当前位置: 仪器信息网 > 行业主题 > >

气相色谱氢焰检测器

仪器信息网气相色谱氢焰检测器专题为您提供2024年最新气相色谱氢焰检测器价格报价、厂家品牌的相关信息, 包括气相色谱氢焰检测器参数、型号等,不管是国产,还是进口品牌的气相色谱氢焰检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱氢焰检测器相关的耗材配件、试剂标物,还有气相色谱氢焰检测器相关的最新资讯、资料,以及气相色谱氢焰检测器相关的解决方案。

气相色谱氢焰检测器相关的论坛

  • 气相色谱仪分析的检测器种类

    [align=center] [size=24px] [b]气相色谱仪分析的检测器种类[/b][/size][/align] 用于气相色谱仪分析的检测器种类繁多,在一般分析工作中,最常用的有热导检测器、氢焰检测器、电子捕获检测器、火焰光度检测器、热离子检测器等。这里将讨论气相色谱仪检测器的四大分类及其应用等方面的基础知识。  对气相色谱仪检测器的基本要求如下:  ① 噪音较小,灵敏度高;② 死体积小,响应迅速;③ 性能稳定,重现性好;④ 信号响应,规律性强。  在气相色谱法中,检测器的分类较常用的有四种分类法。  1.按响应时间分类  ⑴ 积分型检测器  积分型检测器显示某一物理量随时间的累加,也即它所显示的信号是指在给定时间内物质通过检测器的总量。例如:质量检测器、体积检测器、电导检测器和滴定检测器等,此类检测器在一般色谱分析中应用较少。  ⑵ 微分型检测器  微分型检测器显示某一物理量随时间的变化,也即它所显示的信号表示在给定的时间里每一瞬时通过检测器的量。例如:热导检测器、氢焰检测器、电子捕获检测器和火焰光度检测器、热离子检测器等,此类检测器为一般色谱分析中的常用检测器。  2.按响应特性分类  ⑴ 浓度型检测器  浓度型检测器测量的是载气中组分浓度瞬间的变化,也即检测器的响应值取决于载气中组分的浓度。例如:热导检测器和电子捕获检测器等。  ⑵ 质量型检测器  质量型检测器测量的是载气中所携带的样品组分进入检测器的速度变化,也即检测器的响应值取决于单位时间组分进入检测器的质量。例如:氢焰检测器、火焰光度检测器、热离子检测器等。  3.按样品变化情况分类  ⑴ 破坏型检测器  在检测过程中,被测物质发生了不可逆变化。例如:氢焰检测器、火焰光度检测器、热离子检测器。  ⑵ 非破坏型检测器  在检测过程中,被测物质不发生不可逆变化。例如:热导检测器和电子捕获检测器。  4.按选择性能分类  ⑴ 多用型检测器  对许多种类物质都有较大响应信号的检测器称为多用型检测器。例如:热导检测器和氢焰检测器等属于多用型检测器。  ⑵ 专用型检测器  仅对某些种类物质有较大的响应信号,而对其他种类物质的响应信号很小或几乎不响应的检测器则称为专用型检测器。例如:电子捕获检测器、火焰光度检测器、热离子检测器等。  有时也把上述分类法结合起来。例如:把热导检测器称为微分-浓度-非破坏-多用型检测器,氢焰检测器称为微分-质量-破坏-多用型检测器。

  • 气相色谱仪各种检测器的介绍

    [align=center][b][size=24px]气相色谱仪各种检测器的介绍[/size][/b][/align][size=18px] 气相色谱仪或高效液相色谱仪是专供实验室对液体或溶于液体的固体样品进行常量和微量分析和检测,特别适用于农药、化肥、医药、防疫、环保、商检、食品、饮料、酒类、饲料、石化、煤炭、染料、精细化工等敏感行业中质量监督检测与控制;在氨基酸分析有机化工、有机合成、分析化学、生物化学、生物工程、国防教学等研究领域广泛应用。以下由仪器色谱技术人员介绍气相色谱仪的各种检测器。 1、热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用蕞广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。[font=&] 2、氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度而进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。[/font] 3、电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析衡量电负性有机化合物蕞有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰、基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,蕞常用的是高纯氮。 4、火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。 5、氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。氮磷检测器的使用寿命长、灵敏度极高,对氮、磷化合物有较高的响应,氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。 6、质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱-质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。 7、光离子化检测器(PID)是通用型的非放射性检测器。它使用高能紫外线作为能源将分子电离,检测限为10-12~10-9数量级。它对大多数有机物都有响应信号,美国EPA己将其用于水、废水和土壤中数十种有机污染物的检测。被测物质经色谱柱分离后,进入离子化池,离子化池的上盖为真空紫外无极放电灯的窗口,两侧是电极。电极收集在真空紫外辐射下产生的离子,并产生离子电流,电离电流经放大后,由色谱工作站进行数据处理、记录、显示和存储。本检测器使用一只具有10.6eV能量的真空紫外无极气体放电灯作为光源。[/size]

