当前位置: 仪器信息网 > 行业主题 > >

高分辨率激光干涉仪

仪器信息网高分辨率激光干涉仪专题为您提供2024年最新高分辨率激光干涉仪价格报价、厂家品牌的相关信息, 包括高分辨率激光干涉仪参数、型号等,不管是国产,还是进口品牌的高分辨率激光干涉仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨率激光干涉仪相关的耗材配件、试剂标物,还有高分辨率激光干涉仪相关的最新资讯、资料,以及高分辨率激光干涉仪相关的解决方案。

高分辨率激光干涉仪相关的资讯

  • 阿拉巴马大学研究人员设计出一种混合超高分辨率干涉仪
    近日,阿拉巴马大学亨茨维尔分校 (UAH) 的研究人员设计了一种超高分辨率干涉仪,它基于混合设计,结合了双路径配置和光学谐振器两者的优点,灵敏度非常高,可以检测到其他传感器无法检测的微弱声学信号。 该项目的主要研究者Nabil Md Rakinul Hoque将基于光学谐振器的法布里-珀罗干涉仪嵌入道双路径马赫-曾德尔干涉仪之中,并把该设备称之为马赫曾德尔-法布里珀罗(MZ-FP)干涉仪。 类似于法布里-珀罗之类的基于光学谐振器的干涉仪,它们可以使特定的谐振频率通过干涉仪或从干涉仪反射。尽管其尺寸非常紧凑,但由于反射镜的高反射率,它们的光路长度非常长,从而在光流之间建立了可测量的干涉模式。 第二种干涉仪基于公共路径或双路径结构,它的灵敏度取决于其干涉臂的长度,最长可达数十甚至数百米,导致干涉仪体积较为笨重。马赫-曾德尔干涉仪和迈克耳逊干涉仪就是典型的传统双路径干涉仪。 MZ-FP 干涉仪的混合方案使得研究人员能够将传统的双路径配置与光纤谐振器相结合。Hoque 和他的同事研发了一种紧凑型干涉式光纤传感器,可在热噪声水平下工作,同时使用现成的商用二极管激光器进行检测。图1 Nabil Md Rakinul Hoque 的新型干涉仪结合了马赫-曾德尔干涉仪和迈克耳逊干涉仪的优点。该设备结构紧凑,灵敏度高,可在各种生物医学和物理领域中使用。 Hoque 表示,新型干涉仪的主要优点是其前所未有的高信号分辨率。 团队使用相同的光纤法布里-珀罗干涉仪作为光路倍增器,使 MZ-FP 干涉仪能够在一系列频率范围内达到破纪录的应变分辨率。在测试中,MZ-FP 干涉仪实现了1飞秒应变的分辨率,探测精度达到微米级。 据该团队称,如果适当放大干涉仪,MZ-FP的应变分辨率可以扩展到超声波范围。阿拉巴马大学的教授Lingze Duan表示,他们的传感器分辨率在次声波到超声波的频率范围内创造了最高记录。设备检测超弱信号的能力在将来有望应用于预测环境事件、武器检测、控制气候变化研究等领域。 此外,基于 MZ-FP 干涉仪的光学传感器可用于辅助声学医学诊断。“比如,基于我们的混合干涉仪的声学传感器能够检测非常微弱的生理声学信号,从而反映人体健康状况,然而目前的传感器是无法检测到这些信号的”,Hoque 讲到。 “在我看来,这项研究最重要的影响是它为无源光纤传感器达到前所未有的应变分辨率水平找到了一条可行的道路,”Lingze Duan说。“如此高的传感分辨率使得光纤传感器可以接收比现在更弱的信号,大大拓宽了应用范围。” 该研究发表在Scientific Reports(www.doi.org/10.1038/s41598-022-16474-y)。
  • 皮米精度激光干涉仪如何在众多前沿领域中大显神通?
    1.IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达中的应用自动驾驶是目前汽车工业为前沿和火热的研究,其中可靠和高分辨率的距离测量雷达的开发是尤为重要的。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010),该雷达测量系统在-3.9 um至+2.8 um之间实现了-0.5-0.4 um的超高精度。这种新型的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。更多信息请了解:S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019)图1.1 紧凑型FMCW传感器的照片图1.2 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果 2. IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通吐量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一种基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究由光压导致的形变特性。图2.1所示为测量装置示意图,测量装置是由5 x 5 共计25个M12/F40激光探头组成的网格,用于监测纳米的无轴承平面电机内部的移动器变形。实验目的是通过对无轴承平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544 nm,小形变量为110 nm(如图2.2所示)。更多信息请了解:Measuring the Deformation of a Magnetically Levitated Plate displacement sensor图2.1 左侧为5X5排列探头测量装置示意图,右图为实物图图2.2 无轴承磁悬浮机台形变量的测量结果,大形变量为544 nm 3.IDS3010在提高X射线成像分辨率中的应用在硬X射线成像中,每个探针平均扫描时间的减少对于由束流造成的损伤是至关重要的。同时,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。attocube公司的皮米精度干涉仪FPS3010(升后的型号为IDS3010),被用于测量及优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10 nm。更多信息请了解:Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)图3.1 实验得到的系统分辨率结果 4.IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在Nature上(doi:10.1038/nature25156)。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2 pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。更多信息请了解:Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)图4.1 实验中对对机械超材料微小振动的频率分析5. IDS3010激光干涉仪在快速机床校准中的应用德国亚琛工业大学(Rwth Aachen University,被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这又将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时且需要中断生产过程的安装和卸载校准设备变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪。其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较,六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性。值得指出的是,使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而在保持相同的精度水平下大的提高了生产率。更多信息请了解:Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)图5.1 自动校准激光探头安装示意图6.IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。几何测量系统是设计的锥束C-T系统的一大挑战。近期,瑞士联邦计量院(METAS)的科学家采用德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。该实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够进行样品台的角度误差分析。终实现非线性度小于0.1 um,锥束稳定性在一小时内优于10 ppb的高精度工业C-T。更多信息请了解:Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6.1激光干涉仪在系统中的测量定位示意图7.IDS3010激光干涉仪在增材制造3D打印中的应用微尺度选择性激光烧结(u-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。为满足导轨对定位精度高的要求,该系统采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。更多信息请了解:Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA 7.1系统示意图,其中激光干涉仪被用作位移的测量和反馈8. IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对系统稳定性提出了更高的要求。在整个实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,在40小时内表现出优于1.25 nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300 pm的分辨率。因此,IDS3010是对上述X射线显微镜装置的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40 nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45 nm。更多信息请了解:Characterizing a scanning fluorescence X ray microscope made with the displacement sensor 8.1荧光X射线显微镜的高分辨成像结果
  • 高分辨率激光外差光谱技术研究取得进展
    近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所副研究员许振宇团队在激光外差光谱技术研究中获进展。相关研究成果发表在《光学通信》(Optics Letters)上。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,研究人员提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明,相比于传统的高分辨率激光外差光谱仪,所研发的基于半导体光放大的高分辨率激光外差光谱仪的弱光信号探测和气体浓度测量精度得到大幅提升。该研究有助于提高高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大应用潜力。相关研究工作获得国家自然科学基金、国家重点研发计划等项目的资助。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果
