当前位置: 仪器信息网 > 行业主题 > >

多功能组织细胞解析仪

仪器信息网多功能组织细胞解析仪专题为您提供2024年最新多功能组织细胞解析仪价格报价、厂家品牌的相关信息, 包括多功能组织细胞解析仪参数、型号等,不管是国产,还是进口品牌的多功能组织细胞解析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多功能组织细胞解析仪相关的耗材配件、试剂标物,还有多功能组织细胞解析仪相关的最新资讯、资料,以及多功能组织细胞解析仪相关的解决方案。

多功能组织细胞解析仪相关的资讯

  • 线上直播报名|4月11日“骨组织细胞的3D生物打印”准时开播
    主题:骨组织细胞的3D生物打印 时间: 2020年4月11日 下午13:00-14:00 直播教授: 汤亭亭教授教授简介:上海交大医学院附属九院教授、博士生导师百千万人才工程国家级人选上海市骨科内植物重点实验室主任国际华人骨研学会前任主席中国生物材料学会理事 直播看点:生物3D打印、骨组织细胞打印直播简介:生物打印,是3D打印行业上的明珠,它可以使用增材制造的技术,将生物材料、生物细胞、因子等生物要素有序装配,构建组织或类器官。特别是细胞打印,是生物打印领域最为困难的技术细节之一。汤主任结合自身的最新科研进展,分享骨组织细胞的打印应用。3D打印,可实现个性化医疗应用,将是未来医疗的发展方向。未来,可通过生物打印,使用患者自体细胞,打印骨、软骨、皮肤、器官等需要修复或移植的患处,在骨科、口腔、整形、器官等领域均有临床价值,从而解决伦理、周期、排异等多种问题。产品特点:德国envisionTEC是全球首家生物打印机商业化的企业,自2001年起已经积累了四代设备的设计生产经验,并继承了德国精密机械制造的传统,硬件选择和整体设计理念非常领先。韩国Invivo是全球首款医疗级生物打印机,在相关法律法规允许的国家内进行了大量的临床应用,用于糖尿病皮肤溃烂修复等应用。在国内可协助进行一系列的临床前研究。公司简介:蔚来已来,创新由品,一切为你改变! 蔚品于2015年成立,是一家聚焦于3D打印技术的企业,它依托母公司上海曼恒数字技术股份有限公司在VR领域的三维数字内容研发实力等优势,借由3D打印技术特点为客户提供全方位的技术创新服务。 蔚品涵盖具有自主知识产权的“锐打”系列面阵曝光技术3D打印机,是目前速度最快的一种技术 。涵盖了全球最好的相关技术品牌合作涉及有SLS、MJF、BMD 、挤出式生物3D打印成型技术等。为用户提供全方位的3d打印技术解决方案,把全球最前沿的技术应用落地于中国。 报名链接:
  • 巴彦淖尔市疾病预防控制中心357.00万元采购细胞破碎仪,水浴、油浴,热解吸仪,细胞定量分析
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 巴彦淖尔市疾病预防控制中心职防能力建设项目询价公告 内蒙古自治区-巴彦淖尔市-临河区 状态:公告 更新时间: 2023-12-05 招标文件: 附件1 项目概况 职防能力建设项目采购项目的潜在供应商应在内蒙古自治区政府采购网获取采购文件,并于 2023年12月13日 09时30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:BSZCS-X-H-230112 项目名称:职防能力建设项目 采购方式:询价 预算金额:3,570,000.00元 采购需求: 合同包1(.采购包1): 合同包预算金额:2,290,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 医用电子生理参数检测仪器设备 心电图仪(十二导联) 1(台) 详见采购文件 30,000.00 - 1-2 医用超声波仪器及设备 彩色多普勒诊断仪 1(台) 详见采购文件 1,000,000.00 - 1-3 医用 X 线诊断设备 数字化X射线成像系统(DR) 1(台) 详见采购文件 1,148,000.00 - 1-4 其他医疗设备 医用读片显示器 1(台) 详见采购文件 35,000.00 - 1-5 医用电子生理参数检测仪器设备 大型肺功能检测仪 1(台) 详见采购文件 77,000.00 - 本合同包不接受联合体投标 合同履行期限:合同中约定 合同包2(采购包2): 合同包预算金额:1,280,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 2-1 其他医疗设备 高效组织细胞破碎仪 1(台) 详见采购文件 70,000.00 - 2-2 其他医疗设备 可扩展试验箱 1(台) 详见采购文件 85,000.00 - 2-3 医用光学仪器 正置相衬显微镜(相差显微镜) 1(台) 详见采购文件 40,000.00 - 2-4 其他医疗设备 循环水浴锅水浴箱 1(个) 详见采购文件 3,000.00 - 2-5 其他医疗设备 全自动热解析仪 1(套) 详见采购文件 210,000.00 - 2-6 其他医疗设备 在线多功能样品制备进样平台 1(台) 详见采购文件 680,000.00 - 2-7 其他医疗设备 理化通风系统 1(套) 详见采购文件 92,000.00 - 2-8 其他医疗设备 隔音测试系统 1(套) 详见采购文件 100,000.00 - 本合同包不接受联合体投标 合同履行期限:合同中约定 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2.落实政府采购政策需满足的资格要求: 合同包2(采购包2)落实政府采购政策需满足的资格要求如下: 参与的供应商(联合体)提供的货物全部由符合政策要求的小微企业制造 3.本项目的特定资格要求: 合同包1(.采购包1)特定资格要求如下: (1)供应商若为经销商或代理商,如属三类需提供医疗器械经营许可证、如属二类需第二类医疗器械备案凭证;供应商若为生产厂商,须提供医疗器械生产许可证; 合同包2(采购包2)特定资格要求如下: (1)供应商若为经销商或代理商,如属三类需提供医疗器械经营许可证、如属二类需第二类医疗器械备案凭证;供应商若为生产厂商,须提供医疗器械生产许可证; 三、获取采购文件 时间: 2023年12月06日至 2023年12月08日,每天上午 00:00:00至 12:00:00,下午 12:00:00至 23:59:59(北京时间,法定节假日除外) 地点:内蒙古自治区政府采购网 方式:在线获取。获取采购文件时,需登录“政府采购云平台”,按照“执行交易→应标→项目应标→未参与项目”步骤,填写联系人相关信息确认参与后,即为成功“在线获取”。 售价: 免费获取 四、响应文件提交 截止时间: 2023年12月13日 09时30分00秒(北京时间) 地点: 内蒙古自治区政府采购网(政府采购云平台)五、开启 时间: 2023年12月13日 09时30分00秒(北京时间) 地点:巴彦淖尔市公共资源交易中心(政府采购中心)林业和草原局十二楼六、公告期限 自本公告发布之日起3个工作日。七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名称:巴彦淖尔市疾病预防控制中心 地址:解放西街160号 联系方式:0478-26761092.采购代理机构信息 名称:内蒙古政采招标代理有限公司 地址:内蒙古巴彦淖尔市临河区开源北路2号电子商务产业园区一号楼四楼 联系方式:151488593583.项目联系方式 项目联系人:董静 电话:15148859358 内蒙古政采招标代理有限公司 2023年12月05日 相关附件: 职防能力建设项目询价通知书(2023120501).pdf × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:细胞破碎仪,水浴、油浴,热解吸仪,细胞定量分析 开标时间:null预算金额:357.00万元 采购单位:巴彦淖尔市疾病预防控制中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:内蒙古政采招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 巴彦淖尔市疾病预防控制中心职防能力建设项目询价公告 内蒙古自治区-巴彦淖尔市-临河区 状态:公告 更新时间: 2023-12-05 招标文件: 附件1 项目概况 职防能力建设项目采购项目的潜在供应商应在内蒙古自治区政府采购网获取采购文件,并于 2023年12月13日 09时30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:BSZCS-X-H-230112 项目名称:职防能力建设项目 采购方式:询价 预算金额:3,570,000.00元 采购需求: 合同包1(.采购包1): 合同包预算金额:2,290,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 医用电子生理参数检测仪器设备 心电图仪(十二导联) 1(台) 详见采购文件 30,000.00 - 1-2 医用超声波仪器及设备 彩色多普勒诊断仪 1(台) 详见采购文件 1,000,000.00 - 1-3 医用 X 线诊断设备 数字化X射线成像系统(DR) 1(台) 详见采购文件 1,148,000.00- 1-4 其他医疗设备 医用读片显示器 1(台) 详见采购文件 35,000.00 - 1-5 医用电子生理参数检测仪器设备 大型肺功能检测仪 1(台) 详见采购文件 77,000.00 - 本合同包不接受联合体投标 合同履行期限:合同中约定 合同包2(采购包2): 合同包预算金额:1,280,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 2-1 其他医疗设备 高效组织细胞破碎仪 1(台) 详见采购文件 70,000.00 - 2-2 其他医疗设备 可扩展试验箱 1(台) 详见采购文件 85,000.00 - 2-3 医用光学仪器 正置相衬显微镜(相差显微镜) 1(台) 详见采购文件 40,000.00 - 2-4 其他医疗设备 循环水浴锅水浴箱 1(个) 详见采购文件 3,000.00 - 2-5 其他医疗设备 全自动热解析仪 1(套) 详见采购文件 210,000.00 - 2-6 其他医疗设备 在线多功能样品制备进样平台 1(台) 详见采购文件 680,000.00 - 2-7 其他医疗设备 理化通风系统 1(套) 详见采购文件 92,000.00 - 2-8 其他医疗设备 隔音测试系统 1(套) 详见采购文件 100,000.00 - 本合同包不接受联合体投标 合同履行期限:合同中约定 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2.落实政府采购政策需满足的资格要求: 合同包2(采购包2)落实政府采购政策需满足的资格要求如下: 参与的供应商(联合体)提供的货物全部由符合政策要求的小微企业制造 3.本项目的特定资格要求: 合同包1(.采购包1)特定资格要求如下: (1)供应商若为经销商或代理商,如属三类需提供医疗器械经营许可证、如属二类需第二类医疗器械备案凭证;供应商若为生产厂商,须提供医疗器械生产许可证; 合同包2(采购包2)特定资格要求如下: (1)供应商若为经销商或代理商,如属三类需提供医疗器械经营许可证、如属二类需第二类医疗器械备案凭证;供应商若为生产厂商,须提供医疗器械生产许可证; 三、获取采购文件 时间: 2023年12月06日至 2023年12月08日,每天上午 00:00:00至 12:00:00,下午 12:00:00至 23:59:59(北京时间,法定节假日除外) 地点:内蒙古自治区政府采购网 方式:在线获取。获取采购文件时,需登录“政府采购云平台”,按照“执行交易→应标→项目应标→未参与项目”步骤,填写联系人相关信息确认参与后,即为成功“在线获取”。 售价: 免费获取 四、响应文件提交 截止时间: 2023年12月13日 09时30分00秒(北京时间) 地点: 内蒙古自治区政府采购网(政府采购云平台)五、开启 时间: 2023年12月13日 09时30分00秒(北京时间) 地点:巴彦淖尔市公共资源交易中心(政府采购中心)林业和草原局十二楼六、公告期限 自本公告发布之日起3个工作日。七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名称:巴彦淖尔市疾病预防控制中心 地址:解放西街160号 联系方式:0478-26761092.采购代理机构信息 名称:内蒙古政采招标代理有限公司 地址:内蒙古巴彦淖尔市临河区开源北路2号电子商务产业园区一号楼四楼 联系方式:151488593583.项目联系方式 项目联系人:董静 电话:15148859358 内蒙古政采招标代理有限公司 2023年12月05日 相关附件: 职防能力建设项目询价通知书(2023120501).pdf
  • “力”所能及——多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的创新应用
    瑞士Cytosurge公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、纳米位移台系统合为一体的单细胞操作系统,能够在单细胞水平上为研究者提供很大的便利,可应用于单细胞力谱、单细胞质谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。本文将从单细胞实验方法和多功能单细胞显微操作系统FluidFM BOT结构出发,详细介绍多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的应用。 一. 单细胞实验方法简介 在细胞生物学实验中,由于细胞的异质性,每个细胞互相之间都存在一定差异,因此在单细胞层面研究细胞性质可以获得更加准确的结果。近年来,多种单细胞研究技术不断涌现,应用于医学诊断、组织工程和药物筛选等领域。 对于细胞力学测定,原子力显微镜(AFM)能够对单个细胞或生物分子进行高分辨成像和力谱测定,但是细胞与探针的结合过程不可逆,无法实现连续、快速的检测。 对于细胞分离/分选技术,可选的有玻璃细管、光镊、流式细胞分选和磁珠分选等方法,然而有的从表面分离细胞时容易损伤细胞,有的无法从同类细胞群中分离出单个细胞。 对于细胞注射与提取,可选用纳米喷泉探针、纳米针和碳纳米管等,然而这些方法无法实现飞升以下量的含量注射,且注射时间较长。 多功能单细胞显微操作系统FluidFM BOT,针对细胞力学测量、分离/分选、注射与提取等应用,在结合以上技术的优势的同时克服了这些技术固有的问题,是一套多功能的单细胞研究系统,在单细胞研究领域发挥着巨大作用。 二. 多功能单细胞显微操作系统FluidFM BOT结构 简单来说,多功能单细胞显微操作系统FluidFM BOT是AFM与微流控的结合,主要由AFM扫描头、压力控制器与微流控探针组成(图1)。AFM扫描头装载于倒置显微镜上,整体结构大致与普通AFM相同,主要区别是探针中间有微流通道,后端连接液体池,前端探针有一小孔,用于液体的流入流出。微流通道内径小于细胞,防止细胞进入堵塞;探针则有多种不同孔径和不同的弹性,可根据不同应用以及不同样本更换所需探针。图1 FluidFM BOT系统图示。(a)微流控系统与AFM的结合应用;(b)(c)(d)探针的特殊设计。 三. 单细胞力学应用 传统AFM用于单细胞力学测量时,需要对探针进行一定处理以粘附细胞,后再与需要和细胞相互作用的表面、分子或其他细胞相结合,有时会产生多个细胞粘附,且反复测力会导致细胞被破坏,使得每次测量都必须准备新的探针,实验效率较低。 多功能单细胞显微操作系统FluidFM BOT通过将AFM与微流控相结合,使单细胞力学实验更高效,更简洁。对于已经结合在表面的固定细胞,可根据细胞尺寸安装适用的探针,从上方接触需要测量的细胞,通过微流控系统施加负压吸起细胞,获得力-距离曲线;也可以吸取悬浮细胞,与表面或其他固定细胞接触后,测量力-距离关系。这种方法能够提供远比蛋白结合牢固的多的吸附力,能够将细胞牢固的固定在探针上面,因此能够用于直接从基质上分离;另一方面,由于没有生物处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。 单个细胞测量完成后可移动探针至细胞板其他孔内,施加正压将其释放,再回到实验孔吸取下一个细胞,意味着单个探针可以进行多次测量。 细胞粘附是许多生理过程的重要步骤,细胞粘附力的测定可以为组织形态发生、胚胎发育、肿瘤、免疫反应和微生物膜等研究提供重要信息。多功能单细胞显微操作系统FluidFM BOT支持真核和原核细胞与细胞板/培养皿表面、抗菌/粘性/抗体包被的表面或其他细胞的粘附力测量(图2)。图2 不同细胞在不同环境下的粘附力-距离曲线。(a)探针接近、暂停、吸取并拉伸细胞的过程中探针偏转随时间的变化;(b)Hela细胞与纤连蛋白包被的表面的粘附力-距离曲线;(c)不同接触时间下大肠杆菌与PLL表面的粘附力-距离曲线;(d)大肠杆菌与PLL表面的分离距离与接触时间的关系;(e)酿脓链球菌与玻璃表面的粘附力-距离曲线,表示多个球菌的连续分离;(f)单个细胞与单细胞层的粘附力-距离曲线。 Sankaran等人[1]使用多功能单细胞显微操作系统FluidFM BOT来研究在共价和非共价的表面整合素受体对细胞粘附力的影响。通过测定发现两者均可有效增加细胞的粘附能力,并且效果近似(图3)。图3使用FluidFM BOT测定共价键与非共价键的整合素受体之间RGD的区别。(a)实验示意图;(b)粘附力测定前后示意图;(c)粘附力-距离曲线;(d)大粘附力。 多功能单细胞显微操作系统FluidFM BOT还可用于测量细胞的应力以研究细胞骨架的性质。Sancho等人[2]将10μm的小胶球吸附于探针上,之后使用探针去压细胞直到探针压力达到2 nN,通过压痕曲线来分析细胞骨架变化。通过对比发现过量表达MSX1的细胞硬度显著高于普通细胞(图4)。图4 使用FluidFM BOT测定HUAEC中MSX1过表达对细胞骨架的影响。(d)实验示意图;(e)吸附10μm珠子;(f)下压时空白细胞的力学谱线;(g)下压时MSX1过表达细胞的力学谱线,凹陷更深、斜率更高,表示其刚度相对更高;(h)胶体压痕法的测量结果。 四. 其他应用 多功能单细胞显微操作系统FluidFM BOT可用于细胞内注射与提取(图3),通过力学测量,可以控制探针刺入细胞质或细胞核内进行飞升别含量的液体注射或提取。此外,FluidFM BOT系统还可用于细胞分离以及细胞延展性研究。图5 FluidFM BOT系统的细胞内注射过程。(a)探针对准细胞;(b)探针刺破细胞膜,注入含荧光染料的目标液体;(c)探针与细胞分离,注射完成。 多功能单细胞显微操作系统FluidFM BOT克服了现有单细胞技术的短板,将多种单细胞应用相结合,高通量、高效率地获取单细胞层面的详细数据,研究多种细胞性质,尤其适合应用于医疗、单细胞生物学、单细胞质谱、单细胞基因编辑、药物研发等领域。 多功能单细胞显微操作系统FluidFM BOT在Quantum Design中国子公司与北大生科院共建实验室成功安装,为了更好的服务客户,Quantum Design中国子公司提供样品测试、样机体验机会,还等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作! 参考文献:[1]. Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based Single-Cell Force Spectroscopy, ACS Nano 2017, 11, 4, 3867–3874.[2]. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci Rep 7, 46152 (2017).
