当前位置: 仪器信息网 > 行业主题 > >

定量双折射成像系统

仪器信息网定量双折射成像系统专题为您提供2024年最新定量双折射成像系统价格报价、厂家品牌的相关信息, 包括定量双折射成像系统参数、型号等,不管是国产,还是进口品牌的定量双折射成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合定量双折射成像系统相关的耗材配件、试剂标物,还有定量双折射成像系统相关的最新资讯、资料,以及定量双折射成像系统相关的解决方案。

定量双折射成像系统相关的资讯

  • 我国双折射双频激光干涉仪实现批量生产
    3月2日,记者从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • 我国双折射双频激光干涉仪实现批量生产!
    3月2日,记者从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • 我国双折射双频激光干涉仪实现批量生产
    3月2日,从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。  双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。  张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。  据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。  张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • 科学家研制出稳定且双折射可调的深紫外液晶光调制器
    近日,中国科学院院士、中科院深圳先进技术研究院碳中和技术研究所(筹)所长成会明与副研究员丁宝福团队,联合清华大学深圳国际研究生院教授刘碧录团队、中科院半导体研究所研究员魏大海团队,首次发现了二维六方氮化硼(h-BN)液晶具有巨磁光效应,其磁光克顿-穆顿效应高出传统深紫外双折射介质近5个数量级,进而研制出稳定工作在深紫外日盲区的透射式液晶光调制器。   双折射是引起偏振光相位延迟的一个基本光学参数。有机液晶因双折射可受外场连续调制,而被广泛用作光调制器的核心材料。然而,传统有机液晶在深紫外光照射下吸收强且不稳定,液晶光调制器仅能工作在可见及部分红外光波段,无法工作在紫外及深紫外波段。同时,透射式深紫外光调制器在紫外医学成像、半导体光刻加工、日盲区光通讯等领域颇具应用前景。因此,发展一种在深紫外光谱区稳定、透明度高及具有场致双折射效应的新型液晶材料,有望推进透射式深紫外液晶光调制器的发展。   科研团队研制出一种基于二维六方氮化硼无机液晶的磁光调制器。研究采用的氮化硼二维材料具有极大的光学各向异性因子(6.5 × 10-12C2J-1m-1)、巨比磁光克顿-穆顿系数(8.0 × 106T-2m-1)、高循环工作稳定性(270次循环工作后性能保留率达99.7%)和超宽带隙等优点,同时二维六方氮化硼是通过“自上而下”的高粘度纯溶剂辅助研磨法剥离制备而成。由于超宽的带隙,二维六方氮化硼液晶在可见、紫外和部分深紫外光谱区具有颇高透明度。在磁场作用下,基于二维六方氮化硼液晶的磁光器件在正交偏振片下呈现出明显的磁控光开关效应。   科研人员通过观察入射光偏振态与磁场作用下液晶透射率关系的实验揭示了二维六方氮化硼在外场作用下顺磁场的排布方式。在入射光的偏振态被调整为平行和垂直于磁场的两种状态下,后者呈现较高的光透射率,间接印证了二维六方氮化硼纳米片平行于磁场方向排布。该研究针对层状二维六方氮化硼薄膜的磁化率各向异性测试揭示了面内易磁化方向,进一步证实了二维六方氮化硼纳米片顺磁场排布的物理机制。结合二维氮化硼纳米片的极大的光学各向异性,研究发现了二维六方氮化硼液晶的巨磁致双折射效应。   该研究选用波长处于深紫外UV-C日盲区的266 nm激光,测试二维氮化硼液晶在该光谱区的光学调制性能。通过开启和关闭0.8特斯拉的磁场,研究实现了该调制器在深紫外光波段的透明与不透明两种状态之间的切换。经过270个不间断开关循环测试后,性能的保持率达99.7%。   鉴于二维材料家族成员庞大、带隙覆盖宽,基于无机超宽带隙二维材料液晶的光调制器的光谱覆盖范围有望向更短深紫外波段延伸,促进液晶光调制器在深紫外光刻、高密度数据存储、深紫外光通讯和生物医疗成像重要领域的应用。   相关研究成果以Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride为题,发表在Nature Nanotechnology上。研究工作得到国家自然科学基金、科技部、广东省科学技术厅、深圳市科技创新委员会等的支持。六方氮化硼无机二维液晶及其磁控光开关效应 六方氮化硼无机二维液晶的磁致排列和磁致双折射效应表征基于六方氮化硼无机二维液晶的深紫外光调制器性能研究及对比
  • 40年坚持,打通双折射双频激光器及干涉仪全技术链条
    双频激光干涉仪是先进制造业、半导体芯片制造等行业不可或缺的纳米精度的尺子,应用广泛。张书练教授团队(先清华大学精密测试技术及仪器国家重点实验室,后镭测科技有限公司),以解决双频激光干涉仪关键技术为线,经近40年坚韧攀登,研究完成了“可伐-玻璃组装式单频氦氖激光器→双折射双频激光器→双折射双频激光干涉仪”的全链条技术,并批产。该技术开国内可伐-玻璃组装式氦氖激光器之先,吹制工艺或成历史。开国内外应力激光腔镜产生双频激光之先,解大频差和高功率不可得兼之难,频率差可以在1~40 MHZ范围选择而功率大于1 mW。双折射双频激光干涉仪测量70 m长度误差小于5 μm,非线性误差小于1 nm,测量速度高于3 m。1 研究背景激光干涉仪是当今纳米时代的长度基准,也是先进制造业(机床、光刻机,航空、航天等)制造的精度保证。制造精度和生产效率越来越高,对激光干涉仪的测量精度和测量速度提出了更高的要求。激光干涉仪的“激光”是(HeNe)氦氖激光器,至今无可替代。传统HeNe双频激光干涉仪存两个难点,成为瓶颈:1)国内外,我们之前,双频激光器靠塞曼效应产生两个频率,频率之差小(在3 ~ 5 MHz之间),频差越大激光功率越小,不能满足光刻机等应用的更大频率差要求(如10、20、40 MHz),频率差大,测量速度高,效率高;2)不论是单频还是双频激光干涉仪,国产还是外购,各型号都有几纳米甚至十几纳米的非线性误差,一直没有找到解决办法。通常,在单频激光器的光增益路径上加磁场后(塞曼效应)就变成双频激光器。可是,相当长的期间,购买到的大部分单频激光器因为常出现跳模,用于单频激光干涉仪时淘汰率很高,此外,加上磁场后单频并不呈现双频,双频激光干涉仪难有好的光源。经近40年坚持,研究打通了单频氦氖激光器→双折射双频激光器→双频激光干涉仪的全技术链条,批产,获得了广泛应用和认可。2 双折射双频激光器及干涉仪的关键和全链条技术2.1 双折射双频激光器置晶体石英片(图1a中的Q双面增透)或有内应力的玻璃元件(图1b中的M2右表面镀反射膜)于激光器谐振腔内,这些元件的双折射使激光频率分裂,一个频率分裂成两个频率,两个频率的偏振方向互相垂直(正交偏振)。反复实验证明,激光器可输出频率差大于但不能小于40 MHz两个频率。如果频率差稍大于40 MHz,在改变(调谐)激光频率谐振腔长(即用压电陶瓷1纳米一步“距”的推动M2改变激光谐振腔长)过程中看到的是一个频率振荡会陡然变成两个频率振荡,而前者功率陡然下降一半,刚升起的频率则获得同样的功率。继续调谐腔长,最早振荡的频率会陡然消失,而后起振的频率功率升高到最大。如果频率差小于40 MHz,两频率则有你无我。图2示出了频率差20 MHz时o光和e光的光强度此长彼消得过程。理论和实验一致。图1 激光频率分裂原理图。(a)晶体石英片Q于激光谐振腔内,(b)激光输出镜为M2右表面,对M2加力使激光反射镜内产生应力图2 频差20 MHz时的强烈模竞争。激光强度随腔长调谐(改变)的实验曲线。理论和实验一致图3给出了两个频率的频率差多大时,在频率轴上两个频率的共存区的宽度,也即两个频率差大小对应的共存频域宽度。曲线最左侧可见,在约40 MHz时,共存宽度迅速下降趋于0 Hz,也即小于40 MHz时,两频率之一熄灭,频率差消失。图3 实验测得的两个频率共存的频域宽度和激光频率差的关系2.2 双折射-塞曼双频激光器塞曼双频激光器的频率差一般在5 MHz以下,功率随频率差增大而减小,7 MHz时的激光功率仅0.2 mW以下。作者团队研发的双折射双频激光器频率差大于40 MHz,研制成的双折射-塞曼双频激光器可以输出百KHz到几十MHz的频率差,而功率不因频率差增大而改变,可以达到1.5 mW。双折射-塞曼双频激光器包括两项关键技术,先由双折射造成激光器频率分裂,决定了激光器输出为两个偏振正交频率以及它们的间隔(频率差)的大小。再因激光器上加了横向磁场,横向塞曼效应使增益原子分成两群——π群和σ群。π群和σ群光子的偏振对应双折射互相垂直的主方向,也即正交偏振的光“各吃各粮”,它们之间的相互竞争不存在了,无论频率差大小都能振荡。频率差可以是3、5、7、10、20、40 MHz或更大。