当前位置: 仪器信息网 > 行业主题 > >

光扫描成像年轮分析

仪器信息网光扫描成像年轮分析专题为您提供2024年最新光扫描成像年轮分析价格报价、厂家品牌的相关信息, 包括光扫描成像年轮分析参数、型号等,不管是国产,还是进口品牌的光扫描成像年轮分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光扫描成像年轮分析相关的耗材配件、试剂标物,还有光扫描成像年轮分析相关的最新资讯、资料,以及光扫描成像年轮分析相关的解决方案。

光扫描成像年轮分析相关的论坛

  • 2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30原创:李响、杨文振、薜立强、冀石磊、郑文京 工程师,北京翠海佳诚磁电科技有限责任公司推荐:陆俊 工程师,中科院物理所磁学室2016年10月28日一句话推荐理由:国产半导体器件的骄傲之作应用在中强磁场测量上的好仪器。一、引言 磁场无形,但又无处不在,无时无刻不在直接或间接的影响着我们的生活,比如地磁、磁卡、电机、变压充电器、电磁炉、微波炉、手机、磁盘、钞票、耳麦、磁悬浮列车、核磁共振成像仪这些让我们每天都在和各种各样的磁场打交道,然而对于磁场如何衡量,如何产生如何测量恐怕较少有人去关注,简单概括几点:一是磁场的单位,常用的单位是奥斯特,国际单位安每米比较小(1 Oe ~ 79.6 A/m),注意严格来讲不要将单位表达成高斯或特斯拉这两个磁感应强度单位,因为磁场强度和磁感应强度概念上完全不同,尽管二者可根据(经常以空气或真空的)磁导率相互变换,即1奥斯特磁场在真空或空气中诱导的磁感应强度为1高斯或万分之一特斯拉。二是磁场的产生,首先地球是跟我们关系最密切的磁场源,地表磁场大约为0.5奥斯特,随纬度升高有缓慢增强趋势;其次是为了产生变化磁场,可以通过永磁体机械组装的方式,也可以使用线圈中通过电流的方式,根据线圈材料或结构的不同可以形成不同类型的通电线圈磁场源,比如超导线圈在不消耗能量情况下维持100kOe以上的磁场,高强度导电材料及结构制成的1MOe以上的脉冲强磁场;还有一种和磁场产生相反,要尽可能减少磁场,以防止地球磁场或其他干扰磁场对精密传感器造成不利影响,破坏极端条件探索、精密标定测量等任务,这时要用到消磁措施,可以使用主动电流对消与被动屏蔽两种方法,综合利用消磁技术,我们可以获得比地磁场弱10个数量级的洁净磁场环境。三是磁场的测量,相比产生技术方法,磁场测量要复杂得多,其类型有电磁感应、霍尔、磁阻、磁电、磁光、磁致伸缩、磁共振及非线性磁效应等基本原理,其中值得一提的几个包括最通用且测量范围最广的感应线圈磁探测器、前沿科学探索中常用的超导量子干涉仪(SQUID)、地磁或空间磁场探测中常用的磁通门或原子光泵磁力仪、智能手机里植入的各向异性磁阻AMR芯片、磁场计量常用的核磁共振磁力仪以及跟电磁相关的生产及科研任务中常见的中等强度磁场(地磁场上下四个数量级之间)测量上最常见最常用的霍尔磁场计。以上关于磁场的量级、产生与测量方法比较汇总于图1,在中等磁场强度测量应用最广泛的为霍尔传感器,虽然它没有核磁共振磁力仪ppm级的高精度,但它同时具备足够的精密度(通常约千分之一)、高空间分辨、高线性度、单一传感器宽测量范围、成本又相对较低等明显优势,因而市面上高斯计、特斯拉计等中等强度磁场测量仪绝大多数基于霍尔传感器,本文介绍的磁测量产品也基于霍尔磁场计,在前述磁相关的器件及应用产品的质量控制、监护与升级过程中扮演着不可缺少的角色。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616260_0_3.png图1 磁场的量级、不同产生与测量方法比较概览图二、背景中科院半导体所从20世纪80年代始研究高迁移率砷化镓(GaAs)霍尔器件,后来经过两代人的薪火传承克服半导体材料制备、内置温度补偿器件设计与测量数字化采样及软件优化上的技术难题逐渐发展成熟,最终落地北京翠海公司,形成CH-1800,CH3600等被用户认可的高斯计产品。近些年为了配合电磁制造业质量提升的业界需求,为电机磁体、核磁共振磁体空间均匀性、多级磁体分布提供系统的测量方案,翠海公司在高斯计的基础上增加无磁运动机构和软件集成,开发出F-30磁场测量扫描成像仪,照片如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616259_0_3.jpg图2 F-30 型磁场测量扫描成像设备照片三、简介F-30由上位机(装有控制软件)、高精度高斯计(一维或者三维)、与高斯计搭配的探头、多维电控位移台以及位移台的控制器组成,如图3所示。简单来说可以分为两个部分,一部分只是用来采集数据,另一部分只是位移,两个部分搭配起来就组成了这个位移采集系统。位移模块由多维电控位移台和位移台控制器组成,通过操作上位机软件给控制器下命令,控制器就根据命令带动电控位移台各个轴运动,这个电控位移台的参数(台面大小、运动轴长度、运动方式、多少维度)用户可定制,即实现在允许范围内的各个角度、各种形状的扫描。 数据采集模块由高精度高斯计和与高斯计配套的探头组成,电控位移台的轴上有固定的探头夹持位置,采集数据时将探头放在夹持位置上,探头测量的数据实时上传到高斯计上,而高斯计与上位机软件通信连接,上位机则根据需要选择是否记录当前位置的数据。通过上位机软件控制位移台控制器和高斯计,可以将位移台上某个位置与高斯计读到的数据值相关联,一维高斯计读到的就是运动到的点对应的某个方向的数据值,三维高斯计则是一个点上 X 方向的值、Y 方向的值、Z 方向的值、此点上的温度(根据需要探头和高斯计中可有温度补偿功能)及三轴中两两矢量和、总矢量和的数值大小和方向夹角,扫描的数据可以导出保存在 EXCEl 中,根据位置和数据值可由软件绘制出各种需要的示意图:二维标准图、二维颠倒图、二维雷达图、三维曲线图、三维网状图、三维立体图、矢量图、圆柱展开图及多条曲线或多个立体图放在同一张图中进行对照比较。软件中还对常见的几种形状(空间磁场分布、矩形图、磁环、同心圆等)的扫描进行了集成化,只需设置几个参数便可以自动进行扫描,自由度高,精准度高,无需看管。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616261_0_3.png图3 F-30型磁场测量扫描成像仪组成框图F-30根据不同的测量件需求可以定制,磁场测量部件的主要技术指标如表1,传感器照片如图4,其测量方向、维度以及尺寸都可以根据需要定制。 关于磁场扫描成像时间,(1)常规扫描:每点扫描时间可设置,一般为保证数据的稳定性,在每点的停留时间为1~2s,总时间由测试工件尺寸和扫描步长决定;(2)快速扫描模式:在位移台运动过程中不做停留,通过高速数据采集获得每点磁场值每点测量可小于0.1s。表1: F-30磁场测量部件主要指标http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616269_0_3.jpg运动部件有三个平移与两个旋转自由度,大致示意图如图5,典型测试场景及系统软件照片如图6所示,运动部件指标表2。表2 F-30运动学指标列表http://ng1.17img.cn/bbsfiles/images

  • 有关扫描电镜的扫描成像问题

    扫描电镜号称扫描与成像是同步的,就是扫一个点存一个点,但它成像后的图像存储又有1024、3072、甚至32k等多种分辨率,那究竟电镜的扫描分辨率是多少

  • 三维光声超声成像系统特点

    [b][url=http://www.f-lab.cn/vivo-imaging/nexus128.html]三维光声超声成像系统Nexus128[/url][/b]是全球首款成熟商用的[b]3D光声成像系统[/b]和[b]3D光声CT系统[/b]和[b]3D光声断层扫描成像系统[/b],具有更高灵敏度和各向同性分辨率,提高光声图像质量,具有更快的扫描时间和更高光声成像处理能力。三维光声超声成像系统利用内源性或外源性对比产生层析吸收的断层图像,适用于近红外吸收染料或荧光探针进行对比度增强和分子成像应用。三维光声超声成像系统应用分子探针的吸收和分布肿瘤血管-血红蛋白浓度肿瘤缺氧-二氧化硫[img=三维光声超声成像系统]http://www.f-lab.cn/Upload/photo-acoustic-CT-Nexus128.png[/img]三维光声超声成像系统Nexus128特点预定义的肿瘤生物学和探头吸收协议先进灵活的研究模式的扫描参数先进的重建算法易于使用的图形用户界面紧凑,方便的现场系统强大的查看和分析软件易于使用的图形用户界面数据可视化与分析三维光声数据从三维光声超声成像系统传输到工作站进行观察和分析。工作站上的数据具有与三维光声超声成像系统相同的结构/组织。独立的工作站允许调查员分析数据,而另一个操作员正在获取数据。前置像头具有强大的内置工具Endra 可以为特殊定量数据应用提供OsiriX 插件三维光声超声成像系统Nexus128:[url]http://www.f-lab.cn/vivo-imaging/nexus128.html[/url]