  • 全球超高分辨率傅立叶变换红外光谱仪助力大气污染监测
    为了更好地了解全球气候变化,特别是温室气体(CO2、CH4、N2O、HF、CO、H2O和HDO)在大气和生物圈之间的交换,总碳柱观测网(TCCON)、大气成分变化观测网(NDACC)等研究机构相继成立。这些都是由地基傅立叶变换红外光谱仪(以及其他仪器)组成的网络,它们将太阳作为光源,来记录近红外或中红外光谱范围大气谱。所接收到的高精度数据可以作为重要的地面真实数据,作为对像美国宇航局(NASA)等的卫星测量数据的补充。对于大气污染物的分析,太阳作为红外光源,太阳光经过整个大气层一直到光谱仪的整个光路上不同组分的浓度进行了测量。对于这类场发射测量,需要用到超高分辨率傅立叶变换红外光谱仪。布鲁克IFS 125HR傅立叶变换红外光谱仪凭借准确的仪器谱线函数、出色的波长精度和世界上最高的光谱分辨率,成为该应用和相关研究机构的黄金标准。布鲁克IFS 125HR超高分辨光谱仪采用了令人瞩目的干涉仪设计,可确保光束在长达11米的极长光程差中的完整性。于是,IFS125HR光谱仪全球网络被用于监测全球范围内的大气变化,其中,部分安装在山峰上的观测中心,例如,著名的瑞士少女峰(NDACC);或安装在坐落于美国俄克拉荷马州Lamont的SGP ARM站点设备服务中心(TCCON)。下方图片提供了安装有IFS 125HR光谱仪的全球TCCON观测站点位置,这也凸显了布鲁克在大气污染监测方面做出的重要贡献。注:TCCON: total carbon column observing networkNDACC: network for the detection of atmospheric composition changeSGP: Southern Great PlainsARM: Atmospheric Radiation MeasurementThe Southern Great Plains (SGP) atmospheric observatory was the first field measurement site established by the Atmospheric Radiation Measurement (ARM) user facility. This observatory is the world’s largest and most extensive climate research facility.
  • 科学岛团队在高分辨率激光外差光谱技术研究方面取得新进展
    近期,中科院合肥研究院安光所许振宇副研究员课题组科研人员在激光外差光谱技术研究中取得新的突破,相关研究成果发表在《光学通信》(Optics Letters)上,且该论文被编入编辑精选(Editor’s Pick)。   激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,安光所科研团队邓昊博士后首次提出基于半导体光放大技术微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明所研发的基于半导体光放大的高分辨率激光外差光谱仪相比于传统的高分辨率激光外差光谱仪在弱光信号探测以及气体浓度测量精度方面得到大幅提升。   该研究提高了高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大的应用潜力。   邓昊博士后是论文第一作者,许振宇副研究员与阚瑞峰研究员是论文通信作者。该研究获得国家自然科学基金、国家重点研发计划等项目的资助。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果
  • 高分辨率激光外差光谱技术新突破!信号探测和测量精度双双大幅提升
    近日,中科院合肥研究院安光所许振宇副研究员课题组科研人员在激光外差光谱技术研究中取得新的突破,相关研究成果发表在《光学通信》(Optics Letters)上,且该论文被编入编辑精选(Editor’s Pick)。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,安光所科研团队邓昊博士后首次提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明所研发的基于半导体光放大的高分辨率激光外差光谱仪相比于传统的高分辨率激光外差光谱仪在弱光信号探测以及气体浓度测量精度方面得到大幅提升。该研究提高了高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大的应用潜力。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果文章链接:https://opg.optica.org/ol/fulltext.cfm?uri=ol-47-17-4335&id=493999
  • 合肥研究院在高分辨率激光外差光谱技术研究方面取得进展
    近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所副研究员许振宇团队在激光外差光谱技术研究中获进展。相关研究成果发表在《光学通信》(Optics Letters)上。  激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,研究人员提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明,相比于传统的高分辨率激光外差光谱仪,所研发的基于半导体光放大的高分辨率激光外差光谱仪的弱光信号探测和气体浓度测量精度得到大幅提升。  该研究有助于提高高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大应用潜力。  相关研究工作获得国家自然科学基金、国家重点研发计划等项目的资助。  论文链接基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果
  • IDS3010高精度皮米激光干涉仪在齿轮箱机械载荷试验运动跟踪上的全新应用!
    研究背景 驱动工程行业中的部件需要测试多种机械特性,例如,需要检查齿轮箱的长期平滑度、同步性、齿隙、扭转刚度、摩擦行为和机械弹性[1,2]。测试实验室通常配备各种测试台,以便于在接近真实世界的条件下分析齿轮,确定并确保其技术特性。 WITTENSTEIN alpha是attocube母公司WITTENSTEN SE的战略业务部门,负责精度需求超高的机电伺服驱动系统的开发和机械生产。WITTENSTEIN在垂直线性运动测试台上使用了attocube的皮米精度激光干涉仪-IDS3010。IDS3010能够提供皮米分辨率,1MHz的数据输出,可有效帮助测试齿轮齿条传动系统中行星齿轮箱机械参数的长期稳定性。 实验装置 试验台包含沿垂直轴移动的400 kg负载质量。该负载与齿轮齿条系统相连,齿轮齿条系统由WITTENSTEIN alpha齿轮箱和伺服电机驱动组成。传统的玻璃标尺在精度、灵活性和检测高频振动方面十分受限,无法收集该测试台所需的所有数据。为了更好地了解变速箱的性能,需要精度更高且易于集成到现有装置中的设备。皮米精度激光干涉仪-IDS3010具有皮米级精度、紧凑的传感器头和模块化设计、通过光纤传输激光等特性,工程师将其集成到装置中并实现了快速安装和快速对齐。在开始整合两小时内,使用IDS3010在整个0.747米的工作范围内完成了测量。图1显示了测试台,包括安装在400 kg重量上的角锥棱镜和M12/C7.6准直传感器头,同时以1 MHz带宽从IDS3010读取模拟Sin/Cos数据。 Figure 1: Test bench for mechanical load tests of a gearbox 测试结果分析 图2显示了工作范围内几个周期的位移数据。如下图(a)所示,循环结果接近正弦曲线;图(b)是运动的转折点放大的曲线数据。高分辨率位移数据为同步和传动误差的齿轮箱行为提供了新证据。探索纳米级细节的能力为频率和运动分析提供了新的机会。通过IDS3010和进一步优化,可以可视化完成行星齿轮箱中单齿的影响。此外,如图(e)所示,两种方法的差异表明,玻璃尺读数提供的测量数据准确性较差。两个信号之间差异的周期性明显,表明不是由于噪声或变化造成的数据误差,而是因为玻璃尺编码器位于远离感兴趣的测量点和玻璃刻度不精确。此外,IDS3010及其光学组件具有更明显的优点,例如紧凑的传感器头和质量可忽略的角锥棱镜。 Figure 2: Displacement data of the weight moved by the gearbox. (a) shows the position of the mass that was measured with the IDS3010. (b) is a 160 000 times magnified segment of a) to show the precision of the interferometric measurement. (c) is the speed measurement of the weight movement obtained from the data of a). (d) is the same measurement as a) but with an optical linear encoder – which looks similar until one looks at the detail of the difference – as seen in plot (e).结论 综上所述,IDS3010提高了测试台的精度和分辨率。基于激光的测量和小型化组件对无限接近感兴趣的点进行测量成为可能,且不会影响整个装置的运动行为。这使得测试和开发工程师能够确定更多无法使用玻璃尺检测到的机械和摩擦现象。此外,IDS3010紧凑的设计、易于安装和快速对准的特性,允许在一个实验室内的多个测试台上灵活应用和集成。由于IDS3010可测量长达5米的工作距离,多达三个的光轴,因此干涉仪也可用于更大的测试台。 References [1] R. Russo, R. Brancati, E. Rocca: “Experimental investigations about the influence of oil lubricant between teeth on the gear rattle phenomenon”, Journal of Sound and Vibration, Volume 321, Issues 3-5, 2009, Pages 647-661.[2] Y. Chen, A. Ishibashi: “Investigation of the Noise and Vibration of Planetary Gear Drives”, GEAR TECHNOLOGY, Jan/Feb 2006.相关产品1、皮米精度激光干涉仪-IDS3010
  • 应用解读:皮米精度激光干涉仪如何实现高精度实时位移反馈?
