当前位置: 仪器信息网 > 行业主题 > >

等离子体监测控制仪

仪器信息网等离子体监测控制仪专题为您提供2024年最新等离子体监测控制仪价格报价、厂家品牌的相关信息, 包括等离子体监测控制仪参数、型号等,不管是国产,还是进口品牌的等离子体监测控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合等离子体监测控制仪相关的耗材配件、试剂标物,还有等离子体监测控制仪相关的最新资讯、资料,以及等离子体监测控制仪相关的解决方案。

等离子体监测控制仪相关的论坛

  • 微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    微波等离子体高温热处理工艺中真空压力的下游控制技术及其装置

    [size=14px][color=#cc0000]  摘要:本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了上海依阳公司为解决这一关键技术所采用的真空压力下游控制模式及其装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 问题的提出[/b][/color][size=14px]  各种纤维材料做为纤维复合材料的增强体在军用与民用工业领域中发挥着巨大作用,例如碳纤维、陶瓷纤维和玻璃纤维等,而高温热处理是提高这些纤维材料性能的有效手段,通过高温可去除杂质原子,提高主要元素含量,可以得到性能更加优良的纤维材料,因此纤维材料高温热处理的关键是方法与设备。[/size][size=14px]  低温等离子体技术做为一种高温热处理的新型工艺方法,气体在加热或强电磁场作用下电离产生的等离子体可在室温条件下快速达到2000℃以上的高温条件。目前已有研究人员利用高温热等离子体、直流电弧等离子体、射频等离子体等技术对纤维材料进行高温热处理。低温等离子体具有工作气压宽,电子温度高,纯净无污染等优势,且在利用微波等离子体对纤维材料进行高温处理时,可利用某些纤维材料对电磁波吸收以及辐射作用,通过产生的微波等离子体、电磁波以及等离子体产生的光能等多种加热方式,将大量能量作用于纤维材料上,实现快速且有效的高温热处理。同时,通过调节反应条件,可将多种反应处理一次性完成,大大降低生产成本。[/size][size=14px]  中国科学院合肥物质科学研究院等离子体物理研究所对微波等离子体高温热处理工艺进行了大量研究,并取得了突破性进展,在对纤维材料的高温热处理过程中,热处理温度可以在十几秒的时间内从室温快速升高到2000℃以上,研究成果申报了国家发明专利CN110062516A“一种微波等离子体高温热处理丝状材料的装置”,整个热处理装置的原理如图1-1所示。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202228157595_5464_3384_3.png!w690x416.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图1-1 微波等离子体高温热处理丝状材料的装置原理图[/color][/size][/align][size=14px]  等离子体所研制的这套热处理装置,可通过调节微波功率、真空压力等参数来灵活调节温度区间,可在低气压的情况下获得较高温度,但同时也要求这些参数具有灵活的可调节性和控制稳定性,如为了实现达到设定温度以及温度的稳定性,就需要对热处理装置中的真空压力进行精确控制,这是实现等离子工艺平稳运行的关键技术之一。[/size][size=14px]  为了解决这一关键技术,上海依阳实业有限公司采用新开发的下游真空压力控制装置,为合肥等离子体所的高温热处理装置较好的解决了这一技术难题。[/size][size=14px][b][color=#cc0000]2. 真空压力下游控制模式[/color][/b][/size][size=14px]  针对合肥等离子体所的高温热处理装置,真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][color=#cc0000][size=14px][img=,690,334]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202229013851_5860_3384_3.png!w690x334.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 下游控制模式示意图[/color][/align][size=14px]  具体到图1-1所示的微波等离子体高温热处理丝状材料的装置,采用了频率为2.45GHz的微波源,包括微波源系统和上、下转换波导,上转换波导连接真空泵,下转换波导连接微波源系统和样品腔,上、下转换波导间设有同轴双层等离子体反应腔管,双层等离子体反应腔管包括有同轴设置的外层铜管和内层石英玻璃管,内层石英玻璃管内为等离子体放电腔,外层铜管与内层石英玻璃管之间为冷却腔,外层铜管的两端设有分别设有冷媒进口和出口以形成循环冷却。真空泵、样品腔分别与等离子体放电腔连通,样品腔设有进气管,工作气体及待处理丝状材料由样品腔进气管进入等离子体放电腔。微波源系统采用磁控管微波源,磁控管微波源包括有微波电源、磁控管、三销钉及短路活塞,微波由微波电源发出经磁控管产生,磁控管与下转换波导之间设置有矩形波导,矩形波导安装有三销钉,下转换波导另一端连接有短路活塞,通过调节三销钉和短路活塞,得到匹配状态和传输良好的微波。[/size][size=14px]  丝状材料由样品腔进入内层石英层玻璃管,从两端固定拉直,安装完毕后真空泵抽真空并由进气管向等离子体放电腔通入工作气体。微波源系统产生的微波能量经三销钉和短路活塞调节,通过下转换波导由TE10模转为TEM模传输进入等离子体放电腔,在放电腔管内表面形成表面波,激发工作气体产生高密度微波等离子体作用于待处理丝状材料,同时等离子体发出的光以及部分泄露的微波也被待处理丝状材料吸收,实现多种手段同时加热。双层等离子体反应腔管外围环绕设有磁场组件,外加磁场可调节微波在等离子体中的传播模式,同时可以使得丝状材料更好的重结晶,提高处理后的丝状材料质量。[/size][size=14px]  装置可以通过调节微波功率、工作气压调节温度,变化范围为1000℃至5000℃间,同时得到不同长度的微波等离子体。为了进行工作气压的调节,在真空泵和上转换波导的真空管路之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=14px][b][color=#cc0000]3. 下游控制模式的特点[/color][/b][/size][size=14px]  如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px]  下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px]  在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px]  下游模式具有以下特点:[/size][size=14px]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作;[/size][size=14px]  (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px]  (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=14px][b][color=#cc0000]4. 下游控制用真空压力控制装置及其控制效果[/color][/b][/size][size=14px]  下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度控制器。[/size][size=14px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px]  数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px]  (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px]  (2)适用范围(Pa):快卸法兰(KF)2×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]/活套法兰6×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]。[/size][size=14px]  (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px]  (4)阀门漏率(Pa.L/S):≤1.3×10[sup]?-6[/sup]。[/size][size=14px]  (5)适用温度:2℃~90℃。[/size][size=14px]  (6)阀体材质:不锈钢304或316L。[/size][size=14px]  (7)密封件材质:增强聚四氟乙烯。[/size][size=14px]  (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px]  (9)电源供电:DC 9~24V。[/size][size=14px]  (10)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202231249739_6263_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=14px][color=#cc0000]4.2. 真空压力控制器[/color][/size][size=14px]  真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力控制器,如图4-2所示,其技术指标如下:[/size][size=14px]  (1)控制周期:50ms/100ms。[/size][size=14px]  (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px]  (3)采样速率:20Hz/10Hz。[/size][size=14px]  (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px]  (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px]  (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px]  (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px]  (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232157970_4559_3384_3.jpg!w500x500.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/size][/align][size=14px][b][color=#cc0000]5. 控制效果[/color][/b][/size][size=14px]  安装了真空压力控制装置后的微波等离子体高温热处理系统如图5-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232573625_5179_3384_3.png!w690x395.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 微波等离子体高温热处理系统[/color][/align][size=14px]  在热处理过程中,先开启真空泵和控制阀对样品腔抽真空,并通惰性气体对样品腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在2000℃以上,在整个过程中样品腔内的真空压力始终控制在设定值上。整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234216839_5929_3384_3.png!w690x419.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px]  为了更好的观察热处理过程中真空压力的变化情况,将图5-2中的温度突变处放大显示,如图5-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,427]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234347767_4036_3384_3.png!w690x427.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px]  从图5-3所示结果可以看出,在300Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=14px]  另外,在激发等离子体后样品表面温度在几秒钟内快速上升到2000℃以上,温度快速上升使得腔体内的气体也随之产生快速膨胀而带来内部气压的升高,但控制器反应极快,并控制调节阀的开度快速增大,这反而造成控制越有超调,使得腔体内的气压反而略有下降,但在十几秒种的时间内很快又恒定在了300Torr。由此可见,这种下游控制模式可以很好的响应外部因素突变造成的真空压力变化情况。[/size][size=14px]  上述控制曲线的纵坐标为真空计输出的与真空度对应的电压值,为了对真空度变化有更直观的了解,按照真空计规定的转换公式,将上述纵坐标的电压值换算为真空度值(如Torr),纵坐标换算后的真空压力变化曲线如图54所示,图中还示出了真空计电压信号与气压的转换公式。[/size][size=14px]  同样,将图5-4纵坐标放大,如图5-5所示,可以直观的观察到温度突变时的真空压力变化情况。从图5-4中的转换公式可以看出,由于存在指数关系,纵坐标转换后的真空压力波动度为6.7%左右。如果采用线性化的薄膜电容式真空计,即真空计的真空压力测量值与电压信号输出值为线性关系,这种现象将不再存在。[/size][align=center][color=#cc0000][size=14px][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236297989_3820_3384_3.png!w690x423.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][align=center][size=14px][img=,690,421]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236397212_4575_3384_3.png!w690x421.jpg[/img][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][size=14px][b][color=#cc0000]6. 总结[/color][/b][/size][size=14px]  综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,同时还充分保证了微波等离子体热处理过程中的温度调节、温度稳定性和均温区长度等工艺参数,为微波等离子体热处理工艺的推广应用提供了技术保障。另外,这也是替代真空控制系统进口产品的一次成功尝试。[/size][size=14px]  [/size][size=14px][/size][align=center]=======================================================================[/align][size=14px][/size][size=14px][/size]

