当前位置: 仪器信息网 > 行业主题 > >

数字碳化深度测试仪

仪器信息网数字碳化深度测试仪专题为您提供2024年最新数字碳化深度测试仪价格报价、厂家品牌的相关信息, 包括数字碳化深度测试仪参数、型号等,不管是国产,还是进口品牌的数字碳化深度测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字碳化深度测试仪相关的耗材配件、试剂标物,还有数字碳化深度测试仪相关的最新资讯、资料,以及数字碳化深度测试仪相关的解决方案。

数字碳化深度测试仪相关的资讯

  • 高端化、低碳化、数字化!环保产业突围要靠“新质生产力”
    每年3月初,两会前夕,全国工商联环境商会都要召开一年一度的“环境企业家媒体见面会”。针对行业热点,邀请龙头企业,给出权威看法,发出两会的“环保好声音”。而今年3月,环保行业最热的话题,无疑就是当下的市场形势了。众所周知,当下环保行业正在经历一段“艰难时光”。对于现在的市场形势,领军企业的感受如何?他们如何看待这一现象?对于未来又有什么样的判断?更重要的是,领军企业有什么好的办法,来应对这一形势吗?带着这些问题,3月1日,《环保圈》记者参加了“2024环境企业家媒体见面会”,希望能为行业找到一些答案。▼2024环境企业家媒体见面会。图片来源:全联环境商会1从“满天星斗,不见月亮”到“灯火阑珊,星光暗淡”见面会伊始,环境商会会长、清新环境总裁李其林就做了题为“发展产业新质生产力 激活数字智慧新动能”的主题报告。在报告中,李其林坦承,从各项数据和市场表现看,受多重因素的影响,当前环境产业正处于大规模基建热潮退去之后的调整周期。之所以如此,主要出于两个原因:一是行业增量空间相对有限,传统环境市场需求趋于稳定,整体面临增长慢、盈利难的困境;二是传统的产业模式进入瓶颈期,很难在现有机制和模式下寻求新的增长点。▼环境商会会长、清新环境总裁李其林。图片来源:全联环境商会 环境商会常务会长、威尔利集团董事长李月中也认为,2023-2024年,环保产业无论是外部市场需求,还是内部市场需求实际上都在下降。由于政府资金压力很大,再加上本身这种传统的、功能设施性的环保项目市场就饱和了,所以市场需求出现下降。当然,随着标准提升,转型升级方面也会有一些新的需求,但这一块的需求量还很有限,跟此前10-20年环保行业的市场需求相比还比较小,所以总体的市场需求量肯定是在下降的,这是当下面临的一个现实问题。环境商会首席环境政策专家骆建华用了一句话来形容当前的环境产业——轻舟难过万重山。之所以出现这种状态,主要有三方面原因:首先,行业属性的原因。环保行业除了脱硫脱硝之外,大部分是做污水垃圾处理的,这个行业在20多年前被定义为“市政公用”,属于公共产品。而公共产品的属性特点就是非盈利性、非竞争性、非排它性,而且很多都是垄断行业。更关键的是它的定价是政府定价,而不是市场定价,因为它涉及更多的国计民生而不是市场竞争。20年前,原国家建设部推动市政公用事业市场化改革,一是因为当时政府缺钱,二是污水处理厂效率有待提升。为了解决这两个问题,才推进市场化改革。而如今,这个行业则要回归“市政公用”的本质。第二,商业模式原因,也就是PPP。当时推进市场化改革,用的是BOT模式、TOT模式,这些模式是很成熟的。一边政府向公众收取污水处理费,另一边再把污水处理费转给污水处理企业,它解决了一个收费机制的问题,所以这个模式没有问题。而到后来,我们开始搞PPP模式,它的顶层设计有一些问题。PPP项目大部分都是公共产品和公共服务,比如河流治理、湖泊治理,但这种河流和湖泊的责任方是谁?由于历史原因,根本找不到责任方,找不到责任方就没人付费。结果就只有由政府来承担,而政府承担又没钱干这个事,所以就想通过PPP模式来解决。所以,PPP模式最大的问题就是没有解决收费机制的问题,最终导致很多环保企业深陷其中。第三,企业自己的原因。如果把环保企业比喻成一个登山者的话,作为一个登山者,这几年有一些环保企业是“跑偏”了。环保企业不是投资公司,也不是平台公司,它更多的是一个环境信息技术提供商和环境服务供给者,而我们好多企业把角色定位搞错了,最终才会出现问题。以上三点,就是造成目前环保行业低迷的原因。骆建华表示,十年前他在帮发改委制定环保产业规划的时候,曾经这样形容产业的现状——“满天星斗,不见月亮”,小企业多,大企业少,所以当时提出的目标是“培育50家产值过百亿的环保企业”。如今,十年过去了,这一目标还没实现。当下环保行业的现状是什么呢?骆建华也用了一个词——“灯火阑珊,星光暗淡”。当然,希望还是有的,这需要我们所有环保企业共同努力。▼环境商会首席环境政策专家骆建华。图片来源:全联环境商会2在整体找不到机会的时候就去局部看一看那么,希望在哪里?努力的方向又是什么?参加见面会的企业也都给出了自己的见解。李月中认为,民营环保企业要做强自身的核心竞争力,在某一细分领域、某一专业技术方面做深、做精,提升自身的能力,这一点非常关键。▼环境商会常务会长、维尔利集团董事长李月中。图片来源:全联环境商会 当然,要想提升核心竞争力,需要去创新。而很多企业现在又面临增长的问题,市场竞争压力很大,如何保证创新?怎么还有钱去做创新?这确实是一个矛盾。但也要看到,现在不光环保产业困难,其他很多行业比环保行业更困难。相比而言,环保行业的市场需求还是有一些的,需要企业去挖掘,提升自己的服务和价值链,这就是企业家要做的事。李其林也表示,宏观形势什么时候好转?实际上很难预判,但他同意李月中的观点,环保行业相对其他行业需求还是稳定的。比如春节前国务院印发的《重点省份分类加强政府投资项目管理办法(试行)》,要求全国12个高风险债务省市缓建或停建基础设施项目,但这里面环保相关的基础设施就不在被叫停之内。这说明,环保行业虽然不像有些行业那么热闹,但是我们有基础、稳定的需求,这是这个行业能够持续、稳定发展的基石和信心。无论周期起起伏伏,但环保行业还是有需求的。具体来说,需求在哪里?去年12月环境商会举办的“2023中国生态环境产业高峰论坛暨环境上市公司峰会”上,和君咨询副董事长李向群曾经以《2023中国生态环境市场竞争格局分析》为题做过一个报告。报告显示,大量项目都在广东、山东、四川、江苏、安徽这五个省,是全国前5强。▼图片来源:全联环境商会李其林表示,当我们在整体找不到机会的时候,就去局部看一看,它的细分区域可能有些区域、城市的增长是非常明显的,是有机会的。比如西南地区,由于成渝经济圈的发展,四川的增长就非常快,这些局部区域还有环保企业的增长空间。再比如前面提到过的“12个省市缓建或停建基础设施项目”的事,它是由高风险债务引起的,变相也会带来一些机会。如果一个地方的负债率过高,那它一定需要外部的投资和新的技术来支撑它的经济发展,这里面也是需要一些解决方案的。还有行业壁垒的问题,比如“三桶油”的壁垒很高,第三方环保服务公司很难进去。但在这些领域里,原来有壁垒的行业并不意味着以后也没机会,它可能需要我们去深耕,为业主在转型期、经济下行期提供一个解决方案,这也是环保企业的机会。而对专精特新企业来讲,除了打磨自己的技术和产品之外,还要精准定位发展的方向。因为我们的资源有限、资金有限、精力也有限,那就要在局部区域、局部行业里精准地做好协同,锁定一个优秀的细分赛道,把自己协同进去。找好自己的价值和定位,做好自己的事情,让金融机构、投资方看到你的价值,逐步形成良性循环。骆建华也表示,从历史角度看,任何一个国家的污染治理都是阶段性的,比如日本的环保治理从上世纪60年代末起步,投资高峰是在1973年-1974年左右。而对中国来讲,环保治理的高峰实际就是三年污染治理攻坚战。随着城市化进程、工业化进程减慢,环保投资下降是一个必然的趋势。污水处理率都已经97%-98%了,不可能无穷无尽地再去建污水处理厂。所以,如果从狭隘的污染治理角度看,环保投资肯定是一个下降的趋势,因为高峰期已经过去了。但如果从整个环境改善、环境治理的角度看,有些工作可能才刚刚开始,比如零碳产业、源头治理、生态修复等。因此,不能狭隘地看待这个问题,我们有些企业过去专注于污染治理这一块,对他们来讲,现在的转型可能有点快。未来等环保企业慢慢转型到生态治理、低碳这些领域了,就会逐渐适应新的形势。3发展产业新质生产力激活数字智慧新动能事实上,关于环保企业的未来方向,环境商会其实有一套非常系统的思考,那就是李其林今天报告的主题——新质生产力。“新质生产力”是当下的一个热词。2023年9月,习近平总书记在黑龙江考察时首次提出“新质生产力”概念,之后在不同场合又曾多次提及,今年已成为中国多地部署工作的重要高频词。那么,“新质生产力”到底是什么?在环保产业,又应该如何发展新质生产力呢?李其林表示,所谓新质生产力,就是以科技创新为主的生产力,是摆脱传统增长路径、符合高质量发展要求的新型生产力,更加重视创新、技术进步和智力资源对生产方式和生产效率的全面提升。围绕环境产业,新质生产力可以帮助整个产业实现三大升级——高端化、低碳化和数字化。首先,“高端化”——研发新技术、探索新模式、构建新业态。以“构建新业态”为例,环境产业正在出现业态重构、模式重组的大趋势,对于企业而言,要找准自身在生态链的位置。其中,头部企业通过资本优势构建综合环境服务平台并扩大平台优势;中小企业最好的方向就是走好专精特新之路,打造细分赛道的差异化核心竞争力,借助自身的革新能力开启下一个新征程。其次,“低碳化”——拓展新领域、布局新赛道。新一轮以绿色低碳为特征的科技革命和产业变革,正在与我国加快转变经济发展方式形成历史性交汇。环境产业要真正形成新质生产力,必须抓住“双碳”目标带来的机遇,拓展新领域,布局新赛道。例如,环境企业可以提供综合能源服务,发力新能源领域,布局碳减排赛道。一方面,通过科技手段与碳减排各领域、各环节深度融合,通过与绿色保险、绿色基金、绿色投资等结合,为实现“双碳”目标夯实基础;另一方面,企业自身开展碳减排管理,包括碳资产管理、标准制定、碳减排核算、碳交易等工作,全面推进绿色转型发展。第三,“数字化”——锚定新方向、注入新动能。近年来,生态环境领域积极推动人工智能、大数据等现代数字技术的运用,推进生态环境治理模式创新,提升生态环境治理效率。数字技术正在为产业转型升级注入新动能,深度服务于污染防治攻坚战、支撑生态文明建设。“数字化”可以推动行业标准化、运营自动化、决策智慧化,一场环境产业的“数字化革命”正在悄然兴起。同时,数字资产将来也会成为数字技术与实体经济深度融合的桥梁,挖掘数字资产应用在生态环境领域的价值未来也是产业需要共同探索的课题。总之,新质生产力的发展不可能一蹴而就,推动科技和社会创新,必然也要历经各种困难和调整。环境商会也将与大家一起携手,共同推动环境产业新质生产力发展,赋能生态文明建设,筑梦美丽中国。
  • 起毛起球测试仪的选择方法?
    国内标准针对起毛起球测试分类过细, 容易产生混淆 。如 GB/T 4802 . 3 —1997 适用于大多数织物, 仅注明毛针织最适宜 而 GB/ T 4802 . 2 —1997 和 GB/T4802 . 1 —1997 又适用各类纺织物 , 以致于企业在测试时无从选择哪个标准。  测试原理及条件可以得知 , 翻箱式测试( 包括Orbitor 仪器) 可以在无压力条件下测试 ,而另外两种方法实际在轻微压力下测试, 显然结果是有差异的。  对于纺织出口企业 , 面临贸易国的标准不同 , 对纺织品起毛起球问题测试实际困难更大 。从多数纺织品进口国的测试方法来看, 一般限于翻箱法和马丁代尔法 ,对于起毛起球性能要求高的纺织品采用后者测试为主,因为此法更接近于人们服用过程。  国内的纺织品起毛起球测试仪器主要分为: 起球箱起球仪 、马丁代尔起球仪 、圆轨迹起球仪、乱翻式起毛球测试仪、圆轨迹法起毛起球仪、ICI钉锤式勾丝性测试仪6种。现以上海千实的几种起球仪作为参考:    1.起球箱起球仪  符合标准:BS 5811/8479,IWSTM 152,NEXT 19,M&S P18/P18A/P18B/P21A,GB/T 4802.3,BS EN ISO 12945.1  适用范围:用于正常磨损而产生的起球或勾丝现象,配有独特的控制器,可选标准及其它多种测试转速进行测试,同时配有可编程的30rpm反转系统。  技术参数:  1.可配有4个起球箱;  2.具有正反转功能;  3.转速:20, 30, 40, 45, 50, 60, 65, 70 rpm可任意选择;  4.液晶屏显示所有测试参数;  5.配有实验结束报警功能;  6.密封性好;  7.马达保护功能:如有外力阻挡,能自动停机,并报警。    2.马丁代尔起球仪  符合标准:ASTM D4970,ISO 12945.2,GB/T 4802.2/13775/21196.1/21196.2,ASTM D4966,ISO 12947,FZ/T 20020,BS 3424-24/5690,ISO 12947.1/12947.2,M&S P17/P19/P19C,NEXT 18/18a/18b,ISO 5470-2,IWTO 40,JIS L1096 8.17.5 Method E,Woolmark TM 112/196,BS EN 388/530/13770,ISO 20344  适用范围:  可检测各种植物的耐磨性及起球性能。在一定的压力下,试样和指定的磨料进行持续换向摩擦,和标准参数对比进行磨损和起球程度评价。触摸屏控制,配备功能全面的编程器,可预编程批次及总计数,单独设置每个测试头的计数 可选择包括标准速度在内的4个速度。  技术参数:  1.工位数:9工位   2.计数范围:0~999999次  3.最大动程:横向 60.5±0.5mm,纵向24±0.5mm  4.加压物质量:  a.夹持器:200±1g  b.衣料试样重锤:395±2g  c.家具装饰品试样重锤:594±2g  d.不锈钢蝶片:260±1g  5.磨块有效摩擦直径:  A型 200g(1.96N)摩擦头(9kPa)¢28.8 -0.084mm  B型 155g(1.52N)摩擦头(12kPa)¢90 -0.10mm  6.夹持器与磨台相对运动速度:20-70r/min(可调)  7.装样压锤质量:2385±10g    3.圆轨迹起球仪  符合标准:GB/T 4802.1 JIG 040  适用标准:本仪器用于测试毛织物、化纤纯棉、混纺、针织、机织物的起毛气球状况,以鉴别产品质量和工艺效果。测试时织物与尼龙刷及磨料摩擦,或者仅在调湿状态下和磨料摩擦。  技术特点:  1.磨头与磨台平面接触间隙 ≤0.2mm  2.磨头与磨台平行度 ≤0.3mm  3.磨头与磨台相对运动轨迹 40±1mm  4.尼龙刷面平齐,其高度差0.5mm  5.磨台往复速度 60±1次/min  6.磨头重量 490cN±1%  7.大重锤重量 290cN±1%  8.小重锤重量 100cN±1%  9.次数选择 1~9999  10.满足标准测试要求    4、乱翻式起毛球测试仪:  符合标准:  ASTM D3512,GB/T 4802.4,ISO 12945.3,JIS L1076-D  适用范围:  用于检测织物的起毛起球性能。将105mm×105mm的样品分别放入测试箱中,在叶轮的旋转作用下,置物盒软木衬壁持续随机摩擦,将定时器设置到规定时间,到达设定时间后声响报警,提示试验结束。测试时测试室内会注入压缩空气,以增强翻转,气压可调。  技术参数:  1.样品测试室:4个   2.每个测试室配有旋转的不锈钢叶片   3.配备测试室要求密封性好   4.配备数字式电子计数器   5.配有实验终了报警装置   6.配有压力表及记时器。  7.滚筒规格:146×152mm  8.软木衬规格:452×146×1.5mm(L×W×H)  9.搅棒规格:L=121mm  10.转速:1200r/min  11.压缩空气:0.014-0.021MPa    5、圆轨迹法起毛起球仪  符合标准:  GB/T 4802.1 JIG 040  适用标准:  本仪器用于测试毛织物、化纤纯棉、混纺、针织、机织物的起毛气球状况,以鉴别产品质量和工艺效果。测试时织物与尼龙刷及磨料摩擦,或者仅在调湿状态下和磨料摩擦。  技术特点:  1.磨头与磨台平面接触间隙 ≤0.2mm  2.磨头与磨台平行度 ≤0.3mm  3.磨头与磨台相对运动轨迹 40±1mm  4.尼龙刷面平齐,其高度差0.5mm  5.磨台往复速度 60±1次/min  6.磨头重量 490cN±1%  7.大重锤重量 290cN±1%  8.小重锤重量 100cN±1%  9.次数选择 1~9999  10.满足标准测试要求    6、ICI钉锤式勾丝性测试仪  符合标准:  ASTM D3939,GB/T 11047,JIS L1058  适用范围:  ICI钉锤式勾丝性测试仪适用于检测外衣类针织物和机织物及其它易勾丝的织物,特别适用于化纤长丝及其变形纱织物的勾丝性能。可快速检测织物在正常穿着条件下产生勾丝现象的难易程度(即将纱线从织物中钩出)。  产品详细:  本仪器配有观测箱及不同织物结构的对比图样卡。配有4个测试辊(套上待测织物),钉锤球为碳化钨头,并由预定的电子计数器控制。  技术参数:  1. 试验片尺寸:220mm×330mm   2. 转筒直径:82mm   3. 转筒长度:210mm   4. 钉锤球:碳化钨头   5. 钉锤直径:31.8 mm   6. 钉锤重量:135g   7. 钉锤突出长度:9.5 mm   8. 钉锤植针数:11根钨针   9. 钉针外露:10mm   10. 尖端半径:R0.13mm   11. 导杆工作宽度:125mm   12. 钉锤与导杆间距离:45mm   13. 测试工位:4工位   14. 测试速度:60rpm   15. 外形尺寸:1007×508×405mm(40×20×16英寸)(L×W×H)   16. 重量:约90kg   17. 电源:1∮,AC220V,50Hz,3A。 更多关于 起毛起球测试仪:http://www.qmqqy.com/productlist/list-5-1.html
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 云南省:服务高端仪器 推动关键计量测试仪器国产化