2.3 内雕应力双折射-塞曼双频激光器提出了“内雕应力”的概念和产生双频的原理,即用窄脉冲激光器对激光腔镜表面或基片内部造孔(或穴),造成激光腔镜内的应力精确改变(图4所示),“雕刻”提高了频率差的控制精度。“内雕应力”双折射双频激光器不仅用于国产双频激光干涉仪,也用于运行中的光刻机的激光器替换。同时,提供了科研单位的科学研究。该激光器替换正在服役的光刻机的原有激光器,使光刻机机台误差由24 nm下降到6 nm。图4 内雕应力双折射-塞曼双频激光器。M2内部雕刻出的孔造成激光器的双频,磁条PMF1和PMF2消除激光器强模竞争2.4 可伐-玻璃组装式(无吹制)双频激光器国内,研制生产HeNe激光器历史很长,但我国一直靠吹制工艺制造氦氖激光器,而且不能制造可伐-玻璃组装式氦氖激光器。北京镭测科技有限公司研制成可伐-玻璃组装式单频氦氖激光器,功率大于1 mW,满足单频和双频激光器的需求。同时,这一技术将使整个国产氦氖激光器告别吹制,进入一个新的技术高度(如图5所示)。图5 可伐-玻璃组装内雕应力双频激光器(镭测科技提供)2.5 研制成的双频激光干涉仪技术指标作者强调的是,我们有了可伐-玻璃组装式激光器和双折射(内应力)-塞曼双频激光器,双频激光干涉仪有了强力的“心脏”,有了自主可控的基础。团队又全面设计干涉仪的光、机、电、算。时至今日,可伐-玻璃组装式双折射(-塞曼)双频激光器(非吹制)和干涉仪已批量生产,正在满足科学研究和产业的需求。中国计量科学院对双折射-塞曼双频激光干涉仪的测试结果:频率稳定度为10-8,分辨力为1 nm,非线性误差小于1 nm(图6所示),12小时漂移35 nm(图7所示),70 m长度测量误差小于5 μm。这些数据来自中国计量科学院测试证书:CDjx 2014-2352, CDjx 2018-4810, CDjx 2020-04463等。图6 双频激光干涉仪非线性误差图7 双折射-塞曼双频激光干涉仪12小时零点漂移3 展望在实现“可伐-玻璃组装式激光器”→“内雕应力双折射-塞曼双频激光器”→“双折射-塞曼双频激光干涉仪”全链条技术基础上,进一步发展各种规格的可伐-玻璃组装式激光器,以开拓双折射-塞曼双频激光干涉仪的应用深度和应用范围。
  • Photonic Lattice发布PA系列双折射测量仪新品
    PA系列是日本Photonic lattice公司倾力打造的双折射/应力测量仪,PA系列测量双折射测量范围达0-130nm,可以测量的样品范围从几个毫米到近500毫米。PA系列双折射测量仪以其技术的光子晶体偏光阵列片,独有的双折射算法设计制造,得到每片样品仅需几秒钟的测量能力,使其成为业内,特别是工业界双折射测量/应力测量的选择。 PA-300 主要特点:操作简单,测量速度可以快到3秒。视野范围内可一次测量,测量范围广。更直观的全面读取数据,无遗漏数据点。具有多种分析功能和测量结果的比较。维护简单,不含旋转光学滤片的机构。高达2056x2464像素的偏振相机。 应用领域:光学镜片智能手机玻璃基板碳化硅,蓝宝石等 技术参数:项次项目 具体参数1输出项目相位差【nm】,轴方向【°】,相位差与应力换算(选配)【MPa】2测量波长520nm3双折射测量范围0-130nm4测量最小分辨率0.001nm5测量重复精度6视野尺寸27x36mm到99x132mm(标准)7选配镜头视野低至7x8.4(扩束镜头)8选配功能实时解析软件,镜片解析软件,数据处理软件,实现外部控制 测量案例:创新点:操作简单,测量速度可以快到3秒。 视野范围内可一次测量,测量范围广。 更直观的全面读取数据,无遗漏数据点。 具有多种分析功能和测量结果的比较。 维护简单,不含旋转光学滤片的机构。 高达2056x2464像素的偏振相机。 PA系列双折射测量仪
  • Photonic Lattice发布应力双折射测量仪新品
    在PA系类设备的基础上,加装晶圆专用的装置,可以高效精确的测量SIC和蓝宝石这类光学性能特殊的产品的双折射和残余应力的信息。 应力双折射测量仪主要特点:操作简单,测量速度可以快到3秒。视野范围内可一次测量,测量范围广。更直观的全面读取数据,无遗漏数据点。具有多种分析功能和测量结果的比较。维护简单,不含旋转光学滤片的机构。高达2056x2464像素的偏振相机。应力双折射测量仪应用领域: SIC 蓝宝石应力双折射测量仪技术参数: 项次 项目 具体参数1 输出项目 相位差【nm】,轴方向【°】,相位差与应力换算(选配)【MPa】2测量波长520nm3双折射测量范围0-130nm4测量最小分辨率0.001nm5测量重复精度40x48mm到240x320mm(标准)7选配镜头视野不适用8选配功能 实时解析软件,镜片解析软件,数据处理软件,实现外部控制创新点:测量速度可以快到3秒。 更直观的全面读取数据,无遗漏数据点。 具有多种分析功能和测量结果的比较。 维护简单,不含旋转光学滤片的机构。 高达2056x2464像素的偏振相机。 应力双折射测量仪
  • Photonic Lattice发布Photonic Lattice双折射测量仪超大幅新品
    主要简介: 汽车车窗玻璃幅面很大,一般桌面式测量双折射/残余应力测量仪无法测量,扫描测量由非常慢,无法满足实际使用,因此Photonic Lattece研制出超大幅面的WPA双折射测量仪,会根据客户样品定制大型圆偏振光光源系统,实现大幅面样品的高速测量。设备在日本的汽车厂商得到广泛应用。主要特点: 解决汽车车窗玻璃等大幅面产品的双折射/残余应力测量。测量速度快,可满足玻璃工厂研发或质量控制测量。采用523nm,543nm,575nm三种波长,相位差测量范围高达3000nm。采用广角偏振面阵传感器,一次得到测量结果。专用操作软件,功能强大,操作简单,便于做分析比较和品质判断。 主要参数:测量案例:创新点:解决汽车车窗玻璃等大幅面产品的双折射/残余应力测量。 测量速度快,可满足玻璃工厂研发或质量控制测量。 Photonic Lattice双折射测量仪超大幅
  • Photonic Lattice发布应力双折射仪 PA-300-MT新品
    主要特点:操作简单,测量速度可以快到3秒;视野范围内可一次测量,测量范围广;更直观的全面读取数据,无遗漏数据点;具有多种分析功能和测量结果的比较;维护简单,不含旋转光学滤片的机构 高达2056x2464像素的偏振相机。应用领域:小尺寸样品专用光学镜头主要技术参数: 项次 项目 具体参数1输出项目 相位差【nm】,轴方向【°】,相位差与应力换算(选配)【MPa】2测量波长520nm3双折射测量范围0-130nm4测量最小分辨率0.001nm5测量重复精度7选配镜头视野6.3x7.5mm8选配功能 实时解析软件,镜片解析软件,数据处理软件,实现外部控制测量案例:创新点:操作简单,测量速度可以快到3秒; 视野范围内可一次测量,测量范围广; 更直观的全面读取数据,无遗漏数据点; 具有多种分析功能和测量结果的比较; 维护简单,不含旋转光学滤片的机构 高达2056x2464像素的偏振相机。 应力双折射仪 PA-300-MT
  • Photonic Lattice发布PHL online应力双折射仪KAMAKIRI -X stage 新品
    KAMAKIRI -X stage 主要特点:STS的低配版,可升级STS 。 操作简单,可以调整色彩显示更直观的了解双折射分布。 记录双折射的数值数据,以进行进一步详细分析。应用领域:相位差薄膜(TAC/PC/PMMA/COC)保护薄膜(PET/PEN/PS/PI)树脂成型玻璃 技术参数:项次项目具体参数1输出项目相位差【nm】,轴方向【°】2测量波长543nm(支持客制化)3双折射测量范围0-260nm(支持客制化)4主轴方位范围0-180°5测量重复精度6测量尺寸A4(标准)7定制选项可定制大载台创新点:欧屹科技代理的是其旗下KAMAKIRI品牌的双折射/残余应力测量设备,其高速相机CCD芯片与Photonic Lattice公司的偏光阵列片完美结合,研制在线双折射/残余应力测量仪,世界上仅有KAMAKIRI可以提供,广泛应用于光学薄膜,PVA,PC,COP和TAC等领域。 PHL online应力双折射仪KAMAKIRI -X stage
  • Photonic Lattice发布online双折射测量仪WPA-KAMAKIRI新品
    主要简介:Photron集团公司是日本大型相机,视频,软件控制供应商,其旗下的高速/超高速摄像机业务应用非常广泛,欧屹科技代理的是其旗下KAMAKIRI品牌的双折射/残余应力测量设备,其高速相机CCD芯片与Photonic Lattice公司的偏光阵列片完美结合,研制在线双折射/残余应力测量仪,世界上仅有KAMAKIRI可以提供,广泛应用于光学薄膜,PVA,PC,COP和TAC等领域。 主要特点:可用来评估高相位差产品,PET薄膜和树脂成品三波长测定双折射范围可达3000nm可选配高相位差配件,满足10000nm的超过相位差测定需求应用领域:相位差薄膜(TAC/PC/PMMA/COC)保护薄膜(PET/PEN/PS/PI)树脂成型玻璃主要参数:项次项目具体参数1输出项目相位差【nm】,轴方向【°】2测量波长523nm、543nm、575nm3双折射测量范围0-3000nm4主轴方位范围0-180°5测量重复精度6测量尺寸97×77mm ~ 2900×2310mm7定制选项光学配件,可测量超过10000nm的高相位差创新点:可用来评估高相位差产品,PET薄膜和树脂成品 三波长测定双折射范围可达3000nm 可选配高相位差配件,满足10000nm的超过相位差测定需求 online双折射测量仪WPA-KAMAKIRI
