纳米金属和金属陶瓷

仪器信息网纳米金属和金属陶瓷专题为您提供2024年最新纳米金属和金属陶瓷价格报价、厂家品牌的相关信息, 包括纳米金属和金属陶瓷参数、型号等,不管是国产,还是进口品牌的纳米金属和金属陶瓷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米金属和金属陶瓷相关的耗材配件、试剂标物,还有纳米金属和金属陶瓷相关的最新资讯、资料,以及纳米金属和金属陶瓷相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

纳米金属和金属陶瓷相关的厂商

  • 宜兴精刚陶瓷科技有限公司成立于2012年,座落于中国江苏宜兴。我们拥有国外先进高科技技术和进口设备,是一家集研发、设计、生产特种陶瓷材料产品的专业性高科技企业。主要产品有:99氧化铝、氧化锆、碳化硅、氮化硅、ZTA特种陶瓷的结构件、高温耐火陶瓷管、棒、密封件、研磨件、基板、刀具以及各种异形件。产品具有高强度、高硬度、耐高温、耐磨损、耐腐蚀及绝缘等特性,是逐渐代替金属材料的新一代环保材料。 公司主专业生产95~99.9氧化铝结构陶瓷以及氧化锆陶瓷、氮化硅特种精密陶瓷,ZTA、堇青石等陶瓷材料产品 电热电器行业用各种规格材质的耐热、耐磨、耐电压、酸碱性陶瓷件。高铝质、刚玉质、碳化硅质,莫来石质耐高温陶瓷。普瓷、钛瓷,、高频瓷,75,85,95,99氧化铝陶瓷(管、棒、条、板、片、等陶瓷件),氧化铝刚玉管、电炉管.高温特种瓷件、耐火材料制品。  本公司拥有先进的生产加工设备,以及科研人员和技术人员,可根据客户图纸生产、加工、研发各类陶瓷异形件。产品尺寸精度高,性能稳定。
    留言咨询
  • 我公司主要生产氧化铝结构陶瓷、氧化锆陶瓷、氮化硼陶瓷,非标定制异形件、陶瓷管、刚玉管、陶瓷棒、刚玉坩埚,具有高强度、耐磨损、耐腐蚀、耐高温、绝缘性能好等特征。产品广泛应用于军工电器、航空航天、真空技术设备、工业窑炉、矿山机械、汽车电子、化工、机械等行业。
    留言咨询
  • 400-860-5168转5085
    苏州微流纳米生物技术有限公司由海归工程师创立, 地处苏州工业园区生物纳米科技园内。公司技术团队具有十余年国内外纳米均质领域服务经验,一直与国外厂商保持了紧密的合作关系,公司是美国Genizer官方授权亚洲区总代理、美国BEE官方授权中国区总代理。  公司主营代理超高压均质、脂质体挤出等设备和技术,为脂肪乳 (丙泊酚、前列地尔、氯维地平等),精细化工(MLCC、锂电池、导电涂层等),细胞破碎,纳米粒(紫杉醇白蛋白等)、纳米脂质体(多柔比星、伊立替康)、纳米纤维素、混悬液(泊沙康唑、氯替泼诺等)等领域客户提供了优质的解决方案。公司致力于成为纳米均质服务领域的专家,“品质至上、效能优先”是我们的经营理念,公司将竭诚为您提供优质的服务与解决方案。  苏州微流纳米生物技术有限公司供应: 高压微射流均质机、高压均质机、微射流金刚石交互容腔、超高压均质机、纳米分散仪、纳米均质机、纳米破碎仪、脂质体挤出器、微流化器、纳米激光粒度仪、实验到生产型Genizer微射流超高压均质机、实验型和生产型脂质体挤出器、脂肪乳配液系统、脂质体工业化制备、石墨烯导电浆料、碳纳米管导电浆料、MLCC多层陶瓷电容导电涂层、电池导电浆料纳米化系统。
    留言咨询