    为贯彻落实国务院《计量发展规划(2021—2035年)》,进一步夯实计量基础,全面提升计量创新能力、服务效能和管理水平,促进云南高质量跨越式发展,结合云南省实际,云南省人民政府办公厅提出《云南省人民政府关于贯彻落实计量发展规划(2021—2035年)的实施意见》。  《意见》指出,要服务精密制造和高端仪器发展。加强高端仪器设备核心器件溯源技术研究和先进测量仪器及零部件制造。围绕仪器设备质量提升,强化计量在仪器设备研发、设计、试验、生产和使用中的基础保障作用,推动量子芯片、物联网、区块链、人工智能等新技术在计量仪器设备中的应用,加快面向智能制造、环境监测、生物医药等领域计量标准、专用计量仪器仪表的研发制造。拓展高端仪器设备评价测量领域和范围,推动关键计量测试设备国产化,促进国产计量测试设备的推广使用。  具体到仪器品类,强调在疾病防控领域,加强生物安全柜等疾病防控关键设施校准能力建设。在医疗器械领域,积极填补核酸提取仪等新仪器的计量溯源能力,开展环氧乙烷灭菌柜校准方法研究。到2025年,建设国家、省级产业计量测试中心10个,力争建设国家级先进测量实验室1个。  全文如下:云南省人民政府关于贯彻落实计量发展规划(2021—2035年)的实施意见  为贯彻落实国务院《计量发展规划(2021—2035年)》,进一步夯实计量基础,全面提升计量创新能力、服务效能和管理水平,促进云南高质量跨越式发展,结合我省实际,现提出以下意见:  一、总体要求  以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,深入贯彻习近平总书记考察云南重要讲话精神,立足新发展阶段,完整、准确、全面贯彻新发展理念,服务和融入新发展格局,以推动我省产业关键测量技术创新为方向,以健全和完善量值传递溯源体系为主线,以构建现代先进测量体系为目标,以“创新突破、改革引领,需求牵引、供给提升,政府统筹、市场驱动,协同融合、开放共享”为原则。到2025年,现代先进测量体系初步建立,部分领域计量科技创新力、影响力达到国内先进,计量在推动经济社会高质量发展,构建现代化经济体系中的地位和作用日益凸显,协同推进计量工作的体制机制进一步完善。到2035年,计量科技创新能力大幅提升,产业计量关键技术逐步突破,先进测量体系全面建成,综合实力跻身国内第一梯队,建成满足云南高质量发展需求的现代化计量技术体系和治理体系。  二、强化计量基础研究,服务创新驱动发展  (一)强化计量基础和前沿技术研究。聚焦绿色能源、绿色铝、绿色硅等全产业链高质量集聚发展,推动计量基础理论研究和前沿技术探索,研究内容纳入各级政府科技计划支持范围。积极参与“量子度量衡”计划,推动人工智能、生物技术、新材料、新能源、先进制造和新一代信息技术等领域精密测量技术的研究,开展测量不确定度、测量程序与有效性研究。  (二)推动计量数字化转型研究。积极推动计量数字化转型,推广应用数字国际单位制,结合云南区位优势推行国际公认的数字校准证书。开展跨行业、跨领域、跨部门计量数据融合、共享和应用研究,开展云南特色产业计量数据中心建设,加强计量数据的溯源性、可信度和安全性研究。在绿色能源、绿色制造、绿色食品、生物医药等领域培育一批计量数据建设应用基地,规范计量数据使用,推动计量数据安全有序流动。  (三)加强新型量值传递溯源技术研究。结合云南绿色能源、有色金属、绿色铝硅等产业复杂环境、实时工况环境和极端环境的计量需求,研究新型量值传递溯源技术和方法,解决准确测量问题。开展扁平化量值溯源体系建设,积极参与数字化模拟测量、工业物联、跨尺度测量、复杂系统综合计量等关键技术研究。参与国家标准物质在制备、定值、保存、溯源及量值传递应用新模式等方面的全寿命周期、系统性研究与评价。推动计量标准和标准物质智能化、网络化技术的研究和应用。  (四)聚焦关键共性计量技术研究。开展数字化模拟测量、工况环境监测、碳排放在线监测等基础共性计量技术研究,提升在线校准、原位检定、动态测量、远程智能化计量校准技术能力。推动高精度、集成化、微型化、智能化新型传感技术研究,服务计量测试仪器设备核心关键部件和技术升级改造。加强产业计量测试中心建设,提升计量新技术、新方法向产业转移的服务能力。  (五)营造良好计量科技创新环境。强化综合性、行业性科研院所导向引领作用,建设一批高水平计量测试实验室和计量科技创新基地。充分发挥企业、科研院所和高校等计量优势资源力量,加大产学研用计量科技合作,依托各类科技成果转化中心和基地,构建计量、质量、标准、知识产权等联动互通的计量科技成果转化服务体系,推动计量科技成果转化应用。  三、强化计量应用,促进重点领域发展  (六)服务先进制造与质量提升。建立一批绿色铝硅、有色金属、轨道交通等领域延链补链强链急需的计量标准,着力解决测不了、测不准难题,为产业发展提供全溯源链、全产业链、全寿命周期并具有前瞻性的计量测试服务。建设产业计量中心和计量测试联盟,搭建一站式计量公共服务平台,为产业发展提供全要素的计量服务。积极参与国家工业强基计量支撑计划,发挥计量对基础零部件(元器件)、基础材料、基础工艺提质增效服务能力。建立云南省工业计量基础数据库,加强工业制造领域计量检定、校准、测试和检测数据的采集、管理和应用。  (七)服务精密制造和高端仪器发展。加强高端仪器设备核心器件溯源技术研究和先进测量仪器及零部件制造。围绕仪器设备质量提升,强化计量在仪器设备研发、设计、试验、生产和使用中的基础保障作用,推动量子芯片、物联网、区块链、人工智能等新技术在计量仪器设备中的应用,加快面向智能制造、环境监测、生物医药等领域计量标准、专用计量仪器仪表的研发制造。拓展高端仪器设备评价测量领域和范围,推动关键计量测试设备国产化,促进国产计量测试设备的推广使用。  (八)提升航空、航天和高原湖泊计量服务能力。建立完善航空、航天、水领域计量保证与监督体系,推动测量仪器数字化、体系化发展,构建全寿命周期的计量评价体系,补齐关键、特色参数计量测试能力短板,提升仪器装备质量控制水平。健全高原湖泊立体观测、生态预警、气候变化、生物多样性监测等领域计量保障体系。  (九)服务智能制造与人工智能发展。积极应对计量融入数字世界以及将计量“数字化”的双重挑战,探索计量服务的数字化转型及其在智能制造、人工智能和机器学习中的新应用。推动量子芯片、物联网、区块链、人工智能等新技术在测量仪器设备中的应用,推进测量仪器设备智能化、网络化、集成化。加快测量数据智能化采集、分析与应用,推进测量设备自动化、数字化改造,建立智慧计量实验室和智能计量管理系统,实现数字化赋能。  (十)服务数字云南建设。围绕数字云南建设需求,推动基于协调世界时(UTC)的分布式可靠时间同步技术的数字计量设施建设。开展计量标准和测量仪器数字化转型、智能化改造研究。加大绿色能源、绿色制造等领域关键参数测量技术研究,加强高端仪器设备核心设计、核心器件、核心控制、核心算法和核心溯源技术研究。依托大型国有企业,深化行业数字化转型探索,以推动测量行业公共支撑能力为核心,引导行业数据集聚、共享和应用,强化数据、业务、技术、基础设施深度融合的行业级大数据中心建设。  (十一)服务碳达峰碳中和目标实现。研究建立云南省碳达峰碳中和计量标准保障体系,开展符合高原环境的碳排放关键计量测试技术研究和应用,建设碳计量标准装置,满足温室气体排放计量监测溯源需求,为温室气体排放可测量、可报告、可核查提供计量支撑。落实碳排放计量审查制度,强化重点排放单位的碳计量要求。建设公共机构低碳计量试点。持续推进重点用能单位能耗在线监测平台建设及应用。健全完善资源环境计量体系,加快能源、水文水资源和环境计量中心建设,推进能耗、水资源、环境监测系统建设。积极参与国家能源资源计量服务示范工程建设,培育壮大能源资源和环境计量服务市场主体。  (十二)服务大众健康与安全。加快疾病防控、生物医药、养老领域、医疗器械、可穿戴设备、营养与保健食品等领域计量服务体系建设。完善气象、地质、地震、洪涝干旱、森林草原火灾等自然灾害防御的计量保障体系。加强危险化学品、矿山、建筑施工、地质勘查等安全生产相关计量器具的监督管理。加强交通安全、社会稳定和安全等领域的计量服务体系建设,推进交通监管设备、警用装备、刑事技术产品等计量测试基础设施建设。开展体育设施和器材计量技术研究和测试服务,促进高原特色体育产业高质量发展。  (十三)服务交通运输基础设施建设。围绕全省综合交通运输网络、城市交通系统、能源资源保障体系、水资源配置网络、新型基础设施等领域重大工程、重要装备、重要运营线路计量需求,加强工程测量、专用设备计量溯源服务能力建设,提高计量服务效能。开展交通一体化综合检测、监测设备计量测试技术研究,服务智慧交通建设。加强通关口岸的计量保障能力,提升物流效率和安全环保水平。加强新能源汽车电池、充电设施等计量测试技术研究。  四、加强计量能力建设,支撑高质量发展  (十四)稳步构建新型量值传递溯源体系。面向国际国内网络化、量子化前沿技术,持续加强新型量值传递溯源体系建设。强化量值传递体系的法制保障和基础保障,科学规划标准建设,填补应用领域的量值传递空白,确保体系完整、有效运行。提高技术能力,优化量值溯源网络,提升量值溯源效能。鼓励和推动社会资源参与市场化、竞争性量值溯源技术服务。  (十五)加快计量标准建设。围绕我省高质量跨越式发展需求,建立以社会公用计量标准、部门行业计量标准、企事业单位计量标准为主体,层次分明、链条清晰的计量标准基础设施网络,建设一批云南特色产业、重点产业、行业急需的计量标准,加快推进各级各类计量标准技术改造和升级换代,推广嵌入式、芯片级、小型化的计量标准在制造过程的实时在线测量和最佳控制中的应用。  (十六)加快标准物质研制应用。鼓励各行业龙头企业、高校、技术机构、科研院所加大对标准物质的研发投入,加强涉及生物医药、食品安全、环境监测等重点领域的标准物质研发技术指导和政策扶持,围绕云南优势产业、高原特色农业、中药材对照药材等重点领域需求,研制一批标准物质,培育一批标准物质研究团队,建设一批标准物质量值核查验证实验室。加强关键共性技术研究,提升标准物质等级和不确定度水平,提高标准物质监管能力。  (十七)强化计量技术机构建设。加强统筹协调,深化计量技术机构改革创新发展,加快推进云南省质量技术监督综合技术检验检测基地建设。充分发挥各州、市人民政府和行业主管部门的积极性,加强普惠性、基础性和公益性计量基础设施建设,打造一批产业计量测试中心、重点实验室,培育一批专业化、社会化、网络化的服务机构,为全省科技创新、产品竞争力提升和经济社会发展提供有力计量测试服务。  (十八)强化计量人才队伍建设。建立云南省计量专家库,支持科技人员面向南亚东南亚国家开展多层次计量交流合作。依托重大计量科研攻关、重点项目建设,开展计量专业技术人才提升行动,培养一批计量科技人才,引进一批国内外计量顶尖人才,储备一批青年科技人才。落实计量专业职业技能等级认定、注册计量师职业资格管理、注册计量师职业资格与工程教育专业认证、职称、职业技能等级、职业教育学分银行衔接等制度。鼓励计量技术机构建立首席研究员、首席计量师、首席工程师等聘任制度。  (十九)强化企业计量体系建设。强化企业主体责任,发挥产业链龙头企业和专业计量技术服务机构的引领带动作用,推行中小企业计量伙伴计划,全面提升中小微企业计量管理能力。引导企业建立健全计量管理制度和保障体系,鼓励企业通过测量管理体系认证。推行企业计量能力自我声明制度,鼓励工业企业争创计量标杆示范。按照国家激励企业增加计量投入的有关普惠性政策规定,对企业新购置的计量器具,符合国家有关规定的,允许一次性计入当期成本费用,在计算应纳税所得额时扣除。鼓励社会各方加强对企业计量发展的资金投入和支持。  (二十)融入区域计量协调发展。主动融入长江经济带、长江上游四省市、泛珠三角区域计量协同发展体系,深化协同发展,推进计量基础设施共享、计量规范共建、计量结果互认、计量行政许可互通。强化区域计量数据协同应用,力争国家区域计量数据协同应用中心落户云南。加强区域合作,开展区域计量科技创新、技术合作、计量比对、能力验证、技术培训等活动,加大计量技术指导帮扶力度,推动区域计量协调发展。  (二十一)推动质量基础设施一体化发展。有机融合计量、标准、检验检测、认证认可等要素资源,提供全链条、全方位、全过程的质量基础设施“一站式”综合服务,支撑高质量发展。探索推进测量数据成果标准化,以精准计量推动标准数据和方法的科学验证,通过标准促进计量价值的应用体现。全面规范检验检测、认证认可领域计量溯源性要求。加强各行业领域、重点实验室、科研机构等计量技术规范、标准的分析、运用和共享。深化质量基础设施协同服务,在关键领域形成“计量—标准—检验检测—认证认可”全链条整体技术解决方案。  (二十二)推进计量国际交流合作。开展与“一带一路”共建国家、《区域全面经济伙伴关系协定》(RCEP)国家、南亚东南亚国家的计量交流合作,利用澜湄区域国家计量发展协同机制,参与国家间的计量援助和知识传播。参与相关国际计量互认活动,支持建立国际法制计量组织(OIML)证书指定实验室。  五、加强计量监督管理,提升计量监管效能  (二十三)完善计量监管制度体系。提升计量依法行政水平和现代化治理能力,组织开展对关系全省经济社会发展、人民群众切身利益相关的地方计量监管制度的梳理、规范和制修订。严格执行国家强制管理计量器具目录、部门行业专用计量器具目录。健全云南省计量技术规范体系,成立云南省计量专业技术委员会,建立计量技术规范与计量标准建设协调机制,开展计量技术规范制修订、实施和效果评估。  (二十四)强化计量监管制度建设。坚持一般监管与重点治理相结合,构建计量监管部门协调联动机制,创新计量监管制度。推动监管重点从管器具向管数据、管行为、管结果的全链条计量监管模式转变,探索实施智能计量器具实时监控、失准更换和监督抽查相结合的新型监管制度。完善计量比对工作机制和管理模式,培育一批承担省级计量比对的主导实验室。开展国家法定计量单位使用监督检查。落实市场主体计量风险管控主体责任,强化计量风险防范意识,快速有效处置计量突发事件。  (二十五)强化民生计量监督管理。实施计量惠民工程,加强供水、供电、供气等相关民生计量基础设施建设,提升保障能力。面向精准医疗、可穿戴设备、体育健身、养老等民生领域,完善相关计量保障体系,夯实高品质生活的计量基础。围绕食品安全、贸易结算、医疗卫生、生态环境等领域的计量监管需求,加强计量器具强制检定能力建设。持续开展民生计量专项监督检查。围绕实施乡村振兴战略,推动计量技术服务向“三农”领域延伸,持续提升乡村计量技术创新和服务供给水平,持续缩小计量领域公共服务的地区差距、城乡差距,助力共同富裕。  (二十六)创新智慧计量监管模式。运用区块链、大数据、云计算、物联网等新技术,探索远程监管、移动监管、预警防控等新型监管模式,建立智慧计量监管平台和数据库。鼓励计量技术机构建立智能计量管理系统,探索计量端设备采集数据直接上链,从源头上确保计量数据的真实性。推广智慧计量理念,支持产业计量云建设,推动企业开展计量检测装备的智能化升级改造,提升质量控制和智慧管理水平,服务数字化车间和智能工厂建设。  (二十七)推进诚信计量分类监管。推进“以经营者自我承诺为主、政府部门推动为辅、社会各界监督为补充”的诚信计量共治。深入开展诚信计量行动,引导经营者参与诚信计量示范活动。强化计量数据归集共享,加强信息公开,建立市场主体计量信用记录,推动计量信用分级分类监管、“双随机、一公开”监督落实。  (二十八)加强计量执法体系建设。加强计量执法队伍建设,提升计量执法装备水平,建立健全查处重大计量违法案件快速反应机制和执法联动机制,加强执法协作,提升计量执法效果。加大对制造、销售和使用带有作弊功能计量器具等违法行为的查处力度,严厉打击伪造计量数据、出具虚假计量证书和报告的违法行为,对举报计量违法行为的单位和个人,按照国家和我省有关规定进行奖励。  (二十九)促进计量服务市场健康发展。充分发挥市场在资源配置中的决定性作用,吸纳各类社会机构参与法制计量工作,构建开放、多元的法制计量格局。培育计量校准、计量测试、产业计量等高技术服务新兴业态,培育和壮大专业化计量技术服务市场,持续满足市场个性化、多样化需求。强化对科研院所、高等院校所属实验室及第三方检验检测机构在用仪器设备的计量溯源性要求,保障科研成果的有效性和测试结果的可信度。  六、保障措施  (三十)强化组织领导。坚持党对计量工作的全面领导,把党的领导贯穿于意见实施全过程。各级政府要高度重视计量工作,把计量发展与国民经济和社会发展规划实施有效衔接,按照任务项目化、项目清单化、清单具体化要求,扎实抓好意见各项任务的落实。有关部门、行业、企业要结合实际,制定切实有力的措施,确保意见各项任务落实。  (三十一)加强政策支持。各级政府要对公益性计量技术机构予以支持,将公益性计量工作所需经费纳入本级预算。加强计量基础设施和计量标准、标准物质、计量数据等国家战略资源能力建设,确保产业发展、保障和改善民生相关的量值传递溯源体系和监管体系有效运行。发展改革、科技、人力资源社会保障等部门要会同市场监管部门制定相应的投资、科技和人才保障支持政策,加大对计量技术研究、创新平台建设、成果转化应用的支持力度。积极引导企业加强技术创新,引导社会资金有序参与计量技术、装备研发和应用服务。  (三十二)加强文化建设。创新开展计量文化建设和科普宣传引导,开展好世界计量日等主题文化活动,推动计量文化研究、发展计量文化产业,开发计量科普资源,依托市场监管科普基地大力传播计量文化、弘扬“度万物、量天地、衡公平”的计量文化魅力。积极开展计量先进典型的培养和宣传,弘扬新时代计量精神、工匠精神,不断增强广大计量工作者的荣誉感、责任感和使命感。  (三十三)加强协调联动。充分发挥计量工作部门联席会议制度作用,建立上下联动、横向协同、跨系统跨部门贯通的工作机制,推进军地协同,形成工作合力。充分发挥学会协会、科研院所、高校等单位的优势和作用,集聚各方资源和力量,共同推动现代先进测量体系建设。  (三十四)狠抓工作落实。各级政府、有关部门、技术机构、行业、企业要建立贯彻落实意见的工作机制,省市场监管局会同有关部门加强对意见实施情况的跟踪监测,通过第三方评估等形式开展意见实施的中期评估、总结评估,总结推广典型经验做法,及时研究解决工作推进中的问题,重要情况及时报告省人民政府。  附件:1.全省计量发展主要指标  2.重点任务清单  云南省人民政府  2022年7月14日  附件1全省计量发展主要指标  附件2重点任务清单
  • “仪”测未来,首届信息通信测试仪器仪表产业技术峰会成功召开
    6月5日,以“仪”测未来为主题的2023信息通信测试仪器仪表产业技术峰会在北京通信展期间成功召开。本次峰会由中国仪器仪表学会信息通信测试仪器仪表专业委员会(以下简称“专委会”)主办,中国移动研究院承办,来自中国仪器仪表学会、中国电信、中国联通、中国信通院、北京邮电大学、宁波大学、华为、中兴、思仪科技、思博伦、是德科技、信而泰等70余家单位的近300人参加。中国工程院院士张平、科技部“重大科学仪器设备开发”重点专项专家组组长年夫顺出席会议。中国仪器仪表学会副理事长兼秘书长张彤、中国移动研究院党委书记、科技委主任张同须出席峰会并致辞。专委会副主任张红卫、顾荣生、吴局业、李海龙等出席会议。中国仪器仪表学会副理事长兼秘书长张彤在致辞中强调,面对新时代新任务新要求,专委会应把握发展机遇,迎难而上,充分激发信息通信学科与仪器仪表学科的合力和活力,共同探索信息通信仪器仪表产业生态发展路径,努力推动我国仪器仪表事业实现高质量发展。中国移动研究院党委书记、科技委主任张同须在致辞中指出,中国移动作为信息通信技术坚持不懈的推动者,将积极践行链长责任,联合整个产业链的力量,共同开展仪器仪表关键技术研究、测试测量理论研究、标准制定、测试认证和应用创新,形成一个需求共识、技术创新、产业协同的平台,实现行业生态的健康循环。 本次峰会上,来自信息通信和仪器仪表产业上下游的代表企业领导嘉宾,共同见证“信息通信测试仪器仪表验证评价中心“的揭牌,共同发布《信息通信测试仪器仪表产业技术白皮书》。来自运营商、科研院所、设备商、测评机构、仪器仪表企业的专家代表就当前与未来信息通信仪器仪表产业发展与测试技术趋势、应用场景、计量认证等方面进行了精彩的分享。中国工程院张平院士在演讲中详细阐述了未来信息通信网络的演进趋势、五大关键技术特征及其测试技术需求。尤其针对智简网络,张平院士强调构建统一的、具有泛化价值的性能评估体系至关重要。为应对下一代仪器仪表的实现挑战,张平院士呼吁汇聚产学研用集体智慧,培养信息通信及仪器仪表高端人才,共同攻关基础理论、基础材料、测量算法等“堵点”。中国电科年夫顺首席科学家在主题分享中,提出未来智能化仪器的发展方向——具备动态感知、智慧识别、自动反应能力并共享网络、共享数据、共享算法;提出了加快检测装备和通信及智能技术融合,提升产业链韧性和安全水平,支撑制造强国、质量强国、数字中国建设具有重要意义。作为移动通信子链“链核”企业单位的中电科思仪科技股份有限公司党委书记、董事长张红卫分享了《测试助力通信产业,合作共生共赢未来》的主题报告,分析了未来6G通信技术的发展对测试遇到的新挑战;思仪科技为现在及未来测试挑战提供的解决方案以及携手行业伙伴共同推动产业发展情况。中国移动集团级首席专家胡臻平、中国联通中讯设计院副总工程师顾荣生、华为数据通信产品线研发总裁吴局业等专家分别进行了精彩主题演讲。 ——“中国仪器仪表学会信息通信测试仪器仪表验证评价中心”正式揭牌——在张平院士和年夫顺首席科学家两位名誉主任的见证下,中国仪器仪表学会副理事长兼秘书长张彤、中国移动研究院党委书记、科技委主任张同须共同为“信息通信测试仪器仪表验证评价中心”揭牌。仪器仪表作为典型的“专精特新”产品,是支撑信息通信产业和技术发展的“重器”,具有独特的产业话语权和技术影响力。验证评价中心的成立标志着业界在仪器仪表新技术标准跟进、高端仪器需求牵引、开发验证及能力准入等环节达成紧密协作共识,共同建立产业技术评价标准体系,推动以用促研、以研带产。——《信息通信测试仪器仪表产业技术白皮书》正式发布——成为科技强国,发展高端仪器仪表是必经之路。《信息通信测试仪器仪表产业技术白皮书》根据信息通信网络和技术的未来发展趋势,首次对仪器仪表的测试测量需求、技术挑战以及产业发展机遇进行了全面分析,并提出工作倡议,呼吁业界在仪器仪表关键技术攻关、高端产品研发、测试评估验证、产品示范应用等方面加强合作,确保测试能力满足未来信息通信技术发展需要。——测试专家专题演讲——中国移动集团级首席专家/技术部网络技术与资源处经理胡臻平、中国联通中讯设计院副总工程师顾荣生、中国信通院泰尔系统实验室主任周开波、专委会副主任/中电科思仪科技股份有限公司党委书记/董事长张红卫、华为数据通信产品线研发总裁/ICT测试分委会主任吴局业、思博伦通信副总裁/大中华区总经理刘勇、宁波大学教授/宁波艾欧迪互联科技有限公司总经理杨新杰等七家来自运营商、科研院所、设备商、测评机构、仪器仪表企业的专家代表就当前与未来信息通信仪器仪表产业发展与测试技术趋势、应用场景、计量认证等方面进行了精彩的分享。——圆桌论坛,共话新技术测试场景的需求与挑战——最后,中国移动研究院杨海俊主持了圆桌研讨环节,与来自中国信通院、中兴、新华三、是德科技和信而泰的专家,针对5G垂直行业、人工智能等新场景、新技术、新业务的测试需求和仪器仪表技术挑战展开了深入的探讨,为下一步的合作研究提供了建设性的意见。峰会还设置了“信息通信测试仪器先进产品展示区”,思仪科技等国内外12大仪器仪表最新成果重磅亮相,成功搭建起产学研用的对接平台。信息通信与仪器仪表产业实现同频共振,“仪器”测享未来。本次峰会共同探讨了未来高端信息通信测试仪器仪表及测试技术发展之路,共筑产业生态循环,达成了建立信息通信测试仪器仪表产业联合体的共识,体现了国内信息通信与仪器仪表产业链的同频共振,是双链深度协同的起点。专委员会成功搭建起产学研用的对接平台,汇聚了运营商、设备商、仪器仪表等众多信息通信产业链领军企业。专委会将携手业界合作伙伴深耕不辍,做优做强仪器仪表这个新基建的”重器“,助力我国数字经济社会的高质量发展!
