当前位置: 仪器信息网 > 行业主题 > >

高动态范围条纹相机

仪器信息网高动态范围条纹相机专题为您提供2024年最新高动态范围条纹相机价格报价、厂家品牌的相关信息, 包括高动态范围条纹相机参数、型号等,不管是国产,还是进口品牌的高动态范围条纹相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高动态范围条纹相机相关的耗材配件、试剂标物,还有高动态范围条纹相机相关的最新资讯、资料,以及高动态范围条纹相机相关的解决方案。

高动态范围条纹相机相关的资讯

  • ZOLIX发布TIMART系列通用型条纹相机新品
    TIMART系列通用型条纹相机让条纹相机走进大众实验室,助力科研人员实现超快梦想! 条纹相机是一种同时具备高时间分辨(皮秒)与高空间分辨(微米)的瞬态光学过程测量仪器,既可直接用来测量超短光脉冲辐射的强度-时间-空间关联波形,也可以作为高时间分辨的图像记录设备和其它仪器,如显微镜、光谱仪等,构成联合诊断系统,实现超快空间-强度-时间分辨或能谱-强度-时间分辨的关联参数测量,是超快光化学、光物理、荧光过程、超短激光技术等领域研究的关键工具。TIMART系列条纹相机 是中国科学院西安光学精密机械研究所面向普通科研市场全新研制成功的通用型条纹相机。该系列条纹相机采用先进的同步扫描条纹变像管,集成了数字化同步扫描模块和单次触发扫描模块,首次实现程控切换单次扫描和同步扫描功能,极大的降低了用户使用难度,拓宽了相机使用范围。配合卓立汉光的光谱测试系统,可实现200nm到850nm光谱范围高灵敏时域光谱测量。同步扫描模式最高可实现300MHz同步测量,单次扫描模式可实现1kHz重复触发,使得条纹相机真正实现了通用化,走进普通实验室! 主要特点: l 紫外至近红外光谱响应,2ps时间分辨;条纹管多种光阴极可选,覆盖UV-VIS-NIR 宽光谱范围,最高2ps 的时间分辨率以及50lp/mm 空间分辨率l 主流核心部件,品质保障条纹管模块,增强器模块及相机耦合读出模块均选用主流厂家成熟产品,实现优异性能的同时,保障了量产稳定性和一致性l 兼容两种工作模式:高性能同步扫描/单次低频扫描模块集于一身同步扫描模块与单次低频扫描模块程控切换,可实现单次发光现象到高重频(300MHz)发光现象高灵敏度、高时间分辨获取,提升了系统通用性l 优化系统配置,提供超高灵敏度可以提供双级联MCP增强器作为信号增强,提供103-105信号增益以改善弱信号探测灵敏度;采用科研级大面阵制冷型相机作为读出单元,16 bits 输出, 10000:1 动态范围;光纤面板耦合读出方式,相比镜头耦合读出系统提升超过20倍的耦合效率!l 专业软件控制界面一体化相机控制界面,可订制化集成ccd、光谱仪一体化控制,流程清晰,操作简单;专业条纹图像采集、增强显示与数据处理软件,帮助实现数据深度挖掘;l 本地化专业技术支持服务,免除后顾之忧无需苦等出口许可,超短交货期!专业售后支持,本地技术团队快速响应!可预约免费样机、样品测试!l 与光谱仪连用,提供完整时域光谱测试解决方案 条纹相机与光谱仪配合使用,可实现光谱、光强与时间信息同时测量,完整方案可快速实现从ps到s量级宽范围时间分辨光谱测试!条纹相机选型参数列表:系列号ST10 T40T40-HDR推荐型号ST10-1LST10-2LST10-1FST10-2FT40-1FT40-1F-HDR条纹管阴极有效狭缝长度8 mm8 mm35 mm30 mm光学狭缝长度12 mm12 mm35 mm35 mm光学狭缝宽度0~3 mm 手动可调10 um调节精度0~3 mm 手动可调10 um调节精度0~3 mm 手动可调20 um调节精度0~3 mm 手动可调20 um调节精度阴极类型S20(200-850 nm),BB(200-900 nm),S25(350-900 nm)荧光屏P20,P43(P46,P47更多可选)同步扫描(S)频率40-300MHZNANA 触发(T)频率单次或 10 kHz单次或 1 kHz单次或 1 kHz条纹管时间分辨率(典型值)=2 ps(400 fs最小)50 ps(10 ps最小)10 ps条纹管空间分辨率(典型值)50 lp/mm50 lp/mm20 lp/mm扫描时间轴范围0.5 ns-1/6 fs @同步扫描-三挡可选1ns-1ms@触发扫描 三挡可选1 ns-1ms@触发扫描 六挡可选1ns-1ms@触发扫描 六挡可选像增强器 -1: 25mm单MCP; -2: 25mm双MCP40mm单MCP40mm单MCP像增强器增益(P20)-1: ≤1.00E+04 -2: ≤3.00E+05≤1.00E+04≤1.00E+04读出相机耦合方式镜头耦合1:1 光纤面板1:1 光纤面板1:1 光纤面板阵面2048*20482048*20484096*40964096*4096像素6.5um*6.5um11um*11um9um*9um9um*9um探测面尺寸13.3*13.3mm22.5*22.5mm36.8*36.8mm36.8*36.8mm像素阱深=30000e-=70000e-60000e-60000e-动态范围30000:130000:115000:115000:1制冷方式风冷或水冷水冷水冷最低制冷温度0度@风冷,-10度@水冷 -20度 -20度帧速50fps18fps3fps 16bit3fps 16bit通讯方式USB3.0USB3.0+以太网灵敏度效率一般高 高高典型特点同步扫描+触发扫描高时间分辨较低耦合效率高性价比同步扫描+触发扫描高时间分辨高耦合效率高灵敏度高性价比超长狭缝高灵敏度触发扫描超长狭缝大动态范围高灵敏度触发扫描电磁屏蔽设计 通用型XSC系列条纹相机选型指南: S---高重频同步扫描 T---单次、低重频扫描 F---光纤面板耦合读出 L---镜头耦合读出 10,20,40---条纹管狭缝长度尺寸 -1/-2----单级或双级联MCP像增强 -HDR---高动态范围 光谱仪建议选型参数列表:光谱仪型号Omni-λ2002iOmni-λ3008iOmni-λ5008iOmni-λ7508i光谱仪焦距200mm320mm500mm750mm相对孔径F/3.5F/4.2F/6.5F/9.7光谱分辨率(1200l/mm)0.3nm0.1nm0.08nm0.05nm波长准确度+/-0.2nm+/-0.2nm+/-0.15nm+/-0.1nm倒线色散(1200l/mm)3.6nm/mm2.3nm/mm1.7nm/mm1.1nm/mm光栅尺寸50*50mm68*68mm68*68mm68*68mm光栅台双光栅三光栅三光栅三光栅与条纹相机耦合中继光路耦合光谱仪入口选项光纤及光纤接口,标准荧光样品室,镜头收集耦合等 典型应用实例:1: 金属丝电爆炸试验(不同气氛压力下) (西安交通大学1)2: 有机小分子ASE 寿命测试(华南理工大学DOI: 10.1002/adom.201900701,Adv. Optical Mater.)3:激光电离空气等离子体全光谱测量 4:荧光寿命测试—某钙钛矿PL时间分辨光谱测试 5: Cs4PbBr6 以及 CsPbBr3 钙钛矿材料的超快荧光组分寿命测试(2019年10月9日的 Physical Chemistry Letters,兰州大学 ) 主要应用方向: l 超快化学发光l 超快物理发光l 超快放电过程l 超快闪烁体发光l 时间分辨荧光光谱,荧光寿命,l 半导体材料时间分辨PL谱l 钙钛矿材料时间分辨PL谱l 瞬态吸收谱,时间分辨拉曼光谱测量l 光通讯,量子器件的响应测量l 自由电子激光,超短激光技术l 各种等离子体发光 l 汤姆逊散射,激光雷达l 。。。。。。创新点:" --集成了数字化同步扫描模块和单次触发扫描模块于一体,国际首次实现程控切换单次扫描和同步扫描功能,降低了用户使用难度,拓宽了相机使用范围,增强通用性; --采用制冷型光纤面板耦合相机读出,提升了耦合效率。"TIMART系列通用型条纹相机
  • 我国高性能条纹相机研制成功打破垄断 可用于核反应观测
    centerimg style="width: 450px height: 600px " title="" alt="" src="http://09.imgmini.eastday.com/mobile/20180522/20180522164559_eff1a22b439951d4dd665467a1f75818_1.jpeg" height="600" hspace="0" border="0" vspace="0" width="450"//centerp  今天,由中科院西安光机所承担的国家重大科研装备项目“高性能条纹相机的研制”顺利通过验收,标志着我国具有自主知识产权的高性能条纹相机达到实用化水平。这一成果打破了国际在这一领域的垄断,对前沿科学研究以及国家重大工程建设具有重要意义。/pcenterimg style="width: 450px height: 338px " title="" alt="" src="http://09.imgmini.eastday.com/mobile/20180522/20180522164559_eff1a22b439951d4dd665467a1f75818_2.jpeg" height="338" hspace="0" border="0" vspace="0" width="450"//centerp  条纹相机是具备超高时间与高空间分辨的唯一高端科学测量与诊断仪器,在激光聚变等超快现象研究中发挥着重要作用。经过多年研究,研究团队成功解决了条纹相机制备过程中存在的各种工艺问题和工程实施难题,取得了多项创新性成果,实现了时间分辨率、动态范围和同步频率三个关键技术指标的显著提升。/pcenterimg style="width: 450px height: 338px " title="" alt="" src="http://09.imgmini.eastday.com/mobile/20180522/20180522164559_eff1a22b439951d4dd665467a1f75818_3.jpeg" height="338" hspace="0" border="0" vspace="0" width="450"//centerp   在国家重大科研装备项目的支持下,中科院西安光机所建成了国内唯一的集设计、生产、检测为一体的条纹相机研发基地,目前已成功研制出八种类型的条纹相机,对能源、材料、光生物、光物理、激光技术、高能物理等领域均具有重要的意义,为国家大科学工程、基础前沿和国防安全提供了核心技术保障。/pp 专家组认为,项目组完成了飞秒条纹相机、同步扫描条纹相机和大动态范围条纹相机的研制工作,所有技术指标均达到实施方案规定的考核指标要求,三类条纹相机均已达到实用化,其整体性能达到国际先进水平。项目还建成了设计与仿真平台、电真空器件制备平台、超快电子学技术平台、综合测试与分析评估平台,形成了模块化、小批量条纹相机的研制生产能力,并培养了一支高水平的条纹相机专业化研发团队,专家组同意项目通过验收。 br//pp  2012年1月起,中科院西安光机所启动了“高性能条纹相机的研制”项目,历时多年终于研制成功。验收专家组组长、中国工程院院士刘文清表示,核物理、核聚变等很多超快现象的观测记录,都需要这种高端设备。西安光机所研制的条纹相机,打破了国际上在这种高端检测装备上对我们国家的垄断。从目前条纹相机的整体性能来说,达到了国际先进水平,在电子调控、成像速度等方面达到了国际领先水平。/pp  对于“显微”技术人们并不陌生,这是观测微观世界的空间放大技术,可以“延长”人眼的空间分辨能力,而超高速成像,则是观测瞬态事件的时间放大技术,可以“延长”人眼的时间分辨能力。条纹相机正是实现这一微观和超快过程探测的必要手段,也是唯一同时具备超高时间分辨与高空间分辨的高端科学测量与诊断仪器,更是惯性约束聚变等国家战略高技术研究中不可或缺的诊断仪器。/pp 据了解,条纹相机是同时具备超高时间分辨(皮秒–飞秒级)与高空间分辨(微米级)的唯一高端科学测量与诊断仪器,涉及的仪器和技术已接近物理极限,代表了当前光电诊断技术的最高水平,是实现微观和超快过程探测的必要手段。目前已成功研制出八种类型的条纹相机,满足了不同应用背景和一些特殊应用环境的测量需求。/pp  不过高性能条纹相机项目负责人、中科院西安光机所所长赵卫表示,条纹相机的研制涉及光学、光电子、超快电子学、微电子学、精密机械和计算机等多门学科,研制起点高、难度大,目前国内只有少量单位具备初步的研发能力 而作为十分敏感的尖端技术,条纹相机的国际学术研究成果及器件设备的共享性很低,国外相关的技术对我国实行严格的封锁,对条纹相机也实行严格的出口管制。/p
  • 测试范围最宽的动态机械分析仪落户中国
    继北京化工大学率先引进了法国01 db生产的高级DMA仪器后,超宽的频率范围(1e-5Hz~1000Hz),极宽的力值范围(± 0.002± N~450N),特强的仪器架构刚度(5e+7N/m),结合功能极其完善的软件,将材料力学性能测试的水平推向了一个崭新的高度。01 db DMA已经成为衡量动态机械分析的新尺度、新水准。 一年的时间内,许多用户相继与北京仪尊时代科技有限公司进行了技术交流,对01 db DMA仪器表达了极大的兴趣和强烈的购买欲望。并在各个领域发挥着重要作用。比如,南京大学购置的最新型DMA+450系用于研究高级减震材料的开发;中科院北京声学研究所订购的DMA+450,用来进行水下降噪材料的研究。航天部第703研究所使用该设备进行高级航天减震材料的评估。相信在不久的将来,01-db DMA仪器必将成为我国高等院校、科研院所及大型橡塑企业的最强大的动态力学测试平台,为我国新材料的研发和生产做出巨大贡献。另外,在轮胎行业,01dB-Metravib公司已经成为米其林、固特异、普里斯通等国际巨头的DMA唯一特许供应商。在轮胎品质保证方面发挥着重要作用。如需要此产品的详细介绍,请电话咨询:010-84831960。