  • 伯腾发布BioTek Cytation 7 细胞成像多功能检测系统新品
    Cytation™ 7 细胞成像多功能检测系统具有独特的专利设计,它将数字化的正置和倒置显微成像技术与传统的多模式微孔板检测技术结合于一体,支持透射光成像模式和反射光成像模式,集高通量、自动化、多模式为一套系统中,进一步拓宽了Cytation系列产品在细胞成像领域的应用范围,为生命科学领域提供有力的研究工具。产品特点1. 机载多种模式的检测方式,其中包括正置和倒置显微成像光路,从而可以实现广泛的透射和反射光应用,支持明场、彩色明场、荧光场的成像模式,适用于常规细胞学、组织学等不同样品成像,也可以用于于植物和动物样品成像。2、 一体化避光设计,体积小巧,同时具有专利的4-Zone温度控制功能,良好的温控均一性,能有效避免边缘效应和凝结水蒸气的产生。可选Peltier冷却模块,支持气体控制和自动加样器的扩展,适合活细胞检测。3、正置成像模块可以快速实现ELISpot、HE染色、明胶图片拍摄、克隆计数等应用。4、全功能酶标检测模块采用第四代光栅技术,满足吸收光、荧光、发光检测需求,可调带宽功能可以兼顾不同荧光染料的灵敏度和特异性,实现无与伦比的微孔板检测性能。5、独特的Hit-pick功能专业用于高通量筛选实验,可以实现快速的高通量筛选检测并减少数据的存贮空间。6、Gen5™ 软件具有易用性和强大的处理分析功能7、 广泛的应用空间 创新点:Cytation 7 细胞成像微孔板检测系统创新的整合了全自动数字正置和倒置宽视场显微镜以及便捷的多功能微孔板测读系统,三种功能模块采用专利设计集成于一套小巧的系统之中。倒置显微成像模块可以完成1.25× 至60× 物镜的荧光场,明场和彩色明场成像,应用范围非常广泛。正置显微镜可以完成反射光和透射光明场成像,可以进一步拓展产品的应用范围,创新的将正倒置成像系统整合在一台仪器上可以极大的满足成像用户的实验需求。 BioTek Cytation 7 细胞成像多功能检测系统
  • 让诊断不再需要活检 —高速3D显微镜可实时观察活组织细胞
    美国哥伦比亚大学工程团队开发了一种技术,可实现活体内的实时成像并取代传统的活检。在28日的《自然生物医学工程》上发表的一篇论文中,研究人员描述了一种高速3D显微镜MediSCAPE,其能捕获组织结构的图像,以指导外科医生定位肿瘤及其边界,而无需活体取样分析病理结果。哥伦比亚大学生物医学工程和放射学教授、该研究的资深作者伊丽莎白希尔曼称,活检需要从体内切取小块组织,然后用简单的显微镜观察,因此可能需要几天时间才能得到诊断结果。希尔曼团队希望能直接捕获组织图像而不用切出样本。“这种技术可以让医生实时反馈他们正在查看的组织类型,无需长时间等待。”她解释道,这将让医生就如何最好地切除肿瘤并确保没有留下任何东西做出明智的决定。此外,对于珍贵的组织,如大脑、脊髓、神经、眼睛和面部等,切取组织还可能错过重要的疾病区域。希尔曼一直在开发用于神经科学研究的新型显微镜,这些显微镜可非常快速地捕捉活体样本的3D图像。此次,该团队通过观察小鼠肾脏对他们的显微镜进行了测试。他们观察到的结构很像标准组织学所得到的结构。最重要的是,过程中并没有添加任何染料。研究人员看到的一切都是组织中的自然荧光,而这些荧光通常太弱而无法看到。即使研究人员以足够快的速度进行整体3D成像,实时漫游,扫描组织的不同区域,MediSCAPE也能非常高效地显示出这些微弱的信号。研究人员甚至可将获得的体积拼接在一起,并将数据转化为组织的大型3D展示,这样病理学家就可像一整盒组织学幻灯片一样使用它。该团队展示了MediSCAPE在广泛应用中的强大功能,从分析小鼠胰腺癌到对人体移植器官(如肾脏)的非破坏性快速评估。研究人员认为,通过对体内的活组织进行成像,可获得比无生命的活检样本更多的信息。他们发现,实际上可看到通过组织的血流,并看到缺血和再灌注的细胞水平效应(切断肾脏的血液供应,然后让它回流)。该团队的最后一个关键步骤是将希尔曼实验室中标准SCAPE显微镜的大尺寸缩小为适合手术室并可供外科医生在人体中使用的系统。
  • 单个活细胞&细胞器操纵新突破丨多功能单细胞显微操作技术首次实现活细胞间线粒体移植
    前所未有的全自动高精度单细胞操纵平台!多功能单细胞显微操作FluidFM技术首次将原子力系统、显微成像系统、微流控系统、活细胞培养系统融为一体的单细胞显微操作平台,其核心技术——FluidFM技术采用了纳米级别中空探针,完美实现了单个细胞水平、fL级别超高精度、全自动化的细胞及细胞器的操作。是一套超温柔,纳米级,全自动的细胞操纵方案。这项技术将传统细胞显微操作实验无法触及领域的大门彻底打开,科学家可以在单个细胞上实现前所未有的精妙操纵。其主要功能包括单细胞提取、单细胞分离、活细胞细胞器移植、单细胞注射、单细胞力谱等。图1 FluidFM技术整机外观及原理示意图在活细胞中也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。1从活细胞中提取线粒体在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构最终被拉断,并在悬臂中呈现为球状线粒体(图2)。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生独立的球形线粒体,而管状结构的其余部分放松并恢复。图2 提取线粒体后的FluidFM悬臂探针的显微图像及示意图2线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了最佳的两步走方案:第一步,用FluidFM技术直接提取线粒体,第二步,将提取的线粒体注入到新的宿主细胞中。该方案的成功率高达95%,而且保持了细胞活力,其优点是细胞器在细胞外停留的时间短(作者标记供体细胞的线粒体(su9-mCherry)和受体细胞的线粒体(su9- BFP),能够观察移植细胞线粒体网络的实时状态(图3)。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内首次观察到融合事件而后扩展到线粒体网络。综上所述,作者建立了将线粒体转移到单个培养细胞的方法。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。图3 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是独一无二的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。单个线粒体移植视频该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。
  • 胰蛋白酶,组织解离、细胞消化的小帮手
    胰蛋白酶(胰酶,Trypsin),CAS:9002-07-7,为蛋白酶的一种,EC3.4.4.4,是从牛、羊、猪的胰脏提取的一种丝氨酸蛋白水解酶。来源于胰腺的一种丝氨酸蛋白酶,由223个氨基酸残基组成的单链多肽,底物特异性是带正电荷的赖氨酸和精氨酸侧链。胰酶主要切割赖氨酸和精氨酸羧基端,当两者之一紧随为脯氨酸的情况除外。另外,当切割位点任一边紧邻酸性残基,胰酶水解速率也会减缓。在组织细胞的体外培养和原代细胞培养中的组织细胞分散(将组织块制备成单个细胞悬液)以及传代细胞培养中,贴壁生长细胞的消化分散均要使用组织细胞消化液。常用的消化液为胰蛋白酶,EDTA等,其功能主要是使细胞间的蛋白质(如细胞外基质)水解,使组织或贴壁细胞分散成单个细胞,制成细胞悬液用于进一步的实验。以下是absin胰酶部分产品,全部现货供应哦~胰蛋白酶(猪源)1:250 abs47014936本品是由猪胰提取而得的一种肽链内切酶,白色至淡黄色粉末。可用于制备单细胞悬浮液,胰蛋白酶在用于细胞培养时,可用PBS溶解成浓度为0.25%,也可以加入0.02%EDTA ,过滤除菌后使用。溶于水≥10mg/ml,不溶于乙醇、甘油、氯仿和乙醚。本品具有以下特点:1、对电点pI 10.5。Ca2+对酶活性有稳定作用。 2、重金属离子、有机磷化合物、DFP、天然胰蛋白酶抑制剂对其活性有强烈抑制。 3、可用于制备单细胞悬浮液或贴壁细胞的消化、分离。货号名称abs47014936猪源胰蛋白酶1:250胰蛋白酶-EDTA消化液(0.25%) abs47014938本产品含0.25%胰酶,溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。货号名称abs47014938胰蛋白酶-EDTA消化液(0.25%)胰蛋白酶-EDTA消化液(0.25%) 不含酚红 abs47047375本品含 0.25%胰酶和 0.02%EDTA(0.53mM),溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。本产品具有方便快速、稳定安全、细胞状态好等特点。货号名称abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红胰蛋白酶(牛胰) 1:2500 abs9154本品是由牛胰提取而得的一种肽链内切酶,白色或类白色粉末。溶于水,不溶于乙醇、甘油、氯仿和乙醚。其广泛应用于分子生物学,药理学等科研方面。是一种专一性催化水解赖氨酸、精氨酸羧基形成的肽键,可用于蛋白质化学研究。货号名称abs9154胰蛋白酶(牛胰) 1:2500更多absin胰蛋白酶相关产品 :货号名称abs47014938胰蛋白酶-EDTA溶液abs9154胰蛋白酶(牛胰腺)abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红abs44073474重组牛胰蛋白酶abs47014937Trypsin (0.25%), Phenol Redabs47014936猪源胰蛋白酶1:250abs47014940胰蛋白酶,蛋白测序级abs47014939胰蛋白酶,组织培养级Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)...
  • 1075万!山东大学流式细胞分析仪、多功能酶标仪、在线粒形粒度分析仪等采购项目
    一、项目基本情况1.项目编号:SDJDHD20230553-Z330/SDDQ2023-247项目名称:山东大学流式细胞分析仪采购预算金额:500.000000 万元(人民币)采购需求:为满足科研需求,学校拟采购流式细胞分析仪1套合同履行期限:至本项目质保期结束之日止本项目( 不接受 )联合体投标。2.项目编号:SDJDHD20230506-Z295/HYHA2023-2550项目名称:山东大学非对称场流分离与多角角度动静态激光光散射联用系统预算金额:320.000000 万元(人民币)最高限价(如有):320.000000 万元(人民币)采购需求:标包货物名称数量简要技术要求A非对称场流分离与多角角度动静态激光光散射联用系统1详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。3.项目编号:SDDX-SDLC-CS-2023010项目名称:山东大学多功能酶标仪采购方式:竞争性磋商预算金额:150.000000 万元(人民币)最高限价(如有):150.000000 万元(人民币)采购需求:多功能酶标仪采购,具体内容详见电子磋商文件。合同履行期限:质保期:国产设备3年,进口设备1年,本项目( 不接受 )联合体投标。4.项目编号:SDJDHD20230591-Z358项目名称:山东大学在线粒形粒度分析仪采购项目采购方式:竞争性磋商预算金额:105.000000 万元(人民币)最高限价(如有):105.000000 万元(人民币)采购需求:本项目采购1套在线粒形粒度分析仪,具体参数详见磋商文件。合同履行期限:合同签订后3个月内(国产设备)。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月22日 至 2023年11月28日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:山东大学招标采购管理系统方式:在线下载(投标人在山东大学采购网,点击“投标人注册”,完成后,通过“校外用户登录”,报名并免费下载招标文件电子版。未报名的投标人,不能参加本项目采购活动),获取招标文件时需上传①企业法人营业执照副本②法定代表人身份证明及法定代表人授权委托书。本项目为资格后审,投标人获取招标文件不代表资格审查通过。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:山东大学中心校区明德楼        联系方式:联系人:王老师;联系方式:0531-88365560      2.采购代理机构信息名 称:山东德勤招标评估造价咨询有限公司            地 址:济南市高新区龙奥北路909号海信龙奥九号2号楼25层            联系方式:联系人:李雅琼、张承竹;联系方式:0531-82389633            3.项目联系方式项目联系人:李雅琼、张承竹电 话:  0531-82389633
  • Spark微孔板多功能酶标仪,专为高性能细胞荧光检测而设计
    实施荧光检测是提高检测质量和灵敏度的一个快捷有效的途径。实现荧光检测最优化要求光学系统同时具有灵敏度和灵活性。以使用发射光束能横跨整个波长光谱的荧光染料为前提,高性能的光电倍增管 (PMT) 可以帮助您进行多重分析检测,给您清晰分离的信号和绝对的检测灵敏度。 细胞荧光检测增加了其他复杂因素:分析微孔底面分布不均匀的贴壁细胞极具挑战性,以及如何最大限度地减少培养基的自体荧光。Tecan Spark微孔板多功能酶标仪,采用荧光Fusion Optics™ 技术,能够应对这些挑战并提供您在设计及运行高等生物化学检测及基于细胞的荧光检测所需要的所有技术支持。 Tecan Spark多功能酶标仪,准确、灵敏地测定细胞荧光。使用灵活的Fusion Optics技术,发展高灵敏度的荧光检测方案 Spark独特的Fusion Optics功能为您的检测方案的提供了灵活且灵敏的开发平台。利用Fusion Optics技术, 您可以在同一检测试验中按需组合使用滤光片和光栅。这是相对于全功能酶标仪性能上的重大飞跃。 滤光片选择的灵活性既能够使激发端的光束输入最大化,也能使发射端信号检测效果最大化,而光栅能通过扫描以确定最优化设置的波长。用户选用的深阻二向色镜能提高波长谱末端常见染料的灵敏度。大功率氙闪灯减少了得到可靠灵敏的结果所需的闪光次数,因此您不必在灵敏度和速度间犹豫不决。结合应用了SparkControl软件后,系统可以通过自动调节扩大动态范围,避免荧光检测进入饱和状态。 使用光栅/光栅系统(浅绿)和光栅/滤光片系统(深绿)来扫描激发和发射波长的最大值。第二种组合系统能识别出更鲜明且灵敏的最大值。细胞检测时聚焦于微孔底面进行酶标可以使背景的自发荧光最小化 在细胞荧光分析中,使用传统的微孔底面酶标技术会降低检测的灵敏度,因为光束在到达样品之前必须要先穿过塑料或者玻璃板。这就降低了可以激活荧光的光束的量。Tecan Spark酶标仪能为您提供高性能的微孔底面酶标模块,以解决上述问题。Tecan Spark酶标仪拥有基于透镜的底面酶标系统,结合能将光束引导到样本焦点的Z-focus程序, 能提供极高的灵敏度。优化的酶标功能通过多次测量排列在微孔中的分离的样本点,可以使细胞分布不均导致的差异最小化。 基于细胞的检测所得的安全可靠的结果 为了可以得到可以在不同实验,不同微孔间比较的细胞检测结果,您需要特别注意细胞数量、细胞分布和细胞的健康状况。Tecan Spark酶标仪运用明视场及免标记技术、激光自动对焦技术,使您能够检查这些自动检测参数。细胞图像和细胞汇合度可以进行自动测量。使用SparkControl的实况查看器, 您可以使用Snapshot功能,记录开始实验之前的最后一个图像。 Tecan Spark酶标仪的细胞孵化功能如温度控制、气体控制和湿度控制允许细胞在酶标仪中孵育几天的时间。Tecan Spark酶标仪的自动开盖和进样器功能,以及可以进行有条件动力学编程,使检测的完成实现了智能自动化。例如,正常生长控制条件下细胞可以在酶标仪中生长;达到预定的细胞汇合度之后,酶标仪可在微孔中加入某种物质,激发GFP的产生。这是额外的荧光动力学监测功能, 在运行的同时监测图像以控制细胞的生长。总结Tecan Spark多功能酶标仪,以它独特的Fusion Optics技术,能在荧光检测领域带给而我们绝佳的性能体验。在同一检测中,滤光片和光栅的组合带给我们前所未有的灵活度,却丝毫没有影响其准确性。 环境控制特征、 成像能力及其动力学条件,使您的细胞检测实验得以自动化和标准化,且具有极高的重复性。结合了特殊的酶标功能,如基于透镜的底面酶标系统、自动化的z-focus以及优化的酶标功能,Tecan Spark是研究细胞和荧光时最理想的多功能酶标仪。
  • 活细胞也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植
    摘要:线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。 结果:1. 从活细胞中提取线粒体为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 um2)和圆柱型探针(A=1.6 um2)(图1B)。实验结果表明,使用这两种探针都可以对线粒体及单个线粒体进行提取或大量抽提。作者对内质网(ER)和线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。 图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 图2:(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar= 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3:(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。线粒体是细胞中的能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。目前将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。 多功能单细胞显微操作系统- FluidFM OMNIUM参考文献[1].C. Gäbelein, Q. Feng, E. Sarajlic, T. Zambelli, O. Guillaume-Gentil, B. Kornmann & J. Vorholt. Mitochondria transplantation between living cells. (2021). BioRxiv.