  • 国产高端测试仪器市场困局何解?产学研模式新探索
    当今时代,科技迅猛发展、芯片量呈几何倍数增长,芯片已经进入融合的时代。从无人驾驶到虚拟现实、从人工智能到云计算、从5G到物联网,一颗芯片上承载的功能越来越多,芯片工艺越来越复杂,新器件类型层出不穷,众多驱动因素的推动对半导体测试技术不断提出新的要求。行业需要更加面向未来需求的测试系统和方案,来打破传统仪器固有的不足和局限。以半导体器件测试来看,在先进器件研究过程中,新材料、新结构与新工艺的应用都可能带来未知的变化。研究者不但要关注精确的静态电流电压特性,更希望观察到细微快速的动态行为。同时随着半导体尺寸不断减小,一些现象需要在极短的时间内才能观察到,例如MOS器件的BTI效应,因此,对包括短脉冲测试(PIV)在内的新技术提出了要求。前不久,概伦电子与北京大学集成电路学院及上海交通大学电子信息与电气工程学院联合研发的新一代高精度快速波形发生与测量套件FS-Pro HP-FWGMK正式发布,填补了其半导体参数测试系统FS-Pro在短脉冲测试的空缺,同时也填补了国内短脉冲测试技术的空缺。高端测试仪器FS-Pro“如虎添翼”据了解,此次发布的最新一代高精度快速波形发生与测量套件FS-Pro HP-FWGMK由黄如院士在北京大学和上海交通大学的团队与概伦电子联合研发。作为短脉冲测试技术的先行者,黄如院士团队经过了十余年的努力,在实践过程中掌握了一整套短脉冲产生、测量以及分析技术。概伦电子基于其提供的包括测试方法、电路原型、方案框架、版图设计及PIV应用在内的指导意见继续精细开发,满足高增益与高带宽的同时,有效抑制放大电路的非线性失真,最终实现了最小脉宽130ns的高精度测量。概伦电子FS-Pro半导体参数测试系统(图源:概伦电子)概伦电子的半导体参数测试系统FS-Pro是一款功能全面、配置灵活的半导体器件电学特性分析设备,在一个系统中实现了电流电压(IV)测试、电容电压(CV)测试、脉冲式IV测试、任意线性波形发生与测量、高速时域信号釆集以及低频噪声测试能力。此次增加短脉冲IV(PIV)技术后,FS-Pro更是如虎添翼,几乎所有半导体器件的低频特性表征都可以在FS-Pro测试系统中完成,可广泛应用于各种半导体器件、LED材料、二维材料器件、金属材料、新型先进材料与器件测试等。其全面而强大的参数测试分析能力极大地加速了半导体器件与工艺的研发和评估进程,并可无缝的与概伦电子低频噪声测试系统9812系列集成。据了解,概伦电子噪声测试系统9812系列是全球半导体行业业内低频噪声测试的“ 黄金标准”,为半导体行业先进工艺研发、器件建模和高端电路设计提供了更加完整而又高效的低频噪声测试及分析解决方案,可以满足各种不同工艺平台下半导体器件和集成电路低频噪声测试的需求。FS-Pro快速的DC测试能力进一步提升了9812系列产品的噪声测试效率和吞吐量,性能相较同类型产品获得大幅度提升,并将在噪声测试的业内领先技术扩展到通用半导体参数测试。基于在产线测试与科研应用方面的优异表现,FS-Pro全面的测试能力在科研学术界受到了广泛关注和认可,已被数十所国内外高校及科研机构所选用,同时也被众多芯片设计公司、代工厂和IDM公司所釆用。国产高端测试仪器新突破纵观行业现状,测试测量仪器属于高端科研仪器设备,需要长时间积累,特别考验一个国家基础技术的厚度。由于国内本土测量仪器行业起步较晚,主营电子测试测量仪器的企业数量少,发展情况也不尽相同,目前我国的产品结构主要集中在中低端,大部分企业仍处于仿制研发的阶段,仅有小部分企业走向应用研发的转型之路。根据数据显示,中国电子测量仪器的市场规模由2016年的28.72亿美元增至2021年的50.39亿美元,预计2022年将进一步达到53.14亿美元。面对国内如此巨大的市场需求,以及受国外隐形技术壁垒等因素制约,国内市场仍被掌握在国外仪器仪表厂商手中,高端产品依赖进口,行业类第一梯队公司主要为是德科技(Keysight)、泰克(Tektronix)、罗德与施瓦茨(R&S)等欧美企业。国内测量仪器与国际水平相比,在产品结构、高端产品的技术水平、市场占有率等方面存在较大差距,亟待国内本土企业填补高端仪器的技术和市场空白。在这种情况下,提高企业的研发力度成为了电子测量仪器行业发展的关键点之一。同时伴随着强烈的自主可控需求,国产高端测试测量仪器市场在近几年迎来高速增长。概伦电子的半导体参数测试系统FS-Pro作为高端测试仪器的代表之一,在先进器件和材料等领域的测试表现非常出色,集 IV、CV、1/f noise及PIV测试等于一体,高精度、低成本、综合的半导体器件表征分析能力灵活满足各种用户的不同测试需求,大大节省了测试设备采购开支。同时,工业标准的PXI模块化硬件结构,通用的软件平台,内置测量软件提供数百个预定义的测试模板和功能,实现即插即用体验,使FS-Pro成为了半导体器件与先进材料研究方面的得力助手,产品性能直接对标是德科技等行业巨头的高端测试仪器。近年来,随着半导体行业的快速发展,对测试测量仪器的需求在逐渐扩大。当前中国的半导体测试测量行业在飞速发展中,可以预见的是,复杂的国际关系背景和市场需求的双重驱动下,关键领域的国产化成为竞争焦点,自上而下的产业政策和企业突围将加速自主可控产业链的成长,国产半导体测量仪器迎风口。随着概伦电子在中高端产品领域取得突破,将会使其成为国内该行业的领头羊,有望引领该领域的国产化替代浪潮。概伦电子产品布局日臻完善半导体器件特性测试是对集成电路器件在不同工作状态和工作环境下的电流、电压、电容、电阻、低频噪声、可靠性等特性进行测量、数据采集和分析,以评估其是否达到设计指标。概伦电子半导体参数测试系统FS-Pro能够支持多种类型的半导体器件,具备精度高、测量速度快和可多任务并行处理等特点,能够满足晶圆厂和集成电路设计企业对测试数据多维度和高精度的要求。半导体器件特性测试仪器采集的数据是器件建模及验证EDA工具所需的数据来源,两者具有较强的协同效应。随着下游晶圆厂客户产能扩张,相关测试需求或将进一步释放。在制造类EDA工具方面,概伦电子的器件建模及验证EDA工具已经取得较高市场地位,被全球大部分领先的晶圆厂所采用和验证,主要客户包括台积电、三星电子、联电、格芯、中芯国际等,在其相关标准制造流程中占据重要地位。使用该EDA工具生成的器件模型通过国际领先的晶圆厂提供给其全球范围内的集成电路设计方客户使用,其全面性、精度和质量已得到业界的长期验证和广泛认可。在此基础上,通过半导体器件特性测试仪器与EDA工具的联动,能够打造以数据为驱动的EDA解决方案,紧密结合并形成业务链条,帮助晶圆厂客户有针对性的优化工艺平台的器件设计和制造工艺,不断拓展产品的覆盖面,进一步为概伦电子打造完整的制造EDA流程丰富了现有技术及解决方案。目前概伦电子主要产品及服务包括制造类EDA工具、设计类EDA工具、半导体器件特性测试仪器和半导体工程服务等。从其产品布局和发展历程来看,概伦电子在具备高价值的落地场景和应用需求的前提下,用相对较短的时间、较小的人员规模和投入,打造了全新的设计方法学和流程,逐渐形成了具有技术竞争力的EDA工具、测试产品和工程服务,并在国际主流市场获得产品验证机会,在多环节和维度上实现了对国际EDA巨头全流程垄断的突破。产学研模式新探索上文提到,此次FS-Pro HP-FWGMK套件的发布是概伦电子与北京大学集成电路学院及上海交通大学电子信息与电气工程学院联合研发的产物,在填补了半导体参数测试系统FS-Pro在短脉冲测试空缺的同时,也代表了国内产学研深度合作的典范。当前,在国产EDA的发展过程中,人才是关键,创新求变正在重塑新的核心竞争力。EDA核心技术的突破没有捷径可走,需要持续吸引各种人才、加强产学研合作和保持高研发投入,长期坚持技术沉淀,通过客户需求引导,才有可能形成新的突破。在当前行业背景和发展现状下,概伦电子正在探索以产教融合方式来培养项目和推动EDA技术和人才发展的新模式,携手各界通力合作,共同应对后摩尔时代技术与市场的双重挑战,构建中国EDA产业命运共同体,致力于突破困局并最终实现超越。
  • 预测2025年通用电子测试仪器市场超100亿美元,国产厂商有望突围
    东方财富证券发布研究报告称,2021年《科学技术进步法》发布,有力推进电测仪器行业国产化进程,测试仪器仪表属于高度专业化行业,Frost&Sullivan预计2025年全球电子测量仪器行业市场规模将达到172.4亿美元,其中通用电子测试仪器约占60%,市场规模有望超过100亿美元。该行认为国产厂商已经跨越从0到1的阶段,有望在全球电测仪器市场中突围,实现强Alpha。东方财富主要观点如下:1、通用电子测试仪器仪表市场规模有望超百亿美元测试仪器仪表属于高度专业化行业,其中,示波器、信号发生器、电源及电子负载、万用表等电子测量工具的标准化较高,可归于通用电子测试仪器仪表,被认为是“电子工程师之眼”。Frost&Sullivan预计2025年全球电子测量仪器行业市场规模将达到172.4亿美元,其中通用电子测试仪器约占60%,市场规模有望超过100亿美元。(电子测量仪器应用场景,图片来源:腾讯云,仪商网配图)电子化、电气化、智能化、信息化推动电子测试应用领域与场景不断拓展,行业需求有望稳步提升,将会呈现弱Beta。(鼎阳科技生产车间,正在调试数字示波器的带宽和阻抗,图片来源:深圳特区报,仪商网配图)新能源汽车、汽车电子、5G通信、半导体及电子元件、消费电子等行业成为测试仪器仪表需求的主要增长点。研究机构预计2019年至2025年,全球、中国细分产品营收与增长分别:示波器:17.3/6.5亿美元,CAGR6.3%/8.0% 射频类仪器:27.8/9.4亿美元,CAGR5.8%/6.8% 信号发生器:11.8/3.8亿美元,CAGR5.1%/6.5% 电源及电子负载:13.4/5.5亿美元,CAGR5.8%/6.8%。万用表:12.5/5.0亿美元,CAGR6.2%/7.2%。全球数字万用表市场2019-2024年CAGR为4.33%。市场规模将达到10.47亿美元,北美、亚太和欧洲是数字万用表最主要的市场。2、海外公司暂时主导市场,品牌、产品、渠道是行业三要素行业暂时由美欧日企业主导,是德科技、Fortive等龙头占据主要市场份额,国内龙头企业营收规模在3-8亿元区间,市场份额不足10%。下游采购需求呈现低频率,品牌是客户选择的重要依据。产品需要满足研究、专业技术人员的要求,高性能产品是重要的技术壁垒。专业且长尾的市场需要强有力的渠道进行支撑,直销、经销等方式相互配合实现渠道壁垒。3、国产品牌已经站稳,正处于从1到N阶段政策支持、人才优势,国产品牌有望向广度、深度拓展,实现强Alpha。2021年《科学技术进步法》发布,有力推进电测仪器行业国产化进程。仪器仪表行业是强研发驱动行业,国产品牌在政策、资本支持下,充分利用我国工程师红利优势,正在向海外、中高端等市场发起冲击,并且在自研芯片等关键元器件领域取得一定突破。该行认为国产厂商已经跨越从0到1的阶段,有望在全球电测仪器市场中突围,实现强Alpha。
  • 真理光学粒度仪新品及应用方案亮相2018全国碳化物技术交流会
    九月的古都开封,悄然间有了一丝秋意。9月15-17日,2018年全国碳化物粉体与陶瓷制备技术交流会在开封来旺达酒店顺利召开。大会聚集了全国碳化物粉体行业的知名专家、企业及用户,就此机会畅谈碳化物陶瓷制备和测试技术以及碳化物粉体在各领域的应用。真理光学首席科学家张福根博士在会上作了题为《碳化硅粉体颗粒的表征技术》的报告,详细阐述了碳化物粉体的粒度测试原理和方法。 张福根博士在会场作报告真理光学仪器有限公司作为本次会议的赞助单位,展出了性价比极高的LT2200系列激光粒度分析仪。多位与会嘉宾在展台现场观摩仪器,更有产品经理向嘉宾介绍产品性能和操作步骤。不少嘉宾留下了联系方式,希望会后能够深入交流。 与会嘉宾参观真理光学仪器LT2200系列是真理光学继LT3600系列激光粒度仪之后,基于用户对高性价比粒度仪的需求而倾力打造的全新一代超高速智能激光粒度分析系统。LT2200系列加持了真理光学首创的偏振滤波专利技术和衍射爱里斑反常变化(ACAD)的补偿修正技术,用户无需选择分析模式,即可在全粒径范围获得准确可靠的粒度结果。LT2200系列测量速度高达创纪录的每秒20000次,粒径范围为0.02um-2200um,兼顾极高的灵敏度和重现性,能充分满足碳化物粉体行业技术研究和质量控制的需要。
  • 涉及碳化硅功率模块和外延设备,2个项目刷新“进度条”
    近日,又有两个碳化硅相关项目披露了最新进展,分别为瑞福芯科技车规级SiC半导体功率模块产业化项目和纳设智能南通新生产基地项目,两个项目总投资超10亿元。车规级SiC半导体功率模块产业化项目签约8月13日,据瑞福芯科技官微消息,瑞福芯科技总经理周旭光与协同创新基金管理有限公司董事长李万寿及总经理丘炜雄、中科院先进研究院中科中孵总经理涂乐平、桉森芯(上海)微电子有限公司董事长陈建璋于8月9日组成项目调研团,一起就瑞福芯科技“车规级SiC半导体功率模块产业化项目”落地江苏东台高新区进行投资实地考察。source:瑞福芯科技考察后,瑞福芯科技与江苏东台高新区签定了《车规级SiC半导体功率模块产业化项目战略合作框架协议》。瑞福芯科技拟落地江苏东台高新区,投资10-15亿元建设第二研发中心和产业化生产基地,首期启动资金投入1亿元。资料显示,瑞福芯科技成立于2022年10月,注册资本1000万人民币,经营范围含半导体分立器件制造、半导体分立器件销售、电子元器件制造、电力电子元器件制造等。碳化硅业务进展方面,瑞福芯科技在去年2月与爱仕特签署战略合作协议,共同推动SiC功率模块在新能源汽车领域的应用。据悉,瑞福芯科技已建立预计年产30万只的模块工厂,主要产品为车用SiC MOS功率模块。基于双方签署的战略合作协议,在未来数年内瑞福芯科技生产的SiC MOS模块将全部采用爱仕特的SiC MOS芯片,爱仕特将为瑞福芯科技批量供应车用功率模块所需的1200V/17mΩ及1700V/17mΩ的SiC MOS芯片,并协助瑞福芯科技建设模块工厂,保证其后续的量产需求。纳设智能南通新生产基地环评获批8月5日,据南通高新区消息,纳设智能位于南通市南通高新技术产业开发区双福路126号半导体光电产业园N2栋1F、4F的厂房近日获得环评审批。环评信息显示,该项目总投资6000万元,通过购置超声波清洗机、电加热烤箱、光学装配平台、氦检仪、CV测试仪等生产设备进行CVD外延设备生产,项目建成后,预计形成年产R02型号CVD外延设备230台、R04型号CVD外延设备220台的生产能力。source:纳设智能在碳化硅外延设备细分领域,纳设智能6英寸碳化硅外延设备在2023年已批量出货给多家外延客户,也获得了批量验收,业绩相较于2022年增长了10倍。在6英寸碳化硅外延设备出货基础上,纳设智能研发并交付了8英寸碳化硅外延设备,其具备独特的反应腔室设计、可独立控制的多区进气方式等特点,将更好的提高外延片的均匀性,降低外延缺陷及生产中的耗材成本。目前,该设备已销售给多个客户。在碳化硅衬底细分领域,纳设智能自主研发的首台原子层沉积设备在完成所有生产和测试流程后,于今年1月顺利出货。原子层沉积(Atomic Layer Deposition,简称ALD)是一种薄膜沉积技术,可归于化学气相沉积大类。相对于一般化学气相沉积,其具有独特的表面自限制化学效应,因而可以逐个原子层生长各种化合物或单质薄膜材料,实现更精确的厚度控制,可用于各类衬底材料的薄膜沉积。
  • 两部门发文促进企业计量能力提升,加强计量测试仪器设备研制
    近日,市场监管总局联合工业和信息化部印发《关于促进企业计量能力提升的指导意见》(以下简称《指导意见》),明确十三项重点任务。 其中,在强化企业计量能力建设的主体地位方面,提出强化企业仪器设备溯源性要求,建立必要的计量标准装置,梳理试验和生产过程关键参数测量方法和测量程序,保证测量仪器设备的量值准确可靠、溯源有据。在做好企业计量能力提升的支撑服务方面,提出以企业计量需求为导向,利用科技园、众创空间、科创中心、联合实验室等平台,加大产学研用计量技术联合攻关力度,建立计量需求快速响应机制,加强企业急需的计量测试仪器设备研制,加快计量测试新技术、新理论、新方法、新成果的转化和应用。在优化企业计量能力提升的政策环境方面,提出引导仪器仪表企业加强高端测量仪器核心技术研究,鼓励采用高品质国产仪器仪表,培育具有核心技术和核心竞争力的国产仪器仪表品牌企业。《指导意见》全文如下:市场监管总局 工业和信息化部 关于促进企业计量能力提升的指导意见各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委)、工业和信息化主管部门,各中央企业,中国计量科学研究院、中国测试技术研究院,中国机械工业联合会、中国轻工业联合会、中国纺织工业联合会、中国石油和化学工业联合会、中国建筑材料联合会、中国电子信息行业联合会、中国有色金属工业协会、中国质量协会、中国计量测试学会、中国计量协会:计量是重要的国家质量基础设施,是支撑企业提升产品质量、提高生产效率、实现自主创新的重要基础。近年来,企业计量意识不断增强,计量基础能力稳步提升,计量在服务企业发展中发挥了积极作用。但是,随着企业数字化、网络化、智能化进程加快,计量在支撑企业转型升级和高质量发展等方面还存在重要性认识不足、技术能力与发展需求不匹配、创新能力“散而不强”等突出问题。为进一步促进企业计量能力提升,现提出以下意见。一、总体要求(一)指导思想。坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,立足新发展阶段,完整、准确、全面贯彻新发展理念,构建新发展格局,推动高质量发展,深入贯彻落实《计量发展规划(2021—2035年)》,面向企业高质量发展的计量需求,构建以企业为主体、政府为引导、各类计量技术服务资源为支撑的企业计量体系,进一步夯实企业计量基础,提升企业计量能力和水平,服务现代化经济体系建设。(二)基本原则。企业主导,政府引导。充分发挥企业积极性和主动性,强化企业开展计量工作的主体地位,健全企业计量技术和管理手段,推动企业计量活动规范化开展。加强企业计量工作顶层制度设计,完善企业计量政策法规,加大政府引导力度,为企业发展创造良好环境。健全体系,提升能力。创新企业计量工作理念和模式,建立健全覆盖生产经营活动全过程和产品全寿命周期需求的企业计量体系,促进企业计量资源优化升级和计量能力提升。分类指导,逐步推进。针对不同行业、领域、规模企业发展特点和需求,分类、分层促进企业计量能力提升,科学合理组织试点实施,充分发挥典型经验的引领带动作用,逐步实现先进企业计量理念、技术、模式的推广应用。协同创新,服务发展。充分发挥计量技术机构、科研院所、高等院校、行业学协会等各类社会资源作用,为企业计量工作提供技术支持、体系认证、人才培养等服务,支持企业创新发展。(三)工作目标。到2025年,企业计量意识显著增强,计量活动更加规范,计量能力显著提升,计量政策环境持续改善,计量服务企业高质量发展的基础作用更加凸显。到2035年,企业计量意识深入人心,计量活动更加高效,计量能力全面提升,计量政策环境持续优化,计量成为促进企业转型升级、提质增效、创新发展的重要引擎。二、重点任务(一)强化企业计量能力建设的主体地位。1.全面加强企业计量管理。企业应当认真贯彻执行国家计量法律、法规和规章,将计量管理要求纳入企业管理体系,推动计量工作与企业生产经营协同发展。明确企业计量管理职责,创新计量管理手段,根据企业需要设置专(兼)职计量管理人员,建立健全企业计量管理制度,严格遵守计量法制性要求,确保守住法制计量底线。根据企业实际发展需求和生产工艺特点,建立覆盖材料检验、研发设计、质量控制、出厂检验、应用维护等产品全生命周期的计量保障体系,提升产品质量控制能力和水平。2.合理配置和应用计量资源。企业应当结合当前存在的计量能力短板和未来发展的关键计量测试需求,合理确定计量工作重点,保证计量投入,确保必要的计量资源配置。鼓励企业建立动态更新的计量器具配备清单,制定计量器具作业指导书、使用手册等,将计量器具配备和使用要求纳入企业标准,推动计量器具配备和使用规范化管理,重点用能单位、排放单位还应当配备能源资源、碳排放相关计量器具,满足能源资源、碳排放相关计量要求。强化企业仪器设备溯源性要求,建立必要的计量标准装置,梳理试验和生产过程关键参数测量方法和测量程序,保证测量仪器设备的量值准确可靠、溯源有据。3.积极培育企业计量创新能力。鼓励企业围绕重点领域计量创新需求,充分利用企业内外部计量资源,集中力量开展基础前沿和共性关键计量技术创新和攻关,力争在支撑产业链运行的计量技术瓶颈上取得新突破、多出新成果,推动核心技术自主可控和核心成果转化应用。加强企业计量相关专利、商标等知识产权保护,逐步形成有影响力、带动力、辐射力的竞争优势,为企业自主创新赋予新能量、打造新引擎,提升企业产品核心竞争力。4.强化企业计量数据积累与应用。企业应当加强计量数据的积累,对产品研制、试验生产、使用过程的计量数据进行搜集整理,开展计量数据分析研究,推动企业生产控制过程改进,提升企业自主研发能力和精细化管理水平。鼓励有条件的企业开展智慧计量体系建设,加强计量数据的智能化采集、分析与应用,加大在用计量器具、试验检测设备的自动化、数字化改造力度,建立智慧计量实验室和智能计量管理系统,推动企业数字化转型升级。加大计量数据挖掘力度,提升数据应用价值,鼓励有条件的企业开展计量数据应用平台建设。(二)做好企业计量能力提升的支撑服务。1.构建企业计量科技创新生态。加大对企业计量技术创新的支持力度,鼓励企业独立或与有关主体联合承担计量类重大科研项目,组织龙头企业、计量技术机构、高等院校等,探索构建计量科技创新联合体,着力打造数字化支撑、网络化共享、智能化协作的计量科技创新体系。