当前位置: 仪器信息网 > 行业主题 > >

等离子体表面处理仪

仪器信息网等离子体表面处理仪专题为您提供2024年最新等离子体表面处理仪价格报价、厂家品牌的相关信息, 包括等离子体表面处理仪参数、型号等,不管是国产,还是进口品牌的等离子体表面处理仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合等离子体表面处理仪相关的耗材配件、试剂标物,还有等离子体表面处理仪相关的最新资讯、资料,以及等离子体表面处理仪相关的解决方案。

等离子体表面处理仪相关的资讯

  • “等离子体表面处理仪有奖问答”——2014年五洲东方公司系列有奖问答五
    2014年五洲东方公司系列有奖问答五 “等离子体表面处理仪网络有奖问答”活动开始啦!全部回答正确者即可获得由五洲东方公司提供的精美奖品一份。熟悉实验方法的网友不要犹豫了,快来参加吧!活动开始时间:2014年4月底。活动奖励:全部答全答对的网友将获得精美礼品一份。答题规则如下:我们会提供参考文章,您可以阅读完文章后答题。本次试题共5题,1-5题都必须答全。点击下载试题等离子体表面处理仪网络有奖问答问题.doc,,填写完整后,您可以:1)将问卷邮件至g.y_liu@ostc.com.cn。2)将问卷邮寄至北京五洲东方公司(“北京市海淀区北四环中路265号中汽大厦7层”,邮编:100083,刘广宇收)。奖品发放:收到问卷经审核后,将发放精美奖品。为了保证奖品能顺利发送到您的手中,请将您的所有联系方式全部填写全面。活动咨询电话:400-011-3699活动详情:等离子体表面处理仪有奖问答——五洲东方系列有奖问答五请关注下期有奖问答活动:2014年五洲东方公司系列有奖问答六所有活动信息请关注五洲东方官方网站www.ostc.com.cn首页公告栏。感谢您的参与!
  • AST接触角测量仪和等离子体表面处理仪诚招代理
    北京五洲东方科技发展有限公司的前身是成立于1988年的北京东方科技公司,是中国科学院东方科学仪器进出口集团公司的控股子公司。本公司是国外30多家知名企业的代理商,秉承"东方科技"品牌,公司为材料科学、生命科学研究和农业科学研究提供优质服务。本公司是美国AST公司在中国区的独家代理,为满足国内不断扩大的市场需求,并扩充现有渠道,现将其产品在全国范围内诚招区域合作伙伴。 AST公司产品: 接触角测量仪:Optima XE, VCA 3000等 等离子体表面处理仪:PJ,PS-350,PS500,PS750等 征聘代理商说明: 1) 对电子行业、材料行业比较熟悉,并在相应地区有畅通的销售网络; 2) 遵守北京五洲东方科技发展有限公司区域管理制度; 3) 能够保证稳定的最低销售额。 我公司以优惠的代理政策、合理的代理价格及一流的客户服务期待与您合作! 联系方式:北京五洲东方科技发展有限公司 地址:北京市海淀区北四环中路265号,100083 联系电话:010-82388866-210 传真:010-82388989
  • 佰汇兴业将参加第八届亚欧国际等离子体表面工程会议(AEPSE 2011)
    第八届亚欧国际等离子体表面工程会议(AEPSE2011) (2011 年9月19 日~22 日,中国大连) AEPSE 会议的企业展览,已成为推进工业界和科研单位在新技术、新工艺上密切交流的平台,特别关注等离子体、载能束、涂层薄膜及真空技术的相关工业应用,此次会议主要包括等离子体源设计与制造、等离子体诊断技术、等离子体表面工程技术、载能束(激光、离子、电子束等)技术及装备、真空装备技术、光电子器件产业、纳米及生物医用产业、汽车及机械加工、能源及环境领域、包装及装饰、等离子体诊断及表面测试分析等。 佰汇兴业(北京)科技有限公司将参加于2011 年9 月19 日至22日在中国大连召开的第八届亚欧国际等离子体表面工程会议(AEPSE 2011),届时我公司将展示介绍 Type:HHS2000多功能连续加载摩擦磨损试验机(日本HEIDON公司)和MSE微粒磨损试验机(日本Palmeso公司),在此,我们诚挚地邀请您莅临参观我公司产品,期待您的到来与咨询。 佰汇兴业(北京)科技有限公司 北京市海淀区西八里庄路69号西楼201室 电话010-88115228 传真010-88142618 E-mail:info@bhxytech.com www.bhxytech.com
  • 粉体材料表面改性良方一种——低温等离子体技术
    p style=" text-align: justify text-indent: 2em " 粉体材料的一个重要特性就是其表面效应。粉体微粒的表面原子数之比随粉体微粒的尺寸减小而大幅度增加,相应的,粒子的表面张力也随之增加,粉体材料的性质就会因此发生各种变化。以金属纳米微粒为例,随着尺寸减小,微粒的比表面积迅速增加,因而稳定性极低,很容易与其他原子相结合,在空中燃烧。另外,一些氧化物粉体微粒也会由于类似的原因,在暴露于大气中的时候很容易吸附气体。 /p p style=" text-align: justify text-indent: 2em " 改善粉体的的表面效应是粉体材料应用过程中最主要的难题之一,而低温等离子体正是一种有效的表面改性技术。首先我们先了解下究竟什么是低温等离子体。低温等离子体是在特定条件下使气体部分电离而产生的非凝聚体系,其整个体系呈电中性,有别于固、液、气三态物质,被称作物质存在的第四态。具体来说低温等离子体主要由以下几部分组成:中性原子或分子、激发态原子或分子、自由基、电子或负离子、正离子以及辐射光子。 /p p style=" text-align: justify text-indent: 2em " 产生等离子体的方法也有很多种,热电离法、光电离法、激波法、气体放电法、射线辐照法等。等离子体技术在粉体表面处理方面的应用主要有三个维度:等离子体刻蚀、等离子体辅助化学气相沉积和等离子体处理。而低温等离子体技术在改进粉体材料表面处理方面的应用主要有三方面:改进粉体分散性、改进界面结合性能、改进粉体表面性能。 /p p style=" text-align: justify text-indent: 2em " 改进粉体分散性:由于粉体的表面效应,导致粉体很容易团聚,通过等离子体处理,可使粉体表面包膜或接枝,而产生粉体间的排斥力,使得粉体间不能接触,从而防止团聚体的产生,提高粉体分散性能。 /p p style=" text-align: justify text-indent: 2em " 改进界面结合性能:无机矿物填料在塑料、橡胶、胶黏剂等高分子材料工业及复合材料领域发挥着重要的作用。但过多的填充往往容易导致有机高聚物整体材料的某些力学性能下降,并且容易脆化,等离子体技术正是改善这类材料力学性能的好方法。例如等离子体处理的碳酸钙填充PVC制备SMA复合材料可以使其弯曲强度、冲击强度等力学性能大大提高。 /p p style=" text-align: justify text-indent: 2em " 改进粉体表面性能:这部分应用主要有三个分维度,一是能提高粉体的着色力、遮盖力和保色性;二是能保护粉体的固有性能及保护环境;三是在制药领域,能够使得粉体具有缓释作用。 /p p style=" text-align: justify text-indent: 2em " 粉体材料的低温等离子体处理技术对复合材料的发展具有重要的促进意义,但是其工业化的大量应用仍然有待继续努力,目前这一技术同时也是进行污水处理的研究热点之一。 /p p br/ /p
  • 热烈庆祝我公司大连第八届亚欧国际等离子体表面工程会议圆满结束
    热烈庆祝于2011 年9 月19 日~22 日在辽宁大连举行的&ldquo 第八届亚欧国际等离子体表面工程会议&rdquo 圆满结束。热烈欢迎我公司参加展会的业务代表凯旋归来。 2011第八届亚欧国际等离子体表面工程会议已于近日结束,我公司参展的日本HEIDON HHS2000试验机、日本MSE微粒磨损试验机等摩擦学产品在此次展会期间,受到了各界来宾的极大兴趣和关注,现场气氛非常热烈。 对我公司产品有极大兴趣的厂家、教授等各界人士我公司表示感谢,并热忱欢迎各界人士来我公司咨询考察!
  • 应用:通过表面能表征等离子体对聚合物表面的处理效果
    研究背景等离子体处理是聚合物表面改性的一种常用方法,一方面等离子体中的高能态粒子通过轰击作用打断聚合物表面的化学键,等离子体中的自由基则与断开的化学键结合形成极性基团,从而提高了聚合物表面活性;另一方面,高能态粒子的轰击作用也会使聚合物表面微观形貌发生改变 。本文提出通过等离子体处理提高 PP的胶粘接强度。利用KRÜ SS光学接触角测量仪DSA100分析了等离子体处理对于PP表面的接触角、自由能的影响。利用胶粘剂将 PP薄膜与铝箔粘接到一起,采用T剥离强度试验方法对PP的胶粘接强度进行了测试,结果表明等离子体处理可以显著提高 PP的胶粘接强度。DSA100型液滴形状分析仪试验样品制备由于PP薄膜表面可能会有油污、脱模剂等残留物,本文采用超声清洗方法对其表面进行实验前的处理。结果与讨论1.PP表面接触角系统分析了等离子体改性的射频功率和处理时间对于PP表面接触角的影响。首先,将处理时间恒定为 120 s,射频功率分别选取了 80 W、120 W、180 W、240 W 和300 W。如图1(a) 所示,PP表面经等离子体处理后,去离子水和二碘甲烷的接触角均有较明显的下降。当射频功率超过120 W时,接触角下降趋势缓慢,此时去离子水的接触角由99.08°降到了79.25°,二碘甲烷的接触角则由69.31°降到了59.39°。当射频功率达到300 W时,去离子水的接触角为 74.88°,二碘甲烷的接触角为55.88°。去离子水属于极性溶液,它的接触角越小表明PP表面润湿性越好,PP与胶粘剂的粘接强度将越高。 图1.薄膜表面接触角的变化其次,将射频功率恒定为 80 W,处理时间分别为30 s、60 s、120 s、300 s和600 s,PP表面的接触角与处理时间的关系如图1(b)所示。可见,随着处理时间的增长,接触角逐渐减小。当处理时间长于120 s时,接触角变化缓慢,此时去离子水的接触角由 99.08°降到了77.39°,二碘甲烷的接触角由69.31°降到了56.05°。结合上述两个实验结果,本文选择射频功率120 W和处理时间120 s作为后续的PP等离子体改性工艺参数数值。2.PP表面自由能本文采用Owens二液法 ,通过测量去离子水和二碘甲烷在 PP表面的接触角,计算出PP表面的自由能。PP表面自由能与射频功率和处理时间的关系如图2所示。从图中可以看出,PP在等离子体处理后,色散分量和极性分量均有所提升,其中极性分量的提升更显著,PP的表面自由能得到了较大提高。经计算,未经等离子体处理的 PP表面色散分量、极性分量和自由能分别为18.68 mJ/m 2 、12.12 mJ/m 2 、30.8 mJ/m 2 ,经等离子体处理后的PP表面色散分量、极性分量和自由能分别为22.27mJ/m 2 、26.64 mJ/m 2 、48.91 mJ/m 2 。即,经等离子体处理后,PP表面色散分量增加了 19.22%,极性分量增加了119.8%,自由能增加了58.8%。可见,PP表面自由能的提高主要归因于极性分量的增加,而极性分量的增加则是由于等离子体处理使得PP表面形成了极性基团,从而有助于提高PP的胶粘接强度。 图2.PP表面自由能3.PP胶接强度根据T剥离强度试验记录的最大剥离力和最小剥离力计算得到平均剥离力(FT),而剥离强度(σT)为 式中:B为测试样品的宽度 ,本文测试样品的宽度为25 mm。在剥离过程中,可以看到胶粘剂形成的胶膜完全保留在铝箔表面,证明胶粘剂对铝箔的粘附性远高于对PP薄膜的粘附性,即通过该实验测试到的剥离强度为PP与胶粘剂之间的粘接强度。未改性的 PP薄膜和改性后的PP薄膜的剥离力与剥离长度的关系曲线如图3所示,由于夹持位置的差异,PP薄膜与铝箔之间开始出现分离的位置稍有不同。在二者刚出现分离时,剥离力较大,之后剥离力逐渐下降并保持稳定。根据上述公式可以计算出,未改性的PP薄膜最小剥离强度为588 kN/m,最大剥离强度为 661.2 kN/m,平均剥离强度为 624.8 kN/m;与之对应,改性后的PP薄膜最小剥离强度为734 kN/m,最大剥离强度为810.8 kN/m,平均剥离强度为775.2 kN/m。即,PP薄膜经过等离子体改性处理后最小剥离强度提高了24.83%,最大剥离强度提高了22.63%,平均剥离强度提高了24.07%。 图3.剥离长度和剥离力的关系结论本文从接触角、表面自由能等方面揭示了等离子体处理提高PP材料胶粘接强度的机理。实验结果表明,经过等离子体改性处理后,PP表面由疏水性变为亲水性,去离子水的接触角由99°减小到了75°,PP表面自由能由31 mJ/m 2 增大到了49 mJ/m 2 ,同时PP表面整体上变得凸凹不平,且出现了大量纳米级凸起和凹坑。PP表面发生的这些化学和物理变化共同作用,使得PP的胶粘接强度提高了24%。参考文献隋裕,吴梦希,刘军山.等离子体处理对于聚丙烯胶粘接强度的影响[J].机电工程技术,2023,52(01):30-32.
