当前位置: 仪器信息网 > 行业主题 > >

动物代谢测量分析系统

仪器信息网动物代谢测量分析系统专题为您提供2024年最新动物代谢测量分析系统价格报价、厂家品牌的相关信息, 包括动物代谢测量分析系统参数、型号等,不管是国产,还是进口品牌的动物代谢测量分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动物代谢测量分析系统相关的耗材配件、试剂标物,还有动物代谢测量分析系统相关的最新资讯、资料,以及动物代谢测量分析系统相关的解决方案。

动物代谢测量分析系统相关的资讯

  • 昆虫动物呼吸代谢能量测量系统在农科院蜜蜂研究所成功安装运行
    3月开学季来临,易科泰携手农科院蜜蜂所为科研实验提供助力,昆虫动物呼吸代谢能量测量系统包括双通道氧气分析仪,高精度二氧化碳分析仪、双通道SS4稳定气流控制单元、RM-8气流切换单元,高精度昆虫呼吸室。可测量单只昆虫的呼吸能量代谢情况、多只昆虫的呼吸能量代谢情况以及不同环境(不同气体浓度比例条件下)的昆虫呼吸代谢情况。其适用的昆虫,小到蚜虫,蚊子,大至蜜蜂、蛾类;尤其适用于果蝇等模式动物。该套系统能够精准有效的反映昆虫的能量代谢、新陈代谢等情况。 昆虫动物呼吸代谢能量测量系统 位于北京植物园内的农科院蜜蜂研究所 位于高精度昆虫呼吸室内的蜜蜂昆虫呼吸代谢能量测量系统广泛应用于动物生理生态学、遗传学、生物医学、媒介生物学等学科,可准确的测量动物的CO2呼出量和耗氧量,并可计算呼吸熵、能量消耗等。同时可选配昆虫活动强度监测、红外热成像等系统对昆虫的能量消耗进行全方位的监控检测。以研究昆虫等动物的生理生态、昆虫活动与温度的关系、昆虫活动与呼吸代谢的关系、昆虫健康状况及生理状态、杀虫剂对昆虫的影响及最小致死量、临界热极值CTmax(critical thermal maximum)、不连续气体交换DGC(discontinuous gas exchange cycle)等。另外,由于昆虫的野生型较多,易科泰根据科研需求推出了便携式昆虫呼吸代谢测量系统。该系统将氧气分析仪、二氧化碳分析仪以及气体抽样单元等高度集成于一个手提箱内,可在野外任何地方对当地的昆虫的呼吸代谢情况进行测量,尽最大可能保证了昆虫的原位野生状态,对于昆虫的生态学研究提供了强有力的工具。北京易科泰生态技术公司近20年来致力于生物呼吸与能量代谢技术的推广和技术服务,为您提供全面生物呼吸与能量代谢测量方案:高通量昆虫呼吸与能量代谢测量技术方案(CO2与O2测量)SSI实验动物能量代谢测量系统与热成像仪联用方案便携式动物呼吸代谢测量系统与热成像仪联用方案人体能量代谢与活动强度研究测量方案
  • 低价细胞外流量分析仪新品让每个实验室都能检测得起新陈代谢
    用于测量细胞新陈代谢的新陈代谢分析仪和细胞外流量(Extracellular Flux,简称:XF)压力测试盒的供应商 Seahorse Bioscience 推出 XF 产品平台的低价产品 XFp 细胞外流量分析仪 (XFp Extracellular Flux Analyzer)。新的低价仪器将让更多的实验室可以获得 Seahorse 独特的技术。   Seahorse 细胞外流量分析仪对两大产生能量的细胞路径 -- 线粒体呯吸和糖解进行实时压力测试、检测新陈代谢方面的重大变化,正如在1000多份同行互查的出版物中报道的那样。XFp 分析仪快速简便地提供与细胞外流量细胞线粒体应激试验 (XF Cell Mito Stress Test)、细胞外流量糖解压力测试盒 (XF Glycolysis Stress Test ) 和细胞外流量新陈代谢开关试验 (XF Metabolic Switch Test) 标准相同的新陈代谢试验。   Seahorse Bioscience 推出 XF 产品平台的低价产品 XFp 细胞外流量分析仪。新的低价仪器将让更多的实验室可以获得 Seahorse 独特的技术。Seahorse Bioscience 行政总裁 Jay Teich 说:&ldquo 细胞外流量技术被快速採用与新发现激增同步发生。这些新发现涉及细胞新陈代谢、研究中的疾病和治疗,如癌症、免疫学、肥胖、糖尿病和神经煺行变性。我们发现许多科学家需要我们的技术,但却无法要求得到一个单独的 Seahorse 产品。 低价的 XFp 分析仪改变了这种情况。&rdquo   阿拉巴马大学伯明翰分校 (University University of Alabama Birmingham) 线粒体医学实验室 (Mitochondrial Medicine Laboratory) 负责人、病理学教授 Victor Darley-Usmar 博士说:&ldquo Seahorse 细胞外流量技术让主流科学家更容易了解新陈代谢的未解之迷。XFp 平台是为仅需要少量样本的实验定制的,这些实验可以让人终身为细胞的新陈代谢研究着迷。&rdquo   XFp 拥有一块正在申请专利的小片,这让它更适合将病人样本或与其它动物身上获得的珍贵样本进行两两比较。紧凑好用的 XFp 分析仪拥有直觉型、基于触摸屏的软件和改进过的工作流,这些令设计和运行细胞外流量试验变得简单和直接。细胞外流量分析仪和压力测试盒为细胞的新陈代谢测量设定的标准,让科学家可以将基因与蛋白质生物学数据和细胞功能联系起来。   Seahorse Bioscience 简介   Seahorse Bioscience 的新陈代谢分析仪和细胞外流量压力测试盒在细胞新陈代谢研究领域是行业标準。全球的科学家都清楚细胞新陈代谢在推进他们的研究上的作用。Seahorse Bioscience 成立于2001年,总部位于美国的麻省,在丹麦和中国设有办事处。更多信息请登入 www.seahorsebio.com。
  • 动物能量代谢测量技术宣传推广周
    北京易科泰生态技术公司动物能量代谢实验室,将于2017年9月15日至19日,举办动物能量代谢宣传推广周活动,期间特邀美国sable systems international公司首席科学家john lighton教授来华做报告和培训。具体活动安排如下:一、2017年9月15日下午动物能量代谢与生理生态研究测量技术报告会报告人:王德华研究员(中科院动物研究所)john lighton博士(美国sable公司首席科学家)等地点:北京师范大学京师大厦二、2017年9月16日参加由中国生态学会动物生态学专业委员会主办、北京师范大学生命科学学院承办的“第七届动物生理生态学学术会议暨孙儒泳院士学术思想研讨会”,john lighton博士将做“constraints and solutions in metabolic measurement”的会议报告三、2017年9月17-18日动物能量代谢测量技术报告与座谈会(根据需求反馈信息确定具体日程)主讲人:john lighton博士四、2017年9月19日活动汇总反馈及后续合作与技术支持安排john lighton教授30多年来致力于动物能量代谢测量技术的研究,先后在 nature、pnas及the journal of experimental biology等世界著名学术期刊上发表了90多篇学术论文,其于2008年编著出版的“measuring metabolic rates: a manual for scientists. oxford university press”一书,截止目前已达5514次引用。作为美国ssi公司(sable systems international)在中国的唯一指定代理和售后服务中心,易科泰生态技术公司从事动物能量代谢仪器技术服务已有十余年,为国内科研院校提供了上百套动物能量代谢仪器设备和相应技术服务,包括大小鼠等实验动物能量代谢与行为观测系统、牛羊等家畜家禽能量代谢测量系统、两爬类能量代谢测量系统、果蝇及昆虫能量代谢测量系统、斑马鱼及水生动物能量代谢与行为观测系统、人类能量代谢测量系统等,应用领域涵盖动物生理生态学研究、生物医学、家畜家禽营养与能量代谢研究、动物遗传与生物技术(能量代谢表型分析)、生态毒理学等,仪器设备采用国际先进的间接测热法(indirect calorimetry),并结合行为观测、环境调控(如温度调控等)、体温心率监测、红外热成像等技术;除实验室测量仪器外,还提供了大量fms、foxbox等便携式能量代谢测量仪器。公司还通过ecolab生态实验室平台,与中科院动物所(动物生理生态与能量代谢)、农科院畜牧所(家禽呼吸代谢)、农科院植保所(蚜虫呼吸代谢)、疾控中心、北京实验动物中心等保持密切合作关系。公司概况:易科泰自02年至今,已走过了15个年头。我们致力于从不同视角,不同尺度,不同技术平台研究测量生态系统结构、功能及其动态变化过程,引进、消化、吸收和创新国际先进生物生态科研技术,致力于植物表型分析技术的研究与开发,实验室植物表型分析平台目前配备有封闭式叶绿素荧光成像系统、便携式叶绿素荧光成像系统、叶绿素荧光仪、藻类荧光仪、植物高光谱仪、光合仪、co2/o2分析仪、植物光合生理生态监测系统、藻类培养与在线监测系统(光养生物反应器)、根系测量仪器等,具备500余平米温室,计划引进大型叶绿素荧光与rgb成像平台。ecolab实验室表型分析平台可以为用户提供作物抗性检测、胁迫生理生态研究检测、植物表型分析、优良品种及遗传育种检测等技术服务,并可承担植物表型分析技术培训、fluorcam叶绿素荧光成像技术培训、植物表型分析实验方案与仪器技术方案设计等,欢迎联系。公司优势:公司技术团队80%以上具备硕士或硕士以上学位,并与中国科学院研究生院、中科院植物研究所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学等建立了长期的技术合作交流关系。
  • SCIEX在线SPE系统对污水中12种毒品及代谢物的定性与定量分析
    城市生活污水中毒品成分监测分析工作是科学、客观评价当地毒情发展态势的有效手段,是禁毒工作决策的重要依据。根据检测结果、污水处理厂当日潜水流量等参数,得到城市日均毒品消耗量、城市人口日毒品吸食总量和平均人口毒品暴露水平,用来追踪毒品滥用随时间的变化情况,城市非法药物和毒品贩制情况、以及城市的非法药品使用滥用情况,实现实时毒情监测。在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”话题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文邀请到SCIEX公司应用技术专家孙小杰经理谈谈污水验毒相关的技术及解决方案。SCIEX公司 应用技术专家孙小杰经理污水中毒品及其代谢物的浓度测定是污水分析法评估毒品使用量的关键。方法的基本思路是对污水中的毒品及代谢物进行检测,但毒品代谢物进入污水系统后与生活污水进行混合,其中的化合物含量有可被稀释上千倍,浓度在ng/L级别,同时污水中复杂的基质也对仪器的抗污染能力提出较高要求。相比传统的离线固相萃取方式,在线固相萃取(On-line SPE)具有样品利用率高、所需样品少;全体积自动在线萃取、解吸、进样,通量高、可大大节约人力及时间成本;同时前处理交叉污染相对较少等特点。因此在实际污水验毒工作中深受一线检测人员欢迎。基于此,我们开发了SCIEX On-line SPE-MS/MS 系统对污水中12种毒品及代谢物进行定性与定量分析方法。本方法具有以下特点:1、速度快:无需复杂前处理过程,一针进样只需15分钟,同时结合重叠进样(Load Ahead)功能,可极大的减少样品等待时间,提高检测效率。2、抗污染:SCIEX专利的Turbo VTM离子源可耐受长期、大量的污水检测工作,无需频繁的清洗和维护,有效减少工作量,提高定量准确度。3、兼容性好:设备可以在On-line SPE-MS/MS和常规的UPLC-MS/MS之间无缝切换,在做污水验毒项目时不影响其他项目的检测。试验方法1.样品前处理取10mL污水,加入同位素内标制得25ng/L的溶液,10000rpm转速下离心10min,取上清,待上样分析。2. 液相条件液相:SCIEX Exion LC 20ADTM系统大体积进样器:CTC PAL3 进样系统分析柱及流动相条件:Phenomenex Kinetex Biphenyl(2.1*100 mm, 2.6μm),流速0.4mL/min,流动相A:水(0.02%甲酸+2mM甲酸铵);B:乙腈(0.02%甲酸+2mM甲酸铵),梯度见表1。SPE柱及流动相条件:HLB(2.1*30mm, 20μm),流速2mL/min,A:水;B:甲醇,梯度见表2。柱温:40 ℃上样量:2mL梯度洗脱条件:表1 表2 实验结果12种毒品及代谢产物的典型色谱图采用空白污水样本加标,配置浓度在1-500ng/L范围内的系列标准曲线,内标加入浓度为25ng/L,全部12种化合物线性关系良好,见图2。图 2 12种毒品及代谢物的线性关系曲线总结建立了一种CTC On-line SPE系统和SCIEX Triple QuadTM 4500系统联用,分析污水中12种常见毒品及代谢物的分析方法。该方法前处理操作简单,可有效地节约时间和人力成本,提高工作效率;方法的灵敏度高、重复性好、准确度高,经过多批次的实际样品测定,结果稳定可靠。通过多目标物的在线自动富集,可有效提高方法的检测灵敏度,更好的应对污水验毒工作。打击防范毒品违法犯罪是一项复杂、艰巨、长期的系统工程。针对毒情新形势新变化,加强禁毒技术研究,推进禁毒科技创新,才能牢牢掌握同毒品违法犯罪作斗争的主动权,推动禁毒工作不断取得新成效。
  • 复旦大学预算500万元购买1套超高分辨质谱测量分析系统
    4月14日,复旦大学公开招标购买1套超高分辨质谱测量分析系统,预算500万元。  项目编号:0705-2140*****811  项目名称:复旦大学超高分辨质谱测量分析系统采购国际招标  采购需求:  1、招标条件  项目概况:超高分辨质谱测量分析系统采购  资金到位或资金来源落实情况:本次招标所需的资金来源已经落实  项目已具备招标条件的说明:已具备招标条件  2、招标内容:  招标项目编号:0705-2140*****811  招标项目名称:超高分辨质谱测量分析系统采购  项目实施地点:中国上海市  招标产品列表(主要设备):序号产品名称数量简要技术规格备注1超高分辨质谱测量分析系统1套仪器分辨率不小于:400,000 FWHM预算金额:人民币500万元 合同履行期限:签订合同后3个月内  合同履行期限:签订合同后3个月内  本项目( 不接受 )联合体投标。  开标时间:2021-05-07 10:30(北京时间)
  • 微生物代谢的原位拉曼可视化定量分析成功实现
    记者21日从中科院海洋研究所获悉,该所研究员张鑫课题组和孙超岷课题组共同合作,基于共聚焦显微拉曼技术,通过三维定量成像实现了长期、近实时、非破坏性的微生物监测,对微生物生长和代谢情况进行可视化及定量分析,为未来分析微生物原位生物过程提供了新思路。研究成果近日发表于《微生物学谱》上。固体培养基培养的菌落的三维定量成像示意图 课题组供图记者了解到,张鑫课题组在之前的工作中,观测到我国南海冷泉环境中单质硫含量丰富。随后,孙超岷课题组发现了冷泉细菌Erythrobacter flavus 21-3可以高效氧化硫代硫酸钠生成单质硫,张鑫课题组通过拉曼光谱鉴定后发现单质硫结构为环状S8,研究成果发表在生物学领域权威期刊《国际微生物生态学会杂志》。后续两个课题组合作将E. flavus 21-3及其突变株布放到深海冷泉喷口附近进行原位培养,证实该菌株在深海原位环境中也能形成硫单质,相关成果发表在国际生物学期刊《微生物学》,为解释我国南海冷泉喷口广泛分布硫单质的成因提供了重要理论依据。E. flavus 21-3在高氧条件下的三维拉曼成像分析 课题组供图由此可见,微生物是深海硫形成和循环的重要贡献者,其介导的硫代谢的研究对于了解深海硫循环至关重要。然而,由于深海环境极端复杂,采样困难、微生物难于分离培养等因素,以及缺少对硫元素的形成的近实时无损的监测方法,深海微生物的原位探测面临巨大挑战。目前,主要通过经典的生物和化学方法研究硫元素的生成过程,例如X射线吸收近边结构、高效液相色谱、透射电子显微镜、离子色谱法或化学计量法等。但是,这些方法主要通过取样来获知特定时间点的微生物代谢情况,不能在不破坏样品的前提下连续监测其在时间尺度上的代谢过程;并且,其中一些方法样品制备复杂,会破坏细胞的原位真实性;也可能会出现取样不均匀及污染的情况,导致难以实现连续的原位观察。因此,亟需新的方法突破此瓶颈。低氧条件下E. flavus 21-3的三维拉曼成像分析 课题组供图共聚焦显微拉曼三维成像技术拥有低成本、快速、无标签和无破坏性的优势,具有将定性、定量和可视化完美结合的潜力,为我们解决相关问题提供了新的思路。因此,为证明此技术的潜力,研究团队构建了一套固态基底上微生物群落拉曼三维定量原位分析方法,将光学可视化与拉曼定量分析相结合,可在时间和空间两个维度上无损定量表征微生物群落代谢过程。该技术已成功应用到深海冷泉细菌E. flavus 21-3硫代谢过程的原位监测。据介绍,基于拉曼三维成像进行体积计算和比率分析,课题组对不同环境下的菌落生长和代谢进行了量化,发现了生长和代谢方面不为人知的细节,为厘清深海冷泉生物群落中广泛分布的硫单质成因提供了重要技术支持。“据我们所知,这是首次尝试长期监测菌落在固体培养基中生长的原位无损技术。我们能够快速确定代谢产物,推断反应发生的途径,并快速筛选产硫细菌。由于这一成功的应用,不仅证明了该方法在未来对微生物原位过程的可视化及定量分析的潜力,也为研究深海中附着在岩石沉积物等固体表面上的微生物提供了新的思路。”张鑫对《中国科学报》表示。该研究得到了国家自然科学基金、中国科学院A类战略性先导专项、中国科学院海洋大科学研究中心重点部署项目、泰山青年学者计划等项目联合资助。