  • 原能细胞发布原能细胞多功能程序降温工作站 ACF-1新品
    原能细胞多功能程序降温工作站 ACF-1自动除湿 批次降温内置+自定义降温程序双制冷模式 高精度高效率-80℃暂存 简化样本待检过程批量扫码 可单只挑管 一、产品简介ACF-1多功能程序降温工作站是一款自动化、智能化的高效程序降温设备。内置标准化预设和客户自定义降温程序,采用双制冷模式,具备自动除湿、批量扫码、多批次降温和-80℃暂存等四大功能。可有效保障样本在程序降温过程中的安全和稳定性,适用于实验室、样本库等多种工作场景。 二、产品特色l 双制冷模式 存储区电制冷,温度稳定;降温区液氮降温,高精度l 冷链输出功能 样本程序降温后可自动放入液氮转运罐l 内置+自定义降温程序 满足不同情况的程序降温需求l 批量扫码 可对单支样本或整盒样本批量扫码录入,还可实现单支挑管l 多批次降温 每批次多板架降温运行,并可根据不同样本的降温特性,设置不同的降温温区l -80℃暂存 解决待检过程中的暂存问题,稳定样本环境温度l 自动除湿 15-70Pa的微正压压力,保持内舱长期干燥,自动除湿,避免结霜。l 保温暂存 维持待降温板架处于4℃密封腔l 高兼容性 板架叠加存储模式,提升存储量,且兼容0.5mL、1mL、2mL等规格管型创新点:自动化程序降温仪是血样本、活细胞等生物样本制备后保持高质量长期存储的精密仪器,自动化、智能化程序降温是国际领先。该仪器还设有样本暂存功能,行业唯一。 原能细胞多功能程序降温工作站 ACF-1
  • Nature亮点 | Phenoptics™ 组织微环境分析方案深度解析肿瘤免疫细胞分型
    最近数十年以来肿瘤的免疫治疗相关研究取得了革命性的突破,特别是基于PD-1、CTLA-4等类似的免疫检查点抑制剂的治疗方案表现尤为突出。但是即便如此,肿瘤的免疫治疗领域仍然面临巨大的挑战,比如治疗效果的不确定性、患者反应的不可预估性、免疫治疗耐药抵抗及检测生物标志物缺乏等都制约了对肿瘤患者的精准有效治疗。Balkwill F R, Capasso M, Hagemann T. The tumor microenvironment at a glance.当前大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将是破除肿瘤免疫治疗障碍的关键所在。肿瘤免疫微环境在肿瘤发生、侵袭、转移及治疗耐受过程中占据重要位置,细化免疫微环境的细胞免疫分型,切实有效的分子分型定量研究是指导肿瘤精准治疗的基础,也是在精准医学时代背景下亟需解决的难题。独特的PhenopticsTM多光谱组织微环境景观分析方案融合了Opal多色荧光样品标记、Vectra多光谱成像和inForm智能组织定量分析技术,可以实现传统分析方案难以解决的技术难题,从而更好的实现对于肿瘤患者的精准诊断和治疗。2019年6月26日,Nature杂志在线发表了巴黎大学Jér?me Galon教授研究组题为Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文利用了PhenopticsTM组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程在侵袭前病变组织和肿瘤微环境的细胞分型改变以及相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的发生发展进行调控和精准治疗,为提高肿瘤免疫治疗的有效率提供了新的技术思路和方法。Nature. 2019 Jun 26. doi: 10.1038/s41586-019-1330-0该研究工作的领导者Jér?me Galon教授利用PhenopticsTM组织微环境分析方案进行肿瘤免疫治疗研究和新的免疫治疗组合策略方案开发。附图来自Jér?me Galon教授基于Opal多色荧光标记技术获取的肿瘤组织免疫微环境描绘图片,为肿瘤免疫诊断和精准治疗提供重要的参考依据。来源:https://www.epo.org/learning-events/european-inventor/finalists/2019/galon.html全新的PhenopticsTM组织微环境分析方案可以实现在组织切片样本上实现多达9色的靶点抗原荧光标记和检测,并且进行多种类型细胞的分型定量研究深度挖掘组织微环境所蕴含的生物学信息,从而为肿瘤的免疫学研究和精准治疗提供可靠依据。Phenoptics™ 组织微环境分析方案—Opal 9色荧光标记示例图关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 技术线上论坛|6月8日《科学家首次实现单个活细胞中细胞器的操纵!多功能单细胞显微操作技术是如何做到的?》
    [报告简介] 单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。 线粒体和复杂的内膜系统是真核细胞的重要特征,是细胞中能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。到目前为止,对活细胞内的细胞器进行操纵十分困难,将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。 本报告分为两部分:1. 来自ETH的Dr. Christoph G. Gäbelein使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪发现被移植线粒体与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。本次报告Dr. Christoph G. Gäbelein将对上述文章和数据进行详细分享。2. 2020年9月,国内套FluidFM多功能单细胞显微操作系统在北京大学生命科学学院顺利安装并交付使用。期间,在北京大学生命科学学院公共仪器中心光学成像平台覃思颖老师和Quantum Design中国工程师胡西博士的帮助下,成功举办多场workshop,FluidFM多功能单细胞显微操作系统助力北大发表多篇paper。本次报告中,覃思颖老师将分享多功能单细胞显微操作系统FluidFM技术的实验操作案例与运行维护经验。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]06月08日 下午15:00-16:00 [主讲人介绍]Christoph G. Gäbelein,ETHChristoph是一名来自ETH的青年科学家,科研中他一直致力于将FluidFM单细胞显微操作技术应用于更多的生命科学场景中。在过去两年间,他以一作或参与者的身份发表了FluidFM多篇文章:2022 Mitochondria transplantation between living cells2022 Injection into and extraction from single fungal cells.2021 Single cell engineering using fluidic force microscopy.2021 Genome-wide molecular recording using Live-seq.Christoph对于FluidFM技术的应用具备丰富而完善的经验,文章也是高产的,目前Christoph已经成为了FluidFM技术领域的专家。本次Webinar,Christoph将介绍他应用技术的新成果,并详细阐述从活细胞中提取、注射线粒体,将定量的线粒体移植到细胞中,同时保持它们的活力的技术细节。Christoph的座右铭是:Curiosity-driven young scientist interested in fundamental cell biology 覃思颖,北京大学生命科学学院公共仪器中心光学成像平台工程师。2016年于北京大学获得生物物理学博士学位,博士期间以作者在Nature Materials发表论文,博士后期间入选届北京大学博雅博士后项目。2019年加入北京大学生科院公共仪器中心,负责原子力显微镜、多功能单细胞显微操作系统、共聚焦显微镜等大型仪器的技术支持与运行管理,在多尺度生物样品的原子力制样与成像力学检测、单细胞注射与分离等显微操作、生物荧光成像与图像处理分析等方面有着丰富的经验,为校内外100余课题组提供技术服务,辅助课题组在Nature、Cell、Nature Cell Biology等国际期刊发表论文30余篇。本次报告将分享多功能单细胞显微操作系统FluidFM技术的实验操作案例与运行维护经验。[应用简介]1. 从活细胞中提取线粒体 为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 μm2)和圆柱型探针(A=1.6 μm2)(图1B)。实验结果表明,使用这两种探针都可以对单个线粒体及多个线粒体进行提取或大量抽提。图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 对线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。 本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。图2(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar = 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5 µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1 µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1 µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 将线粒体移植至新细胞 研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。 虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(1分钟),并且通过FluidFM采样的线粒体大限度地集中在原生细胞质液中,完全避免了人工缓冲液的使用。在提取和移植之前,作者通过在探针中填充不混溶的C8F18来确保提取液在提取过程中保持在孔径附近。因此,只有很小的体积(0.5 - 2pL)被注入到宿主细胞中(图3B)。 除了标记供体细胞的线粒体(su9-mCherry)外,还标记了受体细胞的线粒体(su9- BFP),这样就能够观察移植细胞线粒体网络的实时状态。在上述两种移植方案(移植和纯化后注射)中,宿主-线粒体网络的管状状态不会因注射过程而产生影响。此外,标记可以让作者可视化地监测线粒体地移植,观察线粒体地融合。 无论移植方法是细胞到细胞(图3I),还是注射纯化线粒体(图3J),都可以观察到这些过程。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内次观察到融合事件。 如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。 综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论 FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。 该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。
  • 363万!中国海洋大学多功能酶标仪、单细胞悬液制备仪等设备采购项目
    项目编号:SDSHZB2023-058项目名称:中国海洋大学多功能酶标仪、单细胞悬液制备仪等设备采购项目预算金额:363.0000000 万元(人民币)采购需求:本项目预算总金额为363万元,共分为5个包,其中:A1包:多功能酶标仪等设备(接受进口产品),预算金额:109万元;A2包:移动式小动物麻醉机等设备(接受进口产品),预算金额:51.5万元;A3包:全自动无创血压测量系统等设备(接受进口产品),预算金额:72万元;A4包:液晶数码生物显微镜等设备(接受进口产品),预算金额:44万元;A5包:冷冻切片机等设备采购(接受进口产品),预算金额:86.5万元。合同履行期限:详见附件本项目( 不接受 )联合体投标。获取招标文件时间:2023年03月18日 至 2023年03月24日,每天上午8:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:青岛市市北区敦化路138号甲西王大厦24楼23A01室或者邮件报名方式:以下方式二选一:(1)现场报名:须携带加盖单位公章的营业执照副本复印件及现金,按照上述时间、地点获取招标文件。(2)邮件报名:有意参加本次采购活动的投标人填写项目名称、项目编号、包号、公司名称、联系人、联系电话、邮箱、营业执照扫描件及标书费汇款底单发送至shzbqdb@163.com,邮件名称命名为:中国海洋大学多功能酶标仪、单细胞悬液制备仪等设备采购项目-“投标单位名称”。未按规定报名的投标人其报名无效。开户银行:兴业银行青岛市北支行,开户名:山东盛和招标代理有限公司,银行账号:522130100100053768,提交标书费须从投标人基本账户或一般账户转出,电汇时须备注2023-058-包号、资金用途注明标书费。未按规定报名的投标人其报名无效,本项目实行资格后审,获取招标文件成功不代表资格后审通过,招标文件售后不退。售价:¥300.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:中国海洋大学地址:青岛市崂山区松岭路238号联系方式:崔老师 0532-667819792.采购代理机构信息名称:山东盛和招标代理有限公司地址:青岛市市北区敦化路138号甲西王大厦24楼23A01室联系方式:孙萌、张蕾、肖颖梦 0532-67737979 3.项目联系方式项目联系人:孙萌、张蕾、肖颖梦电话:0532-67737979
  • 多功能单细胞显微操作系统FluidFM BOT的原理与应用介绍
    瑞士Cytosurge AG公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、细胞培养系统合为一体的单细胞操作系统,采用不同孔径的微型纳米注射器,可实现单细胞注射(Injection)、活细胞内物质提取(Extraction)、单细胞分离(Isolation)、粘附力测定(Adhesion)、纳米打印(Nano-printing)等多种功能,全程机械臂操纵,将污染风险和人为误差降到低,提高工作效率与实验可重复性,具有高度自动化、操作速度快与操作度高等特点,能够在单细胞水平上为研究者提供大的便利,可应用于单细胞质谱、单细胞力谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。北京大学生命科学学院公共仪器中心的多功能单细胞显微操作系统FluidFM BOT,是国内套多功能单细胞显微操作系统,于2020年9月顺利安装于金光楼126室并开始试运行,由公共仪器中心覃思颖老师负责接样测试与维护管理。目前本中心的FluidFM BOT系统已成功应用于单细胞注射与物质提取(小鼠体外培养原代海马神经元、昆虫叶蝉细胞、MDA-MB-231细胞等)、单细胞分离(植物细胞原生质体、U2OS细胞等)与粘附力测定(细菌侵染细胞时细菌的粘附力、血管内皮细胞对不同基底的粘附力等)等多方面科研需求。以下是多功能单细胞显微操作系统FluidFM BOT的多个功能应用与实例介绍。FluidFM BOT结合原子力系统、微流控系统于一体(https://doi.org/10.1021/nl901384x)FluidFM BOT功能应用单细胞注射实例FluidFM BOT可以将多种不同类型的可溶性物质注入细胞核或细胞质中,可量化注射体积(fL别),可实现批量注射(每小时注射超过100个细胞),尤其适用于使用传统方法难转染的细胞,且对细胞几乎没有损伤。CHO细胞的Lucifier Yellow染料注射C57小鼠体外培养原代海马神经元DIV7的Dextran染料注射(北大生科院数据)活细胞内物质提取实例FluidFM BOT系统的活细胞内物质提取功能十分温和,可直接用微型纳米注射器吸取活细胞的细胞质或细胞核中的物质,无需经过化学或生物学手段进行破膜处理,不会产生裂解的细胞碎片,不会对内部细胞器造成任何破坏,可用于电镜成像、酶活检测、核酸表达检测、代谢组学、基因测序等多方面研究。活细胞提取物可结合电镜观察、酶活测定、转录检测等分析手段(http://dx.doi.org/10.1016/j.cell.2016.06.025)HeLa细胞的细胞质物质提取单细胞分离实例FluidFM BOT可进行无损细胞分离,对于悬浮细胞,可将细胞吸取并转移释放即可。对于贴壁细胞,可在探针的样品池中加入消化液如胰酶,对指定位置的细胞进行消化,然后再进行吸取与转移释放。FluidFM BOT实现的单细胞分离存活率很高,结合单细胞注射可实现快速转染细胞并建立单克隆细胞群,对于工程细胞株的建立十分有效。植物原生质体的单细胞分离(北大生科院数据)贴壁细胞CHO的单细胞分离粘附力测定实例FluidFM BOT系统通过负压将细胞吸附在探针针孔处,对细胞的吸附力比蛋白结合更加牢固,能够直接将细胞从基底上分离。这种方法不需要激活细胞的任何信号通路,可以得到接近细胞原生的数据。不同的探针针孔直径(2、4、8um)可适用于不同大小的细胞粘附力测定,我们甚至可使用孔径为300nm的探针进行更小个体的吸附与粘附力测定,目前在本中心的FluidFM BOT系统已成功应用于金黄色葡萄球菌侵染大鼠肠上皮细胞时的细菌粘附力测定(nN别)。不同大小的单细胞粘附力测定(https://doi.org/10.1038/s41598-019-56898-7)纳米打印实例FluidFM BOT系统还是一台纳米打印设备,可以在实验器材上铺设特定的基底膜,如打印亲水或亲脂性物质,从而实现对细胞贴壁的操纵,构建不同的细胞模式,实现对细胞信号转导机制、肿瘤细胞群落迁徙、神经细胞树突或轴突形成的研究。CMD基底打印cRGDfK的细胞贴壁生长Pattern研究(DOI: 10.1021/acs.langmuir.8b03249)多功能单细胞显微操作系统在高性能单元的监控下,通过全自动的工作站实施操作,可确保实验的平稳、顺利的进行。探针有多种孔径规格可选,也可结合FIB技术进行探针定制,结合不同的探针可实现各式各样的应用,以上仅展现部分应用,更多的新功能有待各位老师与同学结合自己的课题需求进行探索与发掘,欢迎大家联系前来测试样品!