以企业计量需求为导向,利用科技园、众创空间、科创中心、联合实验室等平台,加大产学研用计量技术联合攻关力度,建立计量需求快速响应机制,加强企业急需的计量测试仪器设备研制,加快计量测试新技术、新理论、新方法、新成果的转化和应用。2.打造企业计量协同发展平台。鼓励计量技术机构、产业计量测试中心和有条件的企业加入产业技术基础公共服务平台建设,强化中小企业公共服务供给。研究建立企业计量供需对接平台,汇聚计量技术机构、高等院校、科研院所、行业学协会等各方力量,为企业提供全方位技术支持服务,为企业质量提升和创新发展提供计量解决方案。发挥龙头企业引领带动作用,联合计量技术机构、行业学协会等多方资源和力量,实施中小企业计量伙伴计划,全面提升产业链相关中小企业计量能力,聚焦重点产业链供应链,推动上下游、产供销、大中小企业计量协同发展。3.提升企业计量技术服务水平。推动各级计量技术机构最大限度缩短为企业提供型式评价和计量检定、校准、测试的服务时限,广泛推行电子计量证书,提升计量技术服务的规范化、信息化水平,为企业提供便捷高效、准确可靠、值得信赖的计量服务。常态化开展“计量服务中小企业行”活动,充分发挥计量服务中小企业公共服务平台作用,广泛动员和组织各类计量技术机构参与服务行动,强化对中小微企业及欠发达地区企业计量服务供给。4.加强企业计量人才队伍建设。支持有条件的企业加大计量学科带头人培养力度,建立关键领域计量攻关团队,培养高层次计量领军人才。支持企业、教育机构、科研院所和行业学协会等共建一批计量人才技能实训基地,鼓励企业开展“传、帮、带”计量实践技术培训,引导企业培育一批专业知识精、业务能力强的计量技术队伍,加快培育满足产业发展需求的计量紧缺人才。探索建立企业首席计量师、计量工匠等人才制度,广泛开展企业计量技能大赛,在全国范围内树立计量英才和计量工匠典型,构建企业计量人才培养体系。(三)优化企业计量能力提升的政策环境。1.完善企业计量政策法规体系。全面梳理影响企业计量能力提升的关键因素和政策环境,清理和废除妨碍企业发展的计量政策,建立健全企业相关的计量法律法规和规章,逐步形成促进企业发展的计量法律法规和政策体系。鼓励企业参与国际、国家、部门、行业计量技术规范制修订工作,提升计量技术规范的开放共享水平。2.深化企业计量“放管服”改革。鼓励和支持企业自主建立最高计量标准,引导企业根据生产经营活动需要自主开展计量器具溯源,在营商环境试点城市取消企业内部使用的最高计量标准器具考核和强制检定。推动建立企业计量能力自我声明制度,搭建企业计量能力交流与技术服务共享平台,发挥计量能力先进企业标杆引领作用,促进企业计量能力进一步提升。加强测量管理体系认证管理工作,优化测量管理体系认证机构的布局、建设和监管,引导企业自愿申请测量管理体系认证,充分发挥测量管理体系在企业高质量发展中的重要作用。3.优化企业计量发展政策环境。鼓励有条件的地方建立企业计量发展基金,建立健全支撑专精特新中小企业、专精特新“小巨人”企业和制造业单项冠军企业计量创新发展机制,争取将计量能力和水平、测量管理体系认证结果等纳入高新技术企业认定、先进制造业企业认定、质量标杆、质量奖评定过程。支持有能力、有条件、有意愿的企业建设产业计量测试中心,搭建产业计量测试联盟和平台,逐步建立以企业为主体、社会资源共同参与、产检学研用深度融合的计量科技创新和成果转化机制。4.鼓励企业加强能源资源计量和低碳计量。强化用能用水单位的能源、水资源计量器具配备和管理要求,加强重点用能单位能耗在线监测平台建设,组织开展用能单位能源计量审查,持续开展能源资源计量服务示范活动。推动企业建立健全碳计量体系,研究建立重点排放单位碳计量审查制度,为企业碳排放“可测量、可报告、可核查”提供计量支撑,服务国家碳排放统计核算体系的建立和完善。支持企业参与低碳、节能、节水、环保、清洁生产、资源综合利用等领域共性计量技术研发,营造企业节能减排和绿色低碳发展的良好环境。5.引导企业加强计量成果应用。推动企业计量成果广泛应用,开展工业企业计量标杆示范,总结不同行业、不同规模企业开展计量活动的典型做法和先进经验,推动可复制、可推广典型方案和计量成果的应用。引导仪器仪表企业加强高端测量仪器核心技术研究,鼓励采用高品质国产仪器仪表,培育具有核心技术和核心竞争力的国产仪器仪表品牌企业。三、保障措施(一)加强组织领导。各级市场监管、工业和信息化部门要高度重视企业计量工作,加强组织领导,建立统筹协调、分工负责的工作机制。各级市场监管部门要及时掌握企业计量情况,分析企业计量需求,解决企业计量实际问题,切实保障企业计量工作落地落实。各级工业和信息化部门要借助全国质量标杆等活动,不断激发和引导企业运用先进的管理模式、工具和方法,强化企业计量管理体系和技术体系建设,加大计量能力建设投入,通过计量更好支撑企业创新发展和质量提升。(二)强化政策支持。各级市场监管、工业和信息化部门要持续开展企业计量调研,深入了解企业当前的计量能力和水平,结合地方实际设立企业计量基础能力提升专项,鼓励社会各方加强对企业计量发展的资金投入、基金和金融产品的支持。健全激励企业增加计量投入的普惠性政策体系,对企业新购置的计量器具,符合国家有关规定的,允许一次性计入当期成本费用,在计算应纳税所得额时扣除。(三)创新服务模式。各级市场监管、工业和信息化部门要加大对第三方专业计量服务机构的培育力度,搭建公共服务平台,推动形成促进企业计量能力提升的服务业态和市场化服务机制。借鉴先进的计量理念、计量技术、计量文化和计量管理经验,探索符合中国国情的企业计量工作模式。(四)加大宣传引导。各级市场监管、工业和信息化部门和有关行业学协会等要多渠道、多形式广泛宣传计量在企业发展中的重要作用以及支持企业发展的各项计量政策,加强政策解读,帮助企业知晓政策、理解政策、享受政策,提高计量政策知晓率和惠及面。要结合“世界计量日”“质量月”等重大活动,加大企业计量工作的宣传推广力度,大力普及计量法律法规知识,宣传计量先进理念,加强企业计量培训,增强企业计量意识,提升计量社会影响力,营造重视企业计量的良好社会氛围。
  • 【百年传承】安东帕表面力学测试仪器开放日
    开放日活动周2022年,正值安东帕100周年,已推出一系列【百年传承】活动,今天,给大家推荐的是:表面力学测试仪器开放日活动周~免费测试样品安东帕压痕、划痕、摩擦磨损、涂层厚度测试免费开放一星期!(9月5-9日)。安东帕表面力学测试仪可测量各种材料的表面力学性质,从最硬的类金刚石 (DLC) 膜到最软的水凝胶。应用领域覆盖工业和科研:切削工具、汽车、航天、电子器件、生物医学、半导体、聚合物、光学部件、玻璃、装饰物等。压痕仪:硬度、弹性模量、粘弹性、蠕变、断裂韧性等符合工业标准:ISO 14577、ASTM E2546等仪器化压痕技术 (IIT) 是将已知几何形状的压头压入样品表面,同时监测压入深度和法向载荷。可以从载荷-位移曲线中获得压痕硬度(HIT)、弹性模量(EIT)以及其他力学特性。安东帕的压痕仪采用独特的表面参比技术(欧洲专利 1828744,美国专利 7685868),实现低热漂移,具有极高的稳定性。“快速点阵”压痕模式可实现最高每小时600 次的测量速度,并获得完整的压痕曲线。动态力学分析 (DMA)可测量力学性质随深度变化曲线(硬度/模量vs.深度),表征材料粘弹性 (存储及损耗模量、tan δ)。多物镜视频显微镜可以清晰显示样品,并且利用电动工作台精确定位。划痕仪:涂层附着力、摩擦力、耐划伤性等符合工业标准:ISO 20502、ASTM C1624等划痕测试仪技术可以在待测样品上用金刚石划针形成可控的划痕。达到一定的载荷时,涂层会开始脱落。通过集成的光学显微镜观察,结合摩擦力、划痕深度、声发射传感器等多种信号,可以精确地检测临界载荷,量化不同的膜-基材组合的结合性能。安东帕的划痕仪拥有独一无二的全景成像模式(美国专利 8261600,欧洲专利2065695),可直接观测整条划痕。获专利的深度前扫描和后扫描(美国专利6520004,欧洲专利1092142),可得到真实的划痕深度和残留深度,还可研究样品的弹性恢复。主动力反馈系统使得仪器可测量曲面及不平整样品。摩擦学测量:摩擦系数、磨损率、润滑符合工业标准:ASTM G99、G133、DIN 50324等安东帕的销盘式摩擦磨损试验机(TRB3)采用可靠的静加载,包括旋转、旋转往复和线性往复三种运动模式。通过两个LVDT摩擦力传感器和对称弹性臂最大限度地减少热漂移。使用集成的温度和湿度传感器实时监测环境状况。可配置加热、液体测试等多种选件。涂层厚度符合工业标准:ISO 26423:2009、ISO 1071-2、VDI 3198等球坑磨损测试法:使用已知尺寸的球在涂层上磨出一定尺寸的冠状球坑,利用光学显微镜观察并测量球坑尺寸,通过几何模型推导计算涂层厚度。适用于单层或多层涂层,可以测量平面、圆柱面或球面。测量方法简单快速,只需1到2分钟即可测量出涂层厚度。参与方式识别下方二维码,参与活动预约预约时间:即日起至9月2日免费测试周:9月5-9日请尽量详细填写样品信息及测试需求,方便我们判断安东帕上海实验室的仪器配置是否满足您的测试需求最终解释权归安东帕测试预约测样地点测试地址:安东帕(中国)有限公司上海市闵行区合川路2570号 科技绿洲三期2号楼11层
  • 《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案(线上)讨论会顺利召开
    2021年5月26日下午,联盟团体标准T/CASA 016-20XX《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案线上讨论会顺利召开。本次会议共计15位专家代表参与标准研讨。会议由联盟标委会高伟博士主持,联盟秘书长于坤山提到团体标准作为国行标的补充,具有十分重要的意义,目前第三代半导体特别是碳化硅相关的应用发展迅速,国内外都非常的关注,但是缺乏相关的标准,该项标准的制定有助于促进相关平台的建设,推动企业研发工作的同时促进上下游之间的交流。本次会议主要针对T/CASA 016-20XX《碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)热阻电学法测试方法》标准草案的范围、术语与定义、试验方法等内容进行充分讨论,并提出了诸多修改意见。SiC MOSFET的热阻在热管理设计中具有重要作用,热阻能够为器件运行时的结温评估与结构评价提供信息,为器件设计与优化改进提供参考,衡量器件散热性能的关键指标之一。准确的热阻测试对于SiC MOSFET的鉴定、评价具有重要意义。
  • CSTM团体标准《碳化钛渣 碳化钛含量的测定 过氧化氢分光光度法》征求意见
    2024年1月10日,中国材料与试验标准化委员会钒钛综合利用标准化领域委员会发布CSTM团体标准《碳化钛渣 碳化钛含量的测定 过氧化氢分光光度法》征求意见稿。本文件描述了过氧化氢分光光度法测定碳化钛渣中碳化钛含量的方法,适用于碳化钛渣中碳化钛含量的测定,测定范围(质量分数)为 9.00% ~17.00%。详细内容见附件。附件:CSTM团体标准《碳化钛渣 碳化钛含量的测定 过氧化氢分光光度法》征求意见的资料.rar
  • 安捷伦借工业测试仪器拓展渠道
    1 月14 日,安捷伦科技隆重召开主题为“安全便捷 橙动中国”的工业电子测量仪器中国经销商年会暨新闻发布会,宣布推出具有优秀移动性、高精度和良好经济性的安捷伦工业电子测量仪器系列产品。安捷伦同时还宣布,部分手持式仪器开始使用更醒目的橙色作为外表颜色,以突出体现安捷伦在确保用户安全方面的不懈努力。这种颜色更鲜明,具有更高的可见度,并且在工业上通常用于表示“警示色”,可以提醒用户注意安全。   安捷伦副总裁兼基础仪器部总经理 Ee Huei Sin 表示:“全球越来越多的现场工程师和技术人员希望,测量仪器能够方便地运输、安装和维护。为满足这些需求,仪器必须具有以下 3 个关键特性:移动性、精度和经济性。安捷伦工业电子测量仪器(IET)的设计初衷是为这些关键领域提供高价值的测试设备。其中包括台式、手持式和模块化设备,例如基本型电源、 台式和手持式数字万用表、手持式示波器、USB 数据采集设备、显示器测试仪、Agilent VEE 软件和连通性网关。”她特别强调,“客户要求的其实是低端化的高端产品,我们希望借助安捷伦的高端科技实力,专注于基于客户需求进行产品研发。”目前,IET已经成为安捷伦增长最为快速的部门,即使遭遇经济危机冲击,依然保持年均两位数的增长。   最新推出的安捷伦 U1210 系列手持式钳形表 具有高达 1000 A 的大电流测量能力,能够测量直径达 2 英寸的电缆。为进一步保护工程师和技术人员在高电压和大电流环境下进行工作的安全性,安捷伦 U1240B 和 U1250B 系列数字万用表(DMM)和 U1210A 钳形表具有 CAT III 1000 V、CAT IV 600 V 的安全等级。上述数字万用表均获得 IEC 61010 和 CSA 标准认证,并通过了比这些标准更严格的附加高压(“高压绝缘试验”)测试。   在本次经销商大会上,记者见到了安捷伦工业电子测试仪器的全国各地授权一级分销商和不同产线的授权代理商。一个直观的感觉就是,通过工业电子测试仪器和基础仪器的推广,安捷伦正在不断加强自己在全国的分销渠道建设,亚太区渠道经理陈力就坦言:“安捷伦的高端仪器确实更适合直销模式,但基础仪器和工业测试仪器则更适合交给代理商,因为他们可以提供更好地市场覆盖和产品供货,能够让许多较为偏僻地区的用户可以快速购买到急需的安捷伦产品。”在现场有许多相关的电子分销商正是伴随着安捷伦近年来在工业电子测试仪器和基础仪器方面的优秀市场表现共同成长。   另一方面,陈力也介绍:“虽然我们的竞争对手进行了渠道整合,但这对安捷伦是个机遇而非简单的挑战。因为安捷伦的渠道策略更为专业更为集中,让代理商能够明确根据自己的实际选择适合自己销售的产品领域,通过培训代理商相关知识,使其也会变得更为专业的产品代理商,从而为客户提供更高品质的服务。一些原有竞争对手的代理商最近纷纷加入安捷伦代理商家庭,这就是最好的成绩。”
  • 钢化玻璃表面平整度测试仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 123" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 钢化玻璃表面平整度测试仪 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 中国建材检验认证集团股份有限公司 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 联系人 /p /td td width=" 177" p style=" line-height: 1.75em " 艾福强 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " afq@ctc.ac.cn /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 √可以量产 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □技术转让□技术入股□合作开发& nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/5680075d-08c7-437e-89ed-292a629e2e36.jpg" title=" 平整度仪.jpg" / /p p style=" line-height: 1.75em " & nbsp & nbsp 钢化玻璃表面平整度测试仪采用精度为2um的位移传感器可以精确的测量出钢化玻璃表面平整度,仪器表面安装有一液晶显示器与位移传感器通过内部电路相连接,可以实时显示所测得的各个位置的位移差,仪器内部还设有报警提出功能,用户可以根据自身需要设置不同的上下限报警,当仪器测得的数值超过用户所设置的上下限时,仪器内部的蜂鸣器会发出报警声,如果用户有对产品的上下限要求,则可以通过设置上下限报警来代替人为实时观测。仪器设置有零点标定功能,当需要将仪器更换位置或者更换待测物时,可以根据需要选择零点位置,同时也避免了仪器本身的误差。该仪器携带方便,测试结果准确、直观,操作简单方便,非常适合现场检测和快速检测。 br/ & nbsp & nbsp & nbsp 性能指标: br/ & nbsp & nbsp & nbsp 测定单位: 微米& nbsp br/ & nbsp & nbsp & nbsp 测量范围:0-3mm br/ & nbsp & nbsp & nbsp A/D 变换: 16bit 逐次变换方式 br/ & nbsp & nbsp & nbsp 测试精度: ± 0.2%F.S.以下& nbsp & nbsp br/ & nbsp & nbsp & nbsp 再现精度: ± 0.1%F.S.以下& nbsp & nbsp br/ & nbsp & nbsp & nbsp 连续使用时间: 约5小时(使用温度25 ℃) br/ & nbsp & nbsp & nbsp 显示屏 : 16位数字液晶显示屏(模块化LCD)& nbsp & nbsp br/ & nbsp & nbsp & nbsp 使用温度: 0~+40 ℃ br/ & nbsp & nbsp & nbsp 计测方式: 最大值.瞬间值& nbsp & nbsp br/ & nbsp & nbsp & nbsp 电源: 4.8V充电电池 br/ & nbsp & nbsp & nbsp 采样频率: 50次/秒& nbsp & nbsp br/ & nbsp & nbsp & nbsp 机体重量:约1Kg /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 该检测仪特别适用于工厂、建筑工程质量检测站、产品质量检测站、科研院校等钢化玻璃的生产检测、和开发研究等领域。该仪器不仅适用于钢化玻璃表面平整度的检测,还可以用来检测任何可以适用的平整度检测或者位移差检测。 /p /td /tr /tbody /table p br/ /p
  • 宽禁带联盟对《碳化硅单晶片X射线双晶摇摆曲线半高宽测试方法》等五项团体标准进行研讨及审定
    2022年1月13日,根据中关村天合宽禁带半导体技术创新联盟(以下简称“宽禁带联盟”)团体标准制定工作程序要求,联盟秘书处组织召开了宽禁带联盟2022年度第一次团体标准评审会。本次评审会采取线上评审的形式,分别对《碳化硅单晶片X射线双晶摇摆曲线半高宽测试方法》等五项团体标准进行了研讨及审定。线上评审评审会由宽禁带联盟秘书长刘祎晨主持,厦门大学张峰教授、中国科学院物理研究所王文军研究员、中国科学院半导体研究所金鹏研究员、孙国胜研究员、刘兴昉副研究员、国网智能电网研究院有限公司杨霏教授级高工、中科院电工所张瑾高工、工业和信息化部电子第四研究院闫美存高工、北京聚睿众邦科技有限公司总经理闫方亮博士、北京天科合达半导体股份有限公司副总经理刘春俊研究员、国宏中宇科技发展有限公司副总经理赵子强、北京世纪金光半导体有限公司技术主任何丽娟、北京三平泰克科技有限责任公司郑红军高工等宽禁带联盟标准化委员会委员参加了本次会议。会上,各牵头起草单位代表就标准送审稿或草案的编制情况进行了详细汇报,与会专家针对标准技术内容、专业术语、技术细节、标准格式、标准规范等内容等方面进行了深入的讨论,并提出了很多宝贵意见,最后经联盟标准化委员会与会委员表决,形成如下决议:1. 通过《碳化硅单晶片X射线双晶摇摆曲线半高宽测试方法》(牵头单位:国宏中宇科技发展有限公司)一项送审稿审定;2. 通过《碳化硅外延层载流子浓度测试方法-非接触电容-电压法》、《碳化硅栅氧的界面态测试方法—电容-电压测试法》(牵头单位:芜湖启迪半导体有限公司),《金刚石单晶片X射线双晶摇摆曲线半高宽测试方法》、《金刚石单晶位错密度的测试方法》(牵头单位:中国科学院半导体研究所)四项草案初审。同时标准化专家组建议各标准工作组要根据专家审查意见对各项标准进一步修改完善,尽快形成报批稿或征求意见稿,报送至联盟秘书处。联盟将按照标准制定工作计划进度要求,有条不紊地推动标准工作。宽禁带联盟一直以来都高度重视团体标准工作的发展,有责任和义务不断提升标准化水平,为引领行业技术发展提供重要支撑。同时,联盟也将积极探索推进与国标委的互动,协同推动优秀的团体标准上升为行业标准、国家标准,不断提升国家标准的水平。
  • 中国电科发布5G通信测试仪器新品
    近日,中国电科旗下电科思仪在京举办“Ceyear-5G通信测试仪器新品发布会”,推出多款数据通信及移动通信领域最新产品。在5G产业高速发展的今天,测试能力始终是产品研发能力提升的关键一环。发布会上,电科思仪全面推出了包含从终端到基站、从厘米波到毫米波、从研发测试到产线测试、从无线网到核心网的六款系列化数据网络测试仪,拥有手持式、便携式、台式等多种结构形式,使国产测试仪器全方位赋能5G产业发展。推出的高端数据网络测试仪产品—5201数据网络测试仪,能够提供数据网络L2—L7层的测试解决方案,具有多速率且高密度的端口、超强的流量处理能力、全面的协议仿真能力、高可用性的脚本适配能力以及深度的报文捕获能力,可广泛应用于研发测试、网络维护、验证开局、和自动化生产等方面。5201数据网络测试仪“5256C”5G终端综合测试仪具备5G信号发送功能、5G信号功率特性、解调特性和频谱特性分析功能,支持5G终端的产线高速校准及终端发射机和接收机的测试验证,主要应用于5G终端和基带芯片的研发、生产、校准、检测、认证和教学领域。  5256C 5G终端综合测试仪5G基站测试仪包括“5252D”5G基站综合测试仪和“5252DB”5G毫米波空间信道探测系统。其中,“5252D”具备频段覆盖范围宽、调制带宽大、通道数量多、通道收发一体、配置灵活等特点,能够满足5G基站收发机射频性能测试需求及未来通信技术的验证需求,正在成为无线通信研发、生产及科研领域的完美测试平台。5252D 5G基站综合测试仪“4024CA”频谱分析仪是一款专为外场测试而设计的宽带手持式实时频谱分析仪,具有4G LTE FDD/TDD、5G NR等多种无线通信协议解调分析,可应用于移动通信、无线通信、雷达、卫星通信等设备的现场调试与安装维护,为用户的外场频谱测试提供比较完善的解决方案。4024CA频谱分析仪面向未来,电科思仪将为我国5G产业发展继续提供智能科技支撑,为我国通信技术和产业发展提供坚强的测试保障。