纳米金属和金属陶瓷相关的仪器

  • 布鲁克TI 980高精度纳米力学测试系统是布鲁克公司研制的自动化、高通量的测试仪器,可以用来表征材料多项纳米力学性能,包括硬度、弹性模量、摩擦系数、磨损率、破裂韧性、失效、蠕变、粘附力(结合力)等力学数据。高性能的样品加载系统和工艺领先的专利技术三板电容传传感技术赋予仪器超高的稳定性和广泛的应用领域,支持多种类型的不同形状和尺寸的样品。在薄膜、陶瓷、复合物、聚合物、微机电系统、生物和金属等领域都有广泛应用。后续可选择升级模块有高温台、电学性能测试、湿度控制模块、冷台、与拉曼连用等,TI980是最多样化的纳米力学表征工具,是高校、研究所及工业界用户的最佳选择。
    留言咨询
  • 二硅化钼保护管性能:二硅化钼保护管具有一定的机械强度和耐温变性能,物理化学性质稳定、耐高温,较高的导热系数, 抗养化性能好,耐腐蚀,气密性好二硅化钼保护管作用:使热电偶与工作环境隔离,免受一些环境的破坏,延长热电偶的使用寿命二硅化钼保护管应用:广泛应用在天然气,陶瓷,水泥,碳黑,化肥,冶金,耐火材料,机械,石油化工,煤化工等行业的测温元件保护方面。在养化,还原,yang化与还原交替,某些化学腐蚀气体,熔化金属等介质环境中使用。郑州毅信窑炉有限公司生产订做热电偶二硅化钼保护管,具有一下优势: 1.质量稳定,耐急冷急热,底部密封加厚,气密性好 2.厂家直发 先近稳定生产技术,订做工期短,快速发货3.品质包装 层层防护,让运输更有保障4.贴心服务 经验丰富,24H在线,欢迎来电
    留言咨询
  • 金属纳米颗粒制备 金纳米材料具有众多易于调控的特性,比如局域表面等离子共振、表面增强拉曼、光致发光、易于表面修饰和生物相容性好。这使得金纳米材料广泛应用于我们生活的多个方面。合成金纳米颗粒常用的制备方法有很多,其中,直接FSP火焰喷雾燃烧法生长法应用广泛。金属纳米颗粒制备采用火焰喷雾热解工艺,受益于极短的工艺链使复杂纳米颗粒的生产只需一步。纳米粉末生产FSP通常生产高结晶氧化纳米颗粒。但合成了磷酸盐、纯金属。根据工艺条件。颗粒的典型尺寸范围 5 ~ 50nm。这些初级粒子形成较大的团聚体。 纳米产品的例子包括简单的金属氧化物TiO2Al2O3 ZrO2以及YSZ CGO 钙 矿或尖晶石复杂氧化物。此外:贵金属纳米颗粒可以制造沉积在火焰中的氧化物支持颗粒上于某些组合物。可以制备表面包覆或基质化的纳米颗粒。 FSP纳米颗粒的应用包括:催化剂电池材料陶瓷牙科 生物医学材料体传感器聚合物纳米复合材料陶瓷.... 原材料FSP的源材料是低成本的金属化合物酸盐、硝酸盐或有机金属。这些所谓的前体是混合或溶解在标准有机溶剂。同心甲氧支持火焰、燃前驱溶剂喷雾,并确保稳定燃烧还可以使用可选的护套体。 NPS-20是一种用于纳米颗粒合成的全集成化桌面式火焰喷雾热解装置。应用于研究早期产品开发阶段。NPS-20设计用于快速筛选FSP合成中可用的材料组成 工艺条件的大量参数加速纳米材料的科学发展。纳米颗粒制备仪主要特点:1产品纯度高,粒径小,分布均匀,比表面积大,高表面活性,松装密度低,气相法制备,克服了市场上湿化学法制备的颗粒硬团聚、难分散、纯度低等缺点;2表面存在大量的不饱和残键及不同键合状态的羟基,因表面欠氧而偏离了稳定的硅氧结构,所以具有高反应活性,粉体松装密度比较小,容易分散使用;3纳米颗粒晶相稳定、硬度高、尺寸稳定性好,可应用于各种塑料、橡胶、陶瓷产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为。由于颗粒也是性能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。4公司可以进行针对性的表面处理包裹,使得纳米粉体可以稳定地分散在溶剂体系中,形成透明状或半透明状溶胶,应用在涂料、玻璃表面、电子封装等
    留言咨询