  • DISEASE In A DISH | 基于诱导多功能干细胞iPSC来源的药物研发
    山中伸弥(Shinya Yamanaka),京都大学iPS细胞研究所所长,因在“诱导多功能干细胞(induced Pluripotent Stem Cell, iPSC)”的卓越贡献,被授予2012年诺贝尔生理或医学奖[1]。“iPSC来源于病人体细胞,有望为重大疾病的新药开发提供强有力的治疗工具。” "IPS cells can become a powerful tool to develop new drugs to cure intractable diseases because they can be made from patients' somatic cells." by Shinya Yamanaka. [2]—山中伸弥对iPSC在临床应用方向寄予厚望iPSC是生物学里界内的一个重要里程碑。研究发现哺乳动物成熟体细胞能够重新编程为诱导多功能干细胞,且细胞能够进一步发育成各种其他器官类型的细胞。这一发现不仅彻底改变了人类对细胞和器官生长的理解;同时,通过对人体细胞的重新编程,为重大疾病治疗提供了崭新的应用前景。iPSC 的商业应用主要有以下四个领域:1)药物研发,2)细胞治疗,3)毒性筛选,4)干细胞生物银行。[3]iPSC商业化的四个关键领域(图片源自BioInformant)相对与其他治疗方法,iPSC用于细胞治疗的关键优势在于伦理法规和即用型(off-on-shelf)定制。与胚胎干细胞不同,iPSC来源成体而非人类胚胎,伦理风险小;另一方面,借助基因工程技术,iPSC允许创建针对不同疾病的基因定制细胞系,同时降低免疫排斥风险,以实现即用型可大规模生产的细胞治疗产品。[4]距iPSC研究获诺贝尔奖7年后,2019年 Fate Therapeutics公司宣布首个iPSC来源的CAR-NK细胞免疫产品FT596获批新药临床研究申请。FT596源自诱导多能干细胞,除靶向CD19专利CAR以外,还具有CD16(hnCD16)Fc受体和IL15受体片段,以增强其抗体依赖性细胞毒性(ADCC),并促进NK细胞和CD8 T细胞增殖及活化。Fate Therapeutics公司的iPSC产品平台已获得100多项专利批件和100多项待批专利申请组合,用于大规模生产通用NK细胞和T细胞产品。iPSC来源的细胞疗法已开启细胞治疗3.0时代,有望改善目前细胞疗法“批量到批量”工程化生产中成本高昂、工艺费时及产品显著异质性等现状。FT596设计图示(图片源自Fate)在实际研发操作过程中,iPSC 来源的细胞分化培养面临着独特挑战。iPSC来源的神经元细胞通常需要进行长期培养(在同一个384孔板上培养长达数周),以获得相对成熟的细胞。而且,我们会经常使用老年病人来源的细胞样本来模拟疾病,进一步增加培养的周期。然而,随着培养时间的增加,细胞污染和聚团的风险也会增加;长期培养还会使每孔的细胞数具有更大的可变性;以及复杂的细胞表型会极大增加药物评价的难度。基于诱导多功能干细胞iPSC来源的药物研发平台(图片源自Evotech)带着这个行业难题,让我们去国际顶尖的生物科技公司Evotech一探究竟。Evotec公司总部位于德国汉堡,在欧美市场共有15个分部,在药物研发领域有20多年的经验积累,与数十家国际生物制药巨头有长期合作。在整个药物研发管线布局中,最引人瞩目的是其业内一流的基于诱导多功能干细胞iPSC来源的药物研发平台。借助于该平台,Evotec从病人群里中获得细胞源,并以此建立涵盖20多种疾病的200多株iPSC生物银行,进一步培养、扩增及诱导分化后,通过自动化样品处理、多模式检测及高内涵表型筛选系统组成的一体化质控分析平台,完成多种疾病模型的药物筛选和针对个体病人的细胞治疗工作。[6][蓝色-细胞核;绿色-神经元标志物 TuJ1;蓝色-皮层神经元标志物-TBR1];高内涵表型筛选平台用于iPSC来源的X染色体脆折症研究 (图片源自Evotec)基于XLII cell::explore和Explorer G3工作站,Evotec和PerkinElmer共同开发了一个自动化平台,用于工业级别iPSC来源细胞的培养。该平台处于配备层流的无菌环境中,支持384孔iPSC来源细胞的全自动培养,包括细胞接种、培养基更换和化合物处理。由专门设计的专用数据库管理孔板的处理和跟踪,对iPSC来源的细胞进行常规监控,以检查污染物、细胞密度或聚团以及进行智能软件决策,为进行大规模HTS检测的iPSC来源细胞类型增加了必不可少的质量控制组成部分,任何不符合QC标准的培养皿都会被自动放入隔离培养箱中。扫描下方二维码,即可下载高通量人源iPSC分化细胞培养和自动化质控应用相关资料。参考文献1.https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/2.https://www.brainyquote.com/authors/shinya-yamanaka-quotes3.https://mp.weixin.qq.com/s/bPaO6xj956XmVEAJYTKLPA4.https://medicalxpress.com/news/2017-08-off-the-shelf-cell-therapies-multiple-myeloma.html5.https://fatetherapeutics.com/pipeline/immuno-oncology-candidates/ft596/6.https://www.evotec.com/en
  • 单细胞质谱流式技术解析生物材料体内免疫应答
    p style=" text-align: justify "   span style=" color: rgb(0, 112, 192) " strong   span style=" text-indent: 2em " 前言:质谱流式细胞仪(CyTOF) /span /strong /span /p p style=" text-indent: 2em " 质谱流式细胞技术的核心融合了流式细胞技术与质谱技术。目前质谱流式细胞技术采用的仪器是CyTOF(Cytometry by & nbsp Time-Of-Flight),其原理简单来说是利用质谱原理对单细胞进行多参数检测的流式技术,既继承了传统流式细胞仪的高速分析的特点,又具有质谱检测的高分辨能力。 span style=" text-indent: 2em " 传统流式细胞技术和质谱流式细胞技术相比,主要有两点不同:1.标签系统的不同,前者主要使用各种 span style=" text-indent: 2em color: rgb(0, 112, 192) " strong 荧光基团作为抗体的标签 /strong /span , span style=" text-indent: 2em color: rgb(0, 112, 192) " strong 后者则使用各种金属元素作为标签 /strong /span ;2.检测系统的不同, strong span style=" text-indent: 2em color: rgb(0, 112, 192) " 前者使用激光器和光电倍增管作为检测手段 /span /strong ,而 span style=" text-indent: 2em color: rgb(0, 112, 192) " strong 后者使用ICP质谱技术 /strong /span 作为检测手段。 /span /p p style=" text-align: justify text-indent: 2em " 近日,浙江大学医学院欧阳宏伟教授课题组在 strong 《Applied Materials Today》在线发表最新论文“Single-cell mass cytometry reveals in vivo immunological response to surgical biomaterials” /strong 。该研究运用 strong 单细胞质谱流式技术 /strong 分析了两种生物材料(聚丙烯补片和丝素补片)在软组织修复过程中的系统性免疫反应特征,比较了两组外周血免疫细胞的比例以及与免疫细胞中激活、迁移相关的功能标志物表达情况,显示丝素补片具有更好的生物相容性。 /p p style=" text-align: justify "   生物材料已经在临床被广泛应用,如腹部疝修复使用的补片,软骨修复中使用的支架,肌腱重建中使用的人工韧带等等。然而, strong 生物材料植入体内后会引起体内的免疫应答,严重的免疫反应(异物反应)会造成一系列的并发症:疼痛、感染、组织粘连等,使得治疗失败甚至需要二次手术。 /strong 2016年,业界某巨头公司大量疝修复补片产品因考虑到复发率或再次手术率高等因素被其安全团队召回1。因此, strong 生物材料的临床前安全评估和临床监测非常重要 /strong 。但是,目前检测生物材料的检测方法大多是体外实验不能精准模拟体内复杂的环境 或是聚焦于局部免疫反应而缺乏对全身系统性免疫的评估,因此未能准确评估生物材料的安全性,不能有效预测和规避不良后果。 /p p style=" text-align: justify "    strong 单细胞质谱流式是一项通过使用金属标记抗体,质谱检测信号的新型流式技术,近年来已经被广泛应用于细胞分化、肿瘤检测、药物筛选等多个研究领域。 /strong 它具有高通量、高分辨率的特点:在单细胞水平上可同时分析超过40种细胞标志物,可同时检测上百个通道,可用来分析评估复杂细胞系统中细胞亚群和功能标志物表达情况。因此,单细胞质谱流式技术可以作为深度解析生物材料体内免疫应答的“利器”。 /p p style=" text-align: justify "   该研究以外科常见疝修复手术应用的聚丙烯补片和丝素补片为例,首次利用单细胞质谱流式技术评估了这两种生物材料在小鼠腹部缺损模型中引起的系统免疫反应(图1)。结果显示:与聚丙烯补片相比,丝素补片组的外周血中巨噬细胞,单核细胞,中性粒细胞,CD4+ T 细胞,以及CD8+ T 细胞比例更低,免疫细胞比例更接近于对照组 并且免疫细胞激活、迁移相关的功能性标志物 (CD115, CD27, and CD62L)也相对低表达。同时,丝素补片组材料植入处的免疫细胞(巨噬细胞和中性粒细胞)浸润要显著性低于聚丙烯补片组。此外,作者还发现丝素补片组具有较轻的组织粘连和更好的组织修复效果(图2)。这表明系统性免疫应答特征(免疫细胞比例和功能标志物表达情况)可以体现生物材料在体内异物反应的程度,或可作为预测并发症发生和组织修复情况的依据。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 340px " src=" https://img1.17img.cn/17img/images/201906/uepic/8feb1c54-1ba4-4f70-8807-a919671ac9d8.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 340" border=" 0" vspace=" 0" / /p p style=" text-align: center "   图1:运用单细胞质谱流式技术解析材料植入体内后的系统性免疫反应 /p p style=" text-align: justify "    /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/0a7c1d2f-8d2f-4680-8a85-2d2d5bacfee4.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " 图2:两种生物材料植入后的组织粘连和组织修复情况 /p p style=" text-align: justify "   该研究提出了基于单细胞质谱流式的一种高通量高分辨率的生物材料体内系统性免疫应答评估策略,这可为生物材料的临床前安全评估和临床应用监测提供有效手段,为进一步筛选和开发免疫调控性生物材料提供新思路和新方法。 /p p style=" text-align: justify "   植入性医疗器械的快速发展促进人们对医疗服务的要求日益提高,生物材料的安全问题越来越受到重视。生物材料的成分、磨损、代谢、降解产物等带来的风险可以通过不断发展的新型高通量检测技术进行评估。 /p p style=" text-align: justify "   近期浙江大学医学院欧阳宏伟教授实验室基于单细胞质谱流式技术,结合HLLA-seq及生物材料-基因作用图谱策略(NGA),将从单细胞水平、整个机体水平建立起一套完善、系统的评价系统,为生物材料的临床使用保驾护航。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 567px " src=" https://img1.17img.cn/17img/images/201906/uepic/c95b96ea-40c8-4450-a6cf-4bffc9db1862.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 567" border=" 0" vspace=" 0" / /p p style=" text-align: justify "    /p p style=" font-size: inherit font-weight: normal padding: 0px margin: 0px font-family: & #39 Microsoft YaHei& #39 line-height: 40px white-space: normal text-align: center background-color: rgb(255, 255, 255) " a href=" https://www.instrument.com.cn/netshow/SH104342/C325581.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong Helios& reg 质谱流式细胞仪系统 /strong /span /a /p p style=" text-align: justify text-indent: 2em " Helios& #8482 质谱流式系统具有高效简洁的工作流程以及广泛的适用性,通过独创的金属标签抗体技术,标记细胞表面及胞内蛋白,实现单细胞的多参数检测,可以对单细胞进行全面的表型、信号通路及功能研究。 /p p br/ /p
  • 国内首套FluidFM BOT多功能单细胞显微操作系统顺利落户北京大学
    2020年9月,国内套FluidFM BOT多功能单细胞显微操作系统在北京大学生命科学学院顺利安装并交付使用。北京大学多功能单细胞显微操作系统培训现场在单细胞组学研究如火如荼的今天,对单个细胞进行简单、准确的操控分析,包括单细胞基因编辑、单细胞质谱、单细胞力谱、细胞系构建等是该领域亟待解决的难题。FluidFM BOT是瑞士科技公司Cytosurge开发的单细胞显微操作平台,它有的微型纳米注射器以及液体微流控技术使得FluidFM BOT可以轻松实现对单细胞内容物的自动化无损提取,整机操作方便,提取的样本品质高。 有的微型纳米注射器同时FluidFM BOT多功能单细胞显微操作系统还可以实现对单个细胞进行注射、分离,单细胞粘附力测定、3D打印等诸多功能,真正实现了多功能单细胞显微操作。多功能详情:单细胞注射无损注入的将不同类型的物质准确注入到细胞质或者细胞核。量化的fL别注射。注射后细胞存活率95%。每小时可注射100个细胞。 单细胞提取在不改变细胞生存环境的情况下实现单个细胞的活细胞提取。可单提取细胞质或细胞核,或者同时提取提取细胞质和细胞核。提取后细胞仍可存活。 细胞分离无论悬浮或者贴壁细胞均可分离或者分选。整个过程对细胞无损伤。细胞粘附力测定直接测定单细胞粘附力负压抓取微球进行细胞应力实验生物膜基底纳米打印打印纳米精度的各种生物分子所构成的复杂图案纳米精度的高密度点打印能够快速建立使用诸如蛋白、DNA等物质
  • 德国美天旎发布全自动多功能细胞处理系统CliniMACS Prodigy system 新品
    美天旎全自动多功能细胞处理系统CliniMACS Prodigy® ,是在美天旎磁珠分选MACS® 技术和CliniMACS® Plus系统基础上开发出的一款集合细胞分选、细胞离心、清洗和细胞培养等多种功能于一体的全自动细胞处理系统。自动化、标准化、规模化、集成化的GMP级细胞制备平台CliniMACS Prodigy® 仪器将复杂的细胞治疗实验室整合在一个平台中,通过标准化程序自动控制的方法,配合密闭的无菌管道完成各种复杂的细胞操作,有效避免了人工操作过程中可能出现的失误和污染风险,极大地提高实验效率,保证GMP级细胞制备的可重复性。因此,利用这个稳定而又灵活的平台,可以方便地将基础研究转化到创新性的细胞治疗应用中。美天旎全自动多功能细胞处理系统CliniMACS Prodigy® 应用:移植工程——CD34造血干细胞富集移植工程——TCRαβ+T / CD19+B细胞去除细胞治疗——CD14单核细胞分选及MoDC诱导生成细胞治疗——T细胞转导(TCR-T / CAR-T)细胞治疗——细胞因子捕获系统(CCS-IFN-γ 富集)细胞治疗——CAR-NK细胞制备干细胞制备——间充质干细胞分离与扩增干细胞制备——多能干细胞制备干细胞制备——多巴胺前体细胞分化干细胞制备——心肌细胞分化创新点:美天旎全自动多功能细胞处理系统CliniMACS Prodigy® ,是一款集合细胞分选、细胞离心、清洗和细胞培养等多种功能于一体的全自动细胞处理系统,将复杂的细胞治疗实验室整合在一个平台中,通过标准化程序自动控制的方法,配合密闭的无菌管道完成各种复杂的细胞操作,有效避免了人工操作过程中可能出现的失误和污染风险,极大地提高实验效率,保证GMP级细胞制备的可重复性。因此,利用这个稳定而又灵活的平台,可以方便地将基础研究转化到创新性的细胞治疗应用中。 全自动多功能细胞处理系统CliniMACS Prodigy system