  • 低气压精确控制技术在微纳卫星电热等离子体微推进器羽流特性测试中的应用

    低气压精确控制技术在微纳卫星电热等离子体微推进器羽流特性测试中的应用

    [color=#990000]摘要:针对各种微纳卫星电热等离子体微推进器,以口袋火箭这种工作在0.1~10torr低气压范围内的微推进器为例,分析了不同工质气体和不同低气压对羽流特征所产生的影响,说明了低气压精确控制的重要性。关于推进器低气压精确控制这一技术问题,本文详细介绍了具体实施方法,进行了考核试验,试验结果证明低气压控制波动度可以达到±1%以内。最终本文对测试方法进行了优化,提出了更实用化的全量程低气压精确控制技术方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000] 一、问题的提出[/color][/size]近年来,随着微纳卫星(NanoSat)的快速发展,对小体积、轻质量、低成本和高效率的微推进器提出了迫切需求,由此需要开展推进器的等离子体羽流特征等物理性能的测试评价研究。等离子羽流特征会受到工质气体和环境气压的明显影响,以国外口袋火箭羽流性能测试为例分析低气压精确控制的必要性和重要性。口袋火箭(Pocket Rocket)作为一种微纳卫星应用中的典型代表,是一种电热式射频等离子体推进器,可实现μN~mN 量级的推力。口袋火箭因其体积小且采用电容性射频放电,可在小功率条件下获得高密度等离子体射流,且重量轻、成本低、推力小、比冲大,能以阵列形式工作,特别适合配备微纳卫星和长期提供动力。如图1所示,卧式真空仓为口袋火箭等离子体羽流特征的测试提供低气压环境。该真空仓是一个多功能低气压环境模拟试验腔体,可集成多种试验设备用于各种等离子推进器的性能测试评价。[align=center][color=#990000][img=低气压控制,690,517]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957211181_7104_3384_3.jpg!w690x517.jpg[/img][/color][/align][align=center][color=#990000]图1 WOMBAT推进器试验装置[/color][/align][align=left][/align][align=left]如图2所示,为了形成低气压环境,真空仓配备有分子泵、机械泵、电离真空计和电容压力计,真空仓能够达到0.93mPa 的基准真空度。测试中的气体工质通常采用氮气和氩气。[/align][align=right][/align][align=center][color=#990000][img=低气压控制,690,295]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957469237_3688_3384_3.jpg!w690x295.jpg[/img][/color][/align][align=center][color=#990000]图2 WOMBAT推进器试验装置结构示意图[/color][/align]在射频电源功率和频率分别为20W和13.56MHz条件下,并在不同低气压下对口袋火箭的羽流特性进行了测试,图3是不同工质气体在不同气压下出射等离子体羽流的实验照片。其中图a为约1.5torr低压氩,图b为约4.0torr高压氩,图c为约1.0torr低压氮,图d为约7.0torr高压氮。从图中可以看出,在高气压下氮气和氩气的羽流均呈一定的锥角扩散,而低气压下均为准直射光束,但这些特征对于产生推力的影响尚不清楚,还需要进一步研究。[align=center][color=#990000][img=低气压控制,690,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300957590245_7203_3384_3.jpg!w690x500.jpg[/img][/color][/align][align=center][color=#990000]图3 不同工质气体和不同气压下电热等离子体微推进器膨胀羽流的数字图像[/color][/align]综上所述,不同工质气体和不同低气压会对羽流特征产生明显影响,口袋火箭这种微推进器工作在0.1~10torr的低气压范围内,在此范围内测试评价羽流特性就需要对低气压进行精确控制。本文将针对低气压控制,详细介绍具体实施方法,并对实施方法进行试验考核,最终对实施方法进行优化,提出了低气压全量程的精确控制技术方案。[size=18px][color=#990000]二、低气压精确控制方法和试验考核[/color][/size]所谓低气压,一般是指低于1个标准大气压的绝对压力,范围为0.1~760torr,准确测量低气压目前普遍采用的是电容压力计,通常会采用10torr和1000torr两个不同量程的电容压力计来覆盖整个低气压范围的测量。通常,模拟试验装置真空仓需要通过进气和排气方式进行低气压控制,根据气流方向,一般将进气端定义为上游,真空泵排气端定义为下游。依据控制精度一般采用上游和下游两种控制模式,由此来实现不同量程(10torr和1000torr)的低气压准确控制。如图4所示,上游模式是维持上游压力和出气口流量,通过调节进气口流量控制仓室压力。[align=center][color=#990000][img=低气压控制,400,421]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958123451_6159_3384_3.jpg!w400x421.jpg[/img][/color][/align][align=center][color=#990000]图4 低气压上游控制模式[/color][/align]如图5所示,下游模式是维持上游压力和进气口流量,通过调节排气口流量控制仓室压力。[align=center][color=#990000][img=低气压控制,450,393]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958232096_7296_3384_3.jpg!w450x393.jpg[/img][/color][/align][align=center][color=#990000]图5 低气压下游控制模式[/color][/align]针对上述两种控制模式,分别采用1torr和1000torr两只电容压力计和24位高精度压力控制器进行了考核试验,试验装置如图6和图7所示。[align=center][color=#990000][img=低气压控制,690,464]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958322992_8227_3384_3.jpg!w690x464.jpg[/img][/color][/align][align=center][color=#990000]图6 低气压上游控制模式考核试验装置[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=低气压控制,690,426]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958424109_3718_3384_3.jpg!w690x426.jpg[/img][/color][/align][align=center][color=#990000]图7 低气压下游控制模式考核试验装置[/color][/align]在上游模式试验过程中,首先开启真空泵后使其全速抽气,然后在 68Pa 左右对控制器进行 PID参数自整定。自整定完成后,分别对 12、27、40、53、67、80、93 和 107Pa共8个设定点进行了控制,整个控制过程中的气压变化如图8所示。[align=center][color=#990000][img=低气压控制,600,363]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300958580425_7569_3384_3.jpg!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图8 上游模式低气压定点控制考核试验曲线[/color][/align]在下游模式试验过程中,首先开启真空泵后使其全速抽气,并将进气阀调节到微量进气的位置,然后在300torr左右对控制器进行PID参数自整定。自整定完成后,分别对 70、 200、 300、450 和 600Torr 共5个设定点进行了控制,整个控制过程中的气压变化如图9 所示。[align=center][color=#990000][img=低气压控制,600,357]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959162394_4124_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图9 下游模式低气压定点控制考核试验曲线[/color][/align]将上述不同低气压恒定点处的控制效果以波动率来表示,则得到图10和图11所示的整个范围内的波动率分布。从波动率分布图可以看出,在整个低气压的全量程范围内,波动率可以精确控制在±1%范围,在12Pa处出现的较大波动,是因为采用 68Pa处自整定获得的PID参数并不合理,需进行单独的PID参数自整定。[align=center][color=#990000][img=低气压控制,600,337]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959335886_7215_3384_3.jpg!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图10 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=低气压控制,600,371]https://ng1.17img.cn/bbsfiles/images/2021/12/202112300959557611_9052_3384_3.jpg!w690x427.jpg[/img][/color][/align][align=center][color=#990000]图11 下游模式低气压定点控制考核试验曲线[/color][/align][size=18px][color=#990000]三、全量程低气压精确控制实施方案[/color][/size]从上述气压精确控制方法可以看出,可以根据实际需要选择不同的控制模式,如10torr以下的低气压控制可以选择采用上游模式,10~1000torr范围的高气压控制可以选择采用下游模式。在大多低气压环境模拟试验设备中,特别是针对推进器性能测试需要,需要在整个低气压范围内能实现气压的精确控制,并能实现自动化,因此单独使用或切换上游和下游控制模式并不是最佳选择。为实现低气压全量程范围内的自动化精确控制,我们对上游和下游两种模式进行了集成,提出了双向控制模式的技术方案,整体方案布局如图12所示。[align=center][color=#990000][img=低气压控制,500,407]https://ng1.17img.cn/bbsfiles/images/2021/12/202112301000121162_7843_3384_3.jpg!w500x407.jpg[/img][/color][/align][align=center][color=#990000]图12 低气压全量程双向控制模式技术方案真空系统布局图[/color][/align]在低气压全量程控制过程中,需要采用两只不同测量范围的电容式真空计来进行全量程覆盖,也可以材料一直电容式真空计和一直电离式真空计覆盖更宽的低气压范围。在双向控制模式的技术方案中,对控制器和电动阀门提出了更高要求,主要体现在以下几个方面:(1)要求具有可同时连接两个真空传感器的能力,并可根据低气压测量值在两个真空传感器之间进行切换,实时准确的进行低气压测量和控制。(2)控制器需要具有很高的测量精度,如24位A/D采样精度,以适应不同真空计测量精度的要求,并充分发挥真空计的测量能力。(3)在双向控制模式中,还要求真空压力控制器具有正反向控制功能,即对上游电动针阀用反向控制,对下游电动球阀用反向控制。(4)在双向控制模式中,负责上下游气体流量调节的电动针阀和电动球阀需要交替工作,因此这些电动阀需要具有尽可能快的响应速度,真空仓室越小,气压惰性越小,响应速度要求越快,一般要求是阀门从全闭到全开的时间为2秒以内甚至更低。总之,通过采用上述双向模式的低气压控制方案,特别是采用了新型高性能真空压力控制器和高速电动阀门之后,可以实现低气压全量程的精确控制。[size=18px][color=#990000]四、参考文献[/color][/size][1] Corr C S, Boswell R W. Nonlinear instability dynamics in a high-density, high-beta plasma[J]. Physics of Plasmas, 2009, 16(2): 022308.[2] Greig A, Charles C, Boswell R. Plume characteristics of an electrothermal plasma microthruster[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2728-2729.[3] Petkovic M, Pollara R. Dual-purpose space simulation facility for plasma thruster and satellite testing[C]//28th Space Simulation Conference. 2014.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代