    “坐标”这个概念源于解析几何,其基本思想是构建坐标系,将点与实数联系起来,进而可以将平面上的曲线用代数方程表示。坐标的概念应用到工业生产中解决了大量实际问题,例如,坐标测量机可采集被测工件表面上的被测点的坐标值,并投射到空间坐标系中,构建工件的空间模型等诸多案例。坐标测量机还被用于产品质量控制,测量磨损,制造精度,产品形貌,对称性,角度等工业产品参数,因此需要非常高的移动精度,才能确保测量的准确性。德国attocube公司推出的IDS3010皮米精度位移测量激光干涉仪就是辅助坐标测量机提高测量精度的有力手段。图1 皮米精度位移测量激光干涉仪IDS3010IDS3010皮米精度位移测量激光干涉仪是如何帮助坐标测量机实现高精度的呢?图2 IDS3010激光干涉仪集成到坐标测量机探测臂上通常坐标测量机要求探测臂位移精度高于1微米,现在坐标测量机位移反馈大多是通过玻璃分划尺来实现的。玻璃分划尺是常用的一种位置测量的方法,分划尺在坐标测量机上位于龙门处,一般情况下,采用玻璃分划尺探测的不是探测臂本身,而是坐标测量机龙门处的位置变化。实际上, 坐标测量机的探测臂与龙门之间有一定长度的距离,它们的位置变化会因存在例如振动、位置差等而有所不同,因此只凭借龙门处位置变化来判断真实的位移反馈是不准确的,影响到实际样品的测量精度。图3 IDS3010激光干涉仪集成到坐标测量机上。坐标测量机通过干涉仪探头的配合,可反馈探测臂的位移。德国attocube公司的IDS3010皮米精度位移测量激光干涉仪通过非接触式方法测量,可以直接测量探测臂的运动,避免龙门处探测误差,实现高精度测量。如图3,激光探头位于坐标测量机侧边,M12/C7.6激光探头出射的激光可以被探测臂上的反射镜(直径3mm)反射回激光探头,IDS3010干涉仪通过分析干涉信号从而进行位置测量。探测臂能够移动0.8米距离,移动精度达到10微米。干涉仪能够实时测量该探测臂的位移以及振动等信息。图4 IDS3010实时位置测量软件WAVE测量数据。扩展图为中间区域的数据放大。IDS3010配置的软件WAVE可以实时观测与保存测量数据。如图4,坐标测量机的运动数据被测量并记录。图中所示,前15秒与终10秒间的数据是0.8m距离的往复运动。中间时间的数据看似没有变化,但通过WAVE软件的放大功能,我们发现中间时间的探测臂其实进行了10微米的步进运动。同时,通过WAVE软件我们也可以观测到步进运动的详细变化过程。每一个步进大约2秒,在运动初始的时候位移有超过,在大约0.4秒的短时间内位移被调整为10微米的步进长度。而在步进的末尾,也有小幅的位置噪音,该噪音一般是由于振动引入。这对于探测样品位移以及振动信息具有重大意义。IDS3010技术特点:IDS3010皮米精度位移测量激光干涉仪具有体积小、适合集成到工业应用与同步辐射应用中的特点,同时,测量精度高,分辨率高达1 pm,是适合工业集成与工业网络无缝对接的理想产品。除与坐标测量机结合使用外,在工业中的其他应用实例也非常广泛,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等等。+ 测量精度高,分辨率高达1 pm+ 测量速度快,采样带宽10MHz+ 样品大移动速度 2m/s+ 光纤式激光探头尺寸小,灵活性高+ 兼容超高真空,低温,强辐射等端环境+ 其可靠与稳定+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 多功能实时测量界面,包含HSSL、AquadB、CANopen、Profibus、EtherCAT、Biss-C等界面相关产品及链接:1、皮米精度位移激光干涉器attoFPSensor:http://www.instrument.com.cn/netshow/C159543.htm2、EcoSmart Drive系列纳米精度位移台:http://www.instrument.com.cn/netshow/C168197.htm3、低温强磁场纳米精度位移台:http://www.instrument.com.cn/netshow/C80795.htm
  • 空天院首创超高分辨率光学森林三维遥感新方法
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室研究员倪文俭带领的森林遥感团队,在利用超高分辨率光学遥感立体观测数据提取森林三维结构研究方面取得重要进展。现有研究认为,光学多角度立体观测数据在林区不具备穿透能力,故在缺乏林下地形数据时,无法独立进行森林垂直结构参数的直接测量,特别是在浓密山地林区。本研究发现:分辨率优于0.2 米的光学立体观测数据能够对单株树木的冠顶结构进行精细刻画;受树木异速生长方程启发,创建了“生长关系约束的林下地形逼近算法”(AGAR),打破了传统的认知局限,实现了仅利用光学立体观测数据对森林垂直结构的直接测量。相关研究成果发表在Remote Sensing of Environment上。   森林作为重要的陆地生态系统碳库之一,准确估算其碳储量是遥感研究的主要方向,可服务于我国的“双碳”战略和地球系统碳循环过程研究。过去,国内外开展了基于遥感影像光谱或微波散射强度等“二维”特征的森林碳储量估算原理与方法研究,而“地形影响”“遥感信号饱和”仍是难以逾越的两大科学难题。