  • 多功能单细胞显微操作技术在病毒研究中的应用 ——在单病毒粒子--单细胞水平上研究病毒的感染
    病毒的感染研究通常是在大量细胞实验中进行的,一般要将许多培养细胞同时暴露于病毒中,这就使得研究单个病毒侵入事件和研究病毒在单个细胞之间的感染传播十分困难。多功能单细胞显微操作FluidFM技术通过温和的、微通道和力反馈控制的探针,将单个病毒粒子突破性的沉积在选定的单个细胞上,从而实现前所未有的控制,在单个病毒粒子--单个细胞水平上研究病毒感染。FluidFM技术可以帮助阐明关于毒性、病毒复制或宿主免疫应答的基本问题,从而促进新型抗病毒药物和疫苗的开发。放置单个病毒粒子单个病毒粒子可以被放置在您选择的细胞上的确切位置注入单个病毒粒子直接将单个病毒粒子注入特定细胞的细胞质或细胞核中测量生物量的变化测量细胞硬度的变化和单细胞力谱对感染细胞进行分离、提取和分析分离被感染的细胞,或进行单细胞活细胞提取,进而进行测序、质谱等分析观察和监测通过集成的成像系统和追踪软件对细胞进行长时间连续监测 FluidFM技术如何提升您的病毒学实验? 1. 在病毒感染方面获得全新的视角FluidFM技术为病毒学研究引入了新的实验可能性,允许在贴壁细胞培养中控制病毒粒子与您所选择的细胞进行的相互作用。这为我们提供了全新的视角:细胞进入和感染机制方面;细胞反应、病毒协同性和病毒生命周期阶段;增殖,扩散率和细胞间感染方面FluidFM操作病毒的工作原理 2. 量化宿主防御和病毒协同性通过在细胞上放置一定数量的病毒粒子,宿主细胞对病毒的防御就可以被量化。因此,可以研究感染概率、宿主防御的局限性以及病毒粒子之间的合作关系。1个病毒粒子通过FluidFM微管的空心悬臂准备放置。图片由苏黎世联邦理工学院P. Stiefel提供。4个病毒粒子沉积在一个选定的单细胞上。图片由苏黎世联邦理工学院P. Stiefel提供。 3. 监测病毒在细胞间传播FluidFM技术一体机集成了CO2和温度控制的活细胞模块,同时也集成了成像模块。这保证了受感染细胞的细胞培养环境,并与软件支持的自动追踪功能一起,允许长时间观察受感染或操纵受感染细胞。这使得我们可以详细了解病毒感染是如何从宿主细胞传播到邻近细胞乃至传播到其他培养细胞的。 4. 将单个受感染细胞导入正常培养基,或将单个正常细胞导入处理培养基轻柔地从贴壁或悬浮培养中取出单个细胞,以高的精度定位地将其放入另一个孔板中,这样的操作可以充分保证细胞的活力。使得将单个感染细胞引入健康培养基后的进一步研究成为可能。同样的方法也可以用于将健康细胞、耐药细胞或药物处理后的细胞放置于受感染的培养基中。分离单个细胞 5. 单细胞活细胞的提取,以便进一步分析FluidFM技术可以根据形态学或荧光标记从培养物中分离出单个细胞。在保持完全存活的情况下,这些感兴趣的细胞可以在新的培养皿中扩增,或进行进一步的蛋白质组学或转录组学分析。甚至可以进行单细胞活细胞检测,如Live-Seq、TOF等。 6. 从感染的单细胞中获得单细胞力谱FluidFM探针集成了力学反馈功能,允许定量的机械相互作用,可达pN别的力学分辨率。测量由单个细胞感染引起的生物物理变化,如硬度的变化,粘附力的变化,甚至质量的变化。因此,FluidFM可以将病毒在宿主细胞上引起的形态变化与机械变化联系起来。单个细胞从完全贴壁、融合的培养状态中被拽离出来,并记录单细胞力谱。视频由德国Würzburg大学医药与牙医科学院A. Sancho和J. Groll提供参考文献:[1]. Koehler, M., Petitjean, S.J.L., Yang, J., Aravamudhan, P., Somoulay, X., Lo Giudice, C., Poncin, M.A., Dumitru, A.C., Dermody, T.S. & Alsteens, D. Reovirus directly enganges integrin to recruit clathrin for entry into host cells. (2021) Nature communications, 12, 2149.[2]. J. Yang, J. Park, M. Koehler, J. Simpson, D. Luque, J.M. Rodriguez & D. Alsteens. Rotavirus Binding to Cell Surface Receptors Directly recruiting a-integrin. (2021). Advanced Nanobiomed Research.[3]. Guillaume-Gentil, O., Rey, T., Kiefer, P., Ibáñez, A. J., Steinhoff, R., Brönnimann, R., Dorwling-Carter, L., Zambelli, T., Zenobi, R., & Vorholt, J. A. (2017). Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. Analytical Chemistry, acs.analchem.7b00367.[4]. Guillaume-Gentil, O., Grindberg, R. V., Kooger, R., DorwlingCarter, L., Martinez, V., Ossola, D., Pilhofer, M., Zambelli, T., & Vorholt, J. A. (2016). Tunable Single-Cell Extraction for Molecular Analyses. Cell, 166(2), 506–516.[5]. Guillaume-Gentil, O., Zambelli, T., & Vorholt, J. A. (2014). Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab on a Chip, 14(2), 402–414.[6]. Guillaume-Gentil, O., Potthoff, E., Ossola, D., Dörig, P., Zambelli, T., & Vorholt, J. A. (2013). Force-controlled fluidic injection into single cell nuclei. Small, 9(11), 1904–1907.[7]. P. Stiefel, F.I. Schmidt, P. Dörig, P. Behr, T. Zambelli, J. A. Vorholt, and J. Mercer. Cooperative Vaccinia Infection Demonstrated at the Single-Cell Level Using FluidFM. Nano Letters, 2012.
  • Science子刊| 多色免疫荧光标记联合转录组测序助力解析宫颈癌的单细胞分子特征
    宫颈癌是全世界女性第四大常见恶性肿瘤,每年可造成30多万人死亡。宫颈鳞癌(CESC)作为宫颈癌主要病理类型约占75%,通常经历由正常宫颈到宫颈上皮内瘤变再到CESC的发生和进展过程。然而,CESC进展过程中上皮和微环境细胞相互作用关系及其关键分子途径的发展尚不清楚。2023年1月27日,山东省肿瘤医院于金明院士、岳金波教授团队与解放军总医院第五医学中心刘兵研究员团队合作在Science Advances杂志上发表了题为Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression的研究论文。为宫颈癌的诊疗提供了疾病诊断与预后的生物标志物和潜在的治疗靶点。为了阐明了宫颈上皮细胞的转录致瘤轨迹并揭示了 CESC 启动和进展中涉及的关键因素,文章作者对来自对四组13例不同病变阶段的宫颈组织(包括NC、CIN、早期CESC和晚期CESC)的起始和进展过程中,上皮细胞、巨噬细胞、NK和T细胞、内皮细胞、成纤维细胞的转录组变化及亚群特征进行了深入探索。该研究通过单细胞转录组测序,进行了单细胞RNA测序(scRNA-seq)构建了宫颈鳞癌发生和进展过程中的细胞和分子特征图谱,发现了大量肿瘤发生和进展相关的新的细胞亚群和分子。在此基础上,提出了针对“CESC生态系统“进行分析的必要性,尤其是考虑到免疫系统是作为一个动态的整体,简单对于单个细胞亚型的描述不足以展现更大的”全景“。围绕这个目标,在文章中通过大量的转录组数据,研究者发现几个细胞簇的相对丰度显示与较短的存活期显着相关:CCL20 +Mac、APOE+Mac、epi7、CD56+NK、TH17、耗尽的CD8 +T、PODXL+EC、TNFRSF9高Treg和 mCAF。相反,其他细胞簇的丰度与更长的存活率显着相关:pDC、CD16+NK、GZMK+CD8+T、ZNF683+CD8+T、CLEC9A+DC、epi8和肥大细胞。 实验部分除了转录组测序相关之外,作者使用TissueGnostics公司TissueFAXS Plus全景组织细胞定量分析系统获取图像。在长存活率相关的因素中,作者重点提出了CESC中的epi8的高相对丰度可以促进我们观察到的高水平T细胞浸润从而增强与肿瘤细胞的串扰。文中作者表示,尽管对 CESC 进行了大量的转录组分析,但这些方法无法提供对主要细胞参与者、它们的相互作用伙伴以及驱动疾病发生和发展的关键分子途径的高分辨率洞察,尤其是CAF,作为肿瘤微环境中的关键组成部分,其通过多种机制促进恶性生长和侵袭 ,而且空间 CESC 信息对于理解细胞簇的位置及其相互作用很重要,但在 scRNA-seq 分析的解离过程中存在丢失。多重免疫荧光标记与转录组测序为了揭示了 mCAF 和 vCAF 的两个主要亚群,作者选择使用TissueFAXS Cytometry技术了,通过多重免疫荧光标记验证了它们在人类 CESC 中的存在,发现 mCAF 表达高水平的与促肿瘤途径相关的基因(主要位于富含胶原蛋白的基质条纹内),以及细胞间相互作用分析表明,mCAF 可主要通过 NRG1/ERBB3途径促进 CESC 进展,该途径参与抗雄激素对前列腺癌的抗性,在之前的研究中尚未报道。这部分内容也是TissueGnostics公司的TissueFAXS Cytometry技术在关键领域取得的最新科研进展之一。Fig 1 CESC样本组织切片中的T细胞(PAN-CK(红色)、HLA-DR(蓝色)、IDO1(绿色)和CD3(灰色))的多重免疫荧光标记图像。在较短存活期显著相关的因素中,作者研究了CESC进展过程中基质癌相关的呈现为细胞(mCAF)的亚群特征,发现mCAF可能促进CESC的进展,并进一步发现其作用机制是通过NRG1/ERBB3 通路来实现的。Fig 2 多重免疫荧光CESC组织样本中mCAF和vCAF上的特异性标记物。Fig 3 mCAF肿瘤特异性配体-受体对的多重免疫荧光标记,包括NRG1-ERBB3和Wnt5A-FZD6。&bull 单细胞测序技术完成了细胞水平的组学研究,但是获取的信息内缺失了细胞的空间分布信息。如果想要补充细胞的空间位置表型,就需要引入多重免疫荧光技术。多色免疫荧光技术通过单细胞分辨率的组织成像,能够多靶点、可视化地描绘细胞的复杂空间位置信息,从而揭示细胞间的相互作用关系,细化微环境的空间结构。&bull 单细胞测序技术与多重免疫荧光技术的结合能够多层次、多角度、多组学地研究肿瘤微环境及免疫微环境,同时获悉胞间联系、基因空间变化等信息,并赋予关键基因的细胞分布信息和组织分布信息,从而更加精准地研究疾病相关分子机制并探索潜在的治疗靶点。同时作者也在讨论部分,使用TissueFAXS Cytometry技术生成的数据,可以针对人体组织进行更详细的研究,以回答 scRNA-seq 无法解决特定问题。
  • 北京基因组所等解析NK细胞白血病功能基因组
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   侵袭性NK细胞白血病(ANKL)起源于NK细胞异常增殖,病情进展迅速,多数患者在极短的时间内发生多器官衰竭,部分患者还会出现吞噬血细胞的现象,病情凶险。ANKL患者即使积极接受正规治疗,平均生存时间也仅有几个月。目前,临床上ANKL的治疗面临两大问题:患者对传统化疗方案不敏感,医学界没有统一的治疗标准和指南;NK细胞白血病发病具有明显的地域差异,在亚洲(报道病例多以中国、日本、韩国为主)和中南美洲更常见,国际上以往只有少数病例的零散研究。NK细胞白血病发生发展的分子生物改变不明确,这制约着临床医生选择和制定有效的治疗方案。 /p p   NK细胞白血病患者的基因组发生了哪些改变?分子水平的变化是否能提供新的治疗策略?中国科学院北京基因组研究所王前飞研究组,联合华中科技大学附属武汉同济医院周剑锋团队,首次运用多种组学测序技术和功能试验结合的方式回答了上述问题。11月17日,相关研究成果以 em Integrated Genomic Analysis Identifies Deregulated JAK/STAT-MYC-biosynthesis Axis in Aggressive NK-cell Leukemia /em 为题,在线发表在 em Cell Research /em 上。 /p p   研究团队对近50例中国ANKL患病人群进行基因组、转录组以及代谢组的整合分析,结果显示,JAK/STAT信号转导通路的基因在NK细胞白血病中频繁发生突变。突变增强了JAK/STAT的信号传递功能,促使下游能够控制细胞代谢水平的MYC基因活化,进而一批参与代谢功能的基因过量的表达,NK白血病细胞呈现了代谢极其旺盛的特点(核苷酸和糖的代谢最突出);研究人员进一步通过疾病模型的一系列功能研究,证实了上述发现。此外,研究人员发现了在NK细胞白血病中携带能够修改遗传物质的表观修饰基因的突变,如TET2等基因。 /p p   该项研究揭示,NK细胞白血病存在代谢活跃的特征,这提示传统化疗方案联合抗代谢药物如左旋门冬酰胺酶可以有效缓解疾病进展;研究发现的JAK/STAT通路以及高度活化的MYC基因,也是开展新型治疗的靶点。依据该成果,周剑锋团队已启动相应的临床试验,致力于寻找能够治疗NK细胞白血病的有效方案。该原创性研究成果彰显了我国在NK细胞白血病研究和治疗领域实现自主创新的能力和信心,将引起更多科研人员和临床医生对恶性NK细胞白血病的关注。 /p p   研究工作获得自然科学基金委、科技部、中科院重点部署等的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122411423608568.png" src=" http://img1.17img.cn/17img/images/201711/uepic/b47a2669-8dcd-4cdd-b0f7-a100fe072802.jpg" uploadpic=" W020171122411423608568.png" / /p p style=" text-align: center " img alt=" " oldsrc=" W020171120490093627118.gif" src=" http://img1.17img.cn/17img/images/201711/uepic/13c03bae-3fbe-434f-9205-5b4e1f8ca4b1.jpg" / ANKL发病机理模型及潜在的治疗新靶标 /p
  • 多功能单细胞显微操作系统2023年度用户峰会 暨FluidFM 技术应用研讨会圆满落幕