  • 生物分析研究必备神器:XelPleX全自动表面等离子体共振成像仪
    从事生物研究的科研工作者们,你们在实验中是否遇到过类似的疑惑?用于分析研究的工具还是一台陈旧的已然跟不上时代发展的“老人机”。实验中,检测筛选、出结果时间长不说,还提高了试剂成本;只能检测小范围的样品溶液不说,每年维护还需要不少费用;手动不环保不说,还不稳定......horiba 科学仪器事业部近来推出新品:xelplex全自动表面等离子体共振成像仪(生物大分子相互作用仪)是一款免标记、多通道生物分析和研究的理想工具。它与传统的spri表面等离子体共振成像仪相比,该系统自动化程度高,设计精巧,可实时监测数百个相互作用并获得动力学参数;适用于实时物理化学相互作用研究和动力学研究;高度自动化的表面等离子体共振成像系统,适用于多种应用要求。另外,高精度温度控制系统和自动脱气装置确保低背景噪音和低信号漂移,可便捷地获取在不同温度下的分子相互作用及反应的亲和力和动力学数据。 如此多的优点,作为生物学科研者,你们还用为实验效率不高,实验结果受外界影响严重,而担忧吗?不仅如此,下面还有更多优异的功能,可以直接秒杀实验过程中遇到的种种难题~1阵列式检测,同一芯片可同时获得多达400种相互作用创新的阵列式芯片设计,同一芯片可同时分析超过400组相互作用,与传统的通道-技术相比,所需时间缩短百倍,并节约试剂和人力成本,特别适用于快速筛选。2无标记,实时生物分子相互作用分析与成像基于spr技术、新型的生物传感技术,实时跟踪分子间结合和解离的过程,每秒可采集芯片表面5幅图像,提供完整动力学信息。成像技术,提供时空分布信息,直观判断相互作用是否发生;辅助解释动力学数据。3适应复杂样品优流体系统设计,全芯片表面检测,可直接注入复杂样品,不易堵塞,并耐受有机溶剂,拓展传统spr应用范围,适用蛋白质、dna、多糖、细胞、血清和培养基等多种粘稠样品以及纳米材料溶液。每年节约数万维护费用。 4智能全自动,48h无人看守实验全新超级软件,可以同时监测几百对相互作用,定量及统计分析,便于筛选和排序。5原位质谱联用,无需洗脱和浓缩独特芯片设计-质谱直接联用,无需洗脱和浓缩,同一芯片即可实现spr分析和质谱检测。进而实现动力学分析和物质鉴别。 6引导式软件设计,易于统计分析多功能软件包,全程引导式操作,批量处理数据及快速分类,方便调用实验模板及数据处理模板。7自动化样品回收与循环,环保节能自动化样品回收技术,节约珍贵样品,回收样品可用于交叉验证等实验。独特的样品循环技术,可检测低样品浓度,并维持动态平衡。 以下是xelplex全自动表面等离子体共振成像仪的主要技术参数,可以帮助大家更详尽的了解这款产品。技术参数 检测技术:耦合棱镜的表面等离子体共振成像 通道数:可以同时监测400组相互作用过程 样品体积:120μl-820μl 流速控制范围:1-3000μl/min 流通池温控范围:10-50°c 检测下限:3pg/mm2另外,附上与xelplex相匹配的核心附件,让xelplex展现出优的性能,发挥出大作用。可选附件 spri-cfm连续流动微量点样仪 spri-array快速台式点样仪 spri-biochips™ 生物芯片(cs/co/cse/coe/ctg/ch功能化)
  • 新型表面等离子体共振光谱仪研制成功
    4月10日,中科院计划财务局组织专家对长春应用化学研究所承担的院科研装备研制项目“集成电化学方法的表面等离子体共振及其高通量分析仪器”进行了现场验收。验收专家分别听取了项目的结题、财务和用户使用报告,审阅了项目组提交的验收材料,并实地考察了研制样机的示范性实验操作,一致同意该项目通过验收。 专家现场考察样机   表面等离子体共振光谱(SPR)技术是一种全新的生物化学分析方法,具有实时、免标记等独特的检测优点,可广泛应用于生物分析、无机材料、化学分析和材料科学等领域,逐渐成为国际传感器领域的研究热点。实现具有时间分辨采集功能的SPR仪器方法,开发具有我国自主知识产权的新型电化学传感器、检测器和联用仪器是当前科技生产的迫切需求。   项目组以开发研制具有时间分辨测量能力、电化学检测系统、高通量成像分析模块的表面等离子体共振分析检测系统为目标,经过2年多的努力,研制开发出具有自主知识产权的具有时间分辨、电化学联用、成像测量等功能模块的表面等离子体共振光谱仪,可应用于界面小分子吸附反应动力学及涉及小分子相互作用的分析测量中,并可实现与多种电化学暂态、稳态技术方法的联用;该仪器设计新颖,利用二像素光学位置阵列传感器件,极大地提高了SPR光谱测量的时间响应;通过与多种电化学暂态及稳态技术方法的联用,拓宽了SPR光谱仪器的应用领域。   该项目研制开发的表面等离子体共振光谱及其联用仪器设备已经通过长春市产品质量监督检验院技术测试认证,现已小规模研制工程样机15台,并在清华大学、吉林大学、长春应化所、化学所、西北师范大学、东南大学、福州大学等科研和教学单位试用,效果良好。   该集成仪器系统将可广泛应用于电极界面纳米结构复合材料的电化学制备、修饰、电化学衍生及电极界面的自组装、生物芯片分析、医疗卫生、食品、毒品毒物分析等领域,是对目前SPR领域仪器方法的有益补充,具有广阔的市场前景。   该项目研制期间发表科研论文21篇;申请发明专利7项,4项已获授权;培养博士研究生7名,硕士研究生2名。
  • 专为高通量设计|布鲁克发布SPR #64表面等离子体共振仪新品
    2024年2月5日美国马萨诸塞州波士顿——在SLAS2024国际会议暨展览会上布鲁克公司(Nasdaq:BRKR)重磅推出突破性新品—— "Triceratops" SPR #64表面等离子体共振仪(Surface Plasmon Resonance, SPR)。SPR #64系统从底层开始设计,旨在通过提高SPR检测通量、增强灵敏度和数据质量来加速药物发现。在现代药物发现中,SPR以其实时、非标记检测的优势,已经是分子相互作用生物物理特性表征不可或缺的分析手段。布鲁克 SPR #64 表面等离子共振仪"Triceratops" SPR #64系统将超高灵敏度的检测技术与卓越的微流控性能相结合,通过8通道流通池正交旋转设计,实现对64个传感器检测点位的同时检测。这一巧妙的设计进一步突破了以往SPR系统的瓶颈,加速了药物筛选、动力学、表位表征、条件探索、浓度分析和热力学等方面的研究。借助"Triceratops" SPR #64系统,布鲁克如今能够向药物发现客户提供行业领先的高通量解决方案,并确保优异的数据质量标准。SPR #64系统配备内置触摸屏,可实现即时访问与可视化操控,确保用户可直接与仪器进行快速交互。同时,该设备可通过其专属API实现直接控制,或使用可选的外部机械臂实现完全自动化操作。这在基于SPR技术的生物制药研究领域,标志着达到了新的便捷性与智能化的里程碑。SPR #64软件从数据采集到最终报告的每一个阶段都实现了高性能、灵活性和易用性的完美整合,每个模块的设计均直观易懂,并针对重点应用领域,如SPR亲和力与动力学测定、热力学分析及表位表征等提供向导式流程指引。SPR #64 微流控系统示意图美国犹他州盐湖城Biosensor Tools LLC公司总监David Myszka博士表示:“能与布鲁克公司的工程师们合作设计这款新型SPR #64仪器,我感到非常激动。'Triceratops'系统提供了灵活性、灵敏度以及通量的完美组合,彻底改变了以往繁琐的耦合化学测试以及表面密度测定过程。得益于8个独立通道的设计,我们可以在单次实验中同步探索多种条件组合并找到最佳实验条件。想象一下,在SPR #64的帮助下,研究者只需进行一次实验就能得到精准且理想的实验数据,这样的体验无疑令任何科研工作者都倍感满意与欣喜。”德国莱比锡弗劳恩霍夫细胞治疗与免疫学研究所药物设计与靶标验证部门生物分析组组长Martin Kleinschmidt博士表示:“在与布鲁克公司的合作中,我测试了他们的新型表面等离子体共振仪SPR #64。我们成功地分析了针对于8个不同靶标的1000多个含抗体样本,在获得稳定数据结果的同时,较以往SPR系统大幅节省了分析时间。这款新的'Triceratops' SPR #64系统显著提升了分析通量。”布鲁克道尔顿公司生物制药非标记技术副总裁Meike Hamester博士总结道:“我们的新款高端SPR药物发现系统——'Triceratops' SPR #64,与我们现有的SPR-24 Pro和SPR-32 Pro系统完美搭配,能够满足任何通量需求。”想要了解更多详细信息,请点击查看:布鲁克 SPR #64 表面等离子共振仪———————————————————————————————————“3i奖-2023年度科学仪器行业优秀新品奖”最终获奖结果将于ACCSI2024中国科学仪器发展年会现场揭晓并颁发证书。时间:4月17-19日地点:苏州狮山国际会议中心报名点击链接或扫码:https://www.instrument.com.cn/accsi/2024/index 日常新品申报入口 ↓↓↓https://www.instrument.com.cn/Members/NewProduct/NewProduct
  • 2012年9月MP-SPR下一代表面等离子体共振分析仪 巡回专题研讨会
    我们非常真诚的邀请您及您的科研团队参加我公司9月份将在哈尔滨、长春、北京举办的MP-SPR表面等离子体共振分析仪巡回专题研讨会。 主讲人:芬兰BioNavis 公司的MP-SPR表面等离子体共振分析仪的专家 PhD. Johana Kuncová -Kallio 时间、地点: 2012年9月14日(周五) 9:00 &ndash 11:30,哈尔滨工业大学 2012年9月24日(周一) 9:00 &ndash 11:30,中国科学院长春应用化学研究所 2012年9月25日(周二) 9:00 &ndash 11:30,北京大学化学分子工程学院 技术背景:MP-SPR表面等离子体共振分析仪是由Janusz Sadowski博士和Ulf Jonsson博士共同合作开发出来的。Janusz Sadowski博士曾在芬兰科技研究中心VTT从事表面等离子体共振研究达20年之久;Ulf Jonsson博士是Biacore公司的创始人和前任CEO,该公司开创了SPR表面等离子体共振分析仪在蛋白质、药物相互作用研究中的应用先河。 MP-SPR技术(多参数表面等离子体共振分析技术) 随着技术的发展以及为了满足客户更多方面的需求,我们改良了传统的SPR技术,开发了MP-SPR表面等离子共振分析技术。此项技术除了可以轻松地应用到传统的SPR领域:生命科学领域,用于测量:结合动力学、质量变化、结合/解离速率等之外;还可以有效地对薄膜和纳米材料物理学常数进行测量:厚度和质量、折射率、吸附/吸收、密度、介电常数等,而这些是传统SPR所做不到的。 更具体的会议地点,在收到您的回执之后,我公司会另行通知! MP-SPR表面等离子体共振分析仪的相关信息,请浏览我公司网站www.honoprof.com.cn 和Bionavis网站 http://www.bionavis.com/cn 届时欢迎您的光临与指导!一起研讨MP-SPR技术将带给我们什么样的强大支持! 2012年9月MP-SPR表面等离子体共振分析仪巡回专题研讨会(第一轮)回执 (本回执请于2012年8月31日前返回) 姓 名 职称/职务 参会地点 工作单位 邮编 电子邮件 手机 固话 备 注 备注:1、 请将此回执E-mail至 xmli@honoprof.com 2、 参加会议免费,并提供午餐。
  • 北京正通远恒公司08年5月SPR表面等离子体共振分析仪专题研讨会
    我公司将为芬兰KSV仪器公司的姊妹公司芬兰BioNavis 公司的SPR表面等离子体共振分析仪的专家Dr. Janusz 将于2008年5月9日在北京、, 2008年5月12日在上海举办关于SPR表面等离子体共振分析仪的专题研讨会。 SPR-NAVI表面等离子体共振分析仪是与Janusz Sadowski博士和Ulf Jonsson博士共同合作开发出来的。Janusz Sadowski博士曾在芬兰科技研究中心VTT从事表面等离子体共振研究达20年之久;Ulf Jonsson博士是Biacore公司的创始人和前任CEO,该公司开创了SPR表面等离子体共振分析仪在蛋白质、药物相互作用研究中的应用先河。 请到资料中心下载参会邀请函! 届时欢迎您的光临与指导!我们期待着您的光临!
