构复合材料的电化学制备、修饰、电化学衍生及电极界面的自组装、生物芯片分析、医疗卫生、食品、毒品毒物分析等领域,是对目前SPR领域仪器方法的有益补充,具有广阔的市场前景。   该项目研制期间发表科研论文21篇;申请发明专利7项,4项已获授权;培养博士研究生7名,硕士研究生2名。
  • 生物分析研究必备神器:XelPleX全自动表面等离子体共振成像仪
    从事生物研究的科研工作者们,你们在实验中是否遇到过类似的疑惑?用于分析研究的工具还是一台陈旧的已然跟不上时代发展的“老人机”。实验中,检测筛选、出结果时间长不说,还提高了试剂成本;只能检测小范围的样品溶液不说,每年维护还需要不少费用;手动不环保不说,还不稳定......horiba 科学仪器事业部近来推出新品:xelplex全自动表面等离子体共振成像仪(生物大分子相互作用仪)是一款免标记、多通道生物分析和研究的理想工具。它与传统的spri表面等离子体共振成像仪相比,该系统自动化程度高,设计精巧,可实时监测数百个相互作用并获得动力学参数;适用于实时物理化学相互作用研究和动力学研究;高度自动化的表面等离子体共振成像系统,适用于多种应用要求。另外,高精度温度控制系统和自动脱气装置确保低背景噪音和低信号漂移,可便捷地获取在不同温度下的分子相互作用及反应的亲和力和动力学数据。 如此多的优点,作为生物学科研者,你们还用为实验效率不高,实验结果受外界影响严重,而担忧吗?不仅如此,下面还有更多优异的功能,可以直接秒杀实验过程中遇到的种种难题~1阵列式检测,同一芯片可同时获得多达400种相互作用创新的阵列式芯片设计,同一芯片可同时分析超过400组相互作用,与传统的通道-技术相比,所需时间缩短百倍,并节约试剂和人力成本,特别适用于快速筛选。2无标记,实时生物分子相互作用分析与成像基于spr技术、新型的生物传感技术,实时跟踪分子间结合和解离的过程,每秒可采集芯片表面5幅图像,提供完整动力学信息。成像技术,提供时空分布信息,直观判断相互作用是否发生;辅助解释动力学数据。3适应复杂样品优流体系统设计,全芯片表面检测,可直接注入复杂样品,不易堵塞,并耐受有机溶剂,拓展传统spr应用范围,适用蛋白质、dna、多糖、细胞、血清和培养基等多种粘稠样品以及纳米材料溶液。每年节约数万维护费用。 4智能全自动,48h无人看守实验全新超级软件,可以同时监测几百对相互作用,定量及统计分析,便于筛选和排序。5原位质谱联用,无需洗脱和浓缩独特芯片设计-质谱直接联用,无需洗脱和浓缩,同一芯片即可实现spr分析和质谱检测。进而实现动力学分析和物质鉴别。 6引导式软件设计,易于统计分析多功能软件包,全程引导式操作,批量处理数据及快速分类,方便调用实验模板及数据处理模板。7自动化样品回收与循环,环保节能自动化样品回收技术,节约珍贵样品,回收样品可用于交叉验证等实验。独特的样品循环技术,可检测低样品浓度,并维持动态平衡。 以下是xelplex全自动表面等离子体共振成像仪的主要技术参数,可以帮助大家更详尽的了解这款产品。技术参数 检测技术:耦合棱镜的表面等离子体共振成像 通道数:可以同时监测400组相互作用过程 样品体积:120μl-820μl 流速控制范围:1-3000μl/min 流通池温控范围:10-50°c 检测下限:3pg/mm2另外,附上与xelplex相匹配的核心附件,让xelplex展现出优的性能,发挥出大作用。可选附件 spri-cfm连续流动微量点样仪 spri-array快速台式点样仪 spri-biochips™ 生物芯片(cs/co/cse/coe/ctg/ch功能化)
  • 等离子体“彩虹”芯片级智能光谱仪,可实现“光谱+偏振”双功能传感
    近年来,研究人员和业内主要厂商已将研发重心转向微型化、便携式且低成本的光谱仪系统,使之可以在日常生活中实现现场、实时和原位光谱分析的许多新兴应用。然而,受到过度简化的光学设计和紧凑型架构的机械限制,微型光谱仪系统的实际光谱识别性能通常远低于台式光谱仪系统。如今,克服这些限制的一种策略便是在光子方法学中引入深度学习(DL)进行数据处理。据麦姆斯咨询报道,近日,美国纽约州立大学布法罗分校(University at Buffalo,the State University of New York)与沙特阿卜杜拉国王科技大学(King Abdullah University of Science & Technology)的联合科研团队在Nature Communications期刊上发表了以“Imaging-based intelligent spectrometer on a plasmonic rainbow chip”为主题的论文。该论文第一作者为Dylan Tua,通讯作者为甘巧强(Qiaoqiang Gan)教授。在这项研究工作中,研究人员开发了一种紧凑型等离子体“彩虹(rainbow)”芯片,能够实现快速、准确的双功能传感,其性能可在特定条件下超越传统的便携式光谱仪。其中的分光纳米结构由一维或二维的梯度金属光栅构成。该紧凑型等离子体光谱仪利用普通相机拍摄的单幅图像,即可精确地获得照明光源光谱的光谱信息和偏振信息。在经过适当训练的深度学习算法的辅助下,研究人员仅用单幅图像就能表征葡萄糖溶液在可见光光谱范围内的双峰和三峰窄带照明下的旋光色散(ORD)特性。该微型光谱仪具有与智能手机和芯片实验室(lab-on-a-chip)系统集成的潜力,为原位分析应用提供新的可能。研究人员利用彩虹捕获效应(rainbow trapping effect)来开发片上光谱仪系统。图1展示了该研究工作所提出的片上光谱仪和一维彩虹芯片的设计原理。如图1a所示,该光谱仪利用等离子体啁啾光栅实现分光功能。这种表面光栅几何形状的逐渐变化,导致了局部等离子体共振的空间调谐(即为光捕获“彩虹”存储)。如图1b所示,研究人员采用聚焦离子束铣削技术,在300 nm的银(Ag)薄膜上制备了啁啾光栅。当白光垂直入射时,通过简单的反射显微镜系统(如图1c),就可以观察到明显的“彩虹”色图像,如图1d的顶部所示,该现象源于光栅引发的等离子体共振。图1 片上光谱仪的等离子体啁啾光栅根据这些空间模式图像,可以建立共振模式与入射波长一一对应的关系,这是片上光谱仪的基础。因此,研究人员探讨了该光谱仪对任意光谱特征的空间分辨能力。通过深度学习辅助的数据处理和重建方法,研究人员利用这种分光功能可以构建用于光学集成的智能化、微型化光谱仪平台。具体而言,研究人员提出了基于深度学习的智能彩虹等离子体光谱仪概念,并构建了带有等离子体啁啾光栅的光谱仪示例,如图2所示。该光谱仪利用深度神经网络预测了所测量的共振模式图像中的未知入射光光谱,而无需使用传统的线性响应函数模型。实验中的光谱仪架构如图2a所示。智能光谱仪主要由三部分构成:空间模式、预训练神经网络以及对应的波长。图2 基于深度学习的数据重建光谱分辨率是评价传统光谱仪性能的重要参数之一。因此,研究人员对该光谱仪的分辨率做了详细测试,测试结果如图3所示。图3 智能等离子体光谱仪的分辨率以上初步测试数据表明,智能彩虹芯片光谱仪具有实现高分辨率光谱分析的潜力,其性能可与传统台式光谱仪相媲美。随后,研究人员将一维光栅扩展到二维,以利用紧凑型智能等离子体光谱仪实现偏振光谱的测定,其性能超越了传统的光学光谱仪系统。同时,研究人员展示了等离子体彩虹芯片光谱仪可以引入简化、紧凑且智能的光谱偏振系统,具有准确且快速的光谱分析能力。图4a为具有梯度几何参数的二维光栅。图4 用于测定偏振光谱的二维啁啾光栅接着,研究人员利用该二维偏振光谱仪芯片对旋光色散进行了简单而智能的表征。图5a为传统的旋光色散系统测量由物质引起的旋光度随入射波长的函数变化。最后,研究人员展示了将二维光栅作为光谱偏振系统,并介绍了用于葡萄糖传感应用的示例。图5 更简单、准确且智能的光谱偏振分析综上所述,本研究中提出了一种集成了片上彩虹捕获效应与紧凑型光学成像系统的智能芯片级光谱仪。研究结果表明,该等离子体芯片可以在可见光光谱(470 nm - 740 nm)范围内区分不同的照明峰值。该芯片充分利用其波长敏感结构,能够根据照明光谱峰值显示不同的等离子体共振模式。随后将芯片扩展到二维结构,共振模式的复杂性增加,从而在入射光偏振方面提供更多信息。通过使用片上共振模式的空间和强度分布图像来训练深度学习算法,研究人员在同一系统内分别实现了光谱分析和偏振分析。随后,研究人员利用一种将旋光引入透射光的手性物质(即葡萄糖),证明了所提出光谱仪在旋光色散传感方面的可行性,旋光色散是一种有助于手性物质检测和定量的偏振特异性特征。深度学习模型的分析表明,该算法能够基于等离子体芯片的共振模式准确预测葡萄糖引入的旋光。即使在分析多峰照明下的共振模式时,这种性能也得到了保留。这种由深度学习支持的基于图像的光谱仪能够通过利用纳米光子平台的单幅图像同时进行光谱分析和偏振分析。因此,该光谱仪标志着在单一紧凑型且轻量化设计中实现了高性能的光谱偏振分析,为深度光学和光子学在医疗保健监测、食品安全传感、环境污染检测、药物滥用传感以及法医分析等领域的应用赋能。这项研究获得了沙特阿卜杜拉国王科技大学物理科学与工程部的科研基金(BAS/1/1415-01-01)和NTGC-AI项目(REI/1/5232-01-01)的资助和支持。
  • 北京正通远恒公司08年5月SPR表面等离子体共振分析仪专题研讨会
    我公司将为芬兰KSV仪器公司的姊妹公司芬兰BioNavis 公司的SPR表面等离子体共振分析仪的专家Dr. Janusz 将于2008年5月9日在北京、, 2008年5月12日在上海举办关于SPR表面等离子体共振分析仪的专题研讨会。 SPR-NAVI表面等离子体共振分析仪是与Janusz Sadowski博士和Ulf Jonsson博士共同合作开发出来的。Janusz Sadowski博士曾在芬兰科技研究中心VTT从事表面等离子体共振研究达20年之久;Ulf Jonsson博士是Biacore公司的创始人和前任CEO,该公司开创了SPR表面等离子体共振分析仪在蛋白质、药物相互作用研究中的应用先河。 请到资料中心下载参会邀请函! 届时欢迎您的光临与指导!我们期待着您的光临!