    2023年5月18日-19日,由北京大学生命科学学院,蛋白质科学研究(北京)国家重大科技基础设施北京大学基地,Quantum Design中国子公司,瑞士Cytosurge公司共同举办的多功能单细胞显微操作系统2023年度用户峰会暨FluidFM 技术应用研讨会圆满落幕。本次会议共有北京大学、清华大学、中国科学院、中国医学科学院等高校和科研单位的50余名老师和学生参加,旨在为来自世界各地的研究人员、学者搭建一个良好的交流平台,展示他们借助多功能单细胞显微操作系统FluidFM技术取得的创新性成果,为参会人员提供更多的启迪。会议邀请了瑞士Cytosurge公司首席商务官、Quantum Design中国子公司的应用科学家详细介绍了单细胞基因编辑、活细胞单细胞测序Live-Seq、生物力学等领域的前沿应用。同时,也邀请了来自北京大学、苏黎世联邦理工学院(ETH)和瑞士联邦理工学院(EPFL)的科学家就FluidFM技术应用于单细胞粘附力测定、Temporal transcriptomics through Live-seq和Pick and place of neuronal cells and spheroids using FluidFM for the construction of neuronal networks等话题做了相关专题报告及学术探讨,得到了与会老师的一致认可。另外,本次会议还发布了FluidFM技术应用的全新进展,即活细胞单细胞测序Live-Seq技术的样本制备方案。这将给国内Cytosurge单细胞显微操作系统的用户打开一扇全新的应用之门,为火热的单细胞测序技术添砖加瓦。会议现场精彩瞬间:翌日,来自北京大学的覃思颖老师和Quantum Design中国子公司的应用科学家胡西博士为来自全国各地的老师同学进行了上机演示和实操,现场就一些关键技术问题展开了热烈的交流。会议加深了老师们对Quantum Design中国公司的了解,拓展了对FluidFM技术应用的新思路。
  • 实验室细胞培养 ——桑翌向您推荐全尺寸多功能CO2培养箱
    细胞生长曲线测定,这些问题你遇到过么?下图是一个典型的细胞生长曲线图 细胞增殖的研究方法有很多,主要包括:BrdU,EdU,CCK8,MTT等方法。其中测定细胞生长曲线是检测细胞绝对生长数的常用方法,也是判定细胞活力的重要指标,是细胞生物学特性的基本参数之一。因为细胞太小,无法测单个细胞的生长状态,所以测细胞群体的生长曲线。在做细胞生长曲线测定过程中,我们经常遇到以下几个问题:1、如何选择细胞接种数?答:可根据细胞传代培养过程中接种数及细胞生长周期进行计算,细胞接种数因细胞的不同而不同。2、细胞生长曲线测定时为什么要做重复孔?答:测定细胞生长曲线细胞计数时选择 3 个复孔,每孔分别计三次,取其平均值,目的是减小操作误差。3、细胞生长曲线测定周期是几天?答:一般是一个星期。4、为什么绘制的细胞生长曲线没有达到平台期?答:可能有以下原因:一是细胞接种密度过低;二是细胞培养时间过短;三是细胞生长状态不好,使其不能正常增殖。5、为什么细胞计数第一天,细胞数没有增加反而减少?答:一般细胞传代后,会有一个生长缓慢的潜伏期,细胞不增殖,而细胞会有正常的死亡,故细胞数不增加反而减少。6、细胞生长曲线还有其他方法绘制吗?答:当然有。我们提到最多的是直接计数的方法,除此以外还有相对计数的方法,该类方法首先要绘制标准曲线,标定细胞数和某个变量的函数关系,然后我们只需要测定每天这个变量的值便可以计算出细胞数。常用的是 MTT、CCK8 等比色的方法实验室细胞培养 ——桑翌向您推荐全尺寸多功能CO2培养箱 WIGGENS全尺寸CO2培养箱。培养箱内设置多层活动托板,可用于T瓶,培养皿,微孔板等静态培养;培养箱内有电源插口,可以放置摇床,磁力搅拌器等用于细胞的动态培养。底部有专用的滚瓶机滚轮槽,方便使用滚瓶机进行细胞培养。WIGGENS 的下列产品,可以放在CO2培养箱中使用,拓展CO2培养箱功能和提高利用效率:1、 WIGGENS二氧化碳培养箱专用振荡器,解决了二氧化碳培养箱内的振荡问题。独创的防腐蚀,分体式设计等,满足二氧化碳培养箱动态培养解决方案。 振荡器在培养箱中的摆放位置2、CELLine微型细胞工厂专用于连续,超高密度培养。既可以用于悬浮细胞培养或贴壁细胞培养。CELLine二室技术示意图3、滚瓶机用于贴壁细胞培养 4、飞旋瓶用于悬浮细胞和贴壁微载体细胞培养,专用磁力搅拌器提供飞旋瓶搅拌动力。
  • 浅析光谱流式市场格局:玩家加速布局,成像技术/AI大势所趋——安捷伦细胞功能和表型业务总经理王小波博士
    前文回顾:新品光谱流式重拳出击,见证NovoCyte十年流式普及“里程碑”2024 年是 NovoCyte流式细胞分析平台全球推出10周年。多年来,NovoCyte产品系列中陆续加入了技术先进、功能强大的NovoCyte Quanteon、Advanteon与Penteon,帮助科学家不断拓展推进细胞分析前沿研究。上篇,在与安捷伦细胞功能和表型业务总经理王小波博士的采访交流中,我们了解到新品NovoCyte Opteon光谱流式细胞仪具有先进的光谱解析功能、友好的用户界面以及提供可定制的模块,能够满足研究人员特定的研究要求,并将在基础科研、生物技术以及工业领域发挥举足轻重的作用。本篇,王小波博士将继续围绕光谱流式的市场格局进行分享。——01——光谱流式市场格局+技术趋势仪器信息网:相比于传统流式,光谱流式技术有那些优势?现阶段的光谱流式市场竞争格局如何?王小波:流式细胞仪技术能够实现单细胞分辨率水平对与细胞表面结合的荧光标记抗体或细胞内蛋白进行检测。对于常规流式细胞仪,每个具有对应荧光染料的抗体都由一个荧光通道检测。例如,具有25个检测通道的 NovoCyte Quanteon可以测量多达25 种抗体,或者用于检测单个细胞的25种蛋白质或生物标志物。光谱流式细胞仪可以实现在整个荧光发射光谱中检测来自与单个细胞结合的所有荧光色素的组合荧光。通过光谱解混,可以分辨每种荧光染料的荧光贡献。光谱流式细胞仪可以为用户提供更好的功能来区分和检测具有相似发射光谱的荧光染料,去除自发荧光,并最终增加抗体/荧光染料组合的总体数量,以获得更深入的生物学见解。如上所述,自索尼生物技术公司于2013年推出第一台商用光谱流式细胞仪SP6800以来,光谱流式细胞仪已成为近年来市场上的技术趋势。索尼生物技术不断扩大其光谱流式产品组合,现在他们的分析仪产品包括7激光ID7000以及FP7000光谱分选仪。Cytek的光谱流式平台包括具备5激光的Aurora系列、具备3激光的 Northern Lights系列以及具有5激光Aurora CS光谱分选仪。BD拥有一款光谱流式分选仪S8和具备5激光的A5 SE。在 CYTO 2024上,贝克曼库尔特宣布计划推出具有6激光的CytoFlex mosaic,赛默飞世尔计划推出Attune Xenith 光谱流式细胞分析仪等等。安捷伦NovoCyte Opteon是一款高性能、高质量、高可靠性的仪器,具有NovoCyte平台的直观性、易用性和简单性——易于测量、易于分析、易于获得结果且易于维护。 我们相信NovoCyte Opteon具有将光谱流式带入日常实验室进行复杂、精密的单细胞分析方面的潜力。NovoCyte Opteon 光谱流式细胞系统品牌:安捷伦型号:NovoCyte仪器信息网:请您谈谈流式细胞仪器技术的发展趋势。流式细胞术亟待拓展的应用领域以及未来市场需求、技术挑战又如何?王小波:除了上面讨论的光谱流式趋势外,最近成像技术已被纳入一些流式系统,包括BD的 S8、NanoCellect的Verlo以及Thermo Fisher的Attune CytPix。2004 年推出的第一台流式成像仪器是Amnis平台,凭借显微镜的分辨率和灵敏度,成像流式能够助力细胞分析更深入的研究。 最近的成像流式平台,如BD的S8和NanoCellet的Verlo,已经与分选功能相结合,允许用户根据形态或生物标志物对目标群体进行分选,从而提供重要的潜在价值。另一个技术趋势与人工智能在流式细胞术中的应用有关。ThinkCyte和 DeepCell都开发并推出了创新的无标记成像平台,用于对细胞进行成像、表征和分析,然后根据细胞特征进行细胞分选。这些技术可以为客户提供独特的价值,以分析缺乏成熟生物标志物的复杂细胞样品。 人工智能应用的另一个方面与高维数据分析相关,用于自动识别细胞免疫表型,特别是基于临床流式在疾病或恶性肿瘤样本诊断应用中,提高效率、减少错误的同时可能帮助使用者发现以前未被识别的关联的潜在生物学标志物或病理过程。流式细胞术是以数十万和百万个细胞进行高维多通路分析的最强大的技术,在生命科学研究和人类医疗保健方面具有巨大潜力。 更多参数、更多功能、更快、更高通量以及更温和的细胞处理和更强大的分析技术可能会涌现出来,并将其广泛应用于所有生物实验室。——02——设备更新下安捷伦细胞分析产品布局规划仪器信息网:在大规模设备更新的背景下,安捷伦细胞分析可以提供哪些设备更新整体解决方案呢?王小波:随着测量设备的技术更新,安捷伦细胞分析可以提供广泛的仪器组合,从常规的日常使用仪器,如微孔板洗板机和分液器、自动化微孔板检测仪,到相对复杂的仪器,如自动细胞成像仪、自动化微孔板培养箱,再到高端复杂的仪器,如 BioTek Cytation C10共聚焦微孔板成像检测系统,BioTek Cytation 7多功能微孔板成像检测系统,NovoCyte Opteon光谱流式细胞仪,xCELLigence实时细胞分析系统, 将实时细胞阻抗分析与活细胞三色荧光成像技术相结合RTCA eSight, 以及Seahorse 实时细胞代谢分析系统。安捷伦将帮助中国的科学家获得最新、最先进的仪器和解决方案,使他们能够推进细胞生物学、癌症研究、免疫疗法开发和临床诊断方面的研究和开发。Agilent BioTek Cytation C10品牌:安捷伦型号:Cytation仪器信息网:请分享安捷伦在细胞分析技术产品的布局和未来规划。王小波:通过多次收购,安捷伦建立了广泛的细胞分析产品组合,包括酶标仪、细胞分液及洗涤仪器、细胞成像平台、流式细胞术和其他技术独特的平台,如 xCELLigence RTCA实时细胞分析仪以及Seahorse实时细胞代谢检测平台。 广泛而差异化的产品组合使我们能够为复杂的研发项目和计划提供完整的解决方案。Agilent xCELLigence RTCA eSight 实时细胞分析仪品牌:安捷伦型号:RTCA安捷伦Seahorse XF Pro细胞能量代谢分析仪品牌:安捷伦型号:安捷伦Seahorse细胞作为生命的基本组成部分,成为免疫治疗和细胞基因治疗的研究基础。细胞分析在现代生命科学和治疗发展中发挥着越来越重要的作用。科学家们在细胞生物学基础研究过程中,对于采用高通量、高度多路复用和多重参数测量的技术来获取数据的需求不断增长,目的是以经济、高效且节省时间的方式,获得高质量的数据和更深刻的细胞生物学理解。未来,安捷伦细胞分析仍然要不断提高自身产品技术以及扩展在生命科学的应用和工作流程,贴近用户需求,为用户提供差异化和高价值的服务, 帮助用户取得更多高水平成果, 以期推动生命科学的进步和人类健康的发展。(编辑:刘立东)欢迎流式细胞仪技术研发、市场趋势、展会见闻感悟投稿。投稿邮箱:liuld@instrument.com.cn点击下图回顾上篇
  • 颜宁等在《细胞》发文报道ABCA1的冷冻电镜三维结构
    p   2017年6月8日,清华大学生命学院、结构生物学高精尖创新中心颜宁研究组在《细胞》(Cell)杂志在线发表了题为《人源脂类外向转运蛋白ABCA1的结构》(Structure of the Human Lipid Exporter ABCA1)的研究论文,首次报道了胆固醇逆向运输过程中的关键蛋白ABCA1近原子分辨率的冷冻电镜结构,为理解其作用机制及相关疾病致病机理奠定了重要基础。 /p p   胆固醇广泛地存在于高等动物的各类组织细胞当中,它不仅是细胞膜、血浆脂蛋白的重要组成部分,也是包括胆酸、维生素D、类固醇激素在内的许多特殊生物活性分子的前体化合物。但是,人体内过量的胆固醇积累会促进血管动脉粥样硬化的发生和发展,并有可能导致严重的心脑血管疾病(如冠心病及中风等)。正因为胆固醇对于人体健康具有两面性,所以细胞内的胆固醇平衡(cholesterol homeostasis)对于维持人体的健康是必须的。细胞内的胆固醇平衡涉及一系列受严格调控的过程(图1),例如低密度脂蛋白受体介导的胆固醇摄取、以乙酰辅酶A为原料的胆固醇合成、SREBP/SCAP/Insig信号通路介导的胆固醇代谢转录调控、NPC1/NPC2介导的胆固醇胞内转运、ABCA1/ABCG1介导的胆固醇逆向运输(reverse cholesterol transport)等。 /p p   颜宁教授研究组一直以来都在针对胆固醇代谢调控通路进行系统的结构生物学与生物化学研究,在近年开始取得进展。她们相继解析了胆固醇感应蛋白Insig在分枝杆菌中同源蛋白的晶体结构(Ren et al., Science, 2015) 裂殖酵母SREBP、SCAP各自C端可溶结构域的晶体结构以及可溶结构域复合体的冷冻电镜结构(Gong et al., Cell Research, 2015 Gong et al., Cell Research, 2016) 人源胆固醇胞内转运蛋白NPC1的冷冻电镜结构(Gong et al., Cell, 2016)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/a6900dcb-ad18-4a7e-a91e-12ed9266aba4.jpg" title=" 1.jpg" width=" 600" height=" 590" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 590px " / /p p style=" text-align: center " 图1. 细胞内胆固醇平衡的整体示意图(图片来源:《Methods in Molecular Biology》) /p p   胆固醇逆向运输是指将肝外组织细胞内的胆固醇通过血液循环转运回到肝脏,在肝脏中进行代谢转化再排出体外的过程。胆固醇逆向运输可以通过将过量的胆固醇从动脉血管壁细胞排出体外来阻止泡沫细胞的形成,从而抑制动脉粥样硬化的发生和发展。胆固醇逆向运输过程的第一步是ABCA1将包括磷脂和胆固醇在内的脂类向细胞外运输,然后与细胞外的脂类受体载脂蛋白A-I(apolipoprotein A-I, apoA-I)结合从而形成初生高密度脂蛋白(nascent HDL)。高密度脂蛋白HDL被认为是对人体有益的,脂类的外排和与apoA-I的结合是HDL形成的限速步。之前的研究还发现,人体中的ABCA1突变会导致HDL缺乏症,包括丹吉尔病(Tangier disease)和家族性HDL缺乏症(familial HDL deficiency)。虽然ABCA1作为胆固醇逆向运输过程中的关键蛋白,同时在动脉粥样硬化等疾病的发生和发展过程中具有关键性的作用,但是目前对于ABCA1的结构及其介导的脂类外向转运和初生HDL形成的机制大部分都是未知的。 /p p   在最新的《细胞》论文中,来自清华大学的科研人员首次解析了人源ABCA1全长蛋白的近原子分辨率冷冻电镜结构,其中整体结构为4.1埃,关键的胞外区结构域为3.9埃。ABCA1属于ABC (ATP-binding cassette)超家族,这是第一个ABCA亚家族的高分辨率结构,结构显示它具有非常特别的胞外区结构域。虽然ABCA1的核酸结合结构域(nucleotide-binding domain, NBD)处于未结合核酸的状态,但是它的跨膜区却意外的处于“向外开放”(“outward-facing”)的状态,而以前报道的所有ABC外向转运蛋白在未结合核酸时都处于向内开放(inward-facing)的状态。ABCA1的胞外区形成了一个非常独特的结构,其中包含了一个长的疏水孔道(elongated hydrophobic tunnel),为进一步的功能研究提供了非常关键的线索。ABCA1的高分辨率结构,也为理解之前大量疾病突变的致病机制提供了重要基础。最后基于结构分析,她们针对ABCA1介导的磷脂外向转运提出了一个侧向进入(lateral access)的转运模型,这个模型不同于以往绝大部分主动转运蛋白和次级转运蛋白所采取的交替转运(alternating access)模型。在交替转运模型中,转运蛋白的跨膜区在转运过程中需要交替的呈现向内开放和向外开放的形式,从而实现将底物从膜的一侧向另一侧转运 然而在ABCA1的侧向进入模型中,跨膜区即使在“向外开放”的情况下,底物依然可以从细胞膜的内叶(inner leaflet)侧向进入跨膜区的底物结合口袋,因此ABCA1在转运过程中可能不存在一个“向内开放”的状态(图2)。总的来说,ABCA1结构的解析不仅为理解其作用机制及相关疾病致病机理奠定了重要基础,同时也丰富了我们对跨膜转运蛋白工作机理的理解。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/2548f4ef-8828-4815-b1f8-52ad21318001.jpg" title=" 2.jpg" width=" 600" height=" 598" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 598px " / /p p style=" text-align: center " 图2. 人源ABCA1蛋白的结构模型及其介导磷脂外向转运和初生HDL形成的示意图 /p p   CLS项目13级博士生钱洪武和结构生物学高精尖创新中心卓越学者龚欣博士(医学院博士后)为本文的共同第一作者,颜宁教授和龚欣博士为本文的共同通讯作者。CLS项目16级博士生赵馨和医学院15级博士生曹平平也参与了该项课题研究。本研究获得了清华大学冷冻电镜平台雷建林博士、李小梅和李晓敏的大力支持。国家蛋白质科学中心(北京)清华大学冷冻电镜平台和清华大学高性能计算平台分别为本研究的数据收集和数据处理提供了支持。科技部、基金委、生命科学联合中心-清华大学、生物膜与膜生物工程国家重点实验室、北京市结构生物学高精尖创新中心为本研究提供了经费支持。 /p
  • Nature、Cell等高水平文献带您解析:单细胞组学研究过程中保持细胞存活的全新方案!