  • 630万!山东大学原位3D折射率成像及激光纳米加工系统采购项目
    项目编号:SDDX-SDLC-GK-2022014项目名称:山东大学原位3D折射率成像及激光纳米加工系统购置预算金额:630.0000000 万元(人民币)最高限价(如有):630.0000000 万元(人民币)采购需求:原位3D折射率成像及激光纳米加工系统,亟需购置,具体内容详见招标文件。标段划分:划分为1包合同履行期限:质保期:国产设备3年,进口设备1年。本项目( 不接受 )联合体投标。20230205山东大学原位3D折射率成像及激光纳米加工系统购置招标文件(定稿).doc
  • X射线衍射成像技术的相关应用
    X射线衍射成像技术(XRD)是一种重要的材料分析技术,它通过测量材料内原子平面对X射线的衍射来研究和量化材料的结晶性质。以下是X射线衍射成像技术的相关应用:1. 材料科学晶体结构分析:XRD是分析材料晶体结构的主要手段之一,能够确定晶体的晶格常数、晶胞参数、晶体缺陷等。相鉴定与定量分析:可以识别材料中存在的不同相(如固溶体、化合物等),并对各相进行定量分析。应力与应变测量:通过测量材料在特定条件下的XRD图谱变化,可以评估材料内部的应力和应变状态。2. 制药业药物分析:XRD是固态药物分析的关键技术,可用于确定药物的晶体结构、晶型转变、纯度等,对药物开发、测试和生产的各个阶段都大有裨益。药物专利保护:在分离出活性药物后,索引X射线粉末衍射图样可用于确定晶体结构,从而帮助获得专利和保护公司投资。3. 法医学接触者追踪分析:XRD在法医学中主要用于接触者追踪分析,如通过油漆薄片、头发、玻璃碎片等材料的XRD图谱,帮助鉴定和比较物证,有助于对涉嫌犯罪的人定罪或开脱罪责。4. 地质应用矿物勘探:XRD是矿物勘探的关键工具,能够快速识别矿物样本中的矿物种类,并量化不同矿物的存在比例。岩石学研究:通过XRD分析,可以了解岩石的矿物组成、晶体结构等信息,对岩石成因、地质构造等研究具有重要意义。5. 工业领域无损检测:X射线成像技术可用于无损检测材料和产品的缺陷,如金属零件中的裂纹、焊接接口质量等,确保质量控制。质量控制:在制造过程中,XRD可用于检查产品的尺寸、形状和结构特征,及时发现偏差和不符合要求的情况,从而进行调整和改进。6. 半导体行业晶体结构表征:X射线衍射技术可用于分析和表征半导体材料的晶体结构,对研究半导体材料的质量和性能至关重要。缺陷检测:结合X射线显微成像技术,可以检测半导体器件中的缺陷,如晶体管、集成电路和微芯片中的金属连接问题、曝露问题和局部结构缺陷等。7. 玻璃工业缺陷识别:虽然玻璃是X射线无定形物,但XRD可用于识别造成块状玻璃微小缺陷的结晶颗粒。涂层分析:测量结晶涂层的质地、晶粒尺寸和结晶度,以优化涂层性能。综上所述,X射线衍射成像技术在多个领域具有广泛的应用价值,是材料分析、质量控制、法医学、地质勘探等领域不可或缺的重要工具。
  • Science:透射电镜新突破!电子叠层衍射成像实现晶格振动原子分辨率极限
    透射电子显微镜(TEM)在物理、化学、结构生物学和材料科学等领域的微纳结构研究中发挥着重要作用。电子显微镜像差校正光学的进展极大地提高了成像系统的质量,将空间分辨率提高到了低于50pm的水平。然而,在实际样品中,只有在极端条件下才能达到这个分辨率极限,其中一个主要的障碍是,在比单层更厚的样品中,多电子散射是不可避免的(由于电子束与原子静电势之间的强库仑相互作用)。多次散射改变了样品内部的光束形状,并导致探测器平面上复杂的光强分布。当对厚度超过几十个原子的样品进行成像时,样品的对比度与厚度之间存在非线性甚至非单调的依赖关系,这阻碍了通过相位对比成像方式直接确定样品的结构。定量结构图像解释通常依赖于密集的图像模拟和建模。直接修正样品势需要解决多重散射的非线性反函数问题。尽管已经通过不同的方法对晶体样品的不同布拉格光束进行相位调整(其中大部分是基于布洛赫波理论),但对于具有大晶胞或非周期结构的一般样品来说,这些方法变得极其困难,因为需要确定大量未知的结构因子。Ptychography(叠层衍射成像)是另一种相位修正方法,可以追溯到20世纪60年代Hoppe的工作。现代成熟的装置使用多重强度测量——通常是通过小探针扫描广大的样品收集的一系列衍射图案。这种方法已广泛应用于可见光成像和X射线成像领域。直到最近,电子叠层衍射成像技术还受到样品厚度和电子显微镜中探测器性能的限制。二维(2D)材料和直接电子探测器的发展引起了更广泛的新兴趣。用于薄样品(如2D材料)的电子叠层衍射成像已达到透镜衍射极限的2.5倍的成像分辨率,降至39μm阿贝分辨率。然而,这种超分辨率方法只能可靠地应用于小于几纳米的样品,而较厚样品的分辨率与传统方法的分辨率没有实质性差异。对于许多大块材料来说,这样的薄样品实际上很难实现,这使得目前的应用局限于类2D系统(例如扭曲的双层)。对于比探针聚焦深度更厚的样品,多层叠层衍射成像方法提出了使用多个切片来表示样品的多层成像。所有切片的结构可以分别恢复。目前,利用可见光成像或X射线成像都成功地演示了多层叠层衍射成像。然而,由于实验上的挑战,只有少数的多层电子叠层衍射成像证据的报道,并且这些报道在分辨率或稳定性方面受到限制。透射电子显微镜使用波长为几皮米的电子,有可能以原子的固有尺寸最终确定的固体中的单个原子成像。然而,由于透镜像差和电子在样品中的多次散射,图像分辨率降低了3到10倍。康奈尔大学研究人员通过逆向解决多次散射问题,并利用电子叠层衍射成像技术克服电子探针像差,证明了厚样品中不到20皮米的仪器(图像)模糊以及线性相位响应;原子柱的测量宽度受到原子热涨落的限制,新的研究方法也能够在所有三维亚纳米尺度的精度从单一的投影测量定位嵌入原子的掺杂原子。相关研究工作以“Electron ptychography achieves atomic-resolution limits set by lattice vibrations”为题发表在《Science》上。图1 多层电子叠层衍射成像原理图2 PrScO3的多层电子叠层衍射重建图3 多层电子叠层衍射成像的空间分辨率和测量精度图4 多层电子叠层衍射的深度切片
  • FlowCam发布流式颗粒成像分析系统FlowCam® 8000新品
    应用领域:1.生物制药: 蛋白质治疗领域的微小颗粒表征,微胶囊化配方研究和质量控制,药物活性成分(API‘s),填充剂和辅料,干燥和再水化的冻干颗粒2.石油天然气:液压油中污染物的测量, 钻探泥浆表征,压裂支撑剂的质量控制,采出水和回流水中的油滴分析,燃油中有害残留催化剂的分析等3.食品饮料: 微胶囊化,填料塔(填料材料分析)4.化工:油漆涂料,墨水染料,洗涤液等5.环境行业:土壤和藻类分析通过选择20X, 10X, 4X, 2X物镜,实现对粒度范围1μm~1,000μm颗粒进行成像和分析。测量粒度和颗粒形状-对每个颗粒成像后都可以获得30多种形态学测量结果提供卓越的成像质量和基于成像法的测量参数-可以看到快速和准确的,可由定量数据证明的检测测量结果。快速提供具有统计意义的结果-用户可在过程种观察到每分钟数以万计的颗粒自动化的,可建模的,具有统计学意义的 - 基于自动识别统计软件 - 可将不同的颗粒进行分门别类,从而节省时间。对于所有颗粒尺寸1 μm到2 mm(计数)和4 μmto 2 mm (形状)提供精确结果。交叉偏振光源选项可以有效隔离和量化有双折射现象的颗粒。新的自动对焦功能带来便利,并可重现对焦点。FlowCam系列提供自冲洗和清洁功能,并且使管道式进样端口一体化。相机像素:1920x1200 像素,可选彩色或者单色最小样品使用量低至100 μl可选择与ALH(自动液体处理器)配套使用可选择使用荧光发射器与探头:触发条件可选:488nm, 532nm, 633nm波长,2通道荧光探头创新点:通过选择20X, 10X, 4X, 2X物镜,实现对粒度范围1μ m~1,000μ m颗粒进行成像和分析。 测量粒度和颗粒形状-对每个颗粒成像后都可以获得30多种形态学测量结果 提供卓越的成像质量和基于成像法的测量参数-可以看到快速和准确的,可由定量数据证明的检测测量结果。 快速提供具有统计意义的结果-用户可在过程种观察到每分钟数以万计的颗粒 自动化的,可建模的,具有统计学意义的 - 基于自动识别统计软件 - 可将不同的颗粒进行分门别类,从而节省时间。 流式颗粒成像分析系统FlowCam® 8000
  • 上海光机所在智算散射成像方面取得新进展