  • 【原创大赛】气相色谱请火焰离子化检测器(FID)的维护要点

    [b][b][font=宋体][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]请火焰离子化检测器([/font]FID)的维护要点[/font][/b][/b][align=center][b][font=宋体]概述[/font][/b][/align][font=宋体]氢火焰离子化检测器长时间使用后,会因污染造成灵敏度下降、噪声增大、本底输出电平变高等故障,污染的来源主要是色谱柱柱流失、样品的燃烧和气源污染物的积累。[/font][font=宋体]来自样品的高沸点杂质、来自环境空气的杂质和灰尘或者来自色谱柱安装不良产生的密封材料碎屑,会逐渐积累在检测器腔体内部,最终造成基线噪声的增大。[/font][font=宋体][font=宋体]某些物质[/font]——尤其是大量使用的溶剂——燃烧之后会产生沉积性固体颗粒或者腐蚀性物质,对检测器产生损害。例如二氯甲烷、二硫化碳、氯仿、DMF、DMSO等物质燃烧后会产生腐蚀性气体或者高导电率的沉积物质;芳烃类物质容易不完全燃烧产生积碳;甲基硅氧烷类色谱柱的流失产物燃烧后容易产生二氧化硅的沉积。这些有害杂质存在较大的几率沉积在喷嘴表面。[/font][font=宋体]这些有害杂质可能会导致喷嘴堵塞、收集极金属腐蚀或者收集极电气绝缘性能下降。最终会造成检测器输出本底电平抬升和基线噪声增大。较高的基线本底电平和噪声都会损害分析方法的检出限。[/font][font=宋体] [/font][align=center][b][font=宋体]FID检测器的维护步骤:[/font][/b][/align][font=宋体]1. [/font][font=宋体]外观的清洁。[/font][font=宋体]充分清洗和吹扫检测器基座,将检测器基座内肉眼可见的灰尘、锈蚀或其他固体颗粒去除,也可以用含有丙酮等溶剂的棉棒擦拭检测器内部。[/font][font=宋体]2. [/font][font=宋体]色谱柱适配器部分的清洁。[/font][font=宋体]色谱柱安装不良可能会造成色谱柱密封材料碎屑积累到检测器内部,需要充分吹扫和清洗。[/font][font=宋体]3. [/font][font=宋体]喷嘴的清洗和疏通。[/font][font=宋体]喷嘴内部附着的高沸点有机污染物可以用溶剂来清洗,使用合适的金属针可以疏通喷嘴积累的固体杂质。[/font][font=宋体]4. [/font][font=宋体]高温灼烧[/font][font=宋体]升高检测器温度,提高检测器的氢气和空气流量,长时间吹扫可以祛除检测器内部的杂质。[/font][font=宋体]5. [/font][font=宋体]收集极拆解清洗[/font][font=宋体]如果检查到系统硬件本底,如果基线水平较高或者熄火噪声较大,可以实验拆解收集极进行清洗,但是如果对仪器硬件不太熟悉,不建议用户自行操作。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font]

  • 【讨论】气相色谱仪的检测器有哪些?

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的检测器包括:TCD热导池检测器,FID氢火焰离子化检测器,PID光离子化检测器,ECD电子捕获检测器,FPD火焰光度检测器,NPD氮磷检测器,AID氩离子化检测器,SAW表面声波检测器,HID氦离子化检测器等还有哪些请大家讨论

  • Da Vinci 型 气相色谱(氢火焰离子化检测器)

    Da Vinci 型 气相色谱(氢火焰离子化检测器)

    [b][font=方正兰亭细黑简体][size=18px]概述:[/size][/font][/b][font=方正兰亭细黑简体][/font][font=方正兰亭细黑简体][size=18px]Da Vinci 利用较高的集成度优势,提升了色谱工作 站能力,优化了气体制备与纯化方式。解决了在实验室 条[/size][/font][font=方正兰亭细黑简体][size=18px]件简陋时建立 HJ 38 分析能力的苦难。实现了色谱 两栖化,既可在实验室进行固定分析,也可以在防爆场 景采样后就近分析。目前郑州市、南大环境等单位均使 用该方案实现 NMHC 的实验室监测与固定连续性监测。 同时江苏省碳中和研究院也使用该方案实现稻田中甲烷 减排与固碳通量的监测研究。[/size][/font][b][font=方正兰亭细黑简体][size=18px]标准:[/size][/font][/b][font=方正兰亭细黑简体][size=18px]?《废气无组织排放 总烃、甲烷、非甲烷总烃的测定 便携式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]——氢火焰离子化检测器法》 ?《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法》(HJ 38-2017) ?《环境空气和废气 总烃、甲烷和非甲烷总烃便携式 监测仪器技术要求及检测方法》(HJ 1012-2018) ? [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法本底大气二氧化碳和甲烷浓度在线观测 方法(GB/ T31705-2015) ? [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]检定规程 (JJG 700-2016) ? 非甲烷总烃测定仪校准规范 (JJF( 苏 )225-2019 )[/size][/font][b][font=方正兰亭细黑简体][size=18px]特点:[/size][/font][/b][font=方正兰亭细黑简体][size=18px]?即开即用 ?人机分离 ?自动进样[/size][/font][img=,429,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206201718379553_4552_5034170_3.png!w429x318.jpg[/img]

  • 气相色谱仪各种检测器的真实使用情况揭秘

    气相色谱仪各种检测器的真实使用情况揭秘

    【讨论】气相色谱仪的8种检测器---你用的是哪种?http://bbs.instrument.com.cn/shtml/20100627/2634459这个帖子你还有印象吗,帖子调查总共大约有180个版友参与,可以说基本体现了目前气相色谱仪的检测器的使用情况。其实目前使用的最多的检测器,就是六种,其他有很几个特殊的、专属性强的检测器,都使用者较少,或者行业专用,下面简单介绍下几个常用检测器。1、热导检测器  热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用最广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。2、氢火焰离子化检测器  氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。3、电子捕获检测器  电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析痕量电负性有机化合物最有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,最常用的是高纯氮。4、火焰光度检测器  火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。5、氮磷检测器 氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。氮磷检测器的使用寿命长、灵敏度极高,对氮、磷化合物有较高的响应,氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。6、质谱检测器  质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱 -质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。而这些检测器的原理和检测特性,造成了很多版友再采购仪器时,都是根据自己所需检测的样品而定。约180个版友的气相色谱仪各种检测器的真实使用情况,统计后如下图所示。http://ng1.17img.cn/bbsfiles/images/2014/01/201401042146_486668_1608710_3.jpg图中所示的其他检测器,包括表面声波检测器,ASD电化学硫检测器及SCD硫化物化学发光检测器,催化燃烧检测器(CCD),光离子化检测器(PID)等,这些检测器的使用人较少。而版友在讨论的时候,还说到了碱火焰电离检测器 (AFID)等很少见的检测器,其实NPD就是由碱火焰电离检测器 (AFID) 发展而来。1964年Karman和Giuffrida首次报道了钠火焰电离检测器, 对含磷和卤素化合物有选择性的响应, 以后又有多种形式。它们均是用氢火焰加热挥发性的碱金属盐, 产生碱金属蒸汽, 表现出对含磷、 卤素和氮化合物均有极高的灵敏度和选择性。遗憾的是其背景信号和样品信号均不稳定, 噪声大、 热离子源寿命短, 难以实用。1974年Kolb和Bischoff提出了一种新的碱源改造方案, 使检测器稳定性显著改善, 灵敏度明显提高。它对含卤素化合物不敏感, 而对氮、 磷化合物的响应比烃类大10000倍, 达专一性响应, 故以后通称氮磷检测器。实际上, 由于碱源的差异, 有些对含卤、 含氧化合物也有较高的灵敏度。所以现有的文献仍称AFID, 或热离子检测器 (TID) 、 热离子电离检测器 (TID) 或热离子专一 (灵敏) 检测器 (TSD) , 或无火焰热离子检测器 (FTD) 、 无火焰碱敏化检测器 (FASD) 等。从图已经很明显可以看的出,约180个人中,有150个人用过氢火焰离子化检测器、74个人用过热导检测器、74个人用过电子捕获检测器、55个人用过火焰光度检测器、36个人用过氮磷检测器、49个人用过质谱检测器,5个人用过氦放电离子化检测器,14个人用过其他的检测器。可见,气相色谱仪的常用检测器定位是氢火焰离子化检测器、热导检测器、电子捕获检测器、火焰光度检测器、氮磷检测器、质谱检测器。