纳米金属和金属陶瓷相关的资讯

  • Spex 应用分享 | 高能球磨法制备纳米晶氧化陶瓷
    SPEX MIXER/MILL® 8000系列高能球磨仪可将坚硬或易碎样品粉碎至可分析细度,部分样品研磨精度可达纳米级别。采用独家专利的∞式三维立体运动模式研磨,360°立体无死角,非正反转方式,可以在最短的时间内向样品输送最高的机械能量,为目前世界上所有球磨仪中能量最高、速度最快的球磨机。SPEX以其在球磨机研发和生产超过60年的经验以及在球磨机创新领域所做出的突出贡献,成为美国球磨机行业标准的制定者。SPEX高能球磨仪可用于岩石、矿物、金属合金、陶瓷、催化剂、玻璃、沙子、水泥、炉渣、医药、植物和动物组织、谷物、种子、油漆和油墨、电子、RoHS样品等分析用样品研磨。 下文将介绍SPEX高能球磨仪用于分析纳米晶体材料中的颗粒尺寸效应。该应用源自: S. Indris, D. Bork, P. Heitjans, J. Mater. Synth. Process 8, 245 (2000),经汉诺威大学物理化学和电化学研究所P.Heitjans教授同意。原文献阅读请联系科尔帕默公司。✦ ++高能球磨法制备纳米晶氧化陶瓷SPEX 高能球磨仪分析纳米晶体材料中的颗粒尺寸效应需要一种可以调节颗粒尺寸的技术。在本研究中,使用球磨机(8000M Mixer/Mill® , SPEX SamplePrep;配备有氧化铝和氧化锆小瓶)。球磨特别适合这项任务,因为它易于使用,并允许研磨相对大量的材料以及各种不同的材料。分析介质为:Li2O、LiNbO3、LiBO2、B2O3、TiO2和Li2O:B2O3混合物。通过研磨时间测定平均粒径,随后通过X射线衍射(XRD)和透射电子显微镜(TEM)进行分析。选择含锂材料是因为它们作为固体电解质的潜在用途。TiO2在用作光催化剂方面是令人感兴趣的。对于吸湿性材料,在氩气气氛中填充氧化铝研磨瓶并将其放入密封的不锈钢容器中。► 颗粒大小不同的氧化物表现出不同的研磨特性,但最小粒径约为在研磨8至10小时后获得20nm.通过XRD分析和TEM数据确定颗粒尺寸。差示扫描量热法(DSC)表明,纳米晶样品是亚稳态的,加热导致颗粒生长。在烧结过程中,当要生产固体致密陶瓷时,要考虑到这一点。其他研究小组先前的研究表明,两步烧结特别适合在第二步中使用较低的温度。通过两种方法分析,TiO2在研磨过程中发生了部分相变。当进行球磨时,包含另外杂质的金红石以较小粒径的纯金红石(不含杂质)形式获得。► 化学反应陶瓷组分的混合和随后的压制产生具有多个不同边界层的材料。这种不同界面的晶格可以通过改变颗粒尺寸来改变。在分析Li2O∶B2O3的50∶50混合物的过程中,检测到由于该化学-机械过程引起的化学变化。在短时间后,用XRD分析仅检测到原始化合物的谱线,而在4小时后出现新的谱线。新形成的产物是Li2B4O7。这表明反应的最终产物并不取决于混合物的组成,而是取决于边界层的条件。► 结论高能球磨特别适用于颗粒尺寸的减小以及后续化学和物理变化的研究。颗粒尺寸减小和随后生长的特征与所有分析的氧化物相似。开始时微晶材料没有发生化学反应,经过研磨后:一些材料表现出相变;另一些材料则表现出化学反应。更多推荐:SPEX8200高能行星式球磨机Spex 8200行星球磨机通过机械运动研磨样品,沿一个方向旋转震击器,而平台(太阳轮)沿相反方向旋转。机械磨具以2:1的比例进行,使容器相对于太阳轮的每一次旋转旋转两次。当容器移动时,相对离心力被传递到磨球上,使磨球以圆周运动的方式相互移动,并抵靠容器壁,从而研磨样品。
