当前位置: 仪器信息网 > 行业主题 > >

气相色谱影定析方法

仪器信息网气相色谱影定析方法专题为您提供2024年最新气相色谱影定析方法价格报价、厂家品牌的相关信息, 包括气相色谱影定析方法参数、型号等,不管是国产,还是进口品牌的气相色谱影定析方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱影定析方法相关的耗材配件、试剂标物,还有气相色谱影定析方法相关的最新资讯、资料,以及气相色谱影定析方法相关的解决方案。

气相色谱影定析方法相关的资讯

  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。   反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。   2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。   在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。 反应顶空气相色谱的应用 1. 测定造纸厂黑液中的碳酸盐含量   碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:   把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。 (1) 温度的影响   二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。 (2) 检测器线性和恒定的凝固相释放气体速率   这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。 (3) 顶空气体稀释变化对分析准确度的影响   用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.   表 1样品体积变对准确度的影响 (1) 空气中二氧化碳的影响   空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。 (2) 测定精度   作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。   表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法   柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。 (1) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)   柱温:60℃   载气:He 3.1 mL/min   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min (2)样品分析步骤   (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (3)分析条件的影响   (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化   (b)空气中二氧化碳的影响   在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。   (c)液体样品的体积   一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。 (3)这一方法的准确度和精密度   使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。 表3 测定酸与滴定法的比较 样品 盐酸/(mol/L) 相对偏差/% 本方法 滴定法 1号溶液 0.1002 0.1000 0.22号溶液 0.0498 0.0500 -0.3 3号溶液 0.0247 0.0250 -1.2 4号溶液 0.0101 0.0100 1.0 表4 测定碳酸钠与电导法的比较 样品 碳酸钠/% 相对偏差/% 本方法 电导法 1号黑液 4.9 4.7 4.3 2号黑液 23.2 24.1 -3.7 3号黑液 25.124.5 2.4 4号黑液 42.0 42.8 -1.9 3 用反应顶空气相色谱测定木纤维中羧基   在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。   所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。 (1) 测定原理   木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下: (2) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )   柱温:60℃   载气:He 3.1 mL/min,使用不分流模式   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min   样品瓶如图2所示: 图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶 (3)测定步骤   首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。   取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。 (4)这一方法的准确和精密度   表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果 表4 顶空气相色谱分析木纤维中羧基的比较结果 样品 纤维中羧基含量/(mmol/g) 相对偏差/% 本方法 滴定法 1号样品 0.0789 0.0786 0.35 2号样品 0.0682 0.0739 -7.11 3号样品 0.0413 0.0415 -0.57 4号样品 0.06950.0694 0.04 5号样品 0.0815 0.0755 8.01 6号样品 0.0611 0.0610 0.10 7号样品 0.0225 0.0241 -6.87 8号样品 0.0577 0.0581 -0.69 (1) 方法的进一步改进   两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。   (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。   (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。 图3 测定纸浆中羧基的顶空样品瓶 4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐   ( JChromatogr A,2006,1122:209-214)   测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:   这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。   氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。   柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。   下面列出部分相关的文献供读者参考: 序号 题目 原始文献 1 制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法) J. Pulp Paper Sci., 1999, 256-262. 2 顶空气相色谱分析复杂基质中的非挥发性物质 J. Chromatogr. A, 2001, 909:249-257.3 木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量 Ind. Eng. Chem. Res., 2003, 42: 5440-5444. 4 顶空气相色谱测定酸和碱组分 J. Chromatogr. A, 2005, 1093:212-216. 5 顶空气相色谱测定木质素的甲氧基含量 J. Agric. Food Chem., 2012, 60: 5307&minus 5310. 6 顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量 J. Chromatogr. A, 2012,1235:182-184. 7 顶空气相色谱测定丁二酸酐改性纤维素的取代度 J. Chromatogr. A,2012,1229:302-304. 8 一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量 J. Ind. Eng. Chem., 2014,20:13-16. 9 一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量 Anal. Lett., 2012, 45: 1028-1035. 10 顶空气相色谱技术快速测定个护用品中的甲醛含量 Anal. Sci., 2012, 28: 689-692. 11 顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量 J. Ind. Eng. Chem.,2013,19:748-751. 12 顶空气相色谱法检测纸浆中羰基含量的研究 中国造纸, 2014,33(10): 36-39. 13 静态顶空气相色谱技术 化学进展, 2008,20(5): 762-766. 5 更多反应顶空气相色谱的应用   国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。 序号 题目 方法要点 1 顶空进样-气相色谱法测定大气中吡啶的研究 用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶 空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。 王艳丽等,中国环境监测,2013,29(2):62-64 2 顶空气相色谱法测定粮食中的氰化物 称取试样5-10 g于100 ml顶空管中加入 纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。 刘宇等,中国卫生检验杂志2009,19(3):552-553 3 顶空气相色谱法测定膨化大枣中的亚硫酸盐含量 将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸,在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量 王晓云等,山东化工,2007,36(1):36-38 4 使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气 相色谱法 在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳 聂春林等,精细化工中间体,2010,40(6):63-66 5 测定尿中三氯乙酸的自动顶空气相色谱法 尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析 李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。 致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。
  • 用户成就丨一种气相色谱质谱联用仪测定土壤中灭多威肟的分析方法
    见证用户成就灭多威肟是氨基甲酸酯类杀虫剂灭多威的合成中间体,具有一定毒性。目前针对水体中灭多威肟的研究较为普遍而土壤中灭多威肟的检测方法的研究较少,因此有必要建立一种气相色谱质谱联用仪检测土壤中灭多威肟的检测方法。为解决这一问题,广电计量检测(合肥)有限公司及安徽建筑大学有关研究人员提出了《一种气相色谱质谱联用仪测定土壤中灭多威肟的分析方法》并将相关研究成果发布在Hans Journal of Agricultural Sciences 农业科学, 2022, 12(4), 237-245。本方法通过实验条件的探究,确定萃取溶剂为二氯甲烷–丙酮混合溶剂(1+1)、加压流体萃取温度为 70℃,压力为12 Mpa,选择了C18柱作为净化柱,8mL二氯甲烷–丙酮混合溶剂(1+1)进行洗脱,20℃减压旋蒸作为收集液的浓缩方式,最终建立了一种以加压流体萃取–气相色谱质谱联用仪测定土壤中灭多威肟的定性定量方法。该方法自动化程度高,可进行批量的土壤分析,操作简便,精密度和准确度高,方法检出限为:1.17 µg/kg。该方法的建立填补了测定土壤中灭多威肟的方法空白,为场地新型环境污染调查提供必要技术支持。在样品萃取环节,此次实验采用睿科 HPFE 06S 加压流体萃取仪。在高温环境下,睿科HPFE高通量加压流体萃取仪可使萃取时间由索式抽提的十几个小时降低至15~30分钟,溶剂耗量由原来的200mL降低至20 ~ 50mL,有了它,土壤“把脉”更轻松!
  • 国标委第一批国标计划涉多类仪器分析方法 气相色谱-质谱法“大行其道”
    p   3月25日,国家标准化管理委员会,下达2019年第一批推荐性国家标准计划。本批计划共计507项,其中制定294项、修订213项,推荐性标准506项、指导性技术文件1项。 /p p   值得注意的是,本次标准计划中,数十项与仪器及分析技术紧密相关。从仪器分析方法来说,涉及了气相色谱-质谱法、气相色谱法、分光光度法、波长色散X射线荧光光谱法、近红外法等。 /p p   仪器信息网摘录部分如下: /p table width=" 600" border=" 1" cellpadding=" 0" cellspacing=" 0" align=" center" colgroup col width=" 162" / col width=" 175" / col width=" 72" span=" 2" / col width=" 260" / /colgroup tbody tr class=" firstRow" td width=" 162" 计划编号 /td td width=" 175" 项目名称 /td td width=" 72" 标准性质 /td td width=" 72" 制修订 /td td width=" 260" 起草单位 /td /tr tr td width=" 162" 20191007-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第2部分:吗啡 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191016-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第4部分:可卡因 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191014-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第6部分:美沙酮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191010-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第10部分:地西泮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190734-T-605 /td td width=" 175" 锰铁、锰硅合金、氮化锰铁和金属锰 硅含量的测定 钼蓝分光光度法、氟硅酸钾滴定法和高氯酸重量法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 四川川投峨眉铁合金(集团)有限责任公司 /td /tr tr td width=" 162" 20190798-T-469 /td td width=" 175" 柴油十六烷值测定法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油化工股份有限公司石油化工科学研究院 /td /tr tr td width=" 162" 20190893-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 含硫化合物的测定 第8部分:用紫外荧光光度法测定总硫含量 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190890-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 气相色谱法测定组成和计算相关不确定度第2部分:不确定度计算 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190891-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 在一定不确定度下用气相色谱法测定组成 第1部分:分析导则 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190992-T-606 /td td width=" 175" 涂料中生物杀伤剂含量的测定 第4部分:多菌灵含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中海油常州涂料化工研究院有限公司 /td /tr tr td width=" 162" 20190892-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190988-T-607 /td td width=" 175" 家具产品及其材料中邻苯二甲酸酯增塑剂的测定方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 国家家具产品质量监督检验中心(广东) /td /tr tr td width=" 162" 20190950-T-469 /td td width=" 175" 化妆品中地索奈德等十一种糖皮质激素的测定 液相色谱/串联质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 广州质量监督检测研究院 br/ & nbsp & nbsp & nbsp 、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190998-T-606 /td td width=" 175" 硫化橡胶中多环芳烃含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 上海市质量监督检验技术 br/ & nbsp & nbsp & nbsp 研究院、山东玲珑轮胎有 br/ & nbsp & nbsp & nbsp 限公司、北京橡胶工业研 br/ & nbsp & nbsp & nbsp 究设计院有限公司等。 /td /tr tr td width=" 162" 20191012-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第8部分:三唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190733-T-605 /td td width=" 175" 锰铁、锰硅合金、氮化锰铁和金属锰 磷含量的测定 钼蓝分光光度法和铋磷钼蓝分光光度法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 四川川投峨眉铁合金(集团)有限责任公司 /td /tr tr td width=" 162" 20190732-T-605 /td td width=" 175" 钒铁 & nbsp & nbsp 钒、硅、磷、锰、铝、铁含量的测定 波长色散X射线荧光光谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 攀钢集团有限公司、冶金工业信息标准研究院 /td /tr tr td width=" 162" 20190796-T-469 /td td width=" 175" 硅片表面薄膜厚度的测试 光学反射法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 有研半导体材料有限公司 /td /tr tr td width=" 162" 20191011-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第9部分:艾司唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190658-T-604 /td td width=" 175" 真空计 & nbsp & nbsp 四极质谱仪的定义与规范 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 兰州空间技术物理研究所 /td /tr tr td width=" 162" 20191011-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第9部分:艾司唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191050-T-326 br/ /td td width=" 175" 畜禽肉品质检测 & nbsp & nbsp 水分、蛋白质、挥发性盐基氮含量的测定近红外法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国肉类食品综合研究中心、江苏大学、中国农业科学院农产品加工研究所 /td /tr tr td width=" 162" 20191054-T-326 /td td width=" 175" 畜禽肉品质检测 & nbsp & nbsp 近红外法通则 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国农业科学院北京畜牧兽医研究所、中国农科院科学院农科院质量标准与 br/ & nbsp & nbsp & nbsp 检测技术研究所、中国农业科学院农产品加工研究所等 /td /tr tr td width=" 162" 20190854-T-469 /td td width=" 175" 钢中低含量SiMn的电子探针定量分析方法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国科学院金属研究所 /td /tr tr td width=" 162" 20191017-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第3部分:大麻中三种成分 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191009-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第11部分:溴西泮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 0191008-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第12部分:氯氮卓 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190978-T-607 /td td width=" 175" 化妆品中二乙二醇单乙醚的测定 气相色谱-质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国检验检疫科学研究院、上海市日用化学工业研究所(国家香料香精化妆 br/ & nbsp & nbsp & nbsp 品质量监督检验中心) /td /tr tr td width=" 162" 20190977-T-607 /td td width=" 175" 化妆品中林可霉素和克林霉素的测定 液相色谱-串联质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 江苏省产品质量监督检验研究院、苏州质量检测科学研究院、上海市日用化 br/ & nbsp & nbsp & nbsp 学工业研究所(国家香料香精化妆品质量监督检验中心)、河北省食品质量 br/ & nbsp & nbsp & nbsp 监督检验研究院 /td /tr tr td width=" 162" 20190991-T-606 /td td width=" 175" 涂料中生物杀伤剂含量的测定 第3部分:三氯生含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中海油常州涂料化工研究院有限公司 /td /tr tr td width=" 162" 20191013-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第7部分:安眠酮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190997-T-606 /td td width=" 175" 橡胶 & nbsp & nbsp 氮、硫含量的测定 自动分析仪法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 双钱轮胎有限公司、怡维怡橡胶研究院有限公司、北京市理化分析测试中心 br/ & nbsp & nbsp & nbsp 、北京橡胶工业研究设计院有限公司等。 /td /tr tr td width=" 162" 20190949-T-469 /td td width=" 175" 化妆品中禁用物质三氯乙酸的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190948-T-469 /td td width=" 175" 化妆品中壬二酸的检测 气相色谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院 、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190947-T-469 /td td width=" 175" 化妆品中人工合成麝香的测定 气相色谱-质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190945-T-469 /td td width=" 175" 化妆品中塑料微珠的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 深圳市计量质量检测研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190976-T-607 /td td width=" 175" 染发剂中5-氨基-6-氯-邻甲酚等11种限用染料的检测 液相色谱质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院(国家保洁产品质量监督检验中心),上海 br/ & nbsp & nbsp & nbsp 市日用化学工业研究所(国家香料香精化妆品质量监督检验中心) /td /tr tr td width=" 162" 20191051-T-326 /td td width=" 175" 农畜产品动物源性成分定性定量检测方法高通量测序(NGS)法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 国家乳制品及肉类产品质量监督检验中心、中科通标检验检测技术服务有限 br/ & nbsp & nbsp & nbsp 公司、通标标准技术服务有限公司 /td /tr tr td width=" 162" 20191015-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第5部分:二亚甲基双氧安非他明 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190735-T-605 /td td width=" 175" 铁矿石 & nbsp & nbsp 全铁含量测定 三氯化钛还原后滴定法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中钢集团马鞍山矿山研究院有限公司、国家冶金工业铁精矿质量监督检测中 br/ & nbsp & nbsp & nbsp 心、金属矿产资源高效循环利用国家工程研究中心 /td /tr tr td width=" 162" 20190757-T-610 /td td width=" 175" 硬质合金 & nbsp & nbsp 钴粉中硅量的测定 分光光度法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 自贡硬质合金有限责任公司 /td /tr tr td width=" 162" 20190752-T-610 /td td width=" 175" 钼及钼合金金相检验方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 金堆城钼业股份有限公司 /td /tr tr td width=" 162" 20191018-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第1部分:鸦片中五种成分 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190817-T-469 /td td width=" 175" 电子电气产品中某些物质的测定 第3-1部分:使用X射线荧光光谱仪筛选测试铅、汞、镉、总铬和总溴 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国电子技术标准化研究 br/ & nbsp & nbsp & nbsp 院 /td /tr tr td width=" 162" 20190816-T-469 /td td width=" 175" 电子电气产品中某些物质的测定 第6部分:使用气相色谱质谱联用仪(GC-MS)测定聚合物中的多溴联苯和多溴二苯醚 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国电子技术标准化研究 br/ & nbsp & nbsp & nbsp 院 /td /tr tr td width=" 162" 20190596-T-432 /td td width=" 175" 人造板饰面材料中铅、隔、铬、汞重金属元素含量测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国林业科学研究院木材工业研究所,江苏海田技术有限公司,浙江升华云 br/ & nbsp & nbsp & nbsp 峰新材股份有限公司等 /td /tr tr td width=" 162" 20190936-T-469 /td td width=" 175" 进境牧草种子细菌的高通量检测技术规范 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 北京出入境检验检疫局 /td /tr tr td width=" 162" 20190935-T-469 /td td width=" 175" 轮枝菌属特异性引物筛查检疫鉴定方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中华人民共和国宁波出入境检验检疫局、中国科学院微生物研究所、中国检 br/ & nbsp & nbsp & nbsp 验检疫科学研究院、中华人民共和国新疆出入境检验检疫局 /td /tr tr td width=" 162" 20190937-T-469 /td td width=" 175" 美澳型核果褐腐病菌活性检测方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中华人民共和国深圳出入境检验检疫局、深圳市检验检疫科学研究院、华南农业大学 /td /tr tr td width=" 162" 20190642-T-604 /td td width=" 175" 压缩空气 & nbsp & nbsp 第6部分:气态污染物含量测量方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 合肥通用机械研究院 /td /tr tr td width=" 162" 20190641-T-604 /td td width=" 175" 压缩空气 & nbsp & nbsp 第7部分:活性微生物含量测量方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 合肥通用机械研究院 /td /tr tr td width=" 162" 20190674-T-604 /td td width=" 175" 金属材料 & nbsp & nbsp 布氏硬度试验 第2部分:硬度计的检验与校准 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 昆山市创新科技检测仪器有限公司、长春机械科学研究院有限公司 /td /tr tr td width=" 162" 20190677-T-604 /td td width=" 175" 金属材料 & nbsp & nbsp 硬度和材料参数的仪器化压痕 试验 第2部分:试验机的检验和校准 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 长春机械科学研究院有限公司、上海材料研究所、吉林大学等。 /td /tr tr td width=" 162" 20190853-T-469 /td td width=" 175" 表面化学分析 & nbsp & nbsp 术语第2部分 扫描探针显微术 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市计量测试技术研究院,上海交通大学,北京大学,中国科学院上海应 br/ & nbsp & nbsp & nbsp 用物理研究所 /td /tr tr td width=" 162" 20190780-T-469 /td td width=" 175" 表面化学分析& nbsp & nbsp 扫描探针显微术 悬臂法向弹性常数的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海交通大学 /td /tr tr td width=" 162" 20191096-T-416 /td td width=" 175" 气溶胶PM10、PM2.5质量浓度观测 光散射法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国气象局气象探测中心 /td /tr tr td width=" 162" 20190884-T-469 /td td width=" 175" 稀土金属及其氧化物中非稀土杂质化学分析方法 第8部分:钠量的测定 /td td width=" 72"   /td td width=" 72" 修订 /td td width=" 260" 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /td /tr /tbody /table p br/ /p
  • 第11期线上讲座:气相色谱定量方法
    答疑解惑时间:2009年4月3日---4月18日 热烈欢迎yuen72先生再次光临仪器论坛进行讲座!   自2008年以来我们已经举办了10期线上讲座,线上讲座用户参与度越来越高。线上讲座的第一期是从气相色谱开始,而我们的第十一期的线上讲座又回到气相色谱版面。本期讲座我们邀请了GC版面的专家yuen72先生就气相色谱定量方法进行了一期专题讲座。本期讲座共分两章,第一章是针对检测器的响应来进行详细阐述,第二章就对色谱定量方法来进行详细的解剖。   再次感谢气相色谱版面的专家yuen72先生提供的丰富的讲座,也感谢yuen72先生与大家一起交流心得和经验。yuen72先生,高级工程师,有15年以上石化行业色谱分析经历,拥有安捷伦、岛津等公司多种色谱仪的操作经验,国家一级化工分析竞赛命题专家,从事气相色谱讲授多年,在多本化工分析工教材中主笔色谱部分。   欢迎大家就气相色谱定量方法方面的问题前来提问,也欢迎高手前来与yuen72先生交流切磋~   参与本期活动的地址:http://www.instrument.com.cn/bbs/shtml/20090403/1819316/   相关地址:   论坛线上活动导览:http://www.instrument.com.cn/bbs/shtml/20081203/1618059/
  • 傅若农:酒驾判官—顶空气相色谱的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   第四讲:傅若农:气相色谱固定液的前世今生   第五讲:傅若农:气-固色谱的魅力   第六讲:傅若农:PLOT气相色谱柱的诱惑力   很多人是通过酒驾司机血液中酒精含量检测知道&ldquo 顶空进样气相色谱&rdquo 这一名称的。可能顶空进样气相色谱这一方法应用较多之一也是检测酒驾人员血液中的酒精含量(使用公安部的法定标准GA/T842-2009 进行检测)。   其实顶空进样气相色谱现在是应用非常广泛的一种分析方法,如果你用&ldquo 顶空进样&rdquo 这一关键词检索&ldquo 知网&rdquo 就会有两千多篇文章 在仪器信息网上的仪器展播中有关顶空进样的仪器有50多种,再看下面一张从1990年到2001年发表的有关顶空气相色谱文章的增长趋势图,12年里发表文章的总数达到4000篇,可见这一方法的应用有多么广阔。 图 1 1990-2001年顶空进样气相色谱文献增长趋势 HS-GC 全部顶空气相色谱 Dynamic 动态顶空气相色谱,SPME 固相微萃取顶空气相色谱 ( TrAC 2002, 21:608)   1 顶空进样气相色谱的起源   这里我简要地讲述一些顶空进样气相色谱的故事。   其实顶空进样气相色谱由来已久,先給大家讲一个故事:在1958&ndash 1959 冬季 Leslie S. Ettre (国际知名色谱学家,匈牙利人,当时在Perkin-Elmer 公司作应用研究工程师),有一个马铃薯片公司的化学家要求他给这个公司设计一个用 GC 分析马铃薯片在贮存过程中变质后产生特有怪味的方法,用以检测马铃薯片变质的程度。几天后 Ettre 收到马铃薯片公司给他发来的一个大箱子样品,箱子里面有 144 个马铃薯片的袋子,这是他们可以运输的最少数量了,Ettre 把一些马铃薯片袋存放在室温下,另外一些马铃薯片袋存放在热的屋子里。几天以后 Ettre 打开常温和高温屋子存放的马铃薯片袋子,发现它们有很不同的气味。但是问题是如何把袋子里的气体注入到色谱仪里,当时气体进样常规的方法是使用气体进样阀,但是进样阀需要有正压才行。Ettre 就使用了一个医用注射器(0.5&ndash 1 mL),当时还没有微量注射器,用注射器针刺穿马铃薯片袋子吸取其中的0.5&ndash 1 mL 气体,注射到气相色谱仪中。的确,不同的马铃薯片袋子中的气体得到的色谱是不一样的。自然这一方法就是顶空气相色谱的方法了。据 Ettre 称 GC 中顶空进样的第一篇论文是在 1960 年一月份的 Food Technology 上由 Stahl 等人发表的,( W.H. Stahl, W.A. Voelker, and J.H. Sullivan, Food Technol. 1960,14 :14&ndash 16 ),文章的标题是&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 。   第一篇有关顶空进样的应用文章是在 1939年发表的,是 R.N.Harger 等人(印第安纳大学生物化学和药物学系)在一篇美国生物化学家学会的33届年会的报告(J. Biol. Chem.1939, 128:xxxviii&ndash xxxix )中叙述的,他们叫做&ldquo 气体测量法&rdquo (aerometric method),用来快速测定水和体液中的乙醇。这一方法,把动态和静态方法结合起来,把液体样品上面的气体通过一个硫酸-高锰酸盐试剂(进行氧化还原测定),用以定量测定乙醇的含量。作者们还用这一方法测定了空气-水体系在 0&ndash 40 ° C 的温度范围内的分配系数。   把顶空进样和气相色谱结合起来的分析开始于 1958 年的 Amsterdam 国际会议上,是 比利时 Schelle 电站的 Bovijn 等人用这一方法分析高压锅炉水中微量( 1-ppb 数据级)的烃类,取一部分平衡下的气相样品到气相色谱仪中,用热导池进行检测。据作者说这一装置在文章发表前在电厂已经运转了一年多。   Stahl 等人发表的标题为&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 文章中,他们是把罐头顶部刺一个孔,用注射器抽取 0.5&ndash 1 mL 顶空的气体注入气相色谱仪进行分析。显然 Stahl 的工作推动了 Beckman 公司开发出一种设备用于罐头顶空气体或其他密闭空间气体的测定(&ldquo Beckman Headspace Sampler, bulletin number 7012,&rdquo Beckman Scientific and Process Instruments Division (Fullerton, California,September 1962).)。   这一装置有一个带有刺孔针的抽取样品气的密闭容器,刺入要分析的罐头罐时可以把顶部气体吸入此密闭容器中,这一装置所用的原理是测定罐中存在的氧气,为了测定这一装置连接到一个极谱测定氧的传感器,并连接到直接读数的显示器上。(值得一提的是这一氧传感器也用于探测水星计划的空间舱中)。此外,气体样品可以通过这一容器侧面的橡胶隔垫用注射器抽出来,用于气相色谱分析,图 2 就是这一装置的照片图。这一仪器几乎被人们遗忘了。 图 2 顶空取样容器照片   2 顶空进样气相色谱的基本原理和类型   顶空气相色谱(GC headspace Analysis,GC-HS analysis ) 是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。例如测定血液中的乙醇,把血样置于一个密闭恒温的样品瓶中,测定恒温后样品瓶蒸气相中的乙醇浓度,通过校准曲线计算血样中的乙醇含量。这一方法从气相色谱仪角度讲,是一种进样系统,即&ldquo 顶空进样系统&rdquo 。有不少仪器公司有商品的顶空进样系统。有关顶空气相色谱分析的名称,美国称为:GC headspace Analysis,前苏联的文献称为: Equilibrium Vapour Analysis,德国叫做 Dampfraumanalyse ( 英文为:Vapour Volume Analysis ) 。我国一般称为:顶空气相色谱分析,但早期有人称为: &ldquo 液上气相色谱分析&rdquo ,这样的名称不全面,因为有不少样品是固体。所以现在统一名称还是用&ldquo 顶空气相色谱分析&rdquo 。   有关顶空进样气相色谱原理详细的描述由于篇幅的关系这里就不讲解了,需要了解的读者可以读读早期出版的书,在国内全面介绍顶空进样气相色谱分析的书有 Hachenberg等1977年出版的 Gas chromatographic headspace Analysis(气相色谱顶空分析),翻译本为&ldquo 液上气相色谱分析&rdquo (见下图3)。图4是1984年出版的原苏联列宁格勒国立大学(现名圣彼得堡大学)的 Ioffe 撰写的&ldquo 气相色谱中的顶空分析及相关方法&rdquo 和1997年出版(修订版是2006年)的Kolb 等撰写的&ldquo 静态顶空气相色谱分析&rdquo 封面,。 图3 1977年(中译本1981年)出版的顶空气相色谱书 图4气相色谱中的顶空分析及相关方法(Ioffe等)和 静态顶空气相色谱(B. Kolb 等)   顶空进样气相色谱的类型有:   (1)静态顶空气相色谱:所谓静态顶空气相色谱是在一个密闭恒温体系中,液汽或固汽达到平衡时用气相色谱法分析蒸气相中的被测组分 。如下图5 图5 静态顶空气相色谱示意图 1&mdash 注射器 2&mdash 密封隔垫 3&mdash 螺帽 4&mdash 容器 5&mdash 样品 6&mdash 恒温浴 7&mdash 温度计   (2)动态顶空气相色谱:也叫做吹扫-捕集(Purge-Tranp)分析法,这一方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个吸附剂进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带到气相色谱仪中进行分析。如图6的示意图。 图 6 动态顶空气相色谱示意图 1&mdash 捕集管 2&mdash 冷却水 3&mdash 样品管 4&mdash 水浴 5&mdash 洗气瓶   (3)固相微萃取(SPME)顶空气相色谱:这种方法是在静态顶空瓶顶空蒸汽中装一支固相微萃取头,在一定温度下吸附顶空重的蒸汽分子一定时间,然后把固相微萃取头取出,插入气相色谱仪的进样口中,进行气相色谱分析。如下图7所示: 图7 固相微萃取(SPME)顶空气相色谱示意图 (Forensic Sci Intern 2000,107:129) 左图4ml 顶空瓶,内装10mg头发,内标和1mL 4%的NaOH,0.5gNa2SO4,使头发消化预热30min。 中间图:顶空吸附30min。右图:在气相色谱仪进样口脱附。   固相微萃取(SPME)装置如下图8所示: 图8 固相微萃取装置示意图   (4)一滴溶剂顶空进样气相色谱:这种进样方式类似于SPME顶空进样,只是把固相微萃取进样装置换成一支注射器,在注射器针头处悬一滴萃取用溶剂液滴,如下图9所示: 图 9 一滴溶剂顶空萃取示意图 (J Chromatgr A 2007,1152:184)   3 静态顶空气相色谱的方法   静态顶空最简单的方式是在一个 恒温系统(空气浴、水浴、甘油浴或金属块加热,. 