  • 条纹相机校准用-黑体校准积分球光源
    在开发用于测量光源色温 (CCT) 的相机系统时,对其进行正确的校准以提供准确的读数是非常重要的。通常使用已知温度的标准黑体光源来完成校准。 一家研究机构需要一个可以模拟 5000K 和 2856K 曲线的黑体光源来校准他们正在开发的条纹相机。 客户要求该系统尺寸足够小,可通过 340 mm的开口孔安装到用于其测试配置的腔室中。 图1 条纹相机(源于网络图片)Labsphere(蓝菲光学)为客户提供了一个准确、安全、易于使用且可以轻松集成到他们的测试环境中的黑体光源。系统中的 8 英寸的积分球有一个 2 英寸的开口,并配备了几个高级组件,使其能够满足客户的规格要求:图2 Labsphere(蓝菲光学)提供的黑体校准积分球光源图3 标准化测量辐亮度和5015K黑体曲线两个卤素灯,可在开口处提供高达 40,000 cd/m2 的光通量;开口端的色彩平衡 Omega 滤光片可调整 CCT 并将光谱输出完美匹配黑体曲线;硅探测器组件:用于测量可见光光谱通量的;以及光谱仪:用于测量两次测试之间的波长分布;-两个探测器的滤光片组件,包括一个快门滑片、附加色彩平衡 Omega 滤光片和一个用于第三个滤光片的滑片特定应用的安装底板,设计用于安装在腔室中,以及 3 米长的电缆,使电源机架和计算机能放在外面使用;制冷风扇,以防止意外灼伤和设备损坏。特点图4 面均匀性-97.5%具有 97.5% 的面均匀性,每次测试都能保证准确的结果;设计灵活,客户可使用一个系统在多种温度下校准相机;光谱输出与客户要求的黑体曲线完美匹配,提供与标准黑体光源相同的精度;使用 Labsphere (蓝菲光学)的 HELIOSense 软件可以轻松对每个组件进行微调控制以及实时数据收集和可视化;Labsphere(蓝菲光学) 保持与客户密切沟通,使客户能够获得专为他们的测试环境设计和构建的系统;提供的探测器可确保灯准确校准,并且提供可靠地测试数据。
  • 祝贺中科院西安光机所高性能条纹相机研制成功,国内代理商卓立汉光今日起售!
    2018年5月22日,由中科院西安光机所承担的国家重大科研装备项目“高性能条纹相机的研制”顺利通过验收,标志着我国具有自主知识产权的高性能条纹相机达到实用化水平。这一成果打破了国际在这一领域的垄断,对前沿科学研究以及国家重大工程建设具有重要意义。 中科院西安光机所展示研制成功的部分高性能条纹相机卓立汉光为中国制造而自豪,如果想要进一步了解黑科技,请联系西安光机所条纹相机官方销售合作渠道:北京卓立汉光仪器有限公司。条纹相机作用:对于“显微”技术人们并不陌生,这是观测微观世界的空间放大技术,可以“延长”人眼的空间分辨能力,而超高速成像,则是观测瞬态事件的时间放大技术,可以“延长”人眼的时间分辨能力。条纹相机正是实现这一微观和超快过程探测的必要手段,也是唯一同时具备超高时间分辨与高空间分辨的高端科学测量与诊断仪器,更是惯性约束激光聚变国家战略高技术研究中不可或缺的诊断仪器。 条纹相机的研发背景: 高性能条纹相机项目负责人、中科院西安光机所所长赵卫表示,条纹相机的研制涉及光学、光电子、超快电子学、微电子学、精密机械和计算机等多门学科,研制起点高、难度大,目前国内只有少量单位具备初步的研发能力。 作为十分敏感的尖端技术,条纹相机的国际学术研究成果及器件设备的共享性很低,国外相关的技术对我国实行严格的封锁,对条纹相机也实行严格的出口管制。2012年1月起,中科院西安光机所启动高性能条纹相机的研制,在国家重大科研装备项目的支持下,中科院西安光机所建成了国内唯一的集设计、生产、检测为一体的条纹相机研发基地,目前已成功研制出八种类型的条纹相机,对能源、材料、光生物、光物理、激光技术、高能物理等领域均具有重要的意义,为国家大科学工程、基础前沿和国防安全提供了核心技术保障。 研发成功的深远意义: 验收专家组由中科院合肥物质科学研究院刘文清院士担任组长,专家组给出的验收意见提到,该项目所有技术指标均达到实施方案规定的考核指标要求。核物理、核聚变等很多超快现象的观测记录,都需要这种高端设备。西安光机所研制的条纹相机,打破了国际上在这种高端检测装备上对我们国家的垄断。从目前条纹相机的整体性能来说,达到了国际先进水平,在电子调控、成像速度等方面达到了国际领先水平。赵卫说,这对我国精密测量仪器水平的提高以及打破国际封锁、替代进口、实现超快诊断相关技术与仪器的自主研制生产、满足国家重大工程、国家战略高技术及前沿科学领域的需求具有极其重要的战略性推动作用,解决了我国条纹相机这一高端科学仪器受制于人的窘境。
  • 新品推荐|动态范围2500000:1!滨松OPAL光谱仪问世,超越常规!
    滨松借助独特的探测器技术、F/2.2大口径光学系统、极低杂散光设计,成功开发了一种新型光谱仪——滨松0PAL-Luxe 光谱仪。在 200 nm 至 900 nm 的光谱范围内达到2,500,000:1 的极高动态范围,比常规科研级光谱仪高2~3个数量级,满足强弱光谱信号同时测试的需求。产品特点2,500,000:1 动态范围F/2.2 相对口径200nm -900nm覆盖0.9nm光谱分辨率±0.1nm光谱准确度应用激光测试等离子体光谱薄膜测量吸光度测量颜色测量光化学拉曼光谱测试示例图1:激光测试图2:全息滤光片OD值的测量(532nm) 图3:薄膜厚度测量 图4:氮化镓的光致发光测量
  • 扫描探针显微镜宽动态范围电流测量系统的研制
    成果名称扫描探针显微镜宽动态范围电流测量系统的研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:扫描探针显微镜(SPM)是研究材料表面结构和特性的重要分析设备,具有高精度和高空间分辨的优点,可以在多种模式下工作。其中,扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。SPM中用于探测针尖与样品间电流的关键部件是电流-电压转换器(I-V Converter),其作用是把探测到的微弱电流信号转换为电压信号以便后续处理。目前商用SPM设备中采用的是虚地型固定增益线性电流-电压转换器,典型灵敏度为108 V/A,其主要缺点是电流测量的动态范围较小,只能达到3~4个数量级,这使得目前SPM的电流测量能力被限定在10pA~100nA之间,阻碍了SPM在微纳电子学领域的应用。2012年,信息学院申自勇副教授申请的&ldquo 扫描探针显微镜宽动态范围电流测量系统的研制&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持,在项目资金的支持下,申自勇课题组开展了富有成效的工作,包括:(1)宽动态电流测量系统总体设计;(2)测量系统与SPM控制系统的接口设计;(3)测量系统加工制作和联机调试;(4)测量系统性能指标的测试评估与优化。此外,课题组还克服了皮安级微弱电流的高精度低噪声测量、反馈回路中用于非线性转换的双极结型晶体管的温度补偿等技术难题,所研制的测量系统取得了良好的效果。目前,该项目已经顺利结题,其成果装置已经在该课题组相关仪器上正常使用,并在向校内外相关用户推广。应用前景:扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。
  • 国内首台测试范围最宽的高级动态力学分析仪(DMA)进驻北京化工大学
    全球500强、世界核能巨无霸企业 - 法国AREVA集团旗下01dB-Metravib公司生产的高级动态力学分析仪(DMA)一直在塑料、橡胶和轮胎领域享有盛名。拥有众多如米其林、普里斯通、固特异、拜耳、福特、道化学、剑桥大学、汉高等国际著名用户。日前,北京化工大学经过反复的调研论证,已经和法国01dB-Metravib公司的中国总代理——北京仪尊时代科技有限公司签署了购买合同和合作协议。希望它将成为该校塑料、橡胶、轮胎等领域研究的得力帮手。 该设备的测试范围极宽,力值可由0.002N到450N,其最高频率可达1000Hz,单次试验可测试模量7个数量级的变化。是目前市场上测试范围最宽的高级动态力学分析仪(DMA)。
  • 布鲁克推出具有更高动态范围的timsTOF HT质谱,进一步完善4D蛋白质组学平台
    第70届美国质谱年会(70th ASMS Conference on Mass Spectrometry and Allied Topics)于明尼苏达州(Minnesota)当地时间2022年6月5-9日(北京时间 2022年6月6-10日)举办,会议期间布鲁克公司推出新的 timsTOF HT 系统,进一步拓展了革命性的 4D-多组学 timsTOF 平台。timsTOF HT 采用新型第 4 代 TIMS(trapped ion mobility separation,捕集离子淌度分离)XR cell 和14 位 Digitizer,可实现更宽动态范围、更深的肽段覆盖率和更准确的定量分析。该系统在 4D 血浆、组织蛋白质组和表观蛋白质组学中表现出色。这些系统性能的提升不以牺牲超高灵敏度和高通量蛋白质组学分析(例如每天分析 50 个样本(SPD)或是高达 200 SPD 时的超高稳定性为代价,也不影响结果的可靠性(肽段和蛋白水平控制 1% FDR(错误发现率)),并且避免了靶向免疫识别方法中固有的抗原交叉反应性。利用 dia-PASEF 技术,timsTOF HT 质谱仪可以微克级样本中,在 60 分钟梯度内鉴定超过 100k 独特的肽段其定量分析 CV 值更是低于 5%。此外,timsTOF HT 还针对高通量、高深度和无偏血浆蛋白质组学和液体活检生物标记研究进行了优化。耶拿大学的 Florian Meier 教授说:“我们与布鲁克的合作实现了流程化组织蛋白质组学分析,这是临床蛋白质组学的一个关键领域。由于组织切片和活检常包含非常异质的细胞群,因此对他们的分析极具挑战性。timsTOF HT 系统的 dia-PASEF 采集模式可以在宽动态范围内对蛋白质进行定量分析,即使是在心脏组织等非常困难的样本中,也不会损失分析通量和灵敏度。”PrognomiQ 公司蛋白质组学部门副总裁 Bruce Wilcox 博士在胰腺癌研究中使用 Seer Proteograph 和 timsTOF Pro 2,在深度、无偏血浆蛋白质组学中对生物标志物进行探索研究。Wilcox 博士表示:“我们收集了 193 个胰腺癌患者和健康人群的样本,并采用 5 种 Seer 纳米颗粒处理样本,在这些样本中共检测到 3822 种蛋白质。通过使用多个 timsTOF 系统,约 2933 种蛋白质在至少 25% 的患者样本中被鉴定到。”在本届 ASMS 上布鲁克还宣布与 Scienion 达成协议,其具有极高灵敏度的 timsTOF SCP 系统与 CellenONE F1.4 单细胞 pico-分配器和新的 ProteoChip™ 进行共同销售,实现了由单一供应商提供的无偏、非标记单细胞蛋白质组学 (SCP) 解决方案。Scienion GmbH 首席执行官兼创始人 Holger Eickhoff 博士评论说:“我们很高兴与布鲁克一起提供完整的 SCP 解决方案。借助扩大合作关系,并通过结合我们 SCP 团队的专业知识来加速单细胞蛋白质组学解决方案的研究与开发,从而更好地满足单细胞蛋白质组学界的需求。”
  • 重磅发布 | Marana-X--用于直接软X射线和EUV成像的超快、高灵敏相机
    近期,专业的科学成像与光谱解决方案供应商牛津仪器Andor Technology宣布推出新的Marana-X系列相机,专业用于高能射线的检测分析和成像。兼具高帧频、高动态范围、高量子效率 该产品集成全新科研CMOS技术(sCMOS),专为超快软X射线/EUV层析成像和高次谐波产生(HHG)等应用而设计。与传统的慢扫描CCD相机相比,Marana-X的出现代表了重大的技术进步。它通过同时提供高帧频、高灵敏度和高动态范围,克服了软X射线-EUV能量范围内慢扫描CCD的传统局限性。它集成了“无涂层”、420万像素的sCMOS传感器,在80 eV-1keV范围内量子效率大于90%、全幅速率为74帧/秒以及更高的动态范围(34000:1@16bit), 这种独特的组合使用户可以更好地采集动态变化的过程,增加高质量图像数据的输出通量,同时可缩短实验时间,非常适用于大型层析扫描图像的重构等实验。sCMOS内置的无快门技术解决了传统机械快门寿命和重复率有限的问题。Marana-X 同时配备即插即用的USB3接口和适用于高能物理环境的CoaXPress接口,可轻松集成到各种基于真空的实验装置中。牛津仪器Andor-高能探测产品专家Thomas Woodward 评价该款仪器:"Marana-X是对Andor高性能sCMOS产品系列的进一步补充。随着世界范围内高能物理光源升级到更高的光学通量和重复频率,科学家需要合适的探测器技术来最大限度地利用这些新的高能光源。Marana-X具备的高灵敏度、高帧频和出色的动态范围,是应对这些实验挑战的理想选择。" Marana-X 参数 项目参数高灵敏:QE高达99%高帧频:可高达74帧/秒高动态范围:可高至16位抗EMP:CoaXPress数据接口真空深度冷却:-45℃ 制冷
  • 【新品】第三代红外探测器:高动态范围二类超晶格T2SL
    以上有关新品的信息已经全部介绍完毕了,点击此处下载相关产品资料。
  • 满足明场和荧光成像需求,鑫图发布新一代高灵敏彩色sCMOS科学相机Dhyana 400DC!