    近日,中国科学院上海光学精密机械研究所信息光学与光电技术实验室司徒国海研究员团队提出了基于深度学习的可拓展散斑相关成像方法,可在不同散射介质干扰下实现对不同类型物体的恢复,突破了传统深度学习方法因泛化性问题而难以同时应对成像系统及成像场景变化的瓶颈。相关论文近期以“DeepSCI: Scalable speckle correlation imaging using physics-enhanced deep learning”为题发表在Optics Letters上。   散射成像技术突破了传统成像方法的成像视距,大幅提升了光学成像系统的环境适应性。近年来发展的基于深度学习的散射成像方法在提升成像深度和速度、降低成像装置复杂度等方面具有独特优势。但是,这种数据驱动的方法存在训练数据获取困难、泛化性及可解释性差等问题,难以对不同散射环境下的不同结构类型物体进行成像。课题组此前提出融合成像系统物理模型的方法为解决上述问题提供了新思路,但因难以对散射成像系统进行正向建模而无法将其直接应用到散射成像中。   研究团队基于光学记忆效应,将散斑相关成像中建立的物体与散斑图之间的联系视为正向物理模型(图1a),并融入深度学习算法中(图1b-c)。当散射介质和物体类型变化引起数据漂移时,利用物体图像与散斑图由上述物理模型建立的等式关系,对预训练网络进行微调,使得网络输出的物体图像估计满足物理模型的约束(图1c)。尽管从散斑图重建物体图像是一个典型的病态逆问题,但由于预训练模型蕴含了训练数据中丰富的隐式先验信息,网络输出结果可在物理模型的约束下逼近真实物体图像(图1d)。仿真和实验结果表明,这种模型与数据联合驱动的方法,可使用由一类散射介质和目标物体获得的数据预训练网络,实现透过不同散射介质对不同结构类型物体进行成像(图2)。图1 所提方法示意图。(a)散射成像系统;(b)数据驱动预训练;(c)模型驱动微调;(d)微调过程,网络直接输出结果经微调后逼近真实物体图像。图2 散斑相关成像实验装置及实验结果。(a)物体真值;(b)散斑自相关;(c)预训练网络直接输出;(d)模型驱动非训练网络结果;(e)HIO结果;(f)对预训练网络进行微调结果。
  • 上海光机所在超分辨散射成像和定位研究方面取得进展
    近日,中国科学院上海光学精密机械研究所量子光学重点实验室刘红林副研究员课题组在散射定位和成像研究方面取得重要进展。相关成果以“Imaging and positioning through scattering media with double helix point spread function engineering”为题发表于Journal of Biomedical Optics期刊上。散射现象对依靠弹道光传递信息的传统成像技术造成了极大的阻碍。很多领域对透过散射介质实现高分辨成像都有迫切的需求,这促使大量的资源投入到相关研究中,也促进了散射成像技术的发展。目前,主流散射成像技术仅能实现目标的二维成像和相对位置信息的获取,难以三维定位和成像。双螺旋点扩散函数(DH-PSF)可用于超分辨显微成像,并实现三维定位,但应用场景通常是无散射或弱散射环境。迄今为止,尚未有其在散射环境中成像和定位的相关报道。   本研究工作系统分析了双螺旋点扩散函数在散射环境下的定位能力,搭建了含有DH-PSF调制模块的显微实验系统,并选用鸡蛋壳膜和洋葱表皮组织作为散射介质进行演示验证。利用DH-PSF的特殊调制图案,通过双高斯拟合定位算法,实现了对两种生物组织中荧光微球进行超分辨成像和定位,定位精度达到十纳米级别。将平台扫描和焦点DH-PSF解卷积相结合可以起到光学切片的作用,不仅实现了荧光微球的超分辨成像,还实现了周围散射介质膜结构的清晰成像。相比于传统的显微技术和DH-PSF超分辨显微技术,改进的DH-PSF 显微可以对散射介质中的目标进行超分辨成像和定位。   所提出的方法可为散射介质中或通过散射介质进行更深入、更清晰的可视化提供了一种简单的解决方案,结合荧光染料、纳米粒子、量子点以及其他荧光探针,散射介质内的原位超分辨率显微成像将成为可能。
  • 毛细管电泳新型高灵敏度折射率检测技术面世
    毛细管电泳(CE)常用的检测技术只能检测具有特定特性的分析物。例如,荧光检测器只能检测发出荧光的分析物,紫外线检测器只能检测吸收紫外线的分析物,而安培检测器只能检测在电极上可被氧化或还原的分析物。即使是通常被认为是通用检测技术的质谱仪,也只能检测可以通过电喷雾电离有效地转化为离子的分析物。  回音圆廊的折射原理  可以与毛细管电泳一起使用并且真正通用的一种检测技术是折射率(RI)检测。在这种检测技术中,当光穿过毛细管电泳缓冲区中的分析物时会产生折射,通过对所引起的弯曲或折射程度的变化来检测分析物。问题在于,折射率检测并不是特别敏感,尤其是在小规模的毛细管电泳中。伦敦圣保罗大教堂的圆顶天坛回音壁  但是,有一种方法可以利用所谓的“回音圆廊”效果来增强折射率检测的灵敏度。就像声波可以在圆形空间中反弹一样,例如伦敦圣保罗大教堂的圆顶以及北京天坛的回音壁,由于声音的折射,可以在空间的一侧清晰地听到另一侧的对话。特定波长的光可以围绕圆形结构反弹,最终被俘获。被俘获的特定波长取决于周围介质的折射率。  散射光的监测  通过将激光照射在与毛细管电泳缓冲液接触的圆形结构上,可以通过监测散射光来检测由分析物引起的缓冲液折射率的任何变化。为此,散射光将丢失在圆形结构中被俘获的波长的光,该波长的光将随着折射率的变化而变化。几个研究小组表明,这种方法行之有效,他们已经使用了专门定制的设备(例如用于俘获光线的小玻璃球)来实现了这一目的。  现在,来自美国安阿伯市密歇根大学的John Orlet和Ryan Bailey使用市售设备进行了同样的操作,从而提供了一种更简单,更方便的方法来进行毛细管电泳敏感的折射率检测。该设备是美国一家名为Genalyte的公司生产的硅光子微环谐振器阵列。它由两个由四个圆形硅环的16个簇组成的通道组成,每个环可以俘获入射的激光。  Genalyte将这些阵列用于医学诊断,因为当诸如生物标记的分子结合到环上时,被环俘获的光的波长也会改变。但是Orlet和Bailey意识到,这种阵列有可能成为与毛细管电泳一起使用的理想折射率检测器。为了将阵列变成这样的检测器,两名研究人员将其容纳在连接到两个毛细管的流通池中。被毛细管电泳分离的分析物通过第一个毛细管迁移到流通池中,然后离开毛细管并通过阵列的两个通道进行检测,然后再通过第二个毛细管流出流通池。  糖和咖啡因的成分检测  Orlet和Bailey首先在山梨糖上测试了这种设置,发现该阵列可以检测到浓度低至15毫摩尔的分析物,并且阵列响应的大小随浓度而变化。接下来,他们尝试了两种简单的混合物,一种包含甘露糖、乳糖和果糖,另一种包含小分子乙酰胆碱、咖啡因和荧光素。在这两种情况下,混合物均通过毛细管电泳分离,并通过阵列检测其单个成分。但是,因为每个簇都可以检测到分析物,所以该阵列还可以监控它们沿通道的通过,从而记录其迁移速度,从而提供有关分析物的其他信息。  最终,Orlet和Bailey表明,该阵列可以检测通过毛细管电泳分离的三种蛋白质——肌红蛋白、血红蛋白和β-乳球蛋白,证明它也可以与生物分子一起使用。他们现在正在研究各种方法来进一步提高其新型折射率检测器的灵敏度,包括通过改善毛细管装配到流通池中的方式以及将特定生物分子的俘获剂附着到阵列中的环上。符斌供稿
  • 基于16 × 4阵元的CMUT面阵,实现高效率、高质量三维超声反射成像
    与传统工艺制作的压电块体型超声换能器相比,电容式微机械超声换能器(CMUT)具有阻抗匹配特性良好、带宽大、体积小等优势,在医学超声成像和无损检测方面得到了广泛应用。三维超声反射成像通常需要利用CMUT线阵的机械移动实现对被测物的多维度扫描,但这一方法往往难以实现较小距离的移动,并且存在一定的误差。利用CMUT面阵对被测物进行扫描可以同时获取多维度的超声反射信号,从而减少测试工作量,并且能够准确获取被测物的三维信息。然而,目前国内关于利用CMUT面阵进行非接触式三维超声反射成像的研究鲜有报道。据麦姆斯咨询报道,为了解决上述挑战,来自中北大学的研究人员提出了利用基于16 × 4阵元的CMUT面阵进行B模式及二次谐波三维成像测试的方法,以得到伪影水平更低、重建偏差更小的超声反射图像。相关研究成果以“基于16 × 4阵元CMUT面阵的三维超声反射成像”为题发表在《微纳电子技术》期刊上。CMUT面阵的制备及工作原理研究人员分别利用绝缘体上硅(SOI)和二氧化硅(SiO₂)晶圆制备了CMUT振动薄膜和真空腔,并且在真空环境中通过晶圆键合形成CMUT面阵。图1 CMUT剖面图及阵元图图2 基于16 × 4阵元的CMUT面阵实物图CMUT的工作原理是通过在上、下电极之间施加直流偏压,从而产生感应静电力将顶部薄膜拉向底部电极。当CMUT处于发射模式时,将交流电压信号叠加在直流偏压上会激励薄膜振动,实现电能和机械能的转换,产生超声信号;当CMUT处于接收模式时,在上、下电极之间施加直流偏压,在超声波的作用下,薄膜会产生振动,从而使得电容值发生改变,通过检测这一变化即可实现超声信号的接收。图3 CMUT工作原理仿真及实验平台搭建该研究利用基于Matlab的k-Wave光声仿真工具箱对基于16 × 4阵元的CMUT面阵进行超声反射成像仿真。整个仿真区域介质为硅油,被测物为一块长和宽均为3 cm、厚1 cm的铝块,铝块与CMUT的距离为3 cm,CMUT阵元间的距离为1 mm。此外,采用单个阵元发射、所有阵元接收,即一发多收的扫描方式对铝块进行扫描。图4 基于16 × 4阵元的CMUT面阵及被测铝块仿真模型随后,研究人员在仿真的基础上搭建了基于16 × 4阵元的CMUT面阵的超声反射成像测试系统。采用面阵上第二条线阵的单个阵元发射、所有阵元接收的方式进行实验测试。实验使用信号发生器和功率放大器驱动CMUT面阵发射超声波,并且利用示波器观察超声反射信号波形。图5 基于16 × 4阵元的CMUT面阵超声反射成像测试系统示意图及超声反射成像实测图仿真及实验结果研究人员采用B模式及二次谐波两种成像算法分别对被测铝块的超声反射信号进行处理,以获取其三维图像及对应的二维切面。结果显示,基于16 × 4阵元的CMUT面阵的反射成像系统能够确定铝块的位置。此外,基于B模式成像算法和二次谐波成像算法所获取的成像结果中,铝块与CMUT面阵的距离重建偏差分别为3.63%及1.47%。图6 被测铝块二维反射成像结果图7 被测铝块三维反射成像结果综上所述,该研究搭建了基于16 × 4阵元的CMUT面阵的三维超声反射成像系统,以获得误差小、信噪比高的超声反射图像。采用单个阵元发射、所有阵元接收的收发方式对铝块进行了相关测试与仿真,利用B模式及二次谐波成像算法对超声回波信号进行处理,获取了被测物的二维切面及三维图像。仿真和实验结果均可以较清晰地确定铝块的位置,与实际情况相符。为了对比两种算法的成像效果,研究人员计算了铝块与CMUT面阵的距离重建偏差。计算结果显示,B模式及二次谐波成像算法的仿真距离重建偏差分别为0.63%和0.4%,实验重建偏差分别为3.63%和1.47%,二次谐波图像的距离重建偏差均小于B模式图像的距离重建偏差。总之,该研究证明了所提出的基于16 × 4阵元的CMUT面阵的三维超声反射系统可实现对被测物的三维成像。论文信息:DOI:10.13250/j.cnki.wndz.2023.03.010