  • 赛普仪器发布BOD5机器人自动测量分析系统新品
    标准化:符合中国和国际相关标准,5日生化培养+溶解氧电极法测定。自动化设计:机械臂定位,实现自动样品稀释、试剂加注 、自动开盖、自动加盖及加水封和溶氧电极自动测量及清洗等自动功能。智能化:依照国家标准方法,程序自动计算BOD5。样品量:单组54位瓶位,可多组测量。操作简单:HMI交互界面,触摸屏全程操控,也可通过微机软件操控。自动校正:电极自动校正,校正数据自动保存。数据存储:数据实时存储,系统数据及测量数据掉电不丢失。安全:无危险试剂,排出液体无害测量范围:2~6000mg/L电极测量范围:0-20mg/L分辨率:0.01 mg/L重现性:0.1Mg/L(单组)电极校正:智能薄膜校正(IQMC)技术使用过程无需校正自动稀释:提供多通道自动稀释功能。稀释水采用蠕动泵智能自控加注系统,流量1.2L、min接种液采用高精度注射泵自动加注系统,加液范围0-100ml丙烯基硫脲采用高精度注射泵自动加注系统,加液范围0-100ml自动清洗: 管路和溶解氧探头可进行自动定时清洗。样品数:多组重复不限量。单组实现54瓶位样品的测量。模块化样品盘设计:3*6样品瓶/盘。样品容器:标准玻璃培养瓶300ml。盖瓶盖/开瓶盖:由机械臂附加装置自动完成,瓶盖加水封密封。运动模块:全电控模组定位准确,多轴联动,柔性稳定。电源要求:AC220V 50HZ电源功率:350W 外形尺寸:1500*650*650mm环境要求:5~45℃ ,无腐蚀性气体。高灵敏全极霍尔定位自动搅拌功能保持样品溶解氧均匀,也可赶出过饱和溶解氧。溶解氧膜电极具有自动温度补偿、自动盐度补偿和自动气压补偿的功能。测量范围:(0 ~ 20.00)mg/L(ppm) (0 ~ 200.0)%分辨率:0.1/0.01 mg/L(ppm) 1/0.1 %响应时间:≤30 s(25℃, 90%响应)准确度:≤0.1 mg/L温度补偿范围:(0 ~ 45)℃(自动)盐度补偿范围:(0 ~ 45)ppt(自动)气压补偿范围:(80 ~ 105)kPa(自动)创新点:自动化设计:机械臂定位,可按程序设置自动完成稀释接种水加注、营养盐加注、硫脲加注、开取及闭合瓶盖、溶氧自动测量、溶氧电极自动清洗及加水封等自动功能。内置液位自动检测电极。 智能化:依照国家标准方法,用户可自行定义分析流程,程序自动计算BOD5。 产品完全符合 HJ505-2009《水质 五日生化需氧量(BOD5)的测定 稀释与接种》 BOD5机器人自动测量分析系统
  • 安捷伦科技公司推出首款用于代谢通量分析的商品化软件
    安捷伦科技公司推出首款用于代谢通量分析的商品化软件MassHunter VistaFlux 将帮助癌症研究人员更深入地了解代谢通路 2016年 4月18日,北京——安捷伦科技公司(纽约证交所:A)今日推出全新软件以帮助研究人员定性分析代谢流,从而追踪代谢物在不同生物条件下参与的通路。这种分析能力受到希望更充分了解癌症细胞相关代谢通路的研究人员的特别关注。 今天,安捷伦在新奥尔良召开的美国癌症研究协会年会上推出了 VistaFlux。 安捷伦质谱部门副总裁兼总经理 Monty Benefiel 说道:“MassHunter VistaFlux 加快了临床研究数据分析的进度,因此科学家能够快速了解引起癌症等疾病的根本原因。” 利物浦大学 GeneMill 实验室代谢表现研究经理 Simon Thain 博士谈道:“全新 Agilent VistaFlux 将成为我们必不可少的工具,“我已经对VistaFlux 这样的工具期盼了 10 年之久。这款软件使我们的实验室在极短时间内便可完成代谢流项目。” VistaFlux 是同类产品中的第一款商品化软件,是安捷伦代谢组学综合软件套装和 MassHunter MS 软件产品中的最新成员。 使用安捷伦飞行时间和四极杆飞行时间液质联用系统时,研究人员借助 VistaFlux 软件能够更轻松地分析靶向代谢流实验中获得的数据。 Benefiel 说:“VistaFlux 在代谢流分析中实现了前沿的靶向同位素数据提取以及通路可视化,从而获得更深入的生物学阐释。这使多学科研究团队能够快速挖掘并解读他们从靶向定性代谢流实验中收集到的数据。” 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2015 财年,安捷伦的净收入为 40.4 亿美元,全球员工数约为 12000 人。如需了解安捷伦公司的详细信息,请访问www.agilent.com。
  • 赛普推出BOD5自动测量分析系统 三大亮点抢先看
    p   在水质检测中,五日生化需氧量(BOD5)的实验室分析始终是环境实验室的分析难点,存在操作过程繁琐,且分析数据的合格率低等诸多问题。 /p p   近日赛普仪器全新推出BODAutoTM系列自动分析仪,针对以上问题提出自动化、智能化、模块化三大创新改进,实现在提升工作效率的同时,大幅度提升数据合格率。 /p ul class=" list-paddingleft-2" style=" list-style-type: disc " li p    span style=" color: rgb(0, 112, 192) " strong 自动化设计 /strong /span /p /li /ul p   机械臂全自动操作,可按程序设置自动完成稀释水加注、接种液加注、硫脲加注、开取及闭合瓶盖、溶氧自动测量、溶氧电极自动清洗及加水封等功能。 span style=" text-indent: 2em " 内置液位自动检测传感器, /span span style=" text-indent: 2em " 可配置专用生化培养箱实现实验全流程无人值守,并可通过远程查看实验过程及实验数据。 /span /p ul class=" list-paddingleft-2" style=" list-style-type: disc " li p    span style=" color: rgb(0, 112, 192) " strong 智能化 /strong /span /p /li /ul p   依照国家标准方法,用户可自行定义分析流程,程序自动计算BOD5。 /p ul class=" list-paddingleft-2" style=" list-style-type: disc " li p    span style=" color: rgb(0, 112, 192) " strong 模块化样品盘设计 /strong /span /p /li /ul p   每批次可容纳54个BOD瓶子,用户可根据需求增加样品盘及样品瓶数量,分析仪允许用户自定义运行程序和步骤,例如自动样品稀释,自动开取及闭合瓶盖,添加试剂等。 /p p style=" text-indent: 2em " BODAutoTM系列自动分析仪使繁琐的生化需氧量分析简单化,通过智能机械臂协作替代人力的方式,自动化处理繁琐工序,实验人员只需要将样品移入样品瓶中推入系统,即可自动开始检测,大大降低了劳动强度,提高准确率。 /p p script src=" https://p.bokecc.com/player?vid=8E4F8A53BB5D8F8E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-align: center " span style=" color: rgb(63, 63, 63) " strong 现场展示 /strong /span /p p strong 此项方法符合中国环境标准及多项国际标准: /strong /p p  中国环境标准: /p p   HJ 506—2009《水质溶解氧的测定电化学探头法》 /p p   HJ 505—2009《水质五日生化需氧量(BOD5)的测定稀释与接种》 /p p  日本工业标准: /p p   JIS K—0102—32.3 工场排水试验方法BOD的测定 /p p  美国环境标准: /p p   EPA METHOD 405.1 BiochemicalOxygenDemand(BOD) 5Days /p p  国际ISO标准: /p p   ISO 5815—1水质.n日生化需氧量(BODn)的测定。第1部分:加烯丙硫脲的稀释和接种法 /p p   ISO 5815—2水质.n日生化需氧量(BODn)的测定。第2部分:未稀释样品的测定法 /p
  • 复旦大学采购3460万目标代谢组群超灵敏定量检测分析系统
    p & nbsp & nbsp 近日,为更好的开展代谢组学科学研究工作,复旦大学在中国政府采购网发布招标信息,预算3460.0万元采购一批仪器设备。具体信息如下: /p p 项目名称:复旦大学目标代谢组群超灵敏定量检测分析系统等采购国际招标 /p p 项目编号:0705-1840182008AI /p p 项目预算:3460.0万元 br/ /p p 投标截止时间:2018年09月14日 10:30 /p p 开标时间:2018年09月14日 10:30 /p p style=" text-align: left " 采购项目的名称、数量、简要规格描述或项目基本概况介绍: /p table style=" border-collapse:collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 22" valign=" top" 序号 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 126" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 产品名称 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 28" valign=" top" 数量 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 268" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 简要技术规格 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 111" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 预算 /td /tr tr td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 22" valign=" top" 1 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 126" valign=" top" 目标代谢组群超灵敏定量检测分析系统 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 28" valign=" top" 1项 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 268" valign=" top" 含1套“目标代谢组群超灵敏定量检测分析系统” /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 111" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp 165万元 /td /tr tr td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 22" valign=" top" 2 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 126" valign=" top" 挥发性代谢组快筛及精密定量分析系统等 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 28" valign=" top" 1项 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 268" valign=" top" 含1套“挥发性代谢组快筛及精密定量分析系统”、1套“非靶向代谢组全局精密测量系统” /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 111" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp 145万元 /td /tr tr td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 22" valign=" top" 3 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 126" valign=" top" 代谢标志物群超灵敏快速定量分析系统等 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 28" valign=" top" 1项 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 268" valign=" top" 含2套“体液功能代谢组超灵敏精准定量系统”、2套“高覆盖极性中心碳代谢组定量分析系统”、2套“代谢标志物群超灵敏快速定量分析系统”、2套“多代谢途径中所有代谢物同步定量系统”、2套“固醇及类花生酸等特异代谢物群同步定性与定量系统”、 2套辅助设备“质谱用氮气制备辅助系统” /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 111" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp 3150万元 /td /tr /tbody /table p 项目联系方式: /p p 项目联系人:张老师 /p p 项目联系电话:86-21-65641327 /p p br/ /p
  • 许国旺研究员课题组建立一种高覆盖的代谢组和脂质组的定量分析方法