    近年来,鑫图全力进入sCMOS相机的开发,全方位进行相关的软硬件、算法集成等前瞻性基础研究工作, Dhyana作为鑫图高端sCMOS相机品牌,推出后受到各界人士广泛关注! 400DC是鑫图采用最新彩色sCMOS图像传感技术,结合核心色彩还原算法,推出的新一代彩色科学相机,能同时满足明场高质量色彩还原的需要,又极大拓展了色彩在荧光等暗场成像中的应用可能。 不仅如此,为满足高端科研需要,400DC同时提供诸如高速录像、荧光合成实时预览等多种高级图像处理功能!最高可达2000fps的快速录像,就算是单分子荧光自旋成像如此超高难度的挑战,也能游刃有余! 鑫图致力于为每一位用户发掘科学摄影的无限潜力, 400DC是鑫图继高灵敏科学级CMOS黑白相机后,为满足更多色彩应用需求开发的又一诚挚之作,科研级的灵敏度、极低的噪声,卓越的动态范围以及完美色彩还原能力为科学影像带来了迄今最高品质的真实色彩体验!
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的更多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号比较丰富,从灵敏度高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • Small Methods综述:扫描透射莫尔条纹方法(STEM-MF)
    当两套空间频率相近的周期性条纹或点阵相互干涉,就可能形成莫尔条纹(moiré fringe)。莫尔条纹常被应用于光学、机械学等学科进行图像处理、滤波等。在常用的材料学表征方法,如原子力显微镜(AFM)、扫描隧道显微镜(STM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)中,莫尔条纹亦被应用于材料的位错识别、晶格应变分析等。  产生莫尔条纹的周期性结构可以是样品中的两套周期性晶格,也可以是扫描电子束遵循的周期性点阵与晶体的晶格。莫尔条纹概念应用于扫描透射电镜(STEM),可以通过控制扫描电子束的空间频率(即扫描点阵)与被分析的晶格点阵发生干涉,利用这种可控差拍干涉分析材料微结构的方法叫做扫描透射莫尔条纹方法(STEM-moiré fringe,简写为STEM-MF)。该方法由苏东和朱溢眉于2010年最先提出,并得到电子显微学领域的关注与发展。该方法通过获取实空间的干涉图样研究材料微结构,有如下优点:1)具有较大的视野范围 2) 对晶格变化的敏感性高 3) 可显著降低电子束辐照剂量 4) 具有高度可调的扫描策略以适应不同的晶格点阵。  最近,北京工业大学柯小行副教授课题组与中科院物理所苏东研究员课题组合作撰写综述文章,全面介绍了STEM-MF方法的相关理论,并进一步结合几何相位分析(GPA)、环形明场成像(ABF-STEM)、能量色散 X 射线光谱(EDX)和电子能量损失光谱(EELS),深入讨论了该方法的发展。继而通过STEM-MF在应变分析、缺陷研究、二维材料结构分析和电子束敏感材料结构表征上的应用,总结分析了STEM-MF在解决材料表征问题中的优势。最后,文章对STEM-MF的发展趋势进行展望,为STEM-MF应用于材料结构表征提供了崭新的思路。    文章提出STEM-MF方法的主要应用包括:  (1)材料应变分析:莫尔条纹对两套晶格周期及相对旋转角度高度敏感,因此可以利用STEM-MF进行应变分析。该方法已被用于半导体、金属等材料的定量化应变分析,兼具高精度(可达0.05-0.02%)和大视野范围的优点。  (2)材料缺陷研究:利用缺陷产生的应变可实现STEM-MF的缺陷识别,克服了常规 STEM 成像中高分辨条件下视野有限的缺点,能够在较低的放大倍数下快速定位缺陷,并在氧化物异质结、热电材料中得到了应用。  (3) 二维材料的结构表征:STEM-MF方法在快速定位晶界、界面缺陷和晶格扭曲等方面具有独特优势,因此在石墨烯和过渡族金属二硫化物等二维材料的微结构分析中有巨大的应用潜力,已被用于分析二维材料同质结、异质结等结构。  (4)电子束辐照敏感材料的低剂量表征:由于STEM-MF的扫描特点,能够在较大的扫描范围内调节步长,从而可减少高达99%的电子束辐照剂量。因此,该方法在研究电子束辐照敏感的材料方面有诱人的应用前景,目前已被初步应用于有机晶体和部分无机材料的结构表征。鉴于软物质结构表征的重要性,作者期望该方法能够在有机材料、生物材料、Mxenes 和MOF等更多的电子束辐照敏感材料的表征中发挥其应有的潜力。  文章最后讨论了STEM-MF的挑战和机遇,并就样品漂移等STEM不稳定因素的影响、机器学习方法的融入、扫描点阵的设计策略等方面提供了方案和建议。  论文信息:  Moiré Fringe Method via Scanning Transmission Electron Microscopy  Xiaoxing Ke*, Manchen Zhang, Kangning Zhao, Dong Su*  Small Methods  DOI: 10.1002/smtd.202101040
  • 走进牛津仪器ANDOR:普通相机到科学相机,为“弱光成像”点亮科技之光
    上世纪八十年代,在贝尔法斯特女王大学物理系,ANDOR创始人Donal Denvir在研究工作时发现当时应用的相机不能满足他们的实验需求,因此开发研制了一台全真空密封的相机供自己使用,新研制的相机成功应用于各种成像和光谱研究。此后,女王大学的其他研究团队和众多其他高校研究人员也对此类相机产生了科研需求。此背景下,1989年,ANDOR在贝尔法斯特女王大学创立,总部设立在北爱尔兰的贝尔法斯特, 致力于为学术、工业和政府机构客户提供专业的光学探测解决方案和优质服务。ANDOR总部创立32年以来,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,为单光子探测、多维活细胞显微观察等应用提供了强大而经济的解决方案,在生命科学等领域被广泛应用;2009年,联合推出sCOMS相机,被广泛应用于物理科学、生命科学、材料科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功。2015年,ANDOR加入牛津仪器,引领牛津仪器战略扩展至纳米生物领域。2020-2021两年期间,ANDOR中国实施多项调整措施,发挥出色供应链管理能力,进一步满足国内科研工作者的需求。如上,ANDOR已经发展成为科学成像、光谱解决方案和显微系统的全球知名品牌。其产品技术应用广泛,涵盖物理科学、生命科学,以及工业等领域。为全面认识ANDOR,BCEIA 2021期间,仪器信息网采访了牛津仪器ANDOR中国区经理朱飞,请其分享了他眼中的ANDOR,及ANDOR在中国市场的本土化发展现状。访谈现场(右:牛津仪器ANDOR中国区经理朱飞)从普通相机到科学相机:解决“弱光”、“快速”问题我们生活中常见的单反相机等普通相机与ANDOR主要产品技术的科学相机原理相同,都是一种利用光学成像原理形成影像并记录影像的设备。但也有许多不同之处,为便于理解,本次的访谈首先从结构功能和解决哪些问题两方面谈了科学相机的“科学”之处。结构功能方面的两点不同首先,科学相机的芯片尺寸更大。这意味着可以获得的光子数目更多,更灵敏的探测到光信号,即承载光子的能力越强。如此,在弱光条件下,科学相机相比普通相机,就可以展示其弱光成像的优势。其次,科学相机整体尺寸也更大,这与其配置更多智能化功能有关。比如,在傍晚使用普通相机拍照时,需要较长时间的曝光量,而科学相机或许只需几个毫秒就可以达到更高的清晰度。这是由于科学相机更高的灵敏度,除了芯片更大,另外基于ANDOR的UltraVac专利技术,将芯片密封于一个真空腔中,与外部环境间的热交换控制在最低水平,得以实现对芯片的深制冷,芯片噪声极大下降,进而大大降低了图像的噪点。科学相机主要解决的三个科学问题首先,科学相机解决的最多的是“弱光”成像问题,这是普通相机无法企及的。其次,科学相机可以解决动态范围大的问题,动态范围即在一个视场下最强信号与最弱信号的比值,比值越大,则包容的信息越多,更容易得到各层次都清晰的图像。比如拍摄火焰,普通相机会过曝,而科学相机则可以通过一定的方法,将火焰的每个层次都拍出来,这对于航天发动机的研究中通过火焰成像反演浓度配比、工艺等都十分重要。第三,科学相机可以解决“快”的问题,单反相机连拍功能可以每秒连拍几张照片,而科学相机则可以达到成千上万幅的帧速。而快速成像在物理科学、生命科学等领域都有着广泛的应用。光信号→电信号→数字信号拓展来讲,所有相机的功能都是一样的,就是把光信号转变成电子信号,然后电子信号再通过数位数模转换,转换成数字信号,所以我们看到的图像都是不同信号强度呈现的结果。科学相机大部分的探测器范围在200nm-1100nm之间,在这个波长范围内的光,科学相机都可以探测到。如果超出此范围,则可以在相机探测器前加一个材料(如晶体)将光的波长转换成可以探测的范围内,进而便可以用科学相机观测。比如,电镜中成像的相机,由于发射的二次电子等电子波长超出了科学相机的探测范围,因此往往会在探测器前加一个闪烁体,将其转变成科学相机可以探测的波长进而将信号转变成电信号,再通过数位数模转换成数字信号,最终得到电镜图像。ANDOR业务布局:纵向基于弱光成像,横向围绕多学科交叉纵向:围绕弱光、快速成像的五大产品线从产品层面而言,ANDOR希望产品技术契合的是“弱光”、“快速”成像领域。围绕“弱光”、“快速”,ANDOR推出一系列产品技术方案,并广泛应用于物理科学、生命科学等领域。“弱光”方面,比如EMCCD相机,在物理科学领域可以用于天文观测,通过观测一些恒星微弱的光变,来帮助科学家探寻系外星系。近年来,EMCCD相机在量子光学领域也被大量应用,主要用于冷原子的拍摄,进而探索原子更多纯粹的性能,这些都解决了“弱光”的问题。“快速”方面,是大多数科学研究领域都需要的技术需求。比如ANDOR于2009年推出的sCOMS相机在生命科学领域,应用于DNA测序、高内涵、高通量药物筛选,这些都需要快速的筛选速度,拍摄每秒上百幅的帧频,以极大提高观测的通量。天文观测时,大气抖动会导致星星闪烁,要消除这一现象,可以采用幸运成像的方式,将曝光时间调至很短,如毫秒级,不断拍摄,然后通过后期软件处理得到更清晰图像。再如,生命科学应用中的钙离子成像,通过电火花信号传导,过程很快,也需要短时间内快速拍摄多幅图像,才能通过图像分析整个动态过程。围绕“弱光”与“快速”,ANDOR产品主要涵盖五大类。一是科学相机,基于弱光成像,相关型号最为丰富,从灵敏度最高的可以探测到单光子级别的EMCCD,到业内广为使用的sCMOS相机,再到应用于需要长时间曝光的极弱光实验的专用CCD等。产品囊括观测范围小至细胞观察,大至整个宇宙星系观测的科学相机。二是光谱,主要包括光谱仪、紫外-近红外-短波红外光谱相机、光谱附件等。如2019年ANDOR推出智能化光谱仪,利用Adaptive Optics技术,给用户提供了区别于传统光谱仪的智能对焦功能,帮用户简化实验、操作更容易。三是显微成像系统,其中就包括2016年获得R&D 100(国际科技研发领域极为推崇的科技研发奖)的Dragonfly转盘共聚焦成像系统,其扫描速度相比传统点扫描快10倍以上,在市场上被广泛认可,并取得巨大成功。同时,ANDOR收购了Spectra Instrument公司,其Borealis™ 均匀化照明技术帮助ANDOR在显微成像均匀度方面脱颖而出,从小尺寸的细胞到大尺寸的组织等成像方面都具有明显优势。