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现   人工界面改写光的反射和折射定律   光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。   光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。   经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。   研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。   阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。   这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。   利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • ATAGO爱拓-阿贝折射仪操作清洗方法与维护保修问题
    阿贝折射仪测透明、半透明液体或固体的折射率ND的检测仪器。ATAGO(爱拓)阿贝折射仪有恒温器,可测定温度为0℃~70℃内的折射率ND,并能测出糖溶液内含糖量浓度的百分数。故此种仪器是石油工业、油脂工业、制药工业、造漆工业、食品工业、日用化学工业、制糖工业和地质勘察等有关工厂、教学及科研单位不可缺少的常用设备之一。 手持式折射仪是根据不同浓度的液体具有不同的折射率这一原理设计而成的,是一种用于测量液体浓度的精密光学仪器,具有操作简单、携带方便、使用便捷、测量液少、准确迅速等特点,是科学研究、机械加工、化工检测、食品加工及海水养殖的必备仪器。 一、产品结构 ①折光棱镜 ②盖板 ③校准螺栓 ④光学系统管路 ⑤目镜(视度调节环) 二、使用步骤 1、将折光棱镜 ①对准光亮方向,调节目镜视度环 ②直到标线清晰为止。 2、调整基准:测定前首先使用标准液(有零刻度的为纯净水,量程起点不是零刻度的,得使用对应的标准液)、仪器及待测液体基于同一温度。掀开盖板②,然后取1滴标准液滴于折光棱镜①上,并用手轻轻按压平盖板②,通过目镜⑤看到一条蓝白分界线。旋转校准螺栓③使目镜视场中的蓝白分界线与基准线重合(0%) (注:ATATGO(爱拓)每一台光学仪器出厂时都经过严格的校验,可直接使用) 3、测量:可用棉花(柔软绒布、较好的纸巾、擦镜纸)擦净棱镜①表面及盖板,掀开盖板②,取1滴被测溶液滴于折光棱镜①盖上盖板②轻轻按压平,里面不要有气泡,然后通过目镜⑤读取蓝白分界线的相对刻度,即为被测液体的含量(根据每一台仪器的标准刻度而定)。 4、测量完毕后,直接用棉花(柔软绒布、较好的纸巾、擦镜纸)和水(或是酒精)擦干净棱镜表面及盖板上的附着物,待干燥后,妥善保存起来。注意:防止仪器脱落,造成盖子或棱镜损伤。 三、注意事项及维护 1、使用完毕后,防水型号可直接用水直接冲洗;而不防水型号严禁用水直接冲洗,避免光学系统管路进水。 2、在使用与保养中应轻拿轻放,不得任意松动仪器各连接部分,不得跌落、碰撞,仪器要精心保养,光学零件表面不应碰伤、划伤。 3、本仪器应在干燥、无尘、无腐蚀性气体的环境中保存,以免光学零件表面发霉。 4、与被测物接触的棱镜为光学玻璃,可放心使用。 四、附件 仪器装在专用盒内,配有:说明书1份,校正螺丝刀1把。 五、保修 仪器自销售之日起保修1年,由于使用者的人为破坏或使用、维护不当造成的损坏,不在保修范围之内。 访问日本ATAGO(爱拓)中文网站,您将获得更多信息 &hellip 查看详细仪器价格、产品目录资料、技术资料并订购,请访问ATAGO(爱拓)中国官网或者致电联系我们: Web: http://www.atago-china.com TEL:020-38108256/38106065/38106057
  • 迷你数显折射仪 日本ATAGO(爱拓)的应用
    迷你数显折射仪(又名折光仪)的应用与刻度式手持折射仪/折光仪类似,其数显折射仪(又名折光仪)特性可以有效消除人为读数误差,同时减轻操作者视力疲劳度。 ATAGO(爱拓)的PAL系列迷你数显折射仪/折光仪是手持式折射仪/折光仪的创新与代表,完全颠覆了过去用户对于手持式折射仪/折光仪的传统认知,数字显示,仅手掌大小,重100g。 PAL迷你数显折射仪/折光仪拥有让您惊奇的快速测量能力。只要将一滴样本溶液置于棱镜上,然后按「开始」键,糖度值会在3秒之内显示。具有数字LCD显示面版,可以避免主观错误的数值判读。PAL迷你数显折射计/折光仪可流水冲洗,具自动温度补偿,能测量高温样品,您将会对它的尺寸、设计、功能与性能感到惊奇!(日本ATAGO爱拓 折射仪&mdash 折射仪/折光仪&mdash 折光仪/旋光仪&mdash 旋光仪) ATAGO(爱拓)的AP-300旋光仪旋光仪是一款具有旋光度和国际标准糖度(ISS)双标度的全自动旋光仪旋光仪,AP-300全自动旋光仪/旋光仪专为需要测定旋光度和糖度的制糖行业而设计的一款旋光仪旋光仪。 ATAGO(爱拓)是专业的折光仪/折射仪与旋光仪旋光仪生产厂商,生产多种类型的折光仪/折射仪及旋光仪 旋光仪。提供生产原料及成品的Brix值、折射率、盐度、糖度、物质浓度 、旋光度的测量方案!更多折光仪/折射仪/旋光仪旋光仪详情请点击 www.atago-china.com 或致电020-38108256 ATAGO(爱拓)中国分公司咨询。
  • 上海精科:阿贝折射仪“家族”添新丁
    多年来几乎是一手按触摸键一手扭动转盘的传统阿贝折射仪,今天科技人员将其“改头换面”,用自动轻松的调试测量方法代替了上述“两手动”的传统阿贝折射仪,并改“竖”式为卧式,使人感到新鲜又方便。这种新型的“WYA-2”自动阿贝折射仪即将面市,科技人员称其是“阿贝折射仪家家族”的“新宠”。   分析仪器产品部生产的阿贝折射仪具有较长的历史,在国内外享有一定的知名度,四年前通过了欧盟CE认证,产品三分之一出口欧盟。今年下半年,阿贝折射仪出口形势也较为乐观,比去年同期增长了18%。WYA-2自动阿贝折射仪是今年年初开始设计研发的,用了短短10个月的时间。采用了CCD图像传感器和大尺寸LCD显示屏,启动电源,用手触摸显示屏就可以方便的操作,且分析测试读数准确、直观。
  • 上海精科阿贝折射仪今年出口依然强劲
    广泛用于制糖、制药、饮料、食品、石油、化工工业生产、科研、教学等领域作检测分析的WAY-2S阿贝折射仪,是我精科公司的重点产品之一,近年来畅销国内外市场。2008年下半年,欧洲市场受美国次贷危机影响,需求量明显下行,对高档科学仪器需求日益减少,但对精科公司的中档科学仪器━━WAY-2S阿贝折射仪却青睐有加,需求量全年未减少,反而有增加,比去年增加了20-25%。 我公司制造的WAY-2S阿贝折射仪出口主要地是欧盟。据市场营销管理部出口科认为,WAY-2S阿贝折射仪虽属中档科学仪器,但造型大方、操作简便、分析精准、质量可靠(2006年初通过德国CE认证)和用途广泛,继续受到现在已是“节俭办一切事情”的欧洲老外的欢迎。
  • 如何借助折射率测量技术来提高半导体生产质量