  • 天大巩金龙Angew. Chem. Int. Ed. : 等离子体增强TiO2光电极表面氧空位增强光催化固氮活性
    引言氨(NH3),作为一种每年产量超过1.5亿吨的基本化学品,是现代社会发展和人口增长的重要基石。工业上的哈伯-博世法,即在高温高压下将氮气和氢气转化成氨,这一过程消耗世界上3-5%的天然气以制取氢气以及世界上1-2%的能源储备,同时每年向大气中排放数百万吨的二氧化碳(CO2)。与生物固氮酶类似,光催化过程能在温和的条件下将N2还原为NH3,为更清洁和更可持续的NH3生产提供了一条无碳化道路。近期的研究表明,氧化物半导体表面氧空位(Ovac)对于N2吸附和活化具有很大的潜力。而传统的引入氧空位的方法如H2焙烧同样会在氧化物体相引入空位,进而引入体相缺陷,导致载流子的复合,降低材料的光催化性能。因此,如何只在表面上引入氧空位而不影响体相是一个很大的挑战。成果简介近日,美国麦克仪器公司用户天津大学巩金龙教授(通讯作者)领导的科研团队在Angew. Chem. Int. Ed.上发表了题为“Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes”的研究论文。在这篇文章中,研究者首次发现了利用无定形TiO2中Ovac来提升光固氮性能的新方法。通过原子层沉积的表面自限制生长机制,在等离子体增强金红石TiO2/Au纳米棒表面均匀包覆含有Ovac的无定形TiO2层。这层无定形TiO2薄膜中的Ovac可以促进N2吸附和活化,促进了紫外光驱动TiO2以及可见光驱动金表面等离子体产生的激发电子将氮气还原为氨。这一发现为在常规条件下(即室温常压)下进行光催化固氮研究提供了一种新的方法。图1 TiO2/Au/a-TiO2光电极的制备过程和形貌a-d) TiO2/Au/a-TiO2光电极的制备过程;e-h) TiO2/a-TiO2、原始TiO2、TiO2/Au和TiO2/Au/a-TiO2的SEM图像;i-l) TiO2/a-TiO2、原始TiO2、TiO2/Au和TiO2/Au/a-TiO2的HRTEM图像(j图内插:原始TiO2 NR的选区电子衍射)。
  • 等离子体修饰碳纳米管在污染物处理方面取得进展
    低温等离子改性接枝是一种处理时间短、不产生化学污染、不破坏材料的整体体积结构、仅仅改变材料表面性能的处理技术。近年来,等离子体所“低温等离子体应用研究室”陈长伦、邵大冬、胡君、王祥科等所在的课题组利用低温等离子体技术对碳纳米管进行表面修饰改性组装,克服了碳纳米管的难溶性带来的制约等问题,大为提高了其实际应用程度。   该课题组在用低温等离子体技术对碳纳米管进行改性组装后,将其应用于环境污染物检测和治理研究方面,取得了一系列成果。   一是分别利用Ar/H2O,Ar/NH3,Ar/O2微波等离子体对碳纳米管进行表面处理,使其表面引入含氧、含氨基等功能基团,提高了碳纳米管的亲水性和分散性,使其可制备纳米溶液。这些经过处理的(表面修饰的)功能化材料对改善碳纳米管在生物、环境污染物吸附等方面,具有很好的应用前景。部分研究结果发表在Applied Physics Letter (2010, 96, 131504) Carbon (2010, 48, 939-948) The Journal of Physical Chemistry C (2009, 113, 7659-7665) Diamond & Related Materials (in press) 并受邀请在国际会议上做2次口头报告。   二是利用N2射频等离子体对碳纳米管表面进行活化处理,然后接枝上有机单体和天然高分子材料,制备碳纳米管/有机物复合材料。等离子体制备的复合材料表面具有各种功能基团,这些功能基团对持久性有机污染物(POPs)、有毒有害的重金属离子、放射性核素具有强的吸附、络合能力,因而提高了复合材料对污染物的吸附能力。部分研究结果发表在The Journal of Physical Chemistry B (2009, 113, 860-864) Chemosphere (2010, 79, 679-685) Plasma Processes and Polymers (in press,并被选为封面)。   三是碳纳米管由于尺度小,使其在吸附处理有机/无机污染物后,在回收和循环利用纳米材料方面具有很大的难度。采用传统的离心法需要高的转速,过滤法易导致过滤膜堵塞,如果吸附污染物的碳纳米管进入环境,会产生二次污染。针对上述问题,该课题组采用溶胶—凝胶法,首先在碳纳米管上组装上铁氧化物,然后利用N2射频等离子体对碳纳米管/铁氧化物表面进行活化处理,接枝上有机单体和天然大分子材料,制备出磁性多重复合纳米材料,该磁性复合纳米材料不仅具有高的吸附性能,且磁分离技术可以简单方便地把磁性复合纳米材料从溶液中分离出来,解决了固液分离的难题,同时可以大量的应用到实际工作中。部分相关研究成果发表在Environmental Science and Technology (2009,43,2362-2367) Journal of Hazard Material (2009,164, 923-928) Journal of Physical Chemistry B (jp-2009-11424k)。   该工作得到了国家自然科学基金,科技部973重大研究计划“面向持久性有毒污染物痕量检测与治理的纳米材料应用基础”,中科院合肥物质科学研究院重大项目,合肥研究院人才项目和火花项目,中科院新型薄膜太阳能电池重点实验室基金等经费的支持。
  • 超细粉体表面包覆处理14方法 你get几种?