四是Imaris图像分析软件,在多维图像处理领域,三维、四维图像处理软件的客户主要是生命科学研究者,这些研究者用Imaris进行跟踪分析从而得到想要的结果,且该软件可以和高速共聚焦成像平台联合使用。具体应用包括细胞之间动态化研究、神经免疫学、癌症治疗研究等。五是光学恒温器,该产品系列今年首次纳入ANDOR,来自牛津仪器纳米科学部门。该产品系列主要服务于物理科学,为科学家提供从3k到500k范围的低温环境从事相关研究,比如,拉曼光谱、荧光光谱、太赫兹、傅里叶红外光谱等手段表征时,样品材料需要在低温条件下才能更加显著的吸收信号,而光学恒温器就为这些实验提供合适的低温环境。横向:多学科交叉发展下的三大应用领域从产品应用领域而言,当下,物理科学与生命科学在许多场景下结合紧密。时下火热的超分辨成像技术多数便是一群物理学家在开发生命科学领域的应用仪器。如STED成像技术、SIM成像技术、单分子开关技术等,无一例外都利用了物理科学的一些方法。而ANDOR也是物理科学背景起家,基于对产品的理解,为生命科学家们开发出一系列生命科学的仪器。未来,各学科之间的交叉将会越来越多,科学仪器领域相关交叉表现也十分明显。比如,以往的光谱仪并没有配置显微镜,主要通过拉曼、荧光光谱等检测一些晶体或块状样品。而随着整个研究向微观尺度的发展,拉曼光谱等逐渐开始与电镜、原子力显微镜等联用,以进一步解决纳米尺度的科学问题。从此角度而言,ANDOR也在以仪器为核心,探寻各类仪器之间的契合点,并不断开发或拓展能够满足未来科学发展融合需求的仪器技术或解决方案。基于此,ANDOR主要业务可分为三大应用方向,即生命科学、物理科学,以及工业三大领域。针对个性需求,设立“客户需求定制部门”ANDOR科学相机等产品经常可以搭配在其他仪器上使用,ANDOR会有许多对产品设计有个性化需求的客户。针对此,除了要求每一位销售/售后工程师都具备丰富的产品知识、客户应用知识,ANDOR还特别设置了“客户需求定制部门”,为工业合作伙伴的特殊需求提供便利。比如,ANDOR已有的科学相机、光谱商品化产品可能不能符合这些客户需求,相关个性需求包括:个性外壳需求、公司VI喷涂、不同功能模块的选配、光谱范围的定制等,客户需求定制部门则可以与客户进行沟通并尽量满足。而定制化能力也是ANDOR长期专注于工业领域解决方案的一个基础。ANDOR在中国:科学相机保有量超5000台,加速本土化发展业绩同比增30%,中国业绩占比20%牛津仪器在过去20年,具有保持每年20%左右增长的不俗表现,而ANDOR的业绩表现也十分亮眼。据朱飞介绍,ANDOR中国在去年业绩受疫情影响不大,今年更是通过内部的快速调整、人员架构的变动、新品发布等措施,目前业绩已实现相比去年同期30%的增长。从全球布局来看,ANDOR全球业务按地区分为北美洲、欧洲、亚太,三者基本三分天下,而中国市场业绩占比约近20%,已成为ANDOR最重要的市场之一。ANDOR在中国,除了20余位销售和应用团队的支持,也在2016年成立中国客户服务中心,解决维修等本土化售后问题。同时,为便于更好的售后服务落地,ANDOR中国的售后应用团队规模还在不断壮大。各兄弟部门之间协同合作,提供更全面解决方案2015年,ANDOR加入牛津仪器,随之ANDOR在人事、财务、市场推广等方面得到牛津仪器的大力支持。牛津仪器各个业务部门之间定期会有产品技术培训、市场信息、客户关系等方面的沟通交流活动,为客户提供更加专业高效的服务。例如ANDOR和纳米科学部门在量子领域、ANDOR 和 AR部门在生命科学领域等都可以有很多灵活的合作方式。 同时各业务部门之间会定期安排内部分享会,分享产品技术,增进相互了解与合作;分享各自业务,便于为各自覆盖的用户提供更全面的解决方案,帮助业务得到更好的拓延等。典型的案例就是,牛津仪器在锂电领域开展的综合解决方案便融合了纳米分析、原子力显微镜、拉曼光谱等系列相关技术。ANDOR科学相机中国保有量超5000台!加速中国本土化发展谈及ANDOR中国客户的印象,朱飞回顾道,自己入行15年有余,见证了中国科学家用户的快速成长,从最初许多的跟随发展,到目前中国科学家在许多领域的领衔发展。尤其是近几年,中国在生命科学、量子科学等领域已经走在世界前列,甚至引领世界向前发展。ANDOR也很荣幸能通过一些仪器技术为这些科学家的研究发展不断助力。伴随在中国市场的长期耕耘,ANDOR十分重视中国本土化发展。对于中国本土化建设,朱飞表示,第一,要培养本土化的人才。首先是销售,ANDOR的销售不仅可以做产品演示,也可以做产品安装,甚至走出去也是某一个行业的专家,为客户分享ANDOR产品知识及广泛应用。而售后应用工作者则除了了解产品知识,也需要充分学习客户的研究与应用,为客户的需求提供更加合理的解决方案。第二,要保障售后的落地与高效。根据近期的统计,ANDOR在中国市场科学相机的保有量大概超过5000台!如此庞大的基数和时间积累,难免有故障需要维修。如上文提到,ANDOR已经实现本地维修,为客户提供便捷的售后服务,使服务周期由几个月降至一周以内,帮助客户节省时间与金钱成本。第三,通过相关培训,提高ANDOR中国团队的软实力。越来越多的本土化思维与理念,对团队进行系统培训,不仅仅是产品知识,还包括管理能力、演讲能力、英文口语能力、销售技巧等全方位的培训,让团队每一位员工找到自己的价值,ANDOR希望为大家提供一个共同学习进步的平台,为大家创造更多机会,实现个体与公司共同成长。
  • 新型光场调控方案,实现大范围散斑眩光消除
    光学散射是指光在传播过程中与散射体相互作用,导致光线的方向和强度发生改变的现象。在复杂的光学系统中,光学散射可能会导致信息混叠和掩盖,从而阻碍光学信息的有效提取。为了解决这个问题,人们会使用各种技术手段来降低散射,提高信息提取的准确性和效率。在复杂的光学系统中,光学散射带来的信息冗杂主要表现于以下两个方面:(1)携带信息的光、在传播过程中与散射体相互作用导致的真实信息扰乱与混叠;(2)没有携带信息的光、依然以散斑炫光等方式进入光学成像系统,从强度上掩盖了携带信息的光信号。这两种情况都会阻碍光学信息的有效提取。近年来,人们已经通过光场调控技术对入射光场进行相位预补偿,实现了目标区域的光学干涉相消(即散斑眩光消除)。然而,由于当前的优化算法过于冗杂低效且准确度不够,实验中获得的散斑眩光消除效率远低于理论预期。此外,缺乏合适的物理模型及理论指导限制了可消除散斑眩光范围的面积。因此,在有限的调控模式下,如何高效地实现大规模散斑眩光消除是目前亟待解决的问题。为解决上述问题,中山大学电子与信息工程学院、广东省光电信息处理芯片与系统重点实验室的李朝晖、沈乐成研究团队提出了一种新型光场调控方案实现大范围散斑眩光消除。该方案可在400个调控模式下对于400个光学散斑(接近于实验中所用相机的全部有效成像范围)进行消除,总计算耗时不超过1秒。相关研究成果发表于Photonics Research 2022年第12期。研究团队以Gerchberg-Saxton(GS)算法为原型,搭建了经由双阶段GS算法迭代的大规模散斑眩光消除方案,称之为TAGS(Two-stage matrix-assisted glare suppression)。该方案可在直接强度测量条件下完成散斑传输特性的精准解析,进而实现大范围的散斑眩光消除。此外,该方案还巧妙地借助目标区域外随机生成的辅助传输矩阵来提高收敛准确性,使得该方案在实际应用中能够获得更高的鲁棒性。图(a)为双阶段GS消除方案示意图,图(b)为消除前的散斑图,图(c)为大范围散斑眩光消除后的图像。图(a)TAGS方案的原理示意图,其中粉色迭代圆环代表经由第一阶段GS算法迭代的传输矩阵测量,蓝色迭代圆环代表第二阶段GS算法迭代获得可用于眩光消除的调制波前;(b)、(c)大范围散斑眩光消除实验结果该文通讯作者之一沈乐成博士表示: “TAGS的优异特性使得我们可以大幅降低测量难度与计算复杂度,使得有限调控模式下的大规模散斑眩光消除成为可能。后续我们将基于该工作,进一步探索更加高效的基于传输特性解析的散斑眩光消除方法,开展多光谱的散斑眩光消除及成像应用。”
  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536
  • 便携易操作!基恩士发布WM-3500大范围三坐标测量仪
    2022年10月,基恩士推出全新WM-3500大范围三坐标测量仪,测量范围长达15米,适合于大型阀门、焊接夹具、搬运装置、桥梁部件等各类大型产品的测量。 WM-3500采用新原理实现更大的测量范围,且操作简单,只需通过无线探头接触测量目标物;由此,单人即可对超大型产品、装置进行三坐标测量。支撑高精度大范围测量的 3 相机结构WM-3500配备可动相机、探头搜索相机、参考相机3个相机,在大范围内也能实现重复精度为 ±10 μm 的高精度测量。新品通过可动相机捕捉7个无线探头标记点所发出的近红外光,高精度识别探头的位置和姿势;通过探头搜索相机即时追踪探头发出的光,实现流畅测量;而参考相机可以通过识别内部的图表,高精度测量可动相机的左右±90°、上下±30的角,以此相机为基准求出三维坐标。操作简单,只需探头接触测量目标物WM-3500没有三坐标或关节臂等驱动部,可以从更多角度进行测量。无线探头配备触摸屏、小型探头相机,操作人员可在手中的显示器上进行与笔记本电脑上相同的操作。小型探头相机可将相机中呈现的图像与3D图像叠加显示,即使是初次接触三坐标测量仪的人,也可直观地理解测量的所在位置。便携式设计,可在各种地方进行三坐标测量WM-3500采用便携式设计且安装简单,无需测量室,通过使用三脚架、延长杆、手推车,可安装在各个地方进行测量。同时,为了能在现场等恶劣环境下使用,新品还采用了耐久性和刚性较高的设计,配备了温度补偿功能。此外,针对测量无法一次性全部进入相机视野的大型目标物,或会遮挡相机光路的复杂设备和装置, 使用“相机移动功能”可轻松完成测量。
  • 科学实验|高速热成像技术将动态空间3D与热数据相结合