  • 气相色谱仪常用的检测器

    [align=center][b][size=18px] 气相色谱仪常用的检测器 [/size][/b] [/align] 检测器(detector)--能检测色谱柱流出组分及其量的变化的器件,又称鉴定器。是检测色谱分离组分物理或化学性质或含量变化(多数情况是将其转化为相应的电压、电流)的一种仪器装置。它是色谱系统中的关键部件,色谱分离过程的眼睛。  对检测器的要求是:灵敏度高,线性范围宽,重现性好,稳定性好,响应速度快,对不同物质的响应有规律性及可预测性。  检测器的分类  根据检测器的输出信号和组分含量的关系分,可以分为:  质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比。  浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。  根据其测定范围可分为:  通用型检测器:对绝大多数物质够有响应。  选择型检测器:只对某些物质有响应;对其它物质无响应或很小。  目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型)、火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。具体原理和使用范围如下:  热导池检测器(Thermal Conductivity Detector,TCD),由于它结构简单,灵敏度适宜,稳定性较好,线性范围较宽,适用于无机气体和有机物,它既可做常量分析,也可做微量分析,zui小检测量mg/ml数量级,操作也比较简单,因而它是目前应用相当广泛的一种检测器。  火焰离子检测器(flame ionizationdetector,FID)是气体色谱检测仪中对烃类(如丁烷,己烷)灵敏度zui好的一种手段,广泛用于挥发性碳氢化合物和许多含炭化合物的检测。FID用氢气作为燃烧气,其中掺有氦气,氮气等洗脱剂,在一个圆筒状的电极里的喷嘴处燃烧。喷嘴与电极间电压高达几百伏,当含碳溶质在喷嘴处燃烧时,产生的电子/离子对被喷嘴和电极处收集起来产生电流,该电流被放大并传送到记录仪或电脑数据采集系统的A/D转换器处。它对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。  火焰光度检测器(Flame Photometric Detector,FPD),是zui近三十年才发展起来的一种高选择性和高灵敏度的新型检测器。它对含硫、含磷化合物的检测灵敏度很高。目前主要用于环境污染和生物化学等领域中,它可检测含磷含硫有机化合物(农药),以及气体硫化物,如甲基对硫磷,马拉硫磷,CH3SH,CH3SCH3,SO2,H2S等,稍加改变还可以测有机汞、有机卤化物、氯化物、硼烷以及一些金属螯合物等。  电子捕获检测器(Electron Capture Detector,ECD),目前气相色谱中常用的一种高灵敏度、高选择性的检测器。它只对电负性(亲电子)物质有信号,样品电负性越强,所给出的信号越大,而对非电负性物质则没有响应或响应很小。电子捕获检测器对卤化物、含磷、硫、氧的化合物,硝基化合物、金属有机物、金属螯合物,甾类化合物。多环芳烃和共轭羰基化合物等电负性物质都有很高的灵敏度,其检出限量可达10-9~10-10克的范围。所以电子捕获检测器在环境保护监测、农药残留、食品卫生、医学、生物和有机合成等方面,都已成为一种重要的检测工具。  总而言之,检测器的发展方面,均向着高灵敏度,高重复性,反应快,线性宽等的方向发展.并且,正逐渐洐生出专门分析某些化合物的检测器。

  • 气相色谱中的TCD检测器氮气作为支持气起什么作用啊?

    安捷伦的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](TCD检测器),载气为:氢气,支持气:氮气。为什么需要支持气啊?FID检测器中的氮气是载气,氢气与空气是氢火焰燃烧要用的。我就弄不明白TCD检测器为什么需要氮气做支持气。

  • 【讨论】气相色谱检测器讨论

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器发展很快,目前大概有20多种:1、热导检测器 thermal conductivity detector,TCD 又称热导池检测器,也称卡他计(Katharomater)。2、氢火焰离子化检测器 flame ionization detector, FID 又称火焰电离检测器。3、氮-磷检测器 nitrogen-phosphorus detector ,NPD 4、电子俘获检测器 electron capture detector,ECD,对电负性化合物(能俘获电子的组分)具有特别高的灵敏度的一种选择性检测器。5、火焰光度检测器 flame photometric detector, FPD 是对含磷、含硫的化合物有高选择性和高灵敏度的一种[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。6、无放射源电子俘获检测器 non-radioactive electron capture detector 一种不用放射源的电子俘获检测器。7、氦电离检测器 helium ionization detector ,HID, 用于永久性气体超微量分析的一种检测器。8、氩电离检测器 argon ionization detector ,AID, 其工作原理与氦电离检测器完全相同,只是用氩气作载气。9、电离截面检测器 ionization cross section detector 又称截面积电离检测器。10、电子迁移率检测器 electron mobility detector 是一种用于检测微量永久性气体的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。11、光离子化检测器 photo-ionization detector, PID 利用紫外光能激发解离电位较低(小于10.2eV)的化合物,使之电离,在电场作用下形成电流而进行检测的一种检测器。12、质量选择检测器(质谱),MSD。13、傅里叶变换红外光谱检测器,FTIR。14、原子发射光谱检测器,AED。15、脉冲火焰光度检测器,PFPD。16、脉冲放电检测器,PDD。17、气体密度天平检测器,GDB。18、化学发光检测器,CLD。19、电导检测器,ELCD。20、微库仑检测器 micro coulometric detector 又称电量检测器。但是,应用最多的仍然是TCD、FID,像ECD、NPD、FPD相对来说还比较少,特别是在石油化工领域,PFPD和HID,以及SCD到底用途有多大,发展趋势是什么?

