当前位置: 仪器信息网 > 行业主题 > >

恶臭硫化物在线分析仪

仪器信息网恶臭硫化物在线分析仪专题为您提供2024年最新恶臭硫化物在线分析仪价格报价、厂家品牌的相关信息, 包括恶臭硫化物在线分析仪参数、型号等,不管是国产,还是进口品牌的恶臭硫化物在线分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合恶臭硫化物在线分析仪相关的耗材配件、试剂标物,还有恶臭硫化物在线分析仪相关的最新资讯、资料,以及恶臭硫化物在线分析仪相关的解决方案。

恶臭硫化物在线分析仪相关的资讯

  • 是时候来了解硫化物在线分析了
    硫成分广泛存在于许多用于烃加工的原料中。含硫成分危害很大,有强烈的气味。而且会引起酸雨,导致催化剂(昂贵)中毒,降低聚合物产量。最麻烦的硫气体是硫化氢(H 2S)、羰基硫(COS)和甲基硫醇、乙基硫醇。根据国内的标准要求,这些化合物是要在ppb水平测定。 硫气体的检测困难在于是挥发性的,也非常活泼的。痕量硫分析系统必须是非常惰性的采样设备、GC设置才能实现ppb级可重复的检测结果。 在线监测流程和原理概况: 气体样品定量被采集到在线的低温冷肼吸附填料内,两级冷肼,一级除水,一级将气体样品中的待测组分冷凝到吸附填料上。然后快速升温加热块将装有吸附填料的吸附管迅速升温,待测组分解析后由载气携带进入分析柱内,进行分离,随后进入检测器得出分析结果。 鉴于此,硫化物在线监测体系需要满足如下条件:1 样品的采集、富集、解析、分离和分析,整个过程要自动运行。2 所有样品流经途径接触到的表面都要经过惰性处理,确保美誉任何吸附。3 加热块的迅速升温。4 电子流量控制技术精准控制载气流量。 分离体系是整个体系很重要的一环,由于是在线分析体系,所以选择更加耐用、更加结实的MXT金属柱就是最好的解决方案。1987年RESTEK第一个开发了金属表面进行硅烷化惰性处理的专利技术,对不锈钢的表面进行惰性处理后,其惰性表面甚至比石英毛细柱的表面的惰性还要好。 针对硫化物分析,一个是最常使用的MXT专用填充柱Rt - XLSulfur 分析化合物:中文名称CAS分子式1 硫化氢7783-06-4H2S2 羰基硫463-58-1COS3 甲硫74-93-1CH4S4 乙硫75-08-1C2H6S5 二甲硫75-18-3C2H6S6二甲基二硫624-92-0C2H6S2 分析谱图:分析条件: 色谱柱Rt-XLSulfur, 1 m, 0.75 mm ID (cat.# 19806)浓度1 mL,50 ppbv进样六通阀切换程序升温:60 C - 230 C ,15 C/min载气He, 恒流量流速:9 mL/min检测器FID
  • 穷源溯“硫”——三级冷阱大气预浓缩仪结合GC-MS深入解决大气恶臭污染分析难题
    背景硫化物是典型的恶臭污染物,在石油化工、制药、合成橡胶等工业生产中均会产生硫化氢、硫醇类、硫醚类等挥发性硫化物。这类物质不但嗅觉阈值极低,而且毒性大,危害人类健康。2018年12月,生态环境部发布了《恶臭污染物排放标准(征求意见稿)》,进一步严格了氨、三甲胺、硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳、苯乙烯等8种恶臭污染物的排放和厂界浓度限值。次年发布《固定污染源废气 甲硫醇等8种含硫有机化合物的测定 气袋采样-预浓缩/气相色谱-质谱法(HJ 1078-2019)》,标准规定废气经三级冷阱浓缩,热解吸后GC-MS分析。解决方案图1.谱育科技Pre 4000大气预浓缩仪本方案采用谱育科技Pre 4000大气预浓缩仪对大气中的痕量硫化物进行富集浓缩,Pre 4000采用经典的三级冷阱设计,硫化物经一级冷阱除水后,被二级冷阱填料捕集,将二级冷阱加热,硫化物全部转移至三级空管低温聚焦,三级冷阱快速升温,硫化物被热解吸至GC-MS进行分离检测。图2. Pre 4000的一、二、三级冷阱工作示意图Pre 4000采用创新的斯特林制冷技术,无需消耗液氮或液态二氧化碳等制冷剂,聚焦能力强,而且与样品接触的管路、接头和阀头等部件均采用硅烷化处理,不仅满足HJ 1078-2019硫化物离线分析的要求,还可在线实时监测大气中硫化物浓度变化,同时对硫化氢也有很好的分析效果。01方案特点斯特林制冷,最低温可达-160℃无需消耗制冷剂,降低使用成本全惰性化流路,防止强极性物质吸附,提高分析准确性适用范围广,可离线/在线检测多种VOCs02分析结果图3. 