    p style=" margin-top:0 margin-right:0 margin-bottom:16px margin-left: 0 text-align:justify text-justify:inter-ideograph text-indent:32px line-height:28px" span style=" font-size: 14px" 超细粉体通常是指粒径在微米级或纳米级的粒子。和大块常规材料相比具有更大比表面积、表面活性及更高的表面能,因而表现出优异的光、热、电、磁、催化等性能。超细粉体作为一种功能材料近些年得到人们的广泛研究,并在国民经济发展各领域得到越来越广泛的应用。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 然而由于超细粉体独有的团聚及分散问题使其失去了许多优异性能,严重制约了超细粉体的工业化应用。因此,如何避免超细粉体的团聚失效已成为超细粉体发展应用所面临的难题。通过对超细粉体进行一定的表面包覆,使颗粒表面获得新的物理、化学及其他新的功能,从而大大改善了粒子的分散性及与其他物质的相容性。表面包覆技术有效地解决了超细粉体团聚这一难题。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体表面包覆的机理 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 关于包覆机理,目前还在研究之中,尚无定论。主要的观点有以下几种: /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 1 /span )库仑静电引力相互吸引机理。这种观点认为,包覆剂带有与基体表面相反的电荷,靠库仑引力使包覆剂颗粒吸附到被包覆颗粒表面。 /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 2 /span )化学键机理。通过化学反应使基体和包覆物之间形成牢固的化学键,从而生成均匀致密的包覆层。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" ( span 3 /span )过饱和度机理。这种机理从结晶学角度出发,认为在某一 span pH /span 值下,有异相物质存在时,如溶液超过它的过饱和度就会有大量的晶核立即生成,沉积到异相颗粒表面形成包覆层。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体表面包覆的方法 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 1 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 机械混合法 /span /strong 。利用挤压、冲击、剪切、摩擦等机械力将改性剂均匀分布在粉体颗粒外表面,使各种组分相互渗入和扩散,形成包覆。目前主要应用的有球石研磨法、搅拌研磨法和高速气流冲击法。该方法的优点是处理时间短,反应过程容易控制,可连续批量生产,较有利于实现各种树脂、石蜡类物质以及流动性改性剂对粉体颗粒的包覆。但此法仅用于微米级粉体的包覆,且要求粉体具有单一分散性。 /span /p p style=" text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" & nbsp /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/970202c4-22d6-4884-b41b-d5ae59c230bb.jpg" title=" 1.jpg" alt=" 1.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 超细粉体材料改性包覆机 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 2 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 固相反应法 /span /strong 。把几种金属盐或金属氧化物按配方充分混合、研磨,再进行煅烧,经固相反应直接得到超细包覆粉。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 3 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 水热法 /span /strong 。在高温高压的密闭体系中以水为媒介,得到常压条件下无法得到的特殊的物理化学环境,使反应前驱体得到充分的溶解,并达到一定的过饱和度,从而形成生长基元,进而成核、结晶制得复合粉体。水热法的优越性有:合成的核 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 壳型纳米粉体纯度高,粒度分布窄,晶粒组分和形态可控,晶粒发育完整,团聚程度轻,制得的产品壳层致密均匀,制备的纳米粉体不需要后期的晶化热处理。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 4 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 溶胶 /span /strong /span strong span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span /strong strong span style=" font-size: 14px font-family: 宋体" 凝胶法 /span /strong span style=" font-size: 14px" 。首先将改性剂前驱体溶于水 span ( /span 或有机溶剂 span ) /span 形成均匀溶液,溶质与溶剂经水解或醇解反应得到改性剂 span ( /span 或其前驱体 span ) /span 溶胶;再将经过预处理的被包覆颗粒与溶胶均匀混合,使颗粒均匀分散于溶胶中,溶胶经处理转变为凝胶,在高温下煅烧得到外表面包覆有改性剂的粉体,从而实现粉体的表面改性。溶胶 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 凝胶法制备的包覆复合粒子具有纯度高、化学均匀性好、颗粒细小、粒径分布窄等优点,且该技术操作容易、设备简单,能在较低温度下制备各种功能材料,在磁性复合材料、发光复合材料、催化复合材料和传感器制备等方面获得了较好的应用。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/cfdf281f-6370-4925-bded-830ee0436006.jpg" title=" 2.jpg" alt=" 2.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 一种石墨烯包覆稀土掺杂纳米氧化物 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 5 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 沉淀法 /span /strong 。向含有粉体颗粒的溶液中加入沉淀剂,或者加入可以引发反应体系中沉淀剂生成的物质,使改性离子发生沉淀反应,在颗粒表面析出,从而对颗粒进行包覆。沉淀反应包覆往往是在纳米粒子表面包覆无机氧化物,可以便捷地控制体系中的金属离子浓度以及沉淀剂的释放速度和剂量,特别适合对微纳米粉体进行无机改性剂包覆。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/e593175d-8805-4d80-9f97-225c609d5773.jpg" title=" 3.jpg" alt=" 3.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 一种粉煤灰空心微珠表面包覆纳米氢氧化镁复合粉体材料 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 6 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 非均相凝聚法 /span /strong (又称“杂絮凝法”)。根据表面带有相反电荷的微粒能相互吸引而凝聚的原理提出的一种方法。如果一种微粒的直径远小于另一种电荷微粒的直径,那么在凝聚过程中,小微粒就会吸附在大微粒的外表面形成包覆层。其关键在于对微粒表面进行修饰,或直接调节溶液的 span pH /span 值,从而改变微粒的表面电荷。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 7 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 微乳液包覆法 /span /strong 。首先通过 span W/O( /span 油包水 span ) /span 型微乳液提供的微小水核来制备需要包覆的超细粉体,然后通过微乳聚合对粉体进行包覆改性。与其他纳米材料的制备方法相比,微乳液法制备纳米材料具有以下特点:( span 1 /span )粒径分布窄且较易控制;( span 2 /span )由于粒子表面包覆一层 span ( /span 或几层 span ) /span 表面活性剂分子,不易聚结,得到的有机溶胶稳定性好,可较长时间放置;( span 3 /span )在常压下进行反应,反应温度较温和,装置简单,易于实现。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 8 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 非均匀形核法 /span /strong 。根据 span LAMER /span 结晶过程理论,利用改性剂微粒在被包覆颗粒基体上的非均匀形核与生长来形成包覆层。该方法可以精确控制包覆层的厚度及化学组分。非均匀形核包覆中,改性剂的质量浓度介于非均匀形核临界浓度与临界饱和浓度之间,所以非均匀形核法包覆是一种发生在非均匀形核临界浓度与均相成核临界浓度之间的沉淀包覆。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 9 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 化学镀法 /span /strong 。指不外加电流而用化学法进行金属沉淀的过程,有置换法、接触镀法和还原法三种。化学镀法主要用于陶瓷粉体表面包覆金属或复合涂层,实现陶瓷与金属的均匀混合,从而制备金属陶瓷复合材料。其实质是镀液中的金属离子在催化作用下被还原剂还原成金属粒子沉积在粉体表面,是一种自动催化氧化 /span span style=" font-size: 14px font-family: & #39 MS Mincho& #39 " ? /span span style=" font-size: 14px" 还原反应过程,因此可以获得一定厚度的金属镀层,且镀层厚度均匀、孔隙率低。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 10 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 超临界流体法 /span /strong 。是尚在研究的一种新技术。在超临界情况下,降低压力可以导致过饱和的产生,而且可达到高过饱和速率,使固体溶质从超临界溶液中结晶出来。由于结晶过程是在准均匀介质中进行的,能够得到更准确的控制。因此,从超临界溶液中进行固体沉积是一种很有前途的新技术,能够产生平均粒径很小的细微粒子,而且还可控制其粒度分布。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 11 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 化学气相沉积法 /span /strong 。在相当高的温度下,混合气体与基体的表面相互作用,使混合气体中的某些成分分解,并在基体上形成一种金属或化合物的包覆层。它一般包括 span 3 /span 个步骤:产生挥发性物质;将挥发性物质输送到沉淀区;与基体发生化学反应生成固态产物。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 12 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 高能量法 /span /strong 。利用红外线、紫外线、γ射线、电晕放电、等离子体等对纳米颗粒进行包覆的方法,统称高能量法。高能量法常常是利用一些具有活性官能团的物质在高能粒子作用下实现在纳米颗粒的表面包覆。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 13 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 喷雾热分解法 /span /strong 。其工艺原理是将含有所需正离子的几种盐类的混合溶液喷成雾状,送入加热至设定温度的反应室内,通过反应,生成微细的复合粉末颗粒。在该工艺中,从原料到产品粉末,包括配溶液、喷雾、反应和收集等 span 4 /span 个基本环节。 /span /p p style=" text-align: center text-indent: 28px line-height: 25px" span style=" font-size: 14px" img src=" https://img1.17img.cn/17img/images/201809/uepic/b8e57be4-5a08-48ba-8c26-8382485ea891.jpg" title=" 4.jpg" alt=" 4.jpg" / /span /p p style=" margin: 0 0 16px text-align: center text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 二氧化硅包覆二硼化锆 span - /span 碳化硅的复合粉体 /span /strong /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" span style=" font-size: 14px" 14 /span span style=" font-size: 14px" 、 strong span style=" font-family:宋体" 微胶囊化法 /span /strong 。在粉体表面覆盖均质且有一定厚度薄膜的一种表面改性方法。通常制备的微胶囊粒子大小在 span 2 /span ~ span 1000 /span μ span m /span ,壁材厚度为 span 0.2 /span ~ span 10 /span μ span m /span 。微胶囊可改变囊芯物质的外观形态而不改变它的性质,还可控制芯物质的放出条件;对在相间起反应的物质可起到隔离作用,以备长期保存;对有毒物质可以起到隐蔽作用。微胶囊技术在制药、食品、涂料、粘接剂、印刷、催化剂等行业都已得到了广泛的应用。 /span /p p style=" margin: 0 0 16px text-align: justify text-indent: 32px line-height: 28px" strong span style=" font-size: 14px font-family: 宋体" 结语 /span /strong /p p style=" text-align: justify text-indent: 32px line-height: 28px " span style=" font-size: 14px" 表面包覆技术的选用,应根据核心粉体和包膜材料的特性以及改性后复合粉体的应用场合来综合考虑。随着科学技术的发展,超细粉体包覆技术将进一步完善,有望制备出多功能、多组分、稳定性更强的超细复合粒子,这将为复合粒子开辟更广阔的应用前景。目前关于超细粉表面包覆机制及通过多种包覆方法结合制备性能更优异的超细粉体将是未来该领域的研究发展方向。 /span /p