    近日,许国旺研究员课题组在代谢组学定量分析方面取得新进展,建立了适用于代谢组和脂质组交替定量分析的双反相液相色谱-质谱新方法(RPLC/RPLC-MRM-MS),可定量分析超过1,000个代谢物和脂质。代谢组学在精准医疗中发挥着越来越重要的作用。然而,代谢组学在精准医疗研究的应用需要大规模定量数据的支持。目前,仍然缺乏高覆盖度的代谢组靶向定量分析方法。针对上述问题,研究团队首先开发了包含397个代谢物MRM离子对和1,080个脂质MRM离子对的双液相色谱-质谱(RPLC/RPLC-MRM-MS)交替分析方法。然后利用221个标准品定量分析了超过1,000个代谢物和脂质,包括胺、氨基酸、苯衍生物、肽、核酸碱基及其相关物质、胆汁酸、羧酸、脂肪酸、激素、吲哚等代谢物的绝对定量,以及肉碱、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、自由脂肪酸、鞘磷脂、磷脂酰胆碱、磷脂酰乙醇胺和甘油三酯等的半定量。与Biocrates MxP Quant 500试剂盒相比,建立的交替RPLC/RPLC-MRM-MS方法可定量的代谢物数量提高了约1倍。该交替RPLC/RPLC-MRM-MS定量方法为大规模临床样本高覆盖定量数据的获取提供了可靠的分析平台,并将在健康人群代谢物的基准浓度测定中发挥积极的作用。相关研究成果以“Comprehensive Metabolite Quantitative Assay Based on Alternate Metabolomics and Lipidomics Analyses”为题,于近日发表在《分析化学学报》(ANALYTICA CHIMICA ACTA)上。该工作的第一作者是许国旺研究员课题组博士研究生吕王洁,通讯作者为赵欣捷副研究员和许国旺研究员。以上工作得到了国家自然科学基金、大连市重点基金、大连化物所创新基金等项目的资助。(文/图吕王洁)文章链接:https://www.sciencedirect.com/science/article/abs/pii/S0003267022005505
  • UNCW Center for Mari发布珊瑚和其它底栖基质类型原位代谢测量系统 CISME新品
    珊瑚和其它底栖基质类型原位代谢测量系统 CISME CISME便携式潜水呼吸系统用于原位检测珊瑚和其它底栖基质的代谢率。这个名字来源于珊瑚原位代谢,并发音为“kiss-me”,以反映仪器与珊瑚之间的温和互动。 CISME在短时间孵化期间测量氧气通量和pH,其中水流量和光照水平由操作人员控制。从这些浓度变化计算呼吸(R)和光合作用(P)。样品环提供水样,可以滴定总碱度(TA)以测量钙化率(CA)。可以基于O2和CO2通量计算R和P,从中可以计算RQ和PQ。样品环也可用于实验性地引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 n 检测指标l 在原位孵育期间的氧气通量和pH值的变化,其中水流量和光由操作人员控制。根据浓度的变化,计算呼吸速率和光合速率。 l 样品环提供水溶液样品,用于总碱度(TA)滴定,从中计算钙化率。 l 样品环可用于进行实验,其中操作人员引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 n 参数l 测量O2的变化,以1秒的间隔测量pH值。l 泡沫密封容器抵至浅表面的珊瑚,珊瑚礁基质,如草皮,珊瑚藻和沉降块来捕获海水。l 可编程孵化程序(R,P,R + P,P + R,Custom multistep (自定义多步)。l 孵育体积:88ml+16ml样品环。l 可拆卸的样品环容积用于收集孵育的水溶液的子样品或引入添加剂。l 350-1200毫升min-1可变流量 通过泵反馈。l 可变光(PAR):0-2500μmolm-2s-1。l 无需破坏性取样。l 耐水压80米。l 附件:孵化分离生物体的流动室,如大型藻类,小动物 用于沉积物培养的适配器。 在藻类基质上检测n 实例CISME检测了位于波多黎各珊瑚礁:加勒比海珊瑚Orbicella faveolata上的 40个标记菌落的代谢率的季节变化。两个珊瑚礁位于波多黎各。每个珊瑚礁有20个被标记的珊瑚每个珊瑚每季度用CISME测量一次,以寻找新陈代谢的季节性变化模式一年重复检测4次。结果显示夏末R升高,但P没有变化,因此夏末的P / R比率较低。 P,CA和P / R比率≥实验室公布测量值,表明原地条件优于陆基海水系统。 使用可编程功能的CISME生成的P vs I曲线与使用Walz潜水荧光计的快速光曲线相比 原位海水酸化实验n 系统标准组成CISME由一个带有电子装置的浮力丙烯酸耐压外壳组成,通过防水电缆连接到孵化流量传感器头,操作人员将其连接到珊瑚/基质表面以进行孵化。l 一个主控机(包括:专有主板;O2板 适配器 WiFi卡 LED驱动器 编程和储存必要文件的USB 全部采用防水丙烯酸外壳)。 l 一个7200 aH的锂离子电池和充电器以及三个HD泡沫浮子。l 一个完整泵头“(由3D构成,具体包括:pH电极 光纤传感器 循环泵 LED光源 氯丁橡胶泡沫密封;另外还包括:三个牵开器“wings”,三个Cetacea牵开器和八个18毫升样品环 “仿真”环和环状填充物。l 一个粘度杯,用来培养小的独立样品。l 插拔连接器连接主控机与头部的电缆线,连接电池与主控机的电缆线,以及连接CISME与UW平板电脑的WiFi电缆线。 l 备件:二个额外的泡沫密封和胶水,二个额外的Presens点更换件和胶水 光纤维维修工具 备用O形圈。 备用' 仿真' 环和环形填充。 氧气校准套筒。 用于组装的工具和零件包:15 mm扳手,薄的15/22两用扳手,用于pH螺丝钉的长内六角扳手,O形圈镐,用于清洗螺丝钉的内六角扳手,带Molykote 111的洗涤器,额外的O形圈 ,硅胶包,Q-tips, l 许可证:允许使用装有专有的Android软件的平板电脑运行CISME。l 一个定制的潜水箱,用于安装系统。 l 一个运输箱,Seahorse brand品牌或同等产品(客户可以选择黑色,黄色或橙色)。l 一张录有用户手册和教学视频的DVD。n 选配水下平板电脑CISME定制的由Inova设计的SZ-Dive水下容器(HOUSE),抗压深度达 80米;安装了CISME安卓软件的三星Galaxy S2 8“平板电脑。 CISMEHOUSEn 有关的检测图片创新点:原位检测珊瑚和其它底栖基质的代谢率,也可用于实验性地引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 珊瑚和其它底栖基质类型原位代谢测量系统 CISME
  • 359万!山东大学动物能量代谢监测系统采购项目
    项目编号:SDQDHF20220127-H074项目名称:山东大学动物能量代谢监测系统采购项目预算金额:359.0000000 万元(人民币)最高限价(如有):359.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1动物能量代谢监测系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学动物能量代谢监测系统采购项目公开招标公告.pdf
  • 泽析生物发布泽析生物DTS1抑菌圈测量分析仪新品
    一、用途 主要用于水解圈、透明圈、抑菌圈等直径自动测量 二、主要性能技术参数1、成像装置:v 全封闭暗箱,能够消除外环境杂散光干扰 v 三色LED可见光v 上、下光源亮度、开启关闭可自由切换,采用全触摸式调节按钮v 色温自动控制,接近自然光v 1000万像素标清彩色相机v 300万像素高清镜头 8mm 2、软件功能:1) 分类一键测量:v 自动测量:适合边缘清晰、标准圆形抑菌圈轮廓的精确边缘检测v 拟圆填补:根据圆弧确定圆心,模拟整圆v 手动测量:鼠标点击抑菌圈圆弧上三点成圆,适合边缘模糊的抑菌圈2) 辅助统计工具:v 人工修正:鼠标单击可添加或删除抑菌圈轮廓v 标注:可在图片上根据需要标注文字、数字等信息v 自定义标定:根据琼脂高度,用户可进行微调标定v 抑菌圈边缘校正:图片放大后,修正边缘模糊的抑菌圈3) 数据安全与管理:v 多用户登录系统,每个账户形成独立数据,数据长久保存v 统计结果以PDF格式输出,原始数据不可更改v 具备审计追踪功能,操作人员在软件上的每一步操作软件自动记录,以便后续结果数据的追溯v 与CFR 21 第11部分兼容:系统安全,操作控制,文件管理 3、仪器规格与配置v DTS1型抑菌圈测量分析仪主机v Zstream自动抑菌圈测量分析软件v 商务台式电脑 创新点:DTS1抑菌圈测量分析仪由图像采集系统和菌落统计分析软件构成,具有菌落统计、典型菌筛选、菌株特征检测与描述等功能,适用于生物医药、检验检疫、疾病控制、质量监督、环境监测、食品卫生,以及大专院校、研究院所等领域中的微生物菌落分析和科学研究
  • 许国旺负责国家重点研发计划“精准医学研究”专项项目“应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术研发”通过绩效评价验收
    p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 日前,科技部发布了关于 /span span style=" text-align: justify text-indent: 2em " 国家重点研发计划“精准医学研究”重点专项2020年度部分项目综合绩效评价结论公示的通知。 /span /p p style=" text-indent: 2em text-align: justify line-height: 1.5em " 根据《国家重点研发计划项目综合绩效评价工作规范(试行)》等相关文件要求,经过课题绩效评价和项目综合绩效评价等程序,国家重点研发计划“精准医学研究”重点专项已完成2020年度部分项目的综合绩效评价工作。 /p p style=" text-indent: 2em text-align: justify line-height: 1.5em " 其中,中科院大连化学物理研究所生物分子高分辨分离分析及代谢组学研究组(1808组)许国旺研究员负责承担的国家重点研发计划“精准医学研究”专项项目“应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术研发”,顺利通过国家卫生健康委医药卫生科技发展研究中心组织的项目综合绩效评价验收。 /p p style=" text-align: justify line-height: 1.5em "   精准医学是医学科技发展的前沿方向,“精准医学研究”被科技部列为2016年优先启动的重点专项之一。该项目对应的指南方向是“应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术研发”,旨在针对临床样本检测需求,发展代谢组分析的新理论与新策略,创建超灵敏、高覆盖代谢组精密测量与定量的综合分析技术体系,并实现原位无创定量,建立超灵敏代谢物探针库。 /p p style=" text-align: justify line-height: 1.5em "   在项目绩效评价中,专家组认为该项目立足于研发应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术,项目总体进展顺利,达到预期目标和成效;项目管理规范,注重沟通协作与一体化实施,按照规定要求,较好地完成科技报告、数据汇总及档案归档等工作。 /p p style=" text-align: justify line-height: 1.5em "   “应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术研发”项目由中科院大连化学物理研究所牵头承担,华东理工大学、中国科学院昆明植物研究所、上海交通大学附属第六人民医院、中国人民解放军第二军医大学东方肝胆外科医院、清华大学参与共同完成。 /p p style=" text-indent: 2em " br/ /p
  • 科学岛团队开展代谢组学模型动物GC-MS检测分析研究
    近日,中国科学院合肥物质院健康所采用顶空固相微萃取气相色谱质谱(HS-SPME-GC-MS)非靶向分析方法,检测大鼠器官挥发性有机物(VOCs),获得了相关器官代谢VOCs生物信息。研究结果被遴选为正封面文章发表在分析领域TOP期刊Analytical Chemistry上(图1)。探测人体代谢物中的VOCs,有望发展成为体内器官病变无创筛查诊断新技术。然而,正常器官是否有VOCs、不同器官VOCs是否存在差异仍然是亟待探究的问题。为此,本研究系统地开展了大鼠离体器官检测分析研究(图2),采用HP-SPME-GC-MS技术,测量了12种器官组织释放的VOCs,共获得147个色谱峰,基于Mann-Whitney U检验与变化倍数(FC2.0)准则,非靶向分析发现:与其他器官相比,7种器官存在差异性VOCs,并对他们可能的代谢途径以及作为疾病生物标志物的潜力进行了广泛讨论;此外,通过正交偏最小二乘判别分析(OPLS-DA)结合受试者工作特征曲线(ROC)特性,发现肝脏、肾脏、脾脏和盲肠的差异性VOCs可以作为相应器官识别的指纹特征。本研究获得的健康器官组织VOCs图谱可以作为基线,为气体活检或者呼气试验无创筛查诊断、疾病治疗监测与疗效评估等科学研究提供参考。   本文第一作者为健康所2022级博士生刘玥和葛殿龙博士后,通讯作者为储焰南研究员,陆燕副研究员和李盼副研究员。本工作得到了中国科学院合肥物质院院长基金“融合专项”、国家自然科学基金项目等课题的支持。图1 Analytical Chemistry正封面图2 检测分析实验过程示意图
  • 大鼠气管狭窄对能量代谢和呼吸的影响
    -大鼠气管狭窄对能量代谢和呼吸的影响-关键词:塔望科技,动物能量代谢监测系统,全身体积描记系统,阻塞性睡眠呼吸暂停,气道阻塞,导致内分泌类疾病,肥胖症,糖尿病,代谢类疾病,大小鼠能量代谢监测系统...论文摘要阻塞性睡眠呼吸暂停(OSA)病人,经过治疗后,代谢生理健康还是不能恢复。在成功移除大鼠气管阻塞物(OR)后,维持呼吸稳态的同时,伴随有体温调节和能量代谢的异常。本研究比较了气道阻塞(AO)和轻度气道阻塞(mAO)移除后的呼吸稳态与能量代谢。结果显示,移除气管堵塞物后大鼠进食量永久性增加。同时,血清胃饥饿素、下丘脑促生长素受体1a(GHSR1a))和磷酸化Akt比率升高。 其中PI3K/Akt 通路与正常代谢密切相关,该通路异常会导致过度肥胖、胰岛素耐受和II型糖尿病。研究表明,为达到代谢健康状态,阻塞性睡眠呼吸暂停(OSA)患者需要终生注重饮食和内分泌健康。实验计划实验结果图A和B气管直径,对照组C:1.81±0.1mm,气道阻塞组AO:1.04±0.1mm,轻度气道阻塞组mAO:1.19±0.12mm,阻塞物移除组OR:1.87±0.11mm图C气道阻力,AO和mAO组气道阻力分别增加71%和35%。图D呼吸频率。图E潮气量。图F分钟通气量,在室内空气呼吸,AO和mAO组分钟通气量分别增加294%和64%,而OR组与对照组没有明显差别。图G二氧化碳敏感性,AO和mAO组二氧化碳敏感性分别增加59%和25.5%,而OR组与对照组没有明显差别。图A,相对对照组,AO、mAO和OR组的进食量分别增加50.9%、20%和10.7%图B,AO和mAO组白天和黑夜进食量均增加,OR只是在黑夜进食量增加。图C图D图E图F,只有AO组每次进食量增加,进食次数差异均不明显。进食量增加主要是由于每次进食时间延长,再加上夜间“微进餐”(micro meals)图G和图H,AO、mAO和OR组的血清胃饥饿素和GHSR-1a明显增加图I:AO、mAO和OR组的p-AKT/AKT比率分别上升25%、16%和15%图A和D,AO组和mAO组的能量消耗分别增加26.5%和10.2%。图B和C,能量消耗增加与氧气消耗量和二氧化碳产生量增加有关。图E图F和图G,AO组的活动量和体温明显降低。参考文献Yael Segev , Haiat Nujedat1, EdenArazi , Mohammad H.Assadi & ArielTarasiuk.”Changes in energy metabolism and respiration in diferent tracheal narrowing in rats” [J].Scientifc Reports. (2021) 11:19166塔望科技提供的相关仪器方案 大鼠全身体积描记系统可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。动物能量代谢监测系统主要用于实时监测和记录小动物代谢运动相关指标,定性定量测量分析动物行为活动及其与呼吸代谢的相互关系,广泛应用于营养、肥胖、糖尿病、心血管等代谢相关性疾病研究。可选择参数包括能量消耗,食物和水分摄取,取食和饮水模式,空间位置,总的活动量和转轮次数,体重,心率,体温及自动化的行为分析等,所有数据都可同步化储存到计算机内小动物麻醉机吸入式动物气体麻醉机,将挥发性麻醉剂或具有麻醉性的气体,途经动物的呼吸道进入体内产生麻醉效果。其麻醉起效快并且复苏快、深度易控制、动物的发病和死亡率低、已被全球科研工作者和宠物临床医师广泛认可和应用。END
  • 镜头聚焦!更便捷 更安全|纽迈清醒小动物体成分分析仪PRO版新品首发!
