当前位置: 仪器信息网 > 行业主题 > >

化工原理及工艺设备

仪器信息网化工原理及工艺设备专题为您提供2024年最新化工原理及工艺设备价格报价、厂家品牌的相关信息, 包括化工原理及工艺设备参数、型号等,不管是国产,还是进口品牌的化工原理及工艺设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化工原理及工艺设备相关的耗材配件、试剂标物,还有化工原理及工艺设备相关的最新资讯、资料,以及化工原理及工艺设备相关的解决方案。

化工原理及工艺设备相关的论坛

  • 楷拓生物科技(苏州)有限公司刚刚发布了工艺设备工程师(细胞/纯化方向)职位,坐标苏州市,速来围观!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-79375.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]工艺设备工程师(细胞/纯化方向)[b]职位描述/要求:[/b]职责描述:1. 参与细胞培养及纯化设备设施调研,协调供应商进行技术交流,配合设备使用部门完成URS编写及审核工作;2. 负责公司工艺设备固定资产管理、做好设备开箱验收、调拨、盘点和报废及建立、整理和更新设备档案工作;3. 负责联系协调供应商工程师进行设备安装、运行、调试,和供应商建立良好的沟通关系4. 全面负责细胞培养及纯化工艺设备维护维修工作,制定行之有效的维护保养计划,起草设备维护维护保养SOP等5. 配合设备使用部门完成设备偏差调查及维护SOP变更升级6. 编制年度备品备件计划,统计、分析和评价备品备件消耗和使用情况,编制部门设备预算,合理控制设备维修费用7. 与设备使用部门保持密切合作,提供设备的日常运行与故障解决方面的信息与技术支持,提供灵活、安全、快速响应的服务;任职要求:1. 本科及以上学历,机械/电气/自动化相关专业教育背景 ,生物药背景优先考虑,具有低压电工上岗证优先2. 熟悉GMP和FDA法规、政策和质量管理体系相关知识3. 具有生物制药行业 3 年以上工作经验,精通细胞培养设备、纯化设备等工作原理,熟悉洁净车间的生产设备工艺流程。4. 具备良好的团队协作能力、跨部门沟通协调能力5. 具备正直、诚实、守信、主动积极的工作态度6. 具备良好的工作计划和跟踪、反馈、总结、分析、创新能力7. 抗压能力强,具备应急问题处理能力、良好的设备及系统故障判断、分析与处理能力 8. 具备良好的设备维护、安全、质量意识9. 熟悉 Microsoft Office,具有数据分析、总结、报告能力10. 熟悉 Auto CAD 11. 具备良好的英文听说读写能力 ,英文要求四级,能够基本读懂英文版电路图及说明书[b]公司介绍:[/b] 楷拓生物科技(苏州)有限公司位于中国(江苏)自由贸易试验区苏州片区苏州工业园区裕新路108号A栋3楼312室,注册资本为1668万人民币,成立于2021-06-17,目前公司的主要经营范围是一般项目:技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广;技术进出口;货物进出口;科技推广和应用服务;医学研究和试验发展(除人体干细胞、基因诊断与治疗技术开发和应用);企业管理;信息咨询服务(不含许...[url=https://www.instrument.com.cn/job/position-79375.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 楷拓生物科技(苏州)有限公司诚聘工艺设备工程师(制剂方向),坐标苏州市,你准备好了吗?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-79377.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]工艺设备工程师(制剂方向)[b]职位描述/要求:[/b]职责描述:1. 参与制剂设备设施调研,协调供应商进行技术交流,配合设备使用部门完成URS编写及审核工作;2. 负责公司工艺设备固定资产管理、做好设备开箱验收、调拨、盘点和报废及建立、整理和更新设备档案工作;3. 负责联系协调供应商工程师进行设备安装、运行、调试,和供应商建立良好的沟通关系4. 全面负责制剂工艺设备维护维修工作,制定行之有效的维护保养计划,起草设备维护维护保养SOP等5. 配合设备使用部门完成设备偏差调查及维护SOP变更升级6. 编制年度备品备件计划,统计、分析和评价备品备件消耗和使用情况,编制部门设备预算,合理控制设备维修费7. 与设备使用部门保持密切合作,提供设备的日常运行与故障解决方面的信息与技术支持,提供灵活、安全、快速响应的服务;8. 深入研究设备状态,分析设备潜在的安全、停机等因素,拟定与完善的维修技术方案及改进措施,提高设备的稳定性及运行效率、制定 OPL 一点课程,培训并确保团队成员掌握 ;9. 负责设备管理档案,包括技术资料、备件清单、技术图纸、故障记录及分析,完善设备维修相关文件的编制、审核、应用等10. 与 EHS 密切合作,确保各项工作合规、合章、安全进行11. 参与维修团队建设和班组建设12. 服从并及时完成上级主管交办的其他工作及临时性工作任职要求:1. 本科及以上学历,机械/电气/自动化相关专业教育背景 ,具有低压电工上岗证优先2. 熟悉GMP和FDA法规、政策和质量管理体系相关知识3. 具有生物制药行业 3 年以上工作经验,精通博世/B+S/高宁格/东富龙/楚天洗烘灌轧设备等工作原理,熟悉洁净车间的生产设备工艺流程。4. 具备良好的团队协作能力、跨部门沟通协调能力5. 具备正直、诚实、守信、主动积极的工作态度6. 具备良好的工作计划和跟踪、反馈、总结、分析、创新能力7. 抗压能力强,具备应急问题处理能力、良好的设备及系统故障判断、分析与处理能力 8. 具备良好的设备维护、安全、质量意识9. 熟悉 Microsoft Office,熟悉 Auto CAD ,具有数据分析、总结、报告能力11.具备良好的英文听说读写能力 ,英文要求四级,能够基本读懂英文版电路图及说明书[b]公司介绍:[/b] 楷拓生物科技(苏州)有限公司位于中国(江苏)自由贸易试验区苏州片区苏州工业园区裕新路108号A栋3楼312室,注册资本为1668万人民币,成立于2021-06-17,目前公司的主要经营范围是一般项目:技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广;技术进出口;货物进出口;科技推广和应用服务;医学研究和试验发展(除人体干细胞、基因诊断与治疗技术开发和应用);企业管理;信息咨询服务(不含许...[url=https://www.instrument.com.cn/job/position-79377.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 2018第三届萃取分离技术研究与工艺设备优化应用研讨会

    [align=left][color=#000000]各有关单位:[/color][/align][align=left][color=#000000] [/color][color=#000000]萃取是广泛应用在[url=https://bbs.hcbbs.com/]化工[/url]、天然产物、生物制品、中药和食品等行业的一种单元操作技术,是生产工艺过程中核心环节之一;采用经济、高效、绿色的新型技术和设备,提升目的产物质量,已成为增强企业核心竞争力的必然趋势。[/color][/align][align=left][color=#000000] 为帮助广大企业了解行业发展动向,引用先进的适用技术,推介新型高效的萃取分离技术与设备,交流工艺优化的经验与技巧,探讨高效、快速分离的技术和策略,解决生产及研究过程中遇到的热点和难点问题。中国化工企业管理协会将于2018年11月16日-18日在上海举办“2018第三届萃取分离技术研究与工艺设备优化应用研讨会”,届时邀请行业资深专家通过实例介绍萃取技术应用及在工艺优化实践上的经验进行系统的交流研讨。请各单位积极派员参加,现将有关事项通知如下:[/color][/align][align=left][color=#000000][b]一、主办单位:中国化工企业管理协会[/b][/color][/align][align=left][b][color=#000000]二、时间地点:[/color][/b][/align][align=left][color=#000000]时 间:2018年11月16日-18日(16日全天报到)[/color][/align][align=left][color=#000000]地 点:上海市(地点确定直接通知报名者)[/color][/align][align=left][color=#000000][b]三、会议费用:[/b][/color][/align][align=left][color=#000000]2500元/人(含会务费、资料费),每单位参会两人以上2200元/人。食宿统一安排,费用自理。[/color][/align][align=left][b][color=#000000]四、拟出席专家及交流研讨内容(排名不分先后)[/color][/b][/align][align=left][color=#000000]本次会议将邀请高等科研院所及优秀企业等单位具有丰富理论造诣和实践经验的专家做主旨技术报告。[/color][/align][align=left][color=#000000]嘉 宾:中国科学院地球化学研究所研究员 [b]莫彬彬[/b] [/color][/align][align=left][color=#000000]报告题目:《超临界流体技术在萃取实际应用中的体会》[/color][/align][align=left][color=#000000]嘉 宾:大连理工大学化工机械学院教授、中国化工学会超临界流[/color][/align][align=left][color=#000000]体技术专业委员会委员 [b]银建中[/b][/color][/align][align=left][color=#000000]报告题目:《待定》[/color][/align][align=left][color=#000000]嘉 宾:河南省亚临界萃取工程技术研究中心主任、高级工程师,享[/color][/align][align=left][color=#000000]受国务院特殊津贴专家,亚临界萃取技术原创发明人 [b]祁 鲲[/b][/color][/align][align=left][color=#000000]报告题目: 《亚临界生物萃取技术及其工程应用》[/color][/align][align=left][color=#000000]嘉 宾:天津大学化工学院教授 [b]张裕卿[/b] [/color][/align][align=left][color=#000000]报告题目:《用于含油废水处理的超滤膜功能材料的设计和应用》[/color][/align][align=left][color=#000000]嘉 宾:华东理工大学化工学院硕导高级工程师、中华中医药学会制剂分会委员、世界中联会中药专业委员会理事 [b]于筛成[/b] [/color][/align][align=left][color=#000000]报告题目:《萃取单元工程化设计及操作的实践应用》[/color][/align][align=left][color=#000000]嘉 宾:上海交通大学化学化工学院教授 [b]赵亚平[/b][/color][/align][align=left][color=#000000]报告题目:《超临界萃取精馏技术分离纯化研究及其工业化应用》 嘉 宾:天津奥展兴达化工技术有限公司总工程师 [b]张 兵[/b] [/color][/align][align=left][color=#000000]报告题目:《萃取隔板精馏的工程应用案例分析及市场前景》[/color][/align][align=left][color=#000000](其他相关专家报告正在预约中,敬请关注……)[/color][/align][align=left][b][color=#000000]五、会议主要研讨内容[/color][/b][/align][align=left][color=#000000](一)、萃取分离绿色节能技术与应用;[/color][/align][align=left][color=#000000]1、超临界萃取新技术在中药提取分离中的应用案例; 2、超临界流体萃取技术在生物技术、制药、保健品、化妆品、食品添加剂和精细化工等行业应用;3、超临界流体萃取成套装置的工业化设计;[/color][/align][align=left][color=#000000]4、超临界流体在化学反应中的应用及绿色工艺过程与装备;5、亚临界萃取技术在贵重油脂、植物精油、活性蛋白、植物色素、中草药、中药和烟草等行业的技术创新和产业化推广;6、亚临界流体萃取装置工程设计;7、膜萃取技术的基础研究与应用;8、液膜分离的工艺流程及影响因素;9、含机油废水油水萃取分离工艺流程;10、溶剂萃取法生产工艺;11、溶剂萃取法在冶金和化工行业中的应用;[/color][/align][align=left][color=#000000]12、其他新型萃取分离技术的研究与应用;[/color][/align][align=left][color=#000000](二)、萃取分离工艺放大、工艺优化中的核心问题研究;[/color][/align][align=left][color=#000000]1、萃取分离工程技术方案与工程案例解析;[/color][/align][align=left][color=#000000]2、萃取分离工艺放大中的核心问题的研究;[/color][/align][align=left][color=#000000]3、萃取分离过程工艺优化技术设计及案例解析;[/color][/align][align=left][color=#000000]4、萃取分离过程优化控制及案例解析;[/color][/align][align=left][color=#000000]5、萃取分离过程的绿色节能技术及案例解析;[/color][/align][align=left][color=#000000]6、国内外萃取分离工程设计,调试、运行管理经验等及案例解析;[/color][/align][align=left][color=#000000](三)、萃取分离设备的优化设计及选型应用解析;[/color][/align][align=left][color=#000000]1、国内外萃取分离工艺及设备研发应用的现状及趋势;[/color][/align][align=left][color=#000000]2、萃取分离设备选择及工艺条件控制;[/color][/align][align=left][color=#000000]3、萃取分离设备的优化设计及选型;[/color][/align][align=left][color=#000000]4、萃取分离工艺装备工业化应用;[/color][/align][align=left][color=#000000]5、新型萃取分离设备的开发及工业化应用;[/color][/align][align=left][b][color=#000000]专家对话沙龙(约两个小时)[/color][/b][/align][align=left][color=#000000]组织出席专家与参会者进行现场问答讨论的形式,就行业发展、生产或研究过程中出现的关键问题进行剖析讲解,寻找解决问题的方案或建议;[/color][/align][align=left][b][color=#000000]六、论文征集:[/color][/b][/align][align=left][color=#000000]本次会议将面向全国征集与主题相关的学术报告、论文、调研成果,印刷会刊(论文集)作为会议资料,请提交论文的人员于11月10日前将论文zghg2012@126.com。要求论文字数不超过5000字,文件格式为word文档。[/color][/align][align=left][b][color=#000000]七、参会对象[/color][/b][/align][align=left][color=#000000]全国各精细化工、制药(中药、天然药物、生物药物、手性药物、合成药物以及相关精细化学品)、食品生产企业技术负责人,与萃取分离过程控制、工艺优化、技术开发相关的技术人员、分析检测人员;科研单位和大专[/color][url=https://www.unjs.com/][color=#0066cc]院校[/color][/url][color=#000000]相关技术及其应用研究[/color][url=https://www.unjs.com/Special/laoshi/][color=#0066cc]老师[/color][/url][color=#000000]、[/color][url=https://www.unjs.com/kaoyan/][color=#0066cc]研究生[/color][/url][color=#000000];相关工程设计和技术服务的单位;相关设备与仪器仪表生产企业及贸易公司等单位。[/color][/align][align=left][/align][align=left][b][color=#000000]八、联系方式:[/color][/b][/align][align=left][color=#000000]组委会秘书处:[/color][/align][align=left][color=#000000]电 话:13001080157 [/color][/align][align=left][color=#000000]传 真:010-63811998 [/color][/align][align=left][color=#000000]联 系 人:赵 蕊 [/color][/align][align=left][color=#000000]电子邮箱:zghg2012@126.com[/color][/align][align=left][color=#000000][/color][/align][align=left][color=#000000][/color][/align][align=left][color=#000000][/color][/align][color=#444444][/color]