  • 北京正通远恒科技举办的SPR表面等离子体共振分析仪专题研讨会胜利闭幕
    我公司分别于5月9日在北京贵州大厦,5月12日在上海交通大学举办了SPR表面等离子体共振分析仪专题研讨会。研讨会由Bio-Navis公司的Janusz博士主讲。Janusz博士曾在芬兰科技研究中心VTT从事表面等离子体共振研究达20年之久。大会不仅对SPR的原理、应用、特点做了详细介绍,还进行了现场演示。与会的学者与Janusz博士进行了深入讨论,大会取得了圆满成功。
  • 光伏太阳能电池-等离子表面处理和USC干式除尘的关键作用
    光伏电池又称太阳能电池,是一种直接将光能转化为电能的半导体薄片。*光伏电池(图源网络,侵删)其中,基板作为光伏电池的主要组成部分之一,其表面性能和洁净度直接关系到电池的光电转换效率和稳定性。光伏太阳能电池等离子处理、除尘解决方案在光伏电池制程中,等离子表面处理可用于玻璃基板表面活化,阳极表面改性,涂保护膜前处理等,在提高光伏元件表面亲水性、附着力等方面具有显著的优势。*光伏电池结构(图片来源:灼识咨询,侵删)同时,需要解决光伏电池制程中的尘埃污染问题。浮尘颗粒会附着在基材表面,不仅影响光电转换效率,还可能引发电池内部故障。*光伏电池工艺制程(资料来源:灼识咨询、中泰证券,侵删)因此,在光伏电池制程中,需要对光伏元件进行表面活化和除尘处理,增强基板表面附着力和洁净度,提升电池的稳定性。大气等离子应用案例通过等离子表面活化,可以提高玻璃基板表面亲水性,有效优化表面附着力,提升电池的稳定性和品质,从而改善器件的性能。等离子处理玻璃基板*光伏原片玻璃(图片来源:江西赣悦新材料,侵删)USC干式超声波除尘应用案例通过USC干式超声波除尘清洗机清除基板上的浮尘,可以提高光伏电池的性能和稳定性。除尘率可达97-99%光伏电池基板除尘光伏太阳能电池领域应用设备1、 大气等离子清洗机SPA-5800具有强大的数据处理功能,实现设备数字化控制,可对接客户产线,有效减低生产成本。✅ 支持数字通信接口和模拟通信接口✅ 搭载进口ARM芯片,实现功率自匹配✅ 具有十余种故障报警功能,故障率低2、 中频宽幅等离子清洗机适用于各种平面材料的清洗活化,可装配不同长度等离子枪头,可客制化流水线设备。✅ 等离子体均匀✅ 电源设计兼容性充足,输出功率范围大✅ 软件/硬件多重保护,安全可靠3、 在线式干式超声波除尘清洗机集除尘、除静电为一体的在线式除尘设备。配有真空吸附移动平台、内部洁净系统,不会对洁净室造成2次污染。✅ 非接触式除尘,产品无损伤✅ 闭环系统,不造成2次污染✅ 以空气作为除尘媒介物质,无需水、溶剂、干燥等过程4、 接触角测量仪SDC-200S光伏电池制备中对于基板表面的润湿性能具有一定的要求,SDC-200S具有全面、完整、精准的拟合测量法,可用于光伏电池基材表面润湿性能检测。✅ 变焦变倍镜头,成像清晰✅ 自动注液系统✅ 可自动生成报告
  • 石墨烯缺陷工程的重要一员——表面等离子体激元反射
    石墨烯是近年来受到广泛关注的二维材料,具有特的物理化学性质,在信号传感、物质检测、和能源电池领域都有着广阔的应用前景。2016年9月,南开大学许京军、蔡卫老师研究团队在国际期刊 2D Materials上公开发表题为“Tailorable re?ection of surface plasmons in defect engineered graphene”的全文文章,通过探讨缺陷改变石墨烯光、电、热性质的可能性,提出了对石墨烯纳米尺度下的等离子激元性质进行操控的思路,为未来纳米光电设备的实现开辟新篇。(a) NeaSNOM测量原理示意图 (b)NeaSNOM的AFM成像显示了石墨烯缺陷处的形貌结构 (c)NeaSNOM的纳米显微光学成像展示了该区域的表面等离子波传播图样许京军、蔡卫老师研究团队先设计了离子束对石墨烯缺陷边界的操控可行性,并通过AFM等常规测量手段对这一设想进行了重复验证,检验其可行性。该研究团队对石墨烯表面等离子波在缺陷边界的传播进行了深入研究,通过NeaSNOM提供的可靠等离子激元成像手段,他们近场等离子激元成像图中观测到了靠近边界的明显干涉条纹。通过典型的石墨烯楔形结构,边界处的等离子激元的有效散射波通过操控的缺陷得到了大的增强。在缺陷边界处的等离子激元反射次得到清晰观测,证实了这些缺陷在表面等离子波传播中散射中心的作用。不同程度缺陷石墨烯中等离子激元传播和反射的研究在入射激光波长为10.653um下,不同程度缺陷石墨烯中等离子激元传播和反射的研究。其中,等离子激元干涉峰值被定义为M,在边界处衰减比例为0.28,实验结果与理论数值得到了很好的拟合。该研究团队证明了通过引入离子束在石墨烯缺陷边界处改变等离子激元的反射的结论,他们认为缺陷可以作为有效的等离子激元传播散射中心,通过缺陷程度的控制可以实现对等离子激元的操控,这一研究结果有效开创了控制表面等离子波的新篇章。参考文献:Luo W, Cai W, Wu W, et al. Tailorable reflection of surface plasmons in defect engineered graphene[J]. 2D Materials, 2016, 3(4): 045001.本文涉及的研究过程及实验结果均以原著作为准。相关产品:超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/C170040.htm纳米傅里叶红外光谱仪Nano-FTIR:http://www.instrument.com.cn/netshow/C194218.htm
  • 不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案表面残留油污检测仪
    不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案测试说明客户:德国Relyon Plasma公司样品:不锈钢板测量设备:析塔清洁度仪FluoScan 3D污染物:福斯溶剂型防锈油Fuchs Anticorit MKR 4目标采用荧光法测量不锈钢表面污染情况,检查等离子清洗的效果及其影响参数。操作过程首先,将不锈钢板放在60°C的超声波清洗槽中,使用碱性清洗剂清洗15分钟,然后用去离子水彻底冲洗并干燥不锈钢板。随后,在不锈钢板上滴一滴Anticorit MKR 4防腐蚀油,并用实验室用布擦拭。然后,使用析塔FluoScan 3D清洁度检测仪,采用荧光法,高分辨率扫描钢板,检测钢板上的防腐蚀油分布。荧光法是一种对油膜厚度敏感的测量,测试结果以RFU(相对荧光单位)显示,RFU值越低,表面越干净。等离子清洗对于等离子体清洗,手持等离子体设置piezobrush® PZ3被连接到析塔SITA FluoScan 3D(自动检测清洁度的测试台)的移动轴上,使得可以通过自动化进行等离子清洗处理。piezobrush® PZ3在测试板上以编程的移动路径移动,同时等离子体以恒定的移动速度开启,并与钢板表面保持恒定的距离。为了说明速度(清洗时间)的影响,首先以2.5mm/s的速度进行处理,然后在清洗时间一半的位置上,以5mm/s的速度进行处理。测量结果图1:未清洗的不锈钢板上的荧光测量结果图2:等离子清洗后的不锈钢板上的荧光测量结果结论荧光测量的结果表明,使用等离子清洗的两个区域比钢板的其他部分干净很多。清洗时间越长,清洗效果越好。荧光法适用于在等离子清洗后轻松和快速地监测清洗结果,通过测量可以确定影响等离子清洗的参数,达到最佳的清洗效果,同时降低成本。使用析塔FluoScan 3D清洁度仪自动检测测量零件清洁度,高分辨率扫描零件,最终以图像化呈现零件污染程度不同的区域。析塔FluoScan 3D自动表面清洁度检测仪广泛运用在不同的清洗工艺(水基、溶剂、激光、等离子.....),可以灵活应用在实验室或生产车间。翁开尔是德国析塔中国独家代理商,欢迎致电咨询析塔自动清洁度检测系统。
  • 中智科仪逐光IsCMOS像增强相机拍摄激光诱导等离子体羽流
    1、应用背景   等离子体是区别于固体、液体和气体的第四种物质聚集状态。在高能环境下,原子的外层电子摆脱原子核的束缚成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离,这种电离气体就是等离子体,通常由带电离子、自由电子、基态/激发态分子原子和自由基等粒子组成。等离子体在自然界中广泛存在,如太阳、恒星、星际物质、闪电等都是等离子体。   激光诱导等离子体(Laser-Induced Plasma, LIP)是通过激光与物质相互作用产生的一种高温、高密度的等离子体状态物质。当高能量的激光脉冲照射到物体表面时,会使得物质迅速加热并部分或完全电离,形成等离子体。伴随形成的等离子体羽流的演化过程具有超高速、持续时间短(一般几百纳秒)、强自发光背景和小空间尺度的特点,这使得其观测变得具有挑战性。   本次实验采用中智科仪的逐光IsCMOS像增强相机(TRC411),拍摄了激光诱导等离子体羽流的形貌演化过程。基于逐光IsCMOS像增强相机的纳秒级快门门控、高精度的时序同步技术和变延迟序列推扫功能,记录了等离子体羽流的完整演化过程。 2、实验方案   实验设备:   中智科仪逐光IsCMOS像增强相机,型号:TRC411-S-HQB-F F2UV100大通量紫外镜头。   实验室所用激光器为镭宝Dawa-200灯泵浦电光调Q纳秒Nd:YAG激光器,波长1064nm,重复频率1-20Hz。采用激光器Q-out输出触发TRC411相机的方式,对相机Gate通道进行变延迟序列推扫,寻找相机与激光器的同步时刻。   实验流程:   1.实验材料被激发的等离子体羽发光在200nm-500nm左右,因此在镜头前端安装一个430nm的带通滤光片,屏蔽掉1064nm的激发激光和其他杂散光。需要注意观察成像画面中是否有强反射材料,比如样品台的光滑金属反光面或螺丝帽等,为了防止这些强烈反射面的反射光对相机造成损害,需要使用黑色电工胶带将它们遮挡或覆盖。   2. 激光器的Q-out触发输出接到示波器,测得同步输出的TTL信号电平为5V@1MΩ,频率与激光输出频率匹配,均为5Hz。TRC411相机可接受的最大外触发信号电平为5V,保守起见,在触发线末端加入了6dB衰减器,将激光器Q-out输出电平减半。   3. 由于等离子体的发光强度较大,无法确定所使用的滤光片的衰减倍率是否足够,因此首先将镜头光圈调至最小,设置增益为1800,Gate时间13ns(对应光学门宽3ns)。   软件参数设置如下表:   4. 对Gate通道进行变延迟序列扫描,最终找到Gate延时起止时刻在700ns至1100ns之间时,可以捕获到等离子体的发光信号。   软件参数设置界面: 3、实验结果   序列采集SEQ曲线:   根据曲线可以看到实验材料被激发的等离子体发光持续时间约为400ns。   高功率纳秒脉冲激光激发产生的完整等离子体羽形貌演变过程: 4、结论   中智科仪逐光IsCMOS像增强相机具有短至纳秒级的快门,超短的门控可以屏蔽背景噪声,提高信噪比。相机内置的高精度时序控制器可以确保相机与脉冲激光器的同步工作,在确定的延迟捕获等离子体信号。相机的变延迟序列扫描功能可以使相机快速拍摄不同延迟时刻的等离子体信号,获得完整的等离子体演化过程。诸多优势展示了TRC411相机在等离子体诊断方面的重要应用价值。   免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。 5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • 189万!清华大学电感耦合等离子体发射光谱仪和全自动快速比表面积及孔隙度分析仪采购项目
    项目编号:清设招第2022949号(0873-2201HW3L0956)项目名称:清华大学电感耦合等离子体发射光谱仪和全自动快速比表面积及孔隙度分析仪采购项目预算金额:189.5000000 万元(人民币)采购需求:1.本次招标共1包:包号名称数量预算金额(人民币万元)是否接受进口产品投标1电感耦合等离子体发射光谱仪和全自动快速比表面积及孔隙度分析仪1套189.5是 本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得拆包,不完整的投标将被拒绝。本项目为非专门面向中小企业采购。本项目所属行业为工业。2.采购用途:用于教学科研。以上货物的供应、运输、安装调试、培训及售后服务具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。3.需要落实的政府采购政策:本项目落实节约能源、保护环境、促进中小企业发展、支持监狱企业发展、促进残疾人就业等政府采购政策。合同履行期限:合同签订之日起至质保期满结束。本项目( 不接受 )联合体投标。
  • 电弧等离子体沉积,登上Nature子刊!原子级控制高熵合金表面的电催化研究取得突破性进展
    文章名称:Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces期刊和影响因子:Nature Communications IF=17.7DOI:https://doi.org/10.1038/s41467-023-40246-5研究背景: 高熵合金由于出色的热动力学和化学性能,使其在电催化领域受到了学术界的广泛关注。制备原子级可控合金对于提高表面催化性能和设计新型催化剂至关重要。尽管已有的研究对合金组分,元素构成和原子分布等问题对催化性能的影响做了相关的研究,然而对于Pt基合金在催化前和催化后合金表面原子结构变化的原子级透射电镜表征相关工作尚显不足。对于合金表面原子的排布和在空位处合金成分的表征尚属空白。 2023年7月,日本东北大学课题组利用Advance Riko公司的电弧等离子体沉积系统-APD制备了原子级可控的高熵合金,研究了电催化对合金表面原子的影响。得益于APD系统可多靶位同时进行精准等离子溅射的功能,课题组实现了同一种高熵合金不同晶向结构的制备,对多组分合金表面微观结构与其催化性能之间的详细关系进行了深入研究。同时,APD系统的真空传输配件避免了制备样品在传递过程中受到空气的影响。相关研究结果以《Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces 》为题,在SCI期刊Nature Communications上发表。 文中使用的电弧等离子体沉积系统-APD可以在 1.5 nm 到 6 nm 范围内精确控制纳米颗粒的直径,具有活性好,产量高等优势。只要靶材是导电材料,系统就可以将其等离子体化。金属/半导体制备同时控制腔体气氛,可以产生氧化物和氮化物薄膜。高能量等离子体可以沉积碳和相关单质体如非晶碳,纳米钻石,碳纳米管等形成新的纳米颗粒催化剂。电弧等离子体沉积系统-APD图文导读: 图1. 利用Advance Riko公司的APD系统为电催化研究所准备的不同高熵合金示意图。为了实现制备不同高熵合金成分的需求,APD系统可以溅射合金靶材或者同时溅射多个靶材来实现。通过XPS的研究表明,通过APD系统所制备的高熵合金表面成分高度可控。图2. 通过上述方法制备的Pt/Cr-Mn-Fe-Co-Ni/Pt合金不同晶向的表征结果。(a, c, e)为样品横截面的通过STEM获得的HAADF表征结果。(b, d, f)为对应样品的EDS Mapping结果。图3. APD系统所制备的Pt/Cr-Mn-Fe-Co-Ni/Pt合金的循环伏安曲线(CV)和氧化还原反应(ORR)在电位循环中的变化。(a, c, e)为在0.05V-1.0V 的范围内CV曲线随可逆氢电极电位的变化关系。(b, d, f)为Pt/Cr-Mn-Fe-Co-Ni/Pt的ORR随着电位循环的变化,循环电压为0.6V-1V。图4. APD系统所制备的Pt/Cr-Mn-Fe-Co-Ni/Pt合金在电位循环后的退化情况。(a, d, g)分别为合金样品的(111),(110)和(100)方向的低倍HAADF表征结果。(b, e, h)分别为(a, d, g)中所对应的黄色方框区域的高分辨HAADF图像。(c, f, i)分别为在电位循环前和经过5000次循环后所对应的(b, e, h)区域的EDS结果的对比图。文章结论: 日本东北大学课题组使用APD系统制备了原子级可控的Pt高熵合金,通过高分辨透射电镜表征,从原子级的尺度上研究了电催化对合金表面的影响。通过与Pt-Co二元表面相比,高熵合金表面的氧还原反应性能优于 Pt-Co 二元表面,证明了该平台的有用性。该研究填补了高熵合金用于电催化领域原子级机理上的空白,为该领域的研究提供了理论基础!