  • 正确选择适合的实验室成像仪

    作为实验室里最为常用的仪器之一,成像设备直接为您的论文提供影像。而这些影像质量的好坏,有时候甚至决定着您的论文能否发表。当然,拥有一台好的、运行稳定的设备也是老板和技术主管的心愿。那么,如何从纷繁的市场上选择到一款好的成像设备呢?很多号称“王牌”的设备是否真的能够打满分呢?下面的文章就向您介绍选择成像系统的“四项基本原则”。有了这些原则,您在选择成像仪时自然成竹在胸,无往不胜。原则一:“只选对的,不选贵的”市场上各品牌、各型号的成像仪林林种种,但是从成像原理上可以分成两大类,分别是拍照成像和扫描成像。拍照成像简单说就是样品和相机的相对位置不动,可以进行单次成像或多次成像;而扫描成像则是相机对样品进行局部成像,然后通过样品或相机的移动对整个样品进行成像。拍照成像目前主要采用CCD相机成像,由于可以设置不同的曝光时间,常被用来进行微弱的化学发光及生物发光的成像。而扫描成像则由于精度高、重复性好被广泛用于大型样品以及多通道成像中。可以说,对于大型样品或多通道应用,能选择扫描成像的,尽量不要选择拍照成像。原理搞清楚了,选择起来就简单了。不同的原理导致了不同应用的最佳选择,所以千万不要相信什么“全能王”之类的鬼话,没有任何一款机器可以通吃所有应用领域。下面就实验室最常见的一些应用简单的说明选择的依据:核酸电泳凝胶:一般此类凝胶都采用EB染色、紫外激发,而且凝胶较小。推荐采用一般的凝胶成像设备即可完成。蛋白电泳凝胶:一般此类凝胶采用考染或银染,白光透射成像。对于小型凝胶您可以选择一般的凝胶成像设备,但是对于大型凝胶,特别是双向电泳凝胶,由于CCD拍照成像会有几何扭曲,而且透镜效应也会导致不同区域的信号强度差异,另外CCD拍照也无法保证不同凝胶的成像参数保持一致,因此扫描成像是最好选择。转印膜:这个稍微有些复杂。一般转印膜有比色法显色、同位素、化学发光和荧光等不同检测手段。比色法显色就是产生有颜色的条带或斑点,一般采用普通的凝胶成像设备即可;同位素可以采用压胶片曝光的方法,但是费时、费力而且容易过饱和,比较通用的方法是由FujiFilm在1981年发明的磷屏成像技术,获得信号潜影的磷屏通过激光扫描就可以获取同位素的信号。而化学发光是目前最常用的蛋白印迹的检测手段,无疑,冷CCD拍照成像对这种微弱的光信号是最合适的。荧光是所有这些检测手段中最令人赞叹的和最有前景的。这不仅仅是因为荧光染料具有最宽的动态范围,而且还在于它能够为我们提供多通路的检测途径(同样适用于凝胶,通用电气公司的2D DIGE技术就是采用三种荧光染料标记蛋白而形成多通路检测的)。当然,您可以使用单一荧光检测,这时您对凝胶成像设备的要求就包括了新的激光光源和相应的滤光片。如果您是一个完美主义者,或者您需要对邻近或重叠的目标分子进行成像,那么多通道荧光检测是您的不二之选。这时扫描成像绝对是最佳选择,这样选择不仅仅是因为扫描成像能够带来更高的灵敏度和分辨率,更重要的是,不同通道之间没有几何扭曲,拟合性好。微孔板及其他特殊需求:对于拍照成像而言,由于几何扭曲的问题,对微孔板成像就变得比较复杂了,一般必须一个专用的校正装置才可完成。当然,如果采用扫描成像一般不需要任何额外附件。很多实验室现在都对小动物成像非常感兴趣,然而对小动物进行真的不是一件简单的事,一方面小动物需要进行麻醉和固定;另一方面还需要对信号位置进行三维定位。因此,能同时提供功能、代谢和解剖图像的PET/CT是进行这类成像的最有力的工具。限于篇幅,这部分将不做更多介绍。原则二:实践是检验真理的唯一标准这可不是在上政治课,每个厂家都对自己的产品是“王婆卖瓜,自卖自夸”,经常给您上两个小时课中间还不用休息,什么“专利技术”、“人性化设计”、“生命科学产业大奖”。只有您想不到的,没有他做不到的。可是,这些东西对用户到底有什么意义?就没有几个人说得清了。好用才是硬道理。任凭你说得天花乱坠,拿来我试试,不就什么都清楚了。现在多数厂商都提供Demo机服务,还有技术人员现场答疑解惑,那就请各位上场,真刀真枪的拼一下,谁的性能好,价格优,那我就要谁的。当然,我们的实际测试结果仅仅是针对我们自己的样品和现场demo的机器而已。我们不能据此对相关品牌和相关型号做太多评判。由于具体应用的限制、操作技巧的差异以及可能的仪器状态的区别,我们有可能没有给出公允的评价。但无论如何,这些讯息对我们采购者和使用者来说都是非常重要的。

  • 【原创大赛】扫描电镜中扫描旋转及对非导电样品的成像应用探讨

    【原创大赛】扫描电镜中扫描旋转及对非导电样品的成像应用探讨

    扫描电镜是材料学研究中的常用仪器,通过入射电子轰击样品,激发和收集二次电子以获得样品表面形貌像。虽然扫描电镜相对透射电镜对样品要求不高且制样简单,但为保证在真空条件下获得清晰的样品表面形貌像,对待测样品的基本要求为不挥发且易导电。不导电的样品因在电子束轰击区域易产生荷电形成电场,影响二次电子成像效果,因此对此类样品往往采用溅射一层非常薄的导电膜C或金属(如Au、Pt)提高导电性,改善成像效果。但对于样品表面起伏较大,以及需拍摄截面外侧的样品往往效果有限,主要会通过改变加速电压(Accelerating voltage),改变束流(Beam current)以及工作距离(Work distance)的方式进行成像调整,有时调整效果也是非常有限。通过日常的积累探索,本文以容易被忽略的扫描旋转(Scan rotation)对非导电样品的扫描电镜成像应用进行探讨。一、什么是扫描旋转? 电子束从极靴中出射后汇聚到样品为一个仅有数纳米的大小的束斑,再通过逐点移动实现对样品整个目标区域的扫描成像。逐点移动的方向由扫描线圈控制,可在平面内360度旋转可调。由于扫描线圈调整电子束偏转使得扫描方向发生改变,但成像时仍然按照水平的方式给与图像展现,直接体现为图像以中心为轴,进行了一定角度的旋转,此即为扫描旋转。扫描旋转感觉似乎是样品在旋转,实际上此时样品位置并未移动,仅仅是成像的视角发生了角度的改变。以图1中系类示意图为例:图1-1中的五角星以及四个方向的4个三角形为一个样品。扫描电镜在成像时往往会按照一定的长宽比进行某个区域的成像,如图1-2所示的方框为成像区域,即在电脑屏幕上可见的图像。图中示意的绿色的点为逐点扫描的起点,箭头为扫描方向,红色点为图像的中心。当扫描角度改变时,以90度为例,如图1-3所示。此时是仍以红色为中心点,扫描的起始点(绿色)和扫描方向发生了改变,但仍然按照固定的长宽比进行扫描区域成像,即虚线框范围,成像仍然按照水平方向展示,即在电脑屏幕上展现的图像为图1-4所示,与图1-2中方框内图像相比似乎旋转的90度。[img=,690,563]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241611580279_4828_1613111_3.jpg!w690x563.jpg[/img]二、扫描旋转在样品表面形貌成像中应用 扫描旋转方向的改变基本应用是为获得某个好看的目标物的图像,例如使得目标物的图像横平竖直,或者沿一定角度的趋势。在特殊情况下如当样品导电性差形成荷电,成像时容易产生明或暗条纹时,有时通过调整扫描方向,改变荷电分布区域,可以对成像效果有一定的改善。如下列图2系列图为同一位置不同扫描旋转角度的成像图。其中图2-1,图2-2,图2-3均在不同位置不同深浅度的黑色条纹,图2-4相对成像效果较好。由于荷电分布完全由所观测的样品的成像区域特性决定,即使同一样品不同区域荷电分布也不一致,难以总结出特定的一致规律,因此扫描旋转的改变对于成像的效果目前只能通过不同角度进行不断的尝试。[img=,690,522]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241612532956_154_1613111_3.jpg!w690x522.jpg[/img]三、扫描旋转在截面样品形貌成像中应用 在特殊样品的情况下,尤其对导电性差的截面外侧成像时,通过扫描旋转方向的改变可以显著提升成像效果。当侧面为水平时与扫描点移动方向一致,在侧面边缘易形成荷电场,对图像的扭曲非常明显。如下列图3系列图所示。图3-1中黄色标记线上侧为样品截面外侧,可见有一定的拉伸。进一步通过轻微角度调整,如图3-2和图3-3黄色线标记指示区,两者为同一样品区域,可见截面外侧的一层膜,由于荷电的作用造成图像扭曲非常明显。当将扫描方向调整为90度(图3-4),此时扫描点移动方向与样品截面外侧垂直,局部荷电得到一定改善,因此得到的图像未拉伸。如图3-1和图3-4两图绿色指示区为同一区域,可见图3-1中外侧区域成像时受到了严重压缩,经调整扫描方向得到了图3-4样品截面外侧的真实形貌图。[img=,690,604]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241614424860_7131_1613111_3.jpg!w690x604.jpg[/img] 又如下列组合图(图4),以样品截面水平为0度,分别逆时针旋转角度(30,60,90)和顺时针旋转角度(-30,-60)。可见在截面垂直(90)时为无变形成像。[img=,690,351]https://ng1.17img.cn/bbsfiles/images/2021/08/202108241616295560_4109_1613111_3.jpg!w690x351.jpg[/img]四、结论 通过简单的扫描旋转改变电子束移动方向,对非导电性样品来说,有时可以获得意向不到的成像效果。

  • 【原创大赛】【微观看世界】+年轮

    【原创大赛】【微观看世界】+年轮

    今天做金属材料的显微组织分析,抛光完成后,我想看看材料有什么样的非金属夹杂物,于是在试样未经腐蚀的状态下,用乙醇冲洗干净,放入显微镜下观察,忽然发现有一处没处理干净的酒精溶液渍迹,呈波纹状,于是将其放大,看其形状酷似树木的轮廓,为此得名为《年轮》,在此分享下http://simg.instrument.com.cn/bbs/images/default/em09502.gif显微镜型号: Nikon MA-100放大倍数: 500x试样为抛光未腐蚀状态http://ng1.17img.cn/bbsfiles/images/2014/09/201409171738_514286_1622447_3.jpg

  • 线扫描(推扫式)红外光谱成像系统在数据采集时具体需要注意哪些问题?