样品瓶多为玻璃样品瓶,加可穿刺的密封盖,瓶体积为十至数十毫升,. 注射器宜用气体注射器或气密性较好的医用注射器。样品在恒温器中于一定温度下加热一定时间,取蒸汽样注入气相色谱仪进行分析,当然在转移中由于温度降低会出现误差。所以现在多用各种顶空进样器连接在气相色谱仪上,通过保温管线转移到气相色谱仪中。   顶空气相色谱进样必须从密闭的样品瓶的顶空取样到气相色谱仪中,要控制取样的重复性是至关重要的,常使用压力平衡进样。所谓平衡压力进样就是使用惰性气体往恒温的密闭样品瓶中加压,然后让受压的顶空气体在一定的时间里膨胀到色谱柱中。依靠控制压力和时间可以很精确地从样品瓶中吸取一定容积的顶空气体样品。这一方法叫做&ldquo 平衡压力进样&rdquo ,平衡压力进样的过程如图 10所示。(a)恒温样品瓶和进样针是分开的,(b) 通入气体加压,(3)关闭载气,顶空瓶中的气体膨胀到色谱柱中。 图 10 平衡压力进样的过程   根据上述原理P-E公司开发了顶空气相色谱自动进样器F-40,于1967年在德国法兰克福举行的化工展览会上展出,见图11。近年有大量各种各样的顶空进样器出现。 图 11 F-40自动顶空进样器 (L.S. Ettre, LC-GC,2002, 20(12), 1121)   4 静态顶空进样方法的应用   静态顶空的应用极为广泛,遍及各个领域,如食品、医药、环境、农业等,表1列举了近年利用顶空气相色谱进行分析检测的文章,同时也看出大多使用各种顶空进样器完成分析。   自动顶空进样器有很多种,在仪器信息网上展播的就有50多种,那些是使用比较多的呢,表1列举了60篇国内期刊上发表有关顶空进样气相色谱文章。从表中可以看出顶空进样气相色谱用于各种各样的分析中。第60篇是最新一期色谱杂志上的文章,他们使用Agilent 7697 自动顶空进样器和Agilent 7000气相色谱-三重四极杆质谱仪分析了化妆品中常见及禁用的36种有机溶剂,使用双柱(极性的VF-1301柱和非极性的DB-5ms柱,利用NIST MS search 2.0作检索工具,研究了36种挥发性有机溶剂的分析方法。 表 1 顶空进样气相色谱论文所使用的顶空进样器 序号 题名 使用顶空进样器 文献 1 测定尿中三氯乙酸的自动顶空气相色谱法 Agilent 7694E 自动顶空进样器 李添娣等,职业与健康,2012,28(6):1982-1983 2 顶空-毛细管气相色谱法测定葡萄酒中的甲醇 TurboMatrix 40自动顶空进样器 曾游等,现代食品科技,2013,29(2):405-408 3 顶空-气相色谱法测定水产品中一氧化碳 TurboMatrix HS 40 Trap 顶空自动进样器 王萍亚等,浙江海洋学院学报(自然科学版),2012,31(6):518-520,535 4 顶空- 气相色谱同时测定比卡鲁胺原料药中6 种有机溶剂残留量 HP7694E 顶空进样器 许瑞征等,现代仪器,2004,(3):15-16 5 顶空萃取-气相色谱-质谱法分析芝麻油中的挥发性成分 Agilent 7694E 自动顶空进样器 陈俊卿等,质谱学报,2005,26(1):49-51 6 顶空进样一毛细管气相色谱法侧定啤酒的香味组分 Agilent 7694E 自动顶空进样器 王莉娜等,啤酒科技,2001,(1):9-11 7 顶空进样-气相色谱法测定大气中吡啶的研究 DANI HSS 86.50 顶空进样器 王艳丽等,中国环境监测,2013,29(2):62-64 8 顶空进样器在快速检测食品美拉德反应风味物质中的新应用 TurboMatrix HS 40 Trap 顶空自动进样器 钟罗宝等,现代食品科技,2009,25(9):1091-1095 9 顶空气相色谱-质谱联用法分析粪便中挥发性脂肪酸 瑞士CTC CombiPAL 顶空进样器 江振作等,分析化学,2014,42(3):429-435 10 顶空气相色谱法测定生物柴油中的微量甲醇 Agilent 7694E 自动顶空进样器 李长秀等,石油化工,2012,41(10):1196-1200 11 顶空气相色谱法测定食品包装中残留乙烯 TurboMatrix HS 40 Trap 顶空自动进样器 周相娟等,食品工程,2012,(6):128-129 12 顶空气相色谱法测定药品中残留溶剂的影响因素考察 Agilent 7694E 自动顶空进样器 秦立等,药物分析杂志,2005,25(7):823-826 13 顶空气相色谱法快速检测卫生纸中的细菌含量 Agilent 7694E 自动顶空进样器 田迎新等,造纸科学与技术,2012,31 (2):59-62 14 顶空气相色谱内标法测定血液中乙醇含量Agilent 7694E 自动顶空进样器 邹黎,检验医学与临床,2011,8(2):2761-2762 15 顶空气相色谱.质谱法测定玩具中的10种挥发性有机物 Agilent 7694E 自动顶空进样器 吕庆等,色谱,2010,28(8):800-804 16 顶空气相色谱一质谱法测定婴幼儿食品中的呋喃 Agilent 7694E 自动顶空进样器 刘平等,色谱,2008,26(1):35-38 17 纺织品中挥发性有机物(VOCs) 的检测- 静态顶空气相色谱质谱法 Agilent G1888自动顶空进样器: 涂貌贞,中国纤检,2009,(9):66-68 19 基于HS-GC-MS 的棉织物鱼腥味检测 Agilent 7694E 自动顶空进样器 王晓宁等,纺织学报,2011,32(2):68-72 20 利用气相色谱顶空装置测定红磷储存过程中生成的磷化氢 Agilent 7694E 自动顶空进样器 陈海群等,色谱,2004,22(4):442- 444 21 两种轻烃分析方法(&ldquo PTV切割反吹&rdquo 和&ldquo 顶空&rdquo )的对比研究 意大利 FISONS 8500 气相色谱仪, HS800 顶空自动进样装置 肖廷荣等,色谱,2001,19(4):304-308 22 啤酒中挥发性风味物质的分析及风味评价 TurboMatrix 40自动顶空进样器 王志沛等,酿酒科技,2001,21,(4):59-61 23 使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法 HT2000 自动顶空进样器(意大利) 聂春林等,精细化工中间体,2010,40(6):63-66 24 水中12种卤代有机物的自动顶空- 气相色谱测定方法研究 Agilent 7694E 自动顶空进样器 张燕等,中国卫生检验杂志,2010,20(11):2716-2718 25 水中54种挥发性有机物的顶空- 气相色谱法研究 自动顶空进样器, 成都科林公司 高玲等,中国卫生检验杂志,2010,20(7):1645-1648 26 水中三氯甲烷、四氯化碳的QHSS-40 自动进样顶 空气相色谱测定法 QHSS-40 全自动顶空进样器(QUMA Elektronik & Analytik GmbH) 罗黎明,职业与健康,2012,28(14): 1722-1723 27 血中乙醇的顶空气相色谱分析 安捷伦1888型自动顶空进样器 刘兆等,中国人民公安大学学报(自然科学版),2008,(4):18-19 28 衍生- 顶空气相色谱法测定化妆品中游离甲醛 Agilent 7694E 自动顶空进样器 环境与职业医学,2012,29(7):459-461 29 液液萃取- 顶空气相色谱法测定饮用水中卤乙酸 Tekmar7000自动顶空进样器 中国卫生检验杂志,2011,21(6):1338-1340 30 乙基纤维素乙氧基含量的顶空气相色谱法测定 HS86-50型自动顶空进样器,意大利DANI公司 付时雨等,华南理工大学学报(自然科学版),2011,39(11):17-21 31 用顶空进样法分析烯烃废碱液中硫化物 TurboMatrix HS 40 Trap 顶空自动进样器 高巍等,齐鲁石油化工,2013 ,41 ( 3 ) :252 - 254 32 蒸气顶空富集装置- 自动顶空气相色谱法在海水中痕量苯系物检测中的应用 顶空自动进样器( 瑞士CTC Analysis AG 公司) 孙秀梅等,山东化工,2014,43(7):73-76 33 柱前衍生化顶空气相色谱法同时检测非布司他原料药中3 种微量有机酸 G1888 型自动顶空进样 器(美国安捷伦科技公司 朱圣亮等,中国药房,2012,23(25) :2372-2373 34 自动顶空-毛细管气相色谱法测定水中苯系物 德国MS6多功能自动进样器 刘俩燕,中国卫生检验杂志,2010,20 (8):1918-1920 35 自动顶空-毛细管气相色谱法测定饮用水中11 种挥发性有机物 Agilent G1888 顶空自动进样器、 刘兰侠等,上海预防医学,2014,26(1):27-28,48 36 自动顶空-气相色谱法测定地表水中乙醛的方法研究 Agilent 7694E 自动顶空进样器 邢志贤等,河北工业科技,2010,27(3):143-145,173 37 自动顶空- 气相色谱法测定食品包装材料中残留氯乙烯单体 Agilent G1888 顶空自动进样器、 戴华等,中国卫生检验杂志,2011,21(1):36-37 38 自动顶空- 气相色谱法测定水质中苯系物的研究 Agilent G1888 顶空自动进样器 刘保献等,现代仪器,201,18(3):30-33 39 自动顶空- 气相色谱法测定水中甲醇的方法优化 Agilent G1888 顶空自动进样器 付翠轻等,中国环境监测,2012,28(4):61-64 40 自动顶空- 气相色谱法测定水中四乙基铅方法研究 DANI HSS 86.50 顶空进样器 王玲玲等,环境科学与技术,2014,37(5):99-101 41 自动顶空-气相色谱法检测食品包装材料中挥发性有机物 TurboMatrix HS 40 Trap 顶空自动进样器 方 益等,食品科技,2013,38(2):291-29542 自动顶空-气相色谱法同时测定水中7种挥发性卤代烃 TurboMatrix HS 40 Trap 顶空自动进样器 王建蓉等,供水技术,2012,6(4):62-64 43 自动顶空- 气相色谱质谱联用技术测定化工原料中1,2 -二氯乙烷 TurboMatrix HS 40 Trap 顶空自动 蔡志斌等,中国卫生检验杂志, 2013,23(3):622-624,627 44 自动顶空GC /MS测定血液中乙醇含量不确定度评定 DANI HSS 86.50 顶空进样器 周枝凤,中国法医学杂志,2010,25(1):43-46 45 自动顶空进样-气相色谱法测定柠檬酸中溶剂残留 AutoHS自动顶空进样器(成都科林) 李锋格,检验检疫学刊,2011,21(1):6-10 46 自动顶空毛细管柱气相色谱法测定食品包装中残留丙烯腈单体 PE Turbo Matrix 40 Trap 自动顶空进样器 周相娟等,食品科技,2008,(10):240-242 47 自动顶空毛细管柱气相色谱法同时检测生活饮用水中7 种挥发性卤代烃 Tekmar 7000 自动顶空进样器 周闰等,中国卫生检验杂志,2013,23(6):1417-1419 48 自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量 AutoHS自动顶空进样器(成都科林) 姚伟琴等,中国卫生检验杂志,2009,19(1):52- 53 48 自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量 AutoHS自动顶空进样器(成都科林) 姚伟琴等,中国卫生检验杂志,2009,19(1):52- 53 49 自动顶空气相色谱法测定番茄酱中乙烯利的残留量 AutoHS自动顶空进样器(成都科林) 姚伟琴等,中国卫生检验杂志,2008,18(8):1537- 1538 50 自动顶空气相色谱法测定化妆品中的甲醇 Agilent 7694E 自动顶空进样器 高建民等, 化学分析计量,2003,12(3):7-10 51 自动顶空气相色谱法测定食品包装材料中残留丙烯腈单体 AutoHS自动顶空进样器(成都科林) 刘俊等,中国卫生检验杂志,2008,18(10):2021-2022 52 自动顶空气相色谱法测定水中苯系物的研究 AOC - 5000 液体自动进样、顶空、固相微萃取三合一自动进样器 王臻等,中国热带医学2008,8(1):128-129 53 自动顶空气相色谱法测定血液中的乙醇 Tekmar 7000 自动顶空进样器 刘文卫等,1502 中国卫生检验杂志 2012,22(7):1502-1503 ,1506 54 图 14 PE Turbo Matrix 40 Trap 自动顶空进样器   由于篇幅的关系,有关吹扫捕集顶空进样、固相微萃取顶空进样、反应顶空进样,在下一讲继续讨论。
  • 《血中1,2-二氯乙烷的气相色谱-质谱测定方法》解读
    12月13日,中华人民共和国国家卫生和计划生育委员会官网对《血中1,2-二氯乙烷的气相色谱-质谱测定方法》进行了解读,对1,2-二氯乙烷GC-MS检测进行了介绍。 1,2-二氯乙烷是广泛使用的有机溶剂,目前主要用作化学合成的原料、工业溶剂和粘合剂。1,2-二氯乙烷对眼睛及呼吸道有刺激作用,吸入可引起肺水肿,抑制中枢神经系统、刺激胃肠道,引起肝、肾和肾上腺损害。由于目前仍无1,2-二氯乙烷的生物监测指标, 1,2-二氯乙烷的职业中毒诊断缺乏具有代表性的指标,曾有病例被误诊为急性有机磷中毒或癫痫。我国迫切需要制定1,2-二氯乙烷的生物监测指标,建立生物材料中1,2-二氯乙烷的标准检测方法。  气相色谱-质谱联用仪(GC-MS)在国内实验室已越来越普及,方法可以得到较好的推广应用。本标准依据职业卫生标准制定指南第5部分:生物材料中化学物质测定方法( GBZ/T210. 5-2008)进行研究,建立了既适合于实验室普遍应用,又具有特异性的、准确、可靠、灵敏的血样中1,2-二氯乙烷检测方法。
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。   首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。   一.早期使用的气相色谱固定液   气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。   马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。   后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。   1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。   为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。   在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。 表1 McReynolds 固定液表   说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶   McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。   McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。   后来Hawkes推荐的较常用的气液色谱固定液有下列一些:   (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)   (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 (含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。   他还推荐了最常用的 6 种气相色谱固定液如下表2。 表2 最常用的6种气相色谱固定液   自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。   有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。   二、硅氧烷是现时气相色谱固定液的主体   尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。   (一)热稳定性好的固定液   目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。   (1)耐高温聚二甲基硅氧烷   有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。   前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。   (2)使用交联的聚硅氧烷固定液提高其热稳定性   在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。   (a)引入乙烯基   早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。   (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合   1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。   (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性   在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1: 图1 硅氧烷/硅亚芳基共聚物结构   其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。 表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据   (4) 在聚硅氧烷链中引入硼烷提高热稳定性   在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。   Dexsil有三个品种及其结构和极性如下表4: 表4 三个品种Dexsil的结构及极性   HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2: 图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图   色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m   载气:氦,18 mL/min, 在 35下测定   拄温:30-430 ℃,程序升温,10℃/min   检测器温度:FID 450 ℃   三、极性固定液   小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。 图3 使用DB-17ms分析22种杀虫剂的色谱图   另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱) 图4 DB-1701 分离22种杀虫剂的色谱图   各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。 表5 五类典型气相色谱固定液的使用情况   四、选择性固定液   选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。   第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。 表6 ASTEK公司的9种环糊精衍生物毛细管商品柱   五、近年商品柱所使用的新固定液   近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。   室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。 表7 几种商品离子液体固定相的极性(Supelco公司)   *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性   小结:   气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)   (作者:北京理工大学傅若农教授)