  • 专为高通量设计|布鲁克发布SPR #64表面等离子体共振仪新品
    2024年2月5日美国马萨诸塞州波士顿——在SLAS2024国际会议暨展览会上布鲁克公司(Nasdaq:BRKR)重磅推出突破性新品—— "Triceratops" SPR #64表面等离子体共振仪(Surface Plasmon Resonance, SPR)。SPR #64系统从底层开始设计,旨在通过提高SPR检测通量、增强灵敏度和数据质量来加速药物发现。在现代药物发现中,SPR以其实时、非标记检测的优势,已经是分子相互作用生物物理特性表征不可或缺的分析手段。布鲁克 SPR #64 表面等离子共振仪"Triceratops" SPR #64系统将超高灵敏度的检测技术与卓越的微流控性能相结合,通过8通道流通池正交旋转设计,实现对64个传感器检测点位的同时检测。这一巧妙的设计进一步突破了以往SPR系统的瓶颈,加速了药物筛选、动力学、表位表征、条件探索、浓度分析和热力学等方面的研究。借助"Triceratops" SPR #64系统,布鲁克如今能够向药物发现客户提供行业领先的高通量解决方案,并确保优异的数据质量标准。SPR #64系统配备内置触摸屏,可实现即时访问与可视化操控,确保用户可直接与仪器进行快速交互。同时,该设备可通过其专属API实现直接控制,或使用可选的外部机械臂实现完全自动化操作。这在基于SPR技术的生物制药研究领域,标志着达到了新的便捷性与智能化的里程碑。SPR #64软件从数据采集到最终报告的每一个阶段都实现了高性能、灵活性和易用性的完美整合,每个模块的设计均直观易懂,并针对重点应用领域,如SPR亲和力与动力学测定、热力学分析及表位表征等提供向导式流程指引。SPR #64 微流控系统示意图美国犹他州盐湖城Biosensor Tools LLC公司总监David Myszka博士表示:“能与布鲁克公司的工程师们合作设计这款新型SPR #64仪器,我感到非常激动。'Triceratops'系统提供了灵活性、灵敏度以及通量的完美组合,彻底改变了以往繁琐的耦合化学测试以及表面密度测定过程。得益于8个独立通道的设计,我们可以在单次实验中同步探索多种条件组合并找到最佳实验条件。想象一下,在SPR #64的帮助下,研究者只需进行一次实验就能得到精准且理想的实验数据,这样的体验无疑令任何科研工作者都倍感满意与欣喜。”德国莱比锡弗劳恩霍夫细胞治疗与免疫学研究所药物设计与靶标验证部门生物分析组组长Martin Kleinschmidt博士表示:“在与布鲁克公司的合作中,我测试了他们的新型表面等离子体共振仪SPR #64。我们成功地分析了针对于8个不同靶标的1000多个含抗体样本,在获得稳定数据结果的同时,较以往SPR系统大幅节省了分析时间。这款新的'Triceratops' SPR #64系统显著提升了分析通量。”布鲁克道尔顿公司生物制药非标记技术副总裁Meike Hamester博士总结道:“我们的新款高端SPR药物发现系统——'Triceratops' SPR #64,与我们现有的SPR-24 Pro和SPR-32 Pro系统完美搭配,能够满足任何通量需求。”想要了解更多详细信息,请点击查看:布鲁克 SPR #64 表面等离子共振仪———————————————————————————————————“3i奖-2023年度科学仪器行业优秀新品奖”最终获奖结果将于ACCSI2024中国科学仪器发展年会现场揭晓并颁发证书。时间:4月17-19日地点:苏州狮山国际会议中心报名点击链接或扫码:https://www.instrument.com.cn/accsi/2024/index 日常新品申报入口 ↓↓↓https://www.instrument.com.cn/Members/NewProduct/NewProduct
  • 北京正通远恒科技举办的SPR表面等离子体共振分析仪专题研讨会胜利闭幕
    我公司分别于5月9日在北京贵州大厦,5月12日在上海交通大学举办了SPR表面等离子体共振分析仪专题研讨会。研讨会由Bio-Navis公司的Janusz博士主讲。Janusz博士曾在芬兰科技研究中心VTT从事表面等离子体共振研究达20年之久。大会不仅对SPR的原理、应用、特点做了详细介绍,还进行了现场演示。与会的学者与Janusz博士进行了深入讨论,大会取得了圆满成功。
  • 2012年9月MP-SPR下一代表面等离子体共振分析仪 巡回专题研讨会
    我们非常真诚的邀请您及您的科研团队参加我公司9月份将在哈尔滨、长春、北京举办的MP-SPR表面等离子体共振分析仪巡回专题研讨会。 主讲人:芬兰BioNavis 公司的MP-SPR表面等离子体共振分析仪的专家 PhD. Johana Kuncová -Kallio 时间、地点: 2012年9月14日(周五) 9:00 &ndash 11:30,哈尔滨工业大学 2012年9月24日(周一) 9:00 &ndash 11:30,中国科学院长春应用化学研究所 2012年9月25日(周二) 9:00 &ndash 11:30,北京大学化学分子工程学院 技术背景:MP-SPR表面等离子体共振分析仪是由Janusz Sadowski博士和Ulf Jonsson博士共同合作开发出来的。Janusz Sadowski博士曾在芬兰科技研究中心VTT从事表面等离子体共振研究达20年之久;Ulf Jonsson博士是Biacore公司的创始人和前任CEO,该公司开创了SPR表面等离子体共振分析仪在蛋白质、药物相互作用研究中的应用先河。 MP-SPR技术(多参数表面等离子体共振分析技术) 随着技术的发展以及为了满足客户更多方面的需求,我们改良了传统的SPR技术,开发了MP-SPR表面等离子共振分析技术。此项技术除了可以轻松地应用到传统的SPR领域:生命科学领域,用于测量:结合动力学、质量变化、结合/解离速率等之外;还可以有效地对薄膜和纳米材料物理学常数进行测量:厚度和质量、折射率、吸附/吸收、密度、介电常数等,而这些是传统SPR所做不到的。 更具体的会议地点,在收到您的回执之后,我公司会另行通知! MP-SPR表面等离子体共振分析仪的相关信息,请浏览我公司网站www.honoprof.com.cn 和Bionavis网站 http://www.bionavis.com/cn 届时欢迎您的光临与指导!一起研讨MP-SPR技术将带给我们什么样的强大支持! 2012年9月MP-SPR表面等离子体共振分析仪巡回专题研讨会(第一轮)回执 (本回执请于2012年8月31日前返回) 姓 名 职称/职务 参会地点 工作单位 邮编 电子邮件 手机 固话 备 注 备注:1、 请将此回执E-mail至 xmli@honoprof.com 2、 参加会议免费,并提供午餐。
  • 超快电镜助力等离子体研究重要发现 万亿分之一秒的等离子体场检测
    阿贡纳米材料中心的超快电子显微镜,图片自:阿贡国家实验室每个去过大峡谷的人都能体会到靠近自然边缘的强烈感受。同样,美国能源部(DOE)阿贡国家实验室(Argonne National Laboratory)的科学家们发现,当接近一层单原子厚的碳薄膜(石墨烯)边缘时,金纳米颗粒会表现异常。这可能对新型传感器和量子设备的发展产生重大影响。这一发现是通过美国能源部科学用户设施办公室——阿贡纳米材料中心 (CNM) 新建立的超快电子显微镜 (UEM) 实现的。UEM能够实现在纳米尺度和不到一万亿分之一秒的时间尺度内的可视化和现象研究。 这一发现可能会在不断发展的等离子体领域引起轰动,该领域涉及光撞击材料表面并触发电子波,称为等离子体场。多年来,科学家们一直致力于开发具有广泛应用的等离子体设备——从量子信息处理到光电子学(结合光基和电子元件),再到用于生物和医学目的的传感器。为此,他们将具有原子级厚度的二维材料(例如石墨烯)与纳米尺寸的金属颗粒相结合。而要想理解这两种不同类型材料的组合等离子体行为,就需要准确了解它们是如何耦合的。在阿贡最近的一项研究中,研究人员使用超快电子显微镜直接观察金纳米颗粒和石墨烯之间的耦合。“表面等离子体是纳米粒子表面或纳米粒子与另一种材料界面上的光诱导电子振荡,”阿贡纳米科学家Haihua Liu说, “当我们在纳米粒子上照射光时,它会产生一个短寿命的等离子体场。当两者重叠时,我们 UEM 中的脉冲电子与这个短寿命场相互作用,电子要么获得能量,要么失去能量。然后,我们收集那些使用能量过滤器获得能量的电子来绘制纳米粒子周围的等离子体场分布。”在研究金纳米粒子时,Liu和他的同事发现了一个不寻常的现象。当纳米颗粒位于石墨烯薄片上时,等离子体场是对称的。但是当纳米颗粒靠近石墨烯边缘时,等离子体场在边缘区域附近集中得更强烈。Liu说:“这是一种非凡的新思考方式,可以思考我们如何利用纳米尺度的光以等离子体场和其他现象的形式操纵电荷。” “凭借超快的能力,当我们调整不同的材料及其特性时,很难预测我们将看到什么。”整个实验过程,从纳米粒子的刺激到等离子体场的检测,发生在不到几百千万亿分之一秒内。CNM 主管 Ilke Arslan 表示:“CNM 在容纳 UEM 方面是独一无二的,该 UEM 对用户开放,并且能够以纳米空间分辨率和亚皮秒时间分辨率进行测量。” “能够在如此短的时间窗口内进行这样的测量,开启了对非平衡状态中大量新现象的研究,而我们以前没有能力探测到这些现象。我们很高兴能够提供这种能力给国际用户。”对于这种纳米颗粒-石墨烯系统的耦合机制的理解,将是未来开发令人兴奋的新型等离子体装置的关键。基于这项研究的论文“使用超快电子显微镜可视化等离子体耦合”(Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy)发表在 6 月 21 日的《Nano Letters》上,DOI: 10.1021/acs.nanolett.1c01824。