    2023年9月6日,第二十届北京分析测试学术报告会暨展览会(BECIA 2023)在中国国际展览中心(顺义馆)隆重开幕。千余位资深专家、723家仪器企业、万余人参会观展,共聚行业盛会!纽迈分析作为一家深耕低场核磁领域20年的国产品牌,已多次参加北京分析测试展,本次展会于E3馆E3076展台展示了多款产品,其中包括MesoMR系列、PQ001系列、MacroMR系列等,其中新品首发的QMR06-060H/090H-PRO清醒小动物体成分分析仪更是吸引了众多观展嘉宾、行业媒体及业界同行的关注。QMR清醒小动物体成分技术在小动物清醒无束缚状态下快速、准确、定量的测量小动物的脂肪、瘦肉及体液含量,无需麻醉,直接进行测试,过程方便简洁,对小鼠或小动物无任何伤害,节约实验成本,可对单只小鼠或小动物进行长期跟踪研究,也通过MRI也可以实时观察体脂分布及沉积情况。通过长时间监测小动物的生理参数,考察各种药物、运动、外界因素及营养对动物体生理指标的影响。清醒小动物体成分分析仪主要用于与代谢有关的脂肪、瘦肉及体液等的成分的定量分析,协助实现药物有效部位(成分)的活性筛选,代谢性疾病的病因、病机等研究。新品PRO版 全新升级只为满足您的需求点击查看新品介绍视频BECIA 2023是全球分析科学与生化技术的博览盛会,汇聚了来自世界各地的专业人士和领军企业,为分享分析检测技术、产品、经验和创新提供了宝贵的机会。纽迈分析作为国产低场核磁领域的佼佼者,借此机会展示了在生命科学、能源岩土、食品农业等领域的创新成就,同时也收获了来自行业及客户的认可和赞誉。在未来的发展中,纽迈分析将继续面向世界前沿、面向市场需求,不断推出更加优质的产品和服务,为推动国产低场磁共振行业的发展做出更大的贡献。
  • SCIEX宣布与IROA公司合作 将共建生物样品代谢物分析系统
    p   2018年2月5日,Sciex宣布它已经与IROA Technologies合作,为生物样品中的代谢物的鉴定和定量提供一个系统。 /p p   根据协议条款,两家公司将共同推广一个结合IROA工作流程的同位素比率异常值分析系统,该系统包括标记生物化学代谢物的相对定量分析,然后进行算法分析 。这是与Sciex的Swath数据独立采集协同工作的下一代代谢组学和TripleTOF系统的工作流程。 /p p   其他条款没有披露。 /p p   “使用可变窗口Swath采集的IROA可以让研究人员从复杂的混合物中采集全面的数据,用于一次注射中的鉴定和定量,然后迅速降低结果的复杂性,加速生物相关代谢物的鉴定”, Sciex战略市场管理总监Mark & nbsp Cafazzo在一份声明中表示。通过与IROA Technologies合作并将IROA工作流程套件添加到Sciex新一代代谢组学解决方案中,我们可以帮助科学家解决他们每天面临的代谢物识别挑战,尤其是针对复杂样品。 /p p strong & nbsp & nbsp & nbsp IROA公司简介: /strong /p p   IROA技术有限责任公司从2010年6月成立的NextGen代谢组学公司发展而来。公司创始人在代谢组学平台,药物开发和生命技术领域拥有开拓性的职业生涯。 尽管质谱平台的发展,持续的代谢组学挑战是对大量数据集的识别和解释。 /p p   IROA方法可消除噪音,分析变异性和离子抑制,从而轻松实现干净,精确,可重现的数据集。 先进的IROA感知算法通过提供对其含义的深入了解,将这些数据集转化为解决方案。 /p p   IROA Technologies的使命是简化客户的代谢组学研究。 公司将继续开发精简生物标志物发现的产品。 /p p & nbsp /p
  • 岛津合作研究:全球首次!开发出准确测量代谢的新技术
    —有助于代谢疾病治疗方法、生物燃料生产微生物开发的新技术—研究成果的重点? 发挥产学相结合优势,在世界上首次开发出准确测量细胞内代谢物的糖磷酸盐的技术。? 代谢中间体糖磷酸盐大多是结构相似的物质,而且存在传统技术无法对其进行分离并准确测量的问题。? 预计有助于代谢疾病的新型治疗方法、生物燃料生产微生物的开发、生物质资源植物的开发等。研究概要大阪大学研究生院情报学研究科的冈桥伸幸副教授、松田史生教授等生物信息计测学讲座研究小组,与(株)岛津制作所、大阪大学?岛津分析创新共同研究讲座※1饭田顺子特聘教授(岛津制作所分析计测事业部 生命科学事业统括部高级经理)的团队,在世界上首次开发出一项准确分析在细胞内代谢物中发挥着重要作用的糖磷酸盐※2的技术。这使得可以更准确地测量代谢流量。人类的每一个细胞都具有新陈代谢※3的功能,分解通过膳食等摄取的糖分,获取生存必需的能量和生长所需的制造新细胞的成分(氨基酸等)。一般认为代谢功能异常与糖尿病和癌症等各种疾病有关,为了阐明其机理,亟需一种准确测量糖降解过程中可能产生的代谢中间体的分析技术。其中,若干种被称为糖磷酸盐的代谢中间体具有相似的结构,即使2000年前后出现的代谢中间体的网罗式测量技术,经过近20年的发展,使用传统技术分离这些中间体非常困难,而且测量的准确性有限。此次,松田教授等人的研究小组利用岛津制作所开发的前沿分析仪器进行产学联合研究,成功开发出一种通过完全分离糖磷酸盐,准确进行分析的方法。将本方法应用于癌细胞时,可以更准确地测量代谢流量。今后,通过将本方法应用于各种细胞、组织等,并对所获得的数据进行分析,预期有助于疾病新治疗方法和药物的研发。另外,由于所有生物都具有代谢功能,因此本技术可应用于生产生物燃料的微生物和固定CO2的生物质植物,有助于环境友好产品制造技术的改进等各项研究的发展。本研究成果于9月2日(日本时间)发表在美国科学期刊《Metabolic Engineering》上。研究背景截至目前,已知构成生物的细胞将葡萄糖等糖摄入细胞内,通过糖酵解系统的代谢途径进行分解,并在此过程中制造能量及成为新细胞成分的前体物质。糖酵解是所有细胞生物的基本功能,近年来表明糖尿病和癌症等各种疾病与糖酵解系统有着密切的关系。而且,为培育生产生物燃料的微生物,正在尝试人工改善糖酵解系统。为了开展这些研究,需要准确测量糖酵解系统中大约15种代谢中间体。但是,糖酵解中间体(糖磷酸盐)大多是结构相似的物质,而且存在传统技术无法对其进行分离并准确测量的问题。生物信息计测学讲座的冈桥副教授、松田教授等人,与(株)岛津制作所和大阪大学?岛津分析创新共同研究讲座开展共同研究,根据(株)岛津制作所拥有的负CI模式气相色谱/质量分析技术※4,开发一种新型分析方法,可以完全分离糖磷酸盐,准确测量其同位素标记率※5。而且,将本方法应用于乳腺癌细胞(MCF7)的分析,成功地测量了代谢流量,准确度比以往提高10倍以上。这是大阪大学的研究成果和(株)岛津制作所的技术成果相结合的产学合作研究成果。本研究成果对社会的影响(本研究成果的意义)根据本研究成果,通过测量各种生物可以获得糖酵解系统更准确的数据。通过对收集的数据进行分析和运用,阐明各种疾病与糖酵解功能之间的关系,有望获得癌症以外疾病的新型治疗方法和药物研发有关知识。而且,通过将本技术应用于微生物和植物,预计有助于生产生物燃料的有用微生物的开飞,固定CO2的植物改良等,环境友好产品制造技术等研究的发展。特别记载事项本研究成果于2018年9月2日(日本时间)发表在美国科学期刊《Metabolic Engineering》(Online)上。标题 :“Sugar phosphate analysis with baseline separation and soft ionization by gas chromatography-negative chemical ionization-mass spectrometry improves flux estimation of bidirectional reactions in cancer cells”作者名称 :Nobuyuki Okahashi, Kousuke Maeda, Shuichi Kawana, Junko Iida, Hiroshi Shimizu,and Fumio Matsuda此外,作为文部科学省新学术领域研究“代谢适应的Trans-Omics分析”的重要一环,本研究的部分研究在与大阪大学研究生院工学研究科福崎英一郎教授的合作下实施的。术语说明※1 大阪大学?岛津分析创新共同研究讲座 成立于2015年4月20日,旨在建立以“生物技术”为核心的环境友好型可持续社会系统。以大阪大学的代谢物组学(总代谢物分析)为核心竞争力,协同岛津制作所致力于解决各种问题。(URL:https://www.shimadzu.co.jp/labcamp/index.html)※2 糖磷酸盐磷酸基团与几乎所有生物拥有的糖相结合的代谢物群的总称。结构类似的物质很多,完全分离很难。※3 代谢所有细胞都通过代谢的一系列化学反应,供给生存所需的能量和蛋白质合成所需的前体物质。如果代谢发生异常,则会导致糖尿病和高脂血症等疾病。※4 负CI模式气相色谱/质量分析技术一种在气相色谱分离技术、质量分析检测技术中组合应用负CI电离技术的测量方法。岛津制作所是日本气相色谱及质量分析仪器的顶级制造商。※5 同位素标记率大阪大学研究生院信息科学研究科正在开发测量代谢流量的技术。向细胞施用碳稳定同位素(与碳的性质相同但质量不同的物质)标记的葡萄糖,通过调查碳的稳定同位素通过糖酵解系统转移到糖磷酸盐的情况,可以测量代谢流量。为了准确地掌握代谢流量,必须将各个糖磷酸盐完全分离,并测量其同位素标记率。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 日程详览|第四届药物研发及分析技术网络会议之【药物代谢专场】
    随着生命科学、分子药物学、材料科学及信息科学的迅猛发展,各学科之间不断交叉渗透,药物制剂的新技术、新工艺、新材料等不断涌现,科学的发展为我们提供了更多更好的技术、方法和手段应用于药物研发分析及质量控制。为帮助制药领域用户快速了解、高效学习药物分析相关技术方法,仪器信息网将于2023年11月21-23日举办第四届“药物研发及分析技术”网络会议,设置药物代谢、生物分析、药品质量控制及安全性研究、药物分析技术新进展等专场,邀请多位业内专家做精彩报告,为广大制药领域从业人员搭建一个即时、高效的交流和学习的平台。11月21日药物代谢专场主持人吴彩胜(厦门大学 实验室与设备管理处副处长/教授)刁星星(中国科学院上海药物研究所 研究员)报告日程9:00-9:35刁星星(中国科学院上海药物研究所 研究员)《从2018-2023年我国上市新药解读》【摘要】放射性药物代谢技术是国际制药行业公认的研究创新药物“物质平衡、组织分布、代谢物鉴定”的“金标准”。美国FDA批准的新药,几乎全部使用放射性标记技术来做药物代谢研究,而我国这一比例在IND阶段很低。此技术的落后,严重制约了我国创新药物的发展。 报告将通过2018-2023年我国上市新药及发表的文献,来解读2023年7月24日发布的《放射性标记人体物质平衡研究技术指导原则(征求意见稿)》。并通过多个国产创新药的实例,阐明放射性同位素标记在新药研发中的重要作用,为新药研发提供全新的思路和解决方案。9:35-10:10顾景凯(吉林大学 药物代谢研究中心主任)《PEG化长循环脂质体的体内命运与相关技术指南解读》【摘要】纳米药物递送系统(NDDS)是与创新药物并驾齐驱的最受瞩目、最具前景的药物发展方向之一,但存在“高投入、低产出”的突出问题。究其主要原因,在于目前缺乏前瞻性的理论指导与有效的分析方法,无法为NDDS的设计与生物效应评价提供最基本的药代动力学数据指导。 本研究突破了阿霉素脂质体在组织水平上的游离与包裹药物定量分析的“卡脖子”问题,并成功揭示了嵌入脂质体中的DSPE-PEG2000 体内命运及PEG-脂质的脱落动力学。 报告还将基于我们以往的研究经验,尝试解读FDA与CDE有关NDDS的药代动力学指南。10:10-10:40张劭阳(赛默飞世尔科技中国有限公司 高级应用支持工程师)《高分辨质谱在ADC抗体药物中的全面表征方案》【摘要】 1、ADC药物分子量及DAR值检测 2、ADC药物肽图分析 3、HCP的鉴别和定量10:40-11:15唐崇壮(苏州锐迪欧医药科技有限公司 总经理)《抗体偶联药物ADC的代谢研究难点、对策和案例分析》【摘要】 ADC药物的代谢研究可以为药效学机制、毒性机理及DDI研究提供关键信息。 在ADC药物发现阶段,选择合适的体外体系,并综合利用非靶标性和靶标性的LC-HRMS方法鉴定ADC在体外释放的载荷及其代谢物,对选择和确认毒理种属和开展代谢物表型研究至关重要。在非临床阶段,放射性标记载荷在动物的ADME结果可以用于预测ADC的载荷在人体的ADME和相关临床DDI。 由于ADC的载荷体内浓度低,代谢物结构难以预测,载荷的体外代谢和体内ADME研究模型和代谢物鉴定方法与小分子代谢有很大的区别,为此锐迪欧建立了支持ADC研发和申报的代谢研究策略和方法,并成功应用到多个ADC研发的项目上。11:15--11:50邹灵龙(康维讯生物技术有限公司 创始人、董事长、CEO)《抗体药的生物分析与药代动力学研究》【摘要】 抗体药是生物药中最主要的品种,FDA迄今批准了一百多款抗体药,包括单抗、双抗、ADC和抗体片段。本报告将介绍常见抗体药的药代动力学简况以及相应的生物分析方法学,包括但不限于适用于临床前研究的通用型检测方法。扫码报名,免费参会解锁更多精彩专场报告时间上午下午11月21日药物代谢生物分析11月22日药品质量控制及安全性研究专场11月23日药物分析技术新进展
  • 2012赛默飞世尔-化工行业流变测量分析技术研讨会邀请函(广州)