  • 西安光机所在等离子体研究方面取得新成果
    p   7月5日,国际应用物理类学术期刊《应用物理学杂志》(JAP)发表了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室等离子体学科研究论文A diffuse plasma jet generated from the preexisting discharge filament at atmospheric pressure,论文通讯作者为该所博士汤洁。文章的创新性和重要性受到了期刊编委会和评审专家的高度评价,被遴选为当期的封面文章和亮点文章。 /p p   作为一种新型、经济、便捷的等离子体发生技术,大气压低温等离子体射流在材料加工与改性、薄膜层积、纳米颗粒制造、器械表面洗消、生物组织结构与功能恢复、微生物诱变育种等领域都具有独特的技术优势和良好的应用前景。均匀、弥散、大面积低温等离子体射流的研发,一直以来是该学科领域研究的重点和难点。该论文打破传统气体放电中采用降低电离率或提高预电离水平来获取均匀弥散等离子体的思维,建立不同学科领域(光学与等离子体)物质传播与输运相同或相似性理念,首次将“透镜扩束”概念引入低温等离子体领域,提出“电场透镜模型”,构建大气压均匀弥散放电新的基础理论,通过巧妙合理的电极结构设计,在大气压环境中成功实现气体放电从细丝到弥散的转变,并基于Possion模型,阐释了气体放电中弥散等离子体形成机制。 /p p   该成果为生成大气压均匀弥散等离子体提供了又一重要指导思想,将对低温等离子体技术应用的推广起到重要促进作用。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201707/insimg/9291bafc-42d5-4e1a-88a1-90fc9b5e86ea.jpg" / /p p style=" text-align: center " strong 当期期刊封面 /strong /p
  • 超快电镜助力等离子体研究重要发现 万亿分之一秒的等离子体场检测
    阿贡纳米材料中心的超快电子显微镜,图片自:阿贡国家实验室每个去过大峡谷的人都能体会到靠近自然边缘的强烈感受。同样,美国能源部(DOE)阿贡国家实验室(Argonne National Laboratory)的科学家们发现,当接近一层单原子厚的碳薄膜(石墨烯)边缘时,金纳米颗粒会表现异常。这可能对新型传感器和量子设备的发展产生重大影响。这一发现是通过美国能源部科学用户设施办公室——阿贡纳米材料中心 (CNM) 新建立的超快电子显微镜 (UEM) 实现的。UEM能够实现在纳米尺度和不到一万亿分之一秒的时间尺度内的可视化和现象研究。 这一发现可能会在不断发展的等离子体领域引起轰动,该领域涉及光撞击材料表面并触发电子波,称为等离子体场。多年来,科学家们一直致力于开发具有广泛应用的等离子体设备——从量子信息处理到光电子学(结合光基和电子元件),再到用于生物和医学目的的传感器。为此,他们将具有原子级厚度的二维材料(例如石墨烯)与纳米尺寸的金属颗粒相结合。而要想理解这两种不同类型材料的组合等离子体行为,就需要准确了解它们是如何耦合的。在阿贡最近的一项研究中,研究人员使用超快电子显微镜直接观察金纳米颗粒和石墨烯之间的耦合。“表面等离子体是纳米粒子表面或纳米粒子与另一种材料界面上的光诱导电子振荡,”阿贡纳米科学家Haihua Liu说, “当我们在纳米粒子上照射光时,它会产生一个短寿命的等离子体场。当两者重叠时,我们 UEM 中的脉冲电子与这个短寿命场相互作用,电子要么获得能量,要么失去能量。然后,我们收集那些使用能量过滤器获得能量的电子来绘制纳米粒子周围的等离子体场分布。”在研究金纳米粒子时,Liu和他的同事发现了一个不寻常的现象。当纳米颗粒位于石墨烯薄片上时,等离子体场是对称的。但是当纳米颗粒靠近石墨烯边缘时,等离子体场在边缘区域附近集中得更强烈。Liu说:“这是一种非凡的新思考方式,可以思考我们如何利用纳米尺度的光以等离子体场和其他现象的形式操纵电荷。” “凭借超快的能力,当我们调整不同的材料及其特性时,很难预测我们将看到什么。”整个实验过程,从纳米粒子的刺激到等离子体场的检测,发生在不到几百千万亿分之一秒内。CNM 主管 Ilke Arslan 表示:“CNM 在容纳 UEM 方面是独一无二的,该 UEM 对用户开放,并且能够以纳米空间分辨率和亚皮秒时间分辨率进行测量。” “能够在如此短的时间窗口内进行这样的测量,开启了对非平衡状态中大量新现象的研究,而我们以前没有能力探测到这些现象。我们很高兴能够提供这种能力给国际用户。”对于这种纳米颗粒-石墨烯系统的耦合机制的理解,将是未来开发令人兴奋的新型等离子体装置的关键。基于这项研究的论文“使用超快电子显微镜可视化等离子体耦合”(Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy)发表在 6 月 21 日的《Nano Letters》上,DOI: 10.1021/acs.nanolett.1c01824。除了 Liu 和 Arslan,其他作者还包括 Argonne 的 Thomas Gage、Richard Schaller 和 Stephen Gray。印度理工学院的 Prem Singh 和 Amit Jaiswal 也做出了贡献,武汉大学的 Jau Tang 和 IDES, Inc. 的 Sang Tae Park 也做出了贡献(日本电子于2020年初收购超快时间分辨电镜商IDES)。文:Jared Sagoff,阿贡国家实验室关于CNM新建立的超快电子显微镜 (UEM)CNM 的超快电子显微镜 (UEM) 是一种独特的工具,可供美国能源部纳米科学研究中心的用户使用。CNM超快电子显微镜实验室。左起顺时针:Thomas Gage, Haihua Liu和Ilke ArslanUEM 的应用是利用电子研究纳米级材料中的超快(亚皮秒)结构和化学动力学,这是一个广受关注的新兴科学领域。CNM的 UEM 结合了以下功能:■具有高重复率的可调谐飞秒激光器■产生脉冲电子束的多种途径■配备高灵敏度相机和电子能量过滤的同步激光泵浦脉冲透射电子显微镜CNM精心设计的UEM打开了通向任何标准电子显微镜都不具备的科学理解领域的大门,即理解亚纳米空间分辨率材料中的快速(亚皮秒到纳秒)动力学和短期亚稳态相。它代表了一种关键的分析工具,可以提供超快的结构和化学变化,以广泛的系统。在未来几年,通过开发超快的电气和机械触发机制,CNM期望开发具有基础和设备相关性的新型样品环境和样品激发途径。结合超快探测,这将允许深入了解电场和应变的非平衡现象。例如,人们可以探索声学声子模式在量子信息科学感兴趣的材料和系统中产生的应变随时间变化的影响,例如金刚石或碳化硅中的空位缺陷。在纳米科学的许多领域中,UEM 在促进对瞬态过程的理解方面具有很高的价值,例如激子定位、短寿命亚稳相、光致分离、拓扑材料动力学、等离子体系统、分子马达和磁波动等。连同理论建模,UEM 将为纳米科学界提供对纳米材料的前所未有的理解。阿贡国家实验室是 1946 年在伊利诺伊州杜佩奇县成立的第一个也是最大的国家实验室。 美国能源部资助阿贡国家实验室和芝加哥阿贡大学有限责任公司管理该实验室。 阿贡国家实验室前身是芝加哥冶金实验室,也是恩里科费米 (Enrico Fermi) 第一个受控核链式反应演示的所在地。 目前,阿贡实验室由阿贡先进光子源、阿贡串联直线加速器系统组成,开展基础科学研究、清洁能源实验、全国环境问题管理,最重要的是审查和监测国家安全风险。
  • 新型傅立叶型表面等离子共振监测仪会议邀请(第一轮通知)
    表面等离子体共振技术(简称“SPR”,Surface Plasmon Resonance)是利用了金属薄膜的光学耦合产生的一种物理光学现象。自从1982年 Nylander 等首次将SPR 技术用于免疫传感器领域以来,表面等离子体光学生物传感器得到了深入研究和广泛的应用,已经成为研究生物分子相互作用(Biomolecular Interaction Analysis,简称“BIA”)的主要手段。仅在近 3、4 年间,有关这方面的文章多达几千篇,其研究内容涉及蛋白质-蛋白质、蛋白质-DNA、DNA-DNA、抗原-抗体及受体-配体等的相互作用。商品化的光学生物传感器可在无标记的情况下实时地进行生物分子间相互作用的研究,有力地推动了分子识别这一学科的发展,已经成为生命科学和医药研究中的一种重要手段。 目前市场上的商品化SPR检测仪几乎都是通过角度测量实现对生物体系的测定。而在多年的实践中,其测量方式(依靠角度表征)的局限使其在灵敏度、动态范围、测试速度及稳定性等方面都出现了不可逾越的阻碍。有鉴于此,热电科技仪器有限公司(Thermo Electron Corporation)分子光谱部(既原来的美国尼高力仪器公司)以其近四十年傅立叶变换红外(FTIR)技术结晶结合最新的 SPR 专利技术(U.S. Patent No. 6330062)推出了崭新的傅立叶变换型表面等离子共振检测仪,突破了传统角度表征型SPR检测仪理论设计极限。 为了更好的将FT-SPR介绍给中国的生命科学专家学者,我们邀请了美国的 Eric Y. Jiang 博士准备在长春、上海和北京等地举办系列FT-SPR专题技术讲座。时间大约在2006年7月。请感兴趣的专家填写回执,我们将根据回执发送第二轮通知,谢谢! 回执请寄:热电(上海)科技仪器有限公司 分子光谱部 北京市金融街23号 平安大厦1018室 邮编:10003 电话: +86 10 5850 3588-3238 传真: +86 10 6621 0845 Email: ming.xin@thermo.com idealsky@sohu.com 联系人:辛 明
  • 一文了解超细粉体表面包覆技术“四大天王”