    [font=宋体][font=宋体]([/font][font=宋体]1)确保信号强度不饱和溢出的情况下,根据样本状态尽量调高信号强度以提高数据的信噪比。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]2)可以通过增加曝光时间来调升信号强度,但是要注意信号不要溢出,另外观察样本状态,避免光强太强灼伤样本。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]3)调焦准确,以确保待测样本处在焦平面,成像清晰。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]4)匹配好相机帧频和载物台移动速度以避免图像变形。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]5)根据样本宽度确定合适的视场角,即确定合适的相机距样本的高度。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]6)确定合适的样本扫描起始和终止位置,避免样本信息缺失或是扫描无用的区域。[/font][/font][font=宋体]在光谱成像实验过程中需要注意但不仅限于上述问题。[/font]

  • 共聚焦激光扫描光学显微成像关键技术研究

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=12px][color=#1c1d1e][b][b]魏通达[/b][/b][/color][/size][/font][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[/font][b][b][color=#333333][b][font=&][color=#032d2c][b]共聚焦激光扫描光学显微成像关键技术研究[/b][/color][/font][/b][/color][/b][/b][font=&]【期刊】:[/font][font=Arial][font=&][size=12px]CNKI[/size][/font][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://link.springer.com/book/10.1007/978-0-387-45524-2]共聚焦激光扫描光学显微成像关键技术研究 - 中国知网 (cnki.net)[/url][/b][/color][/font]

  • 【转帖】扫描电子显微镜(Scanning Electron Microscope)基础知识

    [color=#00008B]一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。[/color]

  • 对电泳胶上的斑点做定量,用凝胶成像分析系统好,还是用薄层扫描仪好?

    我在做一个课题,将糖类用琼脂糖凝胶电泳分离后,染色,再定量。现在的问题是到底用凝胶成像系统准确些,还是用薄层扫描仪效果好些?看国外的文献,用的是一种叫做“光密度计”的设备,国内难以找到。我的老板曾去相关实验室访问,他说对方用的是薄层扫描仪。我在想是否凝胶成像系统会更好些。不知各位高人有无好的建议给我?

  • STEM成像原理

    只知道它是束斑逐步扫描成像区域,百度搜了下资料大部分是HAADF-STEM成像原理,主要介绍的是Z衬度成像。那如果只是单纯的STEM,它的衬度和信号是什么?扫描式的相比TEM有什么好处吗?束斑在扫描时与试样表面成一定角度还是近乎垂直的?恳请大神不吝赐教或者推荐一些学习资料,谢谢!

  • 材料表征仪器之扫描电镜

    材料表征仪器之扫描电镜

    扫描电子显微镜(scanning electron microscope),简称扫描电镜(SEM)。是一种利用电子束扫描样品表面从而获得样品信息的电子显微镜。它能产生样品表面的高分辨率图像,且图像呈三维,扫描电子显微镜能被用来鉴定样品的表面结构。http://ng1.17img.cn/bbsfiles/images/2013/09/201309221547_465885_2063536_3.jpg扫描电镜是利用细聚焦电子束在样品表面扫描时激发出来的各种物理信号来调制成像的扫描电镜主要有真空系统,电子束系统以及成像系统。1、真空系统  真空系统主要包括真空泵和真空柱两部分。  真空柱是一个密封的柱形容器。  真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。成象系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。之所以要用真空,主要基于以下两点原因:电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用扫描电镜时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。  为了增大电子的平均自由程,从而使得用于成象的电子更多。2、电子束系统  电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成象。  电子枪:用于产生电子,主要有两大类,共三种。一类是利用场致发射效应产生电子,称为场致发射电子枪。这种电子枪极其昂贵,在十万美元以上,且需要小于10-10torr的极高真空。但它具有至少1000小时以上的寿命,且不需要电磁透镜系统。另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。钨枪寿命在30~100小时之间,价格便宜,但成象不如其他两种明亮,常作为廉价或标准扫描电镜配置。六硼化镧枪寿命介于场致发射电子枪与钨枪之间,为200~1000小时,价格约为钨枪的十倍,图像比钨枪明亮5~10倍,需要略高于钨枪的真空,一般在10-7torr以上;但比钨枪容易产生过度饱和和热激发问题。  电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。通常会装配两组:  汇聚透镜:顾名思义,汇聚透镜用汇聚电子束,装配在真空柱中,位于电子枪之下。通常不止一个,并有一组汇聚光圈与之相配。但汇聚透镜仅仅用于汇聚电子束,与成象会焦无关。  物镜:物镜为真空柱中最下方的一个电磁透镜,它负责将电子束的焦点汇聚到样品表面。3、成像系统  电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生次级电子、背散射电子、欧革电子以及X射线等一系列信号。所以需要不同的探测器譬如次级电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。  有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用次级电子探测器代替,但需要设定一个偏压电场以筛除次级电子工作原理  下图是扫描电镜的原理示意图。由最上边电子枪发射出来的电子束,经栅极聚焦后,在加速电压作用下,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。在末级透镜上边装有扫描线圈,在它的作用下使电子束在样品表面扫描。http://ng1.17img.cn/bbsfiles/images/2013/09/201309221549_465886_2063536_3.jpg  由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电子等。这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现一个亮点。扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序,成比例地转换为视频信号,完成一帧图像,从而使我们在荧光屏上观察到样品表面的各种特征图像性能参数放大倍数  扫描电镜的放大倍数M定义为:在显像管中电子束在荧光屏上最大扫描距离和在镜筒中电子束针在试样上最大扫描距离的比值 M=l/L式中l指荧光屏长度;L是指电子束在试样上扫过的长度。这个比值是通过调节扫描线圈上的电流来改变的。景深  扫描电镜的景深比较大,成像富有立体感,所以它特别适用于粗糙样品表面的观察和分析。分辨率  分辨本领是扫描电镜的主要性能指标之一。在理想情况下,二次电子像分辨率等于电子束斑直径。场深  在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。作用体积  电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。  作用体积的厚度因信号的不同而不同:  欧革电子:0.5~2纳米。  次级电子:5λ,对于导体,λ=1纳米;对于绝缘体,λ=10纳米。  背散射电子:10倍于次级电子。  特征X射线:微米级。  X射线连续谱:略大于特征X射线,也在微米级。

  • 新X光乳腺成像法可使辐射剂量降低25倍

    中国科技网讯 据物理学家组织网10月22日报道,一个国际研究小组开创了一种新型X光乳腺成像方式,能够以比现在常用的二维放射摄影术低出约25倍的辐射剂量拍摄乳房的三维X光图像。同时,新方法还能使生成的三维高能X射线计算机断层扫描(CT)诊断图像的空间分辨率提升2倍至3倍。相关研究论文发表在同日的美国《国家科学院学报》在线版上。 目前常用的乳腺癌扫描技术是“双重视图数字乳腺摄影术”,它的缺陷在于只能提供两幅乳腺组织的图像,这就解释了为何10%至20%的乳腺肿瘤都无法被探测到。此外,这种摄影术偶尔也会出现异常,造成乳腺癌的误诊。 而CT这种X射线技术虽能生成精确的人体器官三维可视图像,但却不能经常应用于乳腺癌的诊断之中,因为其对于乳房等对辐射敏感的器官而言,可能造成长期影响的风险过高。 新技术则有望克服上述限制。目前科研人员正在利用同步加速器X光对这一技术进行测试,其一旦在医院投入使用,将使CT扫描成为能够补充双重视图数字乳腺摄影术的诊断工具之一。 高能X射线和相衬成像技术的使用,再加上复杂的新型EST数学算法,能够基于X光数据重建CT图像,使CT扫描有望用于早期的乳腺癌排查,成为抗击乳腺癌的强大工具。身体组织将在高能X射线的照射下变得更加透明,因此所需的辐射剂量能够显著降低6倍左右。相衬成像也允许在拍摄同样的照片时使用更少的X射线,EST算法也可在降低4倍辐射的情况下获得相同的图像质量。研究团队以这种方式从多个不同角度拍摄了512张乳房图片,并据此形成了比传统乳腺摄影清晰度、对比度和整体图像品质更高的三维图像。 科研人员称,这些高质量的高能X射线CT图像是欧洲同步加速器辐射源(ESRF)研究中心10年的奋斗成果,同样付出努力的还有德国慕尼黑大学以及美国加州大学洛杉矶分校。他们还表示,下一步的研究目标是基于此项技术实现其他人类疾病的早期可视化,并开发出大小适合的X射线源,力图早日实现该技术的临床应用。(张巍巍) 《科技日报》(2012-10-24 二版)