    邀 请 函 2012化工行业流变测量分析技术研讨会 &mdash &mdash 流变测量学在油墨涂料以及化妆品方向的研究应用 时间: 2012年5月9日,9:00&mdash 12:00 地点: 华南理工大学化学与化工学院 主题: 流变测量分析技术在化工行业的应用 尊敬的先生/女士: 您好! 由赛默飞世尔科技(中国)有限公司和华南理工大学化学与化工学院共同主办的&ldquo 2012化工行业流变测量分析技术研讨会&rdquo 将于2012年5月9日在广州举行,我们诚挚地邀请您参加本次会议,共同讨论流变测量技术最新进展及其在化学工业中的应用前景。 在本次研讨会中,来自赛默飞世尔科技有限公司的德国专家Dr. Klaus Oldö rp将为大家带来最新的流变测量学在化工行业的分析技术以及应用前景的介绍。 会议日程(5月9日) 8:30-9:00 注册 所有与会者 9:00-9:15 欢迎辞及嘉宾致辞,会议介绍 赛默飞世尔科技, 9:15-10:00 流变测量学在化工行业的分析技术及应用 赛默飞世尔科技,Dr. Klaus Oldö rp,德国 10:00-10:10 休息 所有与会者 10:10-11:00 流变测量学在化工行业的分析技术及应用(续) 赛默飞世尔科技,Dr. Klaus Oldö rp,德国 11:00-11:30 可视流变以及红外流变联用技术的最新进展介绍 赛默飞世尔科技,范永忠 11:30-12:00 会议小结,讨论 所有与会者 注册表Registration Form Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone 电话 Address 地址 The following Colleague will be attending as well: 下列同事将与我一起参加: Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone 电话 Address 地址 Pls let me know about your new products or special offers: 请将贵公司的新产品或提供的其它特殊技术通过下列方式发送给我: via E-mail(电子邮件):_______ via Direct Mail(直接邮寄至):_______‰ Take me off your distribution list (请不要发送给我):________‰ Register via E-mail: moggy.wang@thermofisher.com , Tel: 020-83145171;13926010308;Fax:020-83486621 Linda.xie@thermofisher.com, Tel: 021-68654588-2419 Costs: Seminar fee, lunch and seminar documentation are included. Number of attendees is limited &ndash so register today! 您可以通过下列电子邮件注册: moggy.wang@thermofisher.com , Tel: 020-83145171 Fax:020-83486621 Linda.xie@thermofisher.com,电话:021-68654588-2419 本次会议不收取会务费,坐席有限,请提前报名以便我们为您准备讲义资料。谢谢! 赛默飞世尔科技(中国)有限公司 2012年4月26日 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 和 www.thermofisher.cn (中文)。
  • 2012赛默飞世尔-食品行业流变测量分析技术研讨会(广州)
    邀 请 函 2012食品行业流变测量分析技术研讨会 时间: 2012年5月8日,9:00&mdash 12:00 地点: 华南理工大学食品学院 主题: 流变测量分析技术在食品行业的应用 尊敬的先生/女士: 您好! 由赛默飞世尔科技(中国)有限公司和华南理工大学食品学院共同主办的&ldquo 2012食品行业流变测量分析技术研讨会&rdquo 将于2012年5月8日在广州举行,我们诚挚地邀请您参加本次会议,共同讨论流变测量技术最新进展及其在食品工业中的应用前景。 在本次研讨会中,来自赛默飞世尔科技有限公司的德国专家Dr. Klaus Oldö rp将为大家带来最新的流变测量学在食品行业的分析技术以及应用前景的介绍。 会议日程(5月8日) 8:30-9:00 注册 所有与会者 9:00-9:15 欢迎辞及嘉宾致辞,会议介绍 赛默飞世尔科技,食品学院杨晓泉院长 9:15-10:00 流变测量学在食品行业的分析技术及应用 赛默飞世尔科技,Dr. Klaus Oldö rp,德国 10:00-10:10 休息 所有与会者 10:10-11:00 流变测量学在食品行业的分析技术及应用(续) 赛默飞世尔科技,Dr. Klaus Oldö rp,德国 11:00-11:30 可视流变以及红外流变联用技术的最新进展介绍 赛默飞世尔科技,范永忠 11:30-12:00 会议小结,讨论 所有与会者 注册表Registration Form Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone 电话 Address 地址 The following Colleague will be attending as well: 下列同事将与我一起参加: Name 姓名 Company 公司 Department 部门 Title 职位 Email 电子信箱 Telephone 电话 Address 地址 Pls let me know about your new products or special offers: 请将贵公司的新产品或提供的其它特殊技术通过下列方式发送给我: via E-mail(电子邮件):_______ via Direct Mail(直接邮寄至):_______&permil Take me off your distribution list (请不要发送给我):_______&permil Register via E-mail: moggy.wang@thermofisher.com , Tel: 020-83145171;13926010308;Fax:020-83486621 Linda.xie@thermofisher.com, Tel: 021-68654588-2419 Costs: Seminar fee, lunch and seminar documentation are included. Number of attendees is limited &ndash so register today! 您可以通过下列电子邮件注册: moggy.wang@thermofisher.com , Tel: 020-83145171 Fax:020-83486621 Linda.xie@thermofisher.com,电话:021-68654588-2419 本次会议不收取会务费,坐席有限,请提前报名以便我们为您准备讲义资料。谢谢! 赛默飞世尔科技(中国)有限公司 2012年4月26日 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 和www.thermofisher.cn (中文)。
  • 970万!复旦大学超高分辨蛋白质组测量分析系统和上海体育大学在线前处理/超高效液相色谱-串联四极杆质谱仪采购项目
    一、项目一(一)项目基本情况项目编号:HW2024041702项目名称:复旦大学超高分辨蛋白质组测量分析系统采购项目预算金额:640.000000 万元(人民币)最高限价(如有):636.000000 万元(人民币)采购需求:(二)获取招标文件时间:2024年05月17日 至 2024年05月24日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)方式:凡愿参加投标的合格供应商须在上述规定时间内登录复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取采购文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件,招标文件售价零元。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件需要上传的资料:(本项目不需上传资料)售价:¥0.0 元,本公告包含的招标文件售价总和合同履行期限:2024年7月15日前交付至复旦大学张江校区本项目( 不接受 )联合体投标。(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:复旦大学     地址:上海邯郸路220号        联系方式:由老师021-65641292      2.采购代理机构信息名 称:上海财瑞建设管理有限公司            地 址:上海市延安西路1319号(利星行广场)15楼            联系方式:陈瑜、朱佳、周晨隆、姜诚东021-62261357*5539、17301752962、13918470259、18017330180            3.项目联系方式项目联系人:陈瑜、朱佳、周晨隆、姜诚东电 话:  021-62261357*5539、17301752962、13918470259、18017330180二、项目二(一)项目基本情况项目编号:0811-244DSITC1049项目名称:在线前处理/超高效液相色谱-串联四极杆质谱仪预算编号: 0024-00033201 预算金额(元): 3300000最高限价(元): 3300000 采购需求: 包名称:在线前处理/超高效液相色谱-串联四极杆质谱仪 数量:1 预算金额(元):3300000 简要规格描述或项目基本概况介绍、用途:可以采购进口产品,具体见招标文件第八章“货物需求一览表及技术规格” 合同履约期限: 合同签订之日起至合同内容履行完毕止 本项目不接受联合体投标。(二)获取招标文件时间:2024年05月15日至2024年05月22日,每天上午09:00至11:30,下午13:00至16:30(北京时间,休息日和法定节假日除外)地点:微信公众号“东松投标”方式: 关注微信公众号“东松投标”,完成信息注册,即可购买招标文件 售价(元): 700 (三)对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海体育大学地 址:中国上海市杨浦区长海路399号联系方式:张老师021-655069162.采购代理机构信息名 称:上海东松医疗科技股份有限公司地 址:上海市宁波路1号11楼联系方式:0086-21-63230480转8612、86303.项目联系方式项目联系人:瞿佳枫、戴罗琦电 话:0086-21-63230480转8612、8630
  • 安捷伦科技的超临界流体色谱质谱联用解决方案简化了复杂化合物的高通量分析
    安捷伦科技的超临界流体色谱质谱联用解决方案简化了复杂化合物的高通量分析 2014 年 6 月 16 日,北京 — 安捷伦科技公司(纽约证交所:A) 今日宣布该公司的所有液质联用仪包括软件支持对于超临界流体色谱 (SFC/MS) 的控制。这一增强型功能有助于加快分离速度、降低有机溶剂用量,并实现液相色谱的正交选择。这种硬件-软件高度整合的SFC/MS解决方案,进一步简化了复杂化合物的高通量分析过程,使其成为适合于多种行业的理想产品。 制药、食品科学、脂质组学、代谢组学、环境和石化实验室可使用 SFC/MS 分析一系列的化合物(例如,手性、非手性、极性和非极性化合物),包括复杂基质中高度类似的化合物。SFC与液相色谱质谱的大气压电离源完美兼容,通过与质谱联用,提高了峰的分离能力,使 SFC 的应用范围更广。 “以前安捷伦的LCMS产品 6400 系列 QQQ 和 6200/6500 TOF/Q-TOF与SFC联用时需要使用两个软件平台,”安捷伦的 LC/MS 产品市场部总监 Lester Taylor 说道,“现在安捷伦 MassHunter 软件能完美控制 Agilent 1260 Infinity 分析型 SFC 系统。使用这个单一软件平台将仪器控制、数据采集和分析过程集于一身,将使我们的客户收益。” 除了分析型 SFC 系统,安捷伦还是唯一可提供混合型 SFC/UHPLC系统的公司,该系统可在两种模式间进行无缝转换,使方法开发变得更加快速简单。SFC 和 SFC/UHPLC 系统均可与安捷伦液质联用。 现在,SFC/MS 的集成软件为方法开发和日常分析提供了可靠的仪器控制。仅使用有限的有机溶剂,SFC/MS 即可对用液相色谱方法难以分离的化合物进行快速高效的分离。 更多信息,请访问安捷伦的在线资源,了解扩展的液相色谱系统工作流程解决方案。您还可以访问安捷伦的 2014 ASMS 媒体资料包以获取更多产品相关信息,并了解安捷伦公司的 ASMS 会议活动安排。关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 空间代谢组学:单细胞空间代谢流分析新方法