    p style=" text-align: left text-indent: 2em " 粉体的表面修饰是解决超细(纳米)粉体团聚问题的一种重要方法,后者已经成为了超细粉体技术发展的瓶颈。粉体表面包覆技术是指运用一定的工艺技术将修饰剂包裹在粉体表面以达到粉体表面修饰目的一种方法。随着超细粉体粉体的快速发展,粉体表面包覆技术也得以快速发展。目前超细粉体的表面包覆技术种类繁多,最主要的“四大天王”是机械混合法、气相沉积法、超临界流体快速膨胀阀和液相化学法。仪器信息网小编特将四种方法进行了汇总以飨读者。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/8491e78f-a3fb-43ca-b51e-65719702b84b.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: left text-indent: 2em " strong 外炼金刚登峰造极——机械混合法: /strong 通过挤压、剪切、冲击、摩擦等机械力将改性剂均匀分布在粉体颗粒外表面,随着组分间的相互渗透和扩散,最终形成包覆。目前主要应用的机械混合方法有球石研磨法、搅拌研磨法、高速气流冲击法几种。 /p p style=" text-align: left text-indent: 2em " 优点:处理时间短、反应过程可控、可连续批量生产 /p p style=" text-align: left text-indent: 2em " 最佳应用领域:树脂、石蜡类物质以及流动性改性剂对粉体颗粒的包覆。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/310a87bd-df49-414b-a7e3-3cecbc86a447.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " strong 天引万象举重若轻——气相沉积法: /strong 利用过饱和体系中的改性剂在颗粒表面聚集而形成对粉体颗粒的包覆。包括气象化学沉积法和雾化液滴沉积法两大类。前者是通过气相中的化学法应生成改性杂质分子或微核,在颗粒表面沉积或与颗粒表面分子化学键结合,形成均匀致密的薄膜包覆。或者是将改性剂通过雾化喷嘴产生微细液滴其溶质或熔融液在颗粒表面沉积或凝结形成表面包覆。 /p p style=" text-align: left text-indent: 2em " 最佳应用领域:食品、材料、医药、化工等。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/6748b145-ca81-49b4-8ecf-4f19ddb4b9fc.jpg" title=" 3.jpeg" alt=" 3.jpeg" / /p p style=" text-indent: 2em " strong 天下武功唯快不破——超临界流体快速膨胀法: /strong 利用超临界流体在流化床的快速膨胀, 使改性微核在颗粒表面形成均匀的薄膜包覆。超临界流体在快速膨胀过程中, 超临界相向气相的快速转变引发流体温度、压力的急剧降低,从而导致溶质在超临界溶剂中溶解度的急剧变化,在高频湍动的膨胀射流场中瞬间均匀析出溶质微核。膨胀气流载带这些均匀微核与流化床中的颗粒碰撞, 产生均匀接触, 从而在细颗粒表面形成均匀包覆。 /p p style=" text-align: left text-indent: 2em " 优点:不会对产品产生任何污染。(超临界流体快速膨胀后的溶剂与溶质颗粒容易快速彻底分离) br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/1e3d8f64-187c-4780-aa39-887c3f13059e.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-indent: 2em " strong 千变万化大道至简——液相化学法: /strong 利用湿环境中的化学反应形成改性添加剂,对颗粒进行表面包覆。包括沉淀法、溶胶—凝胶法(胶体凝胶法、金属醇盐凝胶法)、异相凝聚法、非均匀形核法、微乳液法、化学镀法等。 /p p style=" text-indent: 2em " 优点:工艺简单,成本低,容易形成核-壳结构。 /p p style=" text-indent: 2em " 最佳应用领域:尤其适用于陶瓷材料的改性参杂。 br/ /p
  • 安东帕固体表面Zeta电位仪提升血液透析膜适应性
    血液透析膜内表面的处理,对于血液透析膜的生物适应性至关重要。Zeta电势的测试在提高血液透析膜的生物适应性上起到一定的协助作用,安东帕固体表面电位分析仪SurPASS已经在此领域取得成功应用,并给出了详实的实验证明。 就有一定病史或急性肾功能衰竭患者来说,体外血液透析是维系生命的唯一方式。血液透析可以替代肾脏,起到将血液中的有害物质排出体外的功能。这个过程中,广泛使用的是人造的、排放成捆的中空纤维聚砜超滤膜(PSU)。为了提高透析膜的生物适应性以及避免该膜与血液接触时发生并发症,需要对透析膜的内层表面进行改良处理。安东帕固体表面分析仪SurPASS的高灵敏度在此时显得尤其重要。 医学发展趋势显示PSU透析膜受到青睐。将具有活性的羧基(COOH)移植到聚砜表面上,这是一条能制备具有固定生物活性物质界面的有效途径。将未处理的和经改良处理的透析膜的zeta电势作对比,结果显示对透析膜进行改良处理是有效的。未处理的PSU膜的零电荷电势点(IEP,ζ = 0 mV 处的pH)为pH 5,而移植了羧基的处理膜为pH 3.5。 IEP的改变以及在高pH情况下流动电势的不同,这都说明了将羧基移植到血液透析膜内层表面是非常成功的一种处理方法。由于安东帕固体表面分析仪SurPASS采用全自动测量,集成式滴定单元可以全自动调整 pH 值和添加剂浓度,测量更方便,其结果也更为准确可靠。 在表面分析中,安东帕固体表面分析仪SurPASS 可测试基于流动电势和流动电流得到的宏观固体表面Zeta 电位。Zeta 电位与固体/液体界面的表面电荷有关,能够反映出表面化学(pH 滴定法)和液相吸附过程。SurPASS 有助于了解和改进表面性质,并开发出新的专业材料。 现代的固体表面分析仪 SurPASS高灵敏度能够检测出表面性质的最微小变化可以轻易获得表面电荷和相关性质的信息从小颗粒到大晶片适用于测试各种样品的测量池圆柱形样品池用于粉末 (最小的颗粒尺寸 25 μm) 、颗粒、纤维和纺织用品夹片样品池适用于平板状样品的无损测试可调间隙样品池适用于规则形状如矩形 和圆形的平面小样品和中空纤维样品停机时间短,可节省时间测量池的快速更换测量参数每秒更新一次具有直观可视化多功能特性的全新软件全自动测量自动测量过程几乎无需手动操作集成式滴定单元可以全自动调整 pH 值和特性物质及蛋白质等添加剂的浓度 更多产品信息,请登录:www.anton-paar.com 关于安东帕(中国)奥地利安东帕有限公司(ANTON PAARGMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 抗生素污染怎么办?低温等离子体技术来帮忙
    p   废水排放中的抗生素污染一直是个令人头疼的难题。日前,中国科学院合肥物质科学研究院技术生物与农业工程研究所等研发出了一种低温等离子体废水处理技术,能够对诺氟沙星为代表的喹诺酮类抗生素进行降解处理。相关成果发表在最近的环境领域类专业期刊《光化层》上。 /p p   该所研究员黄青课题组与企业合作,利用自行研制的医疗废水处理一体机产生臭氧,对诺氟沙星进行降解处理,并利用表面增强拉曼光谱分析降解产物,研究了其降解诺氟沙星的效率及机理。 /p p   此前,黄青课题组提出利用低温等离子体技术处理降解诺氟沙星的方案,并且发现处理过程中臭氧降解作用效果明显。为此,他们进一步研究臭氧对诺氟沙星的降解机理。研究人员发现,等离子体产生的臭氧可以快速降解诺氟沙星,同时臭氧对诺氟沙星的氧化降解主要体现在脱氟反应、羧基团和喹诺酮基团的断裂。 /p p   “低温等离子体产生臭氧经济实用、简便易行、绿色环保、无二次污染、实用性高,对开发高效废水处理技术、推广等离子体医疗废水处理技术的应用化发展有着重要意义,这项研究拓展了低温等离子体技术在环保领域的应用。”黄青透露,目前有关技术与设备正处于市场化推广阶段。 /p p   据了解,制药工业、养殖业及医院排放的污废水其成分非常复杂,不仅包括各种难降解有机物、各类细菌和病毒,还包含大量的抗生素。这些含抗生素的废水由于不经处理或者处理不达标排放至环境水体中造成细菌耐药性增强,严重影响生态平衡,同时对人体健康造成潜在威胁和风险。因此,研发新的既绿色环保又高效的抗生素废水处理技术和设备迫在眉睫。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/983e1d88-7823-40c7-9efd-ca47300d206e.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多环境监测精彩资讯! /span br/ /p
  • 等离子体“彩虹”芯片级智能光谱仪,可实现“光谱+偏振”双功能传感
    近年来,研究人员和业内主要厂商已将研发重心转向微型化、便携式且低成本的光谱仪系统,使之可以在日常生活中实现现场、实时和原位光谱分析的许多新兴应用。然而,受到过度简化的光学设计和紧凑型架构的机械限制,微型光谱仪系统的实际光谱识别性能通常远低于台式光谱仪系统。如今,克服这些限制的一种策略便是在光子方法学中引入深度学习(DL)进行数据处理。据麦姆斯咨询报道,近日,美国纽约州立大学布法罗分校(University at Buffalo,the State University of New York)与沙特阿卜杜拉国王科技大学(King Abdullah University of Science & Technology)的联合科研团队在Nature Communications期刊上发表了以“Imaging-based intelligent spectrometer on a plasmonic rainbow chip”为主题的论文。该论文第一作者为Dylan Tua,通讯作者为甘巧强(Qiaoqiang Gan)教授。在这项研究工作中,研究人员开发了一种紧凑型等离子体“彩虹(rainbow)”芯片,能够实现快速、准确的双功能传感,其性能可在特定条件下超越传统的便携式光谱仪。其中的分光纳米结构由一维或二维的梯度金属光栅构成。该紧凑型等离子体光谱仪利用普通相机拍摄的单幅图像,即可精确地获得照明光源光谱的光谱信息和偏振信息。在经过适当训练的深度学习算法的辅助下,研究人员仅用单幅图像就能表征葡萄糖溶液在可见光光谱范围内的双峰和三峰窄带照明下的旋光色散(ORD)特性。该微型光谱仪具有与智能手机和芯片实验室(lab-on-a-chip)系统集成的潜力,为原位分析应用提供新的可能。研究人员利用彩虹捕获效应(rainbow trapping effect)来开发片上光谱仪系统。图1展示了该研究工作所提出的片上光谱仪和一维彩虹芯片的设计原理。如图1a所示,该光谱仪利用等离子体啁啾光栅实现分光功能。这种表面光栅几何形状的逐渐变化,导致了局部等离子体共振的空间调谐(即为光捕获“彩虹”存储)。如图1b所示,研究人员采用聚焦离子束铣削技术,在300 nm的银(Ag)薄膜上制备了啁啾光栅。当白光垂直入射时,通过简单的反射显微镜系统(如图1c),就可以观察到明显的“彩虹”色图像,如图1d的顶部所示,该现象源于光栅引发的等离子体共振。图1 片上光谱仪的等离子体啁啾光栅根据这些空间模式图像,可以建立共振模式与入射波长一一对应的关系,这是片上光谱仪的基础。因此,研究人员探讨了该光谱仪对任意光谱特征的空间分辨能力。通过深度学习辅助的数据处理和重建方法,研究人员利用这种分光功能可以构建用于光学集成的智能化、微型化光谱仪平台。具体而言,研究人员提出了基于深度学习的智能彩虹等离子体光谱仪概念,并构建了带有等离子体啁啾光栅的光谱仪示例,如图2所示。该光谱仪利用深度神经网络预测了所测量的共振模式图像中的未知入射光光谱,而无需使用传统的线性响应函数模型。实验中的光谱仪架构如图2a所示。