  • 盘点2020年央企科技创新成果中的分析测试仪器
    5月30日,国务院国资委确定并发布了《中央企业科技创新成果推荐目录(2020年版)》(以下简称《目录》)。本次《目录》发布的成果涉及22项核心电子元器件、14项关键零部件、8项分析测试仪器 、10项基础软件、41项关键材料、12项先进工艺、53项高端装备和18项其他类型成果,共计178项成果,相关成果主要来自54家央企。《目录》中涉及的8项分析测试仪器成果如下,37分布式光纤传感系统航天科技分析测试仪器38全视角高精度三维测量仪航空工业集团分析测试仪器39色度亮度计兵器工业集团分析测试仪器40短波长X射线衍射仪兵器装备集团分析测试仪器414051系列信号/频谱分析仪中国电科分析测试仪器42汽车变速器齿轮试验测试装备机械总院集团分析测试仪器43电感耦合等离子体质谱仪中国钢研分析测试仪器44分布式高精度应变、温度、振动光纤传感测试仪中国信科分析测试仪器据了解,航天科技的分布式光纤传感系统是一种集光、机、电、算于一体的高性能新型传感系统,可以实现对探测目标的连续不间断测量,并形成全面的、精细的、准确的数字化描述。分布式光纤传感系统利用光纤后向散射效应与光时域反射技术,实现对应变/温度场的连续测量与定位 传感光纤既是传感介质也是传输媒介,是一宗集待测物理量感知和信号传输于一体的传感手段。传感光纤本身无源、抗干扰、耐腐蚀,是一种本征安全的材料,并且在性能指标和产品功能上均优于传统的电学传感技术。分布式光纤传感系统特别适用于易燃易爆场合;典型的应用领域包括长输油气管线的安安防监测、基础设施的结构健康监测、火灾预警、电缆效率分析、地热开采分析等。井下温度分布测量应用场景(图源 国资委)航空工业集团的这款全视角高精度三维测量仪,针对大部件变形和大空间内运动体参数实时监控的迫切需求,突破大视场、超清晰、高精度光学测量关键技术,解决测量距离大、精度要求高、测量环境复杂等技术难点,研制全视角高精度三维测量仪,填补国内空白,并在航空、航天等领域进行了应用验证。全视角高精度三维测量仪(图源 国资委)亮度色度计采用三色值过滤的测定方法,可测定亮度、色度、色温cielab、cieluv、色差等,4个量测角度可以切换。可适用于需要小范围量度角度(0.1°/0.2°)的低亮度领域的测定场合,若作远距离量测可选用延长线将主机与感应器分开进行测量。仪器附加键盘(选配)可作多种功能使用,包括输入颜色系数和亮度偏差。另外,也可在计算机中的进行数据的存储、分析、打印,在照明工程、电影和电视、建筑等领域中有较为广泛的应用。而兵器工业集团的色度亮度计可测量亮度范围为(1~3000)cd/m2,亮度测量精度为±4%,色度测量精度为(x,y)≤±0.004(10cd/m2以上,标准A光源。色度亮度计(图源 国资委)短波长X射线衍射仪是拥有自主知识产权的短波长特征X射线衍射技术产品,首先解决了我国无损测定厘米级厚度工件内部(残余)应力、织构、物相、晶界缺陷及其分布的难题,填补了国内外无损检测分析内部衍射信息的小型化仪器设备空白。该仪器利用重金属靶X射线管作为辐射源,采用光量子能量分析的无强度衰减单色化、精密测量分析等技术,最大可测厚度达40mm铝当量,晶面间距测试误差小于±0.00006nm,内部(残余)应力测试误差小于±25MPa。可应用于先进材料、先进制造和基础研究领域,如预拉伸铝板、涡轮叶片、装配件、焊接件、热处理件等控形控性的加工工艺优化和制造,以及材料/工件内部应力及其分布等的演变规律研究。短波长X射线衍射仪(图源 国资委)4051系列信号/频谱分析仪重点突破了110GHz超宽频带、大带宽、高灵敏度接收技术以及宽带信号高速处理技术,实现了最高同轴测试频率110GHz、最大分析带宽550MHz、显示平均噪声电平≤-135dBm/Hz@110GHz等核心指标,且具有全频段信号预选能力,打破了国外技术封锁,总体性能达到国际先进水平,在高精尖测量仪器方面实现了自主可控和自主保障,在航空航天、通信、雷达、频谱监测等军民领域得到广泛应用,为我国“载人航天”、“探月工程”、“北斗导航”等国家重大工程做出了重要贡献,解决了宽带卫星通信系统功放模块数字预失真测试、新型预警和跟踪雷达脉冲信号测试、超宽频带频谱测量等测试难题。4051系列信号/频谱分析仪(图源 国资委)汽车变速器齿轮试验测试装备是国家重点支持的发展专项;测试技术含量和技术水平高,创新性强,属国内首创;突破了汽车变速器传递误差测试方面的技术壁垒,解决了汽车变速器急需解决的啸叫难题;扭转了汽车变速器测试台架主要依赖进口的局面。试验台既可实现单对齿轮又可以实现变速器总成传递误差的测量,可以模拟齿轮啮合错位量工况,使得传递误差测量结果更具实际意义,可以更有效指导齿轮修形设计,达到减振降噪目的。试验台角度测量精度1ʺ,加载扭矩最大20000Nm。汽车变速器齿轮试验测试装备(图源 国资委)ICP-MS技术是将ICP的高温电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的最强有力的元素分析、同位素分析和形态分析技术。该技术具有检出限低、动态线性范围宽、干扰少、分析精度高、速度快、可进行多元素同时测定等优异的分析性能,已从最初在地质科学研究的应用迅速发展到环境保护、半导体、生物、医学、冶金、石油、核材料分析等领域。电感耦合等离子体质谱仪(图源 国资委)分布式高精度应变、温度、振动光纤传感测试仪主要用途是为石油天然气管线、高速铁路、高速公路、电力输送线路等大型基础设施的状态监测与安全管理提供完整先进的分布式高精度应变、温度、振动光纤传感测试仪,显著提升相关大型基础设施的运营能力、安全管理水平与应急管理能力。其基于光栅阵列的新一代光纤传感技术具有网络容量大、探测精度高、传感距离长、响应速度快、可靠性好等方面的突出优点,可实现超大容量、超长距离、超高精度的应变、温度、振动传感监测。光纤分布式温度探测器(图源 国资委)附件:中央企业科技创新成果推荐目录(2020年版).doc
  • WTW推出新款inoLab实验室测试仪器
    inoLab系列仪器推出新型号了,分别是7110,7310和9310。新款仪器采用全新的设计理念,对于用户来说有足够大的吸收力。尤其是9310系列仪器采用全数字架构,为单通道的多参数测试仪,可连接新款的IDS数字探头,可测试pH、溶氧和电导率,其中溶氧采用荧光测试法。新款仪器的推出意味着老型号的720,730和740系列将正式退出历史舞台。 新款inoLab的主要优点: 采用大尺寸显示屏,显示效果出众 按键布局合理,方便操作 平滑表面,容易清洁 可接IDS数字探头(9310型) USB接口输出(7310/9310型) 自动读数功能,再现性好 CMC自动监测功能(pH 7310和Multi 9310型) QSC探头状况监测功能(IDS数字pH探头) 1到5点pH校正,可识别多达22组标准缓冲液(pH 7310和Multi 9310型) 可手动输入探头系列号(7310型) 背光图表显示屏(7310/9310型) 固件可升级(7310/9310型) 电导率量程上限可达1000 mS/cm 标准配备电极支架 有3种供电方式:交流变压器,充电电池和碱性电池(4个5号)
  • 喜报 | 信而泰荣获“2023国产网络测试仪领航企业”称号
    信而泰荣获“2023国产网络测试仪领航企业”称号11月3日,2023(第六届)行业信息技术应用创新大会在北京裕龙国际酒店隆重举行。本届大会以“数实融合 赋能全场景服务”为主题,汇聚了数百位各行业的专业嘉宾,共同探讨数实融合产业的前沿技术和合作方向等话题。大会秉承一贯的专业和权威,以深刻的产业洞察和深入浅出的探讨与分享,为与会嘉宾勾勒数智时代价值跃升的新面貌,畅想数实融合的全场景服务新局面。大会同期举行了“2023行业信息技术应用创新大会优秀企业”颁奖盛典,信而泰作为国产网络测试领域的佼佼者,凭借综合业务实力和持续创新能力,从众多参评企业中脱颖而出,荣获“2023国产网络测试仪领航企业”荣誉称号!市场发展部总监吕晓莲女士作为特邀嘉宾出席大会并代表公司领奖。图右六-市场发展部总监吕晓莲女士坚持技术创新、聚焦产品品质是信而泰持续发展的原动力,公司在IPv6+,TSN以及400G等新一代网络测试方面一直处于国内领先地位。凭借坚实的技术积累和国内领先的研发实力,信而泰成功推出了一系列覆盖 2-7 层以太网络测试需求的网络测试平台,率先取得了国产网络测试仪的多项技术突破,得到了客户的高度认可。在数智化时代,企业只有聚焦“场景化”,才能更好地满足客户不断变化的需求,公司未来将继续夯实通信网络测试技术方面的优势,为数字中国、网络强国建设做出积极贡献!
  • CASA发布《碳化硅金属氧化物半导体场效应晶体管通用技术规范》团队标准【附标准全文】
    碳化硅(SiC)具有宽禁带、耐击穿的特点,其禁带宽度是Si的3倍,击穿电场为Si的10倍;且其耐腐蚀性极强,在常温下可以免疫目前已知的所有腐蚀剂。而金属氧化物半导体场效晶体管(简称:金氧半场效晶体管;英语:Metal-Oxide-Semiconductor Field-Effect Transistor,缩写:MOSFET),是一种可以广泛使用在模拟电路与数字电路的场效晶体管。在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。2020年12月28日,北京第三代半导体产业技术创新战略联盟发布一项联盟标准T/CASA 006-2020《碳化硅金属氧化物半导体场效应晶体管通用技术规范》。该项标准由中国科学院微电子研究所牵头起草,按照CASAS标准制定程序(立项、征求意见稿、委员会草案、发布稿),反复斟酌、修改、编制而成。标准的制定得到了很多CASA标准化委员会正式成员的支持。标准于2021年1月1日施行。附件下载https://www.instrument.com.cn/download/shtml/976637.shtml【相关阅读】企业成半导体刻蚀设备采购主力——半导体仪器设备中标市场盘点系列之刻蚀设备篇超亿采购中磁控溅射占主流——半导体仪器设备中标市场盘点系列之PVD篇上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇第27批国家企业技术中心名单出炉,涉及这些仪器厂商探寻微弱电流的律动:超高精度皮安计模块亮相三家半导体设备商上榜“中国上市企业市值500强”862项标准获批,涉及半导体、化工检测和检测仪器等领域盘点各地十四五规划建议”芯“政策湖北省集成电路CMP用抛光垫三期项目拟购置43台仪器设备
  • 瑞柯发布瑞柯全自动四探针测试仪新品
    FT-3110系列全自动四探针测试仪一.功能描述:四点探针法,全自动化运行测量系统,PC软件采集和数据处理;参照A.S.T.M 标准方法测试半导体材料电阻率和方块电阻;可设定探针压力值、测试点数、多种测量模式选择;真空环境,可显示:方阻、电阻率、显示2D,3D扫描/数值图、温湿度值、提供标准校准电阻件. 报表输出数据统计分析.FT-3110系列全自动四探针测试仪二.适用范围晶圆、非晶硅/微晶硅和导电膜电阻率测量;选择性发射极扩散片;表面钝化片;交叉指样PN结扩散片;新型电极设计,如电镀铜电阻测量等;半导体材料分析,铁电材料,纳米材料,太阳能电池,LCD,OLED,触摸屏等. FT-3110系列全自动四探针测试仪三.技术参数: 规格型号FT-3110AFT-3110B1.电阻10^-5~2×10^5Ω10^-6~2×10^5Ω2.方块电阻 10^-5~2×10^5Ω/□10^-6~2×10^5Ω/□3.电阻率 10^-6~2×10^6Ω-cm10-7~2×106Ω-cm4.测试电流 0.1μA.μA.0μA,100μA,1mA, 10mA,100mA1A、100mA、10mA、1mA、100uA、10uA、1uA、0.1uA5.电流精度 ±0.1% 6.电阻精度 ≤0.3%7.PC软件操作PC软件界面:电阻、电阻率、电导率、方阻、温度、单位换算、电流、电压、探针形状、探针间距、厚度 、2D、3D图谱、压力、报表生成等8.压力范围:探针压力可调范围:软件控制,100-500g可调9.探针针间绝缘电阻:≥1000MΩ;机械游移率:≤0.3%圆头铜镀金材质,探针间距1mm;2mm;3mm选配,其他规格可定制10.可测晶片尺寸选购 晶圆尺寸:2-12寸(6寸150mm,12寸300mm);方形片:大至156mm X 156mm 或125mm X 125mm11.分析模式单点、五点、九点、多点、直径扫描、面扫描等模式的自动测试12.加压方式测量重复性:重复性≤3% 13.安全防护具有限位量程和压力保护 误操作和急停防护 异常警报14.测试环境真空15.电源输入: AC220V±10%.50Hz 功 耗:瑞柯全自动四探针测试仪
  • SDL Atlas推出经济、好用的PnuBurst胀破强度测试仪
    ROCK HILL, S.C. – SDL Atlas一直致力于技术创新,开发新的台式 PnuBurst测试仪器,此仪器内已预先设定好测试程序,使用便捷,非常适合只需要一般性爆破测试的客户群体,但不可代替受许多企业青眯的AutoBurst测试仪器。   不管是公司新型号PnuBurst胀破强度测试仪,还是公司原有型号AutoBurst数字式自动胀破强度测试仪,都符合国际安全与测试标准。可用于检测梭织、无纺布、纸、纸板和薄膜,具有重复性和准确性。   PnuBurst属于经济的台式爆破测试仪 主要采用气动爆破装置 彩色触摸屏 用户预先选择好测试要求、自动测试夹持杯尺寸和探测夹持环,然后按要求预先设定程序控制。 PnuBurst操作非常方便,爆破测试功率达到1500kPa (15bar, 217psi.) 。   配有USB 端口、数据线和可随身带的软件,方便用户保存和分析测试数据,通过简单地观测和记录PnuBurst显示屏上的结果,就可简化日常的工作。   对于需要更为复杂爆破测试的用户,SDL Atlas的全自动AutoBurst数字式自动胀破强度测试仪,采用传统的液压技术,功率达到6000kPa (60bar, 870psi)– 性能明显优于其他品牌同类产品。AutoBust可检测纸、服饰用纺织品、技术纺织品和其它对爆破强度要求相当重要的相关材料。   此外关于测试夹持杯的选择,SDL Atlas的爆破测试仪可测最大面积达到直径为 70mm – 对弹性织物的精确测试至关重要。   SDL Alta可为用户提供一站式的全面的纺织测试品、物料、消耗品及服务。我们在英国、美国、香港及中国均设有办事处,并在全球100多个国家设有代理处。SDL Atlas可以为全球各地的客户提供全方位的服务。我们的目标是为客户提供最优惠、最完善的解决方案。
  • 国产数据通信测试仪器的昨天、今天与明天
    1、前言从1876年贝尔发明电话机,到今天人手一部手机,实现随时随地视频通话。短短一百年来,通信产业呈指数性增长。测试技术与仪器仪表自通信产品的诞生起就成为通信产业中不可或缺的部分,与通信技术同步甚至超前发展。伟大的科学家门德列耶夫说过:“科学是从测量开始的,没有测量就没有科学”。钱学森同志说过:“新技术革命的关键是信息技术。信息技术由测量技术、计算技术、通信技术三部分组成。测量技术是关键和基础。”数据通信测试仪器主要泛指通信传输与网络测试仪器,是对通信终端设备和通信网络设备的科研、生产、试验和运营管理全寿命周期的各种定量、定性参数进行分析评定的手段和方法的总称,涉及语音、报文、数据、图像、视频的采集、信元和信道编码、传输媒质、信令与协议等设备和产品的测试与分析评估。本文简要介绍国内数据通信测试仪表的发展历程,展望面临的挑战。2、数字测试--数据通信测试仪器的昨天上世纪八十年代,从中国引进数字程控交换机进入数字化时代起,测试技术与产品得到发展。这一阶段通信主要以语音传输为主,涉及的测试技术主要有语音测试、传输测试和信令规程测试。相关的测试仪器主要有话路特性测试仪、传输分析仪、信令测试仪和规程测试仪等产品。语音测试主要测试话路语音质量测试,主要参数包括频率、电平、失真度等。话路特性测试仪是对语音模拟信号的较为全面测试,PCM测试仪则对话音通道的语音/数字编码转换和数字编码/语音转换进行测试,二者互为补充。传输测试是当时通信测试最重要的一项测试技术,主要对通信传输质量进行测量和评估,除最重要的误码率这个参数外,还有抖动、漂移等测试评估参数。这类仪器根据通信传输的线路不同可分为高速比特误码测试仪、PCM综合测试仪(2Mb/s)、PDH数字传输分析仪、PDH/SDH数字传输分析仪和电信/数据传输分析仪。高速比特误码测试仪速率一般在140Mb/s~15Gb/s连续可调,PDH数字传输分析仪用于PDH 1~4次群通信设备的研制、生产、通信建设和维修,主要测量误码和抖动。PDH/SDH数字传输分析仪用于STM-1/4/16/64/256等速率的SDH通信设备的测试,兼顾PDH测试。信令测试仪则用于程控交换机的控制平面测试,全面测试用户线信令和局间信令,可接入SS7、GSM、CDMA、V5、ISDN及中国一号信令等各级接口,完成协议的有效性与兼容性测试。测试分为信令监测与仿真测试二种。规程测试仪则主要完成相关数据通信接口测试,常见有V.11、V.24、V.35、X.21等,具备DTE与DCE测试能力,支持同步与异步测试,主要进行误码测量和误码性能分析。这一时期,网络产品稀少且较为初级,各生产厂家确保产品可用即可,主要进行功能测试。网络测试仪器较为简单,只是进行发送和接收测试。3、网络测试--数据通信测试仪器的今天随着集线器、交换机、路由器等产品的广泛运用,网络测试技术得到重视。网络测试技术包含内容有测试对象、测试方法、测试工具及测试经验等方面内容,逐渐形成以RFC相关规范为基础的测试方法标准化,如RFC1242规范了网络互联设备的基本术语,RFC2544规定了互联设备的基准测试方法,RFC2889规定了交换设备的测试方法等。测试内容覆盖了ISO二至七层。测试方法有主动测试与被动测试(监测)。在测试功能上除网络性能测试外,还具备网络业务测试,可对业务支持能力、业务性能、业务可靠性与安全性进行测试评估。在云网融合、算网一体等信息技术快速发展的大环境下,面向高速以太网、物联网、5G承载网、5G核心网等核心技术领域的需求,作为网际互联中的核心骨干组成部分,路由交换设备的发展在很大程度上决定了整个网络的性能瓶颈。网络接口复杂多样、电信级业务流量、接入用户指数级增长对于高速数据通信下的网络承载能力提出了进一步挑战。与此同时,我国新一代路由交换设备的迭代发展速度,迫切需要与之相匹配的数据通信测试仪器发展水平,这对数据通信测试仪器的发展提供了千载难逢的发展机遇,也对数据通信测试仪器的发展提出了更加严峻的挑战。经过20多年的艰苦努力,我国数据通信测试仪表取得了重要进展,基本解决了测试功能和速率覆盖的问题。在产品形态上,有手持式、便携式与机架式;在速率上,最高测试达到400Gbps;端口密度达到整机80个100Gbps端口,单板20个80个100Gbps端口;在协议方面,支持路由、接入、组播、数据中心等协议仿真,以及VxLAN、EVPN、SRv6等新协议测试;支持RFC2544等多种套件;同时支持自动化测试,可适配TCL、Python等自动化接口,满足网络设备从研发到生产各个环节的测试需求。4、面向下一代网络测试---数据通信测试仪器的明天随着5G/6G时期的到来,网络设备的不断革新、新兴协议的不断提出以及电信级网络应用业务升级,现有的仪器不论是测试端口密度、时延测量精度以及协议仿真覆盖率等核心指标,难以满足测试需求,必须跟踪最新网络技术发展。高速率、IPv6+、确定性网络、超融合等网络技术应用场景给数据通信网络测试仪器提出了新需求:1)高速率测试随着互联网和5G用户的增加以及来自人工智能、机器学习、物联网和虚拟现实流量的延迟敏感性流量激增,数据中心的带宽要求与日俱增,并且对低延迟有极高的要求,可以预见,在未来的人工智能应用中,800GE技术将发挥越来越重要的作用。测试仪器必须具备多达几十个端口的800GE测试能力。2)高精度测试现有的毫秒级的流量调度及采样结果统计不能满足TSN/TTE、无损以太网等高性能网络测试要求,网络测试仪必须实现微秒级的流量调试和纳秒级时钟同步精度。3)灵活智能的高性能软件架构平台随着新兴的数据网络架构及新协议、新业务的持续不断的出现,要求测试仪器能够快速满足新协议与新业务测试需求。这就要求测试仪器具备灵活、智能、弹性的高性能软件架构平台,解耦软件平台与硬件平台,集中主控运维管理,统一硬件驱动层,屏蔽硬件差异,支持多种速率与多种测试端口,支持快速迭代、增加新协议测试功能,满足车载网络、云网融合、算网一体等下一代数据网络测试需求。结束语当前,网络技术的迅速发展和市场需求是网络测试技术发展的驱动力,网络测试仪器前景看好。新技术的发展快于相关标准制定的速度,各国都在结合自身的具体情况制定适合本国发展需求的新网络架构与新协议。这对国内测试厂商是一次机遇,也是挑战。测试仪器厂家应积极参与未来网络技术研究,参与到相关标准制定工作中,将标准与产品体系进一步融合,提升产品的竞争力,为通信行业的发展提供保障。
  • 陕西发文:大数据、5G、人工智能等要与制造业深度融合,赋能降碳!