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p   日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下: /p p style=" text-align: center " img title=" 1.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg" / /p p style=" text-align: center " img title=" 2.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg" / /p p   前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。 /p p   本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。 /p p   本标准起草单位:重庆市环境监测中心。 /p p   本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。 /p p   本标准于2016年7月20日发布,自2016年10月1日起实施。 /p p style=" text-align: center " strong 固定污染源废气VOCs的测定气相色谱-质谱法 /strong /p p   警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。 /p p   1 适用范围 /p p   本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。 /p p   2 规范性引用文件 /p p   本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37 /p p   3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。 /p p   4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。 /p p   4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。 /p p   4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。 /p p   4.4 高纯氦气(& gt 99.999%)。 /p p   4.5 高纯氮气(& gt 99.999%)。 /p p   4.6 液氮。 /p p   4.7 甲醇:农残级或者等效级。 /p p   5 仪器和设备 /p p   5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。 /p p   5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。 /p p   5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。 /p p   5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。 /p p   5.5 罐清洗装置:能将采样罐抽至真空(& lt 10Pa),具有加温、加湿、加压清洗功能。 /p p   5.6 气体稀释装置:最大稀释倍数可达1000倍。 /p p   5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值& gt 241kPa。 /p p   5.8 液氮罐:不锈钢材质,容积为100L~200L。 /p p   5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。 /p p   5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。 /p p   5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。 /p p   5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。 /p p   5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。 /p p   6 样品 /p p   6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空(& lt 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。 /p p   6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。 /p p   6.3 采样 /p p   6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。 /p p   6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg" / /p p & nbsp /p p & nbsp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg" /   /p p & nbsp /p p   6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。 /p p   6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。 /p p   6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。 /p p   6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。 /p p   6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。 /p p   6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。 /p p   6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。 /p p   7 分析 /p p   7.1 仪器参考条件 /p p   7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。 /p p   7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg" / /p p   7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。 /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg" /    /p p   7.3 校准 /p p   7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。 /p p   7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。 /p p   7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。 /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg" /    /p p & nbsp /p p   7.3.3 标准色谱图目标化合物参考色谱图见图2。 /p p style=" text-align: center " img title=" 8.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg" /    /p p   7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。 /p p   7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。 /p p   8 结果计算与表示 /p p   8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。 /p p style=" text-align: center " img title=" 9.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg" /    /p p   8.2 定量 /p p   8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。 /p p style=" text-align: center " img title=" 10.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg" /    /p p & nbsp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算 /p p & nbsp   空气样品中TVOC的浓度按公式(5)进行计算。?? /p p style=" text-align: center " img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg" /    /p p   8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。 /p p   9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。 /p p   10 质量保证和质量控制 /p p   10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。 /p p   10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。 /p p   10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。 /p p   11 注意事项 /p p   11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。 /p p   11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。 /p p   11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。 /p p   11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。 /p p   11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。 /p p   11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。 /p p style=" text-align: center " img title=" 12.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg" / /p p style=" text-align: center " img title=" 13.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg" / /p p style=" text-align: center " img title=" 14.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg" / /p p /p
  • 色谱前处理技术专题|岛津:以特色前处理附件不断满足气相色谱多样化分析需求
    近年来,为了提升色谱分析的效率和准确度,满足实验室对实验流程自动化等方面的需求,色谱前处理技术不断发展,新型前处理技术应运而生,同时高自动化、智能化前处理设备也逐渐推出并普及。为了展示当下色谱前处理技术及产品的应用现状,探讨未来前处理技术的发展方向,仪器信息网特别策划了“色谱前处理技术发展专题”,并面向广大色谱前处理技术企业、色谱前处理领域专家学者及业内相关从业人员广泛约稿。以下为岛津的供稿,分享了岛津围绕气相色谱技术,推出的各种特色前处理附件产品,以及如何通过这些创新技术,满足广大分析人员的多样化需求。--------------------------------以特色前处理附件不断满足气相色谱多样化分析需求岛津制作所自1957年推出岛津第一台商用气相色谱仪GC-1A以来,到今年已经65年了。在这跨越一个甲子的发展历程中,岛津始终秉承以用户为本的理念,努力践行“匠人精神”。在这个创新过程中,围绕气相色谱主机,岛津不断推出各种特色前处理附件产品来满足广大分析人员的多样化需求。前处理附件可谓是气相色谱分析的第一道关口,对于分析的重要性不言而喻,没有合适和质量过硬的前处理附件,分析的准确性将无从谈起,可以说前处理附件是高质量气相色谱分析的前提和必要条件。岛津围绕气相色谱进样技术开发了非常完善的前处理附件,包含液体自动进样、顶空自动进样、固相微萃取进样、热脱附进样、热裂解进样、气袋自动进样等。同时,围绕各个领域分析人员的具体需求,创新开发了系列特色技术并将其融入产品设计中,这些技术已经广泛服务于石油化工、环境监测、医药卫生、食品安全、教育科研等众多领域的实验室中。液体自动进样液体自动进样是气相色谱最常用的进样方式之一,广泛用于食品安全、教育科研、医药卫生等领域。岛津液体自动进样技术最早可以追溯到1970年专为GC-5A气相色谱仪所开发的AOC-5液体自动进样器,采用了竖直进样方式,这也是首台亮相中国的岛津液体自动进样器。随后不断创新,又陆续推出了水平进样方式的AOC-6, 以及搭配了方形样品盘的AOC-14等多个明星产品型号。在多年技术积淀的基础上,岛津于1996年正式推出AOC-20经典型号,在不断发展创新的过程中,AOC-20系列已经畅销超过25年了,成为气相色谱历史上非常受欢迎的代表性进样产品之一,为全球各地气相色谱仪用户所熟知。2021年,岛津重磅发布了AOC-30系列,这是岛津最新一代高端液体自动进样器型号。图1. 岛津AOC液体自动进样技术创新之路针对液体进样的使用场景,分析人员常常会关注三个方面的核心性能:交叉污染、样品通量和使用体验,岛津AOC-30的开发人员在广泛调研的基础上,重点围绕这三个方面进行了研发和创新。以交叉污染为例,一些特定分析项目中的化合物非常容易产生残留,比如毒品中甲基苯丙胺分析,甲基苯丙胺响应值很高,非常容易造成下一针的残留,对分析人员造成困扰。AOC-30支持多达4种溶剂来洗针,且可自由设置这4种溶剂交互的洗针程序,实现低交叉污染性能,可以很好的满足此类的分析需求。这一性能特点在化工、科研、工业制造等领域得到广泛欢迎。图2. AOC-30可支持多达4种溶剂的交互洗针程序以样品通量为例,对于一些分析任务比较重的实验室,比如第三方检测机构来说,由于样品量大和仪器长时间连续分析,以往可能会出现批处理分析中,洗针溶剂意外耗尽的风险。针对此问题,AOC-30实现了支持多达12个4mL溶剂瓶的溶剂量,这样超大容量的溶剂使得分析人员再也无须担心溶剂意外耗尽的问题,有助于大量样品长期稳定可靠的连续分析,再加上双塔进样,分析效率翻倍。图3. AOC-30支持双塔进样模式以分析体验为例,针对各个领域中的多样化进样需求,为了不断提升操作体验,AOC-30围绕“Analytical Intelligence”理念,特别设计了【进样助手】功能——基于多年积累的专业分析经验,将适于典型特性样品的六种进样参数预先内置在系统中,分析时仅需设置进样体积和洗针溶剂类型,然后“一键选择”预置的方法参数,即可创建适合的进样方法。比如针对乙二醇,白油,硅氧烷、甘油、润滑油和柠檬油等高粘度样品分析需求,特别预置有【粘性样品模式】;针对内标法进样分析的需求,特别预置有【多层进样模式】,实现自动加内标。图4. AOC-30进样助手功能操作过程针对样品量大和追求完全自动化的法规类型实验室,AOC-30还开发了样品盘读码器功能。可读取样品瓶上的条形码或二维码,自动在工作站中录入样品信息,如分析日期,样品ID,客户信息等内容。此模块读码准确度高,因此能够避免手工录入错误信息的风险,目前已经支持国际通用的13种条形码规格和7种二维码规格。此功能受到医药CRO、临床检验等领域用户的广泛欢迎。图5. AOC-30样品盘读码器模块作为岛津高端液体自动进样器,AOC-30设计了一系列能够满足当下和未来实验室所需的自动化和远程操作等多方面的功能,为现代实验室赋能。正是基于多方面的创新设计,AOC-30斩获了2022年德国红点设计大奖(Red Dot Design Award 2022)和iF设计大奖(iF Design Award 2022 )。图6. AOC-30高端液体自动进样器气袋自动进样气体进样在石油化工,教育科研和环境保护等领域中应用非常广泛,传统上,很多分析人员使用气密针进样或者手挤压气袋进样,此时由于气体的扩散性,这两种操作方式都非常容易造成分析结果的不稳定,重现性差。针对这个现状,岛津开发了cGBS-2030气袋进样器,使得分析作业从原本危险的环境转移到干净的实验室中进行,同时很好解决了硫化物吸附和操作体验不佳这两方面的问题。在石油化工领域中,气体中硫化物的分析通常是一个难点,其原因在于常常会出现由于硫化物吸附现象而导致分析数据不稳定的问题。cGBS-2030气袋进样器采用了惰性化流路设计,从而很好的支持硫化物及其他活性组分的分析,可以得到良好的分析效果。图7. cGBS-2030气袋进样器的分析效果当多个气袋样品等待分析时,由于气袋的体积和形状方面的原因,常常存在连接和操作的诸多不便,cGBS-2030气袋进样器采用可旋转式设计,大幅提升了连接气袋及气瓶的便利性,同时进样指示灯即时掌握进样状态。专门设计的3COsolution 辅助软件,可非常便捷直观的设定和显示气袋安装、分析、拔除、吹扫时间、平衡时间、进样时间等操作,并支持LabSolution软件。大幅改善传统气袋进样器的硬件和软件操作体验问题。正是基于多方面的创新设计,cGBS-2030气袋进样器斩获了2022年德国红点设计大奖(Red Dot Design Award 2022)和iF设计大奖(iF Design Award 2022 )。图7. cGBS-2030气袋进样器顶空自动进样顶空自动进样技术在环境分析、食品安全、医药CRO、公安司法等领域应用非常广泛。岛津顶空进样技术最早可以追溯到1985年研发和生产的HSS-2A(搭配GC-9A),可支持多达40位样品量,随后又推出了HSS-4A(搭配GC-17A),进样针和样品瓶温度均可设置到150℃,且支持顶空自动进样和手动进样之间的便捷切换。在多年技术积累的基础上,岛津陆续发布了HS-10,HS-20,HS-20 NX等产品。图9. 岛津顶空和热脱附进样技术创新之路顶空自动进样技术除了通量之外,大家经常关注的就是高沸点残留和操作体验这两个问题。岛津研发人员在HS-20 NX产品设计之初,就重点探讨和解决了这两个分析痛点。HS-20 NX继承并提高了HS-20在挥发性有机物分析中的优异性能,同时兼容用户友好型设计,是科学研究和质量控制工作的好助手。图10. 岛津Nexis GC-2030加强版搭配顶空自动进样器HS-20 NX在残留性能上,HS-20 NX一方面采用了创新的隔离流路设计,与传统顶空相比,隔离流路可有效减小排空阀中残留物质向定量环的扩散,有效降低交叉污染;另一方面在GC和HS之间采用内置的超短惰性流路设计,可支持高温设定,满足高灵敏度分析要求,一定程度上避免了高沸点物质的残留。研发人员曾测试树脂脱气中环硅氧烷的分析,即使300℃下高沸点物质可以获得高的回收率。图11. HS-20 NX隔离流路设计和短传输线设计在操作体验方面,HS-20 NX可嵌入气相色谱仪的LabSolution软件中实现完全控制,同时引入了在气相色谱仪中应用非常成熟的ClickTek 技术,实现免工具安装色谱柱,简化色谱柱更换及日常维护。对于顶空分析灵敏度要求更高的分析项目,为了进一步提高顶空方法的灵敏度,岛津开发人员专门设计了Trap型号(包括一个电子冷阱),可对宽沸点范围内的物质进行富集,这相比于传统方式,灵敏度再提高10~100倍。这三个前处理技术是岛津众多特色前处理附件的一个缩影,反映了岛津围绕气相色谱主机,不断在前处理相关产品上开拓创新,满足各个领域广大分析人员的多样化需求。岛津在气相色谱领域深耕六十余年,是世界上气相色谱历史最悠久的品牌之一,一直致力于气相色谱仪相关技术的创新。近年来岛津气相色谱研发团队一个很重要的理念就是“与家电相媲美的易用性”,研发时完全以用户的立场作为出发点,以此来开发真正能诠释气相色谱分析技术的内涵和潜能的创新产品,而这样的理念也同样适用于气相色谱相关前处理附件的开发工作。面向未来,针对石油化工、环境监测、医药卫生、食品安全、教育科研等广泛领域用户在分析操作中实际需求,希望通过更多岛津特色附件的导入,不断扩充气相色谱的使用场景,不断改善用户的操作体验和分析效果,不断满足气相色谱多样化的分析需求。
  • 【安捷伦】“拎包入住”式应用解决方案 | 轻松解决固定污染源中的苯系物检测/升级改造您的气相色谱仪
    “拎包入住”式应用解决方案轻松解决固定污染源中的苯系物检测/升级改造您的安捷伦气相色谱仪苯系物包括全部芳香族化合物,狭义上的特指包括BTEX在内的在人类生产生活环境中有一定分布并对人体造成危害的含苯环化合物。由于生产及生活污染,苯系物可在人类居住和生存环境中广泛检出,并对人体的血液、神经、生殖系统具有较强危害。因此很多国家把大气中苯系物的浓度作为大气环境常规监测的内容之一,并规定了严格的室内外空气质量标准和污染源排放标准。2022年7月14日我国首次发布了《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),并即将于2023年1月15日全面实施。标准采用直接进样结合毛细管色谱柱,用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB16297-1996)等13项污染物排放标准实施。安捷伦自成立以来一直致力于可持续发展和环境保护,为环境检测提供了大气、水污染、土壤等众多应用解决方案,为环境监测单位和环境检测企业提供硬件设备、技术培训、应用支持和一站式应用解决方案服务。针对《固定污染源废气苯系物的测定气袋采样/直接进样-气相色谱法》(HJ1261-2022),安捷伦结合用户实际需求,定制专属的固定污染源废气中苯系物的测定应用解决方案,不论您是购买全新安捷伦8890/60系列气相色谱仪,还是基于原有安捷伦气相色谱仪进行升级改造+工厂级别的深度维护或翻新(原有仪器焕然一新),亦或单独进行升级改造,均能实现最快速的达到标准方法的检测要求。无论您原有的气相色谱是6890、7890、7820、8890、8860系列均可升级改造,并完全适用HJ1261-2022标准方法检测要求。(图二)标准色谱图安捷伦阀气体进样技术,拥有极好的准确性和重复性,并支持多种进样方式,无论是气体采样袋手动进样,还是气体自动进样器进样和在线监测连续进样,均能轻松实现。结合安捷伦专利技术聚乙二醇毛细管色谱柱,提供良好的乙苯、间对二甲苯分离效果和较好的保留时间重复性。工程师现场对方法调试、验证,并针对方法进行系统的操作培训,让您轻松应对全新标准。(图三)用户气体进样装置改造实例联系我们即可定制您的专属应用解决方案我们也提供专属GC升级改造方案进行PAMS和VOCs、温室气体、非甲烷总烃、CO2还原气分析、N2检测等各种应用升级改造检测方案关注安捷伦微信公众号,获取更多市场资讯
  • Nexis视角 | 创新气相色谱技术助力电子烟产品分析
    电子烟是一种将电子烟液经雾化器雾化向呼吸系统传送烟碱和/或其他物质的产品。电子烟2004年在中国问世,之后逐渐从我国流入欧美和日本等国并得到迅猛发展。世界卫生组织《烟草控制框架公约》第七次缔约方大会的报告表明:2015年全球用于电子烟的开支为100亿美元。中国是电子烟的发明者和主要生产地,全球 90%以上的电子烟来自中国深圳等地。 电子烟尽管相较于传统卷烟,减少了一氧化碳、焦油等物质,但其中的尼古丁等成分的危害依然不能被忽视。近年来,由于电子烟产业无序发展,一些产品存在烟碱含量不清、添加成分不明、烟油泄漏等问题,特别是部分经营者宣传误导消费者,诱导未成年人吸食,侵害未成年人身心健康,社会各界反映强烈,不断呼吁加强监管。2021年11月10日,《国务院关于修改的决定》明确“电子烟等新型烟草制品参照本条例卷烟的有关规定执行”。2022年3月11日,国家烟草专卖局发布了《电子烟管理办法》,自2022年5月1日正式施行,其中指出,禁止销售除烟草口味外的调味电子烟和可自行添加雾化物的电子烟。 表1. 电子烟相关标准*《电子烟雾化液产品通用技术要求》中指定烟碱采用GB/T 23355-2009方法 2022年4月8日,市场监管总局(标准委)发布了《GB 41700-2022 电子烟》强制性国家标准,自2022年10月1日起实施。标准明确规定不应使产品特征风味呈现除烟草外的其他风味,并明确要求“雾化物应含有烟碱”,即不含烟碱的电子烟产品不得进入市场销售。同时标准列出允许使用的101种添加剂,纳入添加剂“白名单”。并要求电子烟烟具应具有防儿童启动功能和防止意外启动的保护功能。标准正式实施后,市场上销售的电子烟产品必须符合国家标准。 电子烟液的主要成分是烟碱、发烟溶剂和香味物质,其中,烟碱含量一般在0-3%之间。根据文献报导,消费者长期摄入烟碱会有致瘾性,过量的烟碱摄入能够引起毒性反应,甚至死亡;欧盟在2014年5月通过的最新烟草指令——2014/40/EU《欧洲议会和理事会关于协调各成员国烟草及相关产品生产、展示和销售的法律、法规和行政规定的指令》明确规定电子烟液中烟碱含量不得超过20 mg/mL。 图1. 尼古丁结构图 2022年4月15日,市场监管总局(标准委)发布了《GB/T 41701-2022 电子烟烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法》,采用液液萃取+GC-FID进行分析。如下图所示采用岛津GC-2030气相色谱仪,氢气做载气进行尼古丁分析: 图2. 尼古丁标准溶液分析色谱图(甲醇溶剂)图3. 电子烟液样品分析色谱图 介质阻挡放电等离子体检测器(BID)是通过介质阻挡放电产生的氦等离子体进行电离(离子化),对常见有机和无机化合物(He和Ne除外)均具有高灵敏度(通常高于TCD百倍以上&高于FID两倍以上),是融合了高灵敏度和高通用型的检测器。图4. 岛津BID检测器及旗舰级气相色谱仪Nexis GC-2030加强版 如下图所示,采用BID检测器对收集的烟气成分进行分析,以往需要使用FID和TCD两个检测器完成的工作,现在一个BID检测器即可实现尼古丁、薄荷醇、水、溶剂等多种成分的同时分析。 图5. BID检测器对收集的烟气成分分析色谱图 电子烟作为一种吸食类产品,烟液成分的组成及含量与消费者的身体健康密切相关,电子烟液成分安全如果不能得到有效监管,则会增加消费者的健康风险。岛津长久以来一直致力于提高气相色谱的性能,在Nexis GC-2030平台的基础上,不断突破创新,推出众多特色产品或附件,通过新科技的引入,不断将硬件、软件等进行优化,提高配置的灵活性和针对性,实现操作体验和产品性能的融合。岛津气相色谱仪可为电子烟产品的化学成分测定提供技术支持。随着电子烟行业相关法规和标准的不断完善,管理制度和监管力度逐步深入,产品质量和技术研发不断升级,整个行业将真正迎来良性可持续发展的新阶段。 参考资料:1.全国标准公共信息服务平台:电子烟烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法2.蔡君兰,陈黎,等. 气相色谱法同时测定电子烟烟液中的烟碱、1,2-丙二醇和丙三醇. 中国烟草学报,2016年Vol.22 No.5,3.GC_TechReport_eCigarette:Quantification of Nicotine in E-cigarette Liquid Sample Using GC-FID and Hydrogen Carrier Gas.4.https://pubchem.ncbi.nlm.nih.gov/compound/nicotine#section=3D-Conformer 本文内容非商业广告,仅供专业人士参考。