    空间代谢组学:单细胞空间代谢流分析新方法原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘甜生物体内的代谢物和脂质不仅是细胞的关键组成模块,它们在信号传导、表观基因组调控、免疫、炎症和癌症发展中同样具有重要作用和意义。代谢组学分析是我们了解、评估生物体、器官和细胞状态的重要方式。而单细胞技术通过展示组织内部甚至单克隆细胞之间的细胞异质性,将生物学研究推进至新维度。质谱成像(MSI)技术可以从样品中创建特定化合物的图像,这些图像是由样品表面获得的数千个质谱生成的。每个记录的质谱都会为图像贡献一个像素,而每个质谱中的峰都可以生成一个图像。与其他成像方法相比,MSI无需化合物标记,可实现非靶向分析。本次与大家分享的是一篇最新发表于bioRxiv上的有关单细胞空间代谢流分析方法的文章[1]。研究人员基于AP-SMALDI Orbitrap平台开发了一种命名为“13C-SpaceM”的新方法,通过13C标记的葡萄糖示踪葡萄糖依赖性脂肪酸从头合成途径(glucose-dependent de novo lipogenesis)。本方法应用超高分辨率的基质辅助激光解吸/电离实现了单细胞质谱成像,并通过全离子碎裂模式(AIF)模拟了脂肪酸分析前处理过程中的皂化反应,对包括甘油磷脂在内的主要脂质中的脂肪酸部分实现了共同分析。超高灵敏度、高分辨质谱检测器为单细胞内脂肪酸同位素检测提供了准确的定性、定量结果。研究人员通过鼠肝癌细胞的常氧-低氧模型,对检测方法进行了验证,确认方法的有效性。之后应用本方法分别检测了ATP柠檬酸裂解酶基因敲降(ACLY knockdown)鼠肝癌细胞以及携带异柠檬酸脱氢酶(IDH)突变的小鼠胶质瘤脑组织切片,通过比较脂肪酸的同位素丰度变化评估脂肪酸从头合成比例以及外源性脂肪酸摄取的变化。分析结果揭示了在脂肪酸从头合成过程中,乙酰辅酶A池(Acetyl-CoA pool)中存在大量的空间异质性,这表明在微环境适应过程中发生了代谢重编程。01研究背景脂质在生物体生命过程中承担着多种重要作用,多数脂质是由脂肪酸合成而来。成年哺乳动物体内的细胞通常由血液中摄取脂肪酸,而脂肪、肝脏以及癌细胞还可以Acetyl-CoA为底物,从头合成脂肪酸[2]。Acetyl-CoA经过一系列代谢反应,可以生成含有16个碳的饱和脂肪酸棕榈酸(16:0),之后棕榈酸发生碳链延长或去饱和反应生成不同的饱和、不饱和脂肪酸,从而影响脂质组成。而Acetyl-CoA同样有多种来源,除了葡萄糖经由TCA循环生成的柠檬酸在ACLY作用下生成Acetyl-CoA以外,在缺氧环境下,葡萄糖后续代谢产物丙酮酸会转化为乳酸,从而无法合成Acetyl-CoA、进入脂肪酸合成途径。在此情况下,谷氨酰胺可通过还原羧化反应生成柠檬酸,进而合成Acetyl-CoA [3,4] 。另有文献报道,缺氧环境下的癌细胞还可以将乙酸作为脂肪酸合成的前体 [5,6] 。而Acetyl-CoA除了作为脂肪酸合成底物以外,对于蛋白翻译后修饰、基因表达等均有重要作用。通过监控脂肪酸合成和Acetyl-CoA代谢间的互动可以帮助我们深入理解癌细胞的生存状态。02分析方法大气压MALDI成像分析是通过AP-SMALDI5离子源配合Q Exactive plus高分辨质谱仪实现的。激光像素设置为 10×10 µ m,激光衰减器角度设置为33°。质谱在负离子模式下采用一级全扫描和全离子碎裂(AIF)扫描模式。AIF模式的隔离范围为 m/z 600-1000,扫描范围为m/z 100-400,分辨率 140k,最大注入时间500 ms,碰撞能量NC 25%。(图1)图1. 单细胞代谢流质谱成像分析流程(点击查看大图)MALDI分析前后,分别应用显微镜检测,确定细胞影像位置及MALDI消融标记位置。通过检测MALDI的消融标记,将其与细胞影像叠加,并通过应用数学公式进行解卷积,从而整合显微镜图像和MALDI图像。实现了应用MALDI成像质谱检测到的单细胞分子轮廓。(图2)图2. 整合显微镜和MALDI-MS分析结果实现单细胞质谱成像(点击查看大图)03鼠肝癌细胞常氧-低氧模型单细胞成像分析鼠肝癌细胞在添加25 mM的12C-葡萄糖或U-13C-葡萄糖后,用含1mM醋酸、2 mM谷氨酰胺和10%透析胎牛血清的无葡萄糖DMEM细胞培养基培养,在37°C、5% CO2的培养箱中在常氧(20% O2)或低氧(0.5% O2)条件下培养72小时。选择72小时的时间点是为了确保棕榈酸的同位素标记已经达到稳态。(图3)在低氧条件下培养的细胞被表达绿色荧光蛋白(GFP)标记。在共培养实验中,常氧和低氧细胞使用胰酶分离,每种条件下混合10000个细胞,在同一张玻璃片上进行培养,并在固定之前允许其附着3小时。图3. 由稳定同位素标记的13C6-葡萄糖生成细胞质Acetyl-CoA以及后续的脂肪酸和脂质合成途径(点击查看大图)通过质谱一级全扫描分析,质谱成像共检测到64种脂质,包括磷脂酸(PA)、磷脂酰肌醇(PI)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)等。具体脂质鉴定结果经过了常规LCMS脂质分析确认。在AIF模式下,检测到了11种含量最高的脂肪酸,相应检测结果同样与常规LCMS分析结果相符。为了验证本方法,研究人员检测了常氧-低氧培养的鼠肝癌细胞混合样本。通过对氨基酸同位素峰的定量分析,发现13C标记的棕榈酸(M0)主要在正常细胞中检出,而缺氧细胞中的棕榈酸以未标记状态(M+0)为主。通过GFP标记结果的对照,证明了本方法可以通过同位素峰分布有效识别不同培养状态的细胞。图4. 在常氧(GFP阴性)和低氧(GFP阳性)条件下的原代鼠肝癌细胞共培养模型的显微镜和质谱成像结果(点击查看大图)图5. 通过GFP标记验证识别不同培养模式细胞的准确性(点击查看大图)04单细胞Acetyl-CoA池标记水平分析研究人员使用了两种表达不重叠的shRNA序列(ACLYkd oligo1和ACLYkd oligo 2)细胞系以及一个对照组细胞系。通过使用1 μg/mL的四环素处理细胞72小时实现了ACLY沉默。质谱成像数据是以10 μm的像素大小获得的,每个细胞的平均面积为550μm2,平均每个细胞有12个像素。通过应用二项式模型计算每个细胞的acetyl-CoA池标记程度p值,从而量化细胞质中acetyl-CoA池中从葡萄糖衍生的同位素标记acetyl-CoA的比例。测试结果与预期相符,ACLYkd细胞中的acetyl-CoA池标记水平低于对照组。值得注意的是,两种ACLYkd细胞之间的差异非常明显。ACLYkd oligo1的结果呈双峰分布,p值的差异明显较大,表明该细胞系存在两个亚群体。其中一个模式显示的p值与对照组相近,说明存在一个“沉默失败”的细胞亚群。ACLYkd oligo1第二个模式具有的p值明显则低于ACLYkd oligo 2,表明ACLYkd oligo 1中还存在一个“强沉默”的亚群,在这些细胞中,沉默效率非常高,导致acetyl-CoA同位素标记比例大幅降低。在ACLYkd oligo 2中,acetyl-CoA池的标记程度以及GFP报告基因强度显示出更均一的分布。M+2峰是最能表现出ACLYkd oligo1细胞中“强沉默”群体的低acetyl-CoA标记表型的质谱峰。M+8峰则为对照组细胞的特征标记峰。M+2和M+8之间的差异可以作为显示异质性的指标,用于展示葡萄糖对细胞质中acetyl-CoA的相对贡献。因此,13C-SpaceM能够检测ACLY敲降细胞中的异质性,并识别不同的亚群体。这种单细胞和空间异质性无法通过整体分析揭示,显示了13C-SpaceM方法的独特优势。图6. 细胞ACLY敲降后acetyl-CoA的同位素标记程度分析(点击查看大图)05肿瘤组学中氨基酸合成异质性的空间组学分析研究人员分析了从横向植入表达突变型异柠檬酸脱氢酶(IDH)和红色荧光蛋白(RFP)的GL261胶质瘤细胞的小鼠大脑组织切片。在采集组织前的48小时,小鼠被喂食未标记的或含有U-13C葡萄糖的液体饮食。首先,研究人员分析了12C-葡萄糖饮食的肿瘤携带小鼠大脑切片中的酯化脂肪酸组成。通过比较质谱TIC与显微镜明场和荧光成像,发现整个大脑(包括肿瘤区域)的质谱离子响应很高(图7a)。测试过程中,肿瘤区域与组织切片的其余部分分别采用10μm和50μm激光分辨率进行分析。对不同脂肪酸的空间分析揭示了在非肿瘤携带的脑半球组织中,脂肪酸丰度存在高度的异质性,我们可以仅根据它们的脂肪酸组成来识别的某些结构,如胼胝体和前连合部,这两个区域都富含油酸(18:1)且棕榈酸(16:0)、硬脂酸(18:0)和花生四烯酸(20:4)的含量低。有趣的是,尽管棕榈酸、油酸、硬脂酸和花生四烯酸在肿瘤和周围的大脑组织中的含量相似,肉豆蔻酸(14:0)和棕榈酸(16:1)在肿瘤组织中则明显增加。与大脑其它部分相比,肿瘤中必需脂肪酸亚麻油酸(18:2)和α/γ亚麻酸(18:3)也明显增高。之后,研究人员分析了喂食含有U-13C葡萄糖饮食的小鼠肿瘤组织,从肿瘤组织中选择性分离出的5种主要从头合成的脂肪酸的同位素分布(图7c)。三种饱和脂肪酸肉豆蔻酸(14:0)、棕榈酸(16:0)和硬脂酸(18:0)的13C摄入丰度较高,同位素分布最大分别可至M+10,M+12和M+14。其中,肉豆蔻酸M+0的强度极低,几乎完全源自脂肪酸从头合成。由于肉豆蔻酸对一些重要信号蛋白的翻译后修饰很重要,这一发现表明胶质瘤可能选择性地上调肉豆蔻酸的合成以促进自身生长。相比之下,两种单不饱和脂肪酸,棕榈酸(16:1)和油酸(18:1)的M+0同位素的相对丰度较高。硬脂酸和油酸的M+2同位素丰度明显增加,表明它们是由未标记的前体(即棕榈酸和棕榈酸)延长形成的。研究人员进一步利用棕榈酸的同位素分布计算acetyl-CoA池中源自葡萄糖的比例,发现肿瘤组织内的该比例同样具有显著的空间异质性(图7d)。图7. 小鼠脑胶质瘤组织内部脂肪酸代谢空间异质性分析(点击查看大图)总结本文作者开发了一种全新的单细胞代谢流成像检测方法,将超高激光分辨率的大气压MALDI与高分辨率、高灵敏度的质谱检测器相结合,对细胞和肿瘤组织内的葡萄糖依赖性脂肪酸从头合成途径实现单细胞层面的空间分析。不仅为单细胞水平空间探测代谢活动提供了新的方法,还为正常和癌症组织中的脂肪酸摄取、合成和修饰分析提供了前所未有的视角。参考文献:1. Buglakova E, Ekelö f M, Schwaiger-Haber M, et al. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Preprint. bioRxiv. 2024 2023.08.18.553810. Published 2024 Feb 28. doi:10.1101/2023.08.18.5538102. Rö hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016 16(11):732-749. doi:10.1038/nrc.2016.893. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011 481(7381):380-384. Published 2011 Nov 20. doi:10.1038/nature106024. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011 108(49):19611-19616. doi:10.1073/pnas.11177731085. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 2:23. Published 2014 Dec 11. doi:10.1186/2049-3002-2-236. Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015 27(1):57-71. doi:10.1016/j.ccell.2014.12.002如需合作转载本文,请文末留言。
  • “结合软测量技术的汽油质量指标近红外在线分析系统”课题通过验
    由浙江大学承担的“结合软测量技术的汽油质量指标近红外(NIR)在线分析系统”通过863计划现代集成制造系统技术主题专家组组织的验收。 为有效地解决炼油过程中汽油成品或组份油的质量检测问题,该课题基于NIR光谱分析数据,将小波变换与光谱归一化技术应用于光谱数据的预处理中,减少了荧光背景干扰和高频噪声对分析精度的影响,提高了光谱数据的信噪比。针对目前NIR光谱定量分析中常用的偏最小二乘算法的局限性,把支持向量计算法应用于NIR光谱的非线性定量分析,显著地提高了分析精度。研究人员还提出了一种基于NIR光谱的汽油牌号快速识别方法,通过主元分析提取汽油NIR光谱的主元信息,应用相似分类算法建立了不同汽油牌号汽油样本的分类模型,再利用这些模型实现对未知汽油样本有效的快速分类。 在上述研究成果的基础上,课题组开发研制了新一代实验室用低成本汽油质量指标快速测定仪,并已成功应用于中国石化集团杭州炼油厂、清江炼油厂等单位,受到了用户的好评。同时,还开发研制了在线自清洗NIR光纤探头与相应的自动采样系统,提高了在线分析系统的连续运行能力,并成功研制了汽油质量指标在线NIR分析仪样机系统。该样机已成功地应用于中国石化上海高桥分公司炼油企业部连续重整装置。
  • 清华大学药学院胡泽平:代谢组学与代谢流分析技术