    目前,单细胞组学分析大都依赖于将细胞裂解的方案,单细胞活检是少有的非侵入性的单细胞分析方法,它允许研究人员在不杀死细胞的情况下获取细胞的转录组信息,单细胞组学通过分离和分析单个细胞的分子成分来阐述细胞异质性。从单细胞活检中获得的基因表达谱是裂解方案获取细胞转录组的全面升级 (Chen et al., Nature, 2022)。FluidFM OMNIUM在单细胞组学研究中的特征:多功能单细胞显微操作系统- FluidFM OMNIUM,可以自动、高效的完成单细胞提取或单细胞注射实验,可有效应用于原位活细胞基因测序Live-seq和单细胞活检,让研究人员能够在不杀死细胞的情况下对细胞进行转录组测定,从而为单细胞转录组学带来新的范式。在表型分型前记录细胞转录组。记录随时间推移的转录事件,以揭示分子成分如何影响细胞行为。直接链接单个细胞的历史和生长轨迹,揭示过去的细胞状态和了解细胞的谱系决定。在接受特定疗法之前和之后,对异质性疾病的单细胞进行活检,以确定用于早期药物开发的分子标签。FluidFM OMNIUM进行单细胞活检的显著优势:无创单细胞活检在不改变基因表达、细胞表型或细胞间相互作用的情况下获得可靠的结果。通过活检对单细胞进行连续和实时监测FluidFM提取保留细胞活力:在相同的运行中从相同的细胞中提取几次或随时间周期性地提取。分析时间序列基因表达单细胞转录组序列分析Live-seq活细胞单细胞测序和单细胞活检是如何进行:Live-seq活细胞单细胞测序方法将FluidFM OMNIUM系统与高灵敏度的低输入RNA-seq方案配对。FluidFM OMNIUM可以从活单细胞的细胞室中提取亚皮升体积,然后分离提取物进行进一步分析。通过避免破坏性方法(如细胞裂解),可以在同一细胞上进行进一步的下游分子和表型分析,甚至随着时间的推移进行转录组分析。这将为您的转录组学、代谢组学、蛋白质组学或任何其他组学研究引入发展路径分析而不是终点分析。专属的——在FluidFM操作软件中内置了专属的Live-seq应用工作流程。易用的——仅需在电脑界面上用鼠标进行指向和点击的操作即可。先进的——空心的、具有力学感应的FluidFM探针(请参考下面FluidFM探针图)FluidFM探针:用金字塔的横截面可以看到镂空的中间通道。FluidFM技术进行单细胞组学研究相关文章:使用Live-seq进行全基因组测序来自中国科学院深圳先进技术研究院的陈万泽研究员等展示了Live-seq活细胞单细胞测序技术的建立,这是一种利用FluidFM技术提取RNA并保留细胞活力的单细胞转录组分析方法。通过使用巨噬细胞暴露于脂多糖(LPS)的模型,他们能够根据影响巨噬细胞LPS反应异质性的能力进行全基因组排序。此外,研究表明Live-Seq可用于连续描绘LPS刺激前后单个巨噬细胞的转录组。这使得细胞轨迹的直接映射成为可能,并将scRNA-seq从终点法跨越到突破性的时间分析方法。W. Chen, O. Guillaume-Gentil, P. Yde Rainer, C. G. Gä belein, W. Saelens, V. Gardeaux, A. Klaeger, R. Dainese, M. Zachara, T. Zambelli, J. A. Vorholt & B. Deplancke. Live-seq enables temporal transcriptomic recording of single cells. (Aug 2022) Nature, doi:10.1038/s41586-022-05046-9.单细胞提取质谱联用来自ETH的Guillaume等利用FluidFM技术,通过亚皮升分辨率无损定量地提取细胞内液,然后进行飞行时间质谱分析。通过这种方法,他们从单个HeLa细胞质中检测和鉴定了几个代谢物。通过13C-Glucose摄取实验进行了验证,这表明代谢物采样结合质谱分析是可能的,同时保留了生理环境和被分析细胞的活力。O. Guillaume-Gentil, T. Rey, P. Kiefer, A.J. Ibáñ ez, R. Steinhoff, R. Brö nnimann, L. Dorwling-Carter, T. Zambelli, R. Zenobi & J.A. Vorholt. Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. (May 2017) Anal Chem., 89(9), 5017-5023. doi:10.1021/acs.analchem.7b00367.单细胞提取后细胞内分子成分分析来自ETH的Guillaume等证明了使用FluidFM以亚皮升的分辨率对单细胞的细胞质和核质部分进行定量采样,然后对从细胞质或细胞核中提取的可溶性分子进行全面分析,包括检测酶活性和转录丰度等。O. Guillaume-Gentil, R.V. Grindberg, R. Kooger, L. Dorwling-Carter, V. Martinez, D. Ossola, M. Pilhofer, T. Zambelli & J.A. Vorholt. Tunable Single-Cell Extraction for Molecular Analyses. (Jul 2016) Cell, 166(2), 506-516. doi: 10.1016/j.cell.2016.06.025.相关产品1、多功能单细胞显微操作系统- FluidFM OMNIUM
  • iCCA2023报告摘要|单细胞分析技术专题
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)8月31日,第六届细胞分析网络大会(iCCA2023)特设【单细胞分析技术】专题会场,12位嘉宾在线分享!在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023  (点击报名)分会场设置日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术iCCA 2023 交流群 精彩报告 速览 微流控芯片质谱联用细胞药物代谢分析方法研究林金明 清华大学 教授【摘要】细胞是生物体结构和功能的基本单位。了解细胞的组成、结构和功能,探索细胞的生命活动,对于人类认知与掌控生物体生命活动的基本规律有着十分重要的意义。微流控芯片技术,结合先进的质谱检测、分子成像、生物信息学等技术,为细胞生物学研究提供了强有力的研究平台,也为改变细胞生物学的研究方式提供了可能。本次讲座将结合我们研究组近期的科研工作,简要介绍微流控芯片质谱联用技术在细胞药物代谢领域的进展和研究成果,探讨微流控芯片技术在中药的代谢分析研究中所面临的挑战和发展方向,为扩大其在生物医学领域的研究和应用提供参考和可能的思路。 基于有源数字微流控的单细胞分选和操控系统马汉彬 中国科学院苏州生物医学工程技术研究所 研究员【摘要】 相对于传统数字微流控,有源矩阵数字微流控基于薄膜半导体技术,其阵列规模、样本体积和操控精度均有指数级提升。该平台能够高效的生成大规模微滴阵列,无需借助微纳结构,便可实现单细胞微滴样本生成,并在二维平面内进行样本的可编程控制。高通量单细胞分泌分析技术研究陆瑶 中国科学院大连化学物理研究所 研究员【摘要】分泌是细胞的基本行为,介导通讯、免疫保护等功能。由于细胞存在异质性,往往只是细胞群中的小部分细胞主导分泌相关功能,群体细胞检测无法分辨这些多功能性细胞,必须发展单细胞分析工具进行相关研究、应用。但传统单细胞分泌分析技术存在检测信息不全面的不足,难以满足研究、应用需求。基于此,我们利用微流控芯片发展单细胞分泌因子多维、动态、互作等创新分析技术,显著提高了当前活体单细胞分泌分析技术检测能力,在药物/疫苗开发、疾病诊断、免疫学研究等领域具有重要的科学意义和十分广阔的应用前景。实时单细胞多模态分析仪的应用丁琳 江苏瑞明生物 高级产品经理【摘要】实时单细胞多模态分析仪的应用案例 (1)助力药物开发和药物载体开发; (2)检测细胞代谢标志物,信号分子和酶活为生物传感器开发提供表征工具。。单细胞结构脂质组学及生物医学应用马潇潇 清华大学 长聘副教授【摘要】单细胞分析是揭示细胞间异质性的关键技术,对基础生物学研究,疾病标志物筛查及新药研发均有重要意义。目前,单细胞脂质组分析仍面临诸多技术挑战。本报告介绍本团队在单细胞结构脂质组技术及应用方面的最新研究进展。单细胞固有电学特性高通量流式分析技术研究赵阳 中国科学院微电子研究所 副研究员【摘要】面对单细胞固有电学特性测不快、传感原理不明等难题,我们提出一种基于交叉压缩通道的检测方法,将检测通量提升了1万倍。并设计了一种基于物理模型快速求解器的实时阻抗流式细胞分析仪(piRT-IFC),实现了“细胞进,结果实时出”的全流程自动化处理能力,并验证其在未知细胞样本上具有相较神经网络加速方法更好的泛化能力。基于单细胞测序的肿瘤免疫研究:从机制到疗效预测胡学达北京百奥智汇科技有限公司 副总裁【摘要】 靶向 CTLA4、PD-1 和 PD-L1 等免疫检查点抑制剂(Immune Checkpoint inhibitor, ICI)的发现和临床应用彻底改变了癌症临床治疗的局面。免疫治疗为抗肿瘤带来突破,但只有部分患者发生响应,建立响应与持久性精准预测体系是目前该领域最关键的科学与临床问题。通过单细胞组学研究ICI治疗过程中肿瘤微环境免疫细胞动态演化规律与互作特征,能够发现具有抗肿瘤特异免疫响应驱动作用的细胞类型与分子标记。我们鉴别了不同患者对PD-1治疗不同耐药机制,寻找在响应或耐药患者中差异富集的细胞类型和特征表达基因,作为克服PD-1单抗耐药的治疗靶点创新智造助力单细胞组学标准化和规模化左亚军 深圳华大智造科技股份有限公司 产品市场中心产品经理【摘要】 创新智造助力单细胞组学标准化和规模化 1. MGI 单细胞组学全流程解决方案 2. 单细胞行业进入湿实验标准化时代 3. DNBelab C系列单细胞新品和应用案例。新一代中通量FISH技术、自动化仪器开发及其在精准诊断中的运用曹罡 深圳理工大学 教授【摘要】生物大分子(蛋白质、DNA、RNA等)在组织、细胞内的精确定位对生命体维持正常功能扮演着重要角色。在单细胞水平高通量的检测生物大分子的原位空间组学新技术对理解生命的重要生理功能及疾病的发生发展有着重要意义。目前从一代测序到高通量基因测序技术和单细胞测序都需要从细胞、组织提取核酸,丢失基因的空间位置与病理、组织学特征等信息,只能获得一个维度的基因序列信息。空间基因原位测序与原位检测技术可以整合基因序列信息与空间位置信息,必将对基因测序与病理诊断有着巨大的推动作用!近年来我们实验室开发了相关的高通量单细胞生物大分子(蛋白质、DNA、RNA等)空间组学和新一代FISH解析技术的开发及其仪器开发。此外,我们也将这些技术运用到肿瘤精准诊断中,以期推动肿瘤的精准治疗。单细胞核酸编码扩增分析赵永席 西安交通大学生命分析化学与仪器研究所 教授【摘要】团队开发的肿瘤类器官精准药物芯片筛选(Tumor Organoid Precision Medicine On-chip Screening Platform, TOPMOS)平台可在短时间内高通量培养出大小可控、均一性高的肿瘤类器官,实现高仿生化模拟体内微环境和高精度模拟体内药代动力学,能与现有常规检测设备匹配,实现多药物多浓度的快速药敏测试。单细胞转录组学解析前列腺管腔干细胞身份属性以及谱系可塑性郭旺昕 深圳湾实验室 博士后(高栋课题组)【摘要】前列腺成体干细胞身份属性的解析对研究前列腺组织的损伤修复和肿瘤起始都具有重要的意义。然而正常前列腺成体干细胞的身份属性存在巨大的争议,是前列腺研究领域悬而未决的重要科学问题。因此,我们利用单细胞转录组测序技术系统分析了35129个正常成年雄性小鼠前列腺细胞,发现前列腺管腔细胞可以分为Luminal-A、Luminal-B和Luminal-C三个细胞亚群。进一步阐述了Luminal-C细胞通过自我更新和分化维持前列腺管腔细胞谱系,证实了Luminal-C细胞可以作为前列腺肿瘤的起始细胞。单细胞测序技术与应用解析崔淼 深圳湾实验室 工程师/测序平台负责人【摘要】近几年来,单细胞测序技术发展迅速,与传统测序方法相比起来,其对解决生物材料的低获取量和生物异质性等问题尤为重要。凭借这一技术,研究者们可在单细胞水平上面研究生物进程和一些疾病的发生发展,包括肿瘤进化和癌变、早期胚胎发育、神经细胞异质性等。本次报告将从多方面逐一介绍单细胞测序技术:包括单细胞测序技术概念及发展历程、单细胞测序技术原理及实验设计、单细胞测序技术操作流程及注意事项、单细胞测序条件选择、单细胞测序技术应用等。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 细胞分析技术,破译生命密码的金钥匙
    安捷伦首届细胞分析创新峰会圆满落幕,尽情展现细胞分析技术的尖端应用 序曲 奇妙的细胞地球上第一个有生命的细胞诞生距今已有三十八亿年[1],然而直到三百五十多年前[2],科学家通过特殊的显像工具方才一睹它的真容。有赖于不断革新演进的细胞分析技术,如今,研究人员能够深度解析细胞结构、代谢、微环境以及细胞生命周期活动中的动态变化,为以细胞模型为基础的多学科应用及产学研转化提供强力的技术支撑。在全球领先的细胞分析技术阵营,安捷伦已成为极具影响力的企业。五月下旬,安捷伦在沪隆重举办了首届细胞分析创新峰会,并为享誉全球科研学术界的安捷伦 BioTek Cytation 产品家族面世十周年举办了庆典。与会嘉宾与安捷伦高层共同见证安捷伦 BioTek Cytation 产品家族面世十周年(左起:安捷伦细胞分析事业部大中华区总经理罗绍光,安捷伦大中华区行业拓展与应用创新团队经理安蓉,安捷伦副总裁兼大中华区业务总经理杨挺,安捷伦大中华区高级市场总监郑欣,安捷伦大中华区销售拓展团队总经理朱颖新)300 多位来自多领域的专家、学者及科研人员到会,与安捷伦高层以及技术工程师共同探讨了先进的细胞成像与分析技术在多学科中的深度应用。峰会聚集并展现细胞分析与研究领域前沿的理论与发现,各种思维与智慧的碰撞与交织,合奏出一曲细胞礼赞的乐章。第一章 问世十年,Cytation 助力生命科学研究持续开拓胞罗万像,聚力新生。安捷伦首届细胞分析创新峰会以此为主题,直观反映出细胞分析应用的丰富多样,也体现出细胞分析研究的目标——解读生命,改善生命。多位学界专家汇聚于此次峰会,期待深入交流安捷伦细胞分析技术在不同科研领域展现出的能力和价值,为各自今后的科研工作提供参考借鉴。问世至今正好十年,安捷伦BioTek Cytation毫无疑问成为本届峰会的主角。十年前,安捷伦BioTek推出了BioTek Cytation 3细胞成像微孔板检测系统,以及增强显微镜的概念,由此创造出一款自动化解决方案,帮助研究人员完成从图像采集到获取可发表数据的全过程。Cytation 3借助其丰富的功能与极具竞争力的价格,推动了自动化成像的广泛应用。为中小型实验室开启了自动化成像的大门。