因此,国际学界逐渐转向以卫星测距技术为基础的“三维”遥感,包括以激光测距为基础的激光雷达遥感、以微波测距为基础的合成孔径雷达干涉以及以视觉测距为基础的光学多角度立体观测。美国科学家致力于发展具备冠层穿透能力的星载激光雷达,包括早期搭载在航天飞机上的激光高度计SLA01和SLA02、2003年至2009年运行的ICESat/GLAS卫星、2018年发射的ICESat-2卫星以及2019年放置在国际空间站上的GEDI。欧洲科研人员则积极发展穿透能力较强的L波段Tandem-L和P波段BIOMASS合成孔径雷达干涉卫星,并计划2024年发射。相较于激光雷达和合成孔径雷达干涉,光学多角度立体遥感具有图像直观形象的显著优势但受穿透能力的限制,目前主要用于地表高程的测量,且需要依靠其他数据源提供的林下地形才能对森林垂直结构进行测量,应用价值和场景受限。   近年来,中国在光学多角度立体遥感方面快速发展,先后发射了资源三号、高分七号、天绘系列以及其他商业遥感卫星,同时影像空间分辨率逐步提高。能否利用不断提高的空间分辨率来突破其穿透能力弱的限制,进而最大程度地发挥超高分辨率光学多角度立体遥感数据的应用价值,既是国际前沿科学问题又是中国遥感科研人员亟需回答的问题。   森林遥感团队意识到超高分辨率光学多角度立体观测遥感数据的独特价值,自2014年对无人机立体观测数据在森林结构参数测量中的应用进行了持续研究,并于2018年开展了大兴安岭林区大范围无人机采样观测实验,揭示了观测角度与影像分辨率的耦合规律,证实了森林高度信息对叶面积指数估算的补充作用,研发了针对落叶林区森林高度提取的有叶季和无叶季影像协同解决方案,突破了光谱与三维几何特征协同的散发枯立木识别技术、单木识别与分割技术、以背景识别为基础的高精度森林覆盖度提取技术。在上述数据与技术积累的基础上,该团队创建了“生长关系约束的林下地形逼近算法”(AGAR),实现了复杂地形条件下森林高度的直接提取。该成果证实了无需额外林下地形数据的支持,AGAR算法仅利用超高分辨率光学多角度立体观测数据即可实现森林高度提取。   尽管AGAR算法使用无人机获取的立体观测影像开展研究,且算法的具体技术细节需要进一步测试完善,但随着0.1米卫星光学遥感数据时代的到来,该方法将开启超高分辨光学立体遥感影像森林三维遥感新时代。图1.生长关系约束的林下地形逼近算法(AGAR)的核心思路图2.典型地形条件下森林高度提取的效果。(a)-(c)为光学多角度立体观测数据获取的数字表面模型(DSM);(d)-(f)为光学多角度立体观测数据通过林窗插值提取的森林高度,由于浓密林区林窗较少,导致树高被严重低估或者地形特征去除不彻底;(g)-(i)为利用AGAR提取的森林高度。(a)区域覆盖山脊,(b)区域覆盖山谷;(c)区域覆盖从山脚到山顶的斜坡。
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2 双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1 ~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 新品 | Zygo发布“上视”结构的立式激光干涉仪
    ZYGO出新产品啦Vertical Test Station VTS“上视”结构的立式激光干涉仪!____菲索式激光干涉仪,测试时最常见为卧式配置;具有结构简单,附件少;测试适用性,灵活性好的优点。在很多场合,立式配置也很常见;立式测样具有样品装夹效率高,结构更稳定,抗振性更好的优势,非常适用于光学生产时在现场使用。ZYGO VTS 立式激光干涉仪,采用主机在下的“上视”配置,整体重心配置更加合理,稳定,装夹样品效率更高。VTS 系统整合了气浮抗振系统,以及1um分辨率,1米行程的Z轴导轨;配合ZYGO专利QPSI抗振移相技术,基于Mx软件,用于测试球面面形及曲率半径参数。___“上视”配置还有一个特殊优势,样品在夹具支撑下,得益于样品自身重力,可以保证球面干涉腔的良好“复位”性,如上图。基于这一良好位置复现特点,“上视”配置干涉仪能以类似经典“辨识样板光圈”的方式,通过比对样品和“样板”的POWER差异,高效测试曲率半径。如以上公式,先测试标准样板,尽量调整到“零”条纹;然后保持机构与夹具稳定不变,更换为样品,放置于夹具支撑之上。直接测试样品面形;基于两次测试的POWER差异,就能计算出样品相对于样板的“曲率半径误差”。这一测试,类似于经典的“样板光圈法”,将曲率半径绝对测量过程,转变为基于样板的相对测量,极大地提高了曲率半径测试效率。联系我们:https://www.instrument.com.cn/netshow/SH102493/关于翟柯翟柯(简称:ZYGO)是阿美特克集团超精密测量部门成员,专业设计与制造精密测量仪器和光学系统,基于光学干涉原理的计量检测系统能够在纳米甚至亚纳米范围内测量部件形貌和光学波面,产品广泛用于半导体、光学制造通讯、航天、汽车制造和消费电子等生产及科研领域。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 我国双折射双频激光干涉仪实现批量生产
    3月2日,记者从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • 我国双折射双频激光干涉仪实现批量生产!