    今天,小菲要跟大家分享一个使用FLIR红外热像仪做实验的有趣案例:德国耶拿弗劳恩霍夫应用光学和精密工程研究所(Fraunhofer IOF)的研究人员开发了一套成像系统,通过两台高速、高分辨率单色成像仪和一台GOBO投影仪对物体进行三维检测。在碰撞测试、安全气囊展开等典型动态应用中,除快速空间变化过程以外,温度变化也扮演着重要的作用。高速3D热成像系统的工作原理德国耶拿弗劳恩霍夫应用光学和精密工程研究所(简称“IOF”)主要从事光子学领域应用型研究,早在2016年就开发了一款高速3D成像系统。该系统由两台立体排列的高速立体黑白成像仪和一台自行研发的主动照明GOBO投影仪组成。自2019年以来,其还引入FLIR科学成像仪(FLIR X6900sc 超晶格 长波热像仪,该热像仪支持高达1000 Hz的帧速率和640×512像素的分辨率),推出了一款高速3D热成像系统。高速3D成像系统基于能灵敏感知可见光谱范围(VIS)的两台单色成像仪。二者以12,000 Hz的帧速率和1百万像素的分辨率工作——较低分辨率下还可实现更高帧速率。但两台成像仪尚无法以所需质量标准产生有意义的3D数据。此外还要借助一种复杂的照明系统,超快投射条纹图案序列,这些图案类似于常规正弦条纹,只是其宽度会不定期变化。将重建的3D数据与来自FLIR X6900sc SLS高速热像仪的2D数据相结合,生成三维高速红外图像。FLIR X6900sc超晶格探测器在长波红外范围内运行,因此在GOBO投影仪光源发出辐射的可见和近红外波长范围内不敏感。由于投射的非周期性正弦图案对物体的加热也无关紧要,因此GOBO投影仪不会影响红外成像。FLIR X6900sc SLS丨LWIR高速红外热像仪FLIR X6900sc SLS是一款面向科学家、研究人员和工程师的超快速、高灵敏度的红外热像仪。这款热像仪拥有先进的快门释放功能,搭载额外SSD硬盘后,其内置内存能发挥出超强的记录能力,无论是在实验室,还是测试现场,它都能捕捉到质量超群的高速事件定格图像。可谓一机在手,万事无忧。FLIR X6900sc超晶格长波红外热像仪在640×512像素的全尺寸格式下,记录速率高达1,004帧/秒,在最小局部图像格式下,记录速率高达29 kHz。使用这些热像仪,可以在内置内存中记录长达26秒的全帧格式数据,图像丝毫无损。凭借应变超晶格(SLS) 长波红外探测器,FLIR X6900sc SLS可实现比其他X6900s型号约短12倍的积分时间和更大的动态范围。新型系统的测量与计算在测量过程中,三台成像仪同时记录图像数据。来自黑白成像仪的数据与GOBO投影仪的非周期性条纹投影相结合,产生实际3D图像,然后计算出10对一组的图序列,以形成3D图像。这种“3D重建”会形成空间形状,然后将FLIR长波热像仪的红外图像数据叠加到该空间形状上,以便在映射过程中将温度值分配给空间坐标。当然,在测量之前,需要对由可见光成像仪和长波热像仪组成的系统进行校准。为此,IOF团队使用了带有规则的开环和闭环网格的校准板。为确保即使在温度分布均匀的条件下,仍能在可见光谱范围和长波红外中检测到这些结构,圆和背景选用了具有不同反射率(可见光)发射率(长波红外)的材料。耶拿的研究人员通过印刷电路板找到了解决该问题的方法。为此,他们开发了一款非同寻常的电路板,由规则的开环和闭环网格组成,而不是由电气组件之间的电气连接组成。高速3D热成像系统的实际应用IOF的新型高速3D热成像测量系统旨在将高动态空间3D与红外数据结合起来。运动中的运动员、碰撞测试、安全气囊展开等超快速流程不仅有表面形状的快速变化,也有局部温度的变化,过去无法同时捕获这些变化,该系统首次实现了这一目标。目前,该系统已经过各种情景的测试,其中包括篮球运动员运球(不仅会使球变形,还会引起热量):还有用于测量安全气囊展开时的温度变化和空间表示,系统在距离3米处对高速过程记录半秒钟。将三维数据与热成像信息结合后,不仅可以清楚地看到安全气囊展开后的温度,还能获得时间点和空间坐标信息。借助这些信息可以减少和防止安全气囊展开导致驾驶员受伤的风险。IOF研究团队的Martin Landmann确信:高分辨率3D数据和快速热成像图像相结合的应用场景十分广泛。Martin Landmann解释道:“举例来说,通过观察碰撞测试,研究变形和摩擦过程,或者研究超快速的热相关事件,比如安全气囊触发时的爆炸或者开关柜中的爆炸,我们可以获得非常有用的信息。”他强调称,他们正在不断地开发和优化系统。可见,将来我们有望看到弗劳恩霍夫应用光学和精密工程研究所团队的更多创新研究成果。FLIR X6900sc热像仪对于目前的长波红外或中波红外探测器,应变层超晶格(SLS)探测器提供更快的快照速度、更宽的温度频段和更好的均匀性。这款热像仪具有高级触发功能和内置RAM/SSD记录功能,配有一个四插槽电动滤片轮,可以在实验室环境下和测试范围内对高速事件实现画面定格功能。
  • 美妆电商信誉考验,色谱测试范围多大更有效
    美妆电商领域的江湖从来不太平,由于这个行业的特殊性以及良莠不齐,真假混杂,各种质疑声从未间断。 7月2日,中国美容化妆品线上零售公司聚美优品(纽交所代码:JMEI)公开宣布, 从7月起,将在官网上发布针对供应商和第三方商户的产品月度审核报告,并将大幅扩大色谱测试的样品范围。聚美优品几乎一直是这个江湖里一个风口浪尖的企业。 随着线上美妆行业的不断发展,化妆品安全问题一直备受关注,如何鉴别真假一直是困扰消费者的难题。此次防伪新基准的设立,使得聚美能够确认未通过产品质量检测的供应商,并对其进行有效管理,这将多大程度有效提升国内线上美妆行业质量控制的基准? 据悉,聚美优品是在最近一次投资人信息通报会议上披露上述信息的。 色谱测试是聚美携手北京工商大学合作推出的利用色谱鉴定化妆品真伪的检测解决方案。北京工商大学是目前国内少数几家具有化妆品专业和化妆品研究中心的院校,曾承担过多项北京市科委和卫生部的化妆品方向的科研工作。 此前,聚美规定,由外部测试实验室每月随机抽查12%的第三方美妆产品商户进行色谱测试。今年6月起,聚美扩大了随机抽查的样品范围,第三方商户抽检范围从12%扩大到67%以上,覆盖了美妆第三方平台中17%的SKU。在最近的一次测试中,没有发现假冒伪劣产品。 近年来,随着线上美妆市场的不断扩大,越来越多的化妆品品牌与电商平台展开合作,也出现了窜货、假货、价格欺诈、诚信等问题,降低了化妆品电商行业的美誉度。 去年7月,聚美发起成立了中国化妆品真品防伪码联盟(Authentic Cosmetics Alliance,以下简称&ldquo ACA&rdquo )。 ACA是全国化妆品行业首个打击假冒伪劣产品的联盟,成员有欧莱雅、美宝莲、兰芝、高丝、薇姿等近百家国内外品牌,占聚美自营部分商品交易总额的64%。 ACA成立后推出防伪码体系,即一件商品一个防伪码,由各品牌厂商在向商家发货前按严格程序贴码,当消费者购买到带防伪码的产品后,刮开产品的防伪标签灰色涂层,即可获取16位数字的真品码,在ACA网站或者该品牌官方网站输入防伪码,点击&ldquo 验真&rdquo 按钮,即可获得查询结果。 投资公司对此举基本给出了积极评价。 7月4日,广发证券发布《聚美优品跟踪报告:大幅提高抽检比例,树立美妆电商服务标杆》称:&ldquo 聚美优品6月份共支出6万美金,对限时特卖1499个SKU中的257个进行抽检(占比17%),占销售额的67%,没有发现问题商品。&rdquo 在投资建议方面,广发证券给出意见:&ldquo 我们维持公司14-16年0.86亿、1.71亿和2.92亿美元的盈利预测,总市值合理估值45亿美元,14、15年动态PE为53X、26X,建议投资者关注。&rdquo 高盛相应公布的研究报告显示:维持聚美优品股票&ldquo 买入&rdquo 评级和36美元的目标价不变。报告提到:&ldquo 聚美优品在线集市上的第三方商家在2013年的总交易净额中的贡献为31.5%。目前,聚美已经完全控制了商品供应链,并将继续加强质量控制,在此之前,有三个商家遭到了5倍于产品价值的处罚,并且因为产品未通过检测而被永久禁入。&rdquo 高盛称:&ldquo 我们的盈利预期、36美元目标价和买入评级均未发生变化&rdquo 。
  • 低至亚微米分辨!高分辨、高灵敏度X射线CCD/sCMOS相机
    根据 X 射线能量转换为相应电荷的方式不同,X 射线相机可以分为间接和直接探测两类。目前基于光子计数的像素化 X 射线直接探测器, 得益于其高探测效率、零噪声、高帧率、能量窗口筛选能力,低点扩散等特点,使得其在 X 射线衍射,散射,关联光谱等弱光或有时间分辨要求的应用得到广泛的应用,在 X 射线能谱成像领域带来了质的飞跃,目前商业化的医用能谱 CT 已经面世。此项技术的发展充分践行科学技术造福人类的终极目的,从基础研究及应用,到科学装置,随之是实验室及商业化医学应用。但是目前光子计数的像素化 X 射线直接探测器的最小像素尺寸为 55μm*55μm,其不能满足 X 射线微纳 CT、显微成像,计量学等应用方向对于更小像素的需求。因此,目前高分辨 X 射线间接探测相机在如上领域具有不可替代的作用。1X 射线间接探测相机基本原理及类型X 射线间接探测相机基本结构是高能的 X 射线打在闪烁体上,随之转为可见光,部分可将光通过光学耦合器件耦合到后端的 CCD 或 CMOS 传感器上。光学耦合器件包含两种:透镜和光锥或光学面板。 透镜组耦合 光锥耦合主要性能差异-透镜组耦合VS光锥耦合光锥耦合 X 射线相机的的光传输效率是透镜耦合的 4 倍。主要是因为光锥的耦合效率高;透镜耦合 X 射线相机的空间分辨率可以低至亚微米水平,但是光锥不行,是因为光锥的光纤尺寸为几个微米。2捷克 RITE 公司的低至亚微米分辨的高性能X射线 CCD/sCMOS 相机捷克 RITE 公司主要提供透镜耦合(fiber coupled,LC)和光锥耦合(fiber coupled,FC)两种高分辨间接探测X射线相机。进一步根据传感器不同,可分为电荷耦合(CCD)和互补型金属氧化物(CMOS)两种版本。探测器采用一体化结构,小巧紧凑,结实坚固,易操作易集成,从原材料的采购,到生产及成品测试都经过严格的把关,不仅性能优越而且坚固耐用。适用于微米及亚微米的 X 射线显微成像、X 射线显微 CT、X 射线计量学等应用。3XSight&trade LC 透镜耦合高分辨 X 射线相机主要特点多个镜头可简单切换,实测空间分辨率500nm-7µ m; 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声; 一体化设计,易于安装和操作,无需水冷,USB 传输,软件友好。可提供真空版本,光谱范围可扩展到 EUV 能段。XSight&trade LC 真空版-EUV 可更换镜头单元规格参数参数Xsight Micron LC X-rayCCD CameraXsight Micron LC X-raysCMOS Camera芯片类型CCDsCMOS像素数3300x25002048x2048视场Model LC 02700.90 mm (H) x 0.68 mm (V)Model LC 02700.67 mm (H) x 0.67 mm (V)Model LC 05401.8 mm (H) x 1.36 mm (V)Model LC 05401.33 mm (H) x 1.33 mm (V)Model LC 10803.60 mm (H) x 2.70 mm (V)Model LC 10802.66 mm (H) x 2.66 mm (V)Model LC 21607.2 mm (H) x 5.4 mm (V)Model LC 21605.32 mm (H) x 5.32 mm (V)Model LC 432014.40 mm (H) x 10.80 mm (V)Model LC 432010.64 mm (H) x 10.64 mm (V)有效像素尺寸及空间分辨率(JIMA RT RC-02(center area, 8 keV))Model LC 0270 0.275μm / 0.4 μmModel LC 0270 0.325μm / 0.5 μmModel LC 0540 0.55μm /0.6 μmModel LC 0540 0.65μm /0.8 μmModel LC 1080 1.1μm / 1.5 μmModel LC 1080 1.3μm / 1.5 μmModel LC 2160 2.2μm / 3.0 μmModel LC 2160 2.6μm / 3.0 μmModel LC 4320 4.4μm / 7.0 μmModel LC 4320 5.2μm / 7.0 μm能量范围5-30 KeV(真空版可到EUV波段>50eV)5-30 KeV(真空版可到EUV波段>50eV)读出噪声7.5e- RMS1.4e- RMS暗电流0.001e-/pix/s@-30℃0.14e-/pix/s@0℃(风冷)0.04e-/pix/s@-10℃(水冷)帧率-3 fps-40 fps动态范围2800:121400:1XSight&trade LC 透镜耦合高分辨 X 射线相机搭建在理学 nano 3D X 射线显微系统中:应用示例蜱虫0.4 micron resolution蚂蚁头部图像 taken by a 0.27 um pixel array4XSight&trade FC -光锥耦合、高灵敏度 X 射线相机二维(2D)X 射线 XSight&trade FC 系列相机,由薄荧光屏,光锥和相机组成。