  • 2018年12月19举办《科学器材、分析仪器、测试、实验室设备、材料工艺设备、技术》展会,

    2018年12月19举办《科学器材、分析仪器、测试、实验室设备、材料工艺设备、技术》展会,

    [img=,690,487]https://ng1.17img.cn/bbsfiles/images/2018/08/201808031522024438_2497_3452182_3.jpg!w690x487.jpg[/img][b][color=#ff0000]招展单位: [/color][color=#ff0000]上海狮威展览有限公司[/color][color=#ff0000]负责企业招展[/color][/b] 2018中国新材料产业发展大会国际材料工艺、实验室设备及科学器材展览会举办时间:2018年12月19日-21日举办地点:南京国际展览中心(南京市龙蟠路88号)支持单位:国家发改委科技部工信部中国工程院中国科学院国家自然基金委员会主办单位:中国材料研究学会 国家新材料产业发展咨询委员会承办单位:上海狮威展览有限公司合作单位:重庆联方会展有限公司趋势所向,市场需求,共建材料工艺生态圈新材料是国家七大战略性新兴产业之一,经过多年的努力,我国新材料产业发展取得了长足进步,产业技术水平日益提高,产业规模不断扩大,具有自主创新能力的新材料产业体系正在形成,部分领域已处于世界先进水平。目前新材料产业正以超24%的年均增速稳步发展,预计到2020年中国新材料产业总值将超过6万亿元。随着我国“一带一路”、“中国制造2015”的政策出台及实施推进,新材料产业的发展将出现新的曙光和难得的机遇。一展一会、定义新材料产业未来中国新材料产业发展大会是由中国材料大会衍生出来的高端行业论坛会议,立足行业前沿,定位顶尖技术交流研讨。2018首届新材料产业论坛将在古都南京举办,此次论坛预计参会代表将达3000人,由知名院士、两岸三地业内专家、国内外行业前沿的企业高管组成。大会涵盖电子信息、生物医药、石墨烯、锂电材料、高分子材料、汽车合金材料、高温合金材料、碳纤维等二十个分会。大会的举办将助力推进国家新材料产业健康快速发展。同期举办的国际材料工艺、实验室设备、分析测试及科学器材展览会将秉承C-MRS系列展Ciamite一贯的风格继续为行业展商搭建更高规格的展览交易平台,也是行业在科研领域推广产品和技术的窗口。展会将接待来自世界各地的科研院所、高等院校、重点实验室、企事业单位的专业观众和买家,力争办成规模大、专业水平高的材料科技领域行业盛会。行业大咖齐聚,打造高效商务平台[img=,690,271]https://ng1.17img.cn/bbsfiles/images/2018/08/201808281333191504_4538_3452182_3.png!w690x271.jpg[/img]聚焦目标观众,加强行业商贸配对2 高校、材料工程学院2 国家重点实验室2 科研院所2 系统方案供应商2 新材料企业2 政府行业协会2 贸易零售商2 媒体展会优势:l 国内新材料产业领域会议标杆,参会代表超过3000人l 超过10年连续成功举办“中国材料大会”的会展举办实力和经验l 超过150家稳定的国内外参展商l 10年积累的新材料行业数据库保证了参会、参展的收益l 为您提供业界最新、最具权威的专业产学研报告会超过20场l 良好的品牌效应,展会是我国新材料产业届人士了解国内外新材料工艺设备技术及市场动态的最佳途径同期精彩活动 — 展望CAMICE 201819场分论坛电子信息、生物医药、石墨烯、锂电材料、高分子材料、汽车合金材料、高温合金材料、碳纤维等领域,国内外知名专家,院士,企业家将汇集一起,共同商议行业顶尖技术及产业。Ø 半导体材料Ø 生物医用材料Ø 石墨烯Ø 锂电材料Ø 高分子材料Ø 无机非金属材料Ø 高温合金Ø 超硬材料Ø 轻合金材料Ø 碳纤维及其复合材料Ø 稀土新材料Ø 环境工程材料Ø 绿色建材Ø 集成电路材料Ø 汽车新材料Ø 手机新材料Ø 新型显示材料Ø 新材料园区论坛1场高峰论坛组织院士、专家、代表性企业家、政策把控人员15人左右,召开闭门圆桌会议,讨论、修改分论坛指定专家写的行业领域新材料产业报告 讨论、拟定2018年行业领域新材料产业发展报告蓝皮书。10场项目配对会设材料工艺、实验室设备、材料测试为核心内容的三大配对区域,举办超过10场配对会,届时将有多家国内企业主与供应商面对面的交流,为企业创造精准的销售机会。2个项目路演展会期间将开辟多条路演项目,其中院士专家企业行、观摩南京市江北区创新材料馆及产业区,推动地区新材料产业政策发展,预计规模100人左右。1场政策解读为进一步推动各项新材料产业政策措施落地见效,更大程度发挥各项政策对企业发展的助推作用,提升企业创新能力与运营水平。展会期间国家权威行业主管机构将派代表进行讲座。1项颁奖盛典为表彰对我国材料领域做出突出贡献的单位和个人,在国内相关奖项的基础上,增设新材料产业突出贡献将,以进行表彰。参展范围:1、物性测试仪器及设备1.1试验机1.2无损检测、无损探伤仪器1.3测厚仪1.4其它物性测试仪器1.5环境试验箱1.6热分析仪器1.7粒度、颗粒、粉末分析仪器1.8流变仪、粘度计1.9表界面物性测试1.10燃烧测定仪2、分析仪器2.1色谱2.2光谱2.3质谱2.4 X射线仪器2.5波谱2.6元素分析仪2.7水分测定仪2.8电化学仪器2.9数据管理和技术服务2.10其他通用分析仪器3、光学仪器及设备3.1光学显微镜3.2电子显微镜3.3显微镜样品制备3.4光学测量仪3.5光学加工3.6光学成像设备3.7激光产品4、测量、计量仪器4.1天平、衡器4.2温度计量仪器4.3长度计量仪器4.4表面测量仪器4.5其它测量、计量仪器5、实验室常用设备5.1清洗、消毒设备5.2制样、消解设备5.3分离、萃取设备5.4浓缩、纯化设备5.5混合、分散设备5.6恒温、加热、干燥设备5.7粉碎设备5.8合成、反应设备5.9制冷设备5.10泵、液体处理设备5.11气体发生器、气体处理5.12实验室家具5.13其它实验室用设备6、零部件6.1光谱、光学仪器备件6.2色谱、质谱备件6.3其他备件7、相关仪表7.1基础仪表7.2其它相关仪表8、技术服务8.1整体实验外包服务8.2大型仪器测试与验证服务8.3工业设计服务9、期刊、科技出版物创新的服务模式1、推广预热:营销内容买家一对一;展前预热,展中促进;展后跟踪2、一对一顾问式服务3、周到的服务,包含但不限制(技术研讨会、技术报告、展台搭建服务、酒店预定、资料提交、参展通知、展品货运、会后报告等)观众微信公众号,获取更多大会资讯[img=,402,402]https://ng1.17img.cn/bbsfiles/images/2018/08/201808281333532218_4655_3452182_3.jpg!w402x402.jpg[/img]登陆官网,浏览更多资料:[url=http://www.camice.cn][u][color=#ff0000]http://www.camice.cn[/color][/u][/url]参展参观,仔细详情,请联系:上海狮威展览有限公司上海灵石路658号大宁财智中心1505室