    3月2日,记者从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • 我国双折射双频激光干涉仪实现批量生产
    3月2日,从清华大学精密仪器系获悉,该系张书练教授课题组进行原理研究并由北京镭测科技有限公司开发生产的双折射双频激光干涉仪实现批量生产。  双频(两频率)激光干涉仪是科学研究、光刻机、数控机床、航空航天、舰船等行业都离不开的光学尺子,用于测量零部件的尺寸,角度,位置,直线性,也是检定各类数控机床、激光加工机床以及光刻机台的精度,进行误差补偿的基本仪器。  张书练介绍,双频激光器是双频激光干涉仪的核心部件。国外干涉仪厂家都是自制专用激光器,称为塞曼双频激光器,不对外供应。此前我国的双频激光干涉仪只能进口普通激光器,从中选出可用的,淘汰率高,性能上不去,导致双频激光干涉仪国产化困难。  据介绍,此次清华大学精密仪器系发明的双折射原理的双频激光器比传统的塞曼双频激光器的激光功率高一倍、频率间隔大一倍或两三倍、没有两个频率之间耦合串混。分辨率达到1纳米(十亿分之一米),线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米。  张书练指出,双折射双频激光器的使用带动了干涉仪整机的光机电系统创新设计,使双折射双频激光干涉仪具有便携,方便,鲁棒等优良性能。
  • 德国attocube公司IDS3010皮米精度激光干涉仪荣获iF设计大奖
    德国attocube公司推出的皮米精度激光干涉仪IDS3010凭借其特的设计原理、超高的稳定性并且可在端环境中使用的特点,获得了全球工业设计奖项之一的“iF设计奖”。图1:德国attocube公司IDS3010皮米精度激光干涉仪“iF Design Award”由德国设计协会创立,与德国“Red dot奖”、美国“IDEA奖”并称为三大设计奖。这个让人梦寐以求的奖项次授予了激光位移传感领域,具有非常重大的意义,这也是对IDS3010皮米精度激光干涉仪这一颠覆性产品的认可。IDS3010皮米精度激光干涉仪分辨率高达1pm,采样速率达到10MHz,样品大移动速度2m/s,小激光探头为1.2mm。广泛应用于闭环扫描器校准、纳米精度位移标定、无损测量振动频率及轴承误差、精密仪器制造、角度测量以及同步辐射光路准直等领域。图2:IDS3010皮米精度激光干涉仪应用领域:计量学研究、显微镜控制、超精密加工、同步辐射应用、真空/低温系统、加工机床校准值得指出的是,IDS3010皮米精度激光干涉仪获得了德国PTB的认证,大程度地保证了其测量的可靠性和准确性。图3:德国PTB计量证书德国attocube公司的皮米精度激光干涉仪IDS3010在国内已经拥有清华大学、天津大学、中国计量科学院、中科院高能物理研究所、中科院应用物理研究所、南方科技大学等用户,并在国际上受到广泛青睐,用户包括哈佛大学、斯坦福大学、耶鲁大学等科研单位。
  • Nature:皮米精度位移测量激光干涉仪助力声子四极拓扑绝缘体观测
    电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在nature上。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。 图1:实验装置示意图(图片来源:doi:10.1038/nature25156) 值得指出的是,Sebastian Huber教授利用细金属丝将100片硅片组成一个10cmX10cm的平面,以此来模式二维拓扑缘体(如图1所示)。关键点是,当硅晶片被超声激励时,只有中心点有振动;其他角尽管连接在一起仍然保持静止。这种行为类似于二维拓扑缘体的带隙边缘和隙内拐角态的电子行为。而如何探测硅晶片的微小振动是整个实验成功的关键,Sebastian Huber教授利用德国attocube system AG公司的IDS3010皮米精度激光干涉仪(如图2所示)来测量硅晶片不同位置的微小振动变化,整个测量系统的不确定度达到5pm的精度,测量统计误差达到10pm,后在通过超声激励后测得硅晶片的中心位置的振动位移为11.2pm,通过傅里叶变换之后在73.6KHz(如图3所示)。通过attocube皮米精度激光干涉仪IDS3010成功实现声子四拓扑缘体的次观测。 图2:皮米精度位移测量激光干涉仪IDS3010 图3:测量系统示意图和经过傅里叶频率变换的测量结果(图片来源:doi:10.1038/nature25156)IDS3010皮米精度位移测量激光干涉仪体积小、测量精度高,分辨率高达1 pm,适合集成到工业应用与同步辐射应用中,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等。同时也得到了国内外众多低温、超导、真空等领域科研用户的认可和肯定。
  • 199万!华中科技大学超高分辨率激光扫描共聚焦显微镜采购项目
    项目编号:HW20220426、ZCZB-2209-ZH165项目名称:华中科技大学采购超高分辨率激光扫描共聚焦显微镜项目采购方式:竞争性磋商 预算金额:199万元序号货物名称是否接受进口产品单位数量是否为核心产品1超高分辨率激光扫描共聚焦显微镜是套1是指标要求全固体激光器:405nm,功率≥50mW488nm,功率≥20mW561nm,功率≥20mW640nm,功率≥20mW开放式和一体化的激光耦合器,通过单独一根宽光谱、高透过率光纤导出,近紫外到红光区域一体化色差校正,无须调节光纤中心。所有激光谱线均由AOTF控制,可实现连续调节激光强度、高速激光谱线切换、具有快速光闸控制功能,可进行局部的R0I成像、FRAP等实验应用;激光强度调节范围:0.01%-100%,最小调节步进精度0.01%,后期可升级激光器最大可升级9根激光器。附件一华中科技大学采购超高分辨率激光扫描共聚焦显微镜项目采购需求书.docx
  • XL-80:全新轻型激光干涉仪测量系统
    在超精密的测量和校准方面,激光干涉仪已经扮演多年极重要的角色。但是近年来随着自动化运动系统性能大幅提高,面对半导体和传统金属加工业的需求,现有激光系统的性能已无法满足一些客户的要求。Renishaw的新型XL-80激光干涉仪能够满足和超越实际工业规范水平,提供4 m/s最大的测量速度和50 kHz记录速率。即使在最高的数据记录速率下,系统准确性可达到± 0.5ppm(线性模式)和1纳米的分辨率,这些改进意味着工程师仍能使用可溯源性激光干涉的独特优势,帮助解决现代化机器设计问题。 系统精度比原有的对应产品ML10激光系统有所提升,在整个日常温度、气压和湿度不同工作环境下,均可达到± 0.5 ppm的精度。环境读数使用XC-80智能传感系统进行读取,每7秒更新一次激光读数补偿值。还有一点很重要,与Renishaw的ML10系统一样,所有测量值均采用稳定的氦氖激光源的波长为基准,保证能够溯源至国际公认的长度标准。此新系统可以与现有的ML10系统光学镜组完全兼容,使目前全球数千ML10用户能够升级到新系统,并同时保留其在光学镜组、程序和人员培训上的原有投资。 我们还提供已更新的Renishaw软件版本(LaserXL™ 及QuickViewXL™ ),能够以用户熟悉的、易于使用的格式提供数据。Laser XL™ 能够执行循序渐进式的测量,以方便对大多数机床按标准进行检验,QuickViewXL™ 软件能够在屏幕上实时地显示激光读数。您只要看一眼Renishaw的新型XL-80激光装置和XC-80补偿器,就会注意到它们比原有的ML10和EC10小了许多。现在,二者总重仅3公斤多一点(包括连接电缆、电源和传感器),比原来减轻了70%。当然,随着激光头和补偿器尺寸减小,其他系统组件,例如三脚架和云台也相应地减小以便相配,因此整个系统(除了三脚架)的装运箱减小了许多。