  • 气相色谱仪火焰光度检测器测定磷化氢残留方案

    磷化氢(PH )以其杀虫效果好、渗透力强、用量低、无药害、使用方便等优点,自60年代初以来广泛用于各种农产品的熏蒸处理。PH磷化氢 的使用,达到了灭虫防虫的目的, 然而其在农产品中的残留部分会对人们的身体健康有一定程度的危害。联合国农药残留委员会(1973)提出的标准中规定PH 在小麦粉、蔬菜干等食品中的允许残留量为0.01ppm “ , 国际贸易谷物中PH 允许残留量为0.1ppm C2)。 农药的残留分析早已受到世界各国的高度重视。另外,在检疫熏蒸工作中往往也需要对熏蒸剂进行检测,以保证熏蒸处理安全有效进行。气相色谱仪(GC)分离法作为一种高效、灵敏、快速的分析技术, 白50年代初问世以来已在化工、医药、环保等领域得到广泛应用。加拿大学者T.w.Nowiki(1978)等已进行了GC 检测小麦中PH 残留的一些研究。在国内GC 已用于检测粮食中溴甲烷、氯化苦等化学农药的残留,对PH 的测定仍采用比色法。鲁创仪器公司就GC在农产品中PH残留的检测上的应用作了初步探索,取得满意分析效果。 1、PH3标准气体的制备 标准气体用连云港市化工厂生产的磷化铝片剂(含PH 33%)制备。取一双颈烧瓶作为反应瓶(容积V ,m1), 用分析天平减量法称取磷化铝少许(w , g),迅速放人反应瓶内(图1)。反应瓶一口上联接一分液漏斗, 另一口连取样塞。通过分液漏斗,加入l0%(v/v)硫酸3~4ml,小心加热至反应完全,标准气即制成用微量进样器由取样塞抽取0.002ml(v,,m1)进GC仪测试。也可以抽取一定体积标准气注入另一烧瓶稀释后取样进GC仅测试。取样塞为一中间打孔之橡皮塞, 用2根短玻璃管夹紧一橡皮垫塞人孔中即成。 2、样品中PH3的解吸 装置分两部分。用一圆底烧瓶作为气体解吸瓶,其上联接一冷凝器,冷凝器上端加打有2 L的橡皮塞,一L插入分液漏斗, 另一孔与气体收集瓶联接。用一双颈烧瓶作为气体收集瓶,其容积(V ,m1)约为解吸瓶容积的5倍收集瓶一口通过活塞破管与解吸瓶连接,另一口装取样塞。 操作过程是:先将气体收集瓶抽取真空, 如图3样联好。称取经磷化铝熏蒸处理的样品30g (W2,g)迅速放人解吸瓶内,检查各联接处,使密闭严实。向分液漏斗中加人10%(v/v)硫酸20m1,打开解吸瓶与收集瓶问玻管活塞,使联通的两瓶间压力平衡。打开分液漏斗阀门,使硫酸缓缓加入解吸瓶内的样品中余少许硫酸时关闭分液漏斗阀门,同时接通冷凝器水源。置解吸瓶于水浴中加热至沸l0分钟, 移去水浴锅,冷至室温。打开分液漏斗阀门,由于真空吸力使空气进人解吸瓶的下部,将解吸出来的PH 全部冲人气体收集瓶内。当无吸人空气之声响时,迅速关闭活塞玻管即可。用5ml医用玻璃注射器准确抽取样品气体3ml(v ,m1)进GC气相色谱仪测试。 3、色谱条件 鲁创GC-9860气相色谱仪;GDx一102 2m×3mm玻璃柱; 火焰光度检测器(FPD); 载气:N250ml /min; 吹扫气:N21 5ml /min; 助燃气:20ml /min . 4、结果与讨论 本分析方案中测试了小麦、豇豆、绿豆、椒干谷穗、自芸豆等6种样品在所选用的色谱条件下,出峰良好,基线平稳,仅得一单峰,证明硫酸解吸法,回收PH 无干扰物存在。PH 保留时间为41秒,用外标法由峰高定量,结果见表计算公式为:W .h V V,肼 (PP %式中h.为GC 得标准气峰高(min),h2为气相色谱仪GC得样品气峰高(mm),w】、w2、Vl~4含义及单位见上文。由表看出, 同一条件下熏蒸处理的农产品中PH 的残留不尽一致。例如椒干、谷穗中残留较大,这与其吸附表面特性有关。农产品对PH,的吸附还与其水份含量有关 。