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 代谢是生理的基础。近年的研究证明,绝大多数人类疾病,如癌症、糖尿病和心血管疾病等都与代谢异常相关。因此,针对疾病的代谢水平上的分子机制研究已成为基础生物、转化医学研究和药物研发的焦点之一,而代谢组学和代谢流分析是代谢研究重要技术手段。 br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 今天介绍的这位专家是清华大学药学院的胡泽平,其 span style=" text-indent: 2em " 课题组的主要研究方向是以先进的生物质谱为平台,发展高效、精准的新型代谢组学和代谢流分析技术;揭示生理、疾病及药物耐药性的代谢分子机制与功能;针对疾病及药物耐药性的代谢漏洞,设计新型药物治疗靶标和治疗方案;并以功能性生物标志物和药物代谢组学促进药物研发、实现精准治疗。以下内容整理自网络资源,以飨读者。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c22bd31-db8f-4927-a06a-643abb6f2757.jpg" title=" 胡.jpg" alt=" 胡.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 清华大学药学院 胡泽平研究员 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/bcc4f1f2-3e98-495b-ba32-e7fce58b1e48.jpg" title=" 胡2.png" alt=" 胡2.png" / /p p style=" text-indent: 2em line-height: 1.75em " strong style=" text-align: justify text-indent: 2em " Q:代谢组能让我们全面理解一个生物系统,它能为研究者提供许多功能性信息。请您介绍一下,目前代谢组学主要研究手段有哪些?该领域目前的研究及临床应用情况如何? /strong /p p style=" line-height: 1.75em "   胡泽平:代谢是生物体进行生命活动的基础,代谢紊乱已被证明与糖尿病、肿瘤、炎症等诸多疾病密切相关。代谢组学是代谢研究的重要技术手段之一。 /p p style=" line-height: 1.75em "   从研究目的和方法的角度看,通常可将代谢组学分为非靶向代谢组学和靶向代谢组学两种类型。非靶向代谢组学致力于尽可能全面地对生物体系中的所有内源性小分子代谢物进行系统分析,而靶向代谢组学则更侧重于针对科研人员所感兴趣的一组特定的代谢物进行分析。此外,近年来,结合非靶向和靶向两种方法优势的“拟靶向”代谢组学方法也得到一定程度的发展。分析手段方面,代谢组学主要采用液相色谱-质谱联用(LC-MS)、气相色谱-质谱联用(GC-MS)、核磁共振(NMR)等分析平台,其中最为常用的是LC-MS平台。 /p p style=" line-height: 1.75em "   随着近年来人们越来越多的认识到代谢研究的重要性,代谢组学在生命科学和医药研究中也得到更为广泛的应用,包括细胞代谢调控、代谢新通路、疾病代谢机制、药物新靶标发现与确证、药物药效及毒性评价、疾病诊断或预后生物标志物、药物代谢组学、精准用药等领域。 /p p style=" line-height: 1.75em "    strong Q:我们看到目前代谢组学在促进药物研发、实现精准治疗的过程中,越来越受到重视,与其它研究方法相比,它的优势有哪些?还有哪些需要克服的困难? /strong /p p style=" line-height: 1.75em "   胡泽平:代谢物处于生物系统中生化活动的终端,因此反映的是已经发生的生物学事件。此外,基因表达和环境因素的变化对生物系统所产生的影响都可在代谢物水平上得到最终的表型体现。因此,与其他组学相比,以小分子(通常指分子量& lt 1000)代谢物为主要研究对象的代谢组学能够更为准确地反映生物体的终端和整体信息。通过代谢组学分析,可以深入理解相关的代谢异常。 /p p style=" line-height: 1.75em "   尽管代谢组学在上述的研究领域取得了广泛应用,其自身的发展仍然存在一些需要解决的问题。由于代谢物种类多样且浓度差异大,代谢物的分析仍然存在多方面的挑战,如基质效应、离子化抑制、代谢物的鉴定等。与其他组学特别是已经很大程度上实现了标准化的基因组学和转录组学相比,代谢组学的应用受到了不同实验室间差异性的阻碍,涉及大样本量如临床样本的代谢组学研究更需要高度可重复的可靠代谢组学分析方法,因此亟需进一步推进代谢组学的方法学标准化,包括从样品采集、制备和处理到数据的分析和解释的整个过程,从而在各实验室之间实现更为一致和可重复的代谢组学研究,以更高的准确度和精确度检测代谢表型的微妙差异。此外,检测和鉴定更多低丰度代谢物以实现更广泛的代谢组覆盖是代谢组学的另一项技术挑战。如干细胞代谢、肿瘤代谢异质性、发育代谢、免疫代谢等很多代谢研究中的可及样本量通常极少,需要超高灵敏度的方法来实现准确分析。另外,多组学数据整合正成为代谢研究的重大需求和技术瓶颈,需要开发新的生物信息学工具,将代谢组学与其他组学(基因组学、转录组学和蛋白质组学)相结合,并对多组学数据进行数据整合和预测建模,以加速大数据的多组学研究。 /p p style=" line-height: 1.75em "    strong Q:通过生物质谱发展超灵敏度的新型痕量代谢组学和代谢流分析技术是您的课题组研究方向之一,请您介绍下,为什么要发展超灵敏的痕量代谢组学方法?什么是代谢流分析?它的具体作用是什么? /strong /p p style=" line-height: 1.75em "   胡泽平:如前面提到的,如干细胞代谢、肿瘤代谢异质性、发育代谢、免疫代谢等很多代谢研究中的可及样本量通常很少,需要超灵敏的方法来实现准确分析。这将为深入理解干细胞、疾病、发育和免疫细胞的代谢分子机制提供必需的技术支持,同时也将为捕捉早期肿瘤病人血液中细微的代谢变化、检测和鉴定更多低丰度代谢物以实现更广泛的代谢物覆盖、及发现早期诊断生物标志物提供技术基础。我们前期发展的基于三重四级杆质谱的超灵敏靶向代谢组学技术率先使在5,000-10,000个分离自小鼠的造血干细胞中进行代谢组学分析成为可能,并由此取得重要生物学发现,这充分证明了超灵敏痕量代谢组学技术的重要性。 /p p style=" line-height: 1.75em "   虽然代谢组学是研究代谢的重要技术手段,但由于代谢网络是复杂并且动态变化的,而代谢组学仅能提供静态的代谢物丰度信息,因此仍存在局限性。代谢流分析技术则可以很好地弥补这一局限。代谢流分析技术利用稳定同位素标记特定的化合物,通过分析下游代谢产物的稳定同位素标记模式,推算出该化合物在在细胞内代谢通路中的周转速率、方向和分布规律 通过对不同状态的生物体进行代谢流分析,即可得到生物体特定代谢通路的活跃程度,从而在动态水平上描述细胞的代谢活性。结合代谢组学和代谢流分析技术,可以更好地理解细胞内代谢网络的代谢物水平变化、流量分布和周转速率,发掘主要代谢异常通路及其生物学功能,并揭示其上下游相互调控机制。这可为理解疾病发生机制、药物靶点发现与确证等提供强有力的科学依据。代谢流分析已经广泛应用于代谢相关疾病如糖尿病、癌症、免疫、神经退行性疾病等的发病机制研究中。 /p p style=" line-height: 1.75em "    strong Q:我们了解到,您在2016年12月加入了清华大学药学院并建立了代谢组学与疾病代谢课题组。您认为您课题组的主要特色是什么?到目前为止,课题组进展怎样?已经取得哪些重要成果? /strong /p p style=" line-height: 1.75em "   胡泽平:我们课题组多年来致力于疾病的代谢机制研究与药物新靶标的发现与确证,重点专注于以发现和确证药物新靶标为导向,通过发展新型痕量代谢组分析(包括代谢组学和代谢流)技术,揭示生理、疾病、或耐药性的代谢异常新通路并深入阐释其分子新机制,来发现和确证新型药物靶标,逐步形成了“发展新技术、揭示新机制、鉴定新靶标”的主要研究特色。具体来说为: /p p style=" line-height: 1.75em "   发展并验证基于色谱-质谱联用技术(LC-MS和GC-MS)的超灵敏痕量代谢组学方法,用于分析痕量样本(尤其是干细胞、发育)中的代谢物变化规律 发展基于稳定同位素示踪的代谢流分析技术,用于分析代谢异常通路的动态周转速率与方向 /p p style=" line-height: 1.75em "   以所发展的代谢组学和代谢流分析技术,结合转录组学、生物信息学和分子 / 细胞生物学等方法,发掘与生理(干细胞、发育)、疾病(癌症、感染性疾病、心肌肥大)或药物耐药性相关的代谢重编程通路及其关键代谢酶,揭示其相应的功能与分子调控机制 /p p style=" line-height: 1.75em "   基于上述功能和机制研究,发现与疾病、耐药性相关的代谢漏洞(代谢脆弱性),确证其作为新药、克服耐药的新型分子靶标的可行性,进而用于新药研发或联合用药 发掘相应的生物标志物,用于指导临床精准用药。 /p p style=" line-height: 1.75em "   我们课题组目前已经发展了一系列基于色谱-质谱平台的代谢组学(靶向和非靶向)和代谢流分析技术方法。其中包括一种前面所提及的超灵敏的痕量靶向代谢组学方法,可在极少量(~5,000)细胞中进行代谢组学研究,并应用该方法与合作者揭示了造血干细胞异于其他造血细胞群的代谢特征及其生物学意义。此外,我们以所创建的代谢组学和代谢流分析方法为基础,进行了多项疾病代谢机制的合作研究,包括阐释了癌症细胞中新的代谢通路 非小细胞肺癌的发病、恶性黑色素瘤的转移、以及造血干细胞的代谢重编程及其分子机理,为深入理解癌症发病或转移机制,并发现新型治疗靶标提供了分子基础。 /p p style=" line-height: 1.75em "   在2016年12月回国以来的工作中,我们:1. 率先揭示了ASCL1低表达的小细胞肺癌(SCLC)亚型依赖于次黄嘌呤脱氢酶(IMPDH)介导的嘌呤从头合成的代谢机制,确证了IMPDH可作为该亚型SCLC治疗的药物新靶标,并发现了特异性靶向IMPDH的新药咪唑立宾,突破了数十年来SCLC治疗缺乏有效靶向治疗药物的瓶颈(Cell Metabolism, 2018) 2. 率先揭示了“发热伴血小板减少综合症”(Severe fever with thrombocytopenia syndrome, SFTS)病毒感染后引发精氨酸代谢异常,继而导致血小板减少和T细胞免疫功能抑制的潜在致病机制 并在临床试验中确证了“精氨酸补充疗法”可以促进患者恢复,为治疗这一致死率高达10-30%的病毒性传染病、降低病死率提供了重要的新理论和新策略(Science Translational Medicine, 2018)。另外,我们在非小细胞肺癌对EGFR TKI的耐药性、心肌肥大的代谢机制等研究中也取得了一些进展,目前相关工作正在顺利开展中。 /p p style=" line-height: 1.75em "    strong Q:在许多代谢过程中代谢产物的动态变化范围存在个体差异问题,且易受到饮食、环境、年龄等各种因素影响,所以代谢物作为生物标记物存在一定局限性。在高噪音背景下检测出代谢组生物标记物有一定难度。您在研究过程中是否遇到过类似情况?针对这一问题,研究人员有何对策? /strong /p p style=" line-height: 1.75em "   胡泽平:作为精准医学的“关键词”之一,生物标志物的发现已经成为当前医学领域的研究热点之一。包括代谢组学等在内的组学技术的快速发展为发现生物标志物带来了更大的可能性。如前所述,代谢物是存在于信号通路的终端产物,因此代谢组学所提供的信息与表型更为接近,更适于疾病分型和标志物发现的研究。但是在实际研究尤其是在人体研究中,不同代谢物的水平本身相差悬殊,并且容易受到年龄、性别、饮食、是否用药等其他因素的干扰。此外代谢组学常用的技术手段如质谱检测也容易受到其他杂质的干扰,表现为强烈的背景噪声,而且不同的检测和分析体系,有不同的噪音模式。因此,基于代谢组学的生物标志物发现需特别注意排除artificial的因素影响,而这一直以来都是相关研究的挑战和难题。从代谢组学分析技术层面来说,可通过利用高特异性、高灵敏度的平台,如液相色谱-串联质谱(LC-MS/MS)和高分辨质谱等,并采用严格的质量控制,来对包括低丰度次生代谢物在内的尽可能多的代谢物进行全覆盖分析,并进行可靠的代谢物鉴定。从生物学角度来说,单独某一种代谢物的升高,既可能是因为合成途径的增强,也可能是由于消耗途径的抑制。因此可通过分析代谢通路上、下游代谢产物来寻找一组(而不是单一的)相关性生物标记物 尤其重要的是,针对相关性生物标记物进行进一步的生物学功能和机制验证,从而实现“功能性生物标志物”的发现,将对疾病的准确诊断或预后发挥更为重要的意义。 /p p style=" line-height: 1.75em "    strong Q:您在清华大学药学院开展代谢组学分析技术和疾病代谢研究,您认为代谢组学分析技术在药物研发中所起的作用是什么?将来还可以应用在哪些方面? /strong /p p style=" line-height: 1.75em "   胡泽平:多年来的研究证实,代谢在疾病的发生、发展中起着重要作用。代谢组学研究生物体在受到病理生理刺激或遗传修饰后(包括基因或环境的改变),其内源性代谢产物的种类及数量变化,因此所有对生物体系有影响的因素均可反映在代谢组中。利用代谢组学技术对代谢组的静态和动态进行分析,可以帮助我们理解代谢异常的生物学变化过程,在疾病的病理机制、治疗靶点的发现和验证、药物的作用及毒性研究中发挥着重要作用。 /p p style=" line-height: 1.75em "   近年来,代谢组学在理解疾病(如肿瘤)的病理机制,以及药物的作用、毒性、耐药机制研究中的作用已经受到广泛关注。因此,代谢组学在新药靶标发现与确证,以及克服耐药性的研究,以及相应的药物研发中将发挥越来越重要的作用。此外,药物代谢组学在指导临床精准用药中也将扮演更令人鼓舞的角色。 /p p style=" line-height: 1.75em " br/ /p p style=" text-align: justify text-indent: 0em line-height: 1.75em "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 胡泽平课题组研究方向: /span /p p style=" text-align: justify text-indent: 0em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   基于色谱-质谱联用平台的新型代谢组学(靶向、非靶向)和代谢流分析(metabolic flux analysis)技术开发:创建和验证基于色谱-质谱联用平台(LC/MS和GC/MS)的高灵敏度、高特异性、高通量的代谢组学技术,用于分析和发现生物样本的代谢组特征与异常 创建稳定同位素示踪的代谢流分析技术,用于测量分析代谢异常相关通路的动态周转速率和方向。两者作为代谢水平上分子机制研究的互补有力工具。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 生理(干细胞、发育)、疾病(癌症、肥厚型心肌病、感染性疾病)、抗癌药物耐药性的代谢分子机制与功能:利用代谢组学和代谢流分析,结合转录组学、生物信息学和细胞、分子生物学等技术,发掘与疾病、干细胞或药物耐药性相关的代谢重编程与异常代谢通路,理解其功能与分子调控机制 并针对其代谢脆弱性发现新型药物或联合用药的分子靶标,用于新药研发、疾病分子分型和精准治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 基于分子机制的功能性生物标志物研究:基于代谢组学筛选和代谢分子机制研究,发现并验证高灵敏度和高特异性的功能性生物标志物,用于癌症早期检测或药物疗效预测 并对患者进行分层,以不同治疗方案实现精准治疗。 /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 0em " 药物代谢组学(pharmaco-metabolomics)与精准治疗:以药物代谢组学分析用药患者代谢表型的个体差异及其与药物应答(药效和毒性)及药代的相关性,并揭示其分子机制,以指导临床用药、促进药物研发、实行精准治疗。 /span /p p style=" line-height: 1.75em " br/ /p