与透镜耦合版本相比,光纤耦合探测器的的灵敏度大约高 20 倍。也分为 CCD 和 sCMOS 版本。可应用于 X 射线显微镜,X 射线形貌术,X 射线光学调整和计量学、X 射线成像等应用。 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声。机身底部配 M6(CCD版)/ ¼ " 20 UNC(sCMOS版)标准螺纹,易于集成。一体化机型,易于安装和操作,无需水冷,USB(CCD)/Camera Link Full (sCMOS) 传输,软件友好。XSight&trade FC 5400CCD 相机XSight&trade FC 2160CCD 相机XSight&trade µ RapidsCMOS相机规格参数参数Xsight Micron FCCCD CameraFC5400Xsight Micron FCCCD CameraFC2160Xsight μRapid Camera芯片类型全帧CCD全帧CCDsCMOS像素数3326 x 25043326 x 25042048 x 2048视场18mm x 13.5mm7.2mm x 5.4mm13.3mm x 13.3mm实测空间分辨率16μm@8KeV8μm@8KeV20μm@8KeV能量范围5-30KeV5-30KeV5-30KeV读出噪声10e-RMS7.5e- RMS1.5(e- rms,fast scan)1.4(e- rms,slow scan)暗电流0.02e-/pix/s@-30℃0.02e-/pix/s@-30℃0.5e-/pix/s@5℃ 帧率 1 fps 1fps100(fps@full resolution,fast scan)35(fps@full resolution,slow scan)动态范围3100:1(70dB)3100:1(70dB)20000:1(fast scan)21430:1(slow scan)XSight&trade FC -光锥耦合、高灵敏度 X 射线相机搭载在理学 XRTMicron 射线形貌成像系统中用于单晶材料的无损检测:应用示例:木槿叶(8 keV,视场18.0 mm (H) x 13.5 mm (V))老鼠爪子 CT 渲染视频(由 SLS - PSI 的 TOMCAT 光束线提供)关于RITERigaku Corporation 于 2008 年在捷克首都布拉格成立了 Rigaku Innovative Technologies Europe s.r.o. (下简称“RITE”),配有多个专业的 X 射线实验室,作为日本理学在欧洲的 X 射线光学镜片设计、开发和制造中心。 尽管理学在 2008 年才成立 RITE,但是 RITE 前身却在业内有着超过 50 年的发展历史。团队创始成员来自捷克科学院和捷克理工大学,参与了多项(原)捷克斯洛伐克空间探测项目,是目前捷克 X 射线光学领域的领先研究学者。凭借自身在 X 射线、极紫外光学领域多年的积累,除了承担母公司理学的研发 (R&D) 任务以外,RITE 秉承着开放合作的理念,也直接向全球的工业客户、实验室科研用户提供标准或定制型 EUV/X-RAY 光学镜片和高分辨 X 射线相机等。北京众星联恒科技有限公司作为捷克 RITE 公司中国区授权总代理商,为中国客户提供 RITE 所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。了解RITE光学复制技术:以创新为先导,聚焦EUV极紫外/X射线光学器件的研发- 捷克RITE
  • 保健品检测强化 检验机构认定范围待扩大
    近日,国家食品药品监督管理局发布《保健食品试验检验机构认定管理办法(征求意见稿)》,强化保健食品检验机构的法律责任  近日,记者从国家食品药品监督管理局(SFDA)网站获悉,为了提高保健食品许可工作的科学性,加强对保健食品试验、检验机构的管理,规范保健食品试验和注册检验工作,SFDA对外发布了《保健食品试验检验机构认定管理办法(征求意见稿)》。  意见稿甫出,立即引起了业内的广泛关注。  中国保健协会秘书长徐华锋在接受《医药经济报》记者采访时表示,这次意见稿在强调安全性的同时,也强化了保健食品检验机构的法律责任。“保健品检验机构认定管理办法在新形势下进行同步调整,对净化行业环境具有非常积极的意义。”  正本清源  新医改为保健行业带来了机会,随着配套方案的推进实施,保健品行业迎来新的发展契机。据了解,我国保健食品行业的年产值已达4万亿元规模,已批准的保健食品批文达万件,直接从业人员逾300万人,年增长速度超过12%。  也正是这个蓬勃发展的朝阳产业,近几年信誉危机却频频发生。保健品行业资深营销人士史万奎表示:“基于当前复杂的行业环境,加强产业链中每个环节的管理力度是非常必要的。对检验机构的认定管理而言,实质上是要从源头设卡,强调检验机构的把关作用。”  对此,徐华锋亦明显感觉到,新办法较之前更严格,尤其是试验、检验机构出具虚假试验、检验报告的,应撤销其资格认定证书,一年内不得再次申请试验、检验机构资格认定 构成犯罪的,依法追究刑事责任。出具虚假试验、检验报告的检验人十年内不得从事试验、注册检验工作。“如此严格的举措,对试图越雷池的机构或个人具有很强的威慑力。”  一位一直关注检验机构认定管理办法变化的分析人士指出:“由于目前检测标准仍延用2003年卫生部制定的方法,而保健食品的功能却由原来的21项增至27项,因此,新的形势对检测单位的评价程序和方法提出了更高的要求。”  专家认为,很长一段时间以来,一些违规保健食品流入市场而无法查询,造成保健行业的信誉危机。对此,史万奎表示,通过强化试验检验机构认定管理办法,有助于规范保健食品检验环节的秩序。不过,他同时指出:“要使保健食品正本清源,还需要加强行业自律。”  扩大认定范围?  记者了解到,国内保健食品功能试验检验机构必须是具有独立法人或法人授权资格的事业单位,承担相应的法律责任、具有五年以上承担食品或药品领域检测、科研、教学工作的经历,并持有有效的资质认定计量认证合格证书。  “目前国内仅30余家事业单位的检验机构为政府部门认可。说实话,范围似乎有点狭窄,其实时下有不少社会化的检验机构实力也不错。如能更开放些,也许更利于促进良性的市场竞争。”徐华锋告诉记者。  对此,广州金域医学检验中心总经理梁耀铭深有同感。梁耀铭指出,如果按照上述要求,许多优质检验机构只能望而兴叹。事实证明,社会化服务的独立实验室在节省卫生资源、补充医院实验项目、开展高新技术、提供快捷服务等方面具有积极作用。不过,他也表示:“民营企业与事业单位"身份"有别,引入第三方检测机构还有很长的路要走。”  梁耀铭坦陈:作为刚涉足保健食品检验领域的企业,现在只能作为事业单位的补充,在夹缝中求生存,但保健食品领域的检测确实是一个“大蛋糕”,且并非遥不可及。“相信随着国家政策的不断开放,未来在保健食品检测方面真正引入第三方检验机构将成为可能。”  采访中,徐华锋的谈话透露出第三方检验机构介入的尴尬境地:“目前要实现第三方检测机构介入,政府部门认可这道屏障还难以逾越。”  业内人士呼吁,应该扩大检验机构的认定范围,促进行业的良性竞争。同时,他们也指出,未来第三方检验市场要想获得长足发展,必须要避免低水平竞争,要以专业化、快捷优质的特色服务来获取社会的认可度。  落脚点在企业  多年来,由于我国试验检验制度和方式不完善,使得某些指定的检测中心未按要求进行保健食品检测,所出具的检测报告良莠不齐。部分检测机构打出低价格的牌子,以吸引保健品企业眼球。更有甚者,为了一己私利出具虚假检测报告。对此,新《管理办法》将直指当前试验检验机构认定体系的“软肋”。  “这与目前我国的检测侧重点有很大关系。”徐华锋说,我国保健食品检测注重构效与量效的关系。随着形势的不断发展变化,保健食品的功能因子评价程序也需要不断改进,以适应市场形势的发展需要。  记者发现,意见稿中对检验机构法律责任的强化是一大亮点。徐华锋认为,国内保健食品检测机构应致力于实验室的规范化、程序化及标准化建设。在检测工作中应积极探索保健食品的新功能及相应的检测方法,引进先进的评价指标和方法。“机构和个人的职责要进一步明确,这是市场规律运作的必然结果。”  对企业而言,产品如何通过功能性及安全性等检测,顺利通过保健食品的注册审批,在面对新的市场环境时又该如何应对?徐华锋指出,现在国内企业存在的最大不足就是科研投入。很多保健品企业往往重营销和宣传,而忽略了产品研发。“这种厚此薄彼的思维今后肯定行不通。”  “虽说这是一个针对检验机构制定的管理办法,但作用力终究要落到企业身上。要通过日渐严格的产品检验而获批,企业只能依靠自主研发能力的提升来实现。”广东一家保健品企业老总说,此外,在创新研发求质量的过程中,企业应与权威科研机构、试验检验机构多沟通,了解行业政策的最新动态和发展趋势。
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 最小化交叉污染 扩展LC/MS/MS定量范围
    目的为证实在进行四个以上数量级进行定量时, LC/MS/MS的样品残留量可降低至可测得的水平以下。背景现今质谱仪的灵敏度已经能够实现跨五个数量级的检测,且柱上进样量的定量下限可低至阿克级。要使高性能质谱仪的灵敏度不断增加,也要求LC系统上的样品交叉污染达到最低,以优化分析性能。有关验证跨多个数量级的生物分析方法的规范通常要求最高浓度校准品的样品残留量不多于最低浓度校准品的20%。1因此,为使校准范围跨四个数量级,必须使样品残留量低至0.002%以下。若校准范围在四个数量级以上,则必须使交叉污染减少至更低的水平。通常,随着对柱上进样量交叉污染的要求不断严格,系统污染变得非常关键。LC系统及方法必须能够重复地将分析物自进样器、管道及色谱柱上去除,以使每次进样都没有交叉污染。在对奥美拉唑进行分析时,Xevo TQ-S上的ACQUITY UPLC I-Class系统可使样品残留量减少至0.0005%以下,且其线性定量范围跨度可达四个数量级以上。解决方案Xevo TQ-S是具有高灵敏度的用于LC/MS/MS分析的质谱仪。它需要一个能够解决交叉污染问题的UPLC 入口,以与该仪器宽泛的线性动态范围相匹配。ACQUITY UPLC I-Class系统可选用两种样品管理器:固定定量环(SM-FL)或流通针式(SM-FTN)进样器,这两者在设计上均能实现良好的抗交叉污染性能。在分析奥美拉唑时,采用SM-FTN设计。该种类型的进样器,在分析过程中,以移动相(梯度)冲洗针头内部。在进样口,FTN采用单种溶剂清洗针头外部,且在设计上能够实现防止清洗溶液与样品或流动相接触。在密封面同时清洗针头以及密封垫可减少污染几率。清洗程序已编入本方法中,且可设置为在进样之前以及进样之后清洗。清洗溶剂的组成取决于样品,且其必须能够很容易地溶解分析物。对于pKa为8.8的奥美拉唑来说,可采用含有氢氧化铵的清洗溶剂来清洗注射器。此外,当将氢氧化铵用于流动相时,系统的交叉污染将更低。在碱性条件下,可使奥美拉唑的离子化效率进一步提高。为评估交叉污染,向色谱柱注射具最高浓度(10 ng/mL或10 pg)的标准品。如图1所示,在注射最高浓度标准品之后首次进行空白注射时,未观察到有交叉污染。基于校准曲线,确定样品残留量低于0.0005%,而这低于质谱的检测下限。如图2所示,在500 ag至10 pg范围内,采用1/x权重系数,可获得相关系数为0.99997的线性,这足以证实可在与Xevo TQ-S连用的ACQUITY UPLC I-Class系统上对奥美拉唑进行线性校准。小结ACQUITY UPLC I-Class系统非常适用于需要跨四个以上数量级进行定量的高灵敏度LC/MS/MS方法的交叉污染要求。在对奥美拉唑进行分析时,在Xevo TQ-S上未检测到样品残留,且由此可知,样品残留量已减少至0.0005%以下。由于样品残留量很少,可在500 fg/mL至10 ng/mL或500 ag至10 pg之间进行校准。参考文献1. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf
  • 滨松发布滨松背照式sCMOS相机ORCA fusionBT 新品
    背照式薄型封装ORCA-FusionBT是科研级CMOS相机的巅峰之作,拥有无与伦比的参数性能如超低读出噪声、超快帧速、超高量子效率、CCD般的均匀性。并且其光子探测以及收集效率之高也达到了令人赞叹的水平,即使在超短时间内只有少量的光子信号发射,该款相机也可以第一时间实现信号捕捉,为客户呈现极具视觉冲击力的高信噪比图像。ORCA-Fusion BT是滨松超高科研能力以及超高产品质量的体现,是广大客户科研实验路上的首选。 量子效率@550 nm: 95 %有效像素2304 (H) × 2304 (V)像素尺寸6.5 μm (H) × 6.5 μm (V)读出速度Fast scan: 89.1 frames/s (@2304 x 2304 pixels, 16 bit)读出噪声Ultra-quiet scan: 0.7 electrons rms (Typ.)动态范围21 400:1 (Typ.)芯片类型sCMOS像素位深16 bit, 12 bit, 8 bitORCA-FusionBT与其他BT CMOS相机优势对比 ORCA-Fusion BT滨松品质保证,行业内领跑产品。● 极低的读出噪声● 宽光谱范围内超高的量子效率● CCD般的均匀性● 高读出噪声像素最小化● 高动态范围● 3种读出速度可选● Lightsheet读出模式● 5.3 Megapixels● 兼容USB 3.0与高速CoaXPress接口ORCA-FusionBT与EM-CCD相机优势对比ORCA-FusionBT在实用性、功能性、灵敏度以及速度等方面具有无与伦比的优势,完全可以替代昂贵的EM-CCD相机。● 分辨率更高● Binning模式更加灵活多样● 无放大或者冗余噪声● 超高动态范围● 超宽视野产品应用● 宽场荧光成像● 活细胞成像● 转盘式共聚焦显微镜● Lightsheet显微镜● 超分辨成像● 膜电位成像成像● 光遗传学● 单分子跟踪● 计算成像● 量子计算低光激发下的延时活细胞成像光谱响应范围外形尺寸图(单位:mm)创新点:采用背照式sCMOS技术的全新产品。克服了背照式sCMOS技术的问题,低至0.7e rms读出噪声大幅超越了之前的所有sCMOS相机,加之与顶配看齐的95%高量子效率,其信噪比大提升到了sCMOS前所未有的高度。滨松背照式sCMOS相机ORCA fusionBT
  • 蓝菲光学超均匀面光源助力机器视觉相机校准
    1、背景介绍 近年来,随着工业4.0及人工智能的发展,越来越多的自动化设备被广泛应用于生产过程中。工业4.0离不开智能制造,我国在2015年提出的“中国制造2025”宏伟计划中,第一项战略对策就是“推行数字化网络化智能化制造”,而智能制造中,最核心的一环就是机器视觉。机器视觉是指通过机器来模拟人眼的功能,对客观事物进行信息提取,处理和分析,最终实现检测和判断,最终交给计算机进行控制。中国是机器视觉产业发展最为迅速的国家,目前已经在工业,航天,医疗,交通,科研等诸多行业进行了广泛的应用。图1 机器视觉代替人眼二、目前机器视觉存在问题 典型的工业机器视觉系统包括:光源,镜头,相机,图像采集卡,软件,监视器,输入/输出等。对于光学检测来说,机器视觉系统的性能主要取决于系统中光学相关部件,比如光源,镜头,相机等的性能。此外,光学检测要求的精度一般都较高,但是大多数相机在出厂时,并没有专门针对光学检测应用进行专门校准,往往会导致机器视觉系统的精度达不到要求,结果会出现误差。 比方说,如果将刚出厂的工业相机对着一个均匀照明的发光面进行拍照,拍摄出的图像四个角往往会出现暗区,这主要是由于相机镜头的余弦响应造成的。此外,由于相机传感器(CCD/CMOS)的非均匀性,也会导致对均匀光场成像的时候,图像的亮暗,颜色不均匀,如下图所示。以上这些因素,都会导致在一些精密的光学检测(比如平板显示检测)时,检测结果和真实情况出现较大偏差。图2 校准前相机平场响应 除此之外,相机对于不同亮度的线性响应也不同。由于相机输出的信号是灰度值,并不具有真实的物理意义。因此,在做光学检测(比如说亮度检测时),需要对相机进行线性度和亮度标定,建立起相机灰度信号和真实亮度的关系曲线。三、工业相机校准解决方案 为了解决以上机器视觉系统中存在的问题,提高机器视觉系统,尤其是AOI等光学检测系统的精度,欧洲机器视觉协会EMVA提出了《EMVA1288:成像传感器和相机性能表征标准》,其中介绍了如何对成像传感器及相机的空间不均匀度,灵敏度,线性度和噪声等一些列指标进行表征和校准的办法。其中明确写到:“最好的均匀光源是积分球均匀光源”,且推荐“光源的均匀性要大于97%”。图3 蓝菲光学相机平场校正方法 用户在使用时,只需要相机对准均匀光源的开口,拍摄一张图像,再经过算法进行计算,就可以对相机的均匀性进行校正,这一过程称为平场校正。经过均匀光源校准后,相机的均匀性可以显著提高。如下图所示,为一个工业相机经过积分球均匀光源校正前后相机的均匀性测试结果。从图中可以很明显看出,校正前相机的均匀性较差,中心场的响应优于周边的响应。校正后相机平面内的响应一致。相机校正前 相机校正后图4 工业相机经过蓝菲光学LED 积分球均匀光源系统平场校正前后对比 四、完美的积分球面光源 工业相机的精度决定了机器视觉系统的检测精度,校准光源的均匀性决定了工业相机的精度。越是均匀的积分球光源,经过其校准后得到的相机均匀性越高。根据积分球的原理,入射到积分球的光在积分球内部进行多次反射,最终在输出端口得到亮度,色度都完全均匀的面光源。积分球的出光口均匀性主要取决于以下几个方面:1.积分球内壁材料的反射特性。材料的反射特性可以分为朗伯反射,镜面反射和混合反射。由积分球原理可知,积分球内壁材料反射特性越接近朗伯特性,其开口处均匀性越高。此外,当入射光是宽谱光时(比如白光),材料的光谱反射一致性决定了开口处的色度均匀性,材料的光谱反射率越一致,也就是对各个波长的反射率越一致,开口处的色度越均匀。2.积分球的设计。如何设计积分球的尺寸,入射光的位置,挡板的位置和方向,都会影响积分球开口的均匀性。 蓝菲光学积分球均匀光源Spectra-CT提供了一种超均匀,高动态范围,亮度/色温均可精细调节的面光源。该积分球光源采用蓝菲光学独有的高反射率完美朗伯反射材料Spectraflect,基于蓝菲光学40余年的光学系统开发经验,精细的积分球结构设计,是机器视觉相机校准的完美解决方案。其主要具有以下特点:出光面超级均匀,均匀性大于99.5%系统输出稳定性高,稳定性达0.1%亮度线性可调节,可实现从微弱光0.1cd/m2至25000cd/m2的亮度输出色温动态可调节,可实现从低色温2700K到高色温7500K的输出自带亮度监控,实时观测亮度输出情况软件实现光源和探测器的全部控制,界面简单易用,可提供控制指令供二次开发。系统还可定制各类色温,亮度,单色光,大视场角等不同参数的光源图5 蓝菲光学LED 均匀光源系统(Spectra-CT)及开口处光斑亮度分布 Spectra-CT LED积分球均匀光源是均匀性较高的面光源,其卓越的性能可以满足EMVA1288要求的相机均匀度,线性度,信噪比,动态范围等诸多参数测试。是从研发到生产,各类工业相机的理想校准光源。
  • 鑫图sCMOS相机丨高混浊水中光信标跟踪及其在水下船坞中的应用
    了解海洋环境对各种水下任务至关重要,如资源的探测和水下结构的检查,没有自主水下航行器(AUVs)的介入,这些任务就无法进行。由于机载电池和数据存储容量不足, AUVs在执行水下探索任务也会受到限制。水下对接站的出现能够很好的解决这一问题,它能够为水下机器人提供水下充电和数据传输。然而在动态海洋环境中,浑浊和低光条件是阻碍成功对接的关键挑战。在本文中,研究人员提出了一种基于视觉的引导方法,使用锁定检测以减轻浊度的影响,同时屏蔽杂光和噪声。锁定检测方法锁定位于对接站灯标的闪烁频率,并消除其他频率无用光的影响。该方法使用两个固定频率发光的信标,安装在模拟对接站和一个sCMOS相机(鑫图Dhyana 400BSI)上。概念验证实验结果表明,该方法能够识别不同浊度下的信标,并能有效地剔除不需要的杂散光,而且不需要对基于视觉的引导算法做单独的图像处理。图1 锁定检测原理图 (a) 在清澈的水中拍摄的带有有源光信标的原始图像,调制频率为63 Hz,安装在中间的模拟停靠站上,两个背景光源发射频率为55 Hz和0 Hz。图 (b) 将锁相检测后的二值化结果应用于63hz。图 (c) 将锁定检测后的二值化结果应用于55hz。鑫图相机推荐Dhyana 400BSI V3视觉导航技术配合计算机视觉算法能够在定位精度高、不易被外部探测、可执行多任务等方面优于其他导航技术,但在水下环境中会受到光线的衰减和散射。此外,水下机器人在深海中吹起的泥浆会造成浑浊,这使得基于视觉方法的适用性更具挑战性。Dhyana 400BSI相机供了实验所需的灵活性,具有高速和高信噪比,能够在噪声中提取微弱的信号,配合软件获取图像的拍摄时间序列以实现lock-in time检测。参考文献Amjad R T, Mane M, Amjad A A, et al. Tracking of light beacons in highly turbid water and application to underwater docking[C]//Ocean Sensing and Monitoring XIV. SPIE, 2022, 12118: 90-97.该文章旨在为大家提供先进成像技术相关应用参考,部分内容摘抄于相关论文研究成果,版权归原作者所有,引用请标注出处。
  • 搭载全新CMOS传感器,FLIR机器视觉相机满足生物医学成像的严苛要求