  • 第一届 实验室设备、科学器材、分析测试、材料工艺设备-2018中国新材料产业发展大会暨展览会

    第一届 实验室设备、科学器材、分析测试、材料工艺设备-2018中国新材料产业发展大会暨展览会

    [align=center][color=#333333][/color][/align][align=center]2018中国新材料产业发展大会[/align][align=center]国际材料工艺、实验室设备及科学器材展览会[/align][align=center][/align][align=center]举办时间:2018年12月19日-21日[/align][align=center]举办地点:南京国际展览中心(南京市龙蟠路88号)[/align][align=center]支持单位:国家发改委[/align][align=center]科技部[/align][align=center]工信部[/align][align=center]中国工程院[/align][align=center]中国科学院[/align][align=center]国家自然基金委员会[/align][align=center]主办单位:中国材料研究学会[/align][align=center] 国家新材料产业发展咨询委员会[/align][align=center]承办单位:上海狮威展览有限公司[/align][align=center]合作单位:重庆联方会展有限公司[/align]趋势所向,市场需求,共建材料工艺生态圈新材料是国家七大战略性新兴产业之一,经过多年的努力,我国新材料产业发展取得了长足进步,产业技术水平日益提高,产业规模不断扩大,具有自主创新能力的新材料产业体系正在形成,部分领域已处于世界先进水平。目前新材料产业正以超24%的年均增速稳步发展,预计到2020年中国新材料产业总值将超过6万亿元。随着我国“一带一路”、“中国制造2015”的政策出台及实施推进,新材料产业的发展将出现新的曙光和难得的机遇。一展一会、定义新材料产业未来中国新材料产业发展大会是由中国材料大会衍生出来的高端行业论坛会议,立足行业前沿,定位顶尖技术交流研讨。2018首届新材料产业论坛将在古都南京举办,此次论坛预计参会代表将达3000人,由知名院士、两岸三地业内专家、国内外行业前沿的企业高管组成。大会涵盖电子信息、生物医药、石墨烯、锂电材料、高分子材料、汽车合金材料、高温合金材料、碳纤维等二十个分会。大会的举办将助力推进国家新材料产业健康快速发展。同期举办的国际材料工艺、实验室设备、分析测试及科学器材展览会将秉承C-MRS系列展Ciamite一贯的风格继续为行业展商搭建更高规格的展览交易平台,也是行业在科研领域推广产品和技术的窗口。展会将接待来自世界各地的科研院所、高等院校、重点实验室、企事业单位的专业观众和买家,力争办成规模大、专业水平高的材料科技领域行业盛会。行业大咖齐聚,打造高效商务平台[img=,690,271]https://ng1.17img.cn/bbsfiles/images/2018/08/201808281337156200_7631_3452182_3.png!w690x271.jpg[/img]聚焦目标观众,加强行业商贸配对2 高校、材料工程学院2 国家重点实验室2 科研院所2 系统方案供应商2 新材料企业2 政府行业协会2 贸易零售商2 媒体展会优势:l 国内新材料产业领域会议标杆,参会代表超过3000人l 超过10年连续成功举办“中国材料大会”的会展举办实力和经验l 超过150家稳定的国内外参展商l 10年积累的新材料行业数据库保证了参会、参展的收益l 为您提供业界最新、最具权威的专业产学研报告会超过20场l 良好的品牌效应,展会是我国新材料产业届人士了解国内外新材料工艺设备技术及市场动态的最佳途径同期精彩活动 — 展望CAMICE 201819场分论坛电子信息、生物医药、石墨烯、锂电材料、高分子材料、汽车合金材料、高温合金材料、碳纤维等领域,国内外知名专家,院士,企业家将汇集一起,共同商议行业顶尖技术及产业。Ø 半导体材料Ø 生物医用材料Ø 石墨烯Ø 锂电材料Ø 高分子材料Ø 无机非金属材料Ø 高温合金Ø 超硬材料Ø 轻合金材料Ø 碳纤维及其复合材料Ø 稀土新材料Ø 环境工程材料Ø 绿色建材Ø 集成电路材料Ø 汽车新材料Ø 手机新材料Ø 新型显示材料Ø 新材料园区论坛1场高峰论坛组织院士、专家、代表性企业家、政策把控人员15人左右,召开闭门圆桌会议,讨论、修改分论坛指定专家写的行业领域新材料产业报告 讨论、拟定2018年行业领域新材料产业发展报告蓝皮书。10场项目配对会设材料工艺、实验室设备、材料测试为核心内容的三大配对区域,举办超过10场配对会,届时将有多家国内企业主与供应商面对面的交流,为企业创造精准的销售机会。2个项目路演展会期间将开辟多条路演项目,其中院士专家企业行、观摩南京市江北区创新材料馆及产业区,推动地区新材料产业政策发展,预计规模100人左右。1场政策解读为进一步推动各项新材料产业政策措施落地见效,更大程度发挥各项政策对企业发展的助推作用,提升企业创新能力与运营水平。展会期间国家权威行业主管机构将派代表进行讲座。1项颁奖盛典为表彰对我国材料领域做出突出贡献的单位和个人,在国内相关奖项的基础上,增设新材料产业突出贡献将,以进行表彰。参展范围:1、物性测试仪器及设备1.1试验机1.2无损检测、无损探伤仪器1.3测厚仪1.4其它物性测试仪器1.5环境试验箱1.6热分析仪器1.7粒度、颗粒、粉末分析仪器1.8流变仪、粘度计1.9表界面物性测试1.10燃烧测定仪2、分析仪器2.1色谱2.2光谱2.3质谱2.4 X射线仪器2.5波谱2.6元素分析仪2.7水分测定仪2.8电化学仪器2.9数据管理和技术服务2.10其他通用分析仪器3、光学仪器及设备3.1光学显微镜3.2电子显微镜3.3显微镜样品制备3.4光学测量仪3.5光学加工3.6光学成像设备3.7激光产品4、测量、计量仪器4.1天平、衡器4.2温度计量仪器4.3长度计量仪器4.4表面测量仪器4.5其它测量、计量仪器5、实验室常用设备5.1清洗、消毒设备5.2制样、消解设备5.3分离、萃取设备5.4浓缩、纯化设备5.5混合、分散设备5.6恒温、加热、干燥设备5.7粉碎设备5.8合成、反应设备5.9制冷设备5.10泵、液体处理设备5.11气体发生器、气体处理5.12实验室家具5.13其它实验室用设备6、零部件6.1光谱、光学仪器备件6.2色谱、质谱备件6.3其他备件7、相关仪表7.1基础仪表7.2其它相关仪表8、技术服务8.1整体实验外包服务8.2大型仪器测试与验证服务8.3工业设计服务9、期刊、科技出版物创新的服务模式1、推广预热:营销内容买家一对一;展前预热,展中促进;展后跟踪2、一对一顾问式服务3、周到的服务,包含但不限制(技术研讨会、技术报告、展台搭建服务、酒店预定、资料提交、参展通知、展品货运、会后报告等)观众微信公众号,获取更多大会资讯[img=,402,402]https://ng1.17img.cn/bbsfiles/images/2018/08/201808281337444140_5669_3452182_3.jpg!w402x402.jpg[/img]登陆官网,浏览更多资料:[url=http://www.camice.cn][color=#ff0000]http://www.camice.cn[/color][/url]参展参观,仔细详情,请联系:上海狮威展览有限公司  地址Add:上海市灵石路 658 号大宁财智中心1505 室  电话Tel:021-80251548  电邮Email:wangling@lionsking.cn 网址Website:http://www.camice.cn/[url=http://www.camice.cn/]官网[/url] 联系人Contact:王 玲 女士 (15201848515同微信号)

  • 固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    [color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【讨论】建议 开设一个 化工工艺专区

    我是学分析的,但是在实际工作工程中很多时候还是用到了 工艺方面的很多知识,正因为是学分析的,对很多工艺不清楚,所以,觉得学分析的更应该多补充点工艺的知识,毕竟化工不是一个局限的范围啊。要相辅相成这样才能更好的应用啊。。。上网去找工艺的资料的时候发现很多论坛都没有我们 仪器信息网办的好。不如,开设一个小版块供大家交流啊。比如我就收集了很多《化工原理》的资料(因为现在教这个)。可以放上来大家共享啊。。。。。希望采纳啊[em0801]

  • 【转帖】液体喷砂加工工艺原理及应用范围

    技术:液体喷砂加工工艺原理及应用范围 -------------------------------------------------------------------------------- 发布时间: 2007-11-13 12:16:03 浏览次数: 34 液体喷砂一改传统的干喷方法,它是将砂(磨料)置于水中,用磨液泵和压缩空气,通过喷枪将磨液高速喷射到被加工的工件上,达到对零件表面清理和光饰的目的。液体喷砂工效高,磨料消耗少,能提高工件表面的光洁度,提高表面的强度,并从根本上改变了对环境的污染。设备的安装方便不需单独的工作间,可以直接安装在生产线上。因此,液体喷砂优于干喷砂。   SS型系列液体喷砂机是国内首创的新型喷砂设备,是喷砂加工方法的重大变革。它一问世就受到使用部门的肯定与欢迎。目前使用我公司液体喷砂机的用户已遍布全国20几个省市自治区。从使用的行业看有航空、航天、电子工业、兵器工业、自动化和光学等仪器仪表行业,机床工具,模具、液压件,五金工具,汽车、拖拉机、摩托车,动力机械及火车机车等工厂,还有纺织机械、食品机械、医疗器械、化工机械,金属材料,人工晶体,弹簧,金属工艺等行业。  资讯来源: 技术:液体喷砂加工工艺原理及应用范围 发布人: 全球电镀网

  • 楷拓生物科技(苏州)有限公司刚刚发布了工艺设备工程师(QC实验室方向)职位,坐标苏州市,速来围观!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-79376.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]工艺设备工程师(QC实验室方向)[b]职位描述/要求:[/b]职责描述:1. 参与QC、mRNA、质粒等实验室设备调研,协调供应商进行技术交流,配合设备使用部门完成URS编写及审核工作;2. 负责公司QC、mRNA、质粒等实验室设备固定资产管理、做好设备开箱验收、调拨、盘点和报废及建立、整理和更新设备档案工作;3. 负责联系协调供应商工程师进行设备安装、运行、调试,和供应商建立良好的沟通关系4. 全面负责QC、mRNA、质粒等实验室设备维护维修工作,协助使用部门制定行之有效的维护保养计划及设备维护维护保养SOP,负责与供应商签订维保协议,同时按照使用部门要求,协调设备供应商上门服务等5. 配合设备使用部门完成设备偏差调查及维护SOP变更升级 6. 编制年度备品备件计划,统计、分析和评价备品备件消耗和使用情况,编制部门设备预算,合理控制设备维修费用7. 与设备使用部门保持密切合作,提供设备的日常运行与故障解决方面的信息与技术支持,提供灵活、安全、快速响应的服务;8. 深入研究设备状态,分析设备潜在的安全、停机等因素,拟定与完善的维修技术方案及改进措施,提高设备的稳定性及运行效率、制定 OPL 一点课程,培训并确保团队成员掌握 ;9. 负责设备管理档案,包括技术资料、备件清单、技术图纸、故障记录及分析,完善设备维修相关文件的编制、审核、应用等10. 与 EHS 密切合作,确保各项工作合规、合章、安全进行11. 参与维修团队建设和班组建设12. 服从并及时完成上级主管交办的其他工作及临时性工作任职要求:1. 本科及以上学历,机械/电气/自动化相关专业教育背景2. 熟悉GMP和FDA法规、政策和质量管理体系相关知识3. 具有制药行业 3 年以上工作经验,熟悉QC、mRNA、质粒实验室设备管理流程。4. 具备良好的团队协作能力、跨部门沟通协调能力5. 具备正直、诚实、守信、主动积极的工作态度6. 具备良好的工作计划和跟踪、反馈、总结、分析、创新能力7. 抗压能力强,具备应急问题处理能力、良好的设备及系统故障判断、分析与处理能力 8. 具备良好的设备维护、安全、质量意识9. 熟悉 Microsoft Office,具有数据分析、总结、报告能力10. 熟悉 Auto CAD 11. 具备良好的英文听说读写能力 ,英文要求四级,能够基本读懂英文版电路图及说明书[b]公司介绍:[/b] 楷拓生物科技(苏州)有限公司位于中国(江苏)自由贸易试验区苏州片区苏州工业园区裕新路108号A栋3楼312室,注册资本为1668万人民币,成立于2021-06-17,目前公司的主要经营范围是一般项目:技术服务、技术开发、技术咨询、技术交流、技术转让、技术推广;技术进出口;货物进出口;科技推广和应用服务;医学研究和试验发展(除人体干细胞、基因诊断与治疗技术开发和应用);企业管理;信息咨询服务(不含许...[url=https://www.instrument.com.cn/job/position-79376.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 净化工程设计规范

    净化工程设计规范一、净化工程设计要求 1、 净化工程设计必须严格按照国家相关政策方针执行,做到科学设计、质量保证、安全适用、节约能源和环境保护等要求。 2、在利用原有建筑进行洁净技术改造时,净化工程设计必须根据生产工艺要求,因地制宜、区别对待,充分利用已有的技术设施。 3、净化工程设计应为施工安装、维护管理、测试和安全运行创造必要的条件。 4、净化工程设计除应按本规范执行外,尚应符合现行的国际标准、规范的有关要求。 二、净化工程等级 1、空气洁净度应按规定划分为五个等级。 10级 100 级   1000 级 10000 级 100000 级 注:对于空气洁净度为100级的净化工程内大于等于5微米尘粒的计算应进行多次采样。当其多次出现时,方可认为该测试数值是可靠的。 2、净化工程空气洁净度等级的检验,应以动态条件下测试的尘粒数为依据。净化工程空气洁净度的测试,应符合附录二规定。 三、净化工程总体设计 第一节 净化工程位置选择和总平面布置净化工程位置的选择应根据下列要求并经技术经济方案比较后确定: 一、应在大气含尘浓度较低,自然环境较好的区域; 二、应远离铁路、码头、飞机场、交通要道以及散发大量粉尘和有害气体的工厂、贮仓、堆场等有严重空气污染、振动或噪声干扰的区域。如不能远离严重空气污染源时,则应位于其最大频率风向上风侧,或全年最小频率风向下风侧; 三、应布置在厂区内环境清洁、人流货流不穿越或少穿越的地段。 四、对于兼有微振控制要求的净化工程的位置选择,应实际测定周围现有振源的振动影响,并应与精密设备、精密仪器仪表允许环境振动值进行分析比较。 五、净化工程里最大频率风向上风侧有烟囱时,净化工程与烟囱之间的水平距离不宜小于烟囱高度的12倍。 六、净化工程与交通干道之间的距离不宜小于50米。 七、净化工程周围宜设置环形消防车道(可利用交通道路),如有困难时,可沿厂房的两个长边设置消防车道。 八、净化工程周围的道路面层,应选用整体性好、发尘少的材料。 九、净化工程周围应进行绿化。可铺植草坪、种植对大气含尘农度不产生有害影响的树木,并形成绿化小区。但不得妨碍消防操作。 第二节 净化工程工艺布置和设计综合协调净化工程工艺布置应符合下列要求: 一、布置合理、紧凑。洁净室或洁净区内只布置必要的工艺设备以及有空气洁净度等级要求的工序和工作室。 二、在满足生产工艺要求的前提下,空气洁净度高的洁净室或洁净区宜靠近空气调节机房,空气洁净度等级相同的工序和工作室宜集中布置,靠近洁净区人口处宜布置空气洁净度等级较低的工作室。 三、净化工程内要求空气洁净度高的工序应布置在上风侧,易产生污染的工艺设备应布置在靠近回风口位置。 四 、净化工程应考虑大型设备安装和维修的运输路线,并预留设备安装口和检修口。 第三节 净化工程噪声控制 净化工程内的噪声级,应符合下列要求: 一、动态测试时,净化工程内的噪声级不应超过70分贝A。 二、空态测试时,乱流净化工程内的噪声级不宜大于60分贝A;层流净化工程内的噪声级不应大于65分贝A。 注: (1)由于技术经济条件限制,或噪声大于70分贝A对生产无影响时,噪声级可适当放宽,但不宜大于75分贝A; (2)上述噪声级是指在室内每一个工作点人耳位置(人离开)的测量值。对于变动噪声,则取相同位置处在一个正常工作日内的等效连续声压级。 a、净化工程内的噪声频谱限制,应采用倍频程声太级;各频带声压级值不宜大于1的规定。 b、净化工程的平、剖面布置,应考虑噪声控制的要求,其围护结构应有良好的隔声性能,并宜使各部分隔声量相接近。 c、净化工程内的各种设备均应选用低噪声产品。对于辐射噪声超过洁净室允许值的设备,应设置专用隔声设施(如隔声间、隔声罩等)。 d、净化工程内的净化空气调节系统噪声超过允许值时,应采取隔声、消声、隔声振等控制措施。除事故排风外,应对洁净室内的排风系统进行减噪设计。 e、净化空气调节系统,根据室内噪声级的要求,风管内风速宜按下列规定选用:(1)总风管为6~10米/秒。 (2)无送、回风口的支风管为6~8米/秒。 (3)有送、回风口的大风管为3~6米/秒。 f、净化工程内的噪声控制设计必须考虑生产环境的空气洁净度要求,不得因控制噪声而影响洁净室的净化条件。 第四节 净化工程振动控制1、净化工程和周围辅助性站房内有强烈振动的设备(包括水泵等)及其通往洁净室的管道,应采取积极隔振措施。 2、对净化工程厂房内外各类振源,应测定其对净化工程厂房的综合振动影响。如受条件限制,也可根据经验对综合振动影响进行评价。并应与精密设备、精仪器仪表的允许环境振动值进行比较,以确定对其采取必要的隔振措施。 3、精密设备、精密仪器仪表的隔振措施,应考虑减少发生量、保持净化工程内合理的气流组织等要求。当采用空气弹簧隔振台座时,应地气源进行处理,使其达到净化工程内的空气洁净度等级。