  • 【电镜视频大赛】+全新智能扫描电镜Axia+欧波同

    [url=https://www.instrument.com.cn/zt/DJSPZJ][img=,610,90]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011810066266_2432_5531796_3.gif!w610x90.jpg[/img][/url]Axia ChemiSEM智能化扫描电镜,可实现样品形貌信息及成分信息的实时快速采集和处理。Axia的先进电子光学设计,可让系统一直处于良好的运行状态,轻松实现图像的高质量拍摄;对于不同类型样品,Axia均可提供全面的样品信息;全开门式大样品仓设计,灵活兼容不同尺寸样品,提供了充足的升级空间;全彩导航相机与红外CCD双导航配置,直观定位,快速检测;搭载高效的软件和智能化系统,可实现一键自动对焦、消像散等功能;自动大面积拼图功能,可快速连续扫描样品表面的不同部分,并自动进行拼接,实现样品更大面积的分析;操作简单,只需简单培训即可轻松掌握。Axia ChemiSEM,分析快速全面,操作轻松自如。[b]特点介绍:实时元素分析:[/b]在扫描成像的同时进行元素分析,获取多种信号,同时得到样品形貌信息与成分分析结果;[b]一键式操作体验:[/b]快速获取检测结果,一键自动化聚焦消像散、且无需合轴,让图像获取更快更优;[b]直观导航:[/b]全彩导航相机与红外CCD配置,双重导航,操作更安全,更直观,让您随时对样品仓内情况了如指掌;[b]成像平台即时可用:[/b]中文操作语言,让电镜操作变得更简单;您只需关心检测结果,无需费心电镜操作;[b]兼容的样品仓设计:[/b]全开门式大仓室,轻松加载不同种类样品,承重达10kg; [b]灵活成像:[/b]针对不适宜镀膜的不导电样品,提供低真空模式和电子束减速模式用于消除荷电效应。

  • 背散射图片拍摄扫描位错原因探讨

    机型:JSM-6510A拍背散射图片时,偶尔出现扫描位错,但最终图片是合适的,不知道出现位错的原因是啥?是不是扫描成像系统有故障,还是其他原因。请各位大神赐教。[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108200553103129_3950_4117239_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108200553104886_2962_4117239_3.png[/img]

  • 多焦点扫描与光激活蛋白应用

    [align=center][b][/b][/align][align=center][b]Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for [i]in vivo [/i]monitoring of intracellular protein dynamics in real time[/b][/align][b]摘要[/b]使用[color=#ff0000]Lavision Biotec[/color]公司[b]多焦点双光子激光扫描显微镜[color=#ff0000]Trim Scope[/color][/b]来进行局部和选择性的蛋白激活以及细胞内蛋白动态的的量化调查。局部激活使用光激活绿色荧光蛋白(pa-GFP)和光学双光子激发来实现,以调查实时原位的细胞内动态。这个过程对于深入理解和建模活细胞内的调控和代谢过程极其重要。作为范例,既包含了一个核输入信号又包含了一个核输出信号的拟南芥MYB转录因子LHY/CCA1-like 1 (LCL1)被定量化调查。我们使用了由质粒编码的光激活绿色荧光蛋白(pa-GFP)融合蛋白和一个红色荧光转染标记联合转染的烟草BY-2原生质体,并pa-GFPLCL1在核内光激活后的快速向核外输出。作为对照,一个LCL1核输出阴性突变体仍然被束缚在核内。我们确定了由激活pa-GFP-LCL1的双向核运输和pa-GFP的扩散分别导致的核内荧光下降的51s和125s的平均时间常数。[b]材料与方法[/b][i]并行的64焦点双光子激光扫描显微镜[/i]Pa-GFP的激活和荧光的原位检测,通过基于根据蛋白动态监测需求改进的商业化系统([color=#ff0000]TriM Scope, LaVision Biotec[/color] Martini et al., 2005 Nielsen et al., 2001)多焦点2光子LSM检测(Fig. 1). 64焦点2光子LSM (Martini et al., 2006)包括一个倒置光学显微镜和一个可以产生从760nm到960nm的100fs激光脉冲的由固态激光器泵浦的锁模飞秒Ti:Sa激光器。用于激活和成像循环的波长选则通过一个允许5s内转换波长的ahome-built screw motorization来实现。激光扫描单元([color=#ff0000]TriM Scope, LaVision BioTec[/color]) 包括一个内置的预啁啾部分以补偿激光脉冲的色散,一个光束分光器部分和振镜扫描器。通过选择一组10个100%反光镜和50%分光镜,激发的NIR激光束在样品中被分为1, 2, 4,……, 64个激发焦点。这些数目可调的焦点在显微镜物镜(UPLAO60XW3/IR, NAD1.2 Olympus)的焦平面上被激光扫描单元中的2个扫描镜扫描。整个激活和测量过程在一个温度可控环境中在293±1K下进行。因为在保持每个焦点的能量沉积低于样品的退化极限的同时,多个焦点产生了相对高的双光子诱导荧光产额,成像可以30ms的时间分辨率进行。图像用一个背照明的EMCCD相机(IXON DV887ECS-UVB, Andor Technology)以non-descanned方式获取。激发的NIR激光束被引导通过一个分光镜 (2光子-Beamsplitter, Chroma)到物镜的后光圈上。为了成像深度和光谱荧光切片,倒置显微镜采用了机械聚焦驱动(MFD, Marzhauser)和一个程序控制滤波轮([color=#ff0000]LaVision-BioTec)[/color]。数据获取和实验控制由 TriM Scope的软件包Imspector(LaVision-BioTec)执行。操作和处理5维的数据列,包括光谱和时间数据轴,使用软件包Imspector ([color=#ff0000]LaVision-BioTec)[/color],ImageJ (Rasband, 1997) 或 Imaris (Bitplane)。[img=,657,421]http://qd-china.com/uploads/bio-product/81.jpg[/img]Fig. 1.多焦点双光子激光扫描显微镜的原理图(1) Tsunami Ti:Sa 激光器(波长可调)由固态Millenia X 激光器泵浦 (均来自 Spectra Physics), (2) 多焦点激光扫描单元 (TriM-scope, LaVision BioTec), (3) 分光镜 (2光子-Beamsplitter, Chroma), (4) 短波通过滤波轮 (2光子-Emitter, Chroma), (5) 物镜 (UPLAO60XW3/IR, NA D 1.2 Olympus), (6) 样品中可选择数目的荧光焦点, (7) 倒置光学显微镜(IX 71, Olympus), (8) 滤波轮 (滤波轮, LaVision BioTec)装备带通滤波片 D 605/55 (Chroma)用于检测 Ds-Red 和 HQ525/50 结合 HQ510/20 (均来自 Chroma)以检测 pa-GFP, (9) 背照式 EMCCD-camera (IXON DV887ECS-UVB, Andor Technology) 在NDD光路中, (10) 荧光灯 (HBO 50, Zeiss), (11) 带通激发滤波轮 D 540/25 (Chroma) 用于 Ds-Red 或带通激发滤波轮HQ 480/20 (Chroma) 用于 pa-GFP.[b]结果[img=,380,768]http://qd-china.com/uploads/bio-product/82.jpg[/img][/b]Fig. 2.含有核输入输出信号的拟南芥转录因子LCL1 (分别为NLS, NES). 由质粒编码GFP融合蛋白转染的烟草BY-2原生质体。通过单光子共聚焦激光扫描显微镜分析的GFP融合蛋白稳定态定位。(a) GFP-LCL1 揭示的核与细胞质间的分区。(b) 使用核输出抑制剂leptomycin B (LMB)孵育后,由于功能性NLS的存在,GFP-LCL1的稳定态分区剧烈转化为几乎完全分布于核中。 (c,d) 对照,LMB对单独的GFP没有影响。 (e) GFPLCL1(NESm)中,它的NES的点突变造成的LCL1的核输出活性削弱同样导致了GFP融合蛋白在核内的聚集。(f) 与(e)中同一个原生质体的透射光与GFP荧光成像的叠加标尺为10um (g) 作为对照的 GFP-NLS 在核内的增加。 (h) 同一原生质体的GFP-NLS绿色荧光蛋白和作为转染标记的Pra1-DsRed (At2g38360)红色荧光蛋白的叠加。[img=,700,109]http://qd-china.com/uploads/bio-product/83.jpg[/img]Fig. 3. pa-GFP 在一个活原生质体内的自由动态扩散。选出的5幅表达pa-GFP的烟草BY-2原生质体的单光子透射荧光图像。(a)实验开始,未激活 (b) pa-GFP的双光子激活期间 (c-e) 双光子激活后,所示时间点。(a)核内(红虚线)的pa-GFP在双光子激发前平均荧光很难被检测到。使用4个平行焦点(10mW at 800 nm 每焦点)的持续3s的飞秒激光对一个7X8um的区域进行pa-GFP 2光子激发开始 (b) 激发后很短时间内检测到一个强的荧光信号(c-e) pa-GFP从核内向细胞质的扩散被监测,直到两组分间达到平衡。荧光强度标尺显示在每幅图的左边。[img=,707,514]http://qd-china.com/uploads/bio-product/84.jpg[/img]Fig. 4.在核内被光激活后,pa-GFP从核内向细胞质扩散的量化分析。在激活前,核内(ROI)平均的1光子荧光强度非常低(平均强度~300).在26s和29s间的时间点,由飞秒激光激活诱导的荧光增强在图上进行了监测。 与光激活前相比,平均荧光强度是之前的大约5倍,伴随着ROI内的荧光降低。在第一个地方,监测到的细胞核内荧光下降是由于激活的pa-GFP向细胞质内的扩散。后来,光漂白变得显著。双指数拟合非常近似地拟合了整个荧光下降过程(红线)。以此方式计算出这个实验中175s的扩算时间常数。[img=,705,375]http://qd-china.com/uploads/bio-product/85.jpg[/img]Fig. 5. 烟草BY-2原生质体中At2g38360-DsRed的定位和平行双光子荧光显微镜对pa-GFP的3D监测(64 foci, 920 nm, 240 mW)。 (a) 双光子荧光下降的量化分析,给出了一个123s的扩散时间常数。Figs. 3 and 4中的数据源于两个不同的实验,解释了荧光值的绝对差异(不同的表达水平)和统计分析。 (b) At2g38360-DsRed作为转染标记在核中pa-GFP激活前的荧光 (c) At2g38360-DsRed和pa-GFP数据采集后400 s的3D荧光图像,清楚显示了荧光团从细胞核向细胞质的扩散。[img=,697,603]http://qd-china.com/uploads/bio-product/86.jpg[/img]Fig. 6.在核内光激活前后,烟草BY-2原生质体内活跃转运的pa-GFP-LCL1的3D动态监测和量化分析。(a) 在pa-GFP-LCL1双光子激发后核内的单光子荧光表明双光子激活荧光增强 (b) pa-GFP被双光子激活后双指数曲线拟合(红线)的荧光下降量化分析。计算得出的由于主动运输导致的核内pa-GFP-LCL1荧光下降的一个20s的时间常数(c,d) At2g38360-DsRed(转染标记)和pa-GFP-LCL1的双色双光子荧光3D成像 (c)核内光激活前 (d)数据获取后。[img=,691,345]http://qd-china.com/uploads/bio-product/87.jpg[/img]Fig. 7. 烟草BY-2原生质体的核输出阴性突变pa-GFP-LCL1(NESm)光激活前后的3D动态监测和量化分析。(a) pa-GFP-LCL1(NESm)被双光子激活后的单光子荧光显示了双光子激活荧光增强和激活后核内荧光极其缓慢的下降,反映了pa-GFPLCL1(NESm)的核限制 (b,c) At2g38360-DsRed (转染标记) 和 pa-GFP-LCL1(NESm) 的双光子荧光3D图像 (b) 光激活前的核内 pa-GFP (c) 数据获取后300s的时间点。