    众所周知,现代生物医学成像的进步帮助医生在诊断和治疗上取得越来越大的突破,X光、计算机辅助断层摄影(computer aided tomographic,CT)、磁共振成像、核与超声波成像,生物医学成像技术越来越精细。因此,研究和诊断生物医学应用通常需要成像仪具备较高的空间分辨率、准确的色彩还原度以及弱光条件下较高的灵敏度,而且许多情况需要同时具备这三种因素,才能提高数据的可靠性。选择医学成像相机要考虑的因素选择合适的显微镜学相机、组织学相机、细胞学/细胞遗传学相机、落射荧光相机,对于临床应用进行正确诊断或在研究工作过程中提供可靠数据具有至关重要的作用。那么要如何判断机器视觉相机是否适合您的应用呢?你需要考虑这些因素:01分辨率与色彩精度现代生物医学成像相机所需的分辨率取决于样品中目标结构相对于相机像素大小的放大率,也就是说,显微镜应用的高分辨率可以通过2MP、25MP或介于这两者之间的相机来实现。它取决于光学元件对样品中目标结构进行的相对于相机像素大小的放大率,为了选出能实现所需分辨率的相机,首先要确定待解析样本中最小结构的尺寸,然后将其乘以光学系统中的镜头放大率,从而得出投射到相机传感器上的结构尺寸。如果结构的尺寸至少是相机传感器上像素的2.33(Nyquist)倍,那么相机可以解析此机构。例如,如果这些投射的结构尺寸是~8um,那么3.45um像素的相机可以解析这些结构。测量分辨率还可以用其他方法(如线对数),但上述方法可以通过简单计算,找到用于测试的相机的选项。组织学、细胞学和细胞遗传学等成像应用使用较大范围的白光(~400nm至700nm),或使用此范围内的选定波长(例如565nm)。如果这批样品中的样本不是活动的(即固定的),则可以暴露于亮光下,不会有污渍褪色或样品被杀死的风险。这种情况下,相机的主要要求是高分辨率和色彩还原度。反过来说,弱光灵敏度不是一个重要因素。02灵敏度、量子效率及动态范围对于活体样本的成像应用,面临的挑战是避免样本在太强光线下过度曝光,否则会使荧光分子褪色或杀死样本。这些应用通常使用一种称为落射荧光技术,落射荧光技术可用于固定样本和活体样本。有的标本很难获得或价格昂贵,而且制作样本的材料和人工费用很高。因此,能保护样品质量的系统有助于降低这些成像应用的持续成本。落射荧光使用经过过滤的高能量波长,以刺激样品发出低能量波长。低能量波长再经过过滤返回相机。这种情况下,可以对样品使用强度较小的破坏性光,因此其要求是灵敏度。即便发射光能量较低,具有出色灵敏度的相机也可以提供高质量的图像。如需查找具备出色灵敏度、在弱光条件下性能良好的型号,您可以侧重于以下三种技术规格:灵敏度、量子效率以及动态范围。灵敏度是得到与传感器所观测噪声等效的信号所需的光子数,数值越小越好。量子效率是指给定波长下转化为电子的光子——值越高越好。动态范围是信号与噪声(包括颞暗噪声)的比值,颞暗噪声是指无信号时传感器内的噪声,动态范围值越高越好。通常单色型号的弱光性能优于彩色型号。03因素综合对于同时使用白光和落射荧光的应用,可以选择FLIR配备Sony全新转换增益功能的相机型号,此功能可以优化传感器,实现高灵敏度或高饱和容量。弱光环境较高的转换增益,因为在此条件下,读取噪声被更大程度地弱化,从而产生较低的灵敏度阈值,非常适合在短时曝光下检测弱信号。强光条件下饱和容量得到了Maximun,获得的动态范围得以增强,因此稍低的转换增益是这种情况的理想选择,Maximun动态范围将受限于12位 ADC。挑选合适的机器视觉相机在选择相机时,较新的CMOS传感器是个很好的出发点。较新的传感器通常性能更好(价格可能还更低)另外,如果针对的应用程序需要在几年内购买多个相机(如持续生产诊断仪器),那么就要选择生命周期不会很快结束的相机,否则您可能要承受提前设计替换相机的成本费用。FLIR生产的机器视觉相机型号有200多种,广泛应用于采用新CMOS传感器的三大系列:Blackfly S、Oryx 和 Firefly。01FLIR Blackfly SFLIR Blackfly S系列相机的传感器、外形尺寸及接口最为广泛。这些相机提供USB3和GigE两种型号,功能广泛,设计初期易于整合。板级Blackfly S型号是全功能盒装产品的微型版本,特别适合空间受限和嵌入式的应用,其功能广泛,性价比高,分辨率可达24MP,是生物医学和生命科学应用的选择。FLIR Blackfly S USB3FLIR Blackfly S 板级02FLIR Oryx10 GigEFLIR Oryx相机系列拥有适配最快10GigE接口的高分辨率传感器,能够以60FPS的速度捕捉4K分辨率、12位的图像。Oryx的10GBASE-T接口是经过验证且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。03FLIR Firefly DLFLIR Firefly相机系列的外壳尺寸娇小、重量轻、功耗低且价格实惠。Firefly DL型号还能够运行已经过训练的神经网络,可用于物体检测或分类。所有FLIR机器视觉彩色相机都可以通过不同的白平衡选项的形式自定义色彩还原,并使用特殊色彩校正矩阵,这对于生物医学成像非常重要,医学成像中,色彩准确度的涵义不同,这取决于人类对诊断的视觉分析以及实现数据准确性的机器可读格式之间的对比。另外,FLIR 机器视觉Blackfly S、Oryx 和Firefly相机系列可通过GenICam3及 Spinnaker SDK进行控制和编程,它们自一开始设计时就以轻松开发与部署为理念时,确保我们能更快进行应用开发和测试。随着医学科技的进步对于现代生物医学成像的需求也将更加严格对于如何选择医学成像相机
  • 科研人员在高动态压缩感知成像技术研究中取得进展
    压缩感知成像作为一种计算成像技术,具有突破奈奎斯特采样极限、高通量测量、单像素成像等优势,在对地遥感、激光雷达、生物医学等领域具有重要应用价值。然而,传统压缩感知成像在空间、时间动态范围上与普通成像相比均存在不足。一方面,压缩感知成像对探测器提出了过高的动态范围要求,导致在有限探测器位数条件下的成像质量较低;另一方面,由于压缩感知成像需要多次调制与测量获取信息,因此难以满足实时成像的应用需求。针对空间、时间高动态压缩感知成像的实际需求,中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室的刘雪峰团队开展了一系列研究工作,并不断取得新进展。在空间高动态成像方面,该研究团队提出了一种稀疏测量结合并行抖动的压缩感知成像方法,利用稀疏调制降低待测信号动态范围,并以叠加随机抖动信号的多像素探测提升光学测量的有效动态范围,显著提高了探测器位数受限时的压缩感知成像质量,并将对探测器的动态范围需求降低至1比特(图1)。相关工作发表在光学领域国际学术期刊Optics Express(IF:3.833)上,并于近日被全球工程领域著名科技网站Advances in Engineering(AIE)遴选为关键科学文章进行专题报道。在时间高动态成像方面,该研究团队与北京理工大学量子技术研究中心合作开展了并行压缩感知成像技术的研究,提出基于并行调制采样的系统标定与图像重建方法,使压缩感知成像达到实时成像速度,同时具备像素超分辨成像能力。基于此原理,研制高分辨率中红外成像样机,可利用320×256像素中波红外探测器实现1280×1024分辨率实时成像(图2),该技术对于解决高性能红外传感器分辨率不足对红外成像设备发展的制约具有重要意义。相关工作发表在光学领域国际学术期刊Optics and Laser Technology(IF:4.939)上。图1. 不同探测器动态范围条件下的压缩感知成像结果对比图2. (a) 中红外像素超分辨成像样机示意图 (b) 对分辨率靶标及远距离目标的超分辨成像结果
  • 工信部把精密仪器纳入“十二五”战略性新兴产业的高端智能制造装备范围
    我国智能制造装备产业迎来新的发展机遇期  2010年10月10日,国务院发布《关于加快培育和发展战略性新兴产业的决定》,明确了要加大培育高端装备制造产业等七大战略性新兴产业,并将智能制造装备列为高端装备制造产业的重点方向。《决定》的出台对加快推进我国智能制造装备产业发展,进一步带动整个制造业的产业转型升级带来前所未有的机遇。  智能制造装备通常是具有感知、分析、推理、决策和控制功能的制造装备的统称,它是先进制造技术、信息技术和智能技术在装备产品上的集成和融合,体现了制造业的智能化、数字化和网络化的发展要求。智能制造装备的水平已成为当今衡量一个国家工业化水平的重要标志。  近十年来,我国智能制造装备产业发展快速。一是初步形成一定的经济规模,据不完全统计,2009年智能制造装备产业销售产值已达到3000亿元以上 二是一批重点产品取得成果,高速精密加工中心、重型数控镗铣床、3.6万吨黑色金属垂直挤压机等相继研制成功并投入应用,其中高端立卧车铣复合加工中心采用国产总线式高档数控系统,打破了国外在这一领域长期的垄断 百万千瓦超超临界火电机组、年产45万吨合成氨、轨道交通等多项重大工程项目也采用了国产数字控制系统(DCS) 大型轴流式压缩机组、离心式压缩机组、施工机械等陆续实现了远程监控和维护诊断,实现了智能化和网络化 三是涌现出一批智能制造装备的骨干企业,如沈阳机床、大连机床、大连光洋、中国四联、浙江中控、和利时、沈阳新松机器人、三一重工、中联重科、瓦轴集团、沈鼓集团和陕鼓动力等。  未来十年,我国智能制造装备产业,应牢牢抓住发展的战略机遇期,本着“创新优先、重点突破、技术融合、夯实基础、多元投入”的原则,面向传统产业改造提升和战略性新兴产业发展的需求,针对制造过程中的感知、分析、决策、控制和执行等环节,融合集成先进制造、信息和智能等技术,实现制造业的自动化、智能化、精益化和绿色化。重点发展:  一、精密和智能仪器仪表与试验设备  重点发展高精度、高稳定性、智能化压力、流量、物位、成份仪表与高可靠执行器,智能电网先进量测仪器仪表(AMI),材料分析精密测试仪器与力学性能测试设备,新型无损检测及环境、安全检测仪器,国防特种测试仪器等各类试验设备。  二、智能控制系统  重点发展综合性分散型控制系统(DCS),具有与现场总线设备实现动态数据交换功能的现场总线控制系统(FCS),逻辑控制、运动控制、模拟控制等功能有机集成的可编程控制系统(PLC),先进高效发动机及其智能控制系统,新能源、新材料、节能环保等新兴产业所需要的专用控制系统。  三、关键基础零部件、元器件及通用部件  重点发展高可靠性力敏、磁敏等传感器,新型复合、光纤、MEMS、生物传感器,仪表专用芯片,色谱、光谱、质谱检测器件 高参数、高精密和高可靠性轴承、液压/气动/密封元件、齿轮传动装置及大型、精密、复杂、长寿命模具 电力电子器件及变频调速装置。  四、高档数控机床与基础制造装备  加快实施《高档数控机床与基础制造装备》科技重大专项,加强专项研究成果的示范应用和产业化进程。重点发展高速、精密、复合数控金切机床 重型数控金切机床 数控特种加工机床 大型数控成形冲压设备 重型锻压设备 清洁高效铸造设备 新型焊接设备 大型清洁热处理与表面处理设备 非金属成型设备 新材料制备装备 高档数控系统 数控机床功能部件 数字化工具系统及量仪。  五、智能专用装备  重点发展机器人产业 矿山用智能自卸电铲、智能化全断面掘进机、快速集成柔性施工装备为代表的智能化大型施工机械 数字化、智能化、高速多功能印刷机械 大型先进高效智能化农业机械。  六、自动化成套生产线  重点发展百万吨级及以上大型乙烯、大型PTA自动化生产线的系统集成,大型煤化工自动化关键装备 大型液化天然气生产储能自动化关键装备、大型天然气长距离输送系统 高效棉纺、短流程染整自动化生产线 大型煤炭井下自动化综合采掘成套设备及大型露天矿自动化成套设备。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制