    为深入贯彻落实党中央、国务院关于碳达峰碳中和决策部署,加快推进全省工业绿色低碳转型,扎实做好工业领域碳达峰碳中和工作,近日,陕西省工业和信息化厅、陕西省发展改革委、陕西省生态环境厅会同相关部门研究制定了《陕西省工业领域碳达峰实施方案》(以下简称《方案》)。《方案》提出如下目标:“十四五”期间,着力推动产业结构与用能结构优化取得积极进展,能源资源利用效率明显提升,研发、示范、推广一批减排效果显著的低碳零碳负碳技术装备工艺产品,筑牢工业领域碳达峰基础。“十五五”期间,产业结构布局进一步优化,重点行业低碳发展模式基本形成,确保工业领域二氧化碳排放在2030年前达峰。《方案》同时提出四大重点任务:一、调整优化产业低碳发展布局,引导有色金属等行业产能向可再生能源富集、资源环境可承载地区有序转移。鼓励钢铁、有色金属等行业原生与再生、冶炼与加工产业集群化发展;二、坚决遏制“两高一低”项目盲目发展,严把高耗能、高排放、低水平项目(简称“两高一低”项目)准入关;三、优化重点行业产能结构;四、不断壮大绿色低碳产业,以数控机床、新能源汽车、航空等24条重点产业链为引领,推行绿色供应链管理,创新实现集成电路、光子、高档数控机床等领域产业化,积极布局人工智能、氢能、未来通信技术、北斗导航、生命健康等一批未来产业。此外,《方案》特别提出,要强化数字化信息化融合赋能降碳。一要推进新一代信息技术与制造业深度融合。利用大数据、第五代移动通信(5G)、工业互联网、云计算、人工智能、数字孪生等信息技术对工艺流程和设备升级改造。强化数字化信息化在工业领域的降碳增效作用,积极推动具备条件的企业开展设备换芯、生产换线等智能化改造;二要建立碳数字化管理体系。加强信息技术在能源消费与碳排放等领域的监测与分析应用,加快“秦碳云 ”数字融合平台体系建设,提升重点用能设备碳排放的数字化管理、网络化协同、智能化管控水平;三要推行“工业互联网 绿色低碳”。鼓励电信企业、信息服务企业和工业企业加强合作,利用工业互联网、大数据等技术,统筹共享低碳基础数据和工业大数据资源,为生产流程再造、跨行业耦合、跨区域协同、跨领域配合等提供数据支撑。原文详见:陕西省工业领域碳达峰实施方案 为深入贯彻党中央、国务院关于碳达峰、碳中和重大决策部署,认真落实省委、省政府《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的实施意见》的部署要求,扎实推动我省工业领域碳达峰,根据《陕西省碳达峰实施方案》和工业和信息化部 国家发展改革委员会 生态环境部三部委印发的《工业领域碳达峰实施方案》,制定本方案。一、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,深入贯彻习近平生态文明思想和习近平总书记来陕考察重要讲话重要指示,立足新发展阶段,完整、准确、全面贯彻新发展理念,坚持稳中求进工作总基调,构建新发展格局,坚持系统发展,统筹处理好工业发展和减排、整体与局部、短期和中长期目标、政府和市场的关系,以工业领域高质量碳达峰为目标,以深化供给侧结构性改革为主线,以产业结构、用能结构低碳转型为关键,以推动重点行业碳达峰为突破,着力降强度控总量,推进资源能源清洁高效利用,加快数字化智能化绿色化融合,强化绿色低碳产品供给,促进制造业绿色低碳转型和高质量发展。(二)基本原则统筹兼顾,稳步推进。确保能源和产业链供应链安全,将碳达峰碳中和目标愿景贯穿工业生产各方面和全过程,持续推进能源和原料结构、产业结构、产品结构优化升级,提高清洁能源占比。分区域、分行业、分阶段、分重点,因地制宜、积极稳妥推进工业领域碳达峰。节约优先,提高效率。把节约能源资源放在首位,提升利用效率,推动企业能源资源循环化利用,加强产业间耦合链接,推进节能减污降碳协同增效,持续降低单位产出能源资源消耗,从源头减少二氧化碳排放。创新驱动,低碳转型。把创新作为第一驱动力,全力推动重点领域关键环节低碳技术工艺装备创新和突破,强化新一代信息技术在绿色低碳领域的创新应用,以数字化智能化赋能绿色化低碳化,以最小的碳排放实现工业高质量发展。重点突破,示范带动。以绿色低碳工厂、绿色低碳园区、绿色低碳供应链建设为引领,以实施重点绿色低碳零碳项目为突破,树立重点行业、重点领域低碳创新示范典型,以点带面推进企业、行业以及工业园区碳达峰。政策引领,市场主导。发挥政府在推进工业绿色发展中的引导作用,做好顶层设计、政策引导和措施保障,调整优化工业结构和区域布局;强化企业在推进工业绿色发展中的主体地位,发挥市场作用,加强机制创新,充分调动企业绿色发展的积极性。(三)总体目标“十四五”期间,着力推动产业结构与用能结构优化取得积极进展,能源资源利用效率明显提升,研发、示范、推广一批减排效果显著的低碳零碳负碳技术装备工艺产品,筑牢工业领域碳达峰基础。到2025年,规模以上工业单位增加值能耗较2020年下降13.5%左右,单位工业增加值二氧化碳排放下降幅度大于全社会下降幅度,重点行业二氧化碳排放强度明显下降。“十五五”期间,产业结构布局进一步优化,重点行业低碳发展模式基本形成,重点耗能行业能源资源利用效率达到国内先进水平,主要工业产品单位能耗强度、二氧化碳排放强度持续下降,努力达峰削峰,在实现工业领域碳达峰的基础上强化碳中和能力。确保工业领域二氧化碳排放在2030年前达峰。二、重点任务(一)优化产业布局结构降碳1.调整优化产业低碳发展布局。贯彻落实产业发展与转移指导目录,推进黄河流域重点区域产业有序转移和承接。引导有色金属等行业产能向可再生能源富集、资源环境可承载地区有序转移。鼓励钢铁、有色金属等行业原生与再生、冶炼与加工产业集群化发展。推动陕北能源化工产业高端化、多元化、低碳化发展。培育关中先进制造业集群,加快化工、钢铁、建材等原材料产业布局优化和改造升级,打造低碳科技创新高地。夯实陕南生态碳汇、绿色低碳产业发展基础,打造绿色食品、生态康养等优势产业集群。推动陕北、关中、陕南绿色低碳协调发展。〔省发展改革委(省能源局)、省工业和信息化厅、省生态环境厅、省国资委按职责分工负责〕2.坚决遏制“两高一低”项目盲目发展。严把高耗能、高排放、低水平项目(简称“两高一低”项目)准入关。科学评估拟建项目,对国家明确的产能已饱和的行业按照“减量替代”原则压减产能;对产能尚未饱和的行业按照国家和省上布局以及审批备案等要求,对标国内、国际先进水平提高准入门槛。严格落实“两高一低”项目清单管理、分类处置、动态监控。全面排查在建项目,对不符合要求的“两高一低”项目按有关规定停工整改。对存量项目,组织开展能效水平审核,挖掘节能减排潜力,推动能效水平应提尽提。强化常态化监管,坚决关停不符合要求的“两高一低”项目。(省发展改革委、省工业和信息化厅、省生态环境厅按职责分工负责)3.优化重点行业产能结构。严格落实国家产业结构调整指导目录和钢铁、水泥熟料、平板玻璃、电解铝等行业产能置换政策,严控新增产能。未纳入国家有关领域规划的,一律不得新建改建扩建炼油和新建乙烯、对二甲苯、煤制烯烃项目。落实以环保、能耗、质量、安全、技术为主的综合标准体系,严格常态化执法和强制性标准实施,依法依规淘汰落后产能,持续化解过剩产能。(省发展改革委、省工业和信息化厅、省生态环境厅、省市场监管局按职责分工负责) 4.不断壮大绿色低碳产业。推动战略性新兴产业融合集群发展,以数控机床、新能源汽车、航空等24条重点产业链为引领,推行绿色供应链管理,努力培育形成一批世界一流、全国领先、陕西特色的产业集群。以突破“卡脖子”关键核心技术为导向,创新实现集成电路、光子、高档数控机床等领域产业化,积极布局人工智能、氢能、未来通信技术、北斗导航、生命健康等一批未来产业。发挥我省能源工业、信息技术、装备制造、新材料等产业基础优势,培育一批能源、工业、建筑、交通、民用低碳装备优秀技术企业,推动低碳装备制造业集聚发展。〔省发展改革委(省能源局)、省工业和信息化厅、省科技厅、省自然资源厅、省市场监管局等按职责分工负责〕(二)促进重点关键节能降碳1.推动用能结构低碳化。合理控制化石能源消费,有序推进钢铁、建材、石化化工、有色金属等行业煤炭减量替代。发挥煤炭原料功能,提升能源转换效率和资源利用率,推动煤化工产业高端化多元化低碳化发展。促进煤炭分质分级梯级高效清洁利用。科学控制成品油消费。有序引导天然气消费,合理引导工业用气和化工原料用气增长。推进源网荷储一体化和多能互补发展,加快工业绿色微电网建设,引导企业、园区加快分布式光伏、分散式风电、多元储能、高效热泵等一体化系统开发运行。〔省发展改革委(省能源局)、省工业和信息化厅、省生态环境厅等按职责分工负责〕2.提升工业电气化水平。拓宽电能替代领域,在铸造、玻璃、陶瓷等重点工艺及行业推广电锅炉、电窑炉、电加热等技术,开展高温热泵、大功率电热储能锅炉等电能替代,扩大电气化终端用能设备使用比例。重点对工业生产过程1000℃以下中低温热源进行电气化改造。〔省发展改革委(省能源局)、省工业和信息化厅、省生态环境厅等按职责分工负责〕3.加快节能降碳升级改造。严格控制能耗强度,合理控制能源消费总量。积极推广工业重大低碳技术目录和高耗能行业重点领域节能降碳技术改造指南,推动制造业主要产品工艺升级与节能技术改造,不断提升工业产品能效水平。在钢铁、石化化工等行业开展能效“领跑者”行动。(省工业和信息化厅、省发展改革委、省市场监管局等按职责分工负责)4.推动重点用能设备节能增效。实施变压器、电机等能效提升计划,推动工业窑炉、锅炉、电机、压缩机、泵、变压器等重点用能设备系统节能改造。重点推广稀土永磁无铁芯电机、磁悬浮离心风机等新型节能设备。加强重点用能设备能效核查和日常监管,强化生产、经营、销售、使用、报废全链条管理,严厉打击违法违规使用落后产品和设备的行为。(省发展改革委、省工业和信息化厅、省市场监管局等按职责分工负责)5.切实强化节能监督管理。开展国家工业专项节能监察和日常监察,制定节能监察工作计划,加强节能法律法规、强制性节能标准执行情况监督检查,依法依规查处违法用能行为。加强重点耗能领域、行业碳排放的督察监管,强化对企业碳排放报告报送、核查及履约情况的专项监督检查。全面实施节能诊断和能源审计,发挥重点领域国有企业引领作用,带头开展节能自愿承诺。(省发展改革委、省工业和信息化厅、省国资委、省市场监管局等按职责分工负责)(三)发展循环经济增效降碳1.促进原料低碳替代。保证水泥产品质量的前提下,鼓励应用高固废掺量的低碳水泥生产技术,引导水泥企业通过磷石膏、矿渣、电石渣、钢渣、镁渣、粉煤灰等非碳酸盐原料制水泥。推进水泥窑协同处置垃圾衍生可燃物。鼓励有条件的地区利用可再生能源制备氢,优化合成氨、甲醇等煤化工产品原料结构。支持发展生物质化工,鼓励企业利用植物油、生物基废弃物等生物质原材料替代化石原料,开发生物质聚酯、生物质塑料等生物基化学品和材料,构建多元化、低碳化原料体系。鼓励依法依规进口再生原料。〔省发展改革委(省能源局)、省工业和信息化厅、省生态环境厅、省商务厅、省市场监管局等按职责分工负责〕2.加强再生资源循环利用。促进废钢铁、废有色金属、废纸、废塑料、废旧轮胎等再生资源回收利用行业规范管理,鼓励符合规范条件的企业公布碳足迹。延伸再生资源精深加工产业链条,促进钢铁、镁、铜等金属废碎料,以及废纸、废塑料、废旧纺织品等高效再生循环利用。围绕电器电子、汽车等产品,推行生产者责任延伸制度。推动新能源汽车动力电池回收利用体系建设。到2025年,废钢、废铜、废铝、废铅、废锌、废纸、废塑料、废橡胶、废玻璃等9种主要再生资源循环利用量超过1000万吨,到2030年超过1100万吨。〔省发展改革委(省能源局)、省工业和信息化厅、省生态环境厅、省商务厅、省市场监管局等按职责分工负责〕3.推进高端智能再制造。支持龙头企业做大做强汽车零部件再制造产业,培育大型工业装备、机床、工程机械等领域的再制造企业。对机电产品实施智能再制造升级改造,面向采矿、电力、交通、钢铁、石化化工等行业机电设备维护升级需要,培育再制造解决方案供应商,实施智能升级改造。打造再制造创新载体,加快增材制造、柔性成型、特种材料、无损检测等关键共性再制造技术创新与产业化应用。加强再制造产品认定,建立自愿和自我声明结合的产品合格评定制度。(省发展改革委、省工业和信息化厅、省市场监管局等按职责分工负责)4.推进工业固废综合利用。落实资源综合利用税收优惠政策,推进工业固体废物资源综合利用。鼓励企业开展工业固体废物资源综合利用评价。支持尾矿、粉煤灰、煤矸石等工业固废规模化高值化利用,加快全固废胶凝材料、全固废绿色混凝土等技术研发推广。深入推进工业资源综合利用基地建设,探索形成基于区域产业特色和固废特点的工业固废综合利用产业发展路径。到2025年,大宗工业固废综合利用率达到57%,2030年进一步提升至62%。(省发展改革委、省工业和信息化厅、省财政厅、省生态环境厅、省国税局、省市场监管局等按职责分工负责)(四)强化数字化信息化融合赋能降碳1.推进新一代信息技术与制造业深度融合。利用大数据、第五代移动通信(5G)、工业互联网、云计算、人工智能、数字孪生等信息技术对工艺流程和设备升级改造。强化数字化信息化在工业领域的降碳增效作用,积极推动具备条件的企业开展设备换芯、生产换线等智能化改造,建设一批智能化工厂、数字化车间。在钢铁、建材、石化化工、有色金属等行业加强全流程精细化管理,开展绿色用能监测评价,持续加大能源管控中心建设力度。在机械、汽车、电子、轨道交通、航空等行业打造数字化协同的绿色供应链。开展新一代信息技术与制造业融合发展试点示范。(省发展改革委、省科技厅、省工业和信息化厅等按职责分工负责)2.建立碳数字化管理体系。加强信息技术在能源消费与碳排放等领域的监测与分析应用。加快“秦碳云 ”数字融合平台体系建设,提升重点用能设备碳排放的数字化管理、网络化协同、智能化管控水平。打造重点行业碳达峰碳中和公共服务平台,建立产品全生命周期碳排放基础数据库。加强对重点产品产能产量监测预警,提高产业链供应链安全保障能力。(省发展改革委、省工业和信息化厅、省生态环境厅、省市场监管局、省统计局等按职责分工负责)3.推行“工业互联网 绿色低碳”。鼓励电信企业、信息服务企业和工业企业加强合作,利用工业互联网、大数据等技术,统筹共享低碳基础数据和工业大数据资源,为生产流程再造、跨行业耦合、跨区域协同、跨领域配合等提供数据支撑。聚焦能源管理、节能降碳等典型场景,培育推广标准化的“工业互联网 绿色低碳”解决方案和工业APP,助力行业和区域绿色化转型。〔省发展改革委(省能源局)、省工业和信息化厅、省国资委等按职责分工负责〕三、重点行动(一)重点行业领域能效提升达标行动1.制定技术改造实施方案。落实国家《关于严格能效约束推动重点领域节能降碳的若干意见》的要求,在钢铁、有色金属、建材、石化化工重点行业,建立炼油、煤制焦炭、煤制甲醇、煤制烯烃、煤制乙二醇,烧碱、纯碱、电石、乙烯、对二甲苯、黄磷、合成氨、磷酸一铵、磷酸二铵,水泥熟料、平板玻璃、建筑陶瓷、卫生陶瓷,炼铁、炼钢、铁合金冶炼、铜冶炼、铅冶炼、锌冶炼、电解铝等25个重点领域企业的能效清单目录。对标国家《高耗能行业重点领域能效标杆水平和基准水平(2021年版)》和有关技术改造指南,推动钢铁、建材、石化化工、有色金属等重点行业领域企业制定技术改造方案,开展节能降碳改造。(省发展改革委、省工业和信息化厅、省生态环境厅等按职责分工负责)2.稳步推进技术改造升级。按照“整体推进、一企一策”要求,限期分批实施改造升级,在规定时限内将能效改造升级到基准水平以上,力争达到能效标杆水平。到2025年,首批高耗能行业重点领域达到能效基准水平的产能比例达到100%,达到能效标杆水平的产能比例达到30%。到2030年,高耗能行业重点领域能效基准水平和标杆水平进一步提高,达到标杆水平企业比例大幅提升,为实现碳达峰目标提供有力支撑。(省发展改革委、省工业和信息化厅、省生态环境厅等按职责分工负责)3.依法依规推动落后产能退出。严格利用能耗、环保、质量、安全和技术等综合标准,依法依规推动落后产能退出。严格落实有关产能置换政策,加大闲置产能、僵尸产能处置力度。严格执行《产能结构调整指导目录》等规定,坚决淘汰落后生产工艺、技术、设备,严禁新建、扩建限制类项目,在一定时期内改造升级限制类现有生产能力。〔省工业和信息化厅、省发展改革委(省能源局)牵头,省生态环境厅、省应急厅、省市场监管局按职责分工负责〕4.全面提升清洁生产水平。依法实施“双超双有高耗能”企业强制性清洁生产审核,并逐步增加碳排放核查内容。强化企业主体责任,开展重点行业清洁生产工艺设备改造,推动一批重点企业达到国内领先水平。清洁生产审核和评价结果作为差异化政策制定和实施的重要依据。(省发展改革委、省生态环境厅、省工业和信息化厅等按职责分工负责)(二)重点行业碳达峰和低碳发展行动1.实施钢铁、石化化工、有色金属、建材行业碳达峰行动。制定钢铁、石化化工、有色金属、建材行业碳达峰实施方案。钢铁行业稳妥推进电炉短流程炼钢工艺发展。石化化工行业加快“油转化”进程;加强煤化工节能降耗,提升低碳原料占比,加快应用原油直接裂解制乙烯,合成气一步法制乙烯、乙醇,加快发展高端聚烯烃;积极发展煤基特种燃料和煤基生物可降解材料;研发可再生能源与化学品制造工艺的融合技术、二氧化碳资源化利用技术。有色金属行业积极发展推广高效低碳技术,加快再生有色金属产业发展。建材行业推广应用全氧、富氧、电熔等工业窑炉节能降耗技术。到2025年,短流程炼钢占比稳步提高;“减油增化”取得积极进展,新建炼化一体化项目成品油产量占原油加工量比例下降至40%以下;水泥熟料单位产品综合能耗水平下降3%以上。到2030年,短流程炼钢占比达20%以上,在水泥、玻璃、陶瓷等行业建设一批减污降碳绿色低碳生产线。〔省工业和信息化厅、省发展改革委(省能源局)、省科技厅、省生态环境厅、省国资委、省市场监管局等按职责分工负责〕2.消费品行业低碳发展行动。推广全生命周期绿色发展理念,促进消费品行业绿色低碳发展。在塑料、橡胶等行业,鼓励发展符合节能减排和清洁生产要求的生物可降解塑料环保型新产品,按照绿色产品认证要求,执行标准化工艺流程,从品种、环保等多维度加快传统产品升级换代;在造纸、皮革等行业,以高附加值、低污染、低成本为发展方向,以市场需求为导向,引导开发差异化、多元化的特种产品;在纺织服装行业,以生态印染加工关键技术为突破,研发推广应用纺织绿色制造技术,推进发展高效低耗及短流程印染技术、非水介质印染技术、绿色纺织化学品、印染废水高效低成本深度处理及回用技术。到2025年,消费品行业资源利用效率整体提高,单位工业增加值能耗降低10%。(省发展改革委、省工业和信息化厅、省科技厅、省生态环境厅、省国资委、省市场监管局等按职责分工负责)3.装备制造业低碳发展行动。