  • 【分享】空调清洗原理及工艺

    原理:用清洗剂加入到被清洗的设备界面中,对难溶水垢、生物粘泥等进行分散、剥离。同时与化学药剂发生反应,生成络合物离子或水溶性盐一起被带走,从而达到除垢清洗的目的。清洗工艺:(家用空调)断电→开盖板→卸滤网→用清洗剂喷洒蒸发器进风面→盖盖板→静止10分钟→开空调30分钟→清洗→钝化预膜处理→排污→完成。(车用空调)开窗、开门→开空调5分钟→关闭空调→喷空调清洗剂→开空调1分钟(内或外循环)风机将泡沫吹入(吸进)蒸发器,进入通风管(填充其空间)→关闭空调→静置5-10分钟→如此循环喷4-5次至喷完→连续开空调5-10分钟,污垢排水管排出→封口(无须水洗)清洗效果达到并超过《化工部工业设备化学清洗质量标准》HG/T2378---92。除垢率≥95/100,缓蚀率≥98/100,平均腐蚀速度Fe/Fe≤0.6mg/cm.h,Cu/Cu≤0.2mg/cm.h. 清洗家用空调操作指南1. 切断电源,取下过滤网 2. 取下表层的塑料窗格 3. 用干净抹布或吸尘器除去较大的灰尘。4. 摇匀清洗剂并将其均匀喷在蒸发器上静置10分钟 5. 装上过滤网,合上面板 6.开空调30分钟,将风量和制冷量调至最大即可搞定

  • 石油化工废水处理工艺汇总-1

    石油化工是以石油作为主要的生产原料,主要是对石油进行裂解、分馏、重整以及合成等化学处理工艺,在整个生产加工过程中会形成大量的石化废水,如果处理不当就会对自然环境造成严重的污染。因此,在实际的石化生产过程中,要对石化废水进行科学合理的分析,并采取有效的处理技术,进而提高对石化废水的处理效果,减轻其对周围环境所造成的影响,从而有效的避免其对周围环境所造成的污染。石化废水的特点石油化工废水种类繁多,组成复杂,毒性大,抑制生物降解和浓度高,主要特性如下:1 水量大、水质复杂和变化大石油化工生产规模趋向于大型化,生产过程中需加入各种溶剂、助剂和添加剂,再经过各种反应。因此,污水水量大,成份相当复杂。2 有机污染较严重石油化工污水所含的有机物主要是烃类及其衍生物。某些石化装置排出的高浓度的废液经过焚烧或其他适当方法处理后,COD仍然较高。3 污水中含有重金属由于石化生产许多反应是在催化剂作用下完成的,一个大型石油化工厂使用的催化剂可达数十种,因此,污水中往往含有重金属。石化废水组成及来源由于石化废水中所含有的污染物种类非常繁多,导致其中的污染组分也是非常丰富的,根据不完全的检测,可知其中含有油、硫、酚、COD、多环芳烃化物、芳香胺类化合物以及杂环化合物等。1 含油废水主要来源:工艺过程与油品接触的冷凝水、介质水、生成水,油品洗涤水、油品运输船压舱水、循环冷却水、油品油气冷凝水、焦化除焦废水及受油品污染的地面水。2 含酚废水主要来源:常减压延迟焦化、催化裂化及苯酚-丙酮、间甲酚、双酚A等生产装置。3 含硫废水主要来源 :炼油厂二次加工装置、分离罐的排水、油品和油气的冷凝分离水、芳烃联合装置。4 含氰废水主要来源:丙烯腈装置、腈纶厂聚合车间、纺丝车间及回收车间排水、橡胶装置。5 含醛废水主要来源:乙醛装置、维纶抽丝装置、醋酸乙烯装置、甲醛装置等。6 含苯废水主要来源:制苯车间、苯乙烯装置、聚苯乙烯装置、乙基苯装置、烷基苯装置以及乙烯装置的裂解急冷水洗废水。7 含酸碱废水主要来源:炼油厂、石油化工厂的洗涤水,成品罐的切水、锅炉水处理排水及酸碱汞房的排放水。石化废水的危害石化废水中含有大量的有毒有害物质,尤其是其中的某些成分能够与土壤中的磷、氮元素进行紧密的结合,进而导致土壤中的磷、氮元素含量严重不足,从而对植物的正常生长造成严重的不利影响。石化废水中还含有大量的重金属元素,例如,砷、铬、镍、铍等,一旦随着水进入到人体内就会对大大提高癌症的发病率,对人们的身体健康造成非常严重的影响。未经处理的石化废水被排入到河中,还会导致水中的含氧量大大降低,会对水中动植物的正产生长发育造成不利影响,而且水中的微生物对石化废水中的有机物质进行降解时,会消耗水中溶解的大量氧气,进而破坏了水中溶解氧的平衡,不利于动植物的长远发展。石化废水处理工艺当前,石油化工、炼油废水处理工艺按照处理原理,可将所有处理方法归分为物理处理、化学处理与生化处理三类。1 物理法物理处理法通过物理作用,以分离、回收废水中不溶解的呈悬浮状态污染物质(包括油膜和油珠),常用的有隔油、汽浮法、过滤法等。1.1 隔油池隔油池是石化废水处理工艺中常见的一种处理装置。依据沸水中悬浮物与水的相对密度不同这一特点除去悬浮物。此法只能除去颗粒较大的水滴或油滴,作为初级处理,成本低但效率一般。国内应用较多的隔油池是平流隔油池和斜板隔油池。1.2 气浮法气浮法:利用高度分散的微小气泡作为载体去粘附废水中的悬浮物,使其随气泡升到水面而去除.其处理对象是乳化油以及疏水性细微固体悬浮物。药剂浮选法:在废水中投加化学药剂,选择性将亲水性污染物变为疏水性,然后气浮去除.两者统称气浮法。常用气浮设备:加压溶气气浮﹑叶轮气浮﹑曝气气浮﹑射流气浮和电解气浮。气浮法优点:处理效率高,生产的污泥比较干燥,表面刮泥方便,曝气增加溶解氧有利后续生化处理。气浮法缺点:耗电量大,设备维修管理工作量大,易堵塞,浮渣怕较大风雨袭击。1.3 过滤一般炼油厂将过滤作为去除生物二级处理出水中的残留胶体和悬浮物的手段,放在生化处理之后,可看成深度处理技术,可作为活性炭或臭氧等深度处理技术的预处理。油和悬浮物的去除率可达60%~70%。投加助滤剂后,去除率可提高到90%以上。多孔材料过滤除去较粗大悬浮物的格筛。典型设备如格栅、筛网和捞毛机等。除粒径细微颗粒的微孔滤材。反渗透、超滤、纳滤和电渗析等以特别的半透膜为过滤介质的设备。颗粒材料过滤利用滤料颗粒之间存在的孔隙使水穿过而悬浮物被截留。常用来使处理后水的浑浊度满足用水要求。1.4 吹脱汽提法通过向废水中通入载气,使两相充分接触,废水中溶解气体和易挥发的溶质在气液间传质进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],从而脱除污染物质。石化废水中需要进行吹脱和气提处理的两个主要污染物是H2S和氨,它们主要来源于脱硫、脱氮和加氢处理过程中被破坏的有机氮和有机硫组分。苯酚也可以通过此方法脱除,但是效率低于硫和氮。1.5 超滤法超滤是利用超滤膜(孔径约0.01~0.1μm)截留微小油珠,从而达到油水分离目的的方法。吸附在油珠表面的活性剂或活性剂分子相互聚结成的胶束能被超滤膜截留。因此,超滤膜处理含油污水,不但能去除油,同时也能去除COD。超滤法处理含油废水的优点是:处理过程中不投加任何药剂,操作简单,处理出水一般可达到工艺回用水要求。但因膜透水率较低,故处理成本较高。浓缩后的残液(一般为处理水的5%左右)需进一步处置。2 化学法化学法向污水中投加某种化学物质,利用化学反应来分离、回收污水中的污染物质,常用的有化学沉淀法、混凝法、中和法、电解法等。2.1 化学混凝法化学混凝是用来去除水中无机物或有机胶体悬浮物的一种方法。它可除去固体悬浮物、胶体、可溶性重金属盐类、有机物、油类及颜色等。混凝处理受到废水的pH、碱度、污染物的数量、粒子大小、温度和搅拌等条件的影响。为了更好地提高气浮处理效果,在回流加压溶气气浮工艺中向废水中投入某种絮凝剂,使水中难沉淀的胶体状悬浮颗粒或乳化污染物失稳,在互相碰撞的作用下,聚集、聚合或搭接形成较大的颗粒或絮状物,从而使得污染物能够更容易下沉或上浮而被去除。2.2 电解法其基本原理是在电流作用下,阳极表面产生具有强氧化性的羟基自由基,将难降解有机物氧化成CO2和H2O。该方法具有氧化能力强、操作简便易于控制、无二次污染等有点,在现代工业废水处理中越来越受到广泛应用。利用这种反应使污染成分生成不溶于水的沉淀物,或生成气体从水中溢出,使废水得到净化。2.3 中和法用化学方法消除废水中过量的酸或碱,使其pH值达到中性左右的过程称为中和。处理含酸废水以无机碱为中和剂,处理碱性废水以无机酸作中和剂。中和处理应考虑以"以废治废"原则,亦可采用药剂中和处理、中和处理可以连续进行,也可以间歇进行。中和的方法有酸碱废水中和、酸性废水的药剂中和法、酸性废水的过滤中和法等。2.4 氧化法氧化法。通过将废水中的污染物与氧气进行反应,进而实现处理石化废水的目的。其中,光催化氧化法,是当前先进的处理技术,通过利用半导体材料作为催化剂,在光照的条件下将污染物与氧气发生氧化还原反应,进而对其进行有效的去除。3 生物法及组合工艺生物法通过微生物的代谢作用,使废水中呈溶液、胶体以及微细悬浮状态的有机性污染物质转化为稳定、无害的物质,可分为好氧生物处理法和厌氧生物处理法以及各种组合工艺。