    化学机械研磨/抛光 (CMP) 将化学反应和机械研磨结合在一起,是一项成本高昂且具有挑战性的重要纳米抛光工艺。这一工艺是集成电路制造中关键的使能步骤,对产量和工作效率都会产生影响。CMP 简介抛光工艺使用含氧化剂的浆料完成,氧化剂通常为过氧化氢 (H2O2)。在制造过程中,将晶圆和抛光垫紧密地压在一起,同时使二者各自以略微不同的速度逆时针旋转。将浆料铺在抛光垫的中央,然后结合运用机械操作和化学操作,逐步除去晶圆表面的材料,使晶圆表面局部和整体都顺滑平坦。 使用 CMP 浆料前,先在工厂对其进行混合或稀释。氧化物抛光浆料在购买时通常为浓缩状态,使用前在现场加水稀释,以减少运输和人工成本。一些多组分抛光浆料只能随用随混,因为这些浆料在混合后有效期很短。确保正确地混合至关重要,因为混合效果直接关系到化学反应速率和晶圆抛光速率;混合过程中的任何缺陷都会对可制造性和可靠性产生负面影响。尽管制造点 (POM) 的浆料控制很严格,但后续过程(包括运输、处理和过滤)会影响化学特性,因此需要对浆料进行连续监测,直到抵达使用点 (POU) 为止,以确保实现高产量。这样就需要有效、快速、可靠、准确且经济高效的计量工具和方法,因此许多制造厂选择使用折光仪。如何借助折射率测量技术来提高生产质量折射率 (RI) 测量技术是一种不消耗浆料的连续在线测量方法,可帮助制造厂在传递工艺相关的实时信息时迅速识别出浆料成分错误,从而减少存在风险的晶圆数量。CMP 浆料携带纳米颗粒,其固体含量为 1 - 30%(取决于浆料类型),因此对其中的过氧化氢浓度进行分析极具挑战性。但通过对特定浆料的折射率及温度特性进行标定,RI 测量法可以不惧这些困难条件,成功测量出钨浆料中的过氧化氢浓度并将误差控制在 ±0.03%(重量)以内。此外,与电导率探头测试不同,RI 测量可以监测 H2O2 浆料浓度,该指标可以反映浆料随时间的沉降和降解情况。因此,RI 不仅用于检验产品的质量,也用于监测进厂原始浆料各批次之间的变化,并验证混合 - 添加步骤。部分浆料输送系统拥有一项引人注目的功能,那就是日用槽自动化学品加料功能。维萨拉半导体行业用折光仪的优点维萨拉半导体行业用折光仪为半导体制造环境设计。该仪器尺寸小且不含金属,因此适合在不影响工艺的情况下测量化学物质。维萨拉半导体行业用折光仪适合 CMP 操作,因为:测量数字化,并且不会产生偏差集成了温度测量组件,可确保高精度的 RI 测量可进行直接密度测量设计坚固可靠,可承受过程中的振动,减少测量误差通过内置诊断程序,可即时了解工艺条件拥有流通池(旨在减少甚至消除结垢现象)参考文献多年来, DFS公司一直在 CMP 操作中使用维萨拉半导体行业用折光仪,长期的成功运作证明该设备可靠且准确。“随着工艺节点越来越多地采用 CMP 步骤,我们必须确保输送到抛光工具的浆料的化学特性以及机械特性保持稳定一致,”DFS公司化学技术研发总监Karl Urquhart 解释道,“在线 RI 监测可以评估进料的化学成分,检验混合添加步骤的质量,并且可以通过一次不消耗浆料的实时测量来验证 CMP 浆料是否混合均匀。”针对 CMP 浆料的 H2O2 测量装置于 2013 年在一家大型半导体制造厂中完成安装,用于取代自动滴定法。安装后,该测量设备稳定运行,并且除了正常的冲洗混浆池外,无需进行仪器维护。通常,在安装维萨拉半导体行业用折光仪后,制造厂的晶圆产量可提升约 20%。此外,CMP 浆料受到严格控制,能够提高研磨过程的均匀性。❖ 维萨拉半导体行业用折光仪 PR-33-S适用于半导体液态化学品测量该折光仪外形紧凑,流通池采用改良超纯 PTFE 制成,适用于半导体液态化学品测量。可通过 ¼ 至 1 英寸的皮拉 Pillar 或扩口 Flare 连接。维萨拉半导体行业用折光仪 PR-33-S 用于晶圆洁净室里的化学品浓度监测,通常被安装在混合、清洗、蚀刻和 (CMP) 等机台上。PR-33-S 包含一个超纯改性 PTFE 流通池主体和一根以太网线,不同标准的以太网供电 (PoE) 开关均可通过以太网线向传感器供电,并将数据传输给计算机。PR-33-S 实时监测化学品浓度,当化学品浓度超出规定范围时,立即通过以太网反馈报警。例如,可通过配置低浓度和高浓度警报来控制和延长溶液使用寿命。这里的浓度通过对溶液折射率 nD 和温度测量来确定。PR-33-S 直接通过喇叭形或pillar配件进行安装。PR-33-S 结构紧凑,不含金属,体积小。关键要素:• N.I.S.T. 标准下的可追溯校准及验证,采用标准折射率液体和验证程序进行验证。• 光学核心设计。 • 通过以太网进行数据记录和远程界面操作。• 标准 UDP/IP 通信。• 过程温度范围:-20°C – 85°C (-4°F – 185°F)。• 内置 Pt1000 快速温度测量及自动温度补偿 。
  • ATAGO(爱拓)折射计在汽车冷却剂中的应用
    ATAGO(爱拓)迷你数显折射仪,专业防冻液检测更快捷 随着冬季的来临,气温逐渐降低,为使汽车在冬季低温下仍能继续使用,发动机冷却液都加入了一些能够降低水冰点的物质作为防冻剂,保持在低温天气时冷却系统不冻结。据调查,全球50%以上的汽车发动机故障来源于冷却系统!由此可见合理选配防冻液的重要性。防冻液具有防腐蚀,沸点高,防垢,低冰点等优点。添加合适防冻液保证其测冷却系统的工作状态会直接影响车辆的正常运行及车辆的使用寿命。 目前市场上所销售的大部分防冻液是以乙二醇为主要原料的产品,再加入适量的有机或无机盐类来达到防腐防锈的作用。防冻剂是防冻液的主要成分,约占防冻液原液的92 %~98 %,防冻液原液可以根据各地气温的高低,按一定比例与水混合,将冰点控制在适当范围内。各国从50年代以来几乎全部采用乙二醇作为防冻剂。乙二醇是一种无色、透明、稍有甜味和具有吸湿性的粘稠液体,它能以任何比例与水相溶。乙二醇的浓度不同时。冰点亦不同。 乙二醇--水防冻液的冰点同乙二醇质量分数不成线性关系。它的水溶液的冰点并不完全是随浓度的增加而降低,当浓度超过70 %时,冰点反而上升。所以在配制过程中,应从实际出发加以合理选择,以达到防冻性及经济性的要求,进行防冻液配制。在中国江南,一般采用乙二醇质量分数为40 %的配比,而在寒冷的北方,需取乙二醇质量分数50 %左右的配比比较适宜。 ATAGO(爱拓)专业生产制造折光仪70多年,是折光仪和旋光仪的领导者。其产品PAL-91S和PAL-92S迷你数字乙二醇折射计,专业适用于乙二醇溶液的测量,并显示其溶液浓度及冷冻温度。其简单的操作,快捷的显示,稳定的重复性,能更好的帮助我们的用户用户冷冻液的测量(名称:防冻液折射仪),保证汽车的正常运行和使用寿命。 附: 汽车冷却系统 检查保养小知识 使用防冻液应注意以下问题: 1、使用了防冻液的车辆,切勿直接补充自来水,应该加入蒸馏水或去离子水,若实在没有条件,加冷开水也比加自来水好。如果防冻液因泄漏损失,应补充同品牌的防冻液。防冻液应四季使用,夏天使用自来水的方法是不科学的,也是得不偿失的。 2、不同品牌的防冻液所使用的金属缓蚀剂也不相同,因此不同品牌的防冻液不能混用 3、选择防冻液的另一个关键是确保安全性。高级防冻液兼具防腐、防垢、防沸、防冻、防锈等功效,还能对水箱起到很好的保护,一年四季都可使用。优质防冻液外观应清亮透明,并有醒目的颜色,无异味,而一些劣质防冻液根本不具备抗冻及防止开锅功能,有的防冻液虽然冰点及沸点合格,但却有腐蚀性,能把水箱及管路&ldquo 咬&rdquo 的千疮百孔,影响行车。 4、有的防冻液存放一年后,会出现少量絮状沉淀,这种现象多半是添加剂析出造成的,不必扔掉。如果出现大量的颗粒沉淀,表明该防冻液已经变质,不能再使用了。 市面上汽车防冻液10%产品不合格: 日前,吉林省工商局对长春市、吉林市主要商场、批发市场及部分经销商销售的产品进行专项抽查,共抽取汽车防冻液30个批次,其中3个产品不合格,产品抽查合格率为90%。 冰点是衡量防冻液产品合格与否的重要指标。该指标不合格将造成产品在低温时结冻,可能使汽车水箱等系统失效,对汽车造成损害;PH值不合格,有可能对汽车循环水系统产生腐蚀,长时间使用会对汽车造成损害。 如欲了解新产品测量方案,我们将热情提供完整、快速的现场分析试用,请点击这里。 要了解ATAGO(爱拓)科技的信息,请访问:http://www.atago-china.com
  • “让折射仪又好、又小、性价比更高”——“创新100”访北京领航力嘉机电有限公司
    北京领航力嘉机电有限公司成立于2013年,是一家液体浓度测量产品及行业解决方案供应商,专注于液体测量仪器的设计与制造,主要从事光学测量仪器的研发和生产,主要提供便携式数字折射仪、在线液体浓度传感器等产品,是国家高新技术企业、中关村高新技术企业。仪器信息网独家对话领航力嘉创始人马玉峰,关注这家液体浓度测量产品企业的发展与成长。北京领航力嘉机电有限公司创始人 马玉峰“创业初期是领航力嘉生存的关键期,我们怀着‘要做国内最好的折射计产品’的初心,努力克服资金紧张、人员不足、办公环境简陋等各方面的困难,齐心协力,迈出了科技攻关的第一步,对标国际水平填补国内市场空白,完成企业市场定位由OEM向ODM的角色转换。“马玉峰回忆。“让折射计产品又好、又小、性价比更高”,是领航力嘉技术团队最朴实的愿望,在此基础上,领航力嘉的产品开发始终遵循“4S”原则——“Small”、“Smart”、“Low cost”、“Scale”,即未来领航力嘉所有的研发产品必须要满足以下4个条件:小巧、智能化、低成本、可规模化生产,让折射计产品服务于更多人群和更多行业领域。根据光学折射原理,领航力嘉产品可在线测量DMAC、NMP、DMF、车用尿素、切削液、乳化液、乙二醇、氨水、酒精清洗液等各种化工液体的浓度百分比、折射率、温度等参数,产品广泛应用于食品饮料、果蔬加工、制糖业、日用化工、生物制药、临床检验、石油化工、金属制造等诸多领域。目前,领航力嘉已针对食品饮料、果蔬加工、制糖业、日用化工、生物制药、临床检验、石油化工、金属制造等诸多领域提供细分化产品与专业的行业解决方案。领航力嘉产品不仅畅销全国各地,还远销至欧洲、北美及东南亚等海外市场,收获了用户的广泛好评。仪器信息网:领航力嘉目前的研发能力如何?