现在,最小的“脚轮箱”只有原来箱子的一半大一点点,却可以携带整个线性和角度测量系统,并有放置Renishaw QC10球杆仪组件的位置。这个高度便携的“检查和修正”系统总重不到15公斤,同类产品无以匹敌。为了与系统的其他组件的便携性相匹配,我们设计了新型三脚架和装运箱,仅重6.2公斤。激光头和云台体积很小,能够方便地固定在标准磁性座上,可以在不方便使用三脚架固定的应用条件下使用。XL-80激光测量系统的光束高度和光学镜组尺寸与ML10系统一样,因此也可以直接放在花岗岩工作台(不使用三脚架云台)上,进行坐标测量机的校准。Renishaw已将激光的预热时间缩短至大约仅6分钟。预热速度较同类系统快,因此用户等待时间减少了,用于测量工作的几率增加了,这对于机器校准服务商和那些需要在一个地点执行多项测量的用户而言非常重要。现在,信号增益的开启和关闭是一项标准功能,使其具有80米线性测量距离的能力。若短距离应用时,则可以提高信号强度。激光信号通过USB连线直接输出到电脑上(无需单独的接口),辅助功能端口可提供模拟信号及工厂按需设定的数字信号输出。XL-80激光头的配置集原ML10G/Q/X多种任选功能于一体,功能更完善。XL-80系统具有长达3年标准的全面保修,并可以以优惠的价格选购延长保修时间为5年。对于使用ML10的老用户和使用其他厂商制造的同类系统的新客户,我们均提供一些特别优惠政策。请联络Renishaw各办事处。
  • 530万!浙江大学医学院附属第二医院快速超高分辨率激光共聚焦显微镜项目
    项目编号:0625-22215621-5 项目名称:浙江大学医学院附属第二医院快速超高分辨率激光共聚焦显微镜项目 预算金额(元):5300000 最高限价(元):/ 采购需求: 标项名称: 快速超高分辨率激光共聚焦显微镜 数量: 1 预算金额(元): 5300000 简要规格描述或项目基本概况介绍、用途:该设备用于获取清晰的高质量的以及超高分辨率的共聚焦荧光图像,可用于观测固定细胞,活细胞,动植物组织的深层结构, 得到清晰锐利的多层Z平面结构 (光学切片) 备注:允许进口 合同履约期限:标项 1,到货时间:合同签订后30个工作日内 本项目(是)接受联合体投标。二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无
  • 150万!上海交通大学机械与动力工程学院激光球杆干涉仪采购项目
    项目编号:0834-2341SH23A025项目名称:上海交通大学机械与动力工程学院激光球杆干涉仪预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1激光球杆干涉仪1套1.1* 空间测量不确定度U(95%)≤1.0μm,分辨率≤0.001μm(详见第八章)签订合同收到L/C后12个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:签订合同收到L/C后12个月内本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:上海交通大学地址:上海市东川路800号联系方式:刘老师 86-21-547443662.采购代理机构信息名 称:上海中招招标有限公司地址:上海市共和新路1301号D座二楼联系方式:林佳文、吴乾清 电话:86-21-66271932、86-21-66272327,13764352603@163.com、18930181850@163.com3.项目联系方式项目联系人:林佳文、吴乾清电话:86-21-66271932、86-21-66272327
  • 150万!上海交通大学机械与动力工程学院激光球杆干涉仪采购项目
    项目编号:0834-2341SH23A025项目名称:上海交通大学机械与动力工程学院激光球杆干涉仪预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1激光球杆干涉仪1套1.1* 空间测量不确定度U(95%)≤1.0μm,分辨率≤0.001μm(详见第八章)签订合同收到L/C后12个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:签订合同收到L/C后12个月内本项目( 不接受 )联合体投标。采购人信息名称:上海交通大学地址:上海市东川路800号联系方式:刘老师 86-21-547443662.采购代理机构信息名称:上海中招招标有限公司地址:上海市共和新路1301号D座二楼联系方式:林佳文、吴乾清 电话:86-21-66271932、86-21-66272327,13764352603@163.com、18930181850@163.com3.项目联系方式项目联系人:林佳文、吴乾清电话:86-21-66271932、86-21-66272327
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • 235万!徕卡中标中国地质大学(武汉)超高分辨率激光共聚焦显微镜系统采购项目
    一、项目编号:DDCG-20221021(招标文件编号:DDCG-20221021)二、项目名称:中国地质大学(武汉)超高分辨率激光共聚焦显微镜系统采购项目三、中标(成交)信息供应商名称:武汉贝徕美生物科技有限公司供应商地址:洪山区珞狮路362号湖北农业科技大楼8楼801室中标(成交)金额:235.8600000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元)1 武汉贝徕美生物科技有限公司 超高分辨率激光共聚焦显微镜系统 Leica Microsystems CMS GmbH/Germany Stellaris 5 1套 2358600
  • 安光所在高分辨率激光外差光谱应用于风场探测方面获得新进展
    近日,中科院合肥研究院安徽光机所高晓明研究员团队在激光外差光谱应用于风场探测方面取得新进展,相关研究成果以《基于氧气矫正的高分辨率激光外差辐射计(LHR)用于平流层和对流层风场探测的研究》为题发表于美国光学学会(OSA)学术期刊Optics Express。激光外差辐射计(LHR)具有高光谱分辨率的特点,可以有效地探测到由风场引起的微小多普勒频移,频移结合大气透过率谱,通过光谱反演得到沿视线方向水平风的垂直廓线和大气柱浓度等信息。团队谈图副研究员和李竣博士生设计了基于氧气矫正的近红外激光外差光谱仪,同时测量大气O2和CO2透过率谱,基于受约束的内尔德-米德(Nelder-Mead’s)单纯形法,利用大气O2透过谱来校正大气温度和压力分布,并结合最优估算法反演得到了精度为∼±2.5 m/s的大气风场垂直剖面,研究结果表明,氧气校正激光外差辐射计作为便携式和小型化测量仪器在风场探测中具有广阔的应用潜力。本研究工作得到国家自然科学基金重点项目、国家重点研发计划、所长特别预研基金等项目的资助。双通道近红外激光外差辐射计示意图图(a)为测量的大气透射光谱;图(b)为先验风廓线(蓝色曲线)和反演的风廓线(红色虚线)
  • 1850万!杭州师范大学2023年快速超高分辨率激光共聚焦显微镜等采购项目