  • 气相色谱仪常用检测器的清洗

    [align=center][size=24px][b]气相色谱仪常用检测器的清洗[/b][/size][/align][align=left][size=18px] 在气相色谱仪操作过程中,检测器有时会被流失的固定相及样品中的高沸点成分、易分解或有腐蚀性的物质玷污。此时应对检测器进行清洗。 清洗时可分三种情况:第一种是玷污物质仅限于高沸点成分,通常可将气相色谱仪检测器加热到蕞高使用温度后,再通入载气,即可清除。第二种情况是检测器仅存在程度较轻的玷污,此时可用蒸汽清洗的方法。过程是在进样口注入几十微升蒸馏水或丙酮等溶剂,待1~2小时后,检查基线是否平稳即可。第三种情况是在上述两种简单方法不能解决问题时所采用的彻底清洗方法,此方法要求拆装检测器,同时还要选择适宜的溶剂,即所[/size][size=18px]选[/size][size=18px]择的溶剂,既要能溶解玷污物,又不对检测器造成新的污染和损坏。此时清洗过后的部件不要直接用手摸。[/size][/align][align=left][size=18px]1、热导检测器(TCD)的清洗TCD检测器在使用过程中可能会被柱流出的沉积物或样品中夹带的其他物质所污染。TCD检测器一旦被污染,仪器的基线出现抖动、噪声增加。有必要对检测器进行清洗。欧美的TCD检测器可以采用热清洗的方法,具体方法如下:关闭检测器,把柱子从检测器接头上拆下,把柱箱内检测器的接头用死堵堵死,将参考气的流量设置到20~30 ml/min,设置检测器温度为400℃,热清洗4-8 h,降温后即可使用。国产或日产TCD检测器污染可用以下方法。仪器停机后,将TCD的气路进口拆下,用50mL注射器依次将丙酮 ( 或甲苯,可根据样品的化学性质选用不同的溶剂 ) 无水乙醇、蒸馏水从进气¨反复注入5~10次,用吸尔球从进气口处缓慢吹气,吹出杂质和残余液体,然后重新安装好进气接头,开机后将柱温升到200℃,检测器温度升到250℃,通人比分析操作气流大1~2倍的载气,直到基线稳定为止。对于严重污染,可将出气口用死堵堵死,从进气口注满丙酮 ( 或甲苯,可根据样品的化学性质选用不同的溶剂 ) ,保持8 h左右,排出废液,然后按上述方法处理。当选用一种溶剂不能洗净时,可根据玷污物的性质先选用高沸点溶剂进行浸泡清洗,然后再用低沸点溶剂反复清洗。洗净后,加热赶去溶剂,将检测器装回到仪器上,再加热通载气冲洗数小时后,即可使用。2、氢火焰离子化检测器(FID)的清洗当FID玷污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器联接起来,然后通载气将检测器恒温升至120℃以上。再从进样口中注入20微升左右的蒸馏水,接着再用几十微升乙醇或氟里昂113溶剂进行清洗(用丙酮也可,但应注意,有的色谱仪氢焰室中喷嘴不适宜用丙酮清洗)。在此温度下保持1~2小时检查基线是否平稳,若仍不理想,可重复上述操作或按下面方法处理。当玷污比较严重时,须拆下检测器清洗。方法是先拆下收集极、极化极、喷嘴等,若喷嘴是石英材料制成的,先将其放在水中进行浸泡过夜;若喷嘴是不锈钢等材料做成,则可与电极等一起,先小心用300~400号细砂纸打磨,再用适当溶剂( 如1:1的甲醇与苯 )进行浸泡。也可用超声波清洗,蕞后用甲醇洗净,放置于烘箱中烘干。注意勿用氯仿、二氯甲烷一类的含卤素的溶剂。以免与聚乙烯材料作用,导致噪声增加。清洗后的各部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度玷污。装入仪器后,先通载气半小时,再点火升高检测室温度,蕞好先在120℃保持几小时之后,再升至工作温度。气相色谱仪是一般实验室常用的分析仪器,对气相色谱仪的维护和保养是各实验室经常遇到的问题。但是,因为具体情况不同,污染物及工作环境的差异,各实验室所采用的处理方法可能有所不同。正确的对仪器进行维护和保养,可增加仪器的使用寿命,减少仪器的故障率,保障分析工作的顺利进行。尤其是工厂实验室,经常对仪器进行维护和保养是化验室一项必不可少的工作,甚至影响企业的生产和经济效益。[/size][/align]

  • 4种常用的气相色谱检测器的清洗办法?

    1热导检测器TCD的清洗将热导检测器冷却至室温并取下色谱柱,将隔垫置于检测器入口的螺母或者接头组件上,将螺母或接头组件置于检测器接头上并拧紧,确认有尾吹气流,通过隔垫向检测器注射10μL~100μL甲苯、苯、丙酮、十氢萘等溶剂,注射总量至少1mL,完成注射之后允许尾吹气继续流动10min以上,缓慢增加热导池的温度,使其比正常操作温度高20℃~30℃,30min之后将温度降低至正常值,并按照正常情况安装色谱柱。 注意:不能向检测器中注射卤代溶剂! 对于柱流失、样品污染产生沉积物污染热导检测器。引起基线漂移、噪声增加或测试色谱图响应改变时,可以采用热清洗,即通过加热检测器池体以蒸发掉污染物。2氢焰离子化检测器FID的清洗 当沾污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器联接起来,然后通载气并将检测器炉温升至120度以上,从进样口先注入20微升左右的蒸馏水,再用几十微升丙酮或氟里昂(Freon113等)溶剂进行清洗。在此温度下保持1-2小时检查基线是否平稳,若仍不满意可重复上述操作或卸下清洗。 当沾污比较严重时,必须卸下清洗。先卸下收集极,正极,喷嘴等,若喷嘴是石英材料制成的,先将其放在水中进行浸泡过夜。若喷嘴是不锈钢等材料做成,则可与电极等一起,先小心用细砂纸(300-400#)打磨,再用适当溶剂(浸泡如甲醇与苯1:1),也可以用超声波清洗,最后用甲醇洗净,放置于烘箱中烘干。注意:勿用含卤素的溶剂(如氯仿、二氯甲烷等)。以免与聚四氟乙烯材料作用,导致噪声增加。 洗净后的各个部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气30分钟,再点火升高检测室温度,最好先在、120度保持数小时之后,再升至工作温度。 3电子捕获检测器ECD的清洗 注意:电子捕获检测器中有放射源,通常为Ni63,因此要特别小心。 先拆开检测器中有放射源箔片,然后用2:1:4的硫酸、硝酸及水溶液洗检测器的金属及聚四氟乙烯部分。当清洗液已干净时,再用蒸馏水清洗,然后用丙酮洗,再置于100度左右的烘箱中烘干。对H3源箔片,先用己烷或戊烷淋洗,绝不能用水洗。废液要用大量水稀释后弃去。对Ni63源更应小心,绝不能与皮肤接触,只能用长镊子操作。先用乙酸乙酯加碳酸钠淋洗或用苯淋洗,再于沸水中浸泡5分钟,取出烘干,装入鉴定器中。装入仪器后通载气30分钟,再升至操作温度,几小时后备用。清洗剩下的废液要用大量水稀释后才能弃去。4氮磷检测器(NPD)的清洗[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]NPD需要进行定期清洗 在大多数情况下,只清洗收集极和喷嘴。一般[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]都配有刷子和金属丝。刷子用于清扫喷嘴口的颗粒物。不要迫使太粗的金属丝或探针进入喷嘴口,否则喷嘴口将被破坏若喷嘴变形,将会导致灵敏度下降或峰形变差。用刷子清洁之后,可以用超声波清洗各个部件。最终将需要更换喷嘴,因此,强烈推荐在手头有备用的喷嘴。经过一段时间的使用,来自于铷珠或样品的残留物将会积聚在收集极上,并导致基线问题。在更换铷珠2-3次后,应该清洗检测器。 每次拆装均会造成金属垫片等的磨损。几次拆装之后(5次或更多次),密封环就可能无效导致基线不稳。更换检测器部件时一定要将检测器温度降低到室温。因为NPD没有任何火焰,其喷嘴不像FID喷嘴那样收集二氧化硅和燃烧烟尘。虽然可以清洗喷嘴,但是简单的用新喷嘴取代脏喷嘴往往更加实用。清洗喷嘴如果用金属丝,要是清洁的,小心操作,千万不要损坏喷嘴的内部,也可以使用超声波清洗喷嘴。

  • 【抢答24小时】气相色谱常用检测器的清洗?