  • CINOGY光束质量分析仪—角度响应校准:应用于大角度发散角的激光光束测量
    Cinogy光束质量分析仪—角度响应校准:应用于大角度发散角的激光光束测量1.1 应用范围有不同种类的应用需要考虑角度响应。这些应用大多使用(非常)发散的光束。在这种情况下,我们在一幅图像中有连续的入射角范围。照相机的灵敏度取决于激光束的入射角,这是由过滤器和传感器造成的。1.2 角度线性原因1.3过滤器这里,我们将只考虑吸收滤波器。如果光束没有垂直入射到滤光器上,则通过滤光器的路径较长。较长的路径导致较强的吸收,因此相机(滤光片和传感器)的响应较低。与过滤器相关的效果是各向同性的。但是,如果滤光器相对于传感器倾斜(取决于相机型号),则会在滤光器倾斜的方向上产生各向异性。入射角αin的线性透射可以用数学方法描述,如果透射指数为垂直光束T0和折射率n已知。因为对吸收性滤光片来说,T0与波长有很大的线性关系,与入射角度有关的相对透射率Trel也与波长密切相关。1.4 传感器角度响应取决于传感器技术、传感器类型、波长和微透镜。通常它不是各向同性的。图1:KAI-16070对单色光(未知波长)的角度线性灵敏度。参考:KAI-16070的 数据表图2 CMX4000白光的角度线性灵敏度如这些示例所示,对于不同类型的传感器,角度响应可能完全不同。因为这种效应还 取决于波长和单个传感器(每个传感器表现出稍微不同的行为),取决于波长的校准是必要的。两个传感器都显示出各向异性。为了考虑校准中的各向异性,需要比仅在x和y方向上更复杂的测量。2 涂层通过一种特殊的涂层,我们可以消除(主要是抑制)传感器本身的角度产生。剩余的影响角度的灵敏度是由滤波器引起的。这产生了以下主要优点:1)剩余的角度响应是各向同性的,这意味着它不再取决于入射角的方位角。2)剩下的角度响应的校正系数更小,因此更不容易出错。下面的图表显示了CinCam cmos Nano 1.001在940nm下的两个角度响应测量值,前面有CMV4000传感器和OD8吸收滤光片。第1张图表中的摄像机采用默认设置,没有特殊涂层。图3:CMV 4000传感器在x(蓝色)和y(橙色)方向的角度响应,前面有OD8吸收滤光片,在940nm处测量。上半部分显示相对角度响应,下半部分显示测量点和蕞佳拟合曲线之间的相对偏差。第二张图中的相机是用特殊涂层制作的。图4:CMV 4000传感器在x(蓝色)和y(橙色)方向的角度响应,该传感器具有特殊涂层,前面有OD8吸收滤光片,在940纳米处测量。上半部分显示相对角度响应,下半部分显示测量点和蕞佳拟合曲线之间的相对偏差。这里,角度响应是各向同性的、平滑的,对于大角度,下降效应不太明显。CinCam CMOS Nano Plus-X针对传感器和外壳正面之间的极短距离进行了优化。这使得入射角度高达65°时的角度响应测量成为可能。3 角度响应的拟合函数拟合函数是Zernike2多项式,其中入射角的正弦用于半径。这些多项式为入射角的任意方向提供了x和y方向的简单插值。用这种方法,我们可以用少量的系数描述高达±60度的测量结果。4 均匀性由于生产原因,涂层并不在任何地方都具有完全相同的厚度。这导致照相机灵敏度的不均匀性增加。这个缺点通过进一步的均匀性校准来补偿。图5:940纳米无涂层传感器(紫色)和均匀性校准后(绿色)的相对灵敏度。5 精度整体精度取决于以下几点:1)拟合精度。2)角度响应的各向同性。3)垂直光束位置(x,y)的精度。4)顶点到传感器的光学距离的精度(z)。5)蕞大角度下的角度响应下降。通过特殊的涂层,我们可以提高拟合精度和角响应的各向同性。此外,大角度灵敏度的相对下降要弱得多。6 RayCi中的校正要求为了根据角度响应校正图像数据,必须满足以下要求:1)角度响应校准数据必须可用于每个波长。该数据由蕞佳拟合的Zernike多项式系数组成。2)为了生成从每个像素到相应入射角的映射,必须知道光束垂直的x和y传感器位置。3)需要传感器和激光焦点位置之间的光学距离。4)CINOGY Technologies提供外壳和传感器之间的光学距离作为额外的校准数据。5)外壳和焦点之间的距离必须由用户提供。6)软件版本必须是RayCi 2.5.7或更高版本。 昊量光电提供的德国Cinogy公司生产的大口径光束分析仪,相机采用CMOS传感器,其中大口径的CMOS相机可达30mm,像素达到惊人的19Mpixel。是各种大光斑激光器、线形激光器光束、发散角较大的远场激光测量的必不可少的工具。此外CinCam大口径光束分析仪通用的C/F-Mount 接口设计,使外加衰减片、扩束镜、紫外转换装置、红外转换装置更为方便。超过24mm通光孔径的大口径光束分析仪CinCam CMOS-3501和CinCam CMOS-3502更是标配功能齐全的RayCi-Standard/Pro分析软件,该软件可用于光束实时监测 、测量激光光斑尺寸 、质心位置、椭圆度、相对功率测量(归一化数据)、二维/三维能量分布(光强分布) 、光束指向稳定性(质心抖动) 、功率稳定性 (绘制功率波动曲线)、发散角测量等 ,支持测量数据导出 ,测试报告PDF格式文档导出等。主要特点: 1、芯片尺寸大,可达36mm 2、精度高,单像元尺寸可达4.6um 3、支持C/C++, C#, Labview, Java语言等多种语言二次开发主要技术指标:RT option: CMOS/ccd-xxx-RT:响应波长范围:320~1150nmUV option:CMOS/CCD-xxx-UV:响应波长范围:150nm~1150nmCMOS/CCD-xxx-OM:响应波长范围:240nm~1150nmIR option:CMOS-xxx-IR:响应波长范围:400~1150nm + 1470nm~1605nm 关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • “首届全国药品质量分析论坛”落下帷幕
    仪器信息网讯 为期2天的“首届全国药品质量分析论坛”于2010年3月12日下午在郑州嵩山饭店胜利落下帷幕。 中国药学会药物分析专业委员会田颂九研究员主持论坛闭幕式主题报告会   赛默飞世尔科技SID色谱与质谱应用工程师刘婷女士、国家食品药品监督管理局药品市场监督办公室抽验处姜典才处长、国家药典委员会副秘书长王平研究员在闭幕式上分别做了报告,主题报告会由中国药学会药物分析专业委员会田颂九研究员主持。 赛默飞世尔科技SID色谱与质谱应用工程师 刘婷女士 报告题目:现代仪器在药品检验中的应用   刘婷女士介绍,药物从研发到生产,药物分析起着至关重要的作用。目前,药品检验的主要分析技术有分子光谱(傅里叶红外和拉曼光谱)、元素分析(ICP-MS和原子吸收)和色谱质谱(LC-MS联用、GS-MS联用和LC-GC)三大类。其中,分子光谱主要用于中药红外指纹图谱、中药材无损分析、药物降解和杂质分析、生产过程控制、药物含量定量检测等;元素分析用于药物中重金属含量及含金属元素药物的测定;色谱质谱技术则用于中药打假、中药指纹图谱、生物标志物鉴定、药物筛选、代谢组学研究等。这三种技术各有优势,若能综合其优点,将大大提高药物分析检验的能力。例如,LC-MS联用技术广泛应用于生物标志物鉴定、合成产物快速确证、天然产物有效成份筛选、中药分析和质量标准鉴定、药物质量控制等多个领域中;高分辨质谱则可以提高复杂样品的分析能力,主要用于中药、化药的质量分析、生产工艺控制及代谢组学的研究等。 国家食品药品监督管理局药品市场监督办公室抽验处 姜典才处长 报告题目:药品抽验机制探讨   通过国外药品上市后的监督体制,姜处长表示:“药品抽验机制符合国情,服务于药品监管,正在不断的发展完善,但可借鉴少。”经过多年的摸索探讨,我国的药品抽检模式已趋于科学化规范化。此外,姜处长就我国药品评价抽验模式还作了进一步地探讨:   抽验目的:评价抽验用于了解、掌握辖区内药品质量总体水平;监督抽验则是监督检查中发现的可疑药品进行的针对性抽验;   样品检验:分散检验与集中检验应有机结合,资源充分利用;检验标准应包括法定标准、探索性研究检验等;   结果方式:可以“合格或不合格、质量分析报告、质量风险评估及质量公告”等多种方式呈现;   结果利用:可作为管理部门间、管理部门与生产企业间的信息交流机制;也可用于产品使用的选择标准;   企业作用:树立正确的质量理念与责任感,调动企业积极性,积极参与,积极配合,积极整改。 国家药典委员会副秘书长 王平研究员 报告题目:中国药典2010年版介绍及国家药品标准要求   王平副秘书长首先对标准、技术标准、国家药品标准的定义进行了细致入微地介绍。此外,关于《中国药典》2010版,王平副秘书长提到,2010年版《中国药典》药品安全性得到进一步保障、药品有效性与可控性大幅提升、技术现代化与标准国际化明显增加。与2005版药典相比,2010版药典占国标现存总数的比例有所增加,但仍有很大差距。下一阶段的工作重点将集中在以下三方面:国家药品标准提高行动、2010版配套工作(英文版和注释等)、2015版药典编制(编制大纲、组委会筹建等)。   最后,王平副秘书长表示,在全国同仁的共同努力下,2010年版《中国药典》取得了长足的进步和实质性的提升,其颁布实施必将在保证我国药品质量、提高药品质量标准及推进我国药品走向国际三方面起到重要的作用。 论坛闭幕式现场   闭幕式由国家食品药品监督管理局药品市场监督办公室黄志禄主任助理主持,中国药品生物制品检定所原常务副所长、药物分析杂志主编金少鸿研究员做了大会的总结发言。 国家食品药品监督管理局药品市场监督办公室黄志禄主任助理主持闭幕式   黄志禄主任助理谈到,在短短两天的时间里,我们来自全国各地的510名代表和各位专家、嘉宾,从大会的报告,分会的交流到展板的交流等,共计有100多篇论文,比较详实的介绍我国药品质量的现状和分析;有9位专家分别从我国的药品质量分析研究的实践和进展,药品制剂的质量分析,中药质量分析,化学药品、抗生素药品的质量分析,生化药品的质量分析,包装材料的质量分析,以及国家医药机制的探讨和2010版药典的介绍和标准的要求等方面做了综合性的报告。 中国药品生物制品检定所原常务副所长、药物分析杂志主编 金少鸿研究员作论坛总结发言   金少鸿研究员对为期2天的会议进行了总结,首先从论坛筹办,会议规模及论坛报告的主要内容等三个方面对论坛做了概述。“这次论坛举办的准备时间虽然仓促,却得到了广泛的响应,包括药品质量分析的专家,第一线的工作人员和优秀的仪器公司共计500多人参加了会议。在论坛发出通知后的40多天里收到了200多篇报告。论坛的初衷起源于海南的一次药检会议,考虑到评价与抽检结果的总结交流不应该局限于药检所领导和专家之间,而应该是让整个药检系统,更多的是生产厂家来共享这个药检技术。会议的主要内容还是相当丰富的,既有药品单个品种的质量评价,也有对药品包装材料的质量评价,也有涉及到药品非法添加的问题和安全性研究方面。”   关于本次论坛特点,金少鸿研究员谈了如下三点:   一、首次展示了这一两年实施药品评价抽验的各个方面的成就 他介绍说很多参会者是带着问题来的,非常积极的参与到报告当中,同时,金研究员指出,报告中往往是有时间限制的,通常是规定在十几分钟完成报告,这本身就是对报告人自身能力的一个考验和锻炼,希望论坛成为培养干部和锻炼干部的平台。   二、500多人中有20%的人员是来自药品生产商,真正做报告的只有一家。金少鸿研究员很重视药品生产商的参与,因为他们可以在论坛中获得信息,改进工艺,最终能提高质量。希望下一届的会议中,药品生产商的参与者和报告有所增加。希望论坛成为药品质量分析的一个很好的里程碑。   三、论坛的后效应: 首先,是对于2010年全国抽验工作有几大的促进工作。其中,针对药品质量的提高,做出了做好探索性研究的几点展望:药品质量分析新技术、新方法的应用;加强对药品安全性的研究;希望与临床实际相适应;利用现有条件建立药品分析数据库。   其次,是对生产企业的制药工艺有很大的促进作用,最后指出第三个论坛的后效应是为做好宣传工作,为下一届的药品质量分析论坛做好准备。   最后,金少鸿研究员代表中国药学会药物分析杂志向参会领导、专家和嘉宾致谢,并与大家相约在明年的江苏——第二届全国药品质量分析论坛。 相关新闻:“首届全国药品质量分析论坛”顺利开幕 “首届全国药品质量分析论坛”厂商报告集锦
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制