除了 Liu 和 Arslan,其他作者还包括 Argonne 的 Thomas Gage、Richard Schaller 和 Stephen Gray。印度理工学院的 Prem Singh 和 Amit Jaiswal 也做出了贡献,武汉大学的 Jau Tang 和 IDES, Inc. 的 Sang Tae Park 也做出了贡献(日本电子于2020年初收购超快时间分辨电镜商IDES)。文:Jared Sagoff,阿贡国家实验室关于CNM新建立的超快电子显微镜 (UEM)CNM 的超快电子显微镜 (UEM) 是一种独特的工具,可供美国能源部纳米科学研究中心的用户使用。CNM超快电子显微镜实验室。左起顺时针:Thomas Gage, Haihua Liu和Ilke ArslanUEM 的应用是利用电子研究纳米级材料中的超快(亚皮秒)结构和化学动力学,这是一个广受关注的新兴科学领域。CNM的 UEM 结合了以下功能:■具有高重复率的可调谐飞秒激光器■产生脉冲电子束的多种途径■配备高灵敏度相机和电子能量过滤的同步激光泵浦脉冲透射电子显微镜CNM精心设计的UEM打开了通向任何标准电子显微镜都不具备的科学理解领域的大门,即理解亚纳米空间分辨率材料中的快速(亚皮秒到纳秒)动力学和短期亚稳态相。它代表了一种关键的分析工具,可以提供超快的结构和化学变化,以广泛的系统。在未来几年,通过开发超快的电气和机械触发机制,CNM期望开发具有基础和设备相关性的新型样品环境和样品激发途径。结合超快探测,这将允许深入了解电场和应变的非平衡现象。例如,人们可以探索声学声子模式在量子信息科学感兴趣的材料和系统中产生的应变随时间变化的影响,例如金刚石或碳化硅中的空位缺陷。在纳米科学的许多领域中,UEM 在促进对瞬态过程的理解方面具有很高的价值,例如激子定位、短寿命亚稳相、光致分离、拓扑材料动力学、等离子体系统、分子马达和磁波动等。连同理论建模,UEM 将为纳米科学界提供对纳米材料的前所未有的理解。阿贡国家实验室是 1946 年在伊利诺伊州杜佩奇县成立的第一个也是最大的国家实验室。 美国能源部资助阿贡国家实验室和芝加哥阿贡大学有限责任公司管理该实验室。 阿贡国家实验室前身是芝加哥冶金实验室,也是恩里科费米 (Enrico Fermi) 第一个受控核链式反应演示的所在地。 目前,阿贡实验室由阿贡先进光子源、阿贡串联直线加速器系统组成,开展基础科学研究、清洁能源实验、全国环境问题管理,最重要的是审查和监测国家安全风险。
  • 1065万!东华理工大学透射电子显微镜、热重分析仪、超纯水系统和电感耦合等离子体质谱仪采购项目
    一、项目基本情况:1.项目编号:JXBJ23121354401项目名称:东华理工大学采购透射电子显微镜项目采购方式:公开招标预算金额:8000000.00 元最高限价:8000000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2023F000998133透射电子显微镜1套8000000.00元详见公告附件合同履行期限:合同签订后14个月内。供应商应保证在要求时间内完成全部货物的供货、安装、调试和培训工作,符合国家标准、行业规范和合同等相关文件的要求。本项目不接受联合体投标。2.项目编号:JXBJ23121355801项目名称:东华理工大学热重分析仪、超纯水系统和电感耦合等离子体质谱仪采购项目采购方式:公开招标预算金额:2650000.00 元最高限价:2650000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2023F000990390电感耦合等离子体质谱仪(2023化生材双一流)1套1700000.00元详见公告附件赣购2023F000990388热重分析仪(2023化生材双一流)1套600000.00元详见公告附件赣购2023F000990389超纯水系统(2023化生材双一流)1台350000.00元详见公告附件合同履行期限:合同签订后90日内。供应商应保证在要求时间内完成全部货物的供货、安装、调试和培训工作,符合国家标准、行业规范和合同等相关文件的要求。本项目不接受联合体投标。二、获取招标文件:时间:2023年10月20日 至 2023年10月27日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )地点:江西省公共资源交易网(网址:http://www.jxsggzy.cn/web/)方式:登陆网站报名并下载招标文件,未在规定时间内下载招标文件而导致无法上传投标文件的后果由投标人自行承担。售价:0.00元三、对本次招标提出询问,请按以下方式联系:1.采购人信息名称:东华理工大学地址:江西省南昌市广兰大道418号联系方式:0791-838793422.采购代理机构信息名称:江西省百巨招标咨询有限公司地址:江西省南昌市红谷滩区庐山南大道1999号保利高尔夫花园配套中心3#商业楼店面110-113室联系方式:0791-852308683.项目联系方式项目联系人:王智、胡亚琴、黄颖慧、马俊、刘玲电话:0791-85239887
  • 新品发布丨新型冷冻等离子体聚焦离子束电镜推进细胞冷冻电子断层成像研究
    俄勒冈州希尔斯伯勒市,2022年8月1日讯。赛默飞世尔科技推出了Thermo Scientific Arctis冷冻等离子体聚焦离子束电镜(Cryo-PFIB),这是一款全新的自动化显微镜,经过设计可用于加快冷冻电子断层成像(Cryo-ET)研究的步伐。冷冻电子断层成像(Cryo-ET)技术使得细胞生理环境中的蛋白质研究和其他分子的运行机制研究成为可能,与其他显微镜技术相比,其分辨率达到了前所未有的水平,而且可以在细胞生物学研究方面发挥巨大的潜力,包括传染性疾病、神经退行性疾病和其他具有全球影响力的结构生物学应用。然而,为冷冻电子断层成像技术制备最佳样品的过程仍然耗时且复杂。Arctis Cryo-PFIB通过为用户提供先进的自动化和全新的连接解决方案能力,可以解决工作流程中的多种挑战,与其他的解决方案相比,Arctis Cryo-PFIB极大地提高了通量,可以快速、持续制备适用于冷冻电子断层成像技术的样品。该系统旨在提供厚度均一的高质量样品,同时最大限度地降低样品污染风险。用户可以享受到内置一体化光电联用显微技术、专用等离子体FIB技术、先进的自动化和全新的连接功能,包括简化上样和样品转移功能。亮点包括:1、一体化光电联用显微镜技术(CLEM):用于快速定位感兴趣的区域。2、等离子体FIB技术:用于快速减薄大块样品并快速定位到感兴趣的区域。3、自动化功能:可简化样品制备并实现远程操作,与当前基于镓的冷冻FIB解决方案相比,可实现长时间的自动化运行、可重复的结果和更高的通量。4、工作流程中的连通性:可简化将样品转移到Thermo Scientific Krios或Glacios冷冻透射电子显微镜(Cryo-TEM)的过程。Arctis Cryo-PFIB 配备了赛默飞世尔科技推出的行业领先的自动上样系统(Autoloader),可自动装载多达12个载网。全新的专用TomoGrid可以确保减薄后的样品与透射电子显微镜倾斜轴实现最佳对齐。如要报名参加9月21日的全球新品发布网络研讨会,请扫描下方二维码注册研讨会。
  • 等离子体所七个大科学装置维修改造项目通过验收
    3月1日至2日,中国科学院计划财务局会同基础科学局对合肥物质科学研究院等离子体物理研究所组织承担的“1.5MW高功率离子回旋共振加热系统” 等七个中科院重大科学装置维修改造项目进行了验收。专家组一致同意七个维修改造项目全部通过验收。   计财局、基础局负责人,验收专家组和装置的相关人员参加了验收会。计财局副局长潘锋主持会议,部署了此次验收会的工作安排及具体要求。项目验收专家组由院内外研究所和高校的17位专家组成,分为工艺、档案、财务3个小组。   专家组认真听取了每个项目所做的验收总结报告,仔细询问了项目有关建设情况,考察了现场,查看了自测数据记录及档案、财务资料。经过讨论,验收组认为,已完成的维修改造项目各项技术指标实现了改造预期目标,达到了任务书要求 项目预算执行情况基本符合国家和院有关财经制度规定,经费使用基本合理 文件材料收集较齐全,档案分类清晰,案卷质量符合规范,反映了项目维修改造的实际情况。   在计财局的支持下,合肥超环(HT-7)、东方超环(EAST)装置分别对离子回旋系统、低杂波系统、诊断系统和高温超导电流引线、内部部件等方面进行了维修改造。维修改造项目的成功实施为HT-7、EAST装置的稳定、安全、可靠运行提供了有效保障,对装置总体运行质量的提升起到了重要作用。
  • 细胞分泌物的实时纳米等离子体成像 ——新的纳米等离子体成像系统允许对单细胞分泌物进行时空监测