    有些关于气相色谱常用检测器的清洗的问题,不知大家怎么做?大家来抢答,差不多就得10分,由于答案很容易雷同,那么就抢答吧,2013年6月20日上午9点半结贴发分一、热导检测器怎样清洗?二、氢焰离子化检测器怎样清洗?三、电子捕获检测器怎样清洗?每人只能答一个。每题第一个答对的给10分参与回答但不是最佳答案的给2分。

  • 【速战速决】气相色谱常用检测器的清洗?(答对2分奖励)

    有些关于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]常用检测器的清洗的问题,不知大家怎么做?答答看吧,差不多就得2分,由于涉及到部分版友答案会出现雷同,那么就速战速决,今晚22:15结贴一、热导检测器怎样清洗?二、氢焰离子化检测器怎样清洗?三、电子捕获检测器怎样清洗?

  • 你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    检测器是气相色谱分析中不可或缺的部分,被称做色谱仪的“眼睛”。被测组分经色谱柱分离后,以气态分子与载气分子相混状态从柱后流出,必须要有一个装置或方法,将混合气体中组分的真实浓度或质量流量变成可测量的电信号,且信号大小与组分量成比例关系,此装置就是检测器,是一种能检测气相色谱流出组分及变化的器件。检测器按照不同方法有不同的分类:按照性能特征分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201417_614520_2384346_3.png按照工作原理分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614522_2384346_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614521_2384346_3.png 大家可以发现气相色谱检测器的种类繁多,而平日里我们最常见到的检测器有电子捕获检测器(ECD)、氮磷检测器(NPD)、火焰离子化检测器(FID)和质谱仪(MSD)等。今天就和大家聊一聊这些检测器的选择问题。通性 MSD与ECD、NPD、FID等都可作为GC的检测器,提供GC分离后的组分相关信息。样品经色谱柱分离后,各成分按保留时间不同,顺序地随载气进入检测器,检测器按时间及其浓度(质量)的变化,把组分化合物转化成易于测量的电信号,经过必要的放大传递给记录仪或计算机,最后得到该样品的色谱图及定性和定量信息。区别 ECD、NPD、FID都属于有一定选择性的检测器,仅对某类特征化合物有响应,可以排除样品中其他组分的干扰,从而可简化复杂样品的前处理,降低对色谱柱分离能力的要求。而MSD是质量型、通用型检测器,只要化合物能够离子化,就能获得响应,在总离子流色谱图上表现出来。对不同的化合物,各种检测器的适用性和信号响应有所差别,见图1,具体如下:①电子捕获检测器(ECD)是灵敏度最高的气相色谱检测器之一。ECD工作原理是色谱柱流出载气及吹扫气进入ECD池,在放射源放出β-射线轰击下被电离,产生大量电子;在电源、阴极和阳极电场作用下,该电子流向阳极,得到10-9-10-8A的基流;当电负性组分从柱后进入检测器时,即俘获池内电子,使基流下降,产生一负峰;通过放大器放大,在记录器记录,即为响应信号。其大小与进入池中组分量成正比。负峰不便观察和处理,通过极性转换即为正峰。ECD仅对那些能俘获电子的化合物(含电负性元素)有响应,如卤代烃、含N、O和S等杂原子的化合物,但线性范围较窄。②氮磷检测器(NPD)是一种质量型检测器。NPD工作原理是将一种涂有碱金属盐如Na2SiO3、Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。NPD对氮、磷化合物有较高的响应,灵敏度极高,可以检测到5×10-13g/s偶氮苯类含氮化合物,2.5×10-13g/s的含磷化合物,如有机磷及氨基甲酸酯类农药等。③火焰离子化检测器(FID)由Harley和Pretorious发明,演化自Scott发明的燃烧热检测仪(Heat of Combustion Detector)。FID工作原理是以氢气作为燃烧气,和空气在一个圆筒状的电极里的喷嘴处燃烧,燃烧的火焰作为能源,其中氦气、氮气等载气作为洗脱剂,在极化极和收集极之间外加的高电压电场作用下,利用含碳有机物在火焰中燃烧产生离子,使离子形成离子流,收集起来产生电流,根据离子流产生的电信号强度,放大并传送到记录仪或电脑数据采集系统的A/D转换器处,从而检测被色谱柱分离出的组分。④质谱检测器(MSD)是质量型、通用型检测器,对所有适合于GC检测、能离子化的化合物都能给出响应。MSD不仅能给出色谱图(即总离子流色谱图,TIC),且能够给出每个色谱峰时间点的质谱图,利用计算机对标准谱库的自动搜索,可提供化合物分子结构信息,是GC定性分析的有效工具。将色谱的高分离能力与MS的结构鉴定能力结合在一起,采用保留时间和质谱图双重定性,灵敏度高。MSD数据处理工作量非常大,一般必须配计算机系统才能有效地工作;根据仪器配置不同,还可以采用EI、CI等电离方式,结合不同扫描方式,提高灵敏度与准确度。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://ng1.17img.cn/bbsfiles/images/2015/06/201506241721_551410_2989334_3.png图1 气相色谱不同检测器灵敏度对比