    微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代

    [size=14px][color=#cc0000]摘要:目前微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中的真空压力控制装置普遍采用美国MKS公司的控制阀和控制器。本文介绍了采用MKS公司产品在实际应用中存在控制精度差和价格昂贵的现象,介绍了为解决这些问题的国产化替代方案,介绍了最新研发的真空压力控制装置国产化替代产品,并验证了国产化替代产品具有更高的控制精度和价格优势。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#cc0000] [/color][color=#cc0000]1. 问题的提出[/color][/size][size=14px]  在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中,微波发生器产生的微波用波导管传输至反应器,并向反应器中通入不同气体构成的混合气体,高强度微波能激发分解基片上方的含碳气体形成活性含碳基团和原子态氢,并形成等离子体,从而在基片上沉积得到金刚石薄膜。等离子体激发形成于谐振器内,谐振器真空压力的调节对金刚石的合成质量至关重要,现有技术中,真空管路上通常设置可以自动调节阀芯大小的比例阀对谐振腔真空压力进行自动控制,目前国内外比较成熟的技术是比例阀采用美国MKS公司的248系列控制阀和相应的配套驱动器1249B和控制器250E等。但在实际应用中,如美国FD3M公司发明专利“真空压力控制装置和微博等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积装置”(专利号CN 108517556)中所描述的那样,使用MSK公司产品主要存在以下几方面的问题:[/size][size=14px]  (1)不包括真空计的话,仅真空压力控制至少需要一个248系列控制阀、一个配套的驱动器1249B和一个真空压力控制器250E,所构成的闭环控制装置整体价格比较昂贵。[/size][size=14px]  (2)248系列控制阀是一种典型的比例阀,这种比例阀动态控制精度难以满足真空压力控制要求,如设定值为20、30、50、100和150Torr不同工艺真空压力时,实际控制压力分别为24、33、53、102和152Torr,控制波动范围为1.3~20%。[/size][size=14px]  另外,通过我们的使用经验和分析,在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中采用MKS公司产品还存在以下问题:[/size][size=14px]  (1)美国MKS公司248系列控制阀,以及148J和154B系列控制阀,因为其阀芯开度较小,使用中相应的气体流量也较小,所以MKS公司将这些控制阀分类为上游流量控制阀。在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中,一般是控制阀安装在工作腔室和真空泵之间的真空管路中,也就是所谓的下游控制模式,而MKS公司的下游流量控制阀的最小孔径为50mm以上,对MPCVD系统而言这显然孔径太大,同时这些下游流量控制阀价格更加昂贵。因此,选用小孔径小流量的248系列控制阀作为下游控制模式中 的控制阀实属无奈之举。[/size][size=14px]  (2)如果将美国MKS公司248系列上游控制阀用到MPCVD系统真空压力的下游控制,所带来的另一个问题是工艺过程中所产生的杂质对控制阀的污染,而采用可拆卸可清洗的下游控制阀则可很好的解决此问题,这也是MKS公司下游控制阀的主要功能之一。[/size][size=14px]  针对上述微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中真空压力控制中存在的问题,上海依阳实业有限公司开发了新型低价的下游真空压力控制装置,通过大量验证试验和实际使用,证明可成功实现真空压力下游控制方式的国产化替代。[/size][size=18px][color=#cc0000]2. MPCVD系统中的真空压力下游控制模式[/color][/size][size=14px]  针对微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统,系统真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,291]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041531385213_1293_3384_3.png!w690x291.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图2-1 MPCVD系统真空压力下游控制模式示意图[/color][/align][size=14px]  上述微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积设备的工作原理和过程为:首先对真空腔抽真空,并向真空腔内通入工艺混合气体,然后通过微波源产生微波,微波经过转换后进行谐振真空腔,最终形成相应形状的等离子体,从而形成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积[/size][size=14px]  装置可以通过调节微波功率、工作气压调节温度。为了进行工作气压的调节,在真空泵和真空腔之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=18px][color=#cc0000]3. 下游控制模式的特点[/color][/size][size=14px]  如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px]  下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px]  在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px]  下游模式具有以下特点:[/size][size=14px]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作。[/size][size=14px]  (2)下游控制模式主要用于精确控制真空腔体的下游实际出气速率,与真空泵连接的出气口径一般较大,相应的真空管路也较粗,因此下游控制阀的口径一般也相应较大,由此可满足不同大口径抽气速率的要求。[/size][size=14px]  (3)在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px]  (4)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=18px][color=#cc0000]4. 下游控制用真空压力控制装置[/color][/size][size=14px]  下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度PID控制器。[/size][size=16px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px]  数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px]  (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px]  (2)适用范围(Pa):快卸法兰(KF)2×105~1.3×10-6/活套法兰6×105~1.3×10-6。[/size][size=14px]  (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px]  (4)阀门漏率(Pa.L/S):≤1.3×10-6。[/size][size=14px]  (5)适用温度:2℃~90℃。[/size][size=14px]  (6)阀体材质:不锈钢304或316L。[/size][size=14px]  (7)密封件材质:增强聚四氟乙烯。[/size][size=14px]  (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px]  (9)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041532016015_1144_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=16px][color=#cc0000]4.2. 真空压力PID控制器[/color][/size][size=14px]  真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力PID控制器,如图4-2所示,其技术指标如下:[/size][size=14px]  (1)控制周期:50ms/100ms。[/size][size=14px]  (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px]  (3)采样速率:20Hz/10Hz。[/size][size=14px]  (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px]  (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px]  (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px]  (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px]  (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][color=#cc0000][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041532370653_8698_3384_3.jpg!w500x500.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/align][size=18px][color=#cc0000]5. 控制效果[/color][/size][size=14px]  为了考核所研制的控制阀和控制器的集成控制效果,如图5-1所示,在一真空系统上进行了安装和考核试验。[/size][align=center][size=14px][color=#cc0000][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041533305822_2863_3384_3.png!w690x425.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 真空压力下游控制模式试验考核[/color][/align][size=14px]  在考核试验中,先开启真空泵和控制阀对样品腔抽真空,并按照设定流量向真空腔充入相应的工作气体,真空度分别用薄膜电容式真空计和皮拉尼真空计分别测量,并对真空腔内的真空压力进行恒定控制。在整个过程中真空腔内的真空度按照多个设定值进行控制,如71、200、300、450和600Torr,整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,413]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534037381_7474_3384_3.png!w690x413.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 考核试验过程中的不同真空度控制结果[/color][/align][size=14px]  为了更好的观察考核试验结果,将图5-2中真空度71Torr处的控制结果放大显示,如图5-3所示。从图5-3所示结果可以看出,在71Torr真空压力恒定控制过程中,真空压力的波动最大不超过±1Torr,波动率约为±1.4%。同样,也可以由此计算其他设定值下的真空压力控制的波动率,证明都远小于±1.4%,由此证明控制精度要比MKS公司产品高出一个数量级,可见国产化替代产品具有更高的准确性。[/size][align=center][size=14px][color=#cc0000][img=,690,418]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534134372_7696_3384_3.png!w690x418.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 考核试验中设定值为71Torr时的控制结果[/color][/align][size=14px]  另外,还将国产化替代产品安装到微波等离体子热处理设备上进行实际应用考核。在热处理过程中,先开启真空泵和控制阀对样品真空腔抽真空,并通惰性气体对样品真空腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在几千度以上,在整个过程中样品腔内的真空压力始终控制在设定值几百Torr上。整个变温前后阶段整个过程中的真空压力变化如图5-4所示。[/size][align=center][size=14px][color=#cc0000][img=,690,420]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534238555_747_3384_3.png!w690x420.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-4 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px]  为了更好的观察热处理过程中真空压力的变化情况,将图54中的温度突变处放大显示,如图5-5所示。[/size][align=center][size=14px][color=#cc0000][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534344190_6882_3384_3.png!w690x425.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px]  从图5-5所示结果可以看出,在几百Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=18px][color=#cc0000]6. 总结[/color][/size][size=14px]  综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,证明了国产化产品完全可以替代美国MKS公司相应的真空压力控制产品,并比国外产品具有更高的控制精度和价格优势。[/size][size=14px][/size][size=14px][/size][hr/]

  • 科学家首次对极热致密等离子体进行受控研究

    实验结果推翻了沿用半个世纪的理论模型 中国科技网讯 据物理学家组织网8月7日(北京时间)报道,一个由英、美、德等国家研究人员组成的国际研究小组利用美国斯坦福直线加速器中心(SLAC)的直线加速器连贯光源(LCLS),首次对极热、致密物质进行了受控研究,实验结果推翻了50年来人们广泛接受的模型,此模型用于解释致密等离子体内的离子行为及其相互影响。从研究核聚变作为能源到理解恒星内部的运行机制,这一结果将对许多领域产生重要影响。相关论文发表在本周出版的《物理评论快报》上。 研究人员利用LCLS的X射线检测了极热致密等离子体的详细属性,首次实现了等离子物理学中的基本实验。实验结果与目前科学家用了半个世纪的模型并不符合。“X射线激光非常关键,我们无法在别的地方进行这种实验。”研究小组领导、牛津大学的贾斯廷·瓦克说。 LCLS为实验提供了特需条件:用于检测极端现象的严格受控的环境,能量可精确调整的激光束和精确检测特殊固体密度的等离子体属性的方法。改变X射线的光子能量,能生成等离子体并对其进行探测。研究人员用X射线射击超薄铝箔,生成了固体密度的铝等离子体,并用复杂的算法和计算机代码来模拟超热物质行为,构建出聚变过程模型。论文作者、牛津大学奥兰多·希瑞克斯塔说,我们将这些代码用于1966年以来就一直在用的旧模型中,模拟等离子环境产生的效果,发现模型预测与我们的实验数据不符。但返回到更早的1963年的模型时,却符合得相当好。可这一模型并没有得到广泛接受。 在此过程中,他们还确定了将电子击出等离子体的高电荷原子需要多少能量。“这个问题以前没有人能准确地测出来。”希瑞克斯塔说。 研究人员指出,最新分析解释了在聚变实验和有着超浓聚联合原子内核的恒星释放能量过程中的一些重要问题,这一过程中,随着相关电子轨道的重叠,紧压在一起的原子会失去自主能力。随着深入研究获得更多细节,可能对聚变模型的某些方面带来改进。 瓦克说,希望这一发现能在等离子物理学界产生“重要影响”。在许多领域中,用1963年的模型更容易做出改进。“我们不能说,当前的每个模型在任何条件下对任何事物都管用。希望人们能回顾这一问题,看它们是否符合更精细的条件。”(记者 常丽君) 总编辑圈点 等离子态在宇宙中最为常见,因为恒星中的物质普遍处于等离子态——气体在极度高温下,电子脱离了原子核的束缚,等离子体就产生了。但对于遍布宇宙的这种物质状态,人们对之的理解还非常有限。等离子体太变幻莫测了,科学家几乎无法预知,稍长一点的时间段里,它会如何变化。正因为如此,研发实用的托卡马克核聚变装置,很大程度上就是对等离子体的研究和利用。此次新技术手段的应用,帮助科学家确定了几个关键的物理值,让人们对等离子体的运动规律更有把握。 《科技日报》(2012-8-8 一版)

  • 【资料】-微波等离子体及其应用

    【资料】-微波等离子体及其应用

    关键词: 化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积 微波等离子体CVD法 微波等离子体热处理仪 金刚石薄膜 微波烧结 新材料 纳米催化剂 一、微波等离子体简介等离子体的研究是探索并揭示物质“第四态” ——等离子体状态下的性质特点和运行规律的一门学科。它是包含足够多的正负电荷数目近于相等的带电粒子的非凝聚系统。等离子体的研究主要分为高温等离子体和低温等离子体。高温等离子体中的粒子温度高达上千万以至上亿度,是为了使粒子有足够的能量相碰撞,达到核聚变反应。低温等离子体中的粒子温度也达上千乃至数万度,可使分子 (原子)离解、电离、化合等。可见低温等离子体温度并不低,所谓低温,仅是相对高温等离子体的高温而言。高温等离子体主要应用于能源领域的可控核聚变,低温等离子体则是应用于科学技术和工业的许多领域。高温等离子体的研究已有半个世纪的历程,现正接近聚变点火的目标;而低温等离子体的研究与应用,只是在近年来才显示出强大的生命力,并正处于蓬勃的发展时期。微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积技术原理是利用低温等离子体(非平衡等离子体)作能量源,工件置于低气压下辉光放电的阴极上,利用辉光放电(或另加发热体)使工件升温到预定的温度,然后通入适量的反应气体,气体经一系列化学反应和等离子体反应,在工件表面形成固态薄膜。它包括了化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积的一般技术,又有辉光放电的强化作用。 金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1. 在药瓶内镀上金刚石薄膜,可以避免药品在瓶内起反应,延长药品的保 全寿命; 2. 可作为计算机硬盘的保护层。目前的计算机硬盘,磁头在不用时要移到硬盘旁边的位置上,如果硬盘包有金刚石薄膜,则磁头可以始终放在硬盘上,这样就提高了效率; 3. 在切割工具上镀上金刚石薄膜,可以使工具在很长时间内保持锋利; 4. 用于制造带有极薄金刚石谐振器的扬声器; 5. 涂于计算机集成电路块,能抗辐射损坏,而一般硅集成块却易受辐射损坏。它能将工作时产生的热迅速散发掉,使集成块能排列得更紧凑些; 6. 用于分析X射线光谱的仪器,透过X射线的性能较别的材料好。 金刚石膜沉积必须要有两个条件: 1. 含碳气源的活化; 2. 在沉积气氛中存在足够数量的原子氢。 由于粒子间的碰撞,产生剧烈的气体电离,使反应气体受到活化。同时发生阴极溅射效应,为沉积薄膜提供了清洁的活性高的表面。因而整个沉积过程与仅有热激活的过程有显著不同。这两方面的作用,在提高涂层结合力,降低沉积温度,加快反应速度诸方面都创造了有利条件。 微波等离子体金刚石膜系统应由微波功率源,大功率波导元件、微波应用器及传感与控制四部分组成。应用器是针对应用试验的类型而设计,其微波功率密度按需要而设定,并按试验需要兼容各种功能,具有较强的专用性质。微波功率源、大功率波导元件及传感和控制三种类型的部件,是通用的部件,可按需要而选定。反应器必须可以抽成真空;且可置于高压。因此微波传输必须和反应器隔离开来。反应器中可以通入其他气体。下面是一个反应器图。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221201_18795_1613333_3.jpg[/img]半导体生产工艺中已经采用微波等离子体技术,进行刻蚀、溅射、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积、氧化硅片;还可用于金属、合金、非金属的表面处理;用于等离子体光谱分析,可检测十几种元素。 二、微波等离子体源 目前国内微波离子体源的研究工作,大部分在2450MHZ这个频段上进行,部分还可能采用915MHZ频段。这两个频段均采用连续波磁控管,并做成连续波功率微波源。但实际情况均具有较大的波纹因素,说得确切一些是三相全波整流或单相全波整流的波形被磁控管锐化了波纹状态。家用微波炉的电路结构实际上是可控的单相半波倍压整流电路,其波纹因素更大。 这种工作状态受电网波动的影响,平均功率不断变化,具有很大的不稳定性,造成功率密度的不确定。在微波等离子体金刚石膜制作系统要求很严格的情况下,会造成实验结果重复性不满意。因此需要稳定且纹波系数小的微波源是系统成功关键。 另外,近来微波等离子体的研究首先发现这些问题,电源的不稳定性会造成等离子体参数的变化。但用毫秒级的脉冲调制连续波磁控管,在许多实验中取得了良好的实验效果。理论分析调制通断时间的选定可以获得改善效果。 1. 物料介电损耗的正温度系数锐化了不均匀的加热效果,造成局部点的热失控现象。必要的周期停顿,利用热平衡的过程,可以缓解这些不均匀因素,抑制热失控现象的建立。 2. 避免了微波辅助催化反应过程中若干不需要副反应的累积。周期性的停顿可以避免这些副反应累积增强,停顿就是副反应的衰落,再从新开始,这样就避免了副反应的过度增长。 三、微波等离子体的应用 微波等离子体的应用技术主要用来制造特种性能优良的新材料、研制新的化学物质,加工、改造和精制材料及其表面,具有极其广泛的工业应用——从薄膜沉积、等离子体聚合、微电路制造到焊接、工具硬化、超微粉的合成、等离子体喷涂、等离子体冶金、等离子体化工、微波源等。等离子体技术已开辟的和潜在的应用领域包括:半导体集成电路及其他微电子设备的制造;工具、模具及工程金属的硬化;药品的生物相溶性,包装材料的制备;表面上防蚀及其他薄层的沉积;特殊陶瓷(包括超导材料);新的化学物质及材料的制造;金属的提炼;聚合物薄膜的印刷和制备;有害废物的处理;焊接;磁记录材料和光学波导材料;精细加工;照明及显示;电子电路及等离子体二极管开关;等离子体化工(氢等离子体裂解煤制乙炔、等离子体煤气化、等离子体裂解重烃、等离子体制炭黑、等离子体制电石等)。 微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制备纳米催化剂的研究等。 微波等离子体的应用前景广阔。来源于汇研微波