9种硫化物总离子流色谱图1-硫化氢、2-甲硫醇、3-乙硫醇、4-甲硫醚、5-二硫化碳、6-甲乙硫醚、7-噻吩、8-乙硫醚、9-二甲二硫醚;IS-1 氯溴甲烷、IS-2 1,4-二氟苯、IS-3 氯苯-d5、IS-4 4-溴氟苯图3展示了10 ppbv 9种硫化物标气的分析结果,可以看到9种硫化物分离度良好,峰型完美,虽然硫化氢和空气峰存在共流出,但硫化氢的特征碎片34干扰少,可实现准确定性和定量。表 1 9种硫化物的线性相关系数、精密度和方法检出限表1展示了9种硫化物的线性相关系数、精密度和方法检限数据,在2~20 ppbv的浓度范围内各目标物的相关系数R2均在0.993以上,9种硫化物的RSD均在2.0~6.6%之间,方法检出限在40.9~103.4 pptv之间,完全满足HJ 1078-2019的检出限要求。图4. 部分硫化物谱图叠加图5. 部分硫化物线性数据总结
  • 氢风徐来-岛津Nexis SCD-2030助力燃料电池用氢气中硫化物在线分析
    我国 “双碳”目标的提出彰显负责任的大国形象,亦是可持续高质量发展的内在需求。在此宏观愿景下,“零碳排放”的氢能产业方兴未艾,燃料电池汽车作为氢能应用的重要场景,其能量供应体氢气质量的优劣至关重要。近期,中国测试技术研究院技术人员通过长期、深入、系统的研究,开发出一整套燃料电池用氢气中痕量硫化物的低温富集-GC-SCD在线分析系统,研发成果文章发表于Chinese Chemical Letters, 作为分析系统检测部分的核心,岛津的Nexis SCD-2030硫化学发光检测器大显身手。 氢燃料电池是很有前途的能源之一,它可以实现能源的循环生产,避免温室气体或污染副产品的排放。然而,即使在痕量水平(nmol/mol)的硫化物(SCs)也会导致催化剂不可逆的毒化作用,损伤并缩短燃料电池的寿命。此外,高反应活性的SCs可能会在复杂的环境中导致反应产生不同种类和浓度的SCs,为了更好地实时动态的监控SCs含量,在线分析系统至关重要。 在此背景下,研究人员开发了基于不同来源的氢气中9种典型SCs的低温富集与GC-SCD相结合的在线分析系统,结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析。图1. 低温富集-GC-SCD在线分析系统示意图 该系统由基准参考混合气体(PRGM)在线稀释、低温富集和GC-SCD三个主要部分组成,模块编号为1至14,分别代表1:压力传感器、2:开关阀门、3:临界流锐孔、4:H2纯化器、5:质量流量计MFC1、6:三通管、7:质量流量计MFC2、8:气泵、9:六通阀、10:低温捕集阱、11:GC、12:总硫分析用非保留色谱柱、13:形态硫分析用毛细管色谱柱、14:SCD检测器。 图2. 低温富集-GC-SCD在线分析系统数据示意图 混合气体标准物质的GC-SCD色谱图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5),浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol(从内到外)(左)并放大0.1、0.2,0.5和1 nmol/mol(右)。 表1. 某实际样品的数据分析结果表 实验结果表明,该在线分析系统可以实现快速在线、高灵敏度、精密度和准确度测定H2中SCs混合物。如上表实际样品分析案例所示,测定实际样品中的SCs,分析结果可低至0.09 nmol/mol,样品分析时间小于30分钟,证明该在线分析系统是快速、高效测定实际H2样品中痕量硫化物的理想解决方案。岛津新一代Nexis SCD-2030硫化学发光检测器
  • 北京博赛德参加"第六届全国恶臭污染测试与控制技术研讨会"
    为推动我国恶臭污染防治事业发展,促进科研创新能力和产业技术整体水平提高,深化国内外恶臭防治成果和经验的广泛交流,创造产学研合作机遇,国家环境保护恶臭污染控制重点实验室联合恶臭污染控制产业技术创新战略联盟于2016年11月17日-18日在上海召开“第六届全国恶臭污染测试与控制技术研讨会” 作为重要的恶臭技术支持单位,北京博赛德科技有限公司携带先进仪器参加了此次会议。并在会上与专家学者BCT《恶臭污染物的相关采样分析技术》作了报告和交流。 报告分别从实验室分析方案、现场分析方案和连续自动监测分析方案着手,讲述了几种既可以独立使用,又可以相互结合的恶臭采样及分析技术。 实验室分析方案:对于空气中硫化物的常规监测多采用罐现场采样,实验室低温冷阱浓缩—气相色谱/质谱法分析,美国ENTECH公司独特的Silonite硅烷化技术,罐采样技术,以及三级冷阱大气预浓缩技术为该方法提供了坚实的后盾。