  • 发酵、提取设备产品生产技术工艺应用现状、发展趋势及投资前景研究

    核心提示:简 介  技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。随着我国发酵简 介  技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。随着我国发酵、提取设备市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外发酵、提取设备生产核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高市场竞争力十分关键。  本报告通过参考大量专利文献对发酵、提取设备的工艺技术进展做了系统介绍,通过详细的调查和权威技术资料及相关情报的收集,为客户提供了发酵、提取设备产品核心技术应用现状、技术研发、工艺设备配套、高端技术应用等多方面的信息,对于企业了解各类发酵、提取设备产品生产技术及其发展状况十分有益。  本报告商业应用前景部分从发酵、提取设备产品的应用领域、下游产品、国内外生产现状、国内潜在生产厂家、国外生产厂家及规模、国内外产量走势、市场状况及预测、供需状况分析及预测、国内需求厂家及联系方式等诸多方面对发酵、提取设备产品市场状况及发展方向做了详细论述,可作为发酵、提取设备产品深加工技术发展趋势导向的重要决策参考。目 录第一章 发酵、提取设备产品简介  第一节 发酵、提取设备产品概述  第二节 发酵、提取设备产品特点  第三节 发酵、提取设备产品应用  第四节 发酵、提取设备产品技术指标第二章 中国发酵、提取设备产品发展现状分析  第一节 发酵、提取设备行业发展现状    一、2008年国内发酵、提取设备行业发展概况 年份产量增幅 2003年 2004年 2005年 2006年 2007年 2008年 2009年     二、发酵、提取设备行业发展历程三、国内发酵、提取设备行业企业竞争格局序号地区产量1**企业 2**企业 3**企业 4**企业 5**企业 ………… http://www.fajiaoguan.cn/file/upload/201201/22/16-29-57-70-1.gif  第二节 发酵、提取设备行业产业政策    一、产业政策    二、技术壁垒    三、产品进出口标准与认证  第三节 发酵、提取设备产品供求格局    一、2008年国内发酵、提取设备产销量对比http://www.fajiaoguan.cn/file/upload/201201/22/16-29-57-89-1.gif    二、2009年我国发酵、提取设备市场供求格局http://www.fajiaoguan.cn/file/upload/201201/22/16-29-57-41-1.gif  第四节 发酵、提取设备行业产业链构成模型分析    一、发酵、提取设备行业产业链构成      产业链分析,上下游状况,相关行业…    二、发酵、提取设备行业产业链模型分析第三章 2008-2009年发酵、提取设备产品生产技术应用现状分析  第一节 发酵、提取设备产品构成    一、发酵、提取设备行业产品分类标准    二、发酵、提取设备产品主要市场份额http://www.fajiaoguan.cn/file/upload/201201/22/16-29-57-41-1.gif  第二节 国内发酵、提取设备产品生产技术应用现状  第三节 国外发酵、提取设备产品生产技术应用现状    一、美国    二、日本    三、欧盟  第四节 我国发酵、提取设备产品技术应用成熟度分析  第五节 发酵、提取设备产品生产技术与应用市场关系  第六节 不同生产工艺优缺点比较分析第四章 2008-2009年发酵、提取设备产品生产工艺与研发分析  第一节 发酵、提取设备生产工艺介绍  第二节 国外发酵、提取设备生产工艺发展阶段比较  第三节 我国发酵、提取设备生产工艺创新路径  第四节 国内发酵、提取设备生产设备介绍  第五节 国内发酵、提取设备生产设备应用分析  第六节 我国发酵、提取设备技术研发分析第五章 国内外发酵、提取设备产品技术工艺研发动态与发展趋势分析  第一节 国内发酵、提取设备产品技术工艺研发动态  第二节 国外发酵、提取设备产品技术工艺研发动态    一、美国    二、日本    三、欧盟  第三节 2007-2008年国内外发酵、提取设备技术工艺研发成果回顾  第四节 2009-2012年发酵、提取设备国内外技术工艺研发趋势分析  第五节 发酵、提取设备产品现行技术同类替代技术发展

  • 毛织物炭化工艺

    (一)散毛炭化:原毛洗净后进行炭化。用于制毡用毛or含草杂多的羊毛or精梳下脚毛,用于粗纺产品。 1、炭化剂:H2SO4 2、工艺过程:浸水→浸酸→脱酸→焙烘→轧炭→中和水洗→烘干(10℃左右)。 (二)毛条炭化:在羊毛梳条后炭化,用于精纺产品。基本与散毛炭化相似,注意采用低浓度酸处理及低温处理(∵毛条经梳理后较疏松,大的草杂已除,吸酸快,杂质分解易),焙烘后不经轧炭(在后道梳毛中除杂)。浸水→浸酸(30%,16s)→轧酸(含液率28%,含酸率5%)—烘干(75~80℃,1~2′)→焙烘(90℃,1~2′)→中和水洗→烘干(70℃,1′)。无专用设备,在毛条复洗机上进行 (三)匹炭化织物炭化,用于粗纺织物,(精纺织物不炭化,∵伤细毛,留洞眼。采用人工择除)。在匹炭化联合机上进行,工艺与散毛炭化相似,轧炭在缩呢机or洗呢机上进行。 (四)几种炭化方式比较 1、散毛炭化对fibre损伤大,设备庞大,成本高,但去杂效果好。 2、毛条炭化成本低,fibre损伤小,设备占地小,成本低,但纺纱强力低,成品手感差。 3、匹炭化:纤维的物理机械性能好,但有局限性(含杂多,混纺,嵌线与字边,缩绒性高) (五)炭化工艺质量 (1)含酸量:用浸出法滴定,含酸量<1% (2)损伤度:阿尔乌登法(显微镜观察鳞片受损程度),碱溶解度,强伸试验(湿强) (3)炭化效率:目测