马玉峰:领航力嘉拥有业内领先的自主核心技术和可持续研发能力,是国家高新技术企业、中关村高新技术企业,目前有员工25人,研发人员占比超过30%,办公面积约800㎡。领航力嘉成创立初期的核心团队成员均拥有十年以上的折射计产品研发经验,这为项目的顺利启动奠定了坚实的基础。领航力嘉已有自主研发的专利包含:发明专利1枚、实用新型专利8枚、外观专利5枚、软件注册权6枚。并已申请ISO9001认证证书、14001认证证书。仪器信息网:领航力嘉目前有着怎样的竞争优势?马玉峰:领航力嘉的竞争优势主要体现在三个方面。一是技术优势。领航力嘉的产品功能,主要包括:精准折射率测量,温度测量,折射率与浓度或密度的转换,测量数据上传云端或工控机,云端大数据的监控及分析。二是应用优势。领航力嘉主张折射计产品应该小型化,微型化,数据化,网络化,走进各行各业,走进千家万户。由于折射计产品具备无损、快速、稳定、可测液体种类多等优势,适合与大数据和物联网相结合,并进行数据分析,提供有效的数据服务,并由此形成新的应用。三是性价比优势。领航力嘉产品始终坚持“小型化”、“低成本”、“可规模化生产”的研发路线,为让折射计产品能服务更多行业用户与消费者,市场售价仅为国外品牌同类产品的30%左右。仪器信息网:领航力嘉当前的业绩增长点集中在哪几个方面?马玉峰:领航力嘉目前主要的业务增长点集中在C端、B端和G端。C端包括小家电消费市场的应用,如智能控糖水杯。B端体现在在线传感器面向工业物联网的应用逐步丰富,当前产品重点关注的使用场景包括车用尾气管理、锂电池过程液体管理、结构加工用液体管理、精酿啤酒酿造过程管理等。G端包括环保监测领域应用,如道路交通执法。仪器信息网:领航力嘉目前有着怎样的市场布局?马玉峰:经过20多年的积累,本人及技术团队实现了在折射仪行业内的基础技术原始积累,包括光学原理、光学结构、制造工艺、电路设计、软件算法等。在企业的发展理念上,也更加重视整体规划和市场布局。同时,坚持“4S”产品研发思路,重视知识产权的保护、积极开拓国内市场,使得领航力嘉产品的市场竞争力和市场占有率不断提高。1.技术发展从技术发展的角度来看,领航力嘉通过创新的光学设计,不仅使产品性能更加稳定,同时还大幅度降低产品的成本,使折射计产品小型化,甚至微型化;同时还结合“大数据应用”和“互联网+”的设计理念,填补了多项行业空白,为数字折射计产品的普及和推广应用打下了坚实的基础。2.贸易发展从贸易的角度来看,过去我们的中高端仪器仪表类产品长期依赖进口,高端仪器仪表产品几乎被国外公司垄断,全球知名的折射计研发及生产厂家有日本ATAGO、德国B+H、奥地利安东帕、瑞士梅特勒-托利多、和美国鲁道夫公司等,其中日本ATAGO在我国国内市场占据明显优势,主要通过代理商来销售。特别是传感器类仪器仪表产品,不仅价格昂贵,而且80%以上来自国外。这些年来,经过我们的不断努力,不仅大大降低了数字折射计产品的生产成本,使产品的外形设计趋于微型化,还解决了产品规模化生产等问题,从而提高了产品在国内市场和国际市场的竞争力和市场占有率,收获了来自海内外用户的广泛好评。让“中国发明,中国制造”真正走向世界!3.社会效益一直以来,由于国内相关企业在液体测量仪器方面技术研发基础比较薄弱、品牌意识欠缺等原因,导致国外的折射计产品占据了国内高端仪器仪表的绝大部分市场。面对这样的现状,我们深感责任重大,虽然我国测量仪器设备的总体水平确实落后于国际先进水平,尤其是光学测量系统的设计水平,但我们必须迎难而上,打破国外企业的技术垄断,打造出中国智能测量领域的民族品牌。面对这样的差距,我们需要加大加快投入力度,重视技术研发和生产线的改造升级。仪器仪表行业是从业人员的长征路,我们一直在与时间赛跑,通过二十多年的努力,我们在折射计领域已经取得了长足的进步,我们的折射计产品从无到有,从有到精,不断前进。与此同时,折射计产品的应用领域也得到了前所未有的扩展,目前应用领域有食品加工、汽车、医疗、能源、纺织、印刷、化工等多个行业及实验室、高校、科研院所等单位。产品可以用来测量食品饮料的糖浓度,测量人体尿液指标,测量蓄电池电解液参数(蓄电池电量测量及寿命诊断),测量汽车用玻璃水、冷冻液的冰点及刹车油的沸点,测量柴油车的燃油添加尿素的指标(ADBLUE)以及汽、柴油的品质等等。不仅打破行业壁垒,细化用户群体,更实现了良好的社会效益。仪器信息网:领航力嘉产品在工业物联网中的定位?马玉峰:领航力嘉深耕折射计行业20年, 具有“国家高新技术企业”、“中关村高新技术企业”双高认证,拥有自主知识产权的ODM产品体系,产品覆盖国内和海外欧、美、韩、印市场, 不仅支持测量数据云存储,更实现了产品的物联网化转型,致力于成为国内一流的工业液体光电传感器供应商。领航力嘉产品在工业物联网中的定位即顺应“工业4.0”的发展需求,强调工业物联网的搭建, 突出传感器的应用。中国制造2025,强调生产的智能化,在智慧物流(供应链)和数据学习能力中形成优势,包括:1、基于传感器、控制器、移动设备的物联网硬件体系 无线/有线网络,射频标签(RFID), 传感器构成基础服务的硬件架构。2、基于软件平台的服务互联网包括PLM、SCM、CRM、ERP等功能 的自动化集成,通过云服务和边缘计算实现。3、基于信息物理系统的数据融合 在CPS系统中的物理对象和虚拟对象通过网络通信,生产数据通过网络被各处理节点触达。4、未来的数据供应商(MaaS) 打通分立的物理感知系统,通过采集数据(大数据)和决策策略(智能学习) 的共享和分享,在信息系统间实现提效。仪器信息网:领航力嘉折射计产品的发展趋势?马玉峰:领航力嘉折射计产品的发展趋势有三个方面:1.与大数据和物联网相结合,并进行数据分析,提供有效的数据服务。云端的大数据处理和数据分析,是现代信息社会的发展趋势。2.小型化,微型化发展未来人们需要许许多多的传感器来量化我们的生活,感知工业生产中的各个环节,大型而笨重的传统测量设备正在逐步远离我们的工作与生活。作为用于液体折射率测量的折射计,由于其具备无损、快速、稳定、可测液体种类多等优势,更加适合于目前的技术潮流。让数字折射计小型化,微型化,数据化,网络化,走进各行各业,走进千家万户,这是折射计产品不可逆转的发展趋势。3.应用场景多样化目前领航力嘉已经拥有了超过100种的液体折射率数据,这些数据对应着近十几个不同行业中各种液体的相应技术指标和参比参数;可以换算成各种领域的行业数据,应用范围非常的广泛,对工业生产有极好的质量控制和监督作用。仪器信息网:您如何评价公司目前的发展情况,您对公司未来发展有怎样的愿景,最想要实现的一件事是什么?马玉峰:领航力嘉作为国内仪器仪表行业的新生力量,面对激烈的技术竞争和商业竞争,经过这几年的艰苦奋斗,已经取得了不俗的成绩。这些都得益于,我们始终以市场需求驱动发展,实现产品的快速迭代,进而形成良性的生态循环。最想实现的目标:让原来“高、大、上”的实验室科学仪器走出实验室,进入更广阔的工业领域及民用市场。只有这样,才能实现科技普惠大众的理念。仪器信息网:您认为企业当前面临的最大困难或挑战是什么,希望借助“创新100”获得怎样的资源或帮助?马玉峰:目前政府相关部门已经出台了一系列政策来支持鼓励仪器仪表行业的发展,但是仅仅这些还不够,仪器仪表类产品的研发与制造是一个前期投资高、回报周期长的行业,很多公司在最初几年很难盈利,即使产品研发成功,但测量仪器的精准度、稳定性、可靠性都是需要客户在较长时间(半年甚至是一年)的实际使用后才能得出可信的结论。因此,客户认可滞后、销量滞后,依然会使公司面临亏损的尴尬局面。国家可以继续加强政策上的激励和资金上的支持,从而为仪器仪表行业注入新的活力。仪器仪表行业作为技术密集型行业,也希望国家能建立一套完整的知识产权保护机制,在仪器仪表产业链的薄弱环节,积极鼓励创新,营造良好的产业环境。仪器信息网:您如何看待国产科学仪器的发展前景,未来还有哪些机会值得关注?马玉峰:国产科学仪器的发展,需要科技创新、企业创新和人才创新。互联网、物联网和大数据的发展,必然给国产科学仪器带来更多机遇。目前领航力嘉已经拥有了超过100种的液体折射率数据,这些数据对应着近十几个不同行业中各种液体的相应技术指标和参比参数;可以换算成各种领域的行业数据,应用范围非常的广泛,对工业生产有极好的质量控制和监督作用。过去二十多年,我们在折射计领域已经取得了长足的进步,折射计产品的应用已经渗透到工业生产和人们生活的很多领域。未来十年,折射计产品在社会经济发展中也存在着巨大的发展空间。新技术、新产品的出现必将带来巨大的市场,而国产替代化,也将催生一批新的仪器仪表企业。在中国经济转型和产业升级的浪潮中,只要我们稳扎稳打,刻苦攻坚,始终坚持“科研创新,科技自强”的信念,就一定会迎来属于我们自己的新时代!领航力嘉主要折射计产品简介:2013年,领航力嘉创始人马玉峰及技术团队成立北京领航力嘉机电有限公司,开始创业的征程。有了之前二十余年产品研发工作的积累,并明确创业的目标和方向,深挖国内市场需求,并制定了领航力嘉的产品开发“4S”原则,即:“Small”、”Smart”、”Low cost”、”Scale”。即未来领航力嘉所有的研发产品必须要满足以下4个条件:小巧、智能化、低成本、可规模化生产。(一)离线折射计产品的研发与推广自2014年开始,领航力嘉技术团队相继开发了MSDR-P系列智能数字折射仪产品;MDSR-M系列笔式折射仪产品;MDSR-D系列台式折射仪产品;行业内首个数字折射仪云端数据平台,并相继取得了包括国家发明专利在内的二十项知识产权成果。