  • 气相色谱检测器操作注意事项

    [align=left] 1、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器尾吹气的使用[/align] 尾吹气是从色谱柱出口处直接进入检测器的一路气体,又叫补充气或辅助气。填充柱不用尾吹气,而毛细管柱则大都采用尾吹气。这是因为毛细管柱的柱内载气流量太低(常规柱为1~3ml/min),不能满足检测器的最佳操作条件(一般检测器要求20ml/min的载气流量)。在色谱柱后增加一路载气直接进入检测器,就可保证检测器在高灵敏度状态下工作。尾吹气的另一个重要作用是消除检测器死体积的柱外效应。经分离的化合物流出色谱柱后,可能由于管道体积增大而出现体积膨胀,导致流速减缓,从而引起谱带展宽。加入尾吹气后就消除了这一问题。 那么,尾吹气流量多少合适呢?这要看所用检测器和色谱柱的尺寸而定。比如,用0.53mm大口径柱时,柱内流量可达15ml/min,这对微型TCD和单丝TCD 来说已经够大了,就没必要再加尾吹气了。而对于FID、NPD、FPD则需要至少10ml/min的尾吹气流量,对于ECD就需要20ml/min的尾吹气(ECD一般需要载气总流量大于25ml/min)。使用常规或微径柱时,尾吹气流量应相应增大。经验参考值为:FID、NPD、FPD需要柱内载气和尾吹气的流量之和为30ml/min左右。ECD则需要40~60ml/min。当需要在最高灵敏度状态下工作时,应针对具体样品优化尾吹气流量以及其他气体流量。一般情况下,尾吹气所用气体类型应与载[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]同。 尾吹气流量是在安装好色谱柱后,在检测器出口处用皂膜流量计测定的。注意,测定尾吹气流量时要关闭其他气体(如使用FID时要关闭空气和氢气),用0.32mm以下内径的色谱柱时,可不关闭柱内载气,这时测得的流量为柱内载气和尾吹气流量之和。 2、FID 使用注意事项 (1)FID虽然是准通用型检测器,但有些物质在此检测器上的响应值很小或无响应。这些物质包括水久气体、卤代硅烷、H20、NH3、CO、CO2、CS、CCl4、等等。所以,检测这些物质时不应使用FID。 (2)FID是用氢气和空气中燃烧所产生的火焰使被测物质离子化的,故应注意安全问题。在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱。测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然。无论什么原因导致火焰熄灭时,应尽快关闭氢气阀门,直到排除了故障,重新点火时,再打开氢气阀门。高档仪器有自动检测和保护功能,火焰熄灭时可自动关闭氢气。 (3)FID的灵敏度与氢气、空气和氮气的比例有直接关系,因此要注意优化。一般三者的比例应接近或等于l:10:l,如氢气30~40 ml/min,空气300~400 ml/min,氮气30~40 ml/min。另外,有些仪器设计有不同的喷嘴分别用于填充柱和毛细管柱,使用时应查看说明书。 (4)为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度。一旦检测器被污染,轻则灵敏度明显下降或噪声增大,重则点不着火。消除污染的办法是清洗,主要是清洗喷嘴表面和气路管道。具体方法是拆 F 喷嘴,依次用不同极性的溶剂(如丙酮、氯仿和乙醇)浸泡,并在超声波水浴中超声10 min以上。还可用细不锈钢理穿过喷嘴中间的孔,或用酒精灯烧掉喷嘴内的油状物,以达到彻底清洗的目的。有时使用时间长了,喷嘴表面会积碳(一层黑色沉积物),这也会影响灵敏度。可用细砂纸轻轻打磨表面而除去。清洗之后将喷嘴烘干,再装在检测器上进行测定。

  • 气相色谱讲义-检测器

    目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽)(一)灵敏度——应答值单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示:(3)由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异:对于浓度型检测器:当试样为液体时,S的单位为 mV•ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数;当试样为气体时,S的单位为mV•ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;对于质量型检测器:当试样为液体和气体时,S的单位均为:mV•s/g,即每秒钟有1g的组分被载气携带通过检测器所产生的mV数。灵敏度不能全面地表明一个检测器的优劣,因为它没有反映检测器的噪音水平。由于信号可以被放大器任意放大,S增大的同时噪声也相应增大,因此,仅用S不能正确评价检测器的性能。(二)检测限(敏感度)噪声——当只有载气通过检测器时,记录仪上的基线波动称为噪声,以 RN 表示。噪声大,表明检测器的稳定性差。检测限——是指检测器产生的信号恰是噪声的二倍(2RN)时,单位体积或单位时间内进入检测器的组分质量,以D 表示。灵敏度、噪声、检测限三者之间的关系为:(4)检测限的单位:对于浓度型检测器为mg/ml或 ml/ml;对质量型检测器为:g/s。检测限是检测器的重要性能指标,它表示检测器所能检出的最小组分量,主要受灵敏度和噪声影响。D 越小,表明检测器越敏感,用于痕量分析的性能越好。在实际分析中,由于进入检测器的组分量很难确定(检测器总是处在与气化室、色谱柱、记录系统等构成的一个完整的色谱体系中)。所以常用最低检出量表示:图2 检测器噪声(三)最低检出量——恰能产生2倍噪声信号时的色谱进样量,以 Q0 表示。 (三)线性范围检测器的线性范围是指其响应信号与被测组分进样质量或浓度呈线性关系的范围。通常用最大允许进样量QM与最小检出量Q0的比值来表示。比值越大,检测器的线性范围越宽,表明试样中的大量组分或微量组分,检测器都能准确测定。

  • 气相色谱检测器的分类与使用一般原则

    气相色谱检测器的分类与使用一般原则

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器种类很多,性能特征不同,把它们按工作原理来进行分类则会对我们日常检测工作起到一定理顺的作用,今天就和大家聊聊[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器的分类与选择。 从工作原理考虑,检测器是利用组分和载气在物理或化学性能上的差异,来检测组分的存在与含量变化的。这些差异有许多方面:利用组分与载气的物理常数,如热导系数、密度等的差异来检测,称为物理常数检测法;利用组分与载气的光发射、吸收等性能的差异来检测,称为光度学检测法等。上述方法中,不少都是分析化学中比较成熟的检测方法,如光度法、电化学法和质谱法,经过近20年的发展,现已为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法所用。这些装置已成了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中检测器。下图为按检测方法分类的常见检测器。[img=,690,584]http://ng1.17img.cn/bbsfiles/images/2017/09/201709191116_01_2384346_3.png[/img] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法的一部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用;二是其他有关条件的优化。一个好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法,应该是这两方面均处于最佳状态,具体要求为: 1、检测器的正确选择与使用 建立[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法首先要针对不同样品和分析目的,正确选择不同检测器,并使检测器的灵敏度、选择性、线性与线性范围、稳定性等能得到充分发挥,即处于最佳状态。 通常用单检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间与精力,而且可能损坏检测器。 2、其他条件优化 一个良好的检测方法除考虑检测器本身外,还应考虑检测器前后色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以谱带宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。