  • PerkinElmer获得保证自动热脱附气相色谱准确性的方法专利
    自动验证 ATD 的填充完整性,既节省时间,又提供可靠的分析结果 马萨诸塞沃尔瑟姆 – 专注于提高人类及其生存环境的健康和安全的全球领先公司 PerkinElmer, Inc.,今天宣布美国专利商标局 (USPTO) 已针对气相色谱 (GC) 方面的先进方法授予其 7,422,625 B2 号专利。 这个专利名为“定性吸附剂採樣管的方法和系统”,可以保护公司特有的方法,该方法有助于在使用自动化热脱附 (ATD) 气相色谱 (GC) 时增加其结果的准确性。 专利中描述的 PerkinElmer 自动验证方法使用公司气相色谱系统的 TurboMatrix™ 热脱附仪产品线開發而來,帮助用户避免在 ATD 测量中出现人为错误,这些错误可能导致结果的不一致和样品完整性的下降。 该方法由 PerkinElmer 气相色谱资深科学家 Andrew Tipler 与英国 Buxton 健康与安全实验室资深科学家 Neil Plant 共同开发出来的。 “过去,分析人员担心其结果可能会因 ATD 管和捕集阱中填充物质的不完整而受到影响,”Tipler 说。“我们检查填充完整性的自动方法,可以帮助客户高度信任其分析结果,最终帮助他们节省时间,提高实验室生产效率。 该方法已集成到我们的 TurboMatrix 热脱附仪生产线,而该系列产品可用于各种行业和应用。” PerkinElmer 于 1982 年首次推出 ATD,它是一种有效的方法,可以从各种挥发性气体基质中分离挥发性化合物,之后将它们作为样品引入气相色谱仪。 它是室内外空气监控最常用的技术,还可用于分析土壤、水、生物柴油、聚合物、包装材料、香料和香气、化妆品、药品和许多其它应用。 ATD 的工作原理是,通过填充了一种或多种吸附剂的热脱附管,吸附蒸汽样品。热脱附管加热后挥发性气体会从填充物中释放出來,这些气体随后会被吹入冷却的辅助捕集阱中。然后快速加热此捕集阱,将收集的成分脱附到气相色谱柱进行分离和鉴定。热脱附管和捕集阱需要填充相同的填充物需要穩定一致,以保证为每次运行的分析提供相同的进样、热脱附流速和流路。如果填充材料中存在空隙或吸收剂变脆和破碎,气流可能形成管流或堵塞,那么分析结果就会不一致。 过去,分析人员有时会手动测量热脱附管的流阻抗来验证其性能,但是此过程比较耗费时间,并且捕集阱的拆装也比较费事。Tipler 和 Plant 提出的热脱附管和捕集阱的流抗阻自动化监控方法,可以缓解这一问题。使用该方法时,如果热阻超出预设限制,则将会向用户发出警告,通常可以采用重新填充或替换热脱附管或捕集阱来解决这个问题。 有关 PerkinElmer 的 TurboMatrix 热脱附仪产品线的详细信息,请访问 www.perkinelmer.com/turbomatrix。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类及其生存环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有约 8,500 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com 或致电 1-877-PKI-NYSE。 关于健康与安全实验室 (HSL) 健康与安全实验室 (HSL) 是英国领先的工业健康和安全研究机构,在各个领域均具有 30 多年的研究经验。 HSL 的性质是健康与安全执行局 (HSE) 的代理机构,除了向 HSE 负责外,还为 400 多家组织客户提供独立公正的科学建议和研究结果。有关其它信息,请访问 www.hsl.gov.uk 媒体联系人:PerkinElmer: Stephanie R. Wasco,781-663-5701 Stephanie.wasco@perkinelmer.com # # # 或 Sandra Schiller,203-402-7105 Sandra.schiller@perkinelmer.com 或 Porter Novelli: Kate Weiss,617-897-8255 Kate.Weiss@porternovelli.com
  • 国标《气相色谱单四极质谱性能测定方法》意见稿发布
    附件1:国检标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》征求意见稿草案.doc   附件2:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》编制说明草案.doc   附件3:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》(征求意见稿)意见反馈表.doc
  • 进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法—气相色谱串联质谱法
    &ldquo 奶粉疑致婴儿性早熟事件&rdquo 引起众多消费者的关注,据有关专家介绍,现代牛奶中的雌激素包括内源性雌激素(即奶牛本身产生的雌激素)和外源性雌激素(即应用于奶牛发情和泌乳的雌激素),但目前普遍认为在规范用药的前提下雌激素药物残留量可忽略不计。&ldquo 所谓的不允许检出雌激素是指不能检出人为添加的合成雌激素物质。&rdquo 上海安谱公司根据SN/T1744-2006《进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法&mdash &mdash 气相色谱串联质谱法》,对动物饲料中的人工合成激素己烷雌酚、己烯雌酚、双烯雌酚残留进行检测以降低外源性雌激素污染的风险。 产品信息请下载: 《进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法&mdash &mdash 气相色谱串联质谱法》相关耗材 如需咨询、订购以及查询更多产品,请联系:上海安谱 021-54890099 了解详情请进入安谱公司网站 http://www.anpel.com.cn/
  • 《地下水质分析方法 第107部分:59种挥发性有机物的 测定吹扫捕集/气相色谱-质谱法》行业标准公开征求意见
    2023年11月23日,全国自然资源与国土空间规划标准化技术委员会发布《地下水质分析方法 第107部分:59种挥发性有机物的 测定吹扫捕集/气相色谱-质谱法》行业标准征求意见稿。本项目由国家地质实验测试中心牵头,山西省岩矿测试中心、国土资源部南京矿产资源监督检测中心等单位协作完成。本次标准是对DZ/T 0064-1993《地下水质检验方法》的修订。修订后的DZ/T 0064更名为《地下水质分析方法》,由108个部分构成。此次发布的征求意见稿为《地下水质分析方法》第107部分。与其他挥发性有机物测试标准的区别目前已颁布的水质挥发性有机物检测标准主要有:(1)GB/T5750.8-2006 水和废水挥发性有机物的测定 吹扫捕集气相色谱-质谱法(2)HJ620-2011 水质挥发性卤代烃的测定顶空气相色谱法(3)HJ639-2012 水质挥发性有机物的测定吹扫捕集/气相色谱⁃质谱法(4)HJ686-2014 水质挥发性有机物的测定吹扫捕集/气相色谱法(5)HJ810-2016 水质挥发性有机物的测定顶空/气相色谱-质谱法上述标准主要用于挥发性有机物种类较少时的分析;本次颁布的标准参考美国环保署USEPA8260D等标准分析方法并结合我国实际,同时检测地下水59种挥发性有机物,包括卤代烃、苯系物、卤代苯等,此标准拓展了同时测定地下水多组分挥发性有机物的方法。附件:征求意见稿_地下水质分析方法+第107部分:59种挥发性有机物的测定++吹扫捕集_气相色谱-质谱法.pdf编制说明_地下水质分析方法+第107部分:59种挥发性有机物的测定++吹扫捕集_气相色谱-质谱法.pdf意见反馈表.docx
  • 气相色谱仪进样口压力超压检测方法与解决方案
    导 语进样口是气相分析中必不可少的模块之一,而分流/不分流进样口(简称SPL进样口)是目前气相色谱分析系统中广泛使用的进样口。跟填充柱进样口相比,SPL进样口的气路控制相对更复杂,所以在使用过程中遇到的问题也自然多一些。在日常使用过程中,遇到最多的可能就是进样口漏气报警,不管是真漏还是假漏,根本原因都是实际流量没有达到设定值(详解请点击参考往期文章《CAR1 LEAKS、PURGE LEAKS是真的吗?》)。现在我们来谈论一下气相使用过程中进样口很少出现的另外一种情况~压力超过设定值。SPL进样口的结构和各气路的功能图一01C路(英文全称:CARRIER中文,载气流路):作用是为气相系统提供载气,载气经过分子筛过滤后进入进样口。02P路(英文全称:PURGE中文,吹扫气流路):吹扫流量设定值范围为1-6ml/min,我们通常设定为3ml/min,作用是避免进样隔垫挥发物的干扰,将进样针刺穿进样隔垫时产生的碎屑横向吹出,防止掉落到玻璃衬管中造成色谱柱的堵塞。03S路(英文全称:SPLIT中文,分流流路):调整进样口压力,进而满足仪器参数中设定的色谱柱流量或者线速度等实验条件,同时排掉多余的溶剂和样品。故障判断从图一中我们可以看出SPL进样口的气路走向为载气通过C路流入进样口后再通过P路(隔垫吹扫),S路(分流)和L路(色谱柱)流出,也就是我们简称的一进三出。所以进样口的压力稳定需要四个气路都工作正常,但是当发生压力超出设定值的故障时是否和其他三路有关呢?01载气流路气流过大:C路有流量传感器可以实时显示流量数值,由于传感器故障导致气流控制异常的情况很少发生。02吹扫流路和色谱柱堵塞:吹扫流量通常设定为3ml/min;内径0.25mm或者0.32mm的色谱柱流量一般设定为1-2ml/min, 内径0.53mm的色谱柱流量可以设置到10-20ml/min。因为吹扫流路和色谱柱流路的流量设定值都比较小,所以这两个流路即便完全堵塞也不会导致分流电磁阀对进样口压力无法调节的情况发生。03分流流路堵塞:在分流模式下,大多数的样品是经过分流流路排出的,所以为了保护分流电磁阀不会被样品堵塞,在分流气路中电磁阀前串联了过滤器对样品进行吸附(通常情况下过滤器6个月需要更换,做高沸点及室温下结晶样品时建议3个月更换),因为分流流路是在仪器的顶部,温度和室温相近,液化或者凝固的样品就会保留在分流气路中。所以分流流路是最容易堵塞的,当管路堵塞到一定程度,电磁阀的开合大小就起不到调节进样口压力的作用了,会出现如下的故障现象,如图二。故障排除既然判断出故障根源在分流流路,那么分流流路中的所有气体通道都可能是故障点,进样口适配器、管路、缓冲管、过滤器以及AFC整体。01更换缓冲管和过滤器,更换步骤可以参考岛津气相软件(Labsolution)中的维护向导。02检查清洗进样口适配器,确保分流通道畅通,如图三。03确认图四所示部位的管路是否有堵塞现象,如果出现堵塞可以在通气状态下高温加热堵塞部位,使附着的高沸点杂质高温气化后被载气带出(推荐使用高温喷枪或酒精喷灯,不推荐使用打火机加热,一是加热温度不够,二是长时间按着打火机,很容易烫伤)。如果没有酒精喷灯,也可以使用坚硬的金属丝进行物理疏通。疏通前先拆下衬管避免被损坏;将进样口端色谱柱取下,拆卸掉进样口适配器,让脱落的杂质掉入柱温箱内。疏通结束后可用丙酮擦拭进样口内壁,消除污染物的附着。图三 图四04如果上述排查结束后,进样口压力仍然不能回落到设定值,则大概率是AFC故障,就需要岛津工程师上门服务。
  • 新到货二手仪器DFS-高分辨气相色谱质谱仪-二噁英采样与分析配备
    21年5月5日新到货二手仪器DFS-高分辨气相色谱质谱仪 +Trace 1310,双GC DFS-高分辨气相色谱质谱仪 +双GC Trace 1310,二噁英检测,兴奋剂检测必备,质谱仲裁法,NIST基础图库,这台热电磁质谱机有着拿手绝活。DFS-高分辨气相色谱质谱仪应用双聚焦扇形磁场(GC-DFS-HRMS)具有超过60000 (10%峰谷定义)的zui大分辨率,扫描质量范围为m/z2-1200,动态定量范围达106(5fg-5ng),精确质量数小于2ppm (电场扫描),主要用于常规含氯二噁英分析,是多种法规列入的二噁英定量分析“黄金法则”仪器,DFS-高分辨气相色谱质谱仪仪器还可用于定性定量分析其他环境污染物,如溴代二噁英、溴氯混合取代二噁英、多氯联苯、多溴联苯醚、多溴联苯、氯代萘等,能提供优越的分析精确度和精密度,以及极高的灵敏度。二噁英采样与分析配备赛默飞的双气相色谱DFS-高分辨气相色谱质谱仪,配备自动进样器、电子轰击离子源(EI)及化学电离源(CI)等,可进行常规含氯二噁英、含溴及溴氯混合取代非常规二噁英以及类二噁英多氯联苯的分析,主要应用于环境污染领域的研究。实验室拥有两台气相色谱双聚焦扇形磁场高分辨质谱DFS-高分辨气相色谱质谱仪(GC-HRMS, DFS和MAT95-XP),超净前处理,配备烟气采样器在内的各种环境采样设备,可进行大气、烟气、水、土壤等环境介质中的二噁英采样与分析。
  • 广西分析测试协会立项《酸笋及其制品中对甲苯酚的测定 顶空/气相色谱-质谱法》团体标准
    各相关单位:根据《中华人民共和国标准化法》、《团体标准管理规定》和《广西分析测试协会团体标准制修订工作程序》的有关规定,广西分析测试协会于2023年10月组织专家对《酸笋及其制品中对甲苯酚的测定 顶空/气相色谱-质谱法》团体标准进行了立项评审,经审查,上述申报的团体标准符合立项条件,现予立项。如有异议,请在公告之日起10个工作日(11月16日—11月29日)内实名以书面方式向我会秘书处反映,并请提供必要的证据材料和联系方式。联系地址:广西南宁市东葛路20-1号东葛大厦1102室电子邮箱:gxfxcsxh@163.com联 系 人:商榆 18677118331广西分析测试协会2023年11月15日广西分析测试协会关于《酸笋及其制品中对甲苯酚的测定 顶空气相色谱-质谱法》团体标准的立项通知.pdf
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)-北京博赛德
    在 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)我们介绍了气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的前期准备:配件和预制校准曲线工作事项。今天我们继续介绍样品的采集与稀释、空白测试以及样品分析工作过程。2.样品采集和稀释2.1样品采集使用气袋法采样系统进行样品采集,参考HJ732。图1 气袋采样系统 2.2样品稀释样品稀释步骤如下:(1)使用气袋采样系统进行样品采集;(2)使用玻璃注射器取体积为 Vn的氮气,注入干净的气袋中;(3)使用玻璃注射器取体积为 Vs 的样品气,注入同一气袋中;(4)使样品气与氮气充分混合均匀,并尽快分析。稀释倍数按公式(1)计算: f=Vs+Vn/Vs 公式(1)式中:f ——稀释倍数;Vs——样品气体积,ml;Vn ——氮气或洁净空气体积,ml。注:若条件允许,使用气体稀释装置进行稀释。3.空白测试将高纯氮气冲入气袋并连接BCT仪器,做空白测试。4.样品分析4.1预调查和预检测预调查:在测试前,应事先调查污染源情况,如行业排放标准所列的常见挥发性有机污染物等。预检测:开启SURVEY速查方法,运行20~30s空白作基线;将装有样品的气袋连接BCT仪器,响应值上升,并稳定下来(约持续10~20s即可)后,移走样品;再运行10~20s使响应值回归到基线。通过TIC响应值来预估样品浓度,并衡量稀释倍数。 图2 Survey实时谱图 4.2样品测试根据预调查和预检测,按照2中的方法进行样品采集和稀释后选合适的方法进行测试。按以下两种情况进行:速查结果谱图的TIC_MAX≥500万,选择高浓度系列方法;TIC_MAX<500万,选择低浓度系列方法。 未完待续
  • 生态环境部发布4项国家生态环境标准 涉气相色谱等方法
    为支撑相关生态环境质量标准和污染物排放标准实施,近日,生态环境部发布《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》(HJ 1261-2022)、《环境空气和废气 臭气的测定 三点比较式臭袋法》(HJ 1262-2022)、《环境空气 总悬浮颗粒物的测定 重量法》(HJ 1263-2022)和《卫星遥感细颗粒物(PM2.5)监测技术指南》(HJ 1264-2022)等4项国家生态环境标准。  《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》(HJ 1261-2022)为首次发布,适用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB 16297-1996)等13项污染物排放标准实施。采用直接进样测定的方法,无需前处理,所用仪器设备普及性高,方法易于掌握,具有较好的通用性和可操作性。  《环境空气和废气 臭气的测定 三点比较式臭袋法》(HJ 1262-2022)适用于环境空气、无组织排放监控点空气和固定污染源废气中臭气的测定,支撑《恶臭污染物排放标准》(GB 14554-1993)等8项污染物排放标准实施。与《空气质量 恶臭的测定 三点比较式臭袋法》(GB/T 14675-1993)相比,增加材料和仪器设备、实验人员、溶液配制、质量保证和质量控制等要求,完善样品分类、分析步骤和结果计算等内容,可有效提升方法的准确性、一致性和可比性,具有设备简单、易推广的特点。  《环境空气 总悬浮颗粒物的测定 重量法》(HJ 1263-2022)适用于环境空气和无组织排放监控点空气中总悬浮颗粒物的手工测定,支撑《环境空气质量标准》(GB 3095-2012)实施。与《环境空气 总悬浮颗粒物的测定 重量法》(GB/T 15432-1995)相比,增加规范性引用文件、术语和定义、样品保存、质量保证与质量控制和注意事项等要求,细化样品、分析步骤、结果与计算等内容,加严天平精度要求,进一步提高环境空气总悬浮颗粒物监测数据的准确性,为颗粒物来源解析和空气质量预报提供必要依据。  《卫星遥感细颗粒物(PM2.5)监测技术指南》(HJ 1264-2022)为首次发布,适用于陆地区域卫星遥感细颗粒物监测,作为地面监测手段的补充,用于掌握大范围细颗粒物空间分布规律及变化趋势,为大气污染防控工作提供有力的技术支撑。  上述4项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高生态环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • 新方法来了!喷气燃料中芳烃总量的测定 气相色谱法
    引言:芳烃含量是航空燃料重要的质量指标,以往的方法是使用《GB/T 11132-2008液体石油产品烃类的测定.荧光指示剂吸附法》,在实际使用操作过程中存在诸多问题。《GB/T 40500-2021 喷气燃料中芳烃总量的测定 气相色谱法》结合我国炼化工艺和组成的特点以及国外分析技术的发展趋势,提出并建立一个准确、快速、精密度好、分析成本低、环境友好、便于操作的测定芳烃组成的新方法,这对航空喷气燃料的生产质量控制及产品质量的监督检测具有重要意义。 岛津解决方案岛津可根据不同的用户提供适合的配置,为用户量身定制可提高仪器的利用率。1、方法分离模式的设计原理图2、系统构成3、典型色谱图 方法特点总结 ★准确性好、精密度高;★方法适用范围广;★操作方便、分析周期短;★试验消耗少、成本低;★试验环境友好。 本文内容非商业广告,仅供专业人士参考。
  • 第五届岛津石化、煤化气相色谱分析技术论坛成功举办