这些产品均具备与云端数据库进行数据交互的功能,完成了产品智能化的框架构成,与同类产品相比,具有独特的技术优势。产品在国内外市场获得认可的同时,产品与客户的黏度提升,甚至已经改变了部分客户及经销商对数字折射仪产品的使用习惯和销售策略,也将更高品质、更高性价比的折射计产品普及应用到更多领域,实现了科技进步、企业盈利与社会经济同步发展的目标。(二)在线折射计产品的研发与推广随着国家对环境污染治理的重视,机动车尾气排放第六阶段标准(国六标准)的落地以及中国制造2025(强调生产、物流的智能化)的开展。领航力嘉自2017年开始,进军液体浓度在线测量传感器领域,并于2018年做出快速开发车用尿素浓度在线检测传感器的决策。2019年,领航力嘉完成在线传感器产品的标准作业程序,同年送测B端客户。2020年,领航力嘉在线传感器产品的应用场景,已扩展至新能源锂电池制备(NMP回收液),柴油车尾气治理液监测(车用尿素液),机械加工过程监测(切削液)等多个领域,并实现量产出货。2022年,领航力嘉又将液体浓度传感器产品的应用扩展至制药行业,开辟了又一行业应用新领域。领航力嘉折射计系列:(一)便携式数字折射计MSDR-P系列MSDR-P系列折射计,2014年研发成功,并于当年获得第一项实用新型专利证书,2015年进入规模化量产阶段,该系列产品可测量液体的糖度、盐度、蜂蜜的波美度、酒类产品的酒精度、清洗液/玻璃水/车用尿素的浓度等等,适用于日常民用,以及食品、医疗、车用等行业。MSDR-P系列折射计,可搭配蓝牙模块,支持自定义修改刻线和云端数据存储,自进入国内市场以后,以其亲民的价格、稳定的性能和多场景应用,收获了大量的用户好评,市场份额逐年快速提升。MSDR-P系列折射计产品,主要依靠数学在电子技术上构建的优势和“互联网+”应用,获得了产品与服务的成功。在此基础上,后期MSDR-P系列产品线逐渐增加了MSDR-P0、MSDR-P1、MSDR-P2、MSDR-P3多种型号及定制化产品,从外观设计、价格、功能等各个方面满足了不同用户的需求。MSDR-P系列产品以2B2C销售模式为主,兼顾G端政府采购。近两年,我们着力推进G端环保监测用市场发展, 2020年产品中标广州市移动源监测能力建设项目,形成示范效应。主要解决柴油车车用尿素浓度检测的问题,因为车用尿素溶液能够将氮氧化物转换成无害的氮气和水排入大气中,实现节能与环保。(二)台式数字折射计MSDR-D系列MSDR-D系列折射仪产品采用线阵CMOS高精度传感器,采样精度高,重复性好。测量面采用蓝宝石玻璃,硬度更高,不易划伤,同时采用5寸大液晶显示屏,数据读取更便捷。标配18650锂电池,可自主更换。该系列产品拥有PC软件扩展功能,用户可以自定义刻线编程,定制属于自己的刻线,也支持经销商利用云端数据库下载不同应用。MSDR-D系列折射仪产品适用于科研实验室、食品饮料行业品质监控、医疗卫生、化工及汽车等多个行业领域,可满足特定客户定制需求。(三)在线传感器系列
  • 世界口径最大折射式光学望远镜将落地拉萨
    3月12日从西藏自治区科技厅获悉,“高海拔地区科研及科普双重功能一米级光学天文望远镜建设”项目日前正式启动,这意味着世界上口径最大的折射式光学望远镜将落地拉萨。  中国科学院国家天文台研究员、西藏自治区科技厅副厅长王俊杰向记者介绍说,该一米级光学天文望远镜由中国科学家自主研发建造,含多项科研技术攻关和突破,建成后将充分发挥西藏地区高海拔、观测条件好的特点,具备变星、双星等天体的较差测光,近地小行星及空间目标监测等多项科研观测功能。  在服务于天文和空间科学观测任务之外,该项目也将服务于民众的科普需求。据王俊杰介绍,米级天文望远镜系统配套有太阳科普望远镜观测系统、在线直播系统、米级望远镜和太阳望远镜的远程演示教学及摄影系统等,届时可开展白天和夜晚的天文科普活动。  据了解,该一米级光学望远镜研制完成后将建在西藏天文馆上。西藏天文馆有望于今年内开工建设,建成后将成为世界上海拔最高的天文馆。
  • ATAGO(爱拓)举办多波长阿贝折射仪安装培训
    为提高用户操作水平,加强与用户的交流,ATAGO(爱拓) 近日在东莞举办多波长阿贝折射仪安装调试用户培训。ATAGO应用工程师一行三人在位于东莞市东城区的广东省计量科学研究院东莞分院测试中心面向计量院测试中心用户培训多波长数显阿贝折射仪的安装调试及维护保养、使用注意事项等内容。 图为安装调试好的DR-M4/1550多波长数显阿贝折射仪 这次培训的仪器是ATAGO(爱拓)公司最新研制的DR-M4/1550多波长数显阿贝折射仪,计量院测试中心主要用于测量眼镜镜片的阿贝数,方便对镜片质量的鉴定。ATAGO(爱拓)多波长数显阿贝折射仪的主要特点是可以测量不同波长下的折射指数或阿贝数(vd 或 ve) ,波长范围从450至1550nm,且能在液晶屏幕上数字显示折射指数与阿贝数,极大地提高了工作效率。被广泛的应用到电子胶水、液晶面板、镜片等材料的检测上。 图为广东省计量科学研究院东莞分院办公楼和测试中心外景 通过对培训的调查,大多数客户都希望能增加培训的次数,多讲解实际操作时发生的案例。今后,ATAGO(爱拓)中国将继续努力,将用户培训越办越好。   更多有关ATAGO(爱拓)全线折射仪,旋光仪,糖度仪产品资料及应用技术的资料 请密切关注日本ATAGO 中国分公司网站: www.atago-china.com   ATAGO(爱拓)是专业的折光仪,折射仪与旋光仪生产厂商,生产多种类型的折光仪/折射仪及旋光仪。提供生产原料及成品的Brix值、折射率、盐度、糖度、物质浓度、旋光度的测量方案!   详情请点击 www.atago-china.com   或致电020-38108256   ATAGO(爱宕)中国分公司咨询
  • 什么是brix值及brix值与折射率的换算
    什么是Brix值? 折射计测量的是溶液的折射率。Brix标度实际上是表示是蔗糖水溶液的浓度。而在大多数溶液中除蔗糖外,可能还包括盐、矿物质和蛋白质等,Brix值表示溶液中总的可溶性固形物的含量。对于特定的样品,如切削油或其他工业产品,可通过建立Brix值与样品实际浓度的转换关系进行测量。 Brix(%)值与折射率(nD)换算表 % n 20D % n 20D % n 20D 0 1.33299 35 1.39032 70 1.46546 1 1.33442 36 1.39220 71 1.46790 2 1.33586 37 1.39409 72 1.47037 3 1.33732 38 1.39600 73 1.47285 4 1.33879 39 1.39792 74 1.47535 5 1.34026 40 1.39986 75 1.47787 6 1.34175 41 1.40181 76 1.48040 8 1.34477 43 1.40576 78 1.48552 9 1.34629 44 1.40776 79 1.48811 10 1.34782 45 1.40978 80 1.49071 11 1.34937 46 1.41181 81 1.49333 12 1.35093 47 1.41385 82 1.49597 13 1.35250 48 1.41592 83 1.49862 14 1.35408 49 1.41799 84 1.50129 15 1.35568 50 1.42009 85 1.50398 16 1.35729 51 1.42220 86 1.5067 17 1.35891 52 1.42432 87 1.5094 18 1.36054 53 1.42647 88 1.5122 19 1.36218 54 1.42863 89 1.5149 20 1.36384 55 1.43080 90 1.5177 21 1.36551 56 1.43299 91 1.5205 22 1.36720 57 1.43520 92 1.5234 23 1.36889 58 1.43743 93 1.5262 24 1.37060 59 1.43967 94 1.5291 25 1.37233 60 1.44193 95 1.5320 26 1.37406 61 1.44420 27 1.37582 62 1.44650 28 1.37758 63 1.44881 29 1.37936 64 1.45113 30 1.38115 65 1.45348 31 1.38296 66 1.45584 32 1.38478 67 1.45822 33 1.38661 68 1.46061 34 1.38846 69 1.46303 上表所用Brix0-85%与折射率之间的换算值系采用ICUMSA(国际糖分析办法协会,1974年成立)数据。 ATAGO(爱拓)是专业的折光仪/折射仪与旋光仪旋光仪生产厂商,生产多种类型的折光仪/折射仪及旋光仪 旋光仪。提供生产原料及成品的Brix值、折射率、盐度、糖度、物质浓度、旋光度的测量方案!更多折光仪/折射仪/旋光仪旋光仪详情请点击 www.atago-china.com 或致电020-38108256 ATAGO(爱拓)中国分公司 咨询。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制