  • 【原创大赛】气相色谱-氢火焰检测器法测定乳饮料中的甜蜜素

    99.5% ) ;亚硝酸钠(分析纯);氯化钠(分析纯);硫酸(优级纯);衍生化试剂为50 g/L 亚硝酸钠、100 g/L 硫酸。1.2 色谱条件填充柱(bft 10%SE-30OV101 whp100/120)汽化室温度150℃;柱温80℃;检测器温度150℃;流速:氮气40 mL/min;空气300 mL/min;氢气30 mL/min;不分流进样;进样量10μL。1.3 标准曲线制备称取甜蜜素标准品0.1784g于50 mL容量瓶中,加水定容至刻度,摇匀,制成3.5680 mg/mL甜蜜素标准溶液。准确吸取0、50、1.00、2.00mL甜蜜素标准溶液于50 mL容量瓶中,加水至20 mL,置于冰浴中。加5 mL 50g/L亚硝酸钠,摇匀。再加5 mL 100g/L 硫酸, 摇匀。在冰浴中每个5min进行振摇。30 min后先准确加入10 mL正己烷,最后加5g氯化钠振摇1min ,待静止分层后吸出正己烷层离心分离,于气相色谱仪进样10μL,每个浓度进样3次,以峰面积对应标准浓度绘制标准曲线,见图1。1.4 样品测定称取10 g乳饮料于50 mL容量瓶中, 置于冰浴中。加5 mL 50g/L亚硝酸钠,摇匀。再加5 mL 100g/L 硫酸, 摇匀。在冰浴中每个5min进行振摇。30 min后先准确加入10 mL正己烷,最后加5 g氯化钠振摇1min ,待静止分层后吸出正己烷层离心分离,于气相色谱仪进样10μL。以保留时间定性,峰面积定量。2 结果与讨论2.1色谱条件的选择不同的色谱柱温、检测器温度、载气流量对分离效率、分析时间及灵敏度都有一定影响,因此, 本文进行了最佳色谱条件选择, 试验结果证明, 采用本文色谱条件时峰形良好对称。本文分别采用AC - 1非极性毛细管柱、AC - 5弱极性毛细管柱进行测定。在AC - 1非极性毛细管柱,柱温80℃的条件下,峰形尖锐良好,含酒精类饮料中常见干扰物质如乙醇、异丁醇、异戊醇等均未造成干扰。同时考虑到正己烷的沸点为98.4℃,相对比较高,为了保证进样液能够在短时间内全部气化,气化室的温度设定为250℃。2.2反应时间对实验的影响甜蜜素( 环已基氨基磺酸钠) 和NaNO2 在H2SO4 酸性条件下反应生成环已醇, 环已醇在酸性条件下又继续与NaNO2 发生酯化反应生成环已醇亚硝酸酯。成酯反应在一定反应条件下是个动态平衡,所以正已烷提取物中会同时有环已醇存在, 并且在放置过程中环已醇亚硝酸酯与环已醇的平衡会移动。反应时间对环已醇亚硝酸酯的生成有很大的影响, 反应时间如果30 min , 则产物中环已醇还比较多, 60 min 后基本为环已醇亚硝酸酯。环已醇亚硝酸酯与环已醇出峰保留时间见2.3线性范围和方法的检出限本方法在甜蜜素含量0~50 mg/10 mL范围内线性关系良好,相关系数r = 0.9995。以噪声的3倍计算,最低检出量为1μg,按液体样品取样2010 g 计算, 最低检出浓度为0.05 mg/kg,固体样品取样4.0 g 计算, 最低检出浓度为0.25 mg/kg。表1 校正曲线的线性范围及检出限名称

  • 气相色谱FID检测器检测限问题?

    气相色谱FID检测器,在计量检定中,按检定规程检测限是5×10-10g/s。是使用正十六烷-异辛烷标液来对检测限进行计算。我想知道的是这个检测限是代表的仪器的检测限呢?还是代表的其他的意思呢?请高人指教。还有单位g/s是什么意思?

  • 气相色谱检测器的清洗

    气相色谱仪器在使用过程中,由于色谱柱流失或样品残渣常会使检测器污染。清洗检测器随时都可进行。简单的方法是将检测器部件加热到最高温度,用玻璃或石棉绝热材料牢固地绕在加热部件的周围,将有助于检测器的清洗,并能预防污染的继续形成。必须注意:决不能把含有放射源的检测器加热到原子能委员会规定的极限温度以上。过度加热也会损坏聚四氟乙烯绝缘子。 如果加热不能消除污染,就必须使用适当的溶剂进行清洗。超声波清洗器能有效地进行多种检测器的清洗,然而通常只有少数常用试剂能充分地进行清洗。 本文将叙述热导险测器、火焰离子化检测器的清洗方法。这些方法可适用于其他类似的检测器,但是要小心,防止清洗溶剂损坏检测器部件。清洗检测器时,不得用手指接触清洗的检测器部件.这一点很重要。为了防止检测器再次污染,应当使用脱纯亚麻布手套和镊子。清洗之后,检测器应当重新安装在气相色谱仪里.任使用之前要保持在操作温度下过夜。 一、热导检测器 热导检测器的清洗程序如下: 1. 除去检测器的块状加热器以外,断开所有的电气连线. 2. 拆卞检测器出口的盖子。通过入口在检测器里充满萘烷。 3. 检测器的温度100℃.萘烷在检测器里停留15分钟,然后排掉。 4. 重复此过程三次,致使萘烷变得清净为止。 5. 用二甲替酰胺代替萘烷,重复步骤2、 3和4。 6. 用甲醇晾在60℃的,重复步骤1、 2和3。 7. 用水在95℃时,重复步骤l、 2和3。 8. 用丙酮在55℃时,重复步骤1、 2和3。 9. 如果需要,全部重复一次,以达到彻底的清洗。 Io. 在排出所有溶剂之后.检测器升到操作温度之前,通入载气约20分钟。 11. 使用之前.让检测器保持在操作温度状态下过夜。 二、火焰离子化检测器 火焰离子化检测器的清洗程序如下:(一)放在气相色谱仪里检测器的清洗(对于轻微的污染)1. 拆去分离柱,用清洁的管子将进样口和检测器连接 2. 检测器和柱恒温箱的温度保持在125℃以上。 3.[font=Times New R

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制