    随着石化、煤化产业的高速发展,项目开发中间过程控制以及成品品质保证多个环节都对气相色谱技术提出了更高的要求,气相色谱相关应用技术水平已成为实验室能力的重要标志。近年来,岛津公司助力越来越多的化工大项目和高端催化科研领域,积累和研发了很多业界领先的色谱解决方案。为了与业内的专家老师共同分享、交流气相色谱应用最新成果和经验,使色谱技术能够发挥出更大的作用,岛津公司于2018年11月30日在江苏连云港举行了第五届岛津石化、煤化气相色谱分析技术论坛。会议现场聚集了来自石化、煤化行业的100多位专家、用户,共同探讨并分享气相色谱分析技术在石化、煤化行业中的应用。此次会议规模相比往届攀上了新高,会议获得了专家、用户的良好反馈。岛津公司分析仪器事业部部长吴彤彬先为论坛致开幕词,并对与会来宾表示了热烈欢迎。他谈到,由于国家能源的战略和布局的重新调整,我国能源和化工正在步入新型快速发展新通道。而岛津历来重视能源和化工行业发展,致力于新产品、新应用方案的创新和研发,希望通过这次会议,持续倾听不同客户声音,不断的研发和创新产品、解决方案。期待能够和专家、用户建立更为深入、持久的合作关系。岛津公司分析仪器事业部部长吴彤彬致开幕词在开幕词后,会议进入专家发表环节。会议邀请中石化石科院李长秀教授、江苏斯尔邦石化有限公司质检中心苏建萍主任、中科院大连化学物理研究所李杲教授、中科合成油技术有限公司李莹部长共四位专家学者带来了精彩的报告。岛津公司分析测试仪器市场部能源与化工应用吴建涛经理、产品专员李言先生、顾晖先生、网络化专员陈家鼎先生也给大家分享了最新的气相色谱及网络化应用方案。岛津分析测试仪器市场部能源和化工组吴建涛经理报告岛津分析测试仪器市场部能源和化工组吴建涛经理报告题目为《岛津气相色谱技术在化工领域的应用》。吴建涛经理以其丰富的行业工作经验,结合岛津近年来在化工行业的成功大项目情况,对化工行业的整体现状和发展方向进行了梳理,以宏观的视角对行业进行了分析。报告中详细讲解了岛津气相色谱技术在“石油化工”、“现代煤化工”、“泛化工”、“新能源、新材料”等四大领域中的应用。他说道,岛津在每一领域都有成熟可靠的配置方案的经验累积,无论哪一个部分岛津总是本着工匠精神要求自己,做出精品项目,提供更新的产品、更好的解决方案,跟随行业发展,和用户共成长。中石化石科院李长秀教授报告中石化石科院李长秀教授的报告题目为《石化行业色谱分析解决方案及新标准解读》。她对中国石化科学研究院在油品分析气相应用发展情况做了详细的介绍。分别对汽油单体烃和族组成分析、汽油中非烃组分及非常规添加组分的测定、色谱模拟蒸馏分析多个油品分析的标准向与会嘉宾做了解读。此外,在结合产业的新发展方面,也分享了很多引领行业发展的新标准制定工作。她表示,新能源行业的发展开始进入到石油化工科学研究院的视野当中。江苏斯尔邦石化有限公司质检中心苏建萍主任报告江苏斯尔邦石化有限公司质检中心苏建萍主任报告题目为《江苏斯尔邦石化江苏斯尔邦石化质检中心及分析经验介绍质检中心及色谱应用经验介绍》。苏建萍主任作为化工产业的代表,其质检中心拥有71台岛津气相色谱仪及13台岛津其他仪器,双方形成了良好的合作关系。她在报告中介绍了质检计量中心的组织构架、职能以及将来规划。实验室采用了岛津公司的网络化系统部署管理,使用方便稳定,提升了备份数据的效率,同时也有效避免丢失数据从而保证实验室的稳健运行。在一些特殊分析方法建立中与岛津充分合作共同解决了很多行业难题。此外实验室还在申请CNAS认可,不断地对化验室的工作提升做出努力。 中科院大连化学物理研究所李杲教授报告 中科院大连化学物理研究所李杲教授报告题目为《催化研究---化工产业升级的根本动力》。李杲教授首先介绍了大连化物所研究成果在工业应用的璀璨成绩,刘中民院士团队DMTO技术,包信和院士团队甲烷无氧制烯烃芳烃,丁云杰教授团队醋酸加氢制备乙醇,李灿院士的汽油超深度脱硫技术,无处不体现催化研究的科学技术带来第一生产力。他结合自己课题组的研究方向,二甲醚催化转化制富含异构烷烃汽油,异丁烯醛催化合成MMA为此次论坛的产学研结合画上浓墨重彩的一笔,让大家了解到催化研究对于产业的升级是一个最核心的驱动力,从其研究的方向也能够领略到将来化工行业发展的趋势。 中科合成油技术有限公司李莹部长报告中科合成油技术有限公司李莹部长报告题目为《气相色谱在煤间接液化领域的应用》。李莹部长的报告技术内容丰富,充分展现了其在行业内色谱应用的高水平。他介绍了中科合成油的煤间接液化,F-T合成等关键技术,并结合多个已投产项目的实际分析技术支持进行经验分享,以及多个煤基费托合成产物的分析方法标准的制定,展示了其在国家能源战略布局的煤制油领域中,涉猎的广度和深度,为此次论坛奉献了一场精彩的报告,获得了现场业内同仁的热烈反响,在项目现场开车保运很多攻坚克难的工作经验分享也为了行业做出了很好的表率。 岛津分析测试仪器市场部网络化专员陈家鼎岛津分析测试仪器市场部网络化专员陈家鼎先生报告题目为《岛津LabSolutions CS实验室网络信息化管理解决方案》。在大数据流行的当下,实验室也同样将步入信息化的时代,对此,他讲述了如何理解、定义实验室网络化,实验室数据将何去何从;当前实验室管理条件下存在哪一些值得进步、改善的环节等重点内容。岛津网络化系统LabSolutions CS提供了相对完整的解决方案,并能够结合LIMS系统,实现高效率的管理。他详细介绍了岛津新推出的软件可以实现LIMS的关键性功能,并且能够很好的改善LIMS系统和网络化工作站原有结合方式的很多问题,引起了与会嘉宾的广泛关注。 岛津分析测试仪器市场部能源和化工组产品专员顾晖岛津分析测试仪器市场部能源和化工组产品专员顾晖先生的报告题目为《岛津化工行业气相色谱新技术及应用》。他介绍了烯烃样品中痕量砷烷、磷烷的GCMS解决方案,中心切割技术延长了色谱柱的使用寿命,减少了人员老化色谱柱以及标定仪器的工作量,实现了用一台仪器完成传统两台仪器的分析任务,节约了成本。他表示,新技术可提高分析仪器的使用效率,减少分析时间,及时为生产装置提供分析数据,在行业内有很好的应用前景。岛津FPD对硫化物分析的超高灵敏度,实现了用户对微量硫化物分析低成本、稳定、维护方便的期许。 岛津分析测试仪器市场部能源和化工组产品专员李言岛津分析测试仪器市场部能源和化工组产品专员李言先生的报告题目为《岛津气相色谱在化工催化研究领域的应用》。他介绍了光解水、光催化CO2还原产物分析的成熟成套解决方案,以及CO2电催化等近年来的研究热点对应的成熟分析方案;对费托合成,合成气转化、甲烷转化C1化学领域的应用方案,根据分析目标进行了分类,并且以高沸点产物在线分析方案为核心,将一个研究分析难点的解决方式和解决过程进行了充分的讲解;最后以多个科研领域创新方案为实例,讲解了其创新性和在化工项目的应用潜力。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 再谈二噁英——GC-MSMS方法篇
    二噁英(Dioxin)具有很强的致癌、致畸、致突变作用。它是工业生产的副产物,随着工业排放进入生态环境。该类物质不溶于水,但可溶于脂肪,且极难通过化学和生物降解消除,因此可长时间存在于环境中,并在食物链中通过生物富集作用积累;它还具有半挥发性,能够通过远距离传播,产生“全球蒸馏效应”。国际研究显示,人体暴露于二噁英及其类似物的主要途径是进食动物源性食物,约占总暴露量的80%-95%,肉类、奶类制品和鱼类是二噁英及其类似物的主要膳食来源。欧盟法规根据欧盟法规EU644/2017和EU771/2017,监测食品和饲料中二噁英的方法有2种,分别是:筛查方法和确证方法。●筛查方法用来筛选二噁英含量超过MLs(zui大限量)或ALs(行动水平)的样品,对可能超过MLs或ALs的样品提供“是”或“否”的判定。对于疑似不符合MLs的样品,必须通过确证方法对样品中二噁英含量进行确证。●确证方法可以准确定性和定量样品中存在的二噁英,并提供有关同类物的全部信息。除了被允许用来控制MLs和ALs;确证方法还可用于确定食品检测中的低背景水平、遵循时间趋势对人群进行暴露评估以及建立数据库,以便对ALs和MLs进行可能的重新评估。这些确证内容必须通过GC-HRMS进行。但是,为了确认符合或不符合MLs,也可以使用GC-MS/MS作为确证方法。 欧盟关于食品中二噁英zui新限量标准(EU 1259/2011)现阶段二噁英检测标准二噁英的检测方法有很多,但大多数参考EPA1613b方法,采用同位素稀释法GC/HRMS测定二噁英。2014年欧盟法规变更(法规EU 589/2014),首次允许使用GC-MS/MS仪器作为控制某些食品中二噁英MLs的确证方法。这项法规于2017年被EU644/2017取代,但依然允许GC-MS/MS仪器作为控制某些食品中zui大含量(MLs)的确证方法。同年欧盟还颁布了EU 771/2017,允许GC-MS/MS仪器作为控制饲料中zui大含量(MLs)的确证方法。 现阶段二噁英检测标准汇总(2019)GC-MS/MS成为二噁英检测确证方法在欧洲,采用基于性能的方法来分析二噁英。本质上,这意味着,只要所使用的方法能够满足法规要求的灵敏度及性能指标,该分析的结果就是有效的。食品和饲料中的二噁英的含量受到严格的管制和监测,并以zui大限量和行动水平(MLs和ALs)为控制标准。遵循欧盟方法的任何实验室现在都可以使用GC-MS/MS进行ML符合性控制。欧盟法规对GC-MS/MS作为确证方法控制二噁英MLs的要求如下图所示。Thermo Scientific™ TSQ 9000 AEI 二噁英分析仪基于欧盟法规的要求,赛默飞英国应用团队开发了TSQ 9000 AEI二噁英分析仪,助力您食品样品的二噁英分析。TSQ 9000二噁英分析仪具有以下特点:01.合规 COMPLIANCE符合欧盟对食品和饲料样品中二噁英的所有要求,使人们对低水平的定量结果充满信心;02.高效 PRODUCTIVITY操作简便,即装即用。全面的Thermo Scientific™ Chromeleon™ 色谱数据系统(CDS)软件,具有法规要求的预加载计算模板;03.稳健 ROBUSTNESS方法的稳健性已通过多种样品验证。 该二噁英分析仪分别由赛默飞美国应用团队、中国应用团队进行了验证。部分实验结果(中国地区)以下所有实验,都在Thermo Scientific™ TSQ™ 9000 GC-MS/MS AEI系统上进行。配备 Trace 1310气相色谱和AS1310自动进样器。方法学实验分别在SSL和PTV进样口上重复进行。01.GC分离度TG-Dioxin色谱柱以其强保留性对TCDD/F异构体有着卓越的分离效果,有效避免背景中无毒的TCDD/F对2378-TCDD/F积分结果干扰。在45 min内分离了17种PCDD/Fs及其同位素标记物,HxCDF(以及HxCDD)的分离度完全满足要求。02.SRM离子对每一种native及相应的labeled都具备2个不同的母离子和2个不同的子离子,且离子比率在整个校正范围内的偏差远远小于法规15%的要求。(另外,我们还开发了ion ratio calculator,可以计算出每种物质的SRM离子对以及理论离子比率)。03.LOQ浓度的RR/RF以及IRLOQ作为校正曲线zui低点,其RR/RF值以及离子比率完全符合要求。04.实际样品检测结果中国应用团队用TSQ 9000 AEI二噁英分析仪测试了一些能力认证样品,测试结果与GC-HRMS的测试结果一致,说明TSQ 9000 AEI二噁英分析仪可以为食品中二噁英的检测提供一种常规的确证方法。使用CS5标准溶液检查的异构体之间的峰底重叠筛选离子对时,应考虑母离子的强度和该母离子会生成什么样的子离子在序列的开始和结束分别测试zui小校准点 检查每种分析物的RR/RF和IR实际样品检测结果(北京)实际样品检测结果(UK)相关阅读赛默飞二噁英监测全方案来袭, 高分辨磁质谱"金标准"领衔!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 328万!大庆市生态环境局VOCs自动监测站计划采购在线式气相色谱质谱联用分析仪、在线式气相色谱分析仪等设备
    项目概况大庆市生态环境局VOCs自动监测站仪器设备采购项目B的潜在投标人应在大庆市电子政府采购交易管理平台获取招标文件,并于2021年10月18日9点30分前递交投标文件。一、项目基本情况黑龙江省大庆市政府采购中心受采购人委托组织大庆市生态环境局VOCs自动监测站仪器设备采购B项目。本项目面向各类型企业进行采购。欢迎有能力的国内供应商参加。本项目远程开标。项目编号:DZC20201539项目名称:大庆市生态环境局VOCs自动监测站仪器设备采购项目B预算金额:3,280,000.00元,参与投标供应商投标报价超出预算的投标无效。采购需求:详见附件合同履行期限:签订合同后一个月内。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2. 本项目执行政府采购扶持中小企业的相关政策。详见《政府采购促进中小企业发展管理办法》。投标供应商所投全部产品为小型企业或微型企业或监狱企业或残疾人福利单位制造,提供声明函(须按招标文件内规定格式填写声明函),则总报价享受10%的扣除,用扣除后的价格参与评审。注:①以上“用扣除后的价格参与评审”是指开标现场,依据供应商投标总报价进行10%的扣除后参与评审。②涉及多个产品的声明函中应包含全部产品,不提供声明函或提供不全的不享受相关扶持政策。3.本项目的特定资格要求:(1)提供参与本项目投标供应商有效的营业执照或事业单位法人证书。(2)在开标现场,本项目要求所投在线式气相色谱质谱联用分析仪、在线式气相色谱分析仪(甲烷/非甲烷总烃)产品必须满足3个及以上品牌,否则,本项目废标。(3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。三、获取招标文件时间:公告之日起至2021年9月29日注:请参与本项目投标的供应商在2021年9月29日17时00分前自助下载文件,逾期则无法下载文件,由此造成的后果由供应商自行承担。地点:大庆市电子政府采购交易管理平台方式:网上自助下载文件(详见:http://ggzyjyzx.daqing.gov.cn/bsznTbr/20199.htm?pa=7355---《入库、办理数字证书及自助下载文件说明》)售价:免费四、提交投标文件截止时间、开标时间和地点2021年10月18日9点30分地点:大庆市行政服务中心四楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、退出投标时限:如供应商退出投标,必须在投标截止时间前72小时,否则不予退出。2、全面贯彻庆财采【2019】3号文大庆市财政局关于开展政府采购领域扫黑除恶专项斗争的通知的规定,在本项目中重点打击8类政府采购领域涉黑、涉恶、涉乱形为。详见:http://www.hljcg.gov.cn/xwzs!queryOneXwxxqx.action?xwbh=8B2FAECAA29800DEE053AC10FDFA79C0七、对本次招标提出询问,请按以下方式联系。 1.采购人信息名 称:大庆市生态环境局地 址:黑龙江省大庆市高新区建设大厦联系方式:马梦淑131040951392.采购代理机构信息名 称:大庆市政府采购中心地  址:大庆市萨尔图区东风新村纬二路2号(大庆市行政服务中心三楼)联系方式:0459-61581503.项目联系方式采购人项目联系人:马梦淑电 话:13104095139采购代理机构项目联系人:王琪电话:0459-6158150附件:项目需求一、规格型号及参数序号名称规格参数/项目特征/服务要求单位数量1在线式气相色谱质谱联用分析仪仪器应用要求1)#适用于挥发性有机物的在线分析,满足环境空气挥发性有机物的定性定量分析;满足环保部《2018年重点地区环境空气挥发性有机物监测方案》(环办监测函〔2017〕2024 号)规定的VOCs在线监测设备的应用要求,仪器采用GC-MS/FID法。2)连续24小时在线监测环境空气中可挥发性有机物,并1小时出一组数据。监测项目应满足通用的臭氧前驱体标准(PAMs)监测项目,同时可监测环境空气中卤代烃、含氧化合物等挥发性有机物,监测项目≥116种。3)产品须满足《环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法》(HJ 1010-2018)中的要求。2.仪器工作环境1)工作环境温度: 20-30℃。2)工作环境湿度:≤ 85%R.H. (无冷凝)3)电源:单相200-240V@50 Hz,电流大于10A。3.仪器主要技术指标采样模块1)进样捕集模块:采用低温除样品中水分,低温富集目标VOCs;不使用液氮富集冷阱装置,降温至少至摄氏-30℃,可浓缩富集 C2-C12 碳氢化合物,保证目标化合物有效捕集及脱附,满足高挥发性化合物的捕集需要。2)软件可全自动进行系统状态和性能检查,自动完成多点校准曲线绘制和方法切换;3)热解析模块:可在15秒内快速加热至除水、解吸样品等过程所需要的温度,保证干扰物去除,目标化合物被迅速解析、进样,达到良好的分离效果;4)系统控制软件可完成采样、捕集、热解吸、分析,加热反吹等全过程自动控制;5)采用高精度电子质量流量模块精确控制采样流量和采样体积;6)采用分流进样,分流比可设置为5:1到90:1,可有效应对高浓度污染因子监测。 色谱分离模块1)气相色谱能实现目标化合物的有效分离;℃;从300℃降温到50℃不超过1分钟;FID检测器模块115
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 气相色谱“黑科技”助力全行业分析检测
    p & nbsp & nbsp 身处在被各种“黑科技”轰炸的时代,作为分析行业从业者,您是否一直在等待气相色谱“黑科技”的出现,是否一度怀疑传统的气相色谱能否再继续出现技术创新和突破。当您了解完本文应用实例中所体现的Intuvo 新技术、新科技、新特点时,相信您将不禁产生如此共鸣:“我们的气相色谱技术的确在进步,而这些技术创新和突破就在Intuvo”。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/cd9755ef-c54f-4507-8054-37afa297b87b.jpg" title=" i1.jpg" / /p p strong Intuvo 的看家本领 /strong /p p & nbsp & nbsp 首先来了解一下 Intuvo 都有哪些“看家本领”:直接加热柱温箱大幅提升了升温速率,为分析效能的提升提供潜能;芯片式保护柱和创新流路设计免去了色谱柱切割等复杂的维护,即使是色谱新手也能很快掌握使用技巧。那 Intuvo 是如何在各行业利用这些“看家本领”大显神威的?且听我慢慢道来。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/3b08ae9b-3ecc-4655-9dc6-cda47dd7bd1d.jpg" title=" i2.jpg" / /p p br/ /p p strong 多残留农药分析 /strong br/ /p p & nbsp & nbsp 多残留农药分析现已成为食品分析的主流方法,该方法能够同时测定多种农药。随着全新的食品安全国家标准GB 23200.113-2018《植物源性食品中 208 种农药及其代谢物残留量的测定气相色谱-质谱联用法》的颁布和执行,农药检测数目大幅提升,给想遵循此方法的实验室提出了更高的要求。 /p p & nbsp & nbsp 对于复杂基质食品的农药残留分析,必须进行一定程度的样品前处理,将样品进行均质化处理并将其萃取到适合色谱分析的溶剂中。QuEChERS 萃取法是样品前处理的优选方法,它能够减少基体载入量,但获得的样品还不够干净,由于背景信号较高,可能会给准确鉴定和定量分析带来问题,久而久之,农药分析仍然会出现响应降低以及色谱峰不对称的情况。对于这一问题,传统气相色谱系统的合理解决方案是减少批次规模,提高进样口、色谱柱和保留间隙柱的维护频率。毫无疑问,这些方法都会使分析效率大打折扣,对于有大量样品的实验室,这是难以接受的。 br/ /p p & nbsp & nbsp Intuvo 重新设计的模块化流路和创新性的芯片式保护柱,保护分析柱免受基质污染,从而无需修剪色谱柱,节省了仪器维护的时间。对于复杂的分析物,即使不采用反吹技术,也能够获得一致的回收率和峰形。利用超快速气相色谱分析技术,分析时间缩短约 2 分钟,一个工作日内可以完成更多的分析,有效解决积压的样品。此外,Intuvo 体积较小,还能最大化地利用实验室空间。 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/bb00e95a-2267-439d-88fc-5b7b164c0892.jpg" title=" i3.jpg" / /p p strong 基因毒性杂质排查 /strong /p p & nbsp & nbsp 基因毒性杂质的排查一直是制药企业关注的重点,在溶剂和原材料的添加过程以及药物合成过程中都有可能产生,检测这些基因毒性杂质就变成了一个棘手的问题。对于 N,N-二甲基-3-氯丙胺盐酸盐中基因毒性杂质 1,3-溴氯丙烷,传统分析方法是采用 GC-FID 进行检测,但该方法实验操作繁琐,重复性较差,且样品基质对 1,3-溴氯丙烷的检测有干扰,使得 1,3-溴氯丙烷的含量检测不准确,以至于无法真实体现出样品的质量。 /p p & nbsp & nbsp 采用 Intuvo 气相色谱系统配备 5977B 单四极杆质谱检测器(IntuvoGC/MSD)对基因毒性杂质 1,3-溴氯丙烷进行检测,目标物的峰形和重现性良好,可有效与样品中的杂质进行分离,并得到准确的测定结果。此外,Intuvo 搭配顶空进样器和液体进样器时无需进行硬件更改,操作简单,节省了安装和维护成本。 br/ /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/85c0809b-d7d8-43f1-911c-27783c69c8ea.jpg" title=" i4.jpg" / /p p strong TPH快速分析 /strong /p p & nbsp & nbsp 环境样品中烃类污染物的分析通常称为TPH 测定或总石油烃测定。进行TPH 分析时,无需对单个化合物进行色谱分离。相反,可以将整个样品洗脱为大部分未分离的流分进行定量分析。常规检测土壤中的 TPH 方法使用二氯甲烷和丙酮混合液萃取,水中的化合物使用二氯甲烷萃取,但分析时间约 20 min,不能满足商业实验室大通量分析的要求。 /p p 结合Intuvo 快速升温特点,采用短色谱柱、快速程序升温的超快速气相色谱分析技术,分析时间小于3.2 min,一个工作日内可以完成更多的分析,大大提高了分析效率。Intuvo 独特的保护柱芯片和全新的超惰性流路芯片设计可以最大程度地保护色谱柱,有效降低系统维护频率,保证数据的稳定可靠。 br/ /p p br/ /p p strong Intuvo 就是“小身材,大能量” /strong /p p & nbsp & nbsp 相信大家已经对“小身材,大能量”的 Intuvo 刮目相看了。无论是对环境分析课题的复杂性,还是对食品分析组分的多样性;无论是对制药残留的分析论证,还是对能源化工痕量分析的初探,在 Intuvo 创新科技的运用下,克服这些分析障碍将不再是难题。 br/ /p p & nbsp & nbsp 安捷伦将推出《 Agilent Intuvo 9000 气相色谱系统全面解决方案》应用文集,对各行业应用进行精彩剖析,敬请期待!正可谓“创新永无止境,精彩你我相随”,就让此文集成为您和安捷伦联系的纽带,开启解决色谱应用研究的新篇章! /p p br/ /p
  • 1447项标准制修订计划终止 含色谱、质谱等多项仪器分析方法标准