围绕电力装备、石化通用装备、重型机械、汽车、航空等领域绿色低碳需求,聚焦重点工序,加强先进铸造、锻压、焊接与热处理等基础制造工艺与新技术融合发展,实施智能化、绿色化改造。加快推广抗疲劳制造、轻量化制造等节能节材工艺。到2025年,一体化压铸成型、无模铸造、超高强钢热成型、异质材料焊接、轻质高强合金轻量化、激光热处理等先进近净成型工艺技术实现产业化应用。到2030年,研发创新一批先进适用绿色低碳工艺,生产能耗大幅降低。(省发展改革委、省科技厅、省工业和信息化厅、省生态环境厅、省国资委等按职责分工负责)4.电子行业低碳发展行动。充分发挥我省产业基础和创新资源优势,强化行业集聚和低碳发展,进一步降低非电能源的应用比例。以电子材料及元器件、典型电子整机产品为重点,大力推进晶硅、电极箔、磁性材料、锂电材料、电子陶瓷、电子玻璃、光纤及光纤预制棒等生产工艺的改进。到2025年,连续拉晶技术应用范围95%以上,锂电材料、光纤行业非电能源占比分别在7%、2%以下。到2030年,电子材料、电子整机产品制造能耗显著下降。〔省发展改革委(省能源局)、省科技厅、省工业和信息化厅、省生态环境厅、省国资委等按职责分工负责〕(三)绿色低碳工业产品供给提升行动1.加快绿色低碳产品开发推广。推行工业产品绿色设计,举办工业绿色低碳设计大赛。聚焦消费领域工业产品和减污降碳目标,鼓励企业采用自我声明或自愿认证方式,发布绿色低碳产品名单。推行绿色产品认证与标识制度。到2025年,创建一批生态(绿色)设计示范企业。(省工业和信息化厅、省生态环境厅、省市场监管局等按职责分工负责)2.能源生产领域绿色低碳装备供给。推动太阳能光伏、新型储能电池、重点终端应用、关键信息技术产品协同创新。加快基础材料、关键设备升级,提高光伏产品全生命周期信息化管理水平。支持低成本、高效率光伏技术研发及产业化应用,落实储能电池等行业规范条件、综合标准体系。加快提高多晶硅电池及组件生产工艺及技术水平,优化太阳能光伏发电整体解决方案,进一步做大光伏玻璃、光伏设备等配套产品。〔省工业和信息化厅、省发展改革委(省能源局)等按职责分工负责〕3.交通运输领域绿色低碳产品供给。支持省内龙头企业发展新能源和清洁能源汽车,大力推广节能与新能源汽车。提高城市公交、出租、邮政快递、环卫、城市物流配送、渣土、商混等领域新能源汽车比例,提升新能源汽车个人消费比例。加快构建便利高效、适度超前的充电和加氢网络体系。落实汽车节能减排标准。到2030年,当年新增新能源、清洁能源动力的交通工具比例达到40%左右。乘用车和商用车新车二氧化碳排放强度分别比2020年降低25%和20%以上。推动下一代国产民机绿色化发展。积极发展电动无人机等能源航空器。〔省发展改革委(省能源局)、省工业和信息化厅、省住房和城乡建设厅、省交通运输厅、省市场监管局、省邮政管理局等按职责分工负责〕4.城乡建设绿色低碳产品提质行动。将水泥、玻璃、陶瓷、石灰、墙体材料等产品碳排放指标纳入绿色建材标准体系,加快推进绿色建材产品认证。开展绿色建材试点城市创建,推广节能玻璃、高性能门窗、新型保温材料、建筑用热轧型钢和耐候钢、新型墙体材料,促进绿色建材与绿色建筑协同发展。推动高效节能空调、照明、电梯等用能设备以及太阳能、分布式光伏、空气热泵等清洁能源设备在建筑领域应用。(省发展改革委、省工业和信息化厅、省生态环境厅、省住房城乡建设厅、省市场监管局等按职责分工负责)
  • 使用氧氮氢分析仪分析碳化硅中的氧氮氢元素
    1 绪言在材料科学的浩瀚星空中,碳化硅(SiC)无疑是一颗璀璨的明星。作为无机半导体材料的杰出代表,碳化硅不仅以其独特的物理和化学性质在磨料、耐火材料等领域大放异彩,更在光电、电子等高技术领域展现出无限潜力。然而,要想充分发挥碳化硅的这些优异性能,对其内部元素的精确分析与控制显得尤为重要,特别是氧、氮、氢这三大元素。研究表明,氧含量对碳化硅的等电点和分散性有显著影响:随着氧含量增加,碳化硅微粉的等电点接近石英,水中分散性提升,但过高氧含量则反之,且耐高温性下降,故生产中需严格控制氧含量。适量的氮元素可以调节介电性能、增强其耐高温和抗氧化能力,同时,精确控制氮含量还能优化碳化硅的光电性能,如提升发光效率,进而拓展其在光电子及光电导领域的应用。当前,行业内普遍采用惰性气体熔融法作为检测碳化硅中氧、氮、氢元素含量的主流技术。该方法利用惰性气体作为载气,在高温下促使试样中的目标元素转化为易于检测的气态化合物(CO2、N2、H2),随后通过高灵敏度的非色散型红外检测器与热导检测器,实现对样品中氧、氮、氢含量的直接、精确测量。这一技术的广泛应用,为碳化硅材料的质量控制与性能优化提供了强有力的技术支持。然而,目前大部分氧氮氢分析仪都是是用热导测氢/氮,意味着同一个样品单次只能测氢或者氮,我们使用的宝英光电科技的ONH-316锐风氧氮氢分析仪使用红外测氢技术,能实现氧氮氢联测,达到一次分析同时得到三种元素含量的目的。2 实验部分2.1仪器与试剂仪器:宝英光电科技ONH-316锐风氧氮氢分析仪,高纯氩气做载气,流量为400mL/min,红外吸收法测氧和氢,热导法测定氮。常规分析设置:碳化硅熔点相对较高,大约在2700℃左右,为了防止样品熔融后升华,引起气路堵塞,造成后续测试的影响,所以仪器脱气功率设置为6.0kW,后续分析功率设置为5.5kW。测试的最短分析时间设定为:氧20秒、氮15秒、氢20秒。ONH-316锐风氧氮氢分析仪指标名称性能指标氧氮氢分析范围低氧:0.1ppm~5000ppm高氧:0.5%~20%低氮:0.1ppm~5000ppm高氮:0.5%~50%0.1ppm~5000ppm灵敏度0.01ppm载气高纯氩气2.2样品处理碳化硅粉末经天平称重后直接投样分析测试,无需特殊处理,本实验选择的是样品编号2、3、4的原料样品(非标准物质)进行氧、氮、氢元素检测&zwnj 。2.3实验方法和步骤2.3.1 分析前准备仪器开机,依次打开动力气(工业氮气)和载气(氦气)气瓶,打开仪器电源预热,预热一小时待仪器稳定后,打开冷却水开关,打开计算机电源进入软件,设定合适的分析参数。2.3.2 空白试验仪器基线稳定后,进行空烧做样,用空的坩埚做实验,重复5 ~ 6 次,观察曲线稳定性。待系统稳定下来后,只在进样器中加入镍囊进行分析测定系统氧、氮、氢的空白值,并进行空白补偿。2.3.3 称样称重使用的是梅特勒AL104万分之一天平,将镍囊放置放置于天平上,去皮后称取0.01g左右粉末样,称重完成后,盖上镍囊盖并用洁净的平口钳小心挤压镍囊,排出镍囊内部空气。梅特勒AL104万分之一天平2.3.2 样品测试将石墨坩埚放至仪器下电极凹槽内,点击软件上开始分析按钮,待进料口打开后,投入样品,仪器按照分析自动流程进行氧、氮、氢的熔融分析,绘制分析曲线,通过已经建立的分析方法计算并输出氧、氮、氢的含量。按确定的实验方法,对2、3、4号样品的氧、氮、氢量分别连续进行了两次测试。2.3.5 测定结果数据样品标识氧含量%氮含量%氢含量%25.540621.1330.009785.482419.6960.0107935.129714.8990.010795.139515.9660.0110540.586839.2310.010650.612439.1350.011152.3.6样品释放曲线2.3.7 分析中使用到的耗材石墨坩埚带盖镍囊3 结论从分析曲线上可以看出,样品的释放完全且均匀平滑,从分析数据来看,分析结果的稳定性和重复性都非常好,说明此分析方法非常适合用于碳化硅粉末样品的氧氮氢元素分析。
  • Spectroquant便携式五参数测试仪
    Spectroquant® 便携式余氯、总氯、臭氧、二氧化氯、PH五参数测试仪 产品性能和特点 仪器坚固耐用,防水防尘 轻便易携带,适合现场和实验室分析 预置标准曲线,操作简便 一机多用,可同时测量多个参数 经济实用,无忧服务 技术参数检测波长:528 nm 检测时间:3 - 4 秒自动关机:8分钟不触碰键盘 机器外壳:ABS 便携箱尺寸:270 x 225 x 80 mm (长x 宽x 高) 仪器尺寸:190 x 110 x 55 mm (长x 宽x 高, 不含比色管适配器) 仪器重量:0.4 kg 环境温度: 0° C -40° C 湿度要求: 30 - 90 %, 无冷凝 CE-认证: DIN EN 50 081-1, VDE 0839 part 81-1 1993-03 DIN EN 50 082-2, VDE 0839 part 82-2 1996-02 订货指南: 主机订货号: 1.73607.0001 标准配置仪器主机及便携箱,9伏电池,16mm比色管适配器,适配器遮光盖,3根24mm比色管,操作说明书。 仪器为预制标准曲线型光度计,和Spectroquant® 试剂系统一起使用 测试参数 测试范围mg/l 测试次数 比色管规格 仪器内置方法号 货号 余氯 0.02 &ndash 5.00 200 24mm U.1 1.00598.0002 余氯 0.02 &ndash 5.00 1200 24mm U.1 1.00598.0001 总氯 0.02 &ndash 5.00 200 24mm U.1 1.00602.0001 总氯 0.02 &ndash 5.00 1200 24mm U.1 1.00602.0002 余氯、总氯 0.02 &ndash 5.00 200(各100) 24mm U.1 1.00599.0001 *氯试剂1 (液体) 0.02 &ndash 5.00 200 24mm U.2 1.00086.0001 *氯试剂2(液体) 0.02 &ndash 5.00 400 24mm U.2 1.00087.0001 *氯试剂3(液体) 0.02 &ndash 5.00 600 24mm U.2 1.00088.0001 臭氧 0.02 &ndash 3.40200 24mm U.3 1.00607.0001 臭氧 0.02 &ndash 3.40 1200 24mm U.3 1.00607.0002 二氧化氯 0.05 &ndash 9.50 200 24mm U.4 1.00608.0001 氰尿酸 2 &ndash 160 100 24mm U.5 1.19250.0002 pH pH 6.4 &ndash 8.8 280 16mm U.6 1.01744.0001 吸光度 - 100 &ndash 2500mA 16/24mm Abs *注: 余氯测试= 氯试剂1+氯试剂2 总氯测试= 氯试剂1+氯试剂2+氯试剂3 应用场合 氯是自来水行业常用的消毒剂,但是杀菌消毒之后,水中必然会有部分残余氯。过多的余氯含量不仅污染环境,同时会增加水的腐蚀性,对人体也会造成伤害。因此该指标一直是自来水厂、瓶装水生产线、游泳池等关键性运行指标。针对广大的用户群,默克公司推出了经济型Picco便携式余氯、总氯、臭氧、二氧化氯、PH测试仪,完全符合相关行业标准的要求。 GB 5749&mdash 2006饮用水中消毒剂常规指标及要求 消毒剂名称 与水接触时间 出厂水中限值 出厂水中余量 管网末梢水中余量 Merck测量范围 氯气及游离氯制剂(游离氯,mg/L) 至少30min 4 &ge 0.3 &ge 0.05 0.02 &ndash 5.00 mg/L 一氯胺(总氯,mg/L) 至少120min 3 &ge 0.5 &ge 0.050.02 &ndash 5.00 mg/L 臭氧(O3,mg/L) 至少12min 0.3 0.02如加氯,总氯&ge 0.05 0.02 &ndash 3.40 mg/L 二氧化氯(ClO2,mg/L) 至少30min 0.8 &ge 0.1 &ge 0.02 0.05 &ndash 9.50 mg/L 同时,默克公司根据这些行业的应用特点,推出符合ENISO7027标准和USEPA标准的Turbiquant® 1100、1500系列浊度仪,以及Pharo300紫外可见分光光度计和Pharo100可见分光光度计进行常规毒理性指标和一般化学指标的检测。Merckoquant® 定性、半定量分析试纸条和Aquamerck® 通用型测试盒等产品,也能满足您现场应急检测的需求。 GB 5749&mdash 2006水质常规指标及限值 指 标 限 值 Merck测量范围 毒理指标 砷(mg/L) 0.01 0.001-0.1 mg/L 镉(mg/L) 0.005 0.002-0.5 mg/L 铬(六价,mg/L) 0.05 0.01-0.22 mg/L 铅(mg/L) 0.01 0.01-5 mg/L 氰化物(mg/L) 0.05 0.03-0.7 mg/L 硝酸盐(以N计,mg/L) 10,地下水源限制时为20 0.1-25 mg/L 甲醛(使用臭氧时,mg/L) 0.9 0.1-1.5 mg/L 3、感官性状和一般化学指标 色度(铂钴色度单位) 15 0-1000浑浊度(NTU-散射浊度单位) 1,水源与净水技术条件限制时为3 0.01-1000NTU 铝(mg/L) 0.2 0.02-0.5 mg/L 铁(mg/L) 0.3 0.05-1 mg/L 锰(mg/L) 0.1 0.03-0.5 mg/L 铜(mg/L) 1.0 0.15-1.6 mg/L 锌(mg/L) 1.0 0.025 mg/L 硫酸盐(mg/L) 250 50-500 mg/L 总硬度(以CaCO3计,mg/L) 450 12-537 mg/L 使用简介 默克公司全线产品涵盖实验室定性、半定量分析试纸条,半定量快速测试盒、PH试纸、试纸条、反射仪系统、比色计和分光光度计、浊度仪等,如您对其他应用和产品感兴趣,请您与我们联系。联系电话:021-51693889 1.检测样品的pH值需要保持在4-8之间,否则可以适用氢氧化钠或碳酸溶液进行调节。 2.往24mm的比色管中加入10ml的水样。 3.加入一药勺的试剂Cl2-1。 4.震荡比色管直到固体物质溶解。 5.反应1分钟。 6.将比色管盖子盖好,并确认套好塑胶环,将比色管插入闭塞槽进行测试。 其它相关产品: 大龙实验室产品惊喜大促销-参数-报价-价格-恒奇仪器 德国VITLAB优质容量瓶特价促销-参数-报价-价格-恒奇仪器 美国Branson(必能信)珠宝及光学器件清洗器-B200-参数-报价-价格-恒奇仪器 美国AIRMETRICS便携式PM2.5/PM10/TSP空气采样器-参数-报价-价格-恒奇仪器 连续式数字滴定器-参数-报价-价格-恒奇仪器 马来西亚TOP GLOVES普通无粉乳胶手套-参数-报价-价格-恒奇仪器 马来西亚TOP GLOVES丁腈检验手套-参数-报价-价格-恒奇仪器 merck优级纯溶剂和无机酸碱盐-参数-报价-价格-恒奇仪器 merck指示剂-参数-报价-价格-恒奇仪器 培养基添加剂(一)-参数-报价-价格-恒奇仪器 颗粒状脱水培养基(九)-参数-报价-价格-恒奇仪器 优级纯溶剂-参数-报价-价格-恒奇仪器 pH标准浓缩缓冲溶液-参数-报价-价格-恒奇仪器 电导率标准溶液-参数-报价-价格-恒奇仪器 常用有机合成试剂-参数-报价-价格-恒奇仪器 痕量分析试剂、农残级分析试剂、超纯试剂-参数-报价-价格-恒奇仪器 无水溶剂-参数-报价-价格-恒奇仪器 当量溶液-参数-报价-价格-恒奇仪器 原子吸收、离子标准溶液、ICP标准溶液-参数-报价-价格-恒奇仪器 美国BRANSON(必能信)2000bdc连续流大功率超声波破碎系统-参数-报价-价格-恒奇仪器 美国Branson(必能信)超声波破碎仪/细胞破碎仪(sonifier)-参数-报价-价格-恒奇仪器 美国BRANSON(必能信)SLP系列超声波细胞破碎仪-参数-报价-价格-恒奇仪器 美国Branson(必能信) IC系列超声波清洗系统-参数-报价-价格-恒奇仪器 美国Branson(必能信) DHA1000型大容量超声波清洗器-参数-报价-价格-恒奇仪器 美国Branson(必能信)原装台式超声波清洗器-参数-报价-价格-恒奇仪器 DR5000多参数水质分析仪(紫外可见分光光度计)-参数-报价-价格-恒奇仪器 DR890便携式多参数水质分析仪-参数-报价-价格-恒奇仪器 LDOTM 便携式溶氧仪-参数-报价-价格-恒奇仪器 DR2800多参数水质分析仪(分光光度计)-参数-报价-价格-恒奇仪器 2100AN实验室浊度仪-参数-报价-价格-恒奇仪器 2100N台式浊度仪-参数-报价-价格-恒奇仪器 2100Q便携式浊度仪-参数-报价-价格-恒奇仪器 DR1010 COD分析仪-参数-报价-价格-恒奇仪器 BODTrak 生化需氧量分析仪-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质圆底烧瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质蒸发皿-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品管-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品管-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品罐-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质宽口瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质窄口瓶-经济型-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质窄口瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA 材质经济型洗瓶-参数-报价-价格-恒奇仪器 德国VITLAB 移液管架(可放置94支移液管)-参数-报价-价格-恒奇仪器 德国VITLAB PP材质B级容量瓶-参数-报价-价格-恒奇仪器 德国VITLAB PP材质B级容量瓶-参数-报价-价格-恒奇仪器 FG3便携式电导率仪-参数-报价-价格-恒奇仪器 FE30台式电导率仪-参数-报价-价格-恒奇仪器 瑞士梅特勒托利多FG2基础型便携式PH计-参数-报价-价格-恒奇仪器 METTLER电位滴定仪-参数-报价-价格-恒奇仪器 MJ33水分测定仪-参数-报价-价格-恒奇仪器 卤素快速水份测定仪-参数-报价-价格-恒奇仪器 梅特勒XS精密天平-参数-报价-价格-恒奇仪器 梅特勒XP精密天平-参数-报价-价格-恒奇仪器 超越系列XS分析天平-参数-报价-价格-恒奇仪器 超越系列XP分析天平-参数-报价-价格-恒奇仪器 Newclassic MS天平-参数-报价-价格-恒奇仪器 