    一、项目基本情况 1. 项目编号:HZNU-2023179 项目名称:杭州师范大学2023年快速超高分辨率激光共聚焦显微镜等一批设备 预算金额(元):10500000 最高限价(元):3800000,1500000,3200000,2000000 采购需求: 标项一 标项名称: 快速超高分辨率激光共聚焦显微镜 数量: 不限 预算金额(元): 3800000 简要规格描述或项目基本概况介绍、用途:快速超高分辨率激光共聚焦显微镜,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 标项二 标项名称: ICP-MS 质谱仪 数量: 不限 预算金额(元): 1500000 简要规格描述或项目基本概况介绍、用途:ICP-MS 质谱仪,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 标项三 标项名称: 高效液相二维质谱联用(HPLC-MS/MS) 数量: 不限 预算金额(元): 3200000 简要规格描述或项目基本概况介绍、用途:高效液相二维质谱联用(HPLC-MS/MS),具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 标项四 标项名称: Wes全自动蛋白质表达定量分析系统 数量: 不限 预算金额(元): 2000000 简要规格描述或项目基本概况介绍、用途:Wes全自动蛋白质表达定量分析系统,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 合同履约期限:标项 3、4,自合同签订之日起,90日历天内供货到位。 标项 2,自合同签订之日起,120日历天内供货到位。 标项 1,自合同签订之日起,180日历天内供货到位。 本项目(是)接受联合体投标。2.项目编号:HZNU-2023188 项目名称:杭州师范大学2023年双光子显微镜 预算金额(元):8000000 最高限价(元):8000000 采购需求: 标项名称: 杭州师范大学2023年双光子显微镜 数量: 1 预算金额(元): 8000000 简要规格描述或项目基本概况介绍、用途:杭州师范大学2023年双光子显微镜,本项目主要用来对厚组织样本及活体进行连续扫描成像,能够获得精细的内部各个层面结构的三维图像进行分析,也可以进行细胞及生物荧光样品观察分析,荧光定量定性分析,荧光原位杂交分析,蛋白亚细胞定位分析,蛋白相互作用,3D成像技术,时间序列成像等,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 合同履约期限:标项 1,自合同签订之日起,180个日历日内供货到位。 本项目(是)接受联合体投标。二、获取招标文件 时间:/至2023年06月29日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政采云平台(https://www.zcygov.cn/) 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 三、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:杭州师范大学 地 址:余杭区仓前街道余杭塘路2318号 传 真: 项目联系人(询问):党老师 项目联系方式(询问):0571-28867509 质疑联系人:周老师 质疑联系方式:18857298499 2.采购代理机构信息 名 称:浙江省国际技术设备招标有限公司 地 址:杭州市凤起路334号同方财富大厦14层 传 真:0571-85860230 项目联系人(询问):杨建 杨晴 项目联系方式(询问):0571-85860251、0571-85860257 质疑联系人:孙荣 质疑联系方式:0571-85860270        3.同级政府采购监督管理部门 名 称:杭州市财政局政府采购监管处 /浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室 传 真: 联 系 人:朱女士/王女士 监督投诉电话:0571-85252453
  • 1GHZ——超高分辨率光谱仪的新突破
    1GHZ——超高分辨率光谱仪的新突破 --- 基于ZOOM超高分辨率光谱仪 摘要:近日,Resolution Spectra System 公司推出一款超高分辨率光谱仪:1GHZ-ZOOM Spectrometer. 这款光谱仪可以说是目前市场上绝无仅有的一款超高分辨率光谱仪(1GHZ),它具有其他光谱仪无法匹配的优良特性:高分辨率(1GHZ)、 SWIFTS Technology 、30KHZ测量速率、体积小、终生仅需一次校准。 ZOOM Spectrometer 不同于现在市场上的光谱仪,它是第一个也将是仅有的一个采用SWIFTS Technology技术的高性能光谱仪供应商(上海昊量光电设备有限公司-中国代理商),它的核心技术是SWIFTS Technology,即采用目前世界上先进的光波导技术(如图1)来替代传统的光栅元件。这样,光谱仪内部不再包含可移动的元器,也确保了波长的绝对精确性(终生仅需校准一次,可充当波长计来使用)。 图1 SWIFTS 芯片(光波导技术) 此前Resolution Spectra System公司已经相继推出多款高分辨率光谱仪: (1) WIDE Spectrometer(6GHZ) 宽带高分辨率光谱仪 (7-20pm)(2) MICRO Spectrometer(6GHZ) 高性价比超高分辨率光谱仪 (7-20pm)(3) ZOOM Spectrometer (6GHZ、3GHZ) 高速率、高分辨率光谱仪 (5-15pm) 近年来,我们的高分辨率光谱仪得到了众多科研工程师们的青睐,为了满足诸多工程师们对激光器超窄线宽的测量、单纵模激光器的检测、VCSEL激光器测量(图2)、高深度相干断层扫描(图3)等需求. Resolution Spectra System 研制了分辨率高达1GHZ的超高分辨率光谱仪——ZOOM Spectrometer。 图2 VCSEL激光器测量 图3   高深度相干断层扫描图 对于ZOOM Spectrometer –超高分辨率光谱仪,如果您想要更深入的进行了解,可直接联系我们。 您可以通过我们的官方网站了解更多的超高分辨率光谱仪产品信息,或直接来电咨询021-34241962。 激光器 大功率连续半导体/固体激光器(CW)碱蒸汽激光泵浦源(SEOP) 光学部件 体布拉格光栅(VBG,VHG)空间滤波器(spatial filters)频谱合束光栅用于角度选择与放大的透射体布拉格光栅啁啾布拉格光栅多波长激光合束器激光选模/波长锁定用体布拉格光栅光学滤波片/陷波滤波片BPF低波数带通滤光片BNF低波数陷波滤波片 光学/激光测量设备 频谱分析仪630~1100nm频谱分析仪 光谱仪 光纤光谱仪宽带超高分辨率光谱测量仪高性价比超高分辨率光谱仪(7~20pm)高速、超高分辨率光谱仪(0.005nm)
  • 600万!香港中文大学(深圳)全光谱高分辨率荧光寿命激光共聚焦显微镜采购项目
    项目编号:3324-DH2231H2150(SZDL2022001734)项目名称:全光谱高分辨率荧光寿命激光共聚焦显微镜采购项目预算金额:600.0000000 万元(人民币)最高限价(如有):600.0000000 万元(人民币)采购需求:详见招标文件合同履行期限:详见招标文件本项目( 不接受 )联合体投标。
  • 810万!华中农业大学超高分辨率激光共聚焦显微成像系统等设备采购项目