  • 扫描电子显微镜(ScanningElectronMicroscope)基础知识

    扫描电子显微镜(ScanningElectronMicroscope)基础知识一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。(6) 可进行多种功能的分析。与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。3.信号探测放大系统:探测二次电子、背散射电子等电子信号。4.图象显示和记录系统:早期SEM采用显象管、照相机等。数字式SEM采用电脑系统进行图象显示和记录管理。5.真空系统:真空度高于 10 -4 Torr 。常用:机械真空泵、扩散泵、涡轮分子泵6.电源系统:高压发生装置、高压油箱。 四、扫描电镜主要指标1.放大倍数 M=L/l 2.分辨率(本领)影响分辨本领的主要因素:入射电子束斑的大小,成像信号(二次电子、背散射电子等)。 3.扫描电镜的场深扫描电镜的场深是指电子束在试样上扫描时,可获得清晰图像的深度范围。当一束微细的电子束照射在表面粗糙的试样上时,由于电子束有一定发散度,除了焦平面处,电子束将展宽,场深与放大倍数及孔径光阑有关。 五、试样制备1 .对试样的要求:试样可以是块状或粉末颗粒,在真空中能保持稳定,含有水分的试样应先烘干除去水分,或使用临界点干燥设备进行处理。表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干。新断开的断口或断面,一般不需要进行处理,以免破坏断口或表面的结构状态。有些试样的表面、断口需要进行适当的侵 蚀,才能暴露某些结构细节,则在侵蚀后应将表面或断口清洗干净,然后烘干。对磁性试样要预先去磁,以免观察时电子束受到磁场的影响。试样大小要适合仪器专用样品座的尺寸,不能过大,样品座尺寸各仪器不均相同,一般小的样品座为Φ3~5mm,大的样品座为Φ30~50mm,以分别用来放置不同大小的试样,样品的高度也有一定的限制,一般在5~10mm左右。2 .扫描电镜的块状试样制备是比较简便的。对于块状导电材料,除了大小要适合仪器样品座尺寸外,基本上不需进行什么制备,用导电胶把试样粘结在样品座上,即可放在扫描电镜中观察。对于块状的非导电或导电性较差的材料,要先进行镀膜处理,在材料表面形成一层导电膜。以避免电荷积累,影响图象质量。并可防止试样的热损伤。 3 、粉末试样的制备:先将导电胶或双面胶纸粘结在样品座上,再均匀地把粉末样撒在上面,用洗耳球吹去未粘住的粉末,再镀上一层导电膜,即可上电镜观察。4 、镀膜:镀膜的方法有两种,一是真空镀膜,另一种是离子溅射镀膜。离子溅射镀膜的原理是:在低气压系统中,气体分子在相隔一定距离的阳极和阴极之间的强电场作用下电离成正离子和电子,正离子飞向阴极,电子飞向阳极,二电极间形成辉光放电,在辉光放电过程中,具有一定动量的正离子撞击阴极,使阴极表面的原子被逐出,称为溅射,如果阴极表面为用来镀膜的材料(靶材),需要镀膜的样品放在作为阳极的样品台上,则被正离子轰击而溅射出来的靶材原子沉积在试样上,形成一定厚度的镀膜层。 离子溅射时常用的气体为惰性气体氩,要求不高时,也可以用空气,气压约为 5 X 10 -2 Torr 。离子溅射镀膜与真空镀膜相比,其主要优点是:( 1 )装置结构简单,使用方便,溅射一次只需几分钟,而真空镀膜则要半个小时以上。( 2 )消耗贵金属少,每次仅约几毫克。( 3 )对同一种镀膜材料,离子溅射镀膜质量好,能形成颗粒更细、更致密、更均匀、附着力更强的膜。

  • 扫描电子显微镜(ScanningElectronMicroscope)基础知识

    一、 扫描电子显微镜的工作原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗 粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要 的成像信号。由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度 和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺 序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物 理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集 转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的 显像管亮度,得到反映试样表面形貌的二次电子像。二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。(6) 可进行多种功能的分析。与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。3.信号探测放大系统:探测二次电子、背散射电子等电子信号。4.图象显示和记录系统:早期SEM采用显象管、照相机等。数字式SEM采用电脑系统进行图象显示和记录管理。5.真空系统:真空度高于 10 -4 Torr 。常用:机械真空泵、扩散泵、涡轮分子泵6.电源系统:高压发生装置、高压油箱。 四、扫描电镜主要指标1.放大倍数 M=L/l 2.分辨率(本领)影响分辨本领的主要因素:入射电子束斑的大小,成像信号(二次电子、背散射电子等)。 3.扫描电镜的场深扫描电镜的场深是指电子束在试样上扫描时,可获得清晰图像的深度范围。当一束微细的电子束照射在表面粗糙的试样上时,由于电子束有一定发散度,除了焦平面处,电子束将展宽,场深与放大倍数及孔径光阑有关。 五、试样制备1 .对试样的要求:试样可以是块状或粉末颗粒,在真空中能保持稳定,含有水分的试样应先烘干除去水分,或使用临界点干燥设备进行处理。表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干。新断开的断口或断面,一般不需要进行处理,以免破坏断口或表面的结构状态。有些试样的表面、断口需要进行适当的侵 蚀,才能暴露某些结构细节,则在侵蚀后应将表面或断口清洗干净,然后烘干。对磁性试样要预先去磁,以免观察时电子束受到磁场的影响。试样大小要适合仪器专用样品座的尺寸,不能过大,样品座尺寸各仪器不均相同,一般小的样品座为Φ3~5mm,大的样品座为Φ30~50mm,以分别用来放置不同大小的试样,样品的高度也有一定的限制,一般在5~10mm左右。2 .扫描电镜的块状试样制备是比较简便的。对于块状导电材料,除了大小要适合仪器样品座尺寸外,基本上不需进行什么制备,用导电胶把试样粘结在样品座上,即可放在扫描电镜中观察。对于块状的非导电或导电性较差的材料,要先进行镀膜处理,在材料表面形成一层导电膜。以避免电荷积累,影响图象质量。并可防止试样的热损伤。 3 、粉末试样的制备:先将导电胶或双面胶纸粘结在样品座上,再均匀地把粉末样撒在上面,用洗耳球吹去未粘住的粉末,再镀上一层导电膜,即可上电镜观察。4 、镀膜:镀膜的方法有两种,一是真空镀膜,另一种是离子溅射镀膜。离子溅射镀膜的原理是:在低气压系统中,气体分子在相隔一定距离的阳极和阴极之间的强电场作用下电离成正离子和电子,正离子飞向阴极,电子飞向阳极,二电极间形成辉光放电,在辉光放电过程中,具有一定动量的正离子撞击阴极,使阴极表面的原子被逐出,称为溅射,如果阴极表面为用来镀膜的材料(靶材),需要镀膜的样品放在作为阳极的样品台上,则被正离子轰击而溅射出来的靶材原子沉积在试样上,形成一定厚度的镀膜层。 离子溅射时常用的气体为惰性气体氩,要求不高时,也可以用空气,气压约为 5 X 10 -2 Torr 。离子溅射镀膜与真空镀膜相比,其主要优点是:( 1 )装置结构简单,使用方便,溅射一次只需几分钟,而真空镀膜则要半个小时以上。( 2 )消耗贵金属少,每次仅约几毫克。( 3 )对同一种镀膜材料,离子溅射镀膜质量好,能形成颗粒更细、更致密、更均匀、附着力更强的膜。

  • 【求助】光谱扫描分析?