    • Inara Aguiar来自生物纳米光子系统实验室(BIOS)、EPFL和日内瓦大学的研究人员开发了一种光学成像方法,可以在空间和时间上提供细胞分泌物的四维视图。通过将单个细胞放入纳米结构镀金芯片的微孔中,并在芯片表面诱导一种称为等离子体共振的现象,他们可以在分泌物产生时绘制分泌物的图谱。这项研究发表在《自然生物医学工程》(Nature Biomedical Engineering )杂志上,详细介绍了细胞的功能和交流方式,有助于药物开发和基础研究。芯片上的单个单元。(图片来源:BIOS EPFL)细胞分泌物(即蛋白质、抗体和神经递质)在免疫反应、代谢和细胞之间的交流中起着至关重要的作用。了解细胞分泌物的过程对开发疾病治疗至关重要;然而,现有的方法只能量化分泌物,而不能提供其产生机制的任何细节。BIOS负责人Hatice Altug表示:“我们工作的一个关键方面是,它使我们能够以高通量的方式单独筛选细胞。对许多细胞平均反应的集体测量并不能反映它们的异质性……在生物学中,从免疫反应到癌症细胞,一切都是异质性的。这就是为什么癌症如此难以治疗。”筛选细胞分泌物该方法包括一个1cm2的纳米等离子体芯片,由数百万个小孔和数百个用于单个细胞的腔室组成;该芯片由覆盖有薄聚合物网的纳米结构金基底组成。用细胞培养基填充腔室以在测量过程中保持细胞存活。Saeid Ansaryan说:“我们仪器的美妙之处在于,分布在整个表面的纳米孔将每个点都转化为传感元件。这使我们能够观察释放蛋白质的空间模式,而不考虑细胞的位置。”使用这种新方法,可以评估两个重要的细胞过程,细胞分裂和死亡。此外,还对分泌精细抗体的人类供体B细胞进行了研究。研究小组可以看到两种形式的细胞死亡过程中的细胞分泌,细胞凋亡和坏死。在后者中,内容以不对称的方式释放,产生了图像指纹——这是科学家首次能够在单细胞水平上捕捉到细胞特征。由于测量是在营养丰富的细胞培养基中进行的,因此与其他成像技术一样,它不需要有毒的荧光标记,并且所研究的细胞可以很容易地回收。根据作者的说法,“该系统的多功能性和性能及其与粘附细胞和非粘附细胞的兼容性表明,它可以为全面了解单细胞分泌行为铺平道路,应用范围从基础研究到药物发现和个性化细胞治疗。”原始出版物:Ansaryan, S., Liu, YC., Li, X., et al.: High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. (2023) DOI: 10.1038/s41551-023-01017-1作者简介Inara AguiarInara是一位拥有无机化学博士学位的科学编辑和作家。在获得计算化学博士后后,她开始在化学、工程、生物工程和生物化学领域担任科学编辑。她一直在几家科学出版商担任技术作家/编辑,最近加入威利分析科学公司,担任自由职业内容创作者。本文来源:Real-time nanoplasmonic imaging of cell secretions——New nanoplasmonic imaging system allows spatiotemporal monitoring of single-cell secretions。Microscopy Light Microscopy ,13 April 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 新型傅立叶型表面等离子共振监测仪会议邀请(第一轮通知)
    表面等离子体共振技术(简称“SPR”,Surface Plasmon Resonance)是利用了金属薄膜的光学耦合产生的一种物理光学现象。自从1982年 Nylander 等首次将SPR 技术用于免疫传感器领域以来,表面等离子体光学生物传感器得到了深入研究和广泛的应用,已经成为研究生物分子相互作用(Biomolecular Interaction Analysis,简称“BIA”)的主要手段。仅在近 3、4 年间,有关这方面的文章多达几千篇,其研究内容涉及蛋白质-蛋白质、蛋白质-DNA、DNA-DNA、抗原-抗体及受体-配体等的相互作用。商品化的光学生物传感器可在无标记的情况下实时地进行生物分子间相互作用的研究,有力地推动了分子识别这一学科的发展,已经成为生命科学和医药研究中的一种重要手段。 目前市场上的商品化SPR检测仪几乎都是通过角度测量实现对生物体系的测定。而在多年的实践中,其测量方式(依靠角度表征)的局限使其在灵敏度、动态范围、测试速度及稳定性等方面都出现了不可逾越的阻碍。有鉴于此,热电科技仪器有限公司(Thermo Electron Corporation)分子光谱部(既原来的美国尼高力仪器公司)以其近四十年傅立叶变换红外(FTIR)技术结晶结合最新的 SPR 专利技术(U.S. Patent No. 6330062)推出了崭新的傅立叶变换型表面等离子共振检测仪,突破了传统角度表征型SPR检测仪理论设计极限。 为了更好的将FT-SPR介绍给中国的生命科学专家学者,我们邀请了美国的 Eric Y. Jiang 博士准备在长春、上海和北京等地举办系列FT-SPR专题技术讲座。时间大约在2006年7月。请感兴趣的专家填写回执,我们将根据回执发送第二轮通知,谢谢! 回执请寄:热电(上海)科技仪器有限公司 分子光谱部 北京市金融街23号 平安大厦1018室 邮编:10003 电话: +86 10 5850 3588-3238 传真: +86 10 6621 0845 Email: ming.xin@thermo.com idealsky@sohu.com 联系人:辛 明
  • 多功能显微镜助力一篇AFM!3D纳米几何结构新突破
    论文题目:Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printing发表期刊:Advanced Functional Materials IF: 19.924DOI: 10.1002/adfm.202310110【引言】 等离子体纳米颗粒由于具有特殊的光学特性被广泛应用于光电器件、化学和生物传感器等领域。若想调节纳米结构的等离子效应,则需要准确地制备出具有特定几何形状的3D纳米结构。目前,等离子纳米结构主要采用纳米颗粒或纳米颗粒阵列,通过纳米狭缝自组装法等手段,制备相应的等离子体纳米结构。可是,在制备等离子体纳米结构的过程中,由于受到了光刻等技术手段的限制,所制备的纳米结构多为2D平面结构。对于制备具有准确几何形状的3D等离子体纳米结构的相关研究尚属空白。【成果简介】 近日,格拉茨技术大学相关团队提出了基于聚焦电子束诱导沉积(Focused Electron Beam Induced Deposition,FEBID)方法制备具有准确纳米尺度3D几何结构的等离子体纳米结构。同时,作者通过FusionScope多功能显微镜和透射电镜(TEM)对相应的3D纳米结构进行了原位几何尺寸的表征。然后,使用扫描透射电子显微镜的电子能量损失谱仪(STEM-EELS)对所制备的3D纳米结构的等离子性能进行表征。所测量的结果与相关模拟计算结果相比,两者结果相互吻合,证明了通过FEBID的方法制备3D等离子体纳米结构的可行性。相关工作以《Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printing》为题在SCI期刊《Advanced Functional Materials 》上发表。 本文使用的FusionScope多功能显微镜创新性地将SEM和AFM技术深度融合,利用SEM进行实时、快速、精准导航AFM针尖,实现同一时间、同一样品区域和相同条件下的SEM&AFM原位精准定位与测量;测量时也可以实时观察AFM悬臂的尖端,在不需要转移样品的情况下,原位进行80° AFM与样品台同时旋转,对几乎所有样品(包括复杂样品)均可以实现无视野盲区观测;其丰富的功能选件如力曲线、导电原子力显微镜(C-AFM)和磁力显微镜(MFM)以及EDS能谱仪,可有效实现多维度同区域的高级测量。本文将简要阐述FusionScope多功能显微镜对不同平面结构的等离子体样品观测结果。 图1. FusionScope多功能显微镜【图文导读】图2. 制备、清除和3D加工能力展示。(a)气体注入系统(GIS)将金属气体前驱物分子(Me2(acac)Au(III))注入到基底附近,利用聚焦电子束形成在基底上形成沉积。(b-g)展示了FEBID制备复杂构型的3D纳米结构的能力。(h)运用聚焦电子束去除碳的过程。图3. 不同平面结构的等离子体测量结果。(a)利用FusionScope多功能显微镜的原位AFM功能测量的在制备后和清除后的微纳结构变化区别。(b)通过原位AFM测量的在去除前后所制备纳米结构的体积变化。(c)部分去除样品的STEM-EELS能谱。(d-l)不同设计下的等离子体测量结果。图4. 利用FusionScope多功能显微镜获取用于模拟的数据。(a-b)利用FusionScope多功能显微镜中的SEM对AFM进行引导,在放置在TEM网格上的Au纳米线进行测量。(c)对FusionScope所获得的数据和TEM所获得的数据进行相互验证。(d)FusionScope测量Au纳米线的高度为24 nm,半峰宽为51 nm。图5. Au纳米线的等离子性能的实验和模拟结果。(a) Au纳米线在不同能量损失下的EELS模拟结果。(b)Au纳米在不同能量损失下的EELS实验结果。(c)在纳米线的边缘部分(d)中蓝色区域的EELS实验和模拟对比结果。(e)为Au纳米线的中间部分(d)中绿色区域的EELS的模拟和实验结果。图6. 可进行光谱调谐的等离子体3D纳米结构的实验和模拟结果。(a)在3D纳米结构尖端部分的EELS结果,实线为实验结果,虚线为模拟结果。(b-c)不同形貌的3D纳米结构的实验和模拟结果。(d)不同形貌的纳米结构的三个显著共振峰位置的实验和模拟结果。【结论】 论文中,格拉茨技术大学相关团队通过FEBID的方法制备了具有纳米级精度的3D等离子体纳米结构。在制备相关纳米结构过程中,通过FusionScope系统对所制备的纳米结构进行了原位的几何结构表征,为模拟过程提供了数据支持。Quantum Design公司研发的FusionScope多功能显微镜,通过特有的共坐标系统,解决了原位联合显微分析中不同表征方式无法共享微区的问题,又通过优化AFM和SEM工作流给用户提供了一个清晰简单的操作流程,为原位微区信息的获取提供了极大的便利。此外,FusionScope还可以通过更换不同AFM探针,实现对样品三维形貌,力学性能,电学性能和磁学性能的综合物性表征。 样机体验: 为了更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室开放Fusionscope多功能显微镜样机体验活动,我们将为您提供样品测试、样机参观等机会,欢迎各位老师垂询!