    一、项目基本情况项目编号:ZCZB-2307-ZH080项目名称:华中农业大学超高分辨率激光共聚焦显微成像系统等设备购置项目(产教融合第三批)预算金额:810.0000000 万元(人民币)最高限价(如有):810.0000000 万元(人民币)采购需求:01包:超高分辨率激光共聚焦显微成像系统,详见附表;02包:荧光定量PCR仪(384通道),详见附表;03包:超高速冷冻离心机,详见附表;04包:全自动细胞计数仪等设备,详见附表。合同履行期限:1.交货期:详见附表2.质保期:详见附表3.质量目标:全新合格产品本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月16日 至 2023年07月21日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:湖北嘉汇志诚招标咨询有限公司官网(网址:www.zczbzx.com)方式:凡有意参加本项目的潜在供应商,通过互联网在“湖北嘉汇志诚招标咨询有限公司官网”(网址:www.zczbzx.com)进行投标人/供应商注册。完成注册后,通过“投标人/供应商登录”(网址:https://cloud.zczbzx.com/tender/login.html),明确所投项目及项目包段,通过网上下载获取招标文件。咨询电话027-86652085-801;系统技术服务QQ为263482602售价:¥1600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华中农业大学     地址:武汉市洪山区狮子山街1号        联系方式:许老师、027-87282631      2.采购代理机构信息名 称:湖北嘉汇志诚招标咨询有限公司            地 址:武汉市武昌区和平大道513号绿地铭创大厦2005室            联系方式:陶丹、高雅、廖寿杰 027-86652085-801            3.项目联系方式项目联系人:陶丹、高雅、廖寿杰电 话:  027-86652085-801
  • 港东科技:自主研发高分辨率长焦拉曼光谱仪
    目前,基于超快激光的非线性拉曼光谱技术已经越来越成熟了;而且,随着纳米科技的迅猛发展,使得基于纳米结构的表面增强拉曼光谱(SERS)和针尖增强拉曼光谱(TERS)在超高灵敏度检测方面取得了长足的进步,推动拉曼光谱成为迄今很少的、可达到单分子检测水平的技术。  “港东科技”自二十世纪九十年代初就开始研发“拉曼光谱”系列产品。自主研发、生产、制造的LRS-2型和LRS-3型激光拉曼光谱仪以结构简单、便于调整和测量、灵敏度高、稳定性好等特点分别在1998年和2000年世界银行贷款发展项目中二度中标。该仪器现已大量应用于科研院所、高等院校的物理实验室和化学实验室,作为测量和教学拉曼光谱和荧光光谱的实验仪器。LRS-2/3激光拉曼光谱仪  仪器特点:  自动记录拉曼、荧光光谱   高分辨率,低杂散光单色系统   高灵敏度、低噪音单光子计数器做接收系统   大功率半导体激光器作为激发光源   配有稳定性好、精度高的外光路系统   多种附件可选,适用于液体、固体样品的分析   配有用于减小瑞利散射的陷波滤波器。  2008年,港东科技自主研发的,同时也是国内首款LRS-5型微区激光拉曼光谱仪(将具有自主知识产权的高分辨激光共焦显微镜作为收集拉曼散射光系统,长焦长高分辨平场成像输出的单色器,结合自行研制的计算机软件编程等相关实验技术相整合,构建具有自主知识产权的新型高分辨的激光共聚焦显微光谱探测联用设备-激光共焦拉曼光谱仪)研制成功。  这是一项将拉曼光谱分析技术与显微分析技术结合起来的应用技术。微区激光拉曼可将激发光的光斑聚焦到微米量级,从而可以在不受周围环境干扰的情况下,精确获得所检测样品的有关化学成分、晶体结构、分子相互作用以及分子取向等各种拉曼光谱信息。  我们对激光共焦拉曼显微镜的装置设计与技术参数,几何尺寸与配置,显微镜的白光成像照明系统和偏振调光图像处理技术进行了细致的研讨与实际效果的理论计算,为该显微镜的结构定型、技术指标奠定了基础。最终研制成功具有自主知识产权的高性能激光共聚焦拉曼显微镜系统。LRS-5 微区激光拉曼光谱仪  仪器特点:  操作简单,友好的人机对话界面   高分辨率、高稳定性和低杂散光的非对称800mm焦距平场光谱仪系统   接受系统采用具有高灵敏度、低噪音的面阵CCD接收器   外光路系统采用显微镜作为激光会聚和拉曼光收集系统,具有很高的效率和稳定性   配有用于减小瑞利散射的陷波滤波器。  2012年至2016年,“港东科技”作为国内唯一一家研发、生产高分辨率长焦拉曼的企业受邀参加了由北京理工大学牵头,协同中国科学院物理研究所共同研发的“激光差动共焦成像与检测仪器研发及其应用研究”项目,该项目属于“国家重大科学仪器开发和应用专项”。在该项目中我司主要承担“拉曼光谱成像探测系统”的研发任务。普通激光束的直径通常为1.7mm左右,而显微激光拉曼光谱可以对被分析对象表面及其以下部分(透明或半透明材料)进行分层扫描,以获得较大范围内的信息,能够进行微区(小于0.2µm)分析,很好地满足了对复合材料中不同组元结构分析的要求。  对于“拉曼光谱”在未来的发展,那就必须先从“拉曼光谱”与它的姊妹谱——红外光谱的比较说起。  相似之处:“拉曼光谱”与“红外光谱”一样,都能提供分子振动频率的信息,对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。  不同之处:  1.红外光谱的入射光及检测光都是红外光,而拉曼光谱的入射光和散射光大多是可见光。拉曼效应为散射过程,拉曼光谱为散射光谱,红外光谱对应的是与某一吸收频率能量相等的(红外)光子被分子吸收,因而红外光谱是吸收光谱。  2.从分子结构性质变化的角度看,拉曼散射过程来源于分子的诱导偶极矩,与分子极化率的变化相关。通常非极性分子及基团的振动导致分子变形,引起极化率的变化,是拉曼活性的。红外吸收过程与分子永久偶极矩的变化相关,一般极性分子及基团的振动引起偶极矩的变化,故通常是红外活性的。  3.红外光谱制样复杂,拉曼光谱勿需制样,可直接测试水溶液。  姊妹谱的联系:  1、凡有对称中心的分子,若有拉曼活性,则红外是非活性的 若红外活性,则拉曼是非活性的。  2、凡无对称中心的分子,大多数的分子,红外和拉曼都活性。  3、少数分子的振动,既非拉曼活性,又非红外活性。(如:乙烯分子的扭曲振动,在红外和拉曼光谱中均观察不到该振动的谱带。  综上所述,拉曼光谱相对于红外光谱,其优势之一体现在用拉曼研究水溶液中比较方便,而生命科学的许多研究往往需要的水溶液环境。共振拉曼、表面增强拉曼和非线性拉曼光谱以及它们的联用将成为生命科学前沿领域具有重要价值的研究方法,因为21世纪是生命科学的世纪(如:临床医疗、癌症的检测与诊断等),我们以为也是纳米技术和激光技术的世纪,因此我们觉得拉曼光谱的发展和应用是大有可为的。  但就目前来讲,“拉曼光谱”还存在一定的不足,例如:  1、拉曼散射面积   2、不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响   3、荧光散射的干扰   4、在进行分析时,常出现曲线的非线性的问题   5、任何一个物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响。  当然我们也相信,随着相关技术领域的不断进步和提高,这些问题在不远的将来都能得到完善的解决。届时“拉曼光谱”的应用领域也将更为广泛。  “拉曼光谱”揭示了丰富的化学键信息,检测对象从单质到化合物,从纯净物到混合物,从无机物到有机物,从固体到液体甚至到气体。随着技术的进一步发展,便携式拉曼光谱仪的发展趋势将呈现多样化。更加小型化、智能化、应用更加细分(分析化学、安全检查、生物医药、机场安检、爆炸物分析等),将成为发展的主流,而性能却不会随着小型化而缩水。同时,随着应用领域的扩大,适应恶劣的工作环境(高温、高压)也将是发展方向之一。而价格合理化将是便携式拉曼光谱仪发展的终极目标。(内容来源:港东科技)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制