    我进行光谱扫描时,513nm处有最大吸收,但是在423nm左右有一个很尖的起伏,象尖峰一样,请教:这可能会是什么原因?是溶剂吗?

  • 全自动菌落计数仪选购有哪些原则或标准

    全自动菌落计数仪因其使用的自动化程度高、分析结果可核对、样品信息可留存等,已逐渐被越来越多的科研院所、卫生疾控部分所喜爱。如何选型,才能获得性能卓越的菌落计数仪,并取得高性价比呢?这得从该类仪器的原理来解释。现今面市的所有全自动菌落计数仪器均是采用成像分析法实现自动计数的,即由【成像硬件+分析软件】所组成,这二块内容的任何一块上出现失分,都会严重影响计数分析结果的稳定性。  一、成像硬件的选型  成像硬件用于获得清晰有效的菌落图像,以便分析计数。现今的成像硬件有拍照成像的、扫描成像的。由摄像头拍照成像的优点是:成像速度快,能确保在0.5秒内获得菌落图像。由单反相机、卡片机拍照成像的优点是:能自动对焦、且像素分辨率一般更高,但其成像需要3~4秒的时间。然而,拍照成像的致命弱点是:成像环境中的光线强度,无论是暗视野,还是背光,想要做到图像中心与边缘保持完全一致,是不可能的。从而引起平皿上亮度的不一致,这就严重干扰了菌落目标的自动识别。因此,如果要选购拍照成像的,其分析软件就一定要具有背景矫正功能,以便自动改善成像的效果。扫描成像与在灯箱中营造均匀面光源不同,是将线光源通过移动变成面光源的,因此光线强度非常均匀,其均匀度通常比拍照灯箱的面光源要高一个数量级,从成像硬件的根本上解决了菌落目标的亮度不匀问题,因此计数分析非常稳定。目前,以300dpi分辨率(3482×2396像素成像)扫描6个90mm直径平皿的速度,暗视野成像约12秒、背光成像约20秒,就其成像速度而言,与单反相机、卡片机拍照成像的速度相当。由于扫描成像的光线均匀度远远高于拍照成像,为获得高质量的成像效果,以便实现“傻瓜式”分析。扫描成像的另一优点是:成像分辨率可调,单平皿成像最高可达4800dpi(即:25.4/4800=0.00529mm/像素),是任何拍照成像远不及的。可以预期:扫描成像将很快成为主流选择。  二、分析软件的选型  分析软件是全自动菌落计数仪的另一块核心成分。因为菌落生物的存在多样性,在培养基上的表现或显像不可能大体一致,针对这类变化,在分析软件选型上要考虑:对于各类成像干扰的自动排出能力。比如:是否能自动矫正背景,等等。另外,对于严重粘连在一起的团装、链状分布菌落,将其自动分割开来的水平,也是评价分析软件的考量指标。尤其是:对于同类菌落的“一键”化的智能分类计数能力,以及对于菌落计数分类的自动识别学习能力,更是评价分析软件的关键考量指标。现在比较好的分析软件,还集成了对6个90mm直径平皿的抑菌圈全自动测量功能,以及对抗生素效价分析、药敏分析功能,可避免用户重复购置成像用的硬件。一般分析软件都具应具备对于分析结果和标记图像的保存、查看功能。  三、精准、稳定的傻瓜式操作  全自动菌落计数仪就是为了减轻工作人员工作强度的,在现今的高技术下,若还需要估算才能测出菌落数的话,应是比较落后了。最好的是:能“不变应变”精准、稳定地傻瓜式操作的分析软件,其对于菌落形态和样品状态的不确定性,能够自动适应,以避免不断地调节菌落分割参数,其最多由对话交互来擦除那些个污染部分,即可。

  • 三维光声层析成像系统介绍

    [b][url=http://www.f-lab.cn/vivo-imaging/lois-3d.html]三维光声层析成像系统[/url][/b]是全球首个[b]体积光声层析成像仪[/b]器,提供[b]三维的组织模拟幻影[/b],包括小动物以及其他在成像模块中的组织图像。三维光声层析成像系统lois-3d是最早根据[b]体积光声层析成像技[/b]术描绘吸收的光能生产综合信息(血液分布及其氧)的系统,提供极其丰富的互补解剖和功能的三维光声图像。[img=三维光声层析成像系统]http://www.f-lab.cn/Upload/LOIS-3D-optoacoustic-tomography.JPG[/img]该三维光声层析成像系统的成像模块被设计成三度扫描,通过研究对象(在临床前研究系统)或模块本身(在临床乳房成像系统)的360度旋转。视频在左边绘制显示成像模块设计的基础激光光声成像系统,lois-3d。它无探针准线快速扫描最佳,而且提供了一个用于小动物活动的灵活的小控制台。三维光声层析成像系统:[url]http://www.f-lab.cn/vivo-imaging/lois-3d.html[/url]

  • 扫摆 与 推扫型成像光谱仪

    扫摆  与  推扫型成像光谱仪

    [img=,366,440]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301921039853_1828_5439362_3.png!w366x440.jpg[/img][img=,435,521]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301921116395_6360_5439362_3.png!w435x521.jpg[/img]第一个是扫摆型成像光谱仪 第二个是推扫型成像光谱仪,请问有没有懂他们工作原理的大佬呢?

  • 信号探测器对扫描电镜成像效果的影响

    扫描电镜因其分辨率高、制样简单、扩展性强等 特点,是常用的显微成像设备之一。电镜利用电子与 物质相互作用产生的信号,经计算拟合后模拟出样品 形貌。因此,电镜成像效果受捕获信号的类型影响。本作品介绍了扫描

  • 新加坡研制出便携式新扫描电子显微镜

    新加坡研制出便携式新扫描电子显微镜 -------------------------------------------------------------------- 2005年2月4日 日前,新加坡国立大学工程系研制出新的轻便型扫描电子显微镜系统,重量仅有现有系统的十分之一。传统的扫描电子显微镜系统体积大,重量达1000公斤,非常占地,也不容易搬动。这些仪器价格也高达50万美元。国大研制的这个新扫描电镜,功能和清晰程度不逊于传统系统,价格却不到10万美元,总重量也不到100公斤,整个系统还可拆成几个各不到20公斤的部分,方便携带。  研制这个产品的国大电子工程系的安岩教授指出,扫描电镜是用聚焦电子束在试样表面逐点扫描成像,和光学显微镜相比,扫描电镜可以把影像放大多300倍。即使只有头发厚度5万分之一这么小的样本,扫描电镜还是可以将样本的细节显示成清晰的画面。  他说:“扫描电镜的用途很广泛,包括辨认病毒、药物制造、检查微晶片等。我们的扫描电镜系统集中在一个推车上,可以推进电梯、小货车,很方便携带,要在微晶片厂进行检查工作也可以轻易地从一层楼搬到另一层楼,疾病专家也可以把它带到传染病现场,不必把病毒样本带会实验室。” [em05]