  • 1140万元!中国中医科学院购买等离子体串联质谱仪等一批仪器
    9月15日,中国中医科学院中药研究所公开招标购买正交色谱分析系统、等离子体串联质谱仪、活体活细胞显微镜工作站等一批仪器,预算1140万元。  项目编号:HHGZ-HW-2021-030  项目名称:中药质量提升与保障技术平台  预算金额:1140.0000000 万元(人民币)  最高限价(如有):1140.0000000 万元(人民币)  采购需求:  预算金额:1140万元,第一包预算金额:304万元,第二包预算金额:304万元,第三包预算金额:432万元,第四包预算金额:100万元。  简要规格描述:序号包号货物名称数量单位是否允许进口1第一包农药残留分析系统1台是2正交色谱分析系统1台是1第二包震荡式动物肺功能检测系统1台是2活体活细胞显微镜工作站1台是3多功能酶标仪1台是1第三包等离子体串联质谱仪1台是2自动样品处理平台及科学数据管理系统1台是3自动固相萃取仪1台是1第四包单核苷酸SNP检测系统1台是  备注:名称、数量等如与招标文件中《货物需求与技术要求》有误差以招标文件中《货物需求与技术要求》为准。  合同履行期限:合同签订后120天内交货。  本项目( 不接受 )联合体投标。  开标时间:2021年10月12日 09点30分(北京时间)货物需求与技术要求.pdf
  • 荷兰开发新核磁共振显微镜 为医疗诊断等领域带来超高灵敏度
    据荷兰莱顿大学官网最新消息,该校研究人员开发出一种新型核磁共振显微镜(NMR),比现有核磁共振显微镜灵敏度高一千倍,能在纳秒尺度观察到铜原子核的弛豫时间,有望为医学诊断和基础物理研究带来更好的观测仪器。  该研究团队发表于最近的科学文献预印本在线数据库网站上的论文指出,为了测试新显微镜的灵敏度,他们在42毫开温度下对铜的原子核自旋晶格弛豫时间做了检测,显示其灵敏度比目前世界最高纪录的核磁共振显微镜还高一千倍。  研究人员解释说,原子核是带电的,并绕着它们的轴自旋,它们像微小的电磁体也会产生自己的磁场。如果膝盖受了伤,医生会通过磁共振仪(MRI)查看关节以确定出了什么问题。把膝盖放入均匀磁场中,原子核就会按轴排列指向相同方向。MRI随后发出特定的射频电波通过膝盖,使某些轴发生翻转,射频信号终止后,那些原子核会恢复过来。这些射频电波揭示了原子的位置,能为医生提供精确的膝盖图像。  磁共振仪是核磁共振在医学上的应用。基于同样的原理,物理学家也能用这一技术研究基本物质现象,其中之一就是所谓的“弛豫时间”,即原子核恢复过来并提供大量有关物质属性信息的时间。  研究人员指出,核磁共振显微镜为物理学家在原子水平研究物理过程背后的原理机制提供了新的技术手段,比如,特殊系统在极冷条件下表现的奇怪行为。核磁共振技术的突破最终还会促进医疗用磁共振仪发展。莱顿大学物理学院博士生杰玛维格纳尔说,如果用这项技术来研究老年痴呆症患者的脑部,能达到分子水平,看到铁是怎样被固定在蛋白质里的。  总编辑圈点  我们的身体和物质世界的一切是由无数微观粒子所构成,随着科学技术的进步,人类探查微观粒子的工具越来越精妙,我们所能观察到的微观世界将越来越“宽广”,越来越丰富多彩。核磁共振显微镜可以帮助人类看到生命的细节,让我们了解生命的本质,并帮助我们远离一些病痛。这一次,荷兰研究人员开发出的新型核磁共振显微镜大大提高了原有核磁共振显微镜的灵敏度,这意味着我们将更进一步接近生命的“真相”。相信有了这项技术,更多物理过程背后的原理机制将被揭示。
  • 可看到原子结构 国大引进氦离子显微镜
    新加坡国立大学增添新实验室,加强研究基础,实验室中的其中一台先进显微镜将有助于让科研人员对接近原子体积的物质取得更好的基础了解,有望让国大在顶尖研究大学的排名中跨前一步。   国大设立了等离子体光学与先进照影科技实验室(Plasmonics and advanced Imaging Technology Laboratory),负责生命科学、医药、石墨单原子层(graphene)与纳米科技的研究。   全球第三拥有这种显微镜   约10个月前才获得显微镜的实验室已经研究取得了5纳米厚的石墨的单原子层的成果。   文奇说,这是目前的世界记录。这类极薄的石墨的单原子层日后若应用在电子中,将可发挥突破性的效果。例如:一个两千兆赫(GHz)的电脑晶片若使用该科技,速度将可增加10倍。不过文奇强调,目前研究还处于基础研究阶段,存在不少问题。如果要推出市场,还需要一段时间。   此外,氦离子显微镜也可让研究人员在无需   除了美国哈佛大学和美国国家标准局(National Institute of Standards and Technology,NIST) 外,该实验室是全球第三个拥有这台先进仪器——氦离子显微镜(helium ion microscope)——的研究机构。   负责在实验室利用几乎可看到原子(atom)结构的氦离子显微镜进行实验的文奇教授(Thirumala Venky Venkatesa)受访时说,显微镜生产商向他透露,虽然国大是最后才获得仪器的研究机构,但却是至今取得最多突破的机构。 国大的这台氦离子显微镜原价200万元,但在同显微镜制造商Carl Zeiss SMT签署联合研发协议后,国大只需支付95万元就可拥有这台顶尖的科研仪器。(海峡时报)   约10个月前才获得显微镜的实验室已经研究取得了5纳米厚的石墨的单原子层的成果。   文奇说,这是目前的世界记录。这类极薄的石墨的单原子层日后若应用在电子中,将可发挥突破性的效果。例如:一个两千兆赫(GHz)的电脑晶片若使用该科技,速度将可增加10倍。不过文奇强调,目前研究还处于基础研究阶段,存在不少问题。如果要推出市场,还需要一段时间。   此外,氦离子显微镜也可让研究人员在无需借助其他媒介的情况下,直接观察生物样本。   之前,科研人员利用电子显微镜观察生物样本时,必须把样本放在金属上,但金属和样本的互动却会改变它一些原有的特质,使观察变得不太准确。有了氦离子显微镜后,这方面的限制将不复存在。   显微镜也可让公众看到健康和患病细胞结构的不同,结构在患病后出现怎样的演变等。这有助于对药物和疗法的研究取得更精确的结果。   实验室目前也同杨潞龄医学院合作,研究肾脏细胞内的纳米毒素物质。 国大的这台氦离子显微镜原价200万元,但在同显微镜制造商Carl Zeiss SMT签署联合研发协议后,国大只需支付95万元就可拥有这台顶尖的科研仪器。(海峡时报)国大的这台氦离子显微镜原价200万元,但在同显微镜制造商Carl Zeiss SMT签署联合研发协议后,国大只需支付95万元就可拥有这台顶尖的科研仪器。(海峡时报)
  • SEMICON现场直击:膜厚测量、等离子体监控等滨松系列解决方案
    2023年6月29日,半导体和电子行业年度盛会SEMICON China 2023在上海新国际博览中心隆重举行。展会现场,滨松也携最新半导体相关技术解决方案亮相。展会期间,滨松以倒金字塔产业链概念,立体地展示滨松在半导体行业,从元器件、模块、系统到大型设备的典型产品,围绕半导体量测、半导体检测、涂胶显影、静电去除、SEM、测光、GaN/Perovskite材料的IQE直接测量、GaN晶圆检等具体应用展开介绍。以下是现场视频:条纹相机、绝对量子效率测试仪、荧光寿命测试仪高分辨率微光显微镜、高分辨率倒置微光显微镜TDI 相机、CMOS图像传感器等膜厚测量系统、多波段等离子体加工监控器
  • 最小耐高温的等离子体晶体管问世(图)
    美国犹他大学的研究人员研制了迄今为止最小的等离子体晶体管,其可承受核反应堆的高温和离子辐射环境条件,有助于研制在战场上收集医用X射线的智能手机、实时监测空气质量的设备、无需笨重的镜头和X射线光束整形装置的X射线光刻技术。   这种晶体管有潜力开辟适用于核环境工作的新一类电子器件,能用于控制、指引机器人在核反应堆中执行任务,也能在出现问题时控制核反应堆,在核攻击事件中继续工作。   作为当代电子设备的关键组成元件,硅基晶体管通过利用电场控制电荷的流动来实现晶体管的打开或关闭,当温度高于550华氏度时失效,这是核反应堆通常工作的温度。而此次美研究人员将利用传导离子和电子的等离子体空气间隙作为导电沟道,研制了可在极高温度下工作的等离子体晶体管。它的长度为1-6微米,为当前最先进的微型等离子体器件的1/500,工作电压是其六分之一,工作温度高达华氏1450度。核辐射可将气体电离成等离子体,因此这种极端的环境更易于等离子体器件工作。
  • 1013万!中国科学院电感耦合等离子体质谱仪等采购项目