Newclassic ML天平-参数-报价-价格-恒奇仪器 便携式荧光溶解氧DO分析仪-参数-报价-价格-恒奇仪器 美国Myratek便携式悬浮物/TSS测定仪(Portable TSS Analyzer)-参数-报价-价格-恒奇仪器 WTW BOD培养箱TS 606i/1006i-参数-报价-价格-恒奇仪器 WTW 实验室浊度仪Turb 550/555-参数-报价-价格-恒奇仪器 WTW 实验室多参数计inoLab pH Cond 720/inoLab Multi 720-参数-报价-价格-恒奇仪器 WTW 实验室电导率仪inoLab Cond 720/730/740-参数-报价-价格-恒奇仪器 WTW 实验室溶氧仪BOD测定仪inoLab Oxi730/740-参数-报价-价格-恒奇仪器 WTW 实验室离子浓度计inoLab pH ION735-参数-报价-价格-恒奇仪器 WTW 实验室pH酸度计inoLab pH 720/730/740-参数-报价-价格-恒奇仪器 WTW 便携式光度计/COD测定仪-参数-报价-价格-恒奇仪器 WTW 便携式浊度测试仪-参数-报价-价格-恒奇仪器 WTW 便携式多参数测试仪Multi 340i-参数-报价-价格-恒奇仪器 WTW 便携式电导率仪-参数-报价-价格-恒奇仪器 WTW 便携式离子浓度计 pH ION 340i-参数-报价-价格-恒奇仪器 笔式电导率/TDS/盐分计-参数-报价-价格-恒奇仪器 9P多参数水质分析仪-参数-报价-价格-恒奇仪器 4P,6P便携式PH/电导率仪-参数-报价-价格-恒奇仪器 美国麦隆指针式 电导/TDS/pH表-参数-报价-价格-恒奇仪器 美国麦隆Ultrameter Ⅱ多参数电导/pH表-参数-报价-价格-恒奇仪器 意大利kartell样品瓶-参数-报价-价格-恒奇仪器 意大利kartell灰色小口瓶-参数-报价-价格-恒奇仪器 意大利kartell广口瓶-参数-报价-价格-恒奇仪器 意大利kartell刻度广口瓶-参数-报价-价格-恒奇仪器 意大利kartell刻度广口瓶-参数-报价-价格-恒奇仪器 意大利KARTELL移液管架-参数-报价-价格-恒奇仪器 移液管、滴定管自动冲洗装置-参数-报价-价格-恒奇仪器 连续移液器及吸头-参数-报价-价格-恒奇仪器 外置活塞移液器-参数-报价-价格-恒奇仪器 Transferette electronic电动移液枪-参数-报价-价格-恒奇仪器 Transferpette8道12道移液器-参数-报价-价格-恒奇仪器 Transferpette S8道/12道移液器-参数-报价-价格-恒奇仪器 Transferpette单道移液枪-参数-报价-价格-恒奇仪器 TransferpetteS单道整支灭菌移液枪-参数-报价-价格-恒奇仪器 seripettor简易瓶口分配器-参数-报价-价格-恒奇仪器 Dispensette 瓶口分配器-参数-报价-价格-恒奇仪器 数字显示滴定器-参数-报价-价格-恒奇仪器 大龙高速微量离心机-参数-报价-价格-恒奇仪器 大龙高速个人离心机-参数-报价-价格-恒奇仪器 大龙高速微量冷冻离心机-参数-报价-价格-恒奇仪器 瓶口分配器-参数-报价-价格-恒奇仪器 StepMate连续分配器-参数-报价-价格-恒奇仪器 MicroPette 手动(可调式&固定式)移液器-参数-报价-价格-恒奇仪器 TopPette手动(可调式&固定式)移液器-参数-报价-价格-恒奇仪器 圆周(线性)数显型摇床-参数-报价-价格-恒奇仪器 10通道型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 96孔板混匀仪-参数-报价-价格-恒奇仪器 可调式&固定式混匀仪-参数-报价-价格-恒奇仪器 数显型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 不锈钢紧急冲淋器-参数-报价-价格-恒奇仪器 紧急喷淋装置-参数-报价-价格-恒奇仪器 白大褂-参数-报价-价格-恒奇仪器 台式洗眼器-参数-报价-价格-恒奇仪器 组合式紧急冲淋洗眼器-参数-报价-价格-恒奇仪器 安全喷淋洗眼器-参数-报价-价格-恒奇仪器 安全鞋-参数-报价-价格-恒奇仪器 金佰利擦拭纸-参数-报价-价格-恒奇仪器 Ansell 4-644PVC手套-参数-报价-价格-恒奇仪器 Ansell 8-354氯丁橡胶手套-参数-报价-价格-恒奇仪器 Ansell 29-865氯丁橡胶手套-参数-报价-价格-恒奇仪器 Ansell 78-150抗低温手套-参数-报价-价格-恒奇仪器Varian PCX固相萃取柱-符合测试三聚氰胺国标方法-参数-报价-价格-恒奇仪器 NOVA60多参数水质分析仪-参数-报价-价格-恒奇仪器 ET1200 红外分光油分析仪-参数-报价-价格-恒奇仪器 Chemvak系列防腐蚀隔膜真空泵-参数-报价-价格-恒奇仪器 Staurt样品浓缩仪(氮吹仪)-参数-报价-价格-恒奇仪器 ATAGO数字式阿贝折光仪-参数-报价-价格-恒奇仪器 ATAGO阿贝折光仪-参数-报价-价格-恒奇仪器 ATAGO手持式折射计-参数-报价-价格-恒奇仪器 ATAGO MASTER系列手持式折射计-参数-报价-价格-恒奇仪器 ATAGO手持数字折射计-参数-报价-价格-恒奇仪器 ATAGO手持数字糖度计PR-&alpha 系列-参数-报价-价格-恒奇仪器 ATAGO迷你数字折射计PAL系列-参数-报价-价格-恒奇仪器 WTW BOD分析仪 OxiTop IS6、IS12-参数-报价-价格-恒奇仪器 WTW COD快速测定仪(PhotoLab S6+ CR 3200)-参数-报价-价格-恒奇仪器 Picco COD分析仪-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪P100在线型-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪L100实验室型-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪F100便携式-参数-报价-价格-恒奇仪器 WTW 便携式pH酸度计-参数-报价-价格-恒奇仪器 梅特勒SevenEasy pH计-参数-报价-价格-恒奇仪器 FiveEasy系列台式pH计(FE20)-参数-报价-价格-恒奇仪器 WTW 菌落计数器BZG 30-参数-报价-价格-恒奇仪器 WTW 便携式溶氧测定仪Oxi 3205/3210/3310-参数-报价-价格-恒奇仪器 Pharo300多参数水质分析仪(紫外可见分光光度计)-参数-报价-价格-恒奇仪器 Pharo100多参数水质分析仪(可见分光光度计)-参数-报价-价格-恒奇仪器 测试盒-参数-报价-价格-恒奇仪器 梅特勒-托利多PB-S经典系列标准型精密天平-参数-报价-价格-恒奇仪器 梅特勒-托利多AB-S/FACT经典系列先进型分析天平-参数-报价-价格-恒奇仪器 Hitech-Kflow系列超纯水系统-参数-报价-价格-恒奇仪器 英国ELGA实验楼中央纯水整体解决方案 &mdash CENTRA S200/R200-参数-报价-价格-恒奇仪器 英国ELGA UHQ小型超纯水系统-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Option实验室必备Ⅱ级纯水系统-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Ultra提供实验室用超纯水-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Classic经济型超纯水仪-参数-报价-价格-恒奇仪器 德国Heidolph最新旋转蒸发仪-参数-报价-价格-恒奇仪器 ATAGO自动恒温数显折光计RX-5000&alpha -参数-报价-价格-恒奇仪器 ATAGO数字式半自动旋光仪 POLAX-2L-参数-报价-价格-恒奇仪器 ATAGO全自动旋光仪/旋光糖度仪 AP-100-参数-报价-价格-恒奇仪器 显微镜-参数-报价-价格-恒奇仪器 标准型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 培养皿-参数-报价-价格-恒奇仪器 接种环-参数-报价-价格-恒奇仪器 Merck微生物检测耗材-参数-报价-价格-恒奇仪器 德国VITLAB 移液管泵-参数-报价-价格-恒奇仪器 德国VITLAB 安全洗耳球-参数-报价-价格-恒奇仪器 烧杯-参数-报价-价格-恒奇仪器 双刻度低型烧杯-参数-报价-价格-恒奇仪器 DURAN® 多孔螺旋盖系统-参数-报价-价格-恒奇仪器 DURAN® Premium Bottle-参数-报价-价格-恒奇仪器 DURAN® GLS 80宽口玻璃瓶-参数-报价-价格-恒奇仪器 DURAN® 实验室棕色玻璃瓶-参数-报价-价格-恒奇仪器 DURAN® 实验室玻璃瓶-参数-报价-价格-恒奇仪器 德国VITLAB PMP材质B级容量瓶-参数-报价-价格-恒奇仪器 德国VITLAB PMP材质B级容量瓶-参数-报价-价格-恒奇仪器
  • 年产10万片碳化硅单晶衬底项目在涞源投产
    9月5日上午,河北同光科技发展有限公司年产10万片直径4-6英寸碳化硅单晶衬底项目,在保定市涞源县经济开发区投产,成为保定第三代半导体产业从研发到规模量产的一次成功跨越。碳化硅单晶作为第三代半导体材料的核心代表,处在碳化硅产业链的最前端,是高端芯片产业发展的基础和关键。河北同光晶体有限公司是全省首家能够量产第三代半导体材料碳化硅单晶的战略新兴企业。2020年3月,涞源县人民政府与该公司签署协议,政企共建年产10万片直径4-6英寸碳化硅单晶衬底项目,总投资约9.5亿元、规划占地112.9亩。项目采用国际先进的碳化硅单晶衬底生产技术,布局单晶生长炉600台,购置多线切割机、研磨机等加工设备200余台,建成具有国际先进水平的碳化硅单晶衬底生产线。该公司董事长郑清超介绍,项目从动工到投产用时17个月,满产运行后能够将产能提升3倍,产品将面向5G通讯、智能汽车、智慧电网等领域,满足其芯片需求,预计年销售收入5-10亿元。下一步,同光正谋划建设2000台碳化硅晶体生长炉生长基地和年产60万片碳化硅单晶衬底加工基地,拟总投资40亿元。到2025年末实现满产运营后,预计新增产值40-50亿元,成为全球重要的碳化硅单晶衬底供应商。保定市副市长王建峰表示,保定不仅具有支撑科技成果转化落地的产业优势,还拥有17所驻保高校、354家科技创新平台、23万名专业技术人才等雄厚人才支撑的科技创新优势,是全国创新驱动发展示范市和“科创中国”试点城市。未来将在数字经济、生物经济、绿色经济领域全面发力,重点围绕“医车电数游”、被动式超低能耗建筑和都市型农业等七大重点产业,大力实施“产业强市倍增计划”和“双千工程”,积极推动“北京研发保定转化、雄安创新保定先行”,着力建设创新驱动之城,加快构建京雄保一体化发展新格局,聚力打造京津冀城市群中的现代化品质生活之城。
  • 测试仪器发展的四大阶段
    仪器仪表是信息的源头, 是人类获取有关自然界知识、 认识世界的工具。 信息高速公路作为信息社会的基础结构,奠定了它在人与自然的逻辑关系中的桥梁和纽带的地位。 测试仪器位于信息高速公路与自然之间的环域, 是信息高速公路中信息的重要来源。 纵观仪器技术的发展,其历经了模拟仪器、 数字仪器、 智能仪器和虚拟仪器等几个主要阶段,如图。( 1)模拟仪器:20世纪 50 年代以前, 电测量技术主要是模拟测量, 此类仪器的基本结构是电磁机械式, 主要是借助指针来显示测量结果。( 2)数字仪器:20 世纪 50 年代, 数字技术的引入和集成电路的出现, 使电测仪器由模拟式逐渐演化为数字式, 其特点是将模拟信号测量转化为数字信号测量, 并以数字方式输出最终结果, 适用于快速响应和较高准确度的测量。 这类仪器目前相当普及, 如数字电压表、 数字频率计等。( 3)智能仪器:出现于 20 世纪 70年代, 是现代测试技术与计算机技术相结合的产物。 它是含有微计算机或微处理器的测试仪器, 测量结果具有存储、 运算、 逻辑判断及自动操作、自动控制等功能, 即具有一定智能作用, 故将其称之为 “ 智能仪器” 。 智能仪器将传统数字仪器中控制环节、 数据采集与处理、 自调零、 自校准、 自动调节量程等功能改由微处理器完成, 从而提高测量精度和速度。( 4)虚拟仪器:这一概念早在 20 世纪 70 年代就已提出,但真正得以实现则是在 PCI、 GPIB、 VXI、 PXI 等总线标准出现之后才变为可能, 并随着卡式仪器、 VXI 总线仪器、 PXI 总线仪器等的推出而得到迅速发展。 虚拟仪器是在计算机基础上通过增加相关硬件和软件构建而成的、 具有可视化界面的仪器。 虚拟仪器是现代计算机技术与仪器技术完美结合的产物,软件在仪器的开发和使用的全过程中起着至关重要的作用, 可以说没有了软件就没有虚拟仪器。 它基于 “ 软件就是仪器” 的思想, 利用最新的计算机技术来实现和扩展传统仪器的功能,真正实现由用户自己设计和定义满足自己特殊要求的仪器。以太网的发展为基于网络的测试系统提供了平台, 也成就了 LXI [12 - 13] 的诞生。 2004 年 9 月 VXI 科技公司和安捷伦联合推出一种新的基于工业以太网的总线规范—LXI。 LXI 标准用以太网作为系统的骨干, 无需 VXI 或 PXI 方式的机箱。 LXI联盟于 2005 年 10月通过了 IEEE1588 协议, 为 LXI 网络化虚拟仪器的设计与实现提供了标准。 未来的总线将会向专业化和大众化方向发展, 因此, 在 LXI 仪器还未完全占领市场之前,VXI、 PXI 和 USB等都将成为市场的主流总线技术。随着信息高速公路和仪器技术的进一步发展与结合, 基于Internet 的远程测控是现代测试技术和虚拟仪器技术的发展方向之一。 以 Internet 为代表的网络技术的成熟以及它与仪器技术的结合, 为仪器技术的发展带来了前所未有的空间和机遇, 可以肯定, 网络化测试技术的时代已经来临。
  • 大昌华嘉为低碳清洁能源研究所引进Freeman粉末流动性测试仪
    大昌华嘉商业(中国)有限公司 DKSH 日期:2012年11月16日 Date: 11/16/2012 上海,16.11.2012 专注于发展亚洲市场拓展服务的大昌华嘉集团与Freeman Technology,继成功合作为华东理工大学提供中国第一台粉末流动性测试仪之后,再次为北京低碳清洁能源研究所(简称低碳所)引进世界领先的粉末流动性质测试仪器FT4。 煤粉的特性:(1)煤粉是由尺寸不同、形状不规则的颗粉所组成,一般煤粉颗粒直径范围为0&mdash 1000um,大多20&mdash 50um的颗粒;    (2)煤粉密度较小,新磨制的煤粉堆积密度过约为(0.45&mdash 0.5)吨/立方米,贮存一定时间后堆积密度为(0.8&mdash 0.9)吨/立方米; (3) 煤粉颗粒的流动性,由于煤粉很细,,单位质量的煤粉具有较大的比表面积,部分煤粉含水量较高,从而使其气体输送过程中产生不同的问题。 中国国内煤炭行业的大部分用户使用煤块,而大量的煤粉由于利用价值低,容易被客户抛弃造成浪费,如果把煤粉收集运输到一块,压成煤块,或者直接采用煤粉输送到煤制油或煤制气的设备中,可以大大提高煤粉的附加值,同时减少浪费。 煤粉从原料到后期加工或应用的气力输送研究对于实现能源高效利用、电厂低排放、低硫化应用具有重要意义。 由于国内的煤种多而杂,煤质差异很大,煤粉输送率、风速、风压等基本参数及其优化需要积累不同来源的煤粉的粉末性质。FT4能够提供全面的粉末流动性参数,如充气流动能(低应力下的煤粉内聚强度),透气性(煤粉充气后的空气溢出难易程度),压缩性(煤粉密度的变化)和剪切性质(煤粉在高应力下的内聚强度和颗粒间摩擦性,如料斗和螺杆输送),为使用煤粉的企业提供煤粉输送设备的工艺参数所需的数据。 关于北京低碳清洁能源研究所 北京低碳清洁能源研究所(简称低碳所)是神华集团有限责任公司出资组建的国家级研究机构,主要致力于发展新技术,改善煤炭利用效率,减少对环境的影响。 目前,低碳所正从事31项研究课题,并在低阶煤热解技术、费托合成催化剂、煤炭气化、直接液化残渣利用、煤制天然气转化、甲烷化催化剂等领域取得了重大进展。 低碳所已与清华大学、中科院等6所中国领先高校和研究所以及4家外国企业和实验室建立了合作关系,现已经提交PCT国际专利申请5项,向中国专利局申请发明专利14项,另外约有29项发明专利申请正处在技术交底的不同阶段。 关于Freeman Technology Freeman Technology 专精于粉末及其流动特性的先进表征与分析技术。该公司成立于1989年,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业获得ISO 9001:2008 认证,所有仪器都在其位于英国格洛斯特郡(Gloucestershire)的设计制造中心生产。研究解读粉末的行为是该企业的经营策略中心。 关于DKSH(大昌华嘉) 大昌华嘉是专注于亚洲地区的全球领先市场拓展服务集团。正如&rdquo 市场拓展服务&rdquo 一词所述,大昌华嘉致力于帮助其它公司和品牌拓展现有市场或新兴市场业务。 大昌华嘉在全球35个国家设有650个分支机构-其中630家分布于亚太地区,拥有24,000多名专业员工。因其销售额和员工人数为居瑞士前20大公司之列。2011年,大昌华嘉的年度净销售额(net sales)近73亿瑞士法郎。 科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中 国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们在中国设有多个销售,服务网点,旨在为客户提供全方位的产 品和服务。 2011年,在中国科学仪器行业目前最高级别的峰会&ldquo 2011中国科学仪器发展年会(ACCSI 2011) &rdquo 上,大昌华嘉(DKSH)喜获&ldquo 最具影响力经销商&rdquo 奖。 更多信息,请联系: 中国上海徐汇区虹梅路1801号凯科国际大厦2208室,200233 电话 +86 400 821 0778 传真 +86 21 3367 8466
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制