  • 等离子体发射光谱仪分类与“全谱直读”一词

    等离子体发射光谱仪分类与“全谱直读”一词陆文伟上海交通大学分析测试中心, 上海 200030摘 要 本文从仪器结构原理上讨论了当前国内在新型等离子体发射光谱仪分类命名上的问题。指出“全谱直读”一词用于仪器分类的不严谨性。提仪使用固态检测器等离子体发射光谱仪作为分类词。主题词 等离子体发射光谱仪 中阶梯光栅 固态检测器 全谱直读中图分类号:O657131   文献标识码:B   文章编号:100020593 (2002) 0220348202 收稿日期:2000208205 ,修订日期:2000212212 作者简介:陆文伟,1951 年生,上海交通大学分析测试中心高级工程师  早期国外把等离子体发射光谱仪( ICP2OES) 仪器分成同时型(Simultanous) 和顺序型(Sequential) 二类。国内把色散系统区分为多色器(Polychromator) 、单色器(Monochromator) ,仪器则从检测器来区分,命名为多通道型(多道) ,顺序型(单道扫描) 仪器[ 1 ,2 ] 。其仪器的分类命名与仪器功能,仪器结构基本一致,与国外的仪器分类也一致。ICP2OES 仪器在其发展期间,又有N + 1 的单道与多道结合型仪器出现,以及有入射狭逢能沿罗兰圈光学平面移动,完成1~2 nm 内扫描,能获得谱图的多道仪器出现,但总体上仍没动摇仪器的原始分类。1991 年新的中阶梯光栅固态检测器ICP2OES 仪器问世,新的仪器把中阶梯光栅等光学元件形成的二维谱图投影到平面固态检测器的感光点上,使仪器同时具有同时型和顺序型仪器的功能,这样形成了新一类的仪器。从它的信号检出来看,它与同时型仪器很接近,故有的国外文献仍把它简单归为同时型(Simultaneous) 仪器。但更多的是从仪器的硬件结构上出发,采用中阶梯光栅固态检测器等离子体发射光谱仪“Echelle grating solid state detector ICP2OES”的命名。1993 年该类仪器进入中国市场,国内仪器广告上出现“全谱直读”一新名词。随着该类仪器的推广使用,该名词逐渐渗入期刊杂志,教科书,学术界,甚至作为仪器分类词出现在《现代分析仪器分析方法通则及计量检定规程》[ 3 ]中。纵观国外涉及到中阶梯光栅固态检测器等离子体发射光谱仪的期刊杂志,书籍和文献均未使用到该词或与之意思相近的词。甚至各仪器厂家的英文样本中也无该词出现。实际上“全谱直读”是中文广告词,它不严谨,并含糊地影射二方面意思:11 光谱谱线的全部覆盖性和全部可利用性 21 全部谱线的总体信号同时采集读出。从中阶梯光栅固态检测器等离子体发射光谱仪的光谱范围(英文常采用Wavelength coverage range) 来看,一般仪器都在160~800 nm 左右。如有的仪器在167~782 nm ,有的在165~800 nm ,有的在175~900 nm ,有的在165~1 000 nm ,有的是在122~466 nm 基础上另加590 ,670 ,766 nm 的额外单个检测器。有的在超纯Ar 装置下短波段区扩展至134nm ,其长波段区能扩展至1 050 nm。很明显所有此类仪器的光谱范围目前离“全谱”还是有距离的,而且仪器厂家还在扩大其光谱范围。再说此类仪器的“光谱范围”,实际上更确切的意思是指可利用的分析谱线波长跨度范围!实际上中阶梯光栅和棱镜所形成的二维光谱图在目前固态检测器芯片匹配过程中,高级次光谱区可以说是波长连续的,不同级次的光谱波长区甚至重迭。而低级次光谱区级次与级次之间的波长区并不衔接,最大可以有20 nm 以上的间隙,其间隙随着级数增大而变小,严格地说也就是仪器的光谱不连续性存在,尽管对有用谱线影响并不太大。另外中阶梯光栅多色器系统产生的二维谱图闪烁区与检测器芯片匹配的边缘效应,固态检测器的分段或分个处理,都会造成使用全部谱线的困难,甚至发生有用谱线的丢失。大面积的固态检测器芯片可望用于光谱仪,光谱级次间波长区的连续性会进一步改善,其波长区复盖也会增大。但仪器制造成本及芯片因光谱级次间波长过多重叠显得利用效率不高,都会形成其发展的阻力。从仪器可利用谱线上看,目前中阶梯光栅固态检测器等离子体发射光谱仪还只能是多谱线同时分析仪器。当然它可利用的谱线要比以前多道发射光谱仪器的谱线(最多六十多条) 多得多。如目前仪器有6 000 多条的,有2 万7 千条的,有在2 万4 千条的基础上再可由使用者在仪器波长区任意定址添加的等等。但这与“全谱”给人的含糊概念,与数十万以上的全部谱线概念相差甚远。就是从全部可利用谱线讲,该类仪器在定量分析时也不等于纪录全部谱线。有的仪器是在定性分析时能纪录所有覆盖谱线。“全谱直读”一词还常常被沿伸到一次曝光像摄谱仪一样工作。直读一词(Direct reading) 出现在摄谱仪之后、光电倍© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.增管用于发射光谱仪之时。是相对摄片2读片过程变成一步而言。多道发射光谱仪采用该词较多。目前中阶梯光栅固态检测器等离子体发射光谱仪还没有完全达到全部谱线的总体信号同时采集读出的水平。有的仪器分检测器读出,有的仪器分波长区读出,有的仪器分波长区检测器再加几个单个波长检测器读出。固态检测器的曝光与摄片又不同,固态检测器比照相底片更灵活,为了适应样品分析元素高低浓度大小信号的要求,固态检测器灵活处理,有的分区曝光,有的分级扫描曝光,有的级中分二段控制曝光,有的检测器分子阵列(Subarray) 控制曝光,有的从其检测器机理出发分每个感光点(Pixel) 控制曝光。“全谱直读”给人是含糊的印象,不能正确反映仪器的特点。当前新的仪器还在不断涌现,有分级扫描式中阶梯光栅固态检测器等离子体发射光谱仪,有新的多个固态检测器在罗兰圈排列使用的仪器,从检测器硬件结构分类,它们都能方便地归入中阶梯光栅固态检测器等离子体发射光谱仪,或固态检测器等离子体发射光谱仪类别里。而“全谱直读”则明显不能适应。新名词会受到实践和事实的考验。国外文献中名词也有变化的,如电感耦合等离子体原子发射光谱仪的ICP2AES 英文缩写名词,因AES 含义面广,易与俄歇电子光谱[ 4 ]混淆,现在逐渐被ICP2OES 取代。切入实际的名词才会在发展中生存。参考文献 [ 1 ]  化学试剂电感耦合等离子体原子发射光谱方法通则,中华人民共和国国家标准GB10725289. [ 2 ]  发射光谱仪检定规程,中华人民共和国国家计量检定规程J TG768294. [ 3 ]  感耦等离子体原子发射光谱方法通则 感耦等离子体原子发射光谱仪检定规程,1997. (第一版) 科学技术文献出版社,现代分析仪器分析方法通则及计量检定规程. [ 4 ]  英汉仪器仪表词汇,科学出版社,1987 (第一版) .

  • 等离子体 ON 监视

    VARIAN 700系列中,在炬室中安装了一根光导纤维,用来检测等离子体。如果等离子体熄灭,计算机软件中出现 'Plasma has gone out' 提示信息,同时自动关闭RF发生器及气路。有时候软件报错提示等离子体熄灭,可以试着用酒精粘着棉签擦试下光纤,等离子体 ON 监视光纤使用,你都了解吗?