    一、项目基本情况1.项目编号:OITC-G230300544项目名称:中国科学院福建物质结构研究所核磁共振波谱仪采购项目预算金额:480.0000000 万元(人民币)最高限价(如有):480.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1核磁共振波谱仪1套否 480万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G230300541项目名称:中国科学院福建物质结构研究所电感耦合等离子体质谱仪采购项目预算金额:95.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1电感耦合等离子体质谱仪1套是95 万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。3.项目编号:OITC-G230300542项目名称:中国科学院福建物质结构研究所三重四极杆液质联用仪采购项目预算金额:145.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1三重四极杆液质联用仪1套是145 万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。4.项目编号:OITC-G230300546项目名称:中国科学院福建物质结构研究所元素分析仪采购项目预算金额:60.0000000 万元(人民币)最高限价(如有):60.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1元素分析仪1套是60 万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。5.项目编号:OITC-G230300547项目名称:中国科学院福建物质结构研究所固体探头采购项目预算金额:98.0000000 万元(人民币)最高限价(如有):98.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1固体探头1套是98 万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。6.项目编号:OITC-G230300552项目名称:中国科学院城市环境研究所高物种分辨率大气有机物监测仪采购项目预算金额:135.0000000 万元(人民币)最高限价(如有):135.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1高物种分辨率大气有机物监测仪1套否 135万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月24日 至 2023年07月31日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方在线www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院福建物质结构研究所     地址:福建省福州市鼓楼区杨桥西路155号(西河)        联系方式:010-68290511/0551/0509      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:赵倩 任伟松 焦怡泽,010-68290511/0551/0509,yzjiao@oitc.com.cn            3.项目联系方式项目联系人:赵倩 任伟松 焦怡泽电 话:  010-68290511/0551/05094.采购人信息名 称:中国科学院城市环境研究所     地址:厦门市集美大道1799号        联系方式:0592-6190956      5.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:杨帆 陈小舫 赵倩,13262733317/021-64318161/010-68290511            6.项目联系方式项目联系人:杨帆 陈小舫 赵倩电 话:  13262733317/021-64318161/010-68290511
  • 1046万!中国科学院自动化研究所等离子聚焦离子束扫描电子显微镜采购项目
    一、项目基本情况项目编号:OITC-G230571925项目名称:中国科学院自动化研究所等离子聚焦离子束扫描电子显微镜采购项目预算金额:1046.000000 万元(人民币)最高限价(如有):1046.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1等离子聚焦离子束扫描电子显微镜1是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月28日 至 2023年10月11日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院自动化研究所     地址:北京市海淀区中关村东路95号        联系方式:010-82544573      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、曹山010-68290529            3.项目联系方式项目联系人:窦志超、曹山电 话:  010-68290529
  • 1300万!中国科学院生物物理研究所等离子聚焦离子束扫描电子显微镜采购项目
    一、项目基本情况项目编号:OITC-G230562381项目名称:中国科学院生物物理研究所等离子聚焦离子束扫描电子显微镜采购项目预算金额:1300.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1等离子聚焦离子束扫描电子显微镜1是1300投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:2024年9月30日前本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月30日 至 2023年12月07日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层方式:登录东方在线www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院生物物理研究所     地址:北京市朝阳区大屯路15号         联系方式: 010-64888443       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李媛 吴旭 冯宇图 010-68290524、010-68290510、010-68290550            3.项目联系方式项目联系人:李媛 吴旭 冯宇图 liyuan@oitc.com.cn电 话:  李媛 吴旭 冯宇图 010-68290524、010-68290510、010-68290550
  • 美科学家研发出新型聚焦离子束显微镜
    由于仪器本身的限制,显微镜偶尔也会&ldquo 骗人&rdquo 。比如,电镜就无法很好的观察不能导电的材料,并且它的高能量还会损伤一些样品。为了努力从纳米材料和纳米结构的世界中获取更多的真相,美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)的研究人员建立了一套采用锂离子源的低能聚焦离子束显微镜。   尽管新型显微镜的分辨率不如扫描电镜或氦离子显微镜(HIM),但它可以更清楚的观察非导电材料,并能更清楚的观察样品表面的化学成分。通过观察散射离子的能量,研究人不仅能够分辨出相邻材料的化学成分是不同的,并且能够确认不同材料的元素种类。   早在2011年,Jabez McClelland和他的同事采用激光冷却技术研制出了第一台低能聚焦离子束显微镜。之后,他们一直努力改进技术以调高离子束的亮度和准直度,确保所有离子都能朝相同的方向运动以便的得到更好的成像结果。   新仪器通过激光束和磁光阱捕获原子,将中性锂原子气体冷却至600微开尔文。然后采用激光将原子离子化,并进入电场加速,调整飞行方向,针对目标物将离子聚焦成离子束。   NIST FIB可以生成能量为500eV至5000eV的锂离子束(氦离子束的能量约为3000eV)。研究人员称可以将离子束的能量降至更低。但是当加速电场强度比较低时,离子源的交互影响限制了聚焦离子束的大小。   在他们的论文中,研究人员展示了这台显微镜如何解决纳米压印光刻技术中的一些常见问题。McClelland说:&ldquo 以前生产商进行硅刻蚀,必须确保空间没有化学残留。通常他们利用等离子体刻蚀的方法清除残留物。但是他们得很仔细,以防过度清除损坏基底或芯片。我们的聚焦离子束显微镜可以很好的观察等离子体的工作情况,确保不损坏芯片。扫描电镜无法做到这些,因为它很难观察到很少的残留物,而且高能电子束很可能造成充电或将模板熔化等,将情况弄得更糟糕。&rdquo   该研究团队未来的一个计划是通过将锂离子注入材料当中,看他们是如何影响电池性能,从而解开锂电池的工作原理。研究团队中的一些成员还成立了自己的公司,研发低能铯聚焦离子束,以实现单一纳米量级的铣削和雕刻功能,如果成功将是纳米材料制备的巨大飞跃。编译:秦丽娟
  • 1298万!赛默飞世尔中标中国科学院生物物理研究所等离子聚焦离子束扫描电子显微镜采购项目
    一、项目编号:OITC-G230562381 (招标文件编号:OITC-G230562381 )二、项目名称:中国科学院生物物理研究所等离子聚焦离子束扫描电子显微镜采购项目三、中标(成交)信息供应商名称:北京华泰长润科技发展有限公司供应商地址:北京市朝阳区北辰西路69号三单元1203号中标(成交)金额:1298.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 北京华泰长润科技发展有限公司 等离子聚焦离子束扫描电子显微镜 赛默飞世尔科技公司等 Helios 5 Hydra CX 1套 ¥12,980,000.00(总价) 五、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院生物物理研究所     地址:北京市朝阳区大屯路15号         联系方式: 010-64888443       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李媛 吴旭 冯宇图 010-68290524、010-68290510、010-68290550            3.项目联系方式项目联系人:李媛 吴旭 冯宇图 liyuan@oitc.com.cn电 话:  李媛 吴旭 冯宇图 010-68290524、010-68290510、010-68290550