  • 双光子激光扫描显微镜的检测模式及其在生物医学领域的应用

    双光子激光扫描显微镜的检测模式及其在生物医学领域的应用

    [align=center][b]双光子激光扫描显微镜的检测模式及其在生物医学领域的应用[/b][/align][align=center][font=宋体]刘皎[/font][sup]1[/sup],吴晶[sup]1[/sup][/align][align=center]1. [font=宋体]北京大学医药卫生分析中心,北京,[/font]100191[/align][b][font=黑体][[/font]摘要] [/b]双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])具有低光毒性、高时空分辨率、高信噪比等优点,结合了激光扫描共聚焦显微镜和双光子激发技术,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究领域。本文结合作者所在的北京大学医药卫生分析中心共聚焦平台的工作经验,概述了[/font]TPLSM适用的样本、检测模式以及在生物医学领域的应用,以期为相关科研技术人员提供参考。[b][font=&][Abstract][/font] [/b]Two-photon laser scan microscopy (TPLSM) has the advantages of low phototoxicity, high spatial and temporal resolution, and high signal-to-noise ratio.TPLSM combines laser scanning confocal microscopy with two-photon excitationtechnology and it is widely used in brain science, immunology, tumor, embryodevelopment and other biomedical related research fields. Based on the author'swork experience in the confocal center of Peking University Medical and HealthAnalysis Center, this paper summarizes the applicable samples, detection modesand applications of TPLSM in the biomedical field, in order to provide referencefor related scientific researchers and technicians.[b][font=黑体][[/font]关键词] [/b]显微镜双光子,检测模式,应用[b]1 引言[/b]双光子激发技术的基本原理是在高光子密度情况下,荧光分子可同时吸收2个长波长光子,产生一个一半波长光子去激发荧光分子的相同效果。双光子激光扫描显微镜(two-photon laser scan microscope, TPLSM[font=宋体])在激光扫描共聚焦显微镜的基础上,以红外飞秒激光作为光源,长波长的近红外激光受散射影响小,易穿透标本,可深入组织内部非线性激发荧光,对细胞毒性小且具有高空间分辨率,适合生物样品的深层成像及活体样品的长时间观察成像[/font][1]。使用高能量锁模脉冲激光器,物镜焦点处的光子密度最高,在焦点平面上才有光漂白及光毒性,焦点外不损伤细胞。双光子效应只发生在焦点处,所以双光子显微镜无需共聚焦针孔,也能做到点激发点探测,提高了荧光检测效率[2]。[b][/b]双光子激光扫描显微镜显微镜可以通过XYZ,XYT,XYλ,XYZT,XYλT等多种模式实现多维成像,亦可进行更复杂实验的拍摄,比如二次谐波成像(Second Harmonic Generation Imaging,SHG[font=宋体])、双光子荧光寿命成像([/font]Two-photon Fluorescence Lifetime Imaging Microscopy, TP-FLIM[font=宋体])、荧光寿命[/font]-[font=宋体]荧光共振能量转移成像([/font]FluorescenceLifetime - Fluorescence Resonance Energy Transfer Imaging, FLIM-FRET[font=宋体])等实验以满足对样品的定性、定量、定位、共定位等多维度多功能的研究。[/font]TPLSM已成为生命科学各领域重要的研究工具,可在细胞及亚细胞水平对活体动物的神经细胞形态结构、离子浓度、细胞运动、分子相互作用等生理现象进行直接的长时间成像监测,还能进行光激活染及光损伤等光学操纵,广泛应用于脑科学、免疫学、肿瘤、胚胎发育等生物医学相关研究[3-5]。本文拟通过按TPLSM常见的检测模式分别阐述其在生物医学领域的应用,以其为相关科研技术人员提供参考。[b]2. TPLSM适用的样本[/b]TPLSM适用的样本非常广泛,从液体、固体等形式的材料或制剂、细菌、细胞、细胞团、类器官、组织切片、到各种模式动物(如线虫、果蝇、斑马鱼、小鼠、大鼠、兔、猴等)及其[font=宋体]脑、脊髓、肝脏、肺、皮肤等器官[/font],都可以通过搭载不同载物台进行测试。相对于传统激光扫描共聚焦显微镜200μm的成像深度极限,双光子显微镜成像深度可达800μm,如果是透明化样品可更厚。TPLSM尤其适合活体动物成像,且比小动物荧光成像有更高的分辨率和信噪比,一般TPLSM的XY轴分辨率为200 nm左右,Z轴分辨率为300 nm左右。[b]3. TPLSM的检测模式[/b]3.1 二维成像模式TPLSM可以实现点扫描、点探测,得到生物样品高反差、高分辨率、高灵敏度的二维图像,从而获得细胞/组织等光学切片的物理、生物化学特性及变化。也可以对所感兴趣的区域进行准确的定性、定量及定位分析。激光扫描显微镜的zoom功能,可以用来调节扫描区域的放大倍数。但受物镜分辨率的限制,一味的增大zoom值,不能得到相应的高清图像,需根据实际情况参考piexl size进行设定。TPLSM可以实现XY、XZ或XT的二维成像模式,XT线扫会在后文与XYT时间序列成像一起进行举例说明(图2b)。3.2 三维成像模式3.2.1 Z轴序列三维成像(XYZ)[align=left]TPLSM可沿Z轴方向通过电动载物台的连续扫描对样品进行无损伤的光学切片(XYZ),获得三维立体图像。同理,通过沿Y轴方向连续扫描,可获得连续的XZY图像。如图1所示TPLSM[font=宋体]可以顺利观察到可以观察到血管清晰形态结构:单个胚胎的胎盘微血管(图[/font]1a)、肝脏血窦微血管(图1b)和后肢微血管(图1c)[6]。[/align][align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151626576232_4807_3237657_3.png!w690x230.jpg[/img][/align][align=center]图1(a)胚胎胎盘微(b)肝脏血窦和(c)后肢的微血管三维成像[/align]3.2.2 时间序列扫描模式(XYT)[align=left]按照一定的时间间隔重复采集,则可实现对该样品的实时监测(XYT)。此类实验可观察组织区域内特异荧光探针标记的单个细胞或细胞内不同部位接受刺激后的整个变化过程。[font=宋体]如图[/font]2[font=宋体]([/font]a[font=宋体]),可以根据微血管[/font]XYT[font=宋体]序列扫描的成像结果中某一血细胞在前后两张图的位置移动和这两帧图的扫描时间间隔计算血流速度。若血流速度很快,[/font]XYT扫描不足以捕捉实际流速,可以使用XT线扫计算。如图2(b),微血管XT扫描图像中绿色荧光背景里的黑色线条代表单个血细胞的流动轨迹,每条线条的横坐标代表血细胞移动的距离(distance / μm[font=宋体]),纵坐标代表此段时间([/font]time/ ms[font=宋体]),根据这两个数据可以计算出单位时间内血细胞的流动速度([/font]μm / ms)[6]。[/align][align=center][img=,690,262]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151627102569_8367_3237657_3.png!w690x262.jpg[/img] [/align][align=center]图2 微血管(a)XYT扫描结果和(b)XT一维扫描结果图像计算血流说明示意图[/align]3.2.3 光谱扫描模式(XYλ/XYΛ)通常配置有可调节接受范围的检测器的TPLSM,可以实现从400nm-800nm的发射波谱扫描。通过配置具有连续可调波长的双光子激光器,还可以实现750nm-1300nm激发波谱扫描。这对于开发研制特殊染料探针的课题来说是很方便、全面的检测功能。3.3四维成像模式(XYZT/XYλT/XYΛT)基于上述三维成像模式,结合时间序列扫描,可以实现TPLSM的四维成像。3.4二次谐波成像(SHG)SHG是一个二阶非线性过程,且一般为非共振过程,适合富含胶原纤维的样本成像,如角膜、鼠尾肌腱、皮肤等。生物组织产生的二次谐波最主要的转换源自胶原,不同生物组织中的二次谐波信号强弱与组织中的胶原含量密切相关,含胶原丰富的组织包括结缔组织和肌肉组织等二次谐波信号也比较强,另外还有一些能产生强二次谐波的生物结构是微管,如细胞分裂中纺锤体。对于具有中心对称性的生物结构,如果局部中心对称性的破坏也会产生二次谐波:在两中心对称介质的界面,不同物态分子的相互作用使局部微观场特性在交界面(如细胞膜)发生突变,从而产生界面二次谐波[7]。除了动物组织外,一些含有特殊分子结构的植物组织也能产生二次谐波。二次谐波显微成像具有高空间分辨率、深成像深度、低损伤、以及对结构对称性的高度敏感性的特点,如果能与其他成像技术结合,将成为生物样品研究的有力工具[8]。3.5双光子荧光寿命成像(TP-FLIM)[9]FLIM技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是荧光团在返回基态之前处于激发态的平均时间,是荧光团的固有性质,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此FLIM技术常被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、pH值的分布和动力学变化等,这在生物医学研究中具有非常重要的意义。目前FLIM技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。FLIM检测需要脉冲激光,TPLSM带有的高能量锁模脉冲激光器可以满足激发要求。3.6荧光寿命-荧光共振能量转移成像(FLIM-FRET)[10]传统的FRET过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将FLIM技术应用于FRET过程分析,利用FLIM技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程。当受体分子与供体之间的距离10nm时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生FRET的供体分子的荧光寿命降低。因此,FRET-FLIM联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白-蛋白,蛋白-核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[b]4 结论和展望[/b]综上,TPLSM应用灵活,具备多种检测模式,适用于多种样本,亦可实现多种实验目的,如荧光的定量、定性、定位、共定位,动态荧光的测定等。一些特殊的实验模式,将TPLSM在生物医学领域的应用进一步扩大。通过结合其他技术(多手段联合拓展,如膜片钳、原子力显微镜、光电联用等),TPLSM必将成为助力生物医学领域研究的有力工具。双光子荧光成像由于具有天生的三维层析能力以及深穿透能力,在活体生物组织成像上广受欢迎。双光子显微镜镜下空间增大后,可广泛应用于猴、大小鼠、兔等较大的模式动物的活体成像。且可结合电生理技术、光遗传技术,广泛应用于麻醉、清醒或运行行为等生理状态下的动物脑科学神经相关研究,在单细胞、单树突精度上对神经元群体活动进行监控。如结合膜片钳技术,对活体脑组组急性切片神经元进行双光子深层成像[11];结合光遗传技术,实现视觉皮层同一神经元和神经元群体的稳定操控和长期多次重复记录[12];对在健身球上移动的头部固定小鼠小脑进行成像,探讨觉醒状态和运动行为对胶质网络中钙离子的激发的影响[13];结合多种疾病模型,探讨大脑皮层神经元及胶质细胞活性的改变及作用等[14]。随着多种双光子显微镜系统的出现,双光子显微镜成像技术将以其实时、无损地探测、诊断及检测能力,在生物医药及临床医学应用中发挥更大作用。[b]参考文献[/b][1] [font=宋体]李娟[/font],[font=宋体]张岚岚[/font],[font=宋体]吴珏珩[/font].[font=宋体]双光子显微镜的应用优势与维护要素[/font][J].[font=宋体]中国医学装备[/font],2021,18(12):158-163.[2] HendelT,Mank M, Schnell B,et al.Fluorescence changes of genetic calcium indicatorsand OGB1correlated with neural ac tivity and calcium in vivo and in vitro[J].JNeurosci, 2008,28(29):7399-7411.[3] DolginE.What leva lamps and vinaigrette can teach us about cellbiology[J].Nature,2018,555(7696):300-302.[4] Noguchi J,Nagaoka A, Watanabe S,et al.in vivo two-photon uncaging of glutamate revealingthe structure-function relatio nships of dendritic spines in the neocortex ofadult mice[J]. J Physiol,2011,589(Pt 10):2447-2457.[5] BishopD,Nikiél, Brinkoetter M,et al.Nearinfrared branding efficiently correlateslight and electron microscopy[J]. Nat Methods,2011,8(7):568-570.[6] [font=宋体]刘皎[/font],[font=宋体]丛馨[/font],[font=宋体]何其华[/font].[font=宋体]活体小鼠微血管血流倒置双光子激光扫描显微镜检测方法的建立[/font][J].解剖学报,2022,53(02):261-265.[7] [font=宋体]屈军乐[/font],[font=宋体]陈丹妮[/font],[font=宋体]杨建军[/font],[font=宋体]许改霞[/font],[font=宋体]林子扬[/font],[font=宋体]刘立新[/font],[font=宋体]牛憨笨[/font].[font=宋体]二次谐波成像及其在生物医学中的应用[/font][J].[font=宋体]深圳大学学报[/font],2006,(01):1-9.[8] [font=宋体]孙娅楠[/font],[font=宋体]赵静[/font],[font=宋体]李超华[/font],[font=宋体]等[/font].[font=宋体]二次谐波结合双光子荧光成像方法观察人源胶原蛋白透皮吸收情况[/font][J].激光生物学报,2017,26(1):24-29.[9] [font=宋体]刘雄波,林丹樱,吴茜茜,严伟,罗腾,杨志刚,屈军乐,荧光寿命显微成像技术及应用的最新研究进展。物理学报,[/font]2018,67(17):178701-1-178701-14[10] [font=宋体]罗淋淋,牛敬敬,莫蓓莘,林丹樱,刘琳,荧光共振能量转移[/font]-荧光寿命显微成像(FRET-FLIM[font=宋体])技术在生命科学研究中的应用进展。光谱学与光谱分析,[/font]2021,41(4):1023-1031[11] Isom-BatzG,Zimmem PE.Collagen injection for female urinary incontinence after urethralor periurethral surgery[J].J Unol,2009,181(2):701-704.[12] JuN,Jiang R,Mrcknik SL,et al.Long-term all-optical interrogation of corticalneurons in awake-behaving nonhuman prim ates[J].LOSBiology,2018,16(8):e2005839.[13]Nimmerjahn A,Mukamel EA, Schnitzer MJ.Motor behavior activates Bergmann glialnetworks[J].Neuron,2009,62(3):400-412.[23] Huang L, Lafaille JJ, YangG.LearningDependent dendritic spine plasticity is impaired in spontaneousautoimmune encep halomyelitis[J].Dev Neurobiol,2021,81(5):736-745.[14] Huang L,Lafaille JJ,Yang G.LearningDependent dendritic spine plasticity is impaired inspontaneous autoimmune encep halomyelitis[J].Dev Neurobiol, 2021,81(5):736-745.