  • 等离子体光谱仪

    等离子体光谱仪原理 当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。等离子体光谱仪特点(1) 测定每个元素可同时选用多条谱线;(2) 可在一分钟内完成70个元素的定量测定;(3) 可在一分钟内完成对未知样品中多达70多元素的定性;(4) 1mL的样品可检测所有可分析元素;(5) 扣除基体光谱干扰;(6) 全自动操作;(7) 分析精度:CV 0.5%。等离子体光谱仪应用 等离子体光谱仪的研究领域是生命科学。 等离子体光谱仪的主要用途:用于环保、地质、化工、生物、医药、食品、冶金、农业等方面样品的定性、定量分析。 等离子体光谱仪能够自动等离子激发和待机运行模式,可以节省能耗和氩气耗量。能够适应样品种类的连续变换,同时可确保对多种样品甚至快速更换样品时始终具有稳定、有效的等离子体能量。

  • 电感耦合等离子体质谱仪ICP-MS 2000

    电感耦合等离子体质谱仪 (简称ICP-MS),是20世纪80年代发展起来的一种新的微量(10-6)、痕量(10-9)和超痕量(10-12)元素分析技术。可测定元素周期表中大部分元素,极低的检出限、极宽的动态线性范围、谱线简单、干扰少、精密度高、分析速度快、可提供同位素分析。性能优势1、分析速度快、操作简单、灵敏度高、背景噪音低、消除干扰效果更佳、维护方便。 2、一键式等离子体设置使得等离子体的优化更为简便具有极好的重现性。 3、先进等离子体屏蔽技术,极大地提高仪器的灵敏度,改善低质量数元素的检出限,达到ppt水平。 4、具有独特的活动接口门结构,可在真空下替换和装卸采样锥与截取锥,便于日常维护。 5、全新六级杆碰撞反应池,提高离子传输效率和消除多原子离子干扰能力。 6、无需数/模切换,由计算机全自动设定和控制,实现9个数量级的浓度动态范围。7、新型真空腔体结构,无任何导线连接,各个组件采用不对称安装和插入式安装。软件优势ICP-MS2000提供最便捷的操作软件,非常直观,全面。软件囊括了目前所有分析方法,包括特殊的同位素比值和同位素稀释法。 智能选择方法、智能仪器调谐、QC质量控制、多种分析方法组合功能、序列分析、自动监测功能、自定义报告格式。仪器配置进样系统:敞开式进样系统结构,使用外部安装的雾化器,自我定位,无需调整。 蠕动泵:计算机控制3通道12滚轴低脉冲蠕动进样泵,转速可调。 雾化器:石英玻璃同心雾化器(0.8 mL/min)。 雾化室:小体积,低记忆效应,采用半导体制冷装置高纯石英雾化室,单通道梨型带撞击球。 炬管:整体型石英炬管,1.5 mm口径喷射。 ICP源:27.12 MHz固态技术,水冷,最大功率1600 W。计算机控制功率,自动点火与熄火。 炬位调整系统:计算机全面控制x、y、z三维炬管精确位置,所有调整参数存入分析方法内。 气体控制系统:3个计算机控制的质量流量计,用于雾化气,辅助气,等离子体气的全部气流量控制。 断电保护系统:在意外停电发生时,安全自行关机,而不损坏仪器系统。 接口:镍锥,具有独特的活动接口门结构,易于替换和装卸采样锥与截取锥。 活动阀门:计算机控制阀门,保护仪器真空,便于在真空系统工作时拆装和清洗采样锥和截取锥。 离子透镜系统:配有高效率六极杆离子导向系统,在全质量范围内获得最佳的离子传输效率,全自动的离子聚焦调谐过程,真空室内的透镜使用非对称安装,方便拆装定位。 四极杆特征:钼四极杆,主极杆180 mm×12 mm,预四级杆20 mm×12 mm,开盖即可安装,拆装。 四极杆RF发生器:风冷2.0 MHz,质量轴稳定性108多通道信号分析器:65000道多通道信号分析器,适应瞬间信号分析要求。 信号采集模式:跳峰,扫描,分段扫描,同时跳峰和扫描混合型。 软件:提供自动控制仪器及其附件的能力,Windows 2000/XP/vista/win7(32位或64位)专业操作系统。 水循环系统:温度控制:10~40℃;最小流速:5升/分钟,压力控制:0~600 kPa。技术参数质量数量范围:2~255 amu测量范围:≥108 灵敏度: Be≥2×106 ; In≥35×106 ; U≥30×106 单位(cps/mg/L) 检出限: Be≤10;In ≤2;U≤2 单位(ng/L) 分辨率:0.6~0.8 amu信噪比:≥50×106 背景噪音:≤2 cps(全质量范围) 质量轴稳定性:≤0.05 amu/24 h稳定性RSD: 短期≤3%;长期≤4%氧化物离子:CeO+/Ce+≤3%双价离子:69Ba2+/138Ba+ ≤3% 同位素比:(107Ag/109Ag)≤0.3%丰度灵敏度:≤1×10-6低质量端;≤5×10-7高质量端应用领域1、环境领域:饮用水、海水、环境水资源食品、卫生防疫、商检等。 2、半导体领域:高纯金属,高纯试剂,Si 晶片的超痕量杂质,光刻胶等。 3、医药及生理分析领域:头发、全血、血清、尿样、生物组织等医药研究,特别是全血铅的测定。 4、核工业领域:核燃料的放射性同位素的分析,初级冷却水的污染分析等。5、其他领域:如化工,石化、地质等。

  • 等离子体废气处理设备的放电等离子体处理

    目前,我国对废气处理的重视程度越来越高,越来越多的企业投资于等离子废气处理设备。   等离子废气处理设备工业尾气的放电等离子体处理因其自身的特点受到企业的青睐。   下面介绍了一种等离子体废气处理设备的放电等离子体处理方法。   等离子废气处理设备   等离子废气处理设备的放电等离子体处理方法是通过高压放电获得非热平衡等离子体;   产生大量的由电子产生的O、OH、N基活性粒子,破坏C-H、C-C等化学键,引起置换反应。   尾气分子中H、Cl、F等的作用,然后产生CO_2和H_2,即工业废气经排放处理以后不再对人的健康有害。   等离子废气处理设备是目前处理有害气体的有效方法之一。   世界对协同催化剂和反应器进行了大量的研究工作。   在等离子体中添加催化剂,可以提高污染物的去除效率,大大降低能耗和副产物。   世界上对这种协同催化剂的研究主要集中在金属氧化物和二氧化钛催化体系。   利用等离子体和催化反应的协同作用,提高有机废气的净化率,使能耗降低是成功的。

  • 【分享】表面等离子体激元学

    众所周知,电子回路提供了控制电子输运和储存能力。但是,现在利用电路进行数字信息保真传送时,面临着相当大的限制,而光子学 (Photonics)给出了一个解决难题的有效途径,构筑基于光纤和光子回路的光通信系统,便是一个很好的方案。不幸的是,光子元件的尺寸是微米量级,而电子元件和回路尺寸要小的多(纳米量级),因此,不可能将它们二者集成一体于纳米尺度的芯片中。表面等离子体激元学(plasmonics)的诞生,使基于表面等离子体激元 (Surface Plasmon Polarifons,,SPPs)的元件和回路,具有纳米尺度,从而可能实现光子与电子元器件,在纳米尺度上完美的联姻。本文简单介绍表面等离子体激元学的原理,目前现状,各种应用,例如等离子体激元芯片,新新型光源,纳米尺度光刻蚀术,突破衍射极限的高分辨率成像等,以及面临的挑战和未来前景.

  • 石英管式微波等离子体发生装置制备金刚石薄膜

    富阳精密仪器厂电话:0571-63253615 传真:0571-63259015地址:浙江富阳新登南四葛溪南路26号 邮编:311404联系人:温先生电话:13968165189Email:manbbb@sina.com网址:www.jingmiyiqi.net 石英管式微波等离子体装置是我厂专门为大学和研究机构设计的小型化产品,可用于薄膜材料的制备和等离子体物理等方面的研究工作,并且特别适宜于大中专学校的材料、化学工程与工艺、物理等专业的学生实验。该装置利用微波能激励稀薄气体放电在石英管中产生稳态等离子体,通过通入不同的工作气体,可进行功能薄膜材料的制备、化学合成、表面刻蚀、等离子体诊断等多方面的实验。1 主要配置 1. 2.45GHz,0~500W微波功率连续可调,可满足不同实验的要求; 2. ф50mm的石英管真空室,带有一个观察窗和一个诊断窗口,保证各种实验方便进行; 3. 石英管采用水冷却,可保证装置在高功率条件下安全运行; 4. 配置了3路气体管路,气体流量控制方便; 真空测量系统及控制阀门可保证真空室所需的真空环境。2 典型实验 1. 等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积 A(气)+B(气)→ C(固)+D(气) 反应气体A、B被激发为等离子体状态, 其活性基团发生反应生成所需要的固态物沉积在基片上,可广泛用于薄膜或纳米材料的合成。如金刚石薄膜氮化碳薄膜、碳纳米材料等。 2. 等离子体表面刻蚀 A(气)+B(固)→ C(气) 反应气体A 被激发为等离子体状态与固体B表面原子发生反应生成气态物C,可用于集成电路的刻蚀实验。 3. 等离子体催化反应 利用等离子体中丰富的活性成分,如紫外和可见光子、电子、离子、自由基;高反应性的中性成分,如活性原子,受激原子态,从而引发在常规化学反应中不能或很难实现的化学反应。 4. 等离子体表面改性 A(气)+B(固)→ C(固) 反应气体A 被激发为等离子体状态与固体B表面发生反应生成新的化合物从而达到改变B物质表面性质的目的。可广泛用于高分子材料、金属材料及生物医用材料的表面改性实验。[em28] [em28] [em28] [em28]

  • Inductively Coupled Plasma 感应耦合等离子体

    电感耦合等离子体质谱仪 (简称ICP-MS),是20世纪80年代发展起来的一种新的微量(10-6)、痕量(10-9)和超痕量(10-12)元素分析技术。可测定元素周期表中大部分元素,极低的检出限、极宽的动态线性范围、谱线简单、干扰少、精密度高、分析速度快、可提供同位素分析。性能优势1、分析速度快、操作简单、灵敏度高、背景噪音低、消除干扰效果更佳、维护方便。2、一键式等离子体设置使得等离子体的优化更为简便具有极好的重现性。3、先进等离子体屏蔽技术,极大地提高仪器的灵敏度,改善低质量数元素的检出限,达到ppt水平。4、具有独特的活动接口门结构,可在真空下替换和装卸采样锥与截取锥,便于日常维护。5、全新六级杆碰撞反应池,提高离子传输效率和消除多原子离子干扰能力。6、无需数/模切换,由计算机全自动设定和控制,实现9个数量级的浓度动态范围。7、新型真空腔体结构,无任何导线连接,各个组件采用不对称安装和插入式安装

  • 土壤 全硼 碱溶 电感耦合等离子体发射光谱法 质控偏高

    土壤 全硼 碱溶 电感耦合等离子体发射光谱法 质控偏高。0.25g样品加入2g无水碳酸钠,高温溶解后,用热水溶解,再加入10mL 2moL/L的硫酸溶液。用水定容至100mL。测得的质控样品都偏高。碱溶空白在0.007-0.010之间,是哪里 出了问题,有没有那位老师分享一下经验。

  • 【参数解读】解读电感耦合等离子体发射光谱仪及检出限分享(ICP)(7月)

    【参数解读】解读电感耦合等离子体发射光谱仪及检出限分享(ICP)(7月)