安捷伦副总裁兼大中华区业务总经理杨挺致开幕词安捷伦副总裁兼大中华区业务总经理杨挺在致辞中表示,十年来,Cytation 已经进驻全国近1000家实验室,让用户在自己的实验室全面掌控活细胞分析流程的应用,助力他们在细胞与生命研究领域里持续开拓。尤其是过去三年,人类与病毒和疾病抗争的这段经历,促进了生命科学领域新型研究工具的开发和利用。在这一特殊时期,以安捷伦Cytation 为代表的,基于活细胞、多参数、实时、高通量的多功能细胞成像与检测技术,为身处一线的科学工作者提供了有力的技术支撑。 第二章 细胞科研的夜空,群星闪耀安捷伦邀请了不同学科、以及跨学科的杰出代表,通过学术报告分享并探讨了他们的科研进展。在峰会上分享学术报告的专家(上排左起:郑明彬教授,刘嘉莉副教授,罗克博士 下排左起:印彤研究员,江宽副研究员,刘回民副教授)深圳市第三人民医院郑明彬教授分享了“微纳仿生药物可视化诊疗“进展。他使用 Cytation 在 3D 细胞球进行微纳仿生药物的靶向富集验证,并就微纳技术在疾病精确诊断和精准治疗方向提出了前瞻性见解。 中国药科大学刘嘉莉副教授介绍了“基于类器官的靶组织药动-药效时空异质性研究”及其拓展应用。她使用安捷伦 Lionheart 自动细胞成像仪进行 3D 细胞瘤球培养与检测,并基于 3D 细胞模型建立了空间异质性单细胞 PK/PD 评价新方法,希望通过外源性的药物代谢动力学和内源性的代谢进行cross talk去找到相关的内源性代谢的靶标和干预的策略。 伯桢生物(bioGenous)CTO 罗克博士(Dr. Emmanuel Enoch K. Dzakah)做了题为“Bioimaging in Organoid Technology: Application and Perspectives”的专题报告。类器官是近十年来干细胞研究最令人振奋的进展之一,伯桢生物在类器官技术开发与医药研发应用领域进行了非常深入的探索。罗克博士特别提到,类器官模型的高通量成像采集和分析对于类器官形态特征评价、药物高通量筛选和药效评估至关重要。此外,Cytation可以用于记录和分析类器官和其他细胞如免疫细胞的相互作用过程,因此在肿瘤免疫调节类抗体药物、免疫细胞疗法的药效评估上展现出巨大潜力。 上海交通大学医学院附属瑞金医院研究员印彤博士介绍了“国家转化医学中心(上海)质谱平台助力精准医学研究”进展。基于安捷伦Seahorse的细胞能量代谢分析是质谱平台新开展的业务,Cytation 作为细胞能量分析系统的联用设备,可以轻松实现活细胞能量代谢数据归一化,获得更准确的有生物学意义的细胞能量代谢数据。复旦大学附属眼耳鼻喉科医院江宽副研究员介绍了“流式细胞仪助力脂质纳米药物体内过程研究”进展,借助基于流式细胞术的机体细胞分离与鉴定技术,阐明脂质纳米药物体内与细胞互作及细胞间转运过程,进而明晰机体对脂质纳米药物调控机制,将极大助力脂质纳米药物的临床转化。吉林农业大学刘回民副教授安捷伦BioTek 自动化成像产品不仅被细胞分析、基础医学、药物开发等领域的研究人员广泛使用,而且也在农业研究、植物发育和食品科学中也有诸多应用。刘回民副教授介绍了Cytation 5 细胞成像多功能微孔板检测仪以及Seahorse细胞能量代谢分析系统如何帮助他实现“玉米黄素促进白色脂肪细胞棕色化的分子机制研究”。研究了植物来源的天然化合物在代谢性疾病(肥胖,糖尿病,非酒精性肝炎)中的作用机制。在这些现场学术报告以外,安捷伦细胞分析的应用专家团队也着力向各方嘉宾介绍了Cytation多功能细胞成像与分析技术、流式细胞术、RTCA 非标记细胞分析以及Seahorse 细胞能量代谢分析技术的前沿应用进展,并陪同现场的参会嘉宾一起参观了演示仪器,解答用户关心的实验和使用问题。 第三章 聆听客户需求,优化产品功能报告嘉宾在峰会期间也对 Cytation 和其他细胞分析技术给予肯定的评价,以及激动人心的期待。深圳市第三人民医院郑明彬教授讲到,Cytation在他的实验室里利用率非常高,并且他对其软件功能十分赞赏。郑教授的科研课题需要使用Cytation进行纳米机器人相关的监测,观察病毒是怎么被吞噬和吐出,因此要求设备具有极高的镜头捕捉效率。郑教授期待未来的Cytation着力打造出更先进、更专业的硬件,能够不仅用于细胞科研,而且能够拓展到合成生物学和细菌、甚至更小的物质研究领域。中国药科大学刘嘉莉副教授的实验室需要研究样本的时空表达差异,因此需要对不同样本的空间整体进行成像。实验室正在使用Lionheart成像产品以及Synergy H1酶标仪。她期待能够实现通过不同的license安装在不同电脑上,实现一台电脑成像,另一台电脑分析结果,以此节省时间提升实验效率。她也了解到最新的Cytation C10内嵌了共聚焦的功能,十分期待能够尝试使用。伯桢生物(bioGenous)CTO 罗克博士十分喜欢他正在使用的Cytation C10,因为它既可以实现共聚焦成像,又可以承担酶标仪的工作,并且还能检测活细胞成像。这样的设计能够帮他在同一时间完成多个实验项目,比如可以一边培养细胞,一边进行检测,这项功能对于细胞治疗这类大部分需要实时拍摄的课题非常适用。他十分期待Cytation C10能够和AI结合,自动帮助研究人员承担部分研究任务。上海交通大学医学院附属瑞金医院的研究员印彤博士认为,除了细胞活力和增殖等基础检测功能非常完备外,Cytation在代谢组学功能研究,即活细胞能量代谢中也可大显身手。此外,在更加前沿的空间代谢组研究中,从Cytation获得的样本图像可与质谱数据整合,获得空间代谢组信息,非常有利于将研究推向深入。印彤博士期待Cytation在帮助研究者应对课题挑战的同时,也能够为中国生命科学的发展带来更多助力。复旦大学附属眼耳鼻喉科医院江宽副研究员使用安捷伦流式细胞仪来检测药物对细胞的影响、细胞如何代谢这些药物,以及两者之间的相互作用。他对安捷伦流式细胞仪的模块化功能和整体应用的简约性十分认可。吉林农业大学刘回民副教授对Cytation系列软件的易用性、尤其对Cytation C10的成像能力十分赞赏。他认为,在传统观念里,涉及食品与农业的应用方向对细胞研究技术没有很高的需求,但是他的研究课题——食源性的天然化合物/功能活性物质,已经开始涉及医学类的需求。他期待Cytation C10不断改进成像功能,能够提供视野更大、分辨率更高的图像。 尾声 细胞分析未来可期,安捷伦推出强力技术组合安捷伦大中华区细胞分析事业部总经理罗绍光介绍部门发展历程和业务战略安捷伦大中华区细胞分析事业部总经理罗绍光在峰会上历数安捷伦细胞分析部门发展历程。自2015年收购 Seahorse Bioscience 公司,将活细胞代谢分析纳入公司重点发力的生命科学技术开始,安捷伦正式踏入了细胞分析领域。此后,安捷伦又于2018年与2019年接连并购了艾森生物(ACEA)和微孔板检测领导企业 BioTek ,正式成立细胞分析部门。借助这些举措,安捷伦开始在生命科学、癌症研究、生物制药、免疫与细胞治疗等前沿科技领域,借助多方位细胞分析技术,为用户提供更有深度、更加完善的解决方案。如今,安捷伦细胞分析事业部拥有极具优势的技术组合:流式细胞分析、微孔板检测、自动化成像以及细胞代谢分析,致力于在生命科学与临床研究以及生物医药产品的开发、生产和质控整个生命周期中,为用户提供简单、精准、可靠的检测方案。通过活细胞动态和表型的实时测量,帮助研究人员充满信心地探索细胞奥秘,揭示独特的细胞生物学机理,发现创新药物靶点,推进临床前毒理学研究,并引领新一代免疫疗法开发。细胞潜力,始于分析。安捷伦首届细胞分析高峰论坛在前沿思维的激荡中告一段落,也为安捷伦细胞分析技术和团队吹响继续前行的号角。在细胞科研的夜空,安捷伦期待能够衬托出更多星星的闪耀光芒。参考文献[1] It appears that life first emerged at least 3.8 billion years ago, approximately 750 million years after Earth was formed. https://www.ncbi.nlm.nih.gov/books/NBK9841/[2] 人类第一次发现细胞是在哪一年 https://zhidao.baidu.com/question/501601301800761404.html
  • 生物药仍是医疗领域“蓝海”,细胞分析技术助力抗体药特异性功能分析
    近年来,抗体药物的接连上市和重磅销售引发国内外抗体类生物治疗药物的研发热潮。抗体药物已经成为治疗肿瘤的明星产品。抗体类生物治疗药物的活性测定在质量控制中至关重要。活性测定是对药物的有效成分和含量以及药物效价的测定,是确保抗体类药物有效性的重要质控指标。相关的生物技术在药物研发质控中的应用对新型抗体药物的发展带来一系列突破。为帮助从事相关研究的用户梳理生物制药质量控制研究技术及方法,仪器信息网特别策划了“抗体药研发的生物活性鉴定及功能分析”相关专题(点击查看)并邀请赛默飞蛋白和细胞分析技术应用高级经理冯彦斌先生分享对于抗体药的看法。他在文中主要分析了国内抗体药物的市场潜力、研发进展以及抗体药研发相关生物活性鉴定和功能分析的先进技术。赛默飞蛋白和细胞分析技术应用高级经理 冯彦斌仪器信息网:您如何看待近年来的抗体药市场发展变化与前景? 冯彦斌:众所周知,近年来中国抗体药物市场规模增长异常迅猛,尽管目前中国总的抗体药物上市批准数量低于欧美,但增速方面已经接近欧美市场的两倍,蕴藏着巨大的潜力和空间。据统计,2018年我国抗体药物产业总体市场规模约183亿美元,预计2020-2025年平均年增长率为~15%,到2025年,我国抗体药的市场规模将超508亿美元。其主要的驱动因素有:1)肿瘤的发病和死亡率上升; 2)我国创新药优化的审评审批流程;3) 带量采购等政策驱动创新需求; 4)抗体药物逐渐被纳入医保目录。自2020年以来,国家药品监督管理局(NMPA)累计受理了超过200款国产抗体新药的临床试验申请。目前抗体药物研究最热门的靶点包括PD-1/PD-L1、TNF-α、VEGF、HER-2、CD20、EGFR 等。抗体药物最重要的应用领域为自身免疫类疾病和癌症(约65%的市场占比)。随着疾病机制的深入研究,抗体药物在哮喘、抗感染、血液病和心血管病领域的药物不断增加,并迅速拓展到其它相关领域。作为未来生物药的主力军,抗体药物创新研发则显得尤为重要。随着单抗生物类似药进入收获期,双特异性抗体、抗体偶联药物(ADC)、纳米抗体等药物市场也异军突起。创新型抗体加快了开发步伐,多种类型的抗体药物有望得到广泛的临床应用。从抗体创新药品种数量和国内产品临床申报数量上看,排名靠前的为恒瑞医药、复星医药、海正药业,而信达生物和康宁杰瑞产品数量超过了10个。创新类抗体药物基于其高特异性、低毒性、低转化周期等特征,将被更广泛地应用于各类疾病的治疗。未来几年,生物药仍是医疗领域的蓝海,也是人类健康的福音,未来发展前景良好。仪器信息网:近年来抗体制药的发展迅速,对于创新研发技术有何促进? 冯彦斌:越来越多的研究表明,抗体药物由于靶向性强、特异性高和毒副作用低等特点,近年来已成为生物药行业中发展最快的分支。截至今日,美国FDA陆续批准了多个个治疗性抗体药物,其中传统单克隆抗体和人源化单抗已成主流,双特异性抗体开始初具规模。但在抗体功能优化、新抗体研发,特别是抗体规模化生产,以及抗体药物如何创新等问题仍是我们面临的巨大挑战。随着分子生物学、结构生物学、生物信息学等技术的发展,人们对抗体结构中各功能区的认识进一步加深,现在已经能够通过修改各功能区的序列、结构来赋予抗体新的特性和功能,这是抗体药物创新的基础。近年来抗体偶联药物(ADC)的发展主要依赖于以下研究领域的进展:①靶抗原及其特异性抗体的临床有效性及安全性得到验证,如靶向Her2 抗原的Herceptin 等;②高效的细胞毒性药物,如:美登素(maytansinoid,DM)、单甲基奥利他汀E(auristatin,MMAE)等;③新的连接臂和交联方法的发展,连接臂是决定抗体偶联药物ADC 药物活性的主要因素之一,它们应该在血液循环中相对稳定,到达靶细胞时通过内化进入细胞内,在溶酶体的低pH 条件下或蛋白酶作用下释放小分子药物。交联方法也从利用赖氨酸的随机连接向利用半胱氨酸的定点交联发展。新型药物拓宽了药物的治疗窗,因此备受关注,成为当前抗体药物发展的热点。持续上升的关注热点和研发投入的加大,使得创新技术也不断涌现。双特异性抗体药物由于其更好的特异性和低毒性,也越来越多地被投入研发管线;新靶点的筛选也一直是抗体药发现的努力方向,但其有效性和安全性需要获得更多的临床数据来验证,同时也有学者提出反向筛选靶向抗原的策略,以期通过反向药理学发现更多的候选靶分子。随着研究的持续深入,更多企业也加强了抗体工程下游技术的优化与整合。如在优化细胞培养条件、改造细胞系、抗体药物的质量控制、细胞培养工艺流程的改进等方面进行了诸多改良和优化。另外,未来基因工程抗体的发展方向将主要集中在通过合理改造抗体序列结构来提高基因工程抗体的药学特性,例如增加抗体药物的稳定性和均一性;通过双特异、多特异抗体以及抗体偶联物技术,赋予基因工程抗体药物新的药效功能;通过Fc 片段改造和糖基化改造,调节原有的效应功能和生物分布特性;通过创造新形式的抗体样分子骨架来发展具有更适宜的生物分布与代谢特性、抗原结合特性、药动学特性的新的“抗体”药物。 仪器信息网:请谈一下相应生物活性鉴定和功能分析的重要性和重要环节是什么?又发挥着怎样的作用?冯彦斌:随着生物制药领域的一大热点,治疗性抗体在治疗肿瘤、自身免疫性疾病、炎症、感染性疾病及其他疾病中取得了重大进展,作为抗体药研发的重点和难点,除了抗体的获取即表达和纯化之外,建立高效、稳定、可信的抗体质量控制分析方法,以及其标准化和先进性是衡量抗体药物相关企业研发能力的重要标准之一。特别是目前研究较为热门的肿瘤特异性抗体功能分析,之前也有提及双特异性抗体甚至多特异性抗体,其最突出的优势就是靶向性强、特异性高和毒副作用低等,所以在其特异性功能分析方向我们也提供足以应对的核心武器。因此,需要关注治疗性抗体的功能研究,通过对特异性抗原结合、抗体介导的细胞毒性作用(ADCC)、补体介导的细胞毒性作用(CDC)、抗体介导的细胞吞噬作用(ADCP)等实验方法进行分析。如在杂交瘤体系构建过程中对于杂交瘤细胞培养、融合、筛选,就可以使用我们的EVOS智能活细胞成像系统对其进行包括增殖及细胞状态的长期成像监测。EVOS M7000 3D数字共聚焦活细胞成像分析系统(点击查看详细参数)对于药理药效、药代及药物安全性评价方面,高内涵筛选分析平台和Varioskan LUX多功能酶标仪,凭借其高效的全自动高通量多靶标筛选功能,以及其后续通过强大多参数数据分析软件多抗体药功能验证进行多维度评价和分析。CellInsight CX7 LZR 激光共聚焦高内涵筛选分析系统(点击查看详细参数)Varioskan LUX多功能酶标仪(点击查看详细参数)Attune NxT流式细胞仪则发挥着更为广泛的作用,通过结合特异性流式抗体对不同种类和亚群的免疫细胞进行鉴定和分析,从而评估机体的免疫功能状态;也可以对细胞的状态和功能进行监测,以实时评估细胞的功能状态和对肿瘤细胞的杀伤作用。Attune NxT流式细胞仪(点击查看详细参数)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制