  • 石油化工废水处理工艺

    石化废水的特点石油化工废水种类繁多,组成复杂,毒性大,Y制生物降解和浓度高,主要特性如下:1水量大、水质复杂和变化大石油化工生产规模趋向于大型化,生产过程中需加入各种溶剂、助剂和添加剂,再经过各种反应。因此,污水水量大,成份相当复杂。2有机污染较严重石油化工污水所含的有机物主要是竖类及其衍生物。某些石化装置排出的高浓度的废液经过焚烧或其他适当方法处理后,COD仍然较高。3污水中含有重金属由于石化生产许多反应是在催化剂作用下完成的,一个大型石油化工厂使用的催化剂可达数十种,因此,污水中往往含有重金属。石化废水组成及来源由于石化废水中所含有的污染物种类非常繁多,导致其中的污染组分也是非常丰富的,根据不完全的检测,可知其中含有油、硫、酚、氰化物、COD、多环芳烙化物、芳香胺类化合物以及杂环化合物等。1含油废水主要来源:工艺过程与油品接触的冷凝水、介质水、生成水,油品洗涤水、油品运输船压舱水、循环冷却水、油品油气冷凝水、焦化除焦废水及受油品污染的地面水。2含酚废水主要来源:常减压延迟焦化、催化裂化及苯酚-丙酮、间甲酚、双酚A等生产装置。3含硫废水主要来源∶炼油厂二次加工装置、分离罐的排水、油品和油气的冷凝分离水、芳烙联合装置。4含氡废水主要来源:丙烯腈装置、腈纶厂聚合车间、纺丝车间及回收车间排水、丁腈橡胶装置。5含醛废水主要来源:乙醛装置、维纶抽丝装置、醋酸乙烯装置、甲醛装置等。6含苯废水主要来源:制苯车间、苯乙烯装置、聚苯乙烯装置、乙基苯装置、烷基苯装置以及乙烯装置的裂解急冷水洗废水。7含酸碱废水主要来源:炼油厂、石油化工厂的洗涤水,成品罐的切水、锅炉水处理排水及酸碱汞房的排放水。石化废水的危害石化废水中含有大量的有毒有害物质,尤其是其中的某些成分能够与土壤中的磷、氮元素进行紧密的结合,进而导致土壤中的磷、氮元素含量严重不足,从而对植物的正常生长造成严重的不利影响。石化废水中还含有大量的重金星元素,例如,砷、铬、镍、镀等,一旦随着水进入到人体内就会对大大提高癌症的发病率,对人们的身体健康造成非常严重的影响。未经处理的石化废水被排入到河中,还会导致水中的含氧量大大降低,会对水中动植物的正产生长发育造成不利影响,而且水中的微生物对石化废水中的有机物质进行降解时,会消耗水中溶解的大量氧气,进而破坏了水中溶解氧的平衡,不利于动植物的长远发展。石化废水处理工艺当前,石油化工、炼油废水处理工艺按照处理原理,可将所有处理方法归分为物理处理、化学处理与生化处理三类。含油废水一般的处理工艺如下:物理法物理处理法通过物理作用,以分离、回收废水中不溶解的呈悬浮状态污染物质(包括油膜和油珠),常用的有隔油、汽浮法、过滤法等。1.1隔油池隔油池是石化废水处理工艺中常见的一种处理装置。依据沸水中悬浮物与水的相对密度不同这一特点除去悬浮物。此法只能除去颗粒较大的水滴或油滴,作为初级处理,成本低但效率一般。国内应用较多的隔油池是平流隔油池和斜板隔油池。1.2气浮法气浮法:利用高度分散的微小气泡作为载体去粘附废水中的悬浮物,使其随气泡升到水面而去除.其处理对象是乳化油以及疏水性细微固体悬浮物。药剂浮选法:在废水中投加化学药剂,选择性将亲水性污染物变为疏水性,然后气浮去除.两者统称气浮法。常用气浮设备:加压溶气气浮、叶轮气浮、曝气气浮﹑射流气浮和电解气浮。气浮法优点:处理效率高,生产的污泥比较干燥,表面刮泥方便曝气增加溶解氧有利后续生化处理。气浮法缺点:耗电量大,设备维修管理工作是大,易堵塞,浮渣怕较大风雨袭击。2化学法化学法向污水中投加某种化学物质,利用化学反应来分离、回收污水中的污染物质,常用的有化学沉淀法、混凝法、中和法、电解法等。2.1化学混凝法化学混凝是用来去除水中无机物或有机胶体悬浮物的一种方法。它可除去固体悬浮物、胶体、可溶性重金属盐类、有机物、油类及颜色等。混凝处理受到废水的pH、碱度、污染物的数量、粒子大小、温度和搅拌等条件的影响。为了更好地提高气浮处理效果,在回流加压溶气气浮工艺中向废水中投入某种絮凝剂,使水中难沉淀的胶体状悬浮颗粒或乳化污染物失稳,在互相碰撞的作用下,聚集、聚合或搭接形成较大的颗粒或絮状物,从而使得污染物能够更容易下沉或上浮而被去除。2.2电解法其基本原理是在电流作用下,阳J表面产生具有强氧化性的羟基自由基,将难降解有机物氧化成CO2和H20。该方法具有氧化能力强、操作简便易于控制、无二次污染等有点,在现代工业废水处理中越来越受到广泛应用。利用这种反应使污染成分生成不溶于水的沉淀物,或生成气体从水中溢出,使废水得到净化。2.3中和法用化学方法消除废水中过量的酸或碱,使其pH值达到中性左右的过程称为中和。处理含酸废水以无机碱为中和剂,处理碱性废水以无机酸作中和剂。中和处理应考虑以"以废治废"原则,亦可采用药剂中和处理、中和处理可以连续进行,也可以间歇进行。中和的方法有酸碱废水中和、酸性废水的药剂中和法、酸性废水的过滤中和法等。2.4氧化法通过将废水中的污染物与氧气进行反应,进而实现处理石化废水的目的。其中,光催化氧化法,是当前Z新的处理技术,通过利用半导体材料作为催化剂,在光照的条件下将污染物与氧气发生氧化还原反应,进而对其进行有效的去除。生物法及组合工艺生物法通过微生物的代谢作用,使废水中呈溶液、胶体以及微细悬浮状态的有机性污染物质转化为稳定、无害的物质,可分为好氧生物处理法和厌氧生物处理法以及各种组合工艺。3.1活性污泥法活性污泥法是以活性污泥为主体的废水生物处理的主要方法。这种技术将废水与活性污泥(微生物)混合搅拌并曝气,使废水中的有机污染物分解,生物固体随后从已处理废水中分离,并可根据需要将部分回流到曝气池中。活性污泥法是由曝气池、沉淀池、污泥回流和剩余污泥排除系统所组成。活性污泥中的细菌是一个混合群体,常以菌胶团的形式存在,游离状态的较少。活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段,吸附阶段和稳定阶段。3.2SBR工艺序批式活性污泥法(SBR法)是一种不同于传统活性污泥法的废水处理工艺,是在一个反应器内,按照给定的程序进行充水、反应、沉淀、排水及闲置等。该工艺通过曝气、停气,使系统内的好氧和缺氧状态交替进行。在降解COD的同时,相继进行了氨氮的硝化和反硝化,达到同时脱碳、脱氮的目的。SBR工艺结构形式简单,运行方式灵活多变,有较强的抗冲击负荷能力,具有一系列连续流系统无法比拟的优点。抚顺石油化工研究院通过小试试验,对SBR法处理石油化工废水进行了研究。用压缩空气充氧,污泥浓度保持5000~7000mg/L,反应器温度在28~32℃。结果表明,在CODCr进水容积负荷为0.6kgCOD/(m3-d),氨氮容积负荷为0.07kg/(m3-d)的条件下,CODCr去除率为94,氨氮去除率为90以上,总氮去除率在60左右,具有良好的去除效果。郭景海运用SBR法处理吉林石化厂废水,控制温度在20C左右、pH在6~9条件下,氨氮有较好的去除效果,进水氨氮40~50mg/L时,出水氨氮能够达到2~3mg/L,去除率在90上。3.3厌氧生物处理厌氧生物处理是高浓度有机废水处理常用的方法,具有能耗低、负荷高,再生沼气能源等优点。但在处理高浓度、难降解石油化工废水时,由于废水中往往含有对产甲烷菌有毒害和Y制作用的高浓度氨氮和硫化物,系统的处理效率会大大下降。凌文华利用UASB反应器对高浓度石油化工废水进行预处理,反应器采用温度范围为30~38°℃,在进水COD8000mg/L时,COD去除率能达到85以上,且该系统设备负荷高,占地面积少,剩余活性污泥产量低,污泥脱水性良好,在厌氧UASB反应器的下部形成了沉淀性能良好的颗粒污泥,对废水中污染物质具有较高的去除效率。耿土锁对普通厌氧反应器进行了改进,采用轻质、多孔的陶粒作为厌氧生物过滤柱的载体,对经过隔油与两级混凝气浮处理的炼油废水进行深度处理试验。试验结果表明,随着陶粒填料上生物膜的逐渐增加,其处理水量与COD负荷也随之增加。当培养驯化两个月后,填料的负荷达到了4.2~6.3m3水/(m3填料d),COD负荷约为0.6~0.8kgCOD/(m3填料d),COD去除率达到70~80,油类和挥发酚的去除率均在80以上。并且系统耐冲击负荷,运行稳定,厌氧出水清澈透明,无色无味,可生化性好,再经过好氧生物处理后,可达到回用水的要求。3.4好氧生物处理好氧生物处理是目前普遍采用的生物处理方法,因其处理成本低,运行操作简单,在大多数的工业废水处理中被广泛采用。康雪琴等对传统活性污泥法进行改进,采用氧气曝气法处理高COD、含硫、含氨的石油化工废水,试验对氧曝和空曝进行了对比。经过三个月的运行表明,与空气曝气法相比,氧气曝气法净化效果高,出水水质好,COD和BOD5的平均去除率可达到88.6和97.6 且操作平稳A全,抗冲击性能强,污泥沉降性能好,相对提高了反应器的容积负荷。但是该方法由于使用纯氧,成本较高,因此很难推广。利用推流式混合曝气池处理高浓度石化废水是活性污泥法的另一个改进,然而该方法同样存在着COD,BOD5、油、酚、硫化物等的去除率高,而氨氮去除率低的问题。唐逸衡将混合推流式曝气池分成六段。前四段作为异氧菌繁殖场所,主要去除有机碳 后两段以进行硝化反应为主,通过改变运行条件来促进硝化细菌的生长。在第五段利用厂区生产装置产生的废碱液来调节pH值和碱度,实现在去除COD、酚、油等物质的同时,提高氨氮的去除效率。3.5接触氧化法接触氧化法是一种兼有活性污泥法和生物膜法特点的一种新的废水生化处理法。这种方法的主要设备是生物接触氧化滤地。在不透气的曝气地中装有焦炭、砾石、塑料蜂窝等填料,填料被水浸没,用鼓风机在填料底部曝气充氧 空气能自下而上,夹带待处理的废水,自由通过滤料部分到达地面,空气逸走后,废水则在滤料间格自上向下返回池底。活性污泥附在填料表面,不随水流动,因生物膜直接受到上升气流的强烈搅动,不断更新,从而提高了净化效果。生物接触氧化法具有处理时间短、体积小、净化效果好、出水水质好而稳定、污泥不需回流也不膨胀、耗电小等优点。夏四清等采用悬浮填料接触氧化生物反应器对高浓度石油化工废水进行处理。通过6h、8h、10h、12h四个不同水力停留时间的硝化过程,取得了不同运行条件下的氨氮去除效果。结果表明,悬浮填料生物反应器完全可以达到生物硝化的目的。当进水中BOD5和CODCr浓度变化范围在77.4~234mg/L和245.5~695.7mg/L时,其平均去除率分别为90和80以上,平均出水浓度分别小于15mg/L和90mg/L。试验期间进水氨氮浓度在8.3~53.2mg/L范围内时,四个工况条件下的平均去除率分别为55.5、86.7、91.1和95.6,平均出水浓度分别是9.43mg/L、3.10mg/L、1.71mg/L、0.79mg/L。3.6A/O法采用A/O工艺处理广州某重油制气厂废水。结果表明,A/O工艺对氨氮具有很强的去除能力,去除率达到95以上,出水氨氮稳定达标排放 对COD也有较高的降解能力,正常情况下去除率达到80以上。从理论上讲,A/O工艺对石油化工废水具有良好的处理效果,但在实际工程中往往会出现以下问题:(1)受到进水水质的影响较大,氨氮去除效果不理想 (2)O段的水力停留时间难以控制。很多采用A/O工艺的石化废水处理厂为了获得较高的有机物去除效率,将O段水力停留时间设置的很长,有时长达30~40h。过长的停留时间会使微生物处于衰减相运行,污泥中的灰分较多,污泥的活性降低,聚凝性能变差。3.7 IMBR-A/O法IMBR-A/O工艺是将MBR与A/O工艺相结合的一种方法。IMBR-A/O工艺流程为:原废水首先经过栅网去除粗大颗粒状悬浮物并静沉,再由泵抽到原水槽,然后经斜板沉淀池到前置反硝化A段(厌氧槽)。再溢流进入好氧反应器O段(好氧槽),在出水泵的抽吸作用下得到膜过滤出水,好氧槽连续曝气。3.8生物膜法生物膜处理法是与活性污泥法并列的一种污水好氧生物处理技术。这种处理法的实质是使细菌和真菌类的微生物、原生动物和后生动物一类的微型动物附着在填料或某些载体上生长繁育,并在其上形成膜状生物污泥———生物膜。污水中的有机污染物作为营养物质,被生物膜上的微生物所摄取,污水得到净化,微生物自身也得到增殖。3.9两段活性污泥法(AB法)AB工艺是吸附-生物降解工艺的简称,是在常规活性污泥法和两段活性污泥法基础上发展起来的一种新型的污水处理技术。王黎等采用两段活性污泥法(AB工艺)处理石油化工废水,在进水COD为1600mg/L,BOD5为800mg/L,总容积负荷为1.2kgCOD/(m3d)的条件下,COD去除率能达到96.5,BOD5去除率达98以上,氨氮去除率也达到了较高的水平。但是在利用两段活性污泥法处理高浓度石化废水时,普通活性污泥法的缺点也难以避免,如受废水中有毒物质的影响较大,COD去除效果不稳定,耐冲击能力差等,因此很难满足日益提高的出水水质要求。3.10厌氧一生物膜法厌氧—生物膜法是厌氧降解和生物接触氧化法处理的组合工艺。

  • 【资料】流态化技术基础及应用(研究生教育创新工程化工类研究生教学用书)

    流态化技术基础及应用(研究生教育创新工程化工类研究生教学用书) 作者:吴占松 马润田 汪展文出版社:化学工业出版社ISBN:9787502586560出版时间:2006年7月本书分为两篇,即流态化的技术基础和应用。基础篇主要内容包括:流态化的基本概念;流态化工艺设备的基本构成;固体颗粒特性及鼓泡床内的流动;气-固流化床的设计;其他流态化过程。应用篇主要内容包括:某些物理过程的应用;流态化燃烧;流态化技术在石油化工中的应用;流态化在煤炭气化中的应用;流态化在其他领域中的应用。