    电感耦合等离子体发射光谱仪(ICP)参数解读及检出限分享============================================================================http://ng1.17img.cn/bbsfiles/images/2012/07/201207041559_375731_2000796_3.jpg研究领域:分析化学 主要用途: 可用于地质、环保、化工、生物、医药、食品、冶金、农业等方面样品中元素的定性、定量分析。 工作原理 感耦等离子体原子发射光谱分析是以射频发生器提供的高频能量加到感应耦合线圈上,并将等离子炬管置于该线圈中心,因而在炬管中产生高频电磁场,用微电火花引燃,使通入炬管中的氩气电离,产生电子和离子而导电,导电的气体受高频电磁场作用,形成与耦合线圈同心的涡流区,强大的电流产生的高热,从而形成火炬形状的并可以自持的等离子体,由于高频电流的趋肤效应及内管载气的作用,使等离子体呈环状结构。 样品由载气(氩)带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。工作模式:通过一次测定,同时记录样品中待测元素的所有发射谱线,不管这些谱线是在紫外区,还是在可见区,也不论这些待测元素是高浓度或是低浓度,多能同时完成测定。ICP炬形成过程1)Tesla线圈—高频交变电流—交变感应磁场;2)火花—氩气—气体电离—少量电荷—互相碰撞—雪崩现象—大量载流子;3)数百安极高感应电流(涡电流,Eddy current) —瞬间加热—到10000K—等离子体—内管通入氩气形成环状结构样品通道—样品蒸发、原子化、激发。ICP光源特点1)低检测限:蒸发和激发温度高;2)稳定,精度高:高频电流—趋肤效应(skin effect) —涡流表面电流密度大—环壮结构—样品导入通道—不受样品引入影响—高稳定性3)基体效应小(matrix effect):样品处于化学惰性环境的高温分析区—待测物难生成氧化物—停留时间长(ms级)、化学干扰小,样品处于中心通道,其加热是间接的—样品性质(基体性质,如:样品组成、溶液粘度、样品分散度等)对ICP影响小。4)背景小:通过选择分析高度,避开涡流区。5)自吸效应小:样品不扩散到ICP周围的冷气层,只处于中心通道,即是处于非局部力学系统平衡;6)分析线性范围宽:ICP在分析区温度均匀,自吸收、自蚀效应小7)众多元素同时测定:激发温度高(70多种)不足:对非金属测定的灵敏度低,仪器贵,维护费用高。===========分==============割==============线================== 分析技术比较http://ng1.17img.cn/bbsfiles/images/2012/07/201207051253_375984_2000796_3.jpg主要特点 1.同时读出、无任何谱线缺失的全谱直读等离子体发射光谱仪,快速、线性范围宽所以,可以通过选择合适的谱线,有效避免光谱干扰;2.无任何可移动部件,长期稳定性极好;3. CCD检测器,灵敏度高且防电子溢流;4、同一元素,具有很多分析谱线,不同元素具有不同的灵敏度,高灵敏度谱线检测低含量的样品,低灵敏度谱线检测高浓度样品,所以有效地拓宽了分析的浓度范围;5、分析速度极快;6、同时记录样品的背景信号,有效扣除背景影响,大大改善分析精度。7.高效稳定 可以连续快速多元素测定 精确度高。8.中心气化温度高达10000K可以使样品充分气化 有很高的准确度。9.工作曲线具有很好的线性关系 并且线性范围广。10.与计算机软件结合全谱直读结果,方便快捷。===========分==============割==============线================== 技术参数进样系统: 1、雾化器、标准—石英同心雾化器、雾室、标准—石英旋流雾室、炬管、可拆卸,低气流,低功率石英炬管、蠕动泵。2、计算机控制,双道12滚柱,精确控制流速,保证测定精度。 3、氩气: 计算机控制流速,采用质量流速控制,可准确到0.001L/min。使得日常分析可获得优于0.5%的精度。4、等离子体气:0~16L/min 辅助气:0~2L/min 雾化气:0~2L/min5、波长范围:175-785nm波长连续覆盖,完全无断点 6、焦距焦距 0.0004(mm),中阶梯光栅刻线97.4线/mm 7、信号稳定性:≤1.0%RSD(4小时) 8、RF发生器频率:40.68MHz 9、等离子体输出功率700~1700瓦 10、等离子体冷却气0~22.5L/min可调 11、检出限:多数元素能达到0.00xppm级===========分==============割==============线==================以下为自己做出来的检出限,仅供参考。。。。。http://ng1.17img.cn/bbsfiles/images/2012/07/201207091121_376622_2000796_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/07/201207091121_376623_2000796_3.jpg

  • 点火测量后的等离子体火焰问题

    等离子体点然后,稳定一段时间,开始检测,检测的时候发现有时候等离子体火焰颜色发白光,有时候是红光,不知道具体影响如何?

  • 【资料】-用于气相色谱的微波等离子体原子发射光谱检测器的发展

    [size=4][B]用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展[/B][/size][I]袁懋,师宇华[/I]摘要:分别介绍和评价了用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展作了展望。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];微波等离子体;原子发射光谱;检测器自[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法(GC)问世以来,色谱分离分析方法得到了迅速发展,已成为生命科学、石油化工、环境科学等学科必不可少的检测手段和工具。色谱法的发展在很大程度上取决于检测器的发展,每种新型检测器的提出和完善都在一定程度上提高了色谱仪器的性能,促进了色谱法更加广泛和深入的应用。如果没有合乎需要的检测器的诞生,再好的色谱分离方法也难满足社会的需求。迄今为止,已报道过的色谱检测器有100种之多。色谱分析的实践对检测器提出了更高的要求,理想的色谱检测器应具备的特点是灵敏度高、精密度好、线性范围宽、通用性或选择性强、具有形态分析的能力、操作特性优良等。传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已不能满足上述要求。近30年来,由于新型光源和电子技术的发展,等离子体光源部分代替了电弧、火花和火焰等传统光源的主导地位, 为原子发射光谱分析增添了新的活力,且在作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器方面越来越显示出它的优越性。[B]1 概述[/B][I]1. 1 等离子体和微波等离子体[/I]  在物理学上,“等离子体”是指由大量自由电子和离子组成且在整体上表现出近似为电中性的电离气体;在光谱学上,“等离子体”指的是用电学方法获得的类似于火焰的发光气体。因此,微波等离子体(MWP)包括微波诱导等离子体(MIP)、电容耦合微波等离子体(CMP)和微波等离子体炬(MPT) 。[I]1. 2 微波等离子体原子发射光谱检测器的特性[/I]  微波等离子体原子发射光谱检测器(MWP-AED)的检测原理是将微波等离子体作为激发光源,样品进入检测器(激发光源)后被原子化,然后被激发至高能态,再跃迁回到低能态,发射出原子光谱。根据这些发射光谱线的波长和强度即可对待测物进行定性和定量分析。原子发射光谱检测器有许多独特的性能和应用。选用某一特定波长通道时,它只对某一特定元素有响应,此时的检测器为选择性检测器, 并且其选择性比其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如电子俘获检测器(ECD)、火焰光度检测器(FPD)等)更好;如果选择碳或氢的波长作为通道,它就会对一系列含有这两种元素的化合物有响应而成为通用性检测器, 且对某些化合物的灵敏度高于火焰离子化检测器(FID )。  AED 对元素周期表中除了He以外的任何一种元素均可检测,属多元素检测器,并可用于测定未知化合物的经验式和分子式。对未知化合物的鉴定,AED是质谱(MS)、傅里叶变换红外光谱(FT-IR)的有力补充手段。20世纪60年代以来,随着环境科学、生物化学、农业科学、无机和有机化学等领域的发展,越来越多的检测要求得到样品中每个组分每个元素的信息。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有极强的分离能力,恰能满足单组分信息测定的要求。近年来AED与GC联用的应用领域更是不断扩大,成为一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。[B]2 微波诱导等离子体2原子发射光谱检测器的发展[/B]  由于MIP系统简单,操作方便,又是灵敏特效的元素选择性检测器,因而最受欢迎。微波耦合给等离子体工作气体的常用器件是微波谐振腔。它是一种空心的金属容器, 其形状和大小正好使微波可在其中形成一个电磁驻波。等离子体工作气体一般以连续流动方式通过谐振腔,并在谐振腔轴向插入的石英管中形成等离子体。用来获得MIP 的耦合器件的种类很多,常见的有TM010、3/4λ谐振腔和同轴表面波激励器件Surfatron等。[color=#DC143C]全文附件在5楼[/color]

  • 【讨论】等离子体应用相关仪器

    这些是不是算作等离子体还请高手指正!1、等离子体清洗机/刻蚀/灰化/减薄 通过等离子体与固体表面的相互作用,消除固体表面的有机污染物,或者与样品表面的材料反应生成相应的气体,由真空系统排出反应腔,整个过程在样品表面不产生残留物,固体如: 金属、陶瓷、玻璃、硅片等等,同时可以用等离子处理系统对样品表面进行 处理,改善样品表面的特性,如亲水/疏水特性,表面自由能,以及表面的 吸附/粘附特性等等。 2、离子溅射:氩气充入已被低真空泵抽真空的样品室里。多次充入氩气,使不需要的气体排出,特别是水蒸汽。这样,样品室内充满了尽可能多的纯的氩气。然后调节样品室内工作压力为0.05-0.1mbar,这样就可以开始溅射了。 开始溅射时,在靶(阴极)加上高压,在靶和样品台(阳极)之间产生了一个高压区。空间内的自由电子在磁场作用下进入旋转轨道,与空间内的氩原子碰撞。每次碰撞把氩原子外层中的一个电子撞出,使中性的氩原子带正电。这个雪崩效应激发了辉光放电。 带正电的氩离子被阴极吸引撞向阴极靶,撞出阴极靶上的金属原子。释放的金属原子之间以及金属原子与真空室内的其它气体分子之间的碰撞使金属原子四处发散,形成雾状。这样金属原子从各个方向撞击样品表面然后均匀地凝聚在样品表面,在即使是非常多裂缝的样品表面也能覆盖一层均匀的、有足够导电性的金属薄膜。 由于金和银原子表面的高度扩散性,它们容易在样品表面形成岛状,这样,除非金属镀层有10nm厚,否则达不到所需导电性。白金能产生最细腻的镀层。 溅射镀层的细腻程度取决于靶材、工作距离、气体压力和溅射电流以及反应持续时间3、磁控溅射:电子枪发射的电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。4、等离子切割机:等离子切割是利用高温等离子电弧的热量使工件切口处的金属  等离子切割机标准图片部份局熔化(和蒸发),并借高速等离子的动量排除熔融金属以形成切口的一种加工方法。等离子切割机配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区。

  • PE的新产品——Avio 200 电感耦合等离子体发射光谱仪 有使用过的吗?