    p   近日,国标委发布通知,终止《卫星定位车辆信息服务系统信息安全规范》等1447项推荐性国家标准制修订计划,其中包括制定标准1166项,修订标准281项。 br/ /p p   整理发现,本次终止的制修订标准中涉及仪器分析方法或仪器本身的标准共100项,涉及包装材料、食品、固体废弃物、粮油、水产品等领域,并且被终止的仪器分析方法中色谱仪器方法居多。仪器信息网对终止的相关仪器标准进行了汇总,如表1。 /p p   除仪器分析方法标准外,本次终止的标准中还涉及大量分析化学方法标准,如《包装材料用油墨中重金属检测方法》、《化妆品中二乙醇胺的测定方法》等,详细名单见附件。 /p p   表1终止制修订仪器分析方法/仪器标准列表 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 127" p style=" text-align:center " strong 计划号 /strong /p /td td width=" 251" p style=" text-align:center " strong 中文名称 /strong /p /td td width=" 47" p style=" text-align:center " strong 制修订 /strong /p /td td width=" 130" p style=" text-align:center " strong 主管部门 /strong /p /td td width=" 183" p style=" text-align:center " strong 归口单位 /strong /p /td /tr tr td width=" 127" p style=" text-align:center " 20071061-T-469 /p /td td width=" 251" p style=" text-align:center " 包装材料用油墨中有机挥发物的测定 气相色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国包装标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20071064-T-469 /p /td td width=" 251" p style=" text-align:center " 包装阻隔薄膜的扩散性、溶解性和透气性的试验方法 火焰离子法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国包装标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20071067-T-469 /p /td td width=" 251" p style=" text-align:center " 乙烯聚合物和乙烯-醋酸乙烯酯(EVA)食品包装材料中丁基-羟基甲苯(BHT)的检测方法 气相色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国包装标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20120296-T-469 /p /td td width=" 251" p style=" text-align:center " 固定污染源废气中铅、镉、铬、砷、镍、钡、铜、锰、锌的测定& nbsp 电感耦合等离子体发射光谱法(ICP-OES) /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国产品回收利用基础与管理标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20083236-T-469 /p /td td width=" 251" p style=" text-align:center " 柴油机燃料中生物柴油(脂肪酸甲酯)含量测定(红外光谱法) /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国石油产品和润滑剂标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20062346-T-469 /p /td td width=" 251" p style=" text-align:center " 白酒中乙酸乙酯的试验方法& nbsp 气相色谱法 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国食品工业标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20065999-T-469 /p /td td width=" 251" p style=" text-align:center " 整合《咖啡& nbsp 咖啡因含量的测定& nbsp 高效液相色谱法》《浓缩果汁中乙醇的测定方法》《果蔬汁饮料中氨基态氮的测定方法& nbsp 甲醛值法》《软饮料中可溶性固形物的测定方法 & nbsp & nbsp 折光法》《果汁中乳酸含量的测定》《山楂汁及其饮料中果汁含量的测定》《橙、柑、桔汁及其饮料中果汁含量的测定》等12项标准和6项计划 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国食品工业标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20068169-T-469 /p /td td width=" 251" p style=" text-align:center " 动物尿样中的四种β2--兴奋剂同时测定--气相色谱/质谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国饲料工业标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20091344-T-469 /p /td td width=" 251" p style=" text-align:center " 饲料中角黄素和阿朴胡萝卜素酸乙酯的测定& nbsp & nbsp & nbsp 液相色谱-串联质谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国饲料工业标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20091352-T-469 /p /td td width=" 251" p style=" text-align:center " 多肽分子量分布测定--高效凝胶排阻色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国特殊膳食标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20071060-T-469 /p /td td width=" 251" p style=" text-align:center " 扫描电子显微镜的检测方法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国微束分析标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20110116-T-469 /p /td td width=" 251" p style=" text-align:center " LED用稀土硅酸盐荧光粉试验方法 第2部分:光谱性能的测定 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 全国稀土标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20079814-T-326 /p /td td width=" 251" p style=" text-align:center " 丹参及其制品红外光谱检验方法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家标准委 /p /td td width=" 183" p style=" text-align:center " 中国标准化研究院 /p /td /tr tr td width=" 127" p style=" text-align:center " 20071590-T-449 /p /td td width=" 251" p style=" text-align:center " 粮食油料 稻谷中直链淀粉含量的测定-近红外方法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家粮食局 /p /td td width=" 183" p style=" text-align:center " 全国粮油标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20071660-T-449 /p /td td width=" 251" p style=" text-align:center " 粮油检验& nbsp 小麦及其制品中转基因成分普通PCR和实时荧光PCR定性检验方法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 国家粮食局 /p /td td width=" 183" p style=" text-align:center " 全国粮油标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20062755-T-449 /p /td td width=" 251" p style=" text-align:center " 小麦粉吸水量和面团揉和性能测定法& nbsp & nbsp & nbsp 粉质仪法 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 国家粮食局 /p /td td width=" 183" p style=" text-align:center " 全国粮油标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20079658-T-449 /p /td td width=" 251" p style=" text-align:center " 油料含油量测定 索氏抽提法 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 国家粮食局 /p /td td width=" 183" p style=" text-align:center " 全国粮油标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20064184-T-449 /p /td td width=" 251" p style=" text-align:center " 植物油脂检验& nbsp 折光指数测定法 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 国家粮食局 /p /td td width=" 183" p style=" text-align:center " 全国粮油标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20070236-T-432 /p /td td width=" 251" p style=" text-align:center " 人造板及其制品中甲醛的微波辅助快速检测方法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 林业局 /p /td td width=" 183" p style=" text-align:center " 全国人造板标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20110929-T-326 /p /td td width=" 251" p style=" text-align:center " 水产品中铜、铁、锰、锌、镁、钾、钠、钙、磷、铝、铬、锶、钡、钴的测定 电感耦合等离子发射光谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 农业部 /p /td td width=" 183" p style=" text-align:center " 全国水产标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20079873-T-361 /p /td td width=" 251" p style=" text-align:center " 化妆品中对羟基苯甲酸酯等20种防腐剂测定-高效液相色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 卫生计生委 /p /td td width=" 183" p style=" text-align:center " 卫生计生委 /p /td /tr tr td width=" 127" p style=" text-align:center " 20079874-T-361 /p /td td width=" 251" p style=" text-align:center " 化妆品中甲醛的气相色谱法检验方法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 卫生计生委 /p /td td width=" 183" p style=" text-align:center " 卫生计生委 /p /td /tr tr td width=" 127" p style=" text-align:center " 20060153-T-361 /p /td td width=" 251" p style=" text-align:center " 整合《生活饮用水标准检验方法》《水源水中乙醛、丙烯醛卫生检验标准方法& nbsp 气相色谱法》《水源水中氯丁二烯卫生检验标准方法& nbsp 气相色谱法》《水源水中丙烯酰胺卫生检验标准方法& nbsp 气相色谱法》《水源水中苯系物卫生检验标准方法& nbsp 气相色谱法》《水源水中氯苯系化合物卫生检验标准方法& nbsp 气相色谱法》《水源水中二硝基苯类和硝基氯苯类卫生检验标准方法& nbsp 气相色谱法》《水源水中巴豆醛卫生检验标准方法& nbsp 气相色谱法》《水源水中硫化物卫生检验标准方法》《生活饮用水标准检验法》 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 卫生计生委 /p /td td width=" 183" p style=" text-align:center " 卫生计生委 /p /td /tr tr td width=" 127" p style=" text-align:center " 20060256-T-361 /p /td td width=" 251" p style=" text-align:center " 整合《居住区大气中三氯甲烷、四氯化碳卫生检验标准方法& nbsp 气相色谱法》《居住区大气中二硫化碳卫生检验标准方法& nbsp 气相色谱法》《居住区大气中硝基苯卫生检验标准方法& nbsp 气相色谱法》《居住区大气中汞卫生标准检验方法& nbsp 金汞齐富集-原子吸收法》《居住区大气中酚类化合物卫生检验标准方法& nbsp 4-氨基安替比林分光光度法》《居住区大气中正己烷卫生检验标准方法& nbsp 气相色谱法》《居住区大气中苯胺卫生检验标准方法& nbsp 气相色谱法》等25项标准 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 卫生计生委 /p /td td width=" 183" p style=" text-align:center " 卫生计生委 /p /td /tr tr td width=" 127" p style=" text-align:center " 20060528-T-361 /p /td td width=" 251" p style=" text-align:center " 整合《室内空气中对二氯苯卫生标准》《居室空气中甲醛的卫生标准》《室内空气中细菌总数卫生标准》《室内空气中二氧化碳卫生标准》《室内空气中可吸入颗粒物卫生标准》《室内空气中氮氧化物卫生标准》《室内空气中二氧化硫卫生标准》《室内空气中臭氧卫生标准》《室内空气中溶血性链球菌卫生标准》 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 卫生计生委 /p /td td width=" 183" p style=" text-align:center " 卫生计生委 /p /td /tr tr td width=" 127" p style=" text-align:center " 20073826-T-424 /p /td td width=" 251" p style=" text-align:center " 蔬菜和水果中甲型肝炎病毒检测方法 普通RT-PCR和实时荧光RT-PCR方法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 质检总局 /p /td td width=" 183" p style=" text-align:center " 国家认监委 /p /td /tr tr td width=" 127" p style=" text-align:center " 20060955-T-424 /p /td td width=" 251" p style=" text-align:center " 整合《棉纤维长度试验方法& nbsp 自动光电长度仪法》《棉纤维长度试验方法& nbsp 光电长度仪法》 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 质检总局 /p /td td width=" 183" p style=" text-align:center " 中国纤维检验局 /p /td /tr tr td width=" 127" p style=" text-align:center " 20061302-T-424 /p /td td width=" 251" p style=" text-align:center " 原毛冼净率试验方法& nbsp 烘箱法 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 质检总局 /p /td td width=" 183" p style=" text-align:center " 中国纤维检验局 /p /td /tr tr td width=" 127" p style=" text-align:center " 20061622-T-424 /p /td td width=" 251" p style=" text-align:center " 原棉回潮率试验方法& nbsp 烘箱法 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 质检总局 /p /td td width=" 183" p style=" text-align:center " 中国纤维检验局 /p /td /tr tr td width=" 127" p style=" text-align:center " 20082027-T-608 /p /td td width=" 251" p style=" text-align:center " 木棉和棉纤维混纺产品定量分析方法& nbsp & nbsp & nbsp & nbsp 显微投影仪法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国纺织工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国纺织品标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20060248-T-604 /p /td td width=" 251" p style=" text-align:center " 整合《分析仪器环境试验方法》等18项标准和16项计划 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国工业过程测量控制和自动化标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20077644-T-604 /p /td td width=" 251" p style=" text-align:center " 激光在线气体检测分析仪 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国工业过程测量控制和自动化标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20077680-T-604 /p /td td width=" 251" p style=" text-align:center " 微量水分测定仪(库仑法) /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国工业过程测量控制和自动化标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20132543-T-604 /p /td td width=" 251" p style=" text-align:center " 拉曼光谱仪 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国工业过程测量控制和自动化标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20142424-T-604 /p /td td width=" 251" p style=" text-align:center " 汽油辛烷值测定用辛烷值试验机 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国工业过程测量控制和自动化标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20077389-T-604 /p /td td width=" 251" p style=" text-align:center " 微光观察镜通用技术规范 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国光学和光子学标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078254-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 动力测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078255-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 农作物测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078256-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 热学测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078257-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 实验室高压釜 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078258-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 实验室离心机 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078259-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 试验箱及气候环境试验设备 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078260-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 天平仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078261-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 土工仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078262-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 