  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 美科学家打造纳米金属可使水往高处流
    -- 罗切斯特大学的光学副教授郭春雷(音译)   北京时间6月5日消息,据物理学家组织网报道,树木通过毛细管作用,把水分从树根运输到距离地面几百英尺的树叶上,现在罗切斯特大学的科学家已经制成一种简单的金属平板,它利用相同原理使液体向上运行,不过这种新发明运输液体的能力,比自然界快很多。   这种金属或许将证明,把一定数量的液体抽到医疗诊断芯片周围,用来冷却电脑的处理器,或者把纯金属转变成抗菌表面是多么有意义。这项研究结果将发表在即将刊出的《应用物理学》杂志上。罗切斯特大学的光学副教授郭春雷(Chunlei Guo)说:“我们几乎可以改变任何金属的表面结构,从而控制液体对它作出的反应。我们甚至可以控制液体流动的方向,也可通过控制,让液体流动或者不流动。”   郭春雷和他的助理亚纳托里沃罗比耶夫利用超速激光爆改变金属表面,使金属表面形成纳米规模的凹陷、小球和激光腐蚀孔道。这种飞秒激光(femtosecond laser)产生的脉冲仅持续数千万亿分之一秒,如果说一飞秒相当于一秒,那么一秒就相当于大约3200万年。在短暂的爆炸过程中,郭春雷的激光发射出大量能量(相当于北美洲使用的所有电量),而且所有能量都集中在一个针尖大小的点上。   郭春雷表示,这种灯芯效应跟用纸巾把溢出的奶吸干,或者在玻璃杯里产生“酒泪”,利用分子引力和蒸发作用促使液体逆着重力方向移动的效果一样。郭春雷的金属逆着重力移动的速度是每秒1厘米。他的纳米结构还改变了液体分子和金属分子相互作用的方式,使它们之间或多或少具有一些吸引力。在尺度合适的情况下,金属纳米结构吸引液体分子的能力,比金属分子之间的吸引力更大,这种情况使得液体迅速在金属表面展开。液体在散开的过程中与蒸发作用结合,就在郭春雷的金属表面迅速产生了灯芯效应。   郭春雷通过在金属里加入激光腐蚀孔道,进一步加强了对液体的控制。他说:“设想一下一个微型芯片上具有庞大的水路系统,就像微处理器上的电子线路一样,我们利用少量液体,就能实施化学或者生物学工作,那会是一种什么景象。血液可以沿着特定路径到达传感器,进行疾病诊断。通过这种微型系统,护士根本不需要抽取一试管血液,进行检测。在皮肤上擦一下获得的细胞,或许就足以进行微量分析。”   郭春雷的科研组还制成了一种可减小水分子和金属分子之间的吸引力(这种现象被称作恐水症)的金属。由于细菌主要由水构成,因此它们在恐水症分子表面根本无法生长。通常情况下要改变四分之一的金属表面需要30分钟或更多时间,但是郭春雷和沃罗比耶夫正在改进这项技术,让它变得更快。不过幸运的是,虽然这项技术非常复杂,但是利用简单的壁装电源插座就可以给飞秒激光供电,这意味着如果该技术得到改进,它使用起来就会更加简单。   郭春雷还将在这个月的《物理评论快报》上宣布,利用飞秒激光加工技术,可以生产出亮度跟普通灯泡一样的白炽灯,但是消耗的能量仅为制作普通灯泡所需能量的一半。2006年郭春雷的科研组利用飞秒激光制成具有纳米结构的金属,这种金属几乎不反射任何光。2008年,该科研组已经可以通过一些调整,让这种金属反射特定波长的光线,这种效果可以把任何金属改变成任何颜色。