    上市时间:2016年7月市场上最小巧的 ICP 所有ICP中最低的氩气消耗 最快的ICP启动(从关机状态启动,光谱仪在短短几分钟内即可准备就绪) 对所有适用的元素都具有出色的灵敏度与分辨率 具有双向观测技术的最宽线性范围Avio™ 200 系统能处理难度最高的、未经稀释的高基体样品,为ICP 带来全新的性能及灵活性。而且,前所未有的性能还带来了无可比拟的易用性。独特的硬件特性与业界最直观易用的软件相结合,使多元素测量变得与单元素分析一样简单。作为市场上最小巧的 ICP,Avio 200 可通过以下性能,提供最高效的操作、最可靠的数据和最低的拥有成本:所有 ICP 中最低的氩气消耗最快的 ICP 启动(从关机状态启动,光谱仪在短短几分钟内即可准备就绪)对所有适用的元素都具有出色的灵敏度与分辨率具有双向观测技术的最宽线性范围性能可靠、功能强大、经济实惠、Avio 200 具备您所寻求的 ICP所具有的一切。既然可以成为开拓者,谁还愿意当操作者?Avio 200 ICP 专为满足最具挑战性的客户需求并超越此类需求而设计,凭借一系列专有独特的功能,可帮助您运行多个样品,所取得的成本效益远超以往任何时候。最低的运行成本借助获得专利的 Flat Plate™ (平板) 等离子体技术,Avio 仅需消耗其他系统一半的氩气量,即可生成强健、耐基体的等离子体,同时赋予您:所有 ICP 中最低的操作成本无需再进行与传统螺旋负载线圈有关的冷却和维护,提供出色的运行时间和生产力另外,为了提高效率,珀金埃尔默仪器具有获得专利的动态波长,稳定功能。可令您从关机状态启动,在短短几分钟内即可进行分析,因而您大可在仪器不使用时随意关掉。强大的双向观测功能与提供轴向和径向观测而牺牲性能的同步垂直双向观测 ICP 系统不同,Avio 200 系统获得专利的双向观测功能,可测量所有波长,不会造成光或灵敏度的损失。即使是波长大于 500 纳米或低于 200 纳米的元素也完全可以测量,即便是在 ppb 的含量水平。该 Avio 系统独特的双向观测设计也提供了可扩展的线性动态范围,确保实现:样品制备和稀释最小化高、低浓度可以在同一运行中进行测量更好的质量控制和更准确的结果减少重复运行集成等离子体观测相机可简化您的开发方法,同时借助 Avio 200 系统的 PlasmaCam™技术,尽享远程监控等离子体的便利。作为行业首创,彩色相机可帮助您:实时观测等离子体执行远程诊断查看进样部件革新性 PlasmaShear 系统,可实现无氩干扰消除为了消除轴向观测的干扰,需要消除等离子体的冷尾焰。没有其他同类仪器能比 Avio 200 更有效、更可靠或更经济。其他 ICP 消除尾焰需要消耗高达 4 升/分钟的氩气流量,Avio系统独特的 PlasmaShear™ 技术只需空气即可。无需高维护、高提取系统或锥体。就是一个完全集成的、完全自动化的、能提供无故障轴向分析的干扰消除系统。CCD 检测器,可实现无与伦比的准确度和精密度借助全波长功能,Avio 200 系统的强大电荷耦合器件(CCD)检测器能不断提供正确的答案。Avio 系统的 CCD 检测器可同时测量所选谱线及其谱线附近波长范围,实时扣背景,实现出色的检测精密度。在分析过程中,它还可以同时执行背景校正测量,进一步提高准确度和灵敏度。带有快速转换炬管底座的垂直等离子体,可实现无与伦比的基体灵活性即使 ICP 正在运行,Avio 200 系统的垂直炬管无需工具也能进行简便快捷的调节,可提供更大的样品灵活性并简化维护。炬管底座的设计与众不同,具有以下特点:一个可拆卸的、独立于炬管的中心管,旨在减少维护和破损的可能性自动自对准,即使在拆卸后也能提供一致的深度设置兼容各种雾化器和雾室,可提高灵活性友情提示:根据型号及配置不同,仪器价格会有不同,欲了解详情请与我司联系。

  • IRIS等离子体光谱仪操作指南之一:日常工作检查表

    序 言IRIS系列光谱仪是电感耦合氩等离子体发射光谱仪(ICAP-AES)一族。它采用中阶梯光栅光学系统和独特的(CID)固体检测器来提供完整的和全波长复盖的分析谱图。典型的发射光谱仪(AES)能够分析从几个ppb到百分之几乃至百分之几十的样品浓度。IRIS ICAP光谱仪可分为以下几种:.IRIS- 采用垂直观测,一般用于分析基体较复杂的样品,干扰较小。.IRIS AP- 采用水平观测,能够改善仪器的检出限,一般用于分析基体简单的样品,对于基体复杂的样品干扰较大。.IRIS Duo- 采用双向观测,实际上以水平观测为基础,利用辅助光学系统进行垂直观测,可弥补水平观测的易电离干扰,拓宽分析线性范围。.IRIS Ad- 高分辨率IRIS,其波长范围减小,换之以高分辨率,是标准仪器的两倍。在此型号中所有的观测方式都可选择使用。日常工作检查表 此方法开始于光谱仪停机状态。.证实有足够的氩气用于连续工作。.证实废液收集瓶有足够的空间来容纳分析时产生的废液。若循环水和CID冷却系统没有单独的开关。.打开氩气,检查吹扫气体系统工作是否正常。.15分钟后,打开主电源开关,光学恒温系统(FPA)开始升温,大约几小时后,达到恒温状态。若循环水和CID冷却系统具有单独的开关,并确保开关是闭合的。.打开主电源开关,光学恒温系统(FPA)开始升温,大约几小时后,达到恒温状态。.打开氩气,检查吹扫气体系统工作是否正常。.15分钟后,打开循环水和CID冷却系统开关。这样可以节省氩气的消耗。(对于半导体制冷来说,CID几分钟即可达到所需温度,对于冰箱制冷来说,所需时间可能会达15-30分钟。).将作用于蠕动泵管上的塑料夹压紧,并将样品管放入去离子水中。.在ICP控制面板上,为光谱仪作硬复位(Hard Reset),检查CID和FPA的温度是否工作正常。通常,CID的温度为-40℃左右, FPA的温度为30℃左右..点燃等离子体。.让光谱仪预热15分钟,即可进行分析工作。.当所有的分析工作结束后,用去离子水清洗进样系统至少3分钟。.熄灭等离子体。.松开作用于蠕动泵管上的塑料夹。若循环水和CID冷却系统具有单独的开关。.关闭循环水和CID冷却系统。.只有CID温度达到+15℃或更高温度时,才可以关闭氩气。若循环水和CID冷却系统没有单独的开关。.关闭光谱仪的主电源,待60分钟后,才可以关闭氩气。 警 告若在CID检测器处于冷却状态时,关闭或没有打开吹扫气体,可能会使CID检测器结霜,对其造成不可挽回的损坏。 -----------------转载自 热电工程师带的ICP教程

  • ICP等离子体光谱仪的使用和维护

    1、仪器一定要有良好的使用环境  等离子体光谱与其它大型精密仪器一样,需要在一定的环境下运行,失去这些条件,不仅仪器的使用效果不好,而且改变仪器的检测性能,甚至造成损坏,缩短寿命。根据光学仪器的特点,对环境温度和湿度有一定要求。如果温度变化太大,光学元件受温度变化的影响就会产生谱线漂移,造成测定数据不稳定,一般室温要求维持在20~25 摄氏度间的一个固定温度,温度变化应小于±1摄氏度。而环境湿度过大,光学元件,特别是光栅容易受潮损坏或性能降低。电子系统,尤其是印刷电路板及高压电源上的元件容易受潮烧坏。湿度对高频发生器的影响也十分重要,湿度过大,轻则等离子体不容易点燃,重则高压电源及高压电路放电击毁元件,如功率管隔直陶瓷电容击穿,输出电路阻抗匹配、网络中的可变电容放电等,以至损坏高频发生器。一般室内湿度应小于百分之70,最好控制在百分之45~60之间,应有空气净化装置。过去由于基建施工,我们的环境条件很差,甚至仪器室多次被水淹,受潮及室温变化过大,仪器不是定位困难就是经常发生故障。搬到新的仪器室后条件改善了,仪器运行就正常多了。  2、仪器的供电线路要符合仪器的要求  为了保证ICP等离子体光谱仪的安全运行,供电线路必须要有足够大的容量,否则仪器运行时线路的电压降过大,影响仪器寿命。作为一台精密测量仪器,它还需要有相对稳定的电源,供电电压的变化一般不超过+百分之5,如超过这个范围,需要使用自动调压器或磁饱和稳压器,不能使用电子稳压器,由于电子稳压器在电压高时产生削波,造成电脉冲,影响电子计算机、微处理器及相敏放大器的工作,引起误动作。连续正弦波电源才能保证这些电子电路的正常工作,仪器供电线路最好单独从供电变压器的配电盘上得到,尽量不与大电机,大的通风机,空调机,马弗炉等大的用电设备共用一条供电线路,以免在这些用电设备起动时,供电线路的电压大幅度的波动,造成仪器工作不稳定。允许电流大于30安培的仪器要单独接地。一般光谱仪地线电阻要小于5欧姆,计算机地线电阻要小于0.25欧姆(ASTM)标准,以防相互干扰。  在仪器的使用中,应经常注意电源的变化,不能长期在过压或欠压下工作,根据资料介绍,当仪器在过压下工作会造成高颇发生器功率大管灯丝过度的蒸发和老化,电子管的寿命将会大大的缩短(是正常寿命的五分之~一六分之一)。如果在欠压下工作,电子管灯丝温度过低,电子发射不好,也容易造成电子发射材料过早老化,同样也缩短电子管的寿命;仪器运行中供电电压的较大波动同样也会造成高频发生器输出功率的不稳定,对测定结果的好坏影响极大,因此,应当注意供电电源的质量。  3、防尘  国内一般实验室都不具备防尘、过滤尘埃的设施,当实验室内需要采用排风机,排除仪器的热量及工作时产生的有毒气体时,实验室与外部就形成压力差,实验室产生负压,室外含有大量灰尘的空气从门窗的缝隙中流入室内,大量积聚在仪器的各个部位上,容易造成高压元件或接头打火,电路板及接线、插座等短路、漏电等各种各样的故障,因此,需要经常进行除尘。特别是计算机、电子控制电路、高频发生器、显示器、打印机、磁盘驱动器等,定期拆卸或打开,用小毛刷清扫,并同时使用吸尘器将各个部分的积尘吸除。对光电倍增管负高压电源线、及计算机显示器的高压线及接头,还要用纱布沾上少许无水酒精小心的抹除积炭和灰尘。磁盘驱动器及打印机清出灰尘之后,要在机械活动部件滴加少许仪表油。打印机的打印头还要拆下,用软毛刷刷扫,并用绒布抹净,防止针孔被纸屑堵塞,然后按照说明书调整一定的打印压力。对于仪器除尘,一般由电子,仪修或计算机的专业人员帮助,仪器使用或管理人员如不懂电子知识,不了解仪器结构,不要轻易去动,以免发生意外,除尘应事先停机并关掉供电电源下进行。  4、对气体控制系统的维护保养  ICP的气体控制系统是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。首先要做气体试验,打开气体控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。第二,由于氩气中常夹杂有水分和其它杂质,管道和接头中也会有一些机械碎屑脱落,造成气路不畅通。因此,需要定期进行清理,拔下某些区段管道,然后打开气瓶,短促地放一段时间的气体,将管道中的水珠,尘粒等吹出。在安装气体管道,特别是将载气管路接在雾化器上时,要注意不要让管子弯曲太厉害,否则载气流量不稳而造成脉动,影响测定。  5、对进样系统及炬管的维护  雾化器是进样系统中最精密,最关键的部份,需要很好的维护和使用。要定期的清理,特别是测定高盐溶液之后,雾化器的顶部,炬管喷嘴会积有盐份,造成气溶胶通道不畅,常常反映出来的是测定强度下降,仪器反射功率升高等。炬管上积尘或积炭都会影响点燃等离子体焰炬和保持稳定,也影响反射功率,因此,要定期用酸洗,水洗,最后,用无水乙醇洗并吹干,经常保持进样系统及炬管的清洁。  6、使用中尽量减少开停机的次数  开机测定前,必须做好安排,事先标好各项准备工作,切忌在同一段时间里开开停停,仪器频繁开启容易造成损坏,这是因为仪器在每次开启的时候,瞬时电流大大高于运行正常时的电流,瞬时的脉冲冲击,容易造成功率管灯丝断丝,碰极短路及过早老化等,因此使用中需要倍加注意,一旦开机就一气呵成,把要做的事做完,不要中途关停机.