  • 加速电压对扫描电镜成像影响

    加速电压对扫描电镜成像影响

    [color=#ff0000][b]此为分享引用,所有权归原微信公众号,原文链接:[url]https://mp.weixin.qq.com/s/lDVTic2etkUd7drsNrdJNw[/url][/b][/color][font=&]扫描电镜是材料学研究中的常用仪器设备,通过入射电子轰击样品,激发和收集二次电子获得样品表面形貌像,以及通过特征X射线进行样品成分分析。在仪器测试使用时,加速电压(HV/ETH)为常用参数中调节最为普遍的一个。那么加速电压是如何影响成像的效果呢?本短文将以我校常见样品的实际图片结合简短的原理来与大家共同分享和探讨一下在扫描电镜成像中应如何调整加速电压。[/font][size=17px]入射电子影响的范围[/size][font=&]加速电压越高,入射电子的能量能越高,在样品中可穿透和散射的范围越大,伴随着产生的信号范围也越大。如下图模拟,入射电子在1kV加速电压时,在硅中散射范围主要在20nm区域内;在5kV时,散射的主要范围扩大到300nm区域,因此5kV时二次电子可产生的范围从入射点扩大到数百纳米。[/font][align=center][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171507293110_4689_1613111_3.jpg!w690x223.jpg[/img][/align][size=17px]样品表面细节的分辨[/size][align=left]如上模拟所示,由于加速电压增加,入射电子散射的范围增加,使得产生的二次电子区域扩大,样品表面细节分辨率降低。如下图对比,在1kV条件下颗粒表面附着的碳纳米管比5kV条件下更加显著可见。[/align][align=center][font=&] [/font][img=,690,222]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171508305861_6609_1613111_3.jpg!w690x222.jpg[/img][/align][align=center][/align][font=&]如下图在1kV下可见颗粒表面为更小的颗粒组成,而在5kV时仅能看到大颗粒的宏观轮廓。因此对追求纳米级的表面细节分辨建议选择低电压比较合适。[/font][align=center][img=,690,250]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171513118873_2060_1613111_3.jpg!w690x250.jpg[/img][/align][size=17px]辐射损伤[/size]有些样品易受辐射损伤,如有机高分子,金属有机框架,生物组织等。辐射损伤的机理比较复杂原因也多,本短文不再深入探讨。在扫描电镜成像时,有没有简单的办法判断当前加速电压有没有造成辐射损伤?在实践发现,采用较低的加速电压,例如5kV及以下的电压,拍一张图后,原地再拍一张即可,对比前后两张图有没有裂纹、收缩等。如下图,原地再拍一张后的样品前后图明显出现了收缩,说明在此加速电压下样品受到了损伤,应当降低入射电子能量。[align=center][font=&][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171514256752_1419_1613111_3.jpg!w690x233.jpg[/img] [/font][/align][font=&]加速电压越高,所携带能量越高,热损伤和轰击损伤都会增加。因此对于易受辐射损伤的样品建议使用较低电压。如下图所示在1kV下,PMMA球体表面圆润饱满,在2kV球体出现了收缩的凹陷;在1kV下,MOF表面平滑,在2kV条件表面出现收缩。[/font][align=center][font=&] [img=,690,514]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171515150790_4421_1613111_3.jpg!w690x514.jpg[/img][/font][/align][size=17px]非导电样品的荷电[/size][font=&]为避免非导电样品出现荷电影响成像效果,对于此类样品一般会在表面溅射一层几纳米厚的导电薄膜,如C,Au,Pt等,但对于有的样品效果也有限。出现荷电的直接体现为成像时明暗度明显失调或者出现条纹,根本原因在于电子输入和逸出的数量不平衡。不同的样品有不同的平衡电压,但对于大部分绝缘样品平衡电压[i]E[sub]2[/sub][/i]在1-3kV内,因此可以通过在此低电压范围内适当尝试。此外,采用低电压同时也减少了电子输入,对减弱和改善区域范围内的荷电有较好的效果。如下图所示,在1kV时图像明暗度较均匀,在5kV时存在明显异常亮的荷电影响区域。[/font][align=center][img=,690,234]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171515420931_1042_1613111_3.jpg!w690x234.jpg[/img][/align][size=17px]成像的信噪比[/size][font=&]加速电压越高,入射电子所携带的能量越高,因此轰击到样品产生的二次电子越多,信号越强,信噪比得到提高,成像的直观感觉图像更清楚了。如下图在5kV时,相对1kV图像的成像视觉效果更为清楚。对于微米级的较大颗粒,在不追求表面细节时,提高加速电压有利于提高信噪比,获得成像效果更为清楚的图片。[/font][font=&] [/font][align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516056033_5181_1613111_3.jpg!w690x255.jpg[/img][/align][font=&] [/font][size=17px]混嵌的样品[/size]如果所要观察的目标物包裹或者嵌入在其他物质里面,一般建议高加速电压以提高测试深度。此仅针对高原子序数目标物质有效,且一般范围在1-2um深度以内。如下图,1kV仅能看见高分子样品表面有颗粒起伏,在15kV下明显可见包裹的Fe氧化物颗粒。但如果两物质原子序数接近或者目标物原子序数较低则很难实现成像区分,如在有机高聚物里添加纳米薄层石墨烯。[align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516295430_4956_1613111_3.jpg!w690x259.jpg[/img][/align][align=center][/align][font=&] 以上加速电压选择简单整理为下表:[/font][align=center][img=,690,319]https://ng1.17img.cn/bbsfiles/images/2021/09/202109171516468545_8504_1613111_3.jpg!w690x319.jpg[/img][/align][font=&]本短文抛开了复杂的机理讨论,以简洁的方式分享了我校常测样品对加速电压高低选择的一般原则。[/font][font=&]由于样品的不同及分析目标不同,在测试中需要根据实际情况配合其他参数进行调整,感兴趣的读者可以参阅以下文中引用的参考资料。[/font]参考文献[font=Optima-Regular, PingFangTC-light]1. 李超.电子束辐照致荷电效应的Monte Carlo模拟研究.中国科学技术大学博士学位论文,2020[/font][font=Optima-Regular, PingFangTC-light][size=14px]2. 周莹,王虎,吴伟,刘紫微, 林初城,华佳捷.加速电压的选择对 FESEM 图像的影响.实验室研究与探索,2012,31(10):227-230.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]3. 吴东晓,张大同,郭莉萍.扫描电镜低电压条件下的应用,2003,电子显微学报,22(6):[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]655-656.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]4. 曹水良,梁志红,尹平河.不同加速电压对不导电样品扫描电镜图像的影响.暨南大学学报( 自然科学与医学版),2014,35(4):357-360.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]5. 华佳捷,刘紫微,林初城,吴伟,曾毅.场发射扫描电镜中荷电现象研究.电子显微学报,2014,33(3):226-232.[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]6[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]. 程彬杰,刘学东,唐天同,王莉萍.电子束中Boersch效应的实验研究.真空科学与技术,1998,18(5):364-368.[/size][/font]

  • SEM中的面扫描与XPS中的成像XPS

    在SEM中作扫描时是否存在几何因素,也就是说电子束斑的入射角度与出射角度以及束斑的大小等这些因素影响面扫的成像,出现不能很真实反映样品的元素分布情况?成像XPS是否也类似?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制