纳米金属和金属陶瓷相关的方案

纳米金属和金属陶瓷相关的资料

纳米金属和金属陶瓷相关的试剂

纳米金属和金属陶瓷相关的论坛

  • 【特稿】浅谈纳米材料的应用

    有人曾经预测在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行研究,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。  1 力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

纳米金属和金属陶瓷相关的耗材

  • Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料
    Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料?保证* 干燥器板不易打破,与瓷制品相比,具有更强的耐热冲击性。火抛光、耐腐蚀、惰性、不粘任何东西的玻璃表面与金属黏合。该板标有编号的象限,可以更容易的确定坩锅和其它容器的位置。每板有24 个孔,中心为7/8 in.,建议与5309-0250、5310-0250 和5311-0250 一起使用。可高温高压灭菌订货信息:Nalgene 5312 干燥器板,淡绿色金属陶瓷复合材料目录编号 5312-0230外径,mm230外径,in.9-1/16每盒数量1每箱数量6
  • 吉致电子JEEZ陶瓷抛光液 CMP纳米级抛光液
    产品名称:陶瓷抛光液/氧化锆抛光液/氧化铝抛光液/氮化硅抛光液/氮化铝抛光液陶瓷抛光液作用: 吉致电子陶瓷类抛光液适用于碳化物、氮化物、氧化物和硼化物各精密陶瓷件的镜面抛光,通过CMP抛光工序可得到理想镜面效果,表面光滑平整具有易清洗、无残留等特点。产品特点:吉致可提供各陶瓷类的镜面抛光液1、纳米级抛光液,抛光后具有较优的粗糙度2、抛光液绿色环保、不含卤素及重金属元素3、抛光液可循环使用,根据工艺要求可添加去离子水稀释可定制化:可以依客户不同工艺要求,提供定制化服务 包裝方式:25KG/桶(也可依客户需求)
  • 纳米位移平台
    纳米位移平台,真空纳米位移台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米位移平台,真空纳米位移台,纳米位移台.这款纳米位移平台是美国进口的高速高精度真空纳米位移台,它采用先进技术设计, 具有单轴或精密的双轴配置两种选择, 适合高真空环境和非磁性定位应用.美国进口高精度低价格系列纳米定位台,采用了陶瓷伺服电机驱动,非常适合要求精度达到纳米或压纳米的高精度和高重复精度的应用,例如:精密生命科学仪器、显微成像、纳米准直、微纳加工、光学精确定位等。X-TRIM 系列纳米位移台特色 10nm分辨率非接触线性编码系统双驱动任选:线性伺服或压电驱动高密度滚珠传导增加稳定性超紧凑的单轴或双轴纳米位移台紧凑型封装可真空使用超强工作能力,大吞吐量采用无铁芯直接驱动直线电机,驱动轴位于纳米位移台的中心线, 这种设计消除了非中心驱动导致的偏航,空回等问题.纳米位移台集成了一个高分辨率(12.5nm)非接触式线性编码器,它为闭环的伺服系统工作操作提供了精密反馈, 它的标准配置就可以提供纳米精度的定位.纳米位移平台使用能够了精密的滚珠导向系统确保了位移平台高精度性能和严格的轨迹控制。纳米位移平台也适合OEM使用,它具有较低抛面和较小尺寸,采用模块化设计,用户可堆叠使用创建多轴多部件系统。这款纳米位移平台使用了非接触式直接驱动技术,提供坚固,精确,高速的定位,满足高频率大工作量的需要。纳米定位平台使用了先进的无铁直线电机直接确定技术,确保最优异的纳米级定位性能。这款纳米定位台提供了高速度,高精度,高分辨率,高性能的卓越表现。它与传统的丝杠驱动或压电驱动相比,具有更大的工作效率和吞吐量。参数行程(mm): 25和50mm(单轴或双轴)驱动系统: 无铁芯直线电机或陶瓷伺服电机最大加速度: 由负载决定最大速度: 200mm/s (无负载时)最大推力: 24N最大负载: 2Kg精度: +/-1um/25mmTTL分辨率: 1-100nm/脉冲构造材料: 铝合金主体, 灰色氧化镀膜重复精度: 5倍精度 XT 25 XT 50 XT 2525 XT 5050 Travel Length (mm) 25 mm 50 mm 25 x 25 mm 50x 50 mm Trajectory Control Accuracy Linear Encoder ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m ± 4.0 &mu m Straightness/Flatness ± 1.0 &mu m ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m Yaw/Pitch/Roll 5 arc-sec 5 arc-sec 10 arc-sec 10 arc-sec 2 axis system Orthogonality Standard Grade NA NA 5 arc-sec 5 arc-sec High Precision NA NA 2 arc-sec 2 arc-sec Extra High Precision NA NA 1 arc-sec 1 arc-sec
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制