  • 高温等离子体和低温等离子体

    等离子体可以按温度分为高温等离子体和低温等离子体两大类。当温度高达10[sup]6[/sup]-10[sup]8[/sup]K时,所有气体的原子和分子完全离解和电离,称为高温等离子体;当温度低于10[sup]5[/sup]K时,气体部分电离,称为低温等离子体。在实际应用中又把低温等离子体分为热等离子体和冷等离子体。当气体压力在1.013X10[sup]5[/sup]帕(相当1大气压)左右,粒子密度较大,电子浓度高,平均自由程小,电子和重粒子之间碰撞频繁,电子从电场获得动能很快传递给重粒子,这样各种粒子(电子、正离子、原子、分子)的热运动能趋于相近,整个气体接进或达到热力学平衡状态,此时气体温度和电子温度基本相等,温度约为数千度到数万度,这种等离子体称为热等离子体。例如直流等离子体喷焰(DCP)和电感耦合等离子体炬(ICP)等都是热等离子体,如果放电气体压力较低,电子浓度较小,则电子和重粒子碰撞机会就少,电子从电场获得的动能不易与重粒子产生交换,它们之间动能相差较大电子平均动能可达几十电子伏,而气体温度较低,这样的等离子体处于非热力学平衡体系,叫做冷等离子体,例如格里姆辉光放电、空心阴极灯放电等。

  • 食品检测机构采购仪器,电感耦合等离子体质谱仪与电感耦合等离子体发射光谱仪都需要购买吗

    单位要变成食品检测机构 需要采购一批食品检测仪器 上面提供了需要购买设备的参考配置表,其中电感耦合等离子体质谱仪和电感耦合等离子体发射光谱仪都列出来了 我们从来没用过这种机器 想问一下 这两种都需要购买吗 还是只需要购买其中一个就行 具体有什么区别 还有如果采购气质的话 需要采购什么样的气质 离子阱检测器还是四级杆 气质是不是一般只有单四级杆 我们有台三重四级杆的液质 不知道够不够用 如果买TOF的话 用的多不多会不会买来就闲置了

  • 等离子体抖动

    仪器开机点火,观察等离子体,发现等离子体抖动的厉害,通过检查泵管,清洗雾化器和雾化室等,最后恢复了正常。版友们在测样过程中有遇到等离子体抖动的情况吗?怎么处理的呢?欢迎分享!

  • ICP-电感耦合等离子体发射光谱仪的使用和维护

    1、ICP-电感耦合等离子体发射光谱仪器一定要有良好的使用环境等离子体光谱与其它大型精密仪器一样,需要在一定的环境下运行,失去这些条件,不仅仪器的使用效果不好,而且改变仪器的检测性能,甚至造成损坏,缩短寿命。根据光学仪器的特点,对环境温度和湿度有一定要求。如果温度变化太大,光学元件受温度变化的影响就会产生谱线漂移,造成测定数据不稳定,一般室温要求维持在70~75摄氏度间的一个固定温度,温度变化应小于±1摄氏度。而环境湿度过大,光学元件,特别是光栅容易受潮损坏或性能降低。电子系统,尤其是印刷电路板及高压电源上的元件容易受潮烧坏。湿度对高频发生器的影响也十分重要,湿度过大,轻则等离子体不容易点燃,重则高压电源及高压电路放电击毁元件,如功率管隔直陶瓷电容击穿,输出电路阻抗匹配、网络中的可变电容放电等,以至损坏高频发生器。一般室内湿度应小于百分之70,最好控制在百分之45~60之间,应有空气净化装置。过去由于基建施工,我们的环境条件很差,甚至仪器室多次被水淹,受潮及室温变化过大,仪器不是定位困难就是经常发生故障。搬到新的仪器室后条件改善了,仪器运行就正常多了。2、ICP-电感耦合等离子体发射光谱仪器的供电线路要符合仪器的要求为了保证ICP仪的安全运行,供电线路必须要有足够大的容量,否则仪器运行时线路的电压降过大,影响仪器寿命。作为一台精密测量仪器,它还需要有相对稳定的电源,供电电压的变化一般不超过+百分之5,如超过这个范围,需要使用自动调压器或磁饱和稳压器,不能使用电子稳压器,由于电子稳压器在电压高时产生削波,造成电脉冲,影响电子计算机、微处理器及相敏放大器的工作,引起误动作。连续正弦波电源才能保证这些电子电路的正常工作,仪器供电线路最好单独从供电变压器的配电盘上得到,尽量不与大电机,大的通风机,空调机,马弗炉等大的用电设备共用一条供电线路,以免在这些用电设备起动时,供电线路的电压大幅度的波动,造成仪器工作不稳定。允许电流大于30安培的仪器要单独接地。一般光谱仪地线电阻要小于5欧姆,计算机地线电阻要小于0.25欧姆(ASTM)标准,以防相互干扰。在仪器的使用中,应经常注意电源的变化,不能长期在过压或欠压下工作,根据资料介绍,当仪器在过压下工作会造成高颇发生器功率大管灯丝过度的蒸发和老化,电子管的寿命将会大大的缩短(是正常寿命的五分之~一六分之一)。如果在欠压下工作,电子管灯丝温度过低,电子发射不好,也容易造成电子发射材料过早老化,同样也缩短电子管的寿命;仪器运行中供电电压的较大波动同样也会造成高频发生器输出功率的不稳定,对测定结果的好坏影响极大,因此,应当注意供电电源的质量。3、ICP-电感耦合等离子体发射光谱仪器防尘国内一般实验室都不具备防尘、过滤尘埃的设施,当实验室内需要采用排风机,排除仪器的热量及工作时产生的有毒气体时,实验室与外部就形成压力差,实验室产生负压,室外含有大量灰尘的空气从门窗的缝隙中流入室内,大量积聚在仪器的各个部位上,容易造成高压元件或接头打火,电路板及接线、插座等短路、漏电等各种各样的故障,因此,需要经常进行除尘。特别是计算机、电子控制电路、高频发生器、显示器、打印机、磁盘驱动器等,定期拆卸或打开,用小毛刷清扫,并同时使用吸尘器将各个部分的积尘吸除。对光电倍增管负高压电源线、及计算机显示器的高压线及接头,还要用纱布沾上少许无水酒精小心的抹除积炭和灰尘。磁盘驱动器及打印机清出灰尘之后,要在机械活动部件滴加少许仪表油。打印机的打印头还要拆下,用软毛刷刷扫,并用绒布抹净,防止针孔被纸屑堵塞,然后按照说明书调整一定的打印压力。对于仪器除尘,一般由电子,仪修或计算机的专业人员帮助,仪器使用或管理人员如不懂电子知识,不了解仪器结构,不要轻易去动,以免发生意外,除尘应事先停机并关掉供电电源下进行。4、ICP-电感耦合等离子体发射光谱仪器对气体控制系统的维护保养ICP的气体控制系统是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。首先要做气体试验,打开气体控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。第二,由于氩气中常夹杂有水分和其它杂质,管道和接头中也会有一些机械碎屑脱落,造成气路不畅通。因此,需要定期进行清理,拔下某些区段管道,然后打开气瓶,短促地放一段时间的气体,将管道中的水珠,尘粒等吹出。在安装气体管道,特别是将载气管路接在雾化器上时,要注意不要让管子弯曲太厉害,否则载气流量不稳而造成脉动,影响测定。5、ICP-电感耦合等离子体发射光谱仪器对进样系统及炬管的维护雾化器是进样系统中最精密,最关键的部份,需要很好的维护和使用。要定期的清理,特别是测定高盐溶液之后,雾化器的顶部,炬管喷嘴会积有盐份,造成气溶胶通道不畅,常常反映出来的是测定强度下降,仪器反射功率升高等。炬管上积尘或积炭都会影响点燃等离子体焰炬和保持稳定,也影响反射功率,因此,要定期用酸洗,水洗,最后,用无水乙醇洗并吹干,经常保持进样系统及炬管的清洁。6、ICP-电感耦合等离子体发射光谱仪器使用中尽量减少开停机的次数开机测定前,必须做好安排,事先标好各项准备工作,切忌在同一段时间里开开停停,仪器频繁开启容易造成损坏,这是因为仪器在每次开启的时候,瞬时电流大大高于运行正常时的电流,瞬时的脉冲冲击,容易造成功率管灯丝断丝,碰极短路及过早老化等,因此使用中需要倍加注意,一旦开机就一气呵成,把要做的事做完,不要中途关停机.(选自网络)

  • 【资料】—与微波等离子体相关的历史事件

    [b]与[/b][color=red]微波等离子体[/color][b]相关的历史事件[/b] 2001年周健等开展了微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积金刚石膜研究阁。 2000年,陈栋梁、李庆等人进行了甲烷和氮气在低压微波等离子体下的转化研究,其生成的主要产物是HCN和乙炔,以及少量的含氰化合物,更高级的烃类以及氨或胺类没有检测到[1996年,海光与吉林大学金钦汉教授联合申报“微波等离子体炬发射光谱仪”获得成功。从1983年以来,加茂睦和和瀚高信雄等人’-用微波等离子体 CVD法在更温和的条件下合成了几毫米厚的微晶金刚石薄膜。 1983年日本的加茂睦和等人采用氢气和甲烷气体,用微波等离子体在硅片和石英片上沉积出金刚石膜”留校一直参加微波及电子线路方面的教学和科研工作,1982年以后开始从事微波等离子体方面的研究和有关设备的研制工作,作为主要完成人的“微波等离子体源及沉积设备”于1988年获电子工业部科技进步一等奖,微波等离子体CVD设备”于1992年获国家科技进步三等奖,1992年开始参与太阳能利用方面的工作。从1979年起,科研方向转变到更广泛的领域,提出“广义微波”的概念,即波长与器件尺寸可以相比拟或略小于器件尺寸的波动现象,其理论基础都是微波理论的发展,从而确定了微波声学、导波光学、静磁波及微波等离子体微细加工等方面属于“广义微波”研究课题。1976年,Beenakker研制成功了一种可以得到常压氦微波等离子体的微波谐振腔,情况才开始有所改善。1975年Mosian等发明了一种表面波器件 1976年Beenakker提出了Tmoio谐振腔并获得了常压氦微波等离子体。因此有人于1965年提出了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和微波等离子体发射光谱联用的方法(以下简称色-光法)经过几年的发展于1973年已基本上仪器化。 自1965年Mccoroark提出微波等离子体应用与检测器达到阻抗匹配。金刚石具有高热导率、优异的耐磨性和低的摩擦因数、介电性好等优异的性能’自从1962年采用化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法(CVD)合成金刚石至今,已发展了许许多多合成金刚石膜的方法,如直流电弧等离子体喷射法、微波等离子体法。1960年代以后,微波等离子体也用于合成化学。[color=blue]来源:中国知网[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制