土壤测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078263-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 应变测量仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078264-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 噪声测量仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078265-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 真空镀膜设备 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078266-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 真空检测仪表 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078267-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 振动测量仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078268-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器词汇& nbsp 铸造测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078291-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 动力测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078292-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 农作物测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078293-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 热学测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078294-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 实验室高压釜 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078295-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 实验室离心机 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078296-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 试验箱及气候环境试验设备 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078297-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 天平仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078298-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 土工仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078299-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 土壤测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078300-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 应变测量仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078301-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 噪声测量仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078302-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 真空镀膜设备 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078303-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 真空检测仪表 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078304-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 振动测量仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078305-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 铸造测试仪器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078306-T-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备包装通用技术条件 总则 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078311-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第3部分:低温恒温槽 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078312-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第2部分:低温恒温循环装置 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078315-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第9部分:干燥箱 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078316-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第4部分:高温恒温循环装置 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078318-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第10部分:工业分析仪 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078319-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第5部分:高温恒温槽 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078320-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第11部分:实验室离心机 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078321-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第7部分:气候环境试验箱 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078322-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第8部分:生化培养箱 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078323-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第6部分:生物人工气候箱 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078324-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第15部分:天平 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078325-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第12部分:盐槽 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078326-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第14部分:氧弹式热量计 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078328-Q-604 /p /td td width=" 251" p style=" text-align:center " 实验室仪器及设备环境意识设计 第13部分:振荡器 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国实验室仪器及设备标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20070349-T-604 /p /td td width=" 251" p style=" text-align:center " 液压振动台 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国试验机标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20070347-T-604 /p /td td width=" 251" p style=" text-align:center " 单轴试验机检验用标准测力仪的校准 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国试验机标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20070712-T-604 /p /td td width=" 251" p style=" text-align:center " 热风式饲草干燥设备 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国机械工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国饲料机械标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20142523-T-603 /p /td td width=" 251" p style=" text-align:center " 煤层气井钻杆地层试井方法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国煤炭工业协会 /p /td td width=" 183" p style=" text-align:center " 全国煤炭标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20078758-T-607 /p /td td width=" 251" p style=" text-align:center " 电子天平 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国衡器标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20110285-T-607 /p /td td width=" 251" p style=" text-align:center " 牙膏中两面针碱的测定 高效液相色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国口腔护理用品标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20110286-T-607 /p /td td width=" 251" p style=" text-align:center " 牙膏中绿原酸和木犀草苷的测定 高效液相色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国口腔护理用品标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20110287-T-607 /p /td td width=" 251" p style=" text-align:center " 牙膏中三七皂甙R1和人参皂苷Rg1、Rb1、Re的测定& nbsp 高效液相色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国口腔护理用品标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20075712-T-469 /p /td td width=" 251" p style=" text-align:center " 包装材料中偶氮染料检测方法 高效液相色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国食品直接接触材料及制品标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20075713-T-469 /p /td td width=" 251" p style=" text-align:center " 包装材料中偶氮染料检测方法 气相色谱/质谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国食品直接接触材料及制品标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20102024-T-607 /p /td td width=" 251" p style=" text-align:center " 铂合金首饰 铂含量的测定 第2部分:采用所有微量元素与铂强度比值ICP光谱法 /p /td td width=" 47" p style=" text-align:center " 修订 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国首饰标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20091822-T-607 /p /td td width=" 251" p style=" text-align:center " 玩具中总铅含量的测定-能量色散X射线荧光光谱定量筛选法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国玩具标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20142574-T-607 /p /td td width=" 251" p style=" text-align:center " 化妆品中铬、锑、镉、砷、铅的测定& nbsp & nbsp & nbsp 电感耦合等离子体-质谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国轻工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国香料香精化妆品标准化技术委员会 /p /td /tr tr td width=" 127" p style=" text-align:center " 20081850-T-606 /p /td td width=" 251" p style=" text-align:center " 草除灵水分散剂有效含量的测定方法-气相色谱法 /p /td td width=" 47" p style=" text-align:center " 制定 /p /td td width=" 130" p style=" text-align:center " 中国石油和化学工业联合会 /p /td td width=" 183" p style=" text-align:center " 全国农药标准化技术委员会 /p /td /tr tr td width=" 127" class=" selectTdClass" p style=" text-align:center " 20081853-T-606 /p /td td width=" 251" class=" selectTdClass" p style=" text-align:center " 氯吡磷乳油有效含量的测定方法-液相色谱法 /p /td td width=" 47" class=" selectTdClass" p style=" text-align:center " 制定 /p /td td width=" 130" class=" selectTdClass" p style=" text-align:center " 中国石油和化学工业联合会 /p /td td width=" 183" class=" selectTdClass" p style=" text-align:center " 全国农药标准化技术委员会 /p /td /tr tr td width=" 127" class=" selectTdClass" p style=" text-align:center " 20081857-T-606 /p /td td width=" 251" class=" selectTdClass" p style=" text-align:center " 烟嘧磺隆悬浮剂有效含量的测定方法-液相色谱法 /p /td td width=" 47" class=" selectTdClass" p style=" text-align:center " 制定 /p /td td width=" 130" class=" selectTdClass" p style=" text-align:center " 中国石油和化学工业联合会 /p /td td width=" 183" class=" selectTdClass" p style=" text-align:center " 全国农药标准化技术委员会 /p /td /tr tr td width=" 127" class=" selectTdClass" p style=" text-align:center " 20112123-T-606 /p /td td width=" 251" class=" selectTdClass" p style=" text-align:center " 塑料-酚醛树脂-用差示扫描量热计法测定反应热和反应温度 /p /td td width=" 47" class=" selectTdClass" p style=" text-align:center " 制定 /p /td td width=" 130" class=" selectTdClass" p style=" text-align:center " 中国石油和化学工业联合会 /p /td td width=" 183" class=" selectTdClass" p style=" text-align:center " 全国塑料标准化技术委员会 /p /td /tr tr td width=" 127" class=" selectTdClass" p style=" text-align:center " 20112155-T-442 /p /td td width=" 251" class=" selectTdClass" p style=" text-align:center " 辣椒及其油树脂 总辣椒碱含量测定 第1部分 分光光度法 /p /td td width=" 47" class=" selectTdClass" p style=" text-align:center " 制定 /p /td td width=" 130" class=" selectTdClass" p style=" text-align:center " 中华全国供销合作总社 /p /td td width=" 183" class=" selectTdClass" p style=" text-align:center " 全国辛香料标准化技术委员会 /p /td /tr tr td width=" 127" class=" selectTdClass" p style=" text-align:center " 20073522-T-442 /p /td td width=" 251" class=" selectTdClass" p style=" text-align:center " 茶叶中茶多酚的高效液相色谱检测方法 /p /td td width=" 47" class=" selectTdClass" p style=" text-align:center " 制定 /p /td td width=" 130" class=" selectTdClass" p style=" text-align:center " 中华全国供销合作总社 /p /td td width=" 183" class=" selectTdClass" p style=" text-align:center " 中华全国供销合作总社 /p /td /tr /tbody /table p   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_xls.gif" / a href=" http://img1.17img.cn/17img/files/201712/ueattachment/23acf456-d7d6-4f7b-b344-c79ac94cebc2.xlsx" 1447项予以终止推荐性国家标准计划项目汇总表.xlsx /a /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制