智能光谱仪主要由三部分构成:空间模式、预训练神经网络以及对应的波长。图2 基于深度学习的数据重建光谱分辨率是评价传统光谱仪性能的重要参数之一。因此,研究人员对该光谱仪的分辨率做了详细测试,测试结果如图3所示。图3 智能等离子体光谱仪的分辨率以上初步测试数据表明,智能彩虹芯片光谱仪具有实现高分辨率光谱分析的潜力,其性能可与传统台式光谱仪相媲美。随后,研究人员将一维光栅扩展到二维,以利用紧凑型智能等离子体光谱仪实现偏振光谱的测定,其性能超越了传统的光学光谱仪系统。同时,研究人员展示了等离子体彩虹芯片光谱仪可以引入简化、紧凑且智能的光谱偏振系统,具有准确且快速的光谱分析能力。图4a为具有梯度几何参数的二维光栅。图4 用于测定偏振光谱的二维啁啾光栅接着,研究人员利用该二维偏振光谱仪芯片对旋光色散进行了简单而智能的表征。图5a为传统的旋光色散系统测量由物质引起的旋光度随入射波长的函数变化。最后,研究人员展示了将二维光栅作为光谱偏振系统,并介绍了用于葡萄糖传感应用的示例。图5 更简单、准确且智能的光谱偏振分析综上所述,本研究中提出了一种集成了片上彩虹捕获效应与紧凑型光学成像系统的智能芯片级光谱仪。研究结果表明,该等离子体芯片可以在可见光光谱(470 nm - 740 nm)范围内区分不同的照明峰值。该芯片充分利用其波长敏感结构,能够根据照明光谱峰值显示不同的等离子体共振模式。随后将芯片扩展到二维结构,共振模式的复杂性增加,从而在入射光偏振方面提供更多信息。通过使用片上共振模式的空间和强度分布图像来训练深度学习算法,研究人员在同一系统内分别实现了光谱分析和偏振分析。随后,研究人员利用一种将旋光引入透射光的手性物质(即葡萄糖),证明了所提出光谱仪在旋光色散传感方面的可行性,旋光色散是一种有助于手性物质检测和定量的偏振特异性特征。深度学习模型的分析表明,该算法能够基于等离子体芯片的共振模式准确预测葡萄糖引入的旋光。即使在分析多峰照明下的共振模式时,这种性能也得到了保留。这种由深度学习支持的基于图像的光谱仪能够通过利用纳米光子平台的单幅图像同时进行光谱分析和偏振分析。因此,该光谱仪标志着在单一紧凑型且轻量化设计中实现了高性能的光谱偏振分析,为深度光学和光子学在医疗保健监测、食品安全传感、环境污染检测、药物滥用传感以及法医分析等领域的应用赋能。这项研究获得了沙特阿卜杜拉国王科技大学物理科学与工程部的科研基金(BAS/1/1415-01-01)和NTGC-AI项目(REI/1/5232-01-01)的资助和支持。
  • 牛津仪器纳米级等离子体工艺研讨会在京召开
    仪器信息网讯 2013 年5 月14 日,由牛津仪器等离子技术公司主办的“牛津仪器纳米级等离子工艺研讨会”在北京举行,来自广大企业及科研院所的160余名用户参加了此次会议。 会议现场   会议就微纳米技术在科研领域的新发展、未来的加工趋势、微纳米结构及器件应用等内容进行了探讨和交流。 牛津仪器商务发展总监 Frazer Anderson先生   牛津仪器商务发展总监Frazer Anderson先生首先介绍了牛津仪器及牛津仪器等离子体技术公司的基本情况。牛津仪器的业务主要分为纳米分析部、工业分析部和服务三大部分。其业务收入目前38%来自亚洲、32%来自欧洲、北美占27%,其他区域占3%。   牛津仪器等离子体技术公司属于纳米分析部,作为等离子体与沉积处理系统的领导供应商,成立于1982年,拥有超过30年的工艺经验,超过6000件的工艺库,能刻蚀、沉积或使用超过50%的元素周期表中的自然界元素。应用领域包括高亮度发光二极管(HBLED)、微机电系统MEMS、第三代光伏发电及下一代半导体技术等。拥有遍布全球的销售服务网络,并在英国、德国、中国、美国、日本、新加坡等设立了分公司与办事机构。 中科院半导体所半导体集成技术研究中心主任 杨富华教授   杨富华教授介绍了中科院半导体所、半导体技术研究中心、纳米技术在中科院半导体所的应用、半导体所采用的牛津仪器等离子体技术公司的产品使用情况等。他表示举办这样的交流会对于科研人员更好的了解相关领域的前沿动态及技术交流很有帮助。等离子体技术对于未来的科研工作非常重要,我们的研究人员一定要懂得仪器的使用原理,更好的操作仪器,获取出色的研究成果。同时他提出对于仪器公司来说,要想提高在中国的市场占有率,需要在仪器质量、价格、服务及技术打包方案等方面做更多的关注。 牛津仪器MEMS首席工艺科学家 Mark McNie先生   Mark McNie在报告中主要介绍了深硅刻蚀和低温纳米刻蚀技术在微机电系统(MEMS)中的应用。目前微机电系统的主要应用领域包括微机械、微流体、传感器及生物医药等领域。其发展趋势主要在于一体化和复杂化。 台湾工研院微系统技术中心经理 Dr.Lin Ching-Yuan   Lin Ching-Yuan博士在报告中指出微机电系统(MEMS)的市场规模到2017年将达到210亿美元,其2011年的市场规模为102亿美元,年均复合增长率将达到13%。未来在消费品和生物应用领域将发挥重要的角色,晶圆级的组合结构设计、3D一体化设计将成为MEMS的发展趋势,MEMS技术在半导体及移动电话领域的应用需求依然强劲。 牛津仪器首席技术官 Dr. Mike Cooke   Mike Cooke博士介绍了ALD(Atomic layer deposition)原子层沉积系统及其应用。ALD是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法,该技术作为一种先进的薄膜生长技术,已经在高介电和半导体薄膜生长等多方面得到了应用。新型高介电栅介质材料,纳米材料和纳米技术以及3D电子器件等是推动ALD发展重要的需求动力。   另外,此次交流会中Mike Cooke博士还就纳米薄膜加工工艺面临的问题及解决方案作了介绍。 牛津仪器III-V族刻蚀应用首席工艺科学家 邓力刚博士   邓博士在报告中介绍了激光干涉、光谱发射技术在III-V族刻蚀中的应用,这两种技术均可以很好的用于刻蚀监测及控制刻蚀深度。III-V 族刻蚀工艺优化中应注意了解材料特点,保持腔体干净,另外好的掩膜对于获取良好的刻蚀结果也十分重要。 牛津仪器HBLED产品经理 Dr.Mark Dineen   Mark Dineen博士介绍说PlasmaPro 1000 Astrea刻蚀设备,可以为PSS, GaN 和AlGaInP提供大批量刻蚀提供解决方案。牛津仪器在高亮度发光二极管(HBLED)产业中已具备15年以上的供应设备经验, HBLED制造业要求高产量、高性能和低使用者成本, PlasmaPro1000 Astrea大批量刻蚀设备完全符合以上要求。 牛津仪器Ion Beam产品经理 梁杰荣博士   梁杰荣博士介绍说,Ion Beam(离子束)技术可广泛的用于金属、氧化物和半导体的刻蚀与沉积。随着离子源栅网设计技术的持续改进,将使离子束技术更好的用于纳米结构的精细刻蚀。高离子能量及低压操作将为高质量的光学涂层和金属沉积提供理想的环境。 中科院半导体所 王晓东教授   王晓东教授介绍了Ion Beam Optofab3000 离子束沉积的应用情况。Optofab3000型离子束溅射系统的离子束能量可达几十至1000eV,被溅射出的原子带有10-20eV的能量,比蒸发镀膜高约100倍,薄膜的粘附性及致密度显著提高,靶材的表面原子逐层被撞出来,薄膜以原子层级生长,均匀性好。 牛津仪器半导体设备部区域销售经理王宏主持会议   会议中,与会人员在听取报告后,还就自己感兴趣的问题同专家进行了沟通和交流。现场还特别设置了墙报展,各位专家分别将自己的研究内容同与会人员就行了探讨。 现场交流 撰稿编辑:秦丽娟
  • 中国成立首个等离子体国家实验室
    中国首个航空等离子体动力学国家级实验室成立   5月12日,中国首个航空等离子体动力学国家级重点实验室在空军工程大学成立。对于大多数人来说,等离子体这种宏观的中性电离气体距离他们的生活实在是太遥远了。即使是热爱军事的网友,很多对这方面也仅仅是表面的了解。等离子体与军用航空的关系,流传最广泛的就是所谓的“俄罗斯战机使用等离子体隐身”这个说法了。   说到“等离子体隐身”,就要提到人类的载人航天。在一次次飞船、航天飞机返回地球的过程中,由于他们和大气层的剧烈摩擦,飞船表面产生了等离子层,形成了电磁屏蔽。很多中国人都会记得几次神舟飞船返回地球的时候都会有一段时间和地面暂时中断联系,就是这种现象的反映。当然,这种现象早就受到了军事技术人员的注意,就是有可能通过这种等离子体的电磁屏蔽来实现作战飞机的主动隐身。然而设想并不等于工程实践,实际上通过等离子体来实现隐身从工程角度来讲很难实现。因为想实现覆盖几十米长作战飞机的等离子层,要么会牺牲飞机的气动外形,要么会对飞机的电源和燃料提出了很难实现的要求。   现在对等离子体的研究,基本上已经可以确定。那种大气摩擦产生的热等离子,是不可能应用于飞机隐身的。即使在俄罗斯,现在也没有没有确凿的证据来证明有实用的等离子体飞机隐身技术。唯一在技术界流传广泛的,就是有传闻美国在B-2轰炸机上使用了一些由稳态电源或者微波产生的冷等离子体来实现隐身。这种传闻,和美国公开B-2采用飞翼和涂料来实现隐身的说法差异很大。由于B-2轰炸机涉及到美军的核心机密,等离子体隐身的说法只能是个疑问。   除了等离子体隐身,那么等离子体和军用航空的契合点又在哪里呢?   我们不妨再看看原来的那条新闻。不难发现,这个实验室的全称是“航空等离子体动力学国家级重点实验室”,里面有动力学这个关键词。而新闻中还提到:“这个实验室的成立,是推进我国在航空动力发展领域实现理论和技术创新的重要举措,并为解决制约航空装备发展和空军战斗力生成的瓶颈问题提供了重要的研究平台……”答案已经很明显了,等离子体研究与“航空动力”这制约中国航空装备发展和空军战斗力生成的瓶颈问题有着直接的关系。   一些公开的资料表明,等离子体在航空动力上,可以有效地提高燃烧稳定性和燃烧效率,极大改善航空发动机压气机增压比升高后的工作稳定性,从而实现推重比10甚至更高涡扇发动机的生产;而在飞机气动力上,等离子体可以减少飞机阻力,增加升力,提高战机的失速攻角和机动性。   例如在航空发动机上,风扇、压气机是航空涡扇发动机的核心部件。提高航空涡扇发动机的推重比,只能增加压气机的增压比,而随之带来的问题就是压气机出口面积急剧缩小、效率严重降低。而通过在压气机的特定位置上布置等离子体激励装置,则会有效改善发动机内气体的流动效果。   毫无疑问,等离子体动力学的研究在全球范围内都是一个非常超前的领域。以至于在公开的资料中,只知道等离子体对空气的流动会产生作用,但是其作用的机理却不清楚。那么国外的一些先进航空动力,例如F-119、F-135发动机,是否使用了等离子体技术,也是一个谜。不过这次我国成立等离子体国家级重点实验室,显示我国在航空动力、飞行器气动力研究方面,已经进入了最前沿领域。随着我国在等离子体动力学研究上的不断深入,中国在研制推重比10以上的先进航空发动机的技术积淀,将更为深厚,从而为先进战机、空天飞行器、大型军用运输机的发展奠定坚实的基础。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制