  • 石油化工废水处理工艺汇总-2

    3.1 活性污泥法活性污泥法是以活性污泥为主体的废水生物处理的主要方法。这种技术将废水与活性污泥(微生物)混合搅拌并曝气,使废水中的有机污染物分解,生物固体随后从已处理废水中分离,并可根据需要将部分回流到曝气池中。活性污泥法是由曝气池、沉淀池、污泥回流和剩余污泥排除系统所组成。活性污泥中的细菌是一个混合群体,常以菌胶团的形式存在,游离状态的较少。活性污泥在曝气过程中,对有机物的降解(去除)过程可分为两个阶段,吸附阶段和稳定阶段。3.2 SBR工艺序批式活性污泥法(SBR法)是一种不同于传统活性污泥法的废水处理工艺,是在一个反应器内,按照给定的程序进行充水、反应、沉淀、排水及闲置等。该工艺通过曝气、停气,使系统内的好氧和缺氧状态交替进行。在降解COD的同时,相继进行了氨氮的硝化和反硝化,达到同时脱碳、脱氮的目的。SBR工艺结构形式简单,运行方式灵活多变,有较强的抗冲击负荷能力,具有一系列连续流系统无法比拟的优点。抚顺石油化工研究院通过小试试验,对SBR法处理石油化工废水进行了研究。用压缩空气充氧,污泥浓度保持5000~7000mg/L,反应器温度在28~32℃。结果表明,在CODCr进水容积负荷为0.6kgCOD/(m3d),氨氮容积负荷为0.07kg/(m3d)的条件下,CODCr去除率为94%,氨氮去除率为90%以上,总氮去除率在60%左右,具有良好的去除效果。郭景海运用SBR法处理吉林石化厂废水,控制温度在20℃左右、pH在6~9条件下,氨氮有较好的去除效果,进水氨氮40~50mg/L时,出水氨氮能够达到2~3mg/L,去除率在90%上。3.3 厌氧生物处理厌氧生物处理是高浓度有机废水处理常用的方法,具有能耗低、负荷高,再生沼气能源等优点。但在处理高浓度、难降解石油化工废水时,由于废水中往往含有对产甲烷菌有毒害和抑制作用的高浓度氨氮和硫化物,系统的处理效率会大大下降。凌文华利用UASB反应器对高浓度石油化工废水进行预处理,反应器采用温度范围为30~38℃,在进水COD8000mg/L时,COD去除率能达到85%以上,且该系统设备负荷高,占地面积少,剩余活性污泥产量低,污泥脱水性良好,在厌氧UASB反应器的下部形成了沉淀性能良好的颗粒污泥,对废水中污染物质具有较高的去除效率。耿土锁对普通厌氧反应器进行了改进,采用轻质、多孔的陶粒作为厌氧生物过滤柱的载体,对经过隔油与两级混凝气浮处理的炼油废水进行深度处理试验。试验结果表明,随着陶粒填料上生物膜的逐渐增加,其处理水量与COD负荷也随之增加。当培养驯化两个月后,填料的负荷达到了4.2~6.3m3水/(m3填料d),COD负荷约为0.6~0.8kgCOD/(m3填料d),COD去除率达到70%~80%,油类和挥发酚的去除率均在80%以上。并且系统耐冲击负荷,运行稳定,厌氧出水清澈透明,无色无味,可生化性好,再经过好氧生物处理后,可达到回用水的要求。3.4 好氧生物处理好氧生物处理是目前普遍采用的生物处理方法,因其处理成本低,运行操作简单,在大多数的工业废水处理中被广泛采用。康雪琴等对传统活性污泥法进行改进,采用氧气曝气法处理高COD、含硫、含氨的石油化工废水,试验对氧曝和空曝进行了对比。经过三个月的运行表明,与空气曝气法相比,氧气曝气法净化效果高,出水水质好,COD和BOD5的平均去除率可达到88.6%和97.6%;且操作平稳安全,抗冲击性能强,污泥沉降性能好,相对提高了反应器的容积负荷。但是该方法由于使用纯氧,成本较高,因此很难推广。利用推流式混合曝气池处理高浓度石化废水是活性污泥法的另一个改进,然而该方法同样存在着COD、BOD5、油、酚、硫化物等的去除率高,而氨氮去除率低的问题。唐逸衡将混合推流式曝气池分成六段。前四段作为异氧菌繁殖场所,主要去除有机碳;后两段以进行硝化反应为主,通过改变运行条件来促进硝化细菌的生长。在第五段利用厂区生产装置产生的废碱液来调节pH值和碱度,实现在去除COD、酚、油等物质的同时,提高氨氮的去除效率。3.5 接触氧化法接触氧化法是一种兼有活性污泥法和生物膜法特点的一种新的废水生化处理法。这种方法的主要设备是生物接触氧化滤地。在不透气的曝气地中装有焦炭、砾石、塑料蜂窝等填料,填料被水浸没,用鼓风机在填料底部曝气充氧;空气能自下而上,夹带待处理的废水,自由通过滤料部分到达地面,空气逸走后,废水则在滤料间格自上向下返回池底。活性污泥附在填料表面,不随水流动,因生物膜直接受到上升气流的强烈搅动,不断更新,从而提高了净化效果。生物接触氧化法具有处理时间短、体积小、净化效果好、出水水质好而稳定、污泥不需回流也不膨胀、耗电小等优点。夏四清等采用悬浮填料接触氧化生物反应器对高浓度石油化工废水进行处理。通过6h、8h、10h、12h四个不同水力停留时间的硝化过程,取得了不同运行条件下的氨氮去除效果。结果表明,悬浮填料生物反应器完全可以达到生物硝化的目的。当进水中BOD5和CODCr浓度变化范围在77.4~234mg/L和245.5~695.7mg/L时,其平均去除率分别为90%和80%以上,平均出水浓度分别小于15mg/L和90mg/L。试验期间进水氨氮浓度在8.3~53.2mg/L范围内时,四个工况条件下的平均去除率分别为55.5%、86.7%、91.1%和95.6%,平均出水浓度分别是9.43mg/L、3.10mg/L、1.71mg/L、0.79mg/L。3.6 A/O法李秀怀采用A/O工艺处理广州某重油制气厂废水。结果表明,A/O工艺对氨氮具有很强的去除能力,去除率达到95%以上,出水氨氮稳定达标排放;对COD也有较高的降解能力,正常情况下去除率达到80%以上。从理论上讲,A/O工艺对石油化工废水具有良好的处理效果,但在实际工程中往往会出现以下问题:(1)受到进水水质的影响较大,氨氮去除效果不理想;(2)O段的水力停留时间难以控制。很多采用A/O工艺的石化废水处理厂为了获得较高的有机物去除效率,将O段水力停留时间设置的很长,有时长达30~40h。过长的停留时间会使微生物处于衰减相运行,污泥中的灰分较多,污泥的活性降低,聚凝性能变差。3.7 IMBR-A/O法IMBR-A/O工艺是将MBR与A/O工艺相结合的一种方法。IMBR-A/O工艺流程为:原废水首先经过栅网去除粗大颗粒状悬浮物并静沉,再由泵抽到原水槽,然后经斜板沉淀池到前置反硝化A段(厌氧槽)。再溢流进入好氧反应器O段(好氧槽),在出水泵的抽吸作用下得到膜过滤出水,好氧槽连续曝气。3.8 生物膜法生物膜处理法是与活性污泥法并列的一种污水好氧生物处理技术。这种处理法的实质是使细菌和真菌类的微生物、原生动物和后生动物一类的微型动物附着在填料或某些载体上生长繁育,并在其上形成膜状生物污泥———生物膜。污水中的有机污染物作为营养物质,被生物膜上的微生物所摄取,污水得到净化,微生物自身也得到增殖。3.9 两段活性污泥法(AB法)AB工艺是吸附-生物降解工艺的简称,是在常规活性污泥法和两段活性污泥法基础上发展起来的一种新型的污水处理技术。王黎等采用两段活性污泥法(AB工艺)处理石油化工废水,在进水COD为1600mg/L,BOD5为800mg/L,总容积负荷为1.2kgCOD/(m3d)的条件下,COD去除率能达到96.5%,BOD5去除率达98%以上,氨氮去除率也达到了较高的水平。但是在利用两段活性污泥法处理高浓度石化废水时,普通活性污泥法的缺点也难以避免,如受废水中有毒物质的影响较大,COD去除效果不稳定,耐冲击能力差等,因此很难满足日益提高的出水水质要求。3.10 厌氧—生物膜法厌氧—生物膜法是厌氧降解和生物接触氧化法处理的组合工艺。张敏等利用厌氧降解和生物接触氧化法处理奥里油化工废水,探索了该工艺对奥里油化工废水的适应能力和处理效果。结果表明,该工艺处理奥里油石油化工废水处理效果较好,厌氧降解处理COD负荷8.7kg/(m3d),平均去除率达35%,好氧处理COD负荷1.87kg/(m3d),平均去除率达69%,生物处理COD总去除率达80%,终出水达到污水综合排放(GB8978-1996)二级标准。杨柳燕等采用水解—好氧生物膜工艺对难降解的石油化工废水处理进行研究。其中水解段HRT12h,一段和二段接触氧化池的HRT各为12h,水温为10℃。研究结果表明,当系统进水COD、氨氮、酚和硫化物的浓度分别为2066.4mg/L、120.74mg/L、283.44mg/L和20.76mg/L时,处理后出水浓度分别为236mg/L、74.33mg/L、0.86mg/L和1.22mg/L,达到国家三级排放标准。运行过程中,将沉淀池的污泥回流至水解酸化池并在其中得到消化,因而本工艺基本无剩余污泥排放。此外,系统还具有运行稳定、耐冲击负荷能力强的特点。3.11 三相生物流化床三相流化床又称气流动力流化床。污水与空气同步进入床体在气流的作用下, 气、液、固(生物膜载体)三相进行搅动接触,并产生升流在床体内循环的处理床。在这一过程中,产生有机污染物的降解反应,由于载体间产生强烈的摩擦,生物膜及时脱落,无需另设脱膜设备。当进水的BOD浓度较大时,可采用处理水回流措施。防止气泡在床内并合是此法的技术关键,为此,可采用减压释放或射流曝气充氧。Koch等利用三相生物流化床工艺处理含酚、杂环化合物和芳香胺的石化废水。以砂、陶粒、活性碳等颗粒状物质作为微生物生长载体,反应器内生物固体浓度可达普通活性污泥法的5~10倍。同时,生物载体被上升的废水和空气流化,生物载体与废水、空气充分接触,传质状况大大改善,COD去除率达到69%。3.12 水解酸化-好氧生物处理工艺水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。国内外学者在处理石化废水方面做了大量的研究工作,在处理工艺、运行条件上得出了一些有重要价值的结论,这对于处理高浓度、难降解废水具有重要的指导意义。通过以上分析也可以发现,采用常规的工艺处理高浓度、难降解的石油化工废水存在着以下问题:(1)污泥培养困难,活性不高甚至大量死亡,系统耐冲击负荷能力差;(2)高浓度进水时有机物的去除效率不高,不能满足出水水质的要求;(3)有些工艺虽然能够实现有机物高的去除率,但是硝化脱氮效果较差,出水氨氮的浓度较高;(4)对废水中有毒物质的适应能力低,有毒物质去除率效果不理想。同时废水中有毒物质的存在往往导致大量微生物死亡,影响有机物、氨氮的去除效率;(5)难以实现自动化控制,操作繁琐,运行成本高。通过有关学者地积极探索,新的、更有效的处理高浓度、难降解的工业废水的工艺是采用两段法的基本思想,即将有机物的降解和硝化脱氮分别置于两个不同的反应器中进行,这不仅避免了常规的一段法产生的葡萄糖效应,而且在第二段发生了硝化反应,提高了系统的脱氮效率。

  • 【转帖】混酸法瓷质阳极氧化工艺的应用与改进

    混酸法瓷质阳极氧化工艺的应用与改进 --------------------------------------------------------------------------------发布时间: 2007-12-11 10:56:25 浏览次数: 7 1 前言 瓷质阳极氧化是在铝或铝合金的表面,获得光滑的类似于搪瓷般的不透明膜的过程。膜的颜色一般为乳白色,在经过着色工序后可着上各种色泽。瓷质氧化膜具有良好的装饰性、耐蚀性和电绝缘性,因此,广泛应用于家用电器、仪器仪表和日用品[1]。但是,在工业生产中,仅能生成白色膜是不能满足实际需求的,后续的着色(不论是化学着色还是电解着色)必须有单独的工序、设备和操作人员,因而提高了生产成本,如何才能用一步法获得某种色泽的瓷质氧化膜是许多生产厂家都十分关注的。本文在查阅了近年来的有关文献,把氧化与着色相结合,在大量配方筛选的基础上开发出了一种一步法获得淡黄色瓷质氧化膜的工艺,省去了着色工序,明显地降低生产成本,获得了工业应用。2 瓷质阳极氧化工艺 2.1 工艺流程  铝材→化学除油→水洗→化学抛光→水洗→瓷质阳极氧化→水洗→封闭→晾干  2.2 化学除油  采用自制的化学除油溶液: NaOH  10~15g/L Na2CO3  30~50g/L Na3PO412H2O 25~40g/L  十二烷基硫酸钠  0.4~0.6g/L 除油温度应在60~80℃,除净以水洗后铝材表面无水成股流下,水膜均匀覆盖在表面为准,时间一般应在5~10s。  2.3 化学抛光  采用自制的化学抛光液,应注意化学抛光的温度和时间,防止过腐蚀。温度在85~90℃,时间约为10s。  2.4 瓷质阳极氧化 铬酐 30~35g/L硼酸 硼酸  6~10g/L 草酸 8~10g/L SnSO4 1.0~2.0g/L 添加剂 3~5g/L 温度  40~50℃ 电压 30~36V 电流密度 1.0~1.5A/dm2 时间 30~40min 其中:添加剂由几种多羟基酸和某种金属盐复配而成。  2.5 封闭  用沸水封闭约15min或重铬酸钾溶液封闭约10min。重铬酸钾还有增强黄色色泽和提高耐蚀性的作用。  2.6 工艺条件分析  2.6.1 电压和电流  电压和电流密度太小,着色性能差,甚至完全不能着色;电压和电流密度太大,膜层色调发暗,光泽度不好。因此,电压、电流密度应控制在工艺规范中,最佳电压在35V,电流密度1A/dm2。  2.6.2 SnSO4的用量  SnSO4的用量是本工艺中的关键条件,应控制SnSO4的含量在1.0g/L左右,如要求色泽较深,可适当增加用量。  2.6.3 添加剂的用量  添加剂由几种多羟基羧酸和某种金属盐复配而成,能明显提高氧化膜的瓷质感,改善氧化膜的色泽,同时提高着色速率。添加剂的用量过低,氧化膜发暗,光泽不好;然而,添加剂的用量超过5g/L,光泽度的提高效果已不显著,而成本却上升了。因此,添加剂用量应控制在3~5g/L为好。 3 结论 (1)本瓷质氧化工艺通过SnSO4和添加剂的加入,一步法获得了淡黄色的瓷质氧化膜层,降低了生产成本。  (2)本工艺不需机械抛光,只进行化学抛光即可达到光泽度的要求。  (3)本工艺氧化膜的各项指标,如外观、耐蚀性能、耐磨性能等均可达到国家标准,因此适用于家用电器、仪器仪表和日用品的表面装饰。资讯来源: 混酸法瓷质阳极氧化工艺的应用与改进 发布人: 全球电镀网

  • 【求助】球铁白口化工艺?