  • 《Science》:近场太赫兹光电流-石墨烯等离子体在近费米速度传播下的非局域量子效应
    近期,西班牙光子科学研究所(ICFO)的 Marco Polini教授和Frank H. L.Koppens教授在《Science》上发表了题为:Tuning quantum nonlocal effects in graphene plasmonics的文章。 在本篇文章中,研究者利用散射式近场光学手段,对石墨烯-(h-NB)-金属复合体系表面进行了纳米尺度下的精细扫描,由此观测到了太赫兹波段下的石墨烯等离子体以近费米速度进行传播。研究发现,在慢的速度(数百倍低于光速)下,石墨烯等离子的非局域响应得以探测,通过近场成像能够以无参数匹配手段清晰地揭示无质量的Dirac电子气体的量子描述,进而展示了三种类型的非局域量子效应,即单粒子速率匹配,相互增强费米速率和相互减弱压缩性。 通过该近场光学的研究方法,研究者终提供了确定电子体系的全时空反应的新途径。 图1 太赫兹散射式近场光学显微镜及光电流测试结果 在国外用户取得科研成果的同时,国内学者也是“喜讯频传”,科研工作不断收获国际杂志肯定。截止今年6月,国内用户仅在今年发表文章7篇,其中苏州大学用户关于有机钙钛矿太阳能材料的研究被Advance Materials(影响因子19.79)收录,中山大学用户和苏州大学用户关于石墨烯纳米结构、石墨烯等离子体的研究被nature子刊Light:Science & Application(影响因子13.6)收录。至此,neaspec国内用户自2015年底至今,已在国际学术期刊发表文章共计13篇,其中影响因子大于10的文章数目有6篇。图2 近两年国内学者研究成果 在《Science》正文后,作者严正申明:“R.H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study.” Hillenbrand教授进一步指出“这可能只是近场纳米视觉新时代的开始”。相关产品链接 太赫兹近场光学显微镜 — THz-NeaSNOM http://www.instrument.com.cn/netshow/SH100980/C270098.htm纳米傅里叶红外光谱仪Nano-FTIR http://www.instrument.com.cn/netshow/SH100980/C194218.htm超高分辨散射式近场光学显微镜http://www.instrument.com.cn/netshow/SH100980/C170040.htm
  • 使用泰伯劳干涉仪测量HED等离子体相衬像
    诊断高能量密度(HED)等离子体的特性,例如存在于惯性约束聚变(ICF)中的等离子体,对于理解它们的演化和相互作用至关重要。然而,考虑到所涉及的通常极端的温度和密度条件,以及其中一些相互作用发生的小时间和空间尺度,获得这些测量结果是具有挑战性的。干涉测量法是目前等离子体最灵敏、最成功的诊断方法之一。然而,由于最常见的干涉测量系统的设计,工作波长有限,因此可以探测的密度和温度范围受到严重限制,难以测量对于可见光波段不透明的 HED 等离子体。基于 Talbot 效应的 Talbot-Lau 干涉法,提供了将干涉测量扩展到 X 射线波长的可能性。另一方面,在光子能量从几 keV 到几十 keV 的范围内的硬 X 射线,低 z 物质的弹性散射截面远大于衰减截面,相位对比度比传统的衰减度对比对电子密度的变化更敏感。因此,在成像机制上,基于折射的方法相较于基于吸收的方法有更高的固有对比度。即,基于相位变化的 X 射线成像方法,包括 Talbot-Lau 偏折测量方法,尤其适用于低 z 生物组织、聚合物、纤维复合材料和 HED 等离子体等的表征。约翰霍普金斯大学物理与天文学系的 M. P. Valdivia 与 D. Stutman 等人提出了将TL莫尔光束偏转技术扩展到8 keV 能量,用于 HED 等离子体实验中的密度梯度测量。[http://dx.doi.org/10.1063/1.4885467]该实验采用低能 TL 干涉仪装置采用焦斑为 ~ 15 μm FWHM 的铜阳极管作为 X 射线源。当在 22 kV 下工作时,该管产生 Kα 特征线主导的光谱,在 8 keV 处有一个强峰。同时使用了 30 μm 厚度的 Ni 滤波器,进一步提高特征线与轫致辐射之间的比率。对于微周期 Talbot-Lau 光栅的设计与制造工艺,对于高能量X射线(如20~100keV),难点在于得到高厚度/深宽比的光栅结构;对于低能 X 射线(如1. Microworks GmbH 提供的 Talbot-Lau 光栅:a)源光栅;b)相位光栅;c)分析光栅该小组使用多种形状(棱柱,圆柱,球型)的多种材料(丙烯酸,铍,PMMA)作为材料进行实验验证。其中,以 PMMA 球形样品的测试结果为例:2. 直径1.5mm的 PMMA 球的 Moiré 条纹像(a)及其偏移映射图(b)结果表明,在 8 keV 下的测量足够灵敏,可以测量几到几十微弧度范围内的折射角,从而提供 10-20 到 10-21 mm&minus 2范围内的面密度。在静态模式下论证得出该技术能够为 HED 相关物体提供密度诊断。上述小组进一步改进该实验,使用短脉冲(30–100 J, 10 ps)激光轰击 Cu 箔产生 X 射线作为测量光源,由于激光的脉冲特性,使得对 HED 的时间分辨测量成为了可能。(doi: 10.1063/1.5123919)3. 超短脉冲时间分辨 X 射线 Talbot-Lau 干涉实验前端光路示意图4. Talbot-Lau X 射线干涉法诊断平台波尔多大学的 G. P´ erez-Callejo 与 V. Bouffetier,对特定靶结构在激光作用下产生的 HED 瞬时密度进行了模拟和测量,并提供了相应的干涉图像的后处理工具。(DOI: 10.1063/5.0085822)5. 等离子体靶材结构设计示意图(左);模拟轰击靶材后30ns 瞬时密度图像6. 瞬时状态下的干涉图像(a)与空光路参考图像(b)7. 经数据处理后的吸收像(a),暗场像(b)与相位像(c)相关阅读- Microworks光栅助力新冠病毒肺部诊断- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(上)- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(下)Microworks 德国 Microworks GmbH 基于其独特的 LIGA 技术,向广大科研用户提供定制化的微结构加工服务。其中,它的X射线透射光栅在相衬成像领域,有着极高的声誉。Microworks为X射线无损检测(NDT)提供标准化和定制产品。在微纳米技术领域,Microworks代表着高精度,其最高纵横比和精度可以远低于 1 µ m。北京众星联恒科技有限公司作为 Microworks 的中国大陆全权代理商,为中国用户提供所有的售前咨询,销售及售后服务,同时 TALINT EDU 干涉仪套件目前我们开放国内试用, 如果您想体验这款模块化、操作简易的 X 射线相衬、暗场成像套件, 欢迎联系我们。免责声明:此篇文章内容(含图片)部分来源于网络。文章引用部分版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。
  • 赛默飞新一代多源等离子体FIB技术实现4种离子源轻松切换
    p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201908/uepic/94c59ab4-b437-4f62-92f9-ae26a382d0da.jpg" title=" 001.jpg" alt=" 001.jpg" width=" 500" height=" 250" border=" 0" vspace=" 0" style=" text-align: center max-width: 100% max-height: 100% width: 500px height: 250px " / /p p   聚焦离子束(FIB)光源与扫描电子显微镜(SEM)相结合,由于其独特的生成各种结构的能力,无论是通过切割还是离子束诱导沉积(IBID),都引起了人们的极大兴趣。通过SEM观察。直到最近,只有镓(Ga +)和氙(Xe +)FIB / SEM仪器可商购。由于其光斑尺寸小和电流密度高,Ga + FIB可为样品制备和纳米原型制作提供良好的结果。Xe +等离子体FIB(PFIB)具有更高的最大电流,可实现高通量切割,适用于大体积表征,同时还可消除Ga +污染样品。但是,在一些情况下,两种离子源都不是理想的选择。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 299px " src=" https://img1.17img.cn/17img/images/201908/uepic/58f259f0-038b-4bd3-9e82-95b5382b4679.jpg" title=" 002.jpg" alt=" 002.jpg" width=" 300" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1.用Helios Hydra UX DualBeam制备的高质量GaAs薄片的HR S / TEM图像,使用Ar FIB进行最终抛光。 /strong /p p   为了扩展FIB应用领域的视野,赛默飞推出了新的Thermo Scientific Helios Hydra DualBeam。这种先进的仪器具有新一代PFIB光源,支持多种离子作为主光源。Helios Hydra与氙一起提供三种额外的离子种类:氩,氧和氮。单个离子源,提供多种离子,可在10分钟或更短的时间内在各个光源之间进行独特、轻松的切换。这为各种应用案例提供了显着的优势 例如,先进的TEM样品制备,其中采用氩束的最终抛光可以显着改善成像结果。这项新技术还将使科学家能够对离子 - 物质相互作用进行基础和应用研究,例如氮离子束硅藻与硅相互作用。 /p p   & quot 为科学家在一台仪器中轻松选择四种不同离子源的整合能力,将扩大和优化跨长度尺度研究材料性能的应用空间,& quot 赛默飞世尔科技-材料和结构分析总裁Mike Shafer说,& quot 我们新的 Helios Hydra DualBeam 系统提供了所需的灵活性,可以更好地分析样品、改进结果并开发新的和增强的材料。” /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 326px " src=" https://img1.17img.cn/17img/images/201908/uepic/c117ffc6-bd94-4bbb-92d6-0aa93a46826c.jpg" title=" 003.jpg" alt=" 003.jpg" width=" 300" height=" 326" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图2.使用Helios Hydra CX DualBeam采用O +聚焦离子束和AS& amp V4软件进行自动连续切片的汽车机油滤清器壳体(聚合物/玻璃纤维复合材料)的三维重构。HFW(水平宽度)为350μm。 /strong /p p   Helios Hydra 双束电镜允许材料科学研究人员发现和设计新材料并分析其性能和结构。凭借其氧离子束,非常适合用于切割碳基材料,如电池正极中使用的石墨,它可以帮助研究人员开发更安全、更轻、更高效的储能设备。 /p p   据介绍,这是第一款商业化的,允许快速、简便地进行离子束切换的仪器。以前,应用不同的离子束需要研究人员在仪器之间转移样品,或进行冗长而复杂的源交换。例如,独立的专用宽束氩离子抛光机目前是高质量透射电子显微镜(TEM)样品制备工作流程的典型部件。使用 Helios Hydra DualBeam 电镜,在初始切割后,可直接将聚焦的氩离子应用于样品抛光,从而大大减少了样品的转移和处理时间。切换时间为 10 分钟或更短,研究人员还可以在一个小节内将所有 4 束光束应用于样品,以确定哪种离子最适合其预期用途。这种灵活性扩展了FIB在探索电子-样品相互作用方面的潜在应用。 /p p   据悉, a href=" https://www.instrument.com.cn/netshow/SH100537/C18181.htm" target=" _blank" strong Helios Hydra 双束电镜 /strong /a 的正式生产将于 2019 年 9 月开始。 /p p   更多详情请点击: a href=" https://www.instrument.com.cn/netshow/SH100537/C18181.htm" _src=" https://www.instrument.com.cn/netshow/SH100537/C18181.htm" https://www.instrument.com.cn/netshow/SH100537/C18181.htm /a & nbsp /p p & nbsp & nbsp & nbsp & nbsp /p
  • 天美和微电子所共建Park Systems原子力显微镜示范试验室
    天美公司和中科院微电子所合作共建Park Systems原子力显微镜示范试验室 Park Systems是一家起源于美国硅谷世界知名技术领先的原子力显微镜制造商。中科院微电子所是中国微电子领域的领袖之一。2012年6月18日,这两位微电子领域的巨人正式开始合作,一起进军新一代的半导体材料“石墨烯”。天美(中国)科学仪器有限公司作为Park Systems在中国的独家代理,以其雄厚的维修和应用支持力量,会为微电子所提供最优良的技术和售后服务。 本次合作的另一大重要意义是将最为成熟的针尖增强拉曼光谱系统应用于最前沿的石墨烯研究。针尖增强拉曼光谱系统是目前研究的应用热点,英文称之为Tip Enhanced Raman Spectroscopy, 简称TERS。该技术利用表面等离子体共振现象,把原子力显微镜和拉曼光谱仪结合起来,将拉曼光谱仪的分辨率提高到了纳米尺度。Park Systems公司和Horiba Jobin Yvon公司的合作开发的TERS系统是目前全世界最为成熟稳定的。 为了纪念这一重大进展,天美公司副总裁赵薇女士、Park Systems的全球销售总监Jessica和微电子所的金智主任共同为示范试验室的建立进行了揭幕,仪式后合影留念。三方一起为今后开展更为深入的技术合作进行了探讨,并取得了非常愉快的共识。 石墨烯材料具有优良的物理特性和易于与硅技术相结合的特点,被学术界和工业界认为是推进微电子技术进一步发展的极具潜力的材料,其开发者获得了2010年的诺贝尔物理学奖。Park Systems生产的XE系列原子力显微镜已被成功应用于石墨烯机械和电子性能的测试,相关测量结果被发表在 Science、Nature materials和Nano Letter上。目前,中国科学院微电子研究所微波器件与集成电路研究室(四室)石墨烯研究小组在金智研究员和刘新宇研究员的带领下,正致力于研制高性能的石墨烯电子器件。随着Park Systems原子力显微镜的安装和投入使用,必将会有更多更有价值的测量结果被发掘出来。 左起: 天美公司副总裁赵薇女士,Park Systems全球销售总监Jessica, 中科院微电子所金智主任
  • 70万!深圳市清新电源研究院--电感耦合等离子体发射光谱仪采购
    项目概况深圳市清新电源研究院--电感耦合等离子体发射光谱仪 招标项目的潜在投标人应在深圳市福田区深南大道6008号深圳特区报业大厦31F获取招标文件,并于2022年01月27日 14点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:LD2022EP-SZA002项目名称:深圳市清新电源研究院--电感耦合等离子体发射光谱仪预算金额:70.0000000 万元(人民币)采购需求:电感耦合等离子体发射光谱仪采购。合同履行期限:见招标文件本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:见招标文件3.本项目的特定资格要求:2.1??具有独立承担民事责任能力的在中华人民共和国境内注册的法人或其他组织(提供法人或者其他组织的营业执照等证明文件);2.2??投标人为制造商须提供合法生产、销售所投产品的相关证明,投标人为代理商投标的须提供制造商合法销售代理证明并同时提供制造商合法生产、销售所投产品的相关证明。2.3??投标截止时间前,投标人未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单(招标机构将通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)渠道查询相关主体信用记录);2.4 投标人参与本项目招投标活动时其经营活动中不存在重大违法记录;2.5??本项目不接受联合体投标。三、获取招标文件时间:2022年01月07日 至 2022年01月14日,每天上午9:00至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:深圳市福田区深南大道6008号深圳特区报业大厦31F方式:现场购买或国内银行汇款邮购。现场购买:供应商代表携营业执照(核验原件,留复印件,复印件加盖公章)及法人代表授权委托书,至招标机构填写《投标报名登记表》办理报名手续。如需邮购,请于办理汇款手续后,传真前款有关资料、汇款单及《投标报名登记表》至招标机构。售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年01月27日 14点30分(北京时间)开标时间:2022年01月27日 14点30分(北京时间)地点:深圳市福田区深南大道6008号深圳特区报业大厦31F深圳龙达招标有限公司开标厅五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜采购公告查询:http://www.szldzb.com (深圳龙达招标网)http://www.cebpubservice.com (中国招标投标公共服务平台)http://www.ccgp.gov.cn (中国政府采购网)七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:深圳市清新电源研究院     地址:/        联系方式:/      2.采购代理机构信息名 称:深圳龙达招标有限公司            地 址:深圳市福田区深南大道6008号深圳特区报业大厦31F            联系方式:陈康 王上锋0755-83864290            3.项目联系方式项目联系人:陈康电 话:  0755-83864290
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制