    我公司主要是球铁零件检验的,现在化学成分直接用只读光谱无法分析,要进行白口化,请问白口化工艺是?材料主要是QT400-18

  • 【分享】环保设备创新设计生产新技术适用手册与质量检验标准规范实用手册

    简介:《环保设备创新设计生产新技术与质量检验标准规范实用手册》一书,本书着重介绍废水处理、大气污染防治、固体废弃物的处理与处置、噪声防治等方面环保设备的原理、设计、运行、管理及其质量技术标准等知识,并尽可能结合目前国内外先进的环保工艺设备,通俗易懂地展示给读者。根据我国的国情,对于那些我国常用的工艺设备也作了适当的描述。下载地址:http://www.instrument.com.cn/download/shtml/092439.shtml

  • 【资料】磷化(Ⅲ)——磷化工艺(1)

    磷化(Ⅲ)——磷化工艺(1)1 防锈磷化工艺磷化工艺的早期应用是防锈,钢铁件经磷化处理形成一层磷化膜,起到防锈作用。经过磷化防锈处理的工件防锈期可达几个月甚至几年(对涂油工件而言),广泛用于工序间、运输、包装贮存及使用过程中的防锈,防锈磷化主要有铁系磷化、锌系磷化、锰系磷化三大品种。铁系磷化的主体槽液成分是磷酸亚铁溶液,不含氧化类促进剂,并且有高游离酸度。这种铁系磷化处理温度高于95℃,处理时间长达30min以上,磷化膜重大于10g/m2,并且有除锈和磷化双重功能。这种高温铁系磷化由于磷化速度太慢,现在应用很少。锰系磷化用作防锈磷化具有最佳性能,磷化膜微观结构呈颗粒密堆集状,是应用最为广泛的防锈磷化。加与不加促进剂均可,如果加入硝酸盐或硝基胍促进剂可加快磷化成膜速度。通常处理温度80~100℃,处理时间10~20min,膜重在7.5克/m2以上。锌系磷化也是广泛应用的一种防锈磷化,通常采用硝酸盐作为促进剂,处理温度80~90℃,处理时间10~15min,磷化膜重大于7.5g/m2,磷化膜微观结构一般是针片紧密堆集型。防锈磷化一般工艺流程:除油除锈——水清洗——表面调整活化——磷化——水清洗——铬酸盐处理——烘干——涂油脂或染色处理通过强碱强酸处理过的工件会导致磷化膜粗化现象,采用表面调整活化可细化晶粒。锌系磷化可采用草酸、胶体钛表调。锰系磷化可采用不溶性磷酸锰悬浮液活化。铁系磷化一般不需要调整活化处理。磷化后的工件经铬酸盐封闭可大幅度提高防锈性,如再经过涂油或染色处理可将防锈性提高几位甚至几十倍,见表1。表1 磷化膜与涂油复合对耐蚀性的影响材料 出现锈蚀时间(h)(盐雾ASTM B117-64) 裸钢 0.5 钢+涂油 15.0 钢+16g/m2锌磷化 4.0 钢+锌磷化+涂油 550.0 摘自 Freeman D B.Phosphating and Metal Pretreatment Woodhead-Faukner,1986.

  • 拟办企业生产车间工艺布局平面图

    求助开办药品生产企业申报时的一些资料:拟办企业生产车间工艺布局平面图(包括更衣室、盥洗间、人流和物流通道、气闸等,并标明人、物流向和空气洁净度等级),空气净化系统的送风、回风、排风平面布置图,工艺设备平面布置图;谢谢!

  • 2014化工工艺优化及过程分析技术(PAT)应用交流会

    2014化工工艺优化及过程分析技术(PAT)应用交流会

    梅特勒-托利多自动化化学部、上海张江生物医药职业技能培训中心诚邀您参加2014年化工工艺优化及过程分析技术(PAT)应用交流会。免费报名地址:http://cn.mt.com/cn/zh/home/events/seminars/CN_AC_Pharmaceutical_Chemical_PAT_Seminars_2014.html尊敬的女士/先生您好!梅特勒-托利多自动化化学部、上海张江生物医药职业技能培训中心诚邀您参加2014年化工工艺优化及过程分析技术(PAT)应用交流会,敬请从事化学反应工艺研发和结晶工艺研发、工艺安全评估与放大的专家学者和研发人员参加。时间:2014年3月14日 8:00 - 17:00 (8:00-9:00 报到,9:00正式开始)地址:上海张江生物医药职业技能培训中心 浦东张江蔡伦路781号三楼报告厅研讨会介绍http://ng1.17img.cn/bbsfiles/images/2014/03/201403041547_491818_271_3.jpg近年来,过程分析技术(PAT)在化工、制药行业越来越受到重视,包括美国FDA在内的官方机构正在积极推动应用PAT技术,力图从过程、工艺上保证产品的质量,改变目前只能依靠严格和生硬的认证规范的现状。PAT技术能够带来下列好处:a.消除产品质量隐患;b.提高生产效率;c.实现“产品质量是可以从生产过程中预见的,而不只是检测出来的”;d.节省分析成本。http://ng1.17img.cn/bbsfiles/images/2014/03/201403041548_491819_271_3.jpg梅特勒-托利多提供的过程分析技术(PAT)——全自动实验室反应器技术EasyMaxTM/ OptiMaxTM和反应量热技术RC1eTM,实时在线颗粒分析技术FBRM® 和PVM®和实时在线反应分析技术ReactIRTM,能够帮您充分的理解反应过程,快速的筛选和优化工艺,安全的中试放大,从而提高研发效率、降低研发成本,更快的得到安全、稳定、可靠的生产工艺。http://ng1.17img.cn/bbsfiles/images/2014/03/201403041548_491820_271_3.jpg在过去20年间,我们的技术广泛应用于制药行业、精细化工、石化及特种化学品、学术研究等行业。在全球范围内,越来越多的设备在实验室、工艺开发和生产中体现着优势,丰富的实际经验和全球化的支持帮助您充分了解和优化化工工艺的过程。http://ng1.17img.cn/bbsfiles/images/2014/03/201403041548_491821_271_3.jpg演讲内容原位红外在过程分析中的应用应用在线结晶监测技术优化收率、产品品质及工艺性能PAT技术在药物结晶过程中的应用---从艺术到科学的蜕变RC1e/OptiMax HFcal反应量热技术优化工艺过程、安全放大工艺EasyMax/OptiMax全自动反应器技术及其应用热分析在制药行业的应用http://ng1.17img.cn/bbsfiles/images/2014/03/201403041548_491822_271_3.jpg演讲者本次交流会专门邀请了华东理工大学的任国宾教授,他将为我们带来当代的PAT技术在结晶中的应用,真正实现结晶工艺研发的科学化;Ben Smith 先生将介绍工艺开发过程中应用在线颗粒分析技术进行结晶过程的开发和优化,以提高收率,产品质量及性能。梅特勒-托利多ReactIR全球市场经理Brain Wittkamp 先生,将介绍在线反应分析技术在高活性反应中的应用,并成功应用于实际工业生产中,为工艺研发人员分享宝贵的应用思路和经验。同时,梅特勒-托利多的技术应用专家也将分享国外工艺研发实例。我们旨在通过面对面的专家交流和案例分析,为您今后的研发工作带来新观念、新思路和新方法。任国宾博士,华东理工大学药学院教授Brian Wittkamp 博士 梅特勒-托利多RA业务全球市场开发经理Ben Smith 先生 梅特勒-托利多PSC 业务全球市场开发经理刘慧敏 博士 梅特勒-托利多自动化化学部 销售市场经理王涛 梅特勒-托利多自动化化学部 高级技术应用顾问孔鹏飞 梅特勒-托利多热分析仪器部 技术应用顾问会务组联系方式何禄 先生电话:13601805504 或者 021-64850435*1100Email:lu.he@mt.com; 丁伟俊 先生 电话:13524428768 Email:dingwj@pvpt.com.cn;演讲者简介任国宾 博士,华东理工大学药学院教授任国宾博士,华东理工大学药学院教授、郑州大学化工与能源学院兼职教授。中国晶体学会会员、中国晶体学会药物晶体学专业委员会常务委员。近年来一直从事药物晶体工程研究,主要研究领域包括固态表征技术、高通量结晶技术、药物结晶工艺优化与在线分析控制技术(PAT)等;曾任上海医药工业研究院药物晶体工程研究实验主任,诺华制药(瑞士)药物多晶型实验室高级研究员,苏州诺华制药科技有限公司高级研究员、药物结晶及成盐实验室主任,诺华(中国)生物医学研究有限公司药化药学研发部高级研究员、专家组成员(药物结晶及固态表征技术专家)。发表论文40余篇,申请专利10项,各种学术报告30余次;获得天津市技术发明奖(一等)、教育部科学技术进步奖(一等奖)、第十三届中国专利优秀奖。Brian Wittkamp 博士 梅特勒-托利多RA全球市场经理博士毕业于美国北达科塔州大学,现任美国梅特勒-托利多公司自动化化学部ReactIR全球市场经理。专注于FTIR与FlowIR在有机化学和石化行业中的应用与研究工作。多次应邀参加国际学术会议作大会报告。在国际知名化学刊物上发表多篇关于ReactIR在环境与流动化学方面的应用文章。Ben Smith 先生 梅特勒-托利多PSC 业务全球市场开发经理Ben Smith 先生专业背景为化学工程,是梅特勒-托利多PSC实时分析业务市场经理。在过去的14年中,他曾领导多个仪器和软件的开发项目和应用开发与推广,目前负责理解、优化和控制颗粒体系的在线分析技术的全球市场开发,擅长应用过程分析技术(PAT),发现并解决制药和化工从实验室到生产的工艺问题,优化工艺过程。刘慧敏 博士 梅特勒-托利多自动化化学部门 销售市场经理博士毕业于天津大学,主要从事有机合成,工艺优化研究。2007年底加入梅特勒-托利多任高级技术应用顾问,一直从事在线分析技术的应用支持工作,并积累了丰富的经验。现任销售市场经理,负责应用于工艺研发和放大生产的在线分析技术以及全自动反应器在中国的销售及市场开发工作。王涛先生 梅特勒-托利多 高级技术应用顾问拥有多年的工艺研发经验,在有机合成、聚合等方面经验丰富,对梅特勒-托利多自动化化学部门的仪器及应用非常了解,目前负责全自动反应器及RC1反应量热等应用的全国范围内的应用支持。孔鹏飞先生 梅特勒-托利多 技术应用顾问毕业于同济大学高分子材料专业。2010年加入梅特勒-托利

  • 第十届环太平洋先进材料与工艺国际会议

    由中国金属学会(CSM)、日本金属学会(JIM)、韩国金属学会(KIM)、澳大利亚材料学会(MA)和美国矿物金属材料学会(TMS)共同主办的“第十届环太平洋先进材料与工艺国际会议”(PRICM10)将于2019 年8 月18-22 日在陕西省西安市召开。参展内容及展品范围 第一部分:先进材料部分  高性能金属材料——特种金属功能材料、高端金属结构材料:稀土功能材料、稀有金属材料、半导体材料、高品质特殊钢、新型铝镁钛、其他高端功能和金属材料 前沿新材料:纳米材料、生物材料、智能材料、超导材料 高性能纤维及复合材料:高性能纤维及材料、树脂基复合材料、陶瓷基复合材料、碳/碳复合材料、金属基复合材料 新能源材料:先进储能材料、风电材料、太阳能光伏材料、锂离子电池材料、新光源材料等第二部分:材料工艺、成型设备技术部分  材料工艺设备:实验电炉、小型塑料机械、激光设备、3D打印、其他材料工艺设备; 物性测试仪器及设备:粒度仪、热分析仪器、流变仪/粘度计、试验机、表界面物性测试、无损检测仪器、测厚仪、材料力学性能试验设备、其他仪器设备等; 光学仪器及设备:电子显微镜、光学显微镜、光学测量仪、光学实验设备、光学成像设备、其他光学仪器设备及设备; 化学分析仪器:色谱、光谱、质谱、X射线仪器、元素分析仪、波谱、LIMS / 软件、其他通用分析仪器等; 实验室设备及服务:清洗/消毒设备、制样/消解设备、分离/萃取设备、混合/分散设备、恒温/加热/干燥设备、粉碎设备、合成/反应设备、制冷设备、实验室家具、其它实验室常用设备等;仪器安装调试、技术咨询、认证校准、软件开发、数据处理; 化学试剂和标准物质、相关零配件、耗材等 第三部分:其他  先进材料科学研究院所、国家重点实验室  产业园区、投融资机构、第三方平台

  • 【资料】新标准下饮用水净化工艺的改进

    摘  要:水污染恶化已经是不争的事实,为了提高人们饮用水的质量,我国颁布了新的水质标准。更高的标准必须要有更先进的净水工艺支持,本文在水污染恶化的情况下,分析了我国水质标准和国际三大标准的差距,分析了我国饮用水净化工艺与发达国家工艺的差距,提出我国饮用水净化工艺必须进行改进,努力提高人们生活水平。[img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808082222_102680_1615922_3.gif[/img]

  • 求:拟办药物企业生产车间工艺布局平面图-样图,谢谢!

    那位老师有下列样图,可否供参考学习,谢谢! 拟办企业生产车间工艺布局平面图(包括更衣室、盥洗间、人流和物流通道、气闸等,并标明人、物流向和空气洁净度等级),空气净化系统的送风、回风、排风平面布置图,工艺设备平面布置图;

  • 【资料】化工工艺算图手册

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=32695]化工工艺算图手册.pdf[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制