Silonite硅烷化技术和罐采样技术避免了样品和采样及储存设备发生吸附及化学反应,保证了硫化物样品的稳定。大气预浓缩三级冷阱技术消除了空气中的干扰物质,保证了超低的检测限。报告中还介绍了ENTECHBCT新的1900多罐采样系统,Sorbent Pen被动及主动采样吸附笔等,新的设备实现了罐采样的自动化及不同情况下的不同采样,扩大了采样及分析的应用范围。 现场分析方案:现场分析监测注重的是便携、皮实、可靠、数据实时准确。HAPSITE ER便携式气质联用仪BCT是这么一款轻巧便携,可在移动中连续监测,快速分析出污染物、污染浓度,并给出污染范围和安全区带的精密设备。目前国内许多环境监测部门、卫生疾控系统、安检系统以及一些科研院校等都陆续配备了这套设备,并在很多重大事故中发挥着重要作用。 连续自动监测分析方案:在线连续监测具有重要的意义,一方面可以获取平时的质量数据,为以后决策做出依据,另一方面出现污染事件时,能够及时发现并作出响应。针对大气中的恶臭监测,报告中介绍了一款实时直读的在线大气硫分析仪AE2430,该仪器使用独特的FPD(火焰光度检测器),对空气中低含量的硫化物有着极高的响应值。通过不同配置,可以分别实现对总硫、硫化氢、二氧化硫等的在线分析与监测。 本次会议期间,北京博赛德采用了现场演示产品,现场测样验证的方式,使大家对恶臭相关技术和设备有了更深刻的认识和了解。 美国ENTECH公司是一家专业从事VOCs采样系统的生产商,拥有全球BCT先进、BCT丰富的气体采样设备和气体进样设备的生产经验,尤其是在苏码罐方面,其BCT的Silonite技术是被公认为BCT为先进的硅烷化技术之一。ENTECH的苏码罐采样及大气与浓缩技术得到了用户的一致好评,被美国EPA TO14、TO15方法引做标准。关于博赛德: 北京博赛德科技有限公司成立以来,一直致力于帮助用户寻找先进的有机样品检测的解决方案,从POPs类样品的采集,到各种种类繁多的有机物的前处理以及在线及现场应急监测手段,竭力将全球前沿的科技研究成果带到中国。作为全球众多知名前处理分析仪器生产厂商在华的BCT代理及合作伙伴,其产品主要包括美国CDS、ENTECH、FMS、INFICON、瑞士CTC、意大利DANI、TCR等公司。1900多罐采样系统1900多通道罐采样系统是 Entech全新一代的采集空气样品BCTsilonite® 真空采样罐,并拿到实验室用GC/MS或者GC/MS/FID进行详细分析的解决方案。相对于其他品牌市售采样器,1900在样品流路上做了显著改善,使潜在污染的可能性几乎为零。流路中彻底摈弃了质量流量计与电磁阀,因为在这些器件中都含有弹性的密封材料,而这些密封材料都会释放出VOCs,使得仪器空白很难达到亚PPB水平以下。1900采用了独特的控制方式来启动、终止和控制整个采样过程,维持系统洁净性的同时也注重操作使用的简便性,确保整个系统做到精确的、长时间的积分罐采样。前面板上内置完整版Win10控制器,允许1900进行远程操作,减少现场编程的需要。 ? 内置计算机 Win10触摸平板电脑控制器,自带WIFI功能,和6小时的备用电池。 ? 方便的流量调节1900内置CS1200E时间积分采样器,只需更换限流器即可调节采样的流量范围。对于0.6-6L的罐子可设定流速为0.2-5cc/min,实现24小时采样;也可设定流速为10-400cc/min,进行快速、短期的采样。1900轻松应对各种采样流量的优化调节,可调流速范围为0.1-500cc/min,BCT长可实现6周采样。 ? 系统校正简单 1900每个罐子的入口都有压力传感器,用于压力测量及自动检漏。通过罐子的压力变化速率来测定采样的流速。只要输入已知校正体积填充所需的时间即可自动完成流速校正。此校正简单且长期稳定可靠,可大大减少系统维护的时间和费用。 ? 采样设置灵活:从临时采样到长期监控采样 1900可用几种不同的方法来配置通道1,以提高系统灵活性。 -可设定在不同的日期与时间进行定时采样,也可通过其它传感器或远程采样请求事件触发单个罐子进行采样;-8路扩展通道用于8个采样罐的编程采样,或者扩展为8路事件触发采样;-24个600cc采样罐的外部采样组,用于连续监测C2-C12化合物、空气有毒有害物质、醛酮类物质以及一些恶臭气体。 ? 无加压采样1900采样期间不会对样品进行加压,可避免水气的冷凝,从而提高极性化合物的回收,以及避免因液体冷凝带来的化学反应。吸附笔采样系统?新的EPA325方法2015年秋天刚刚完成?分析苯系物,通过1-2周的被动采样?在欧洲对苯和苯系物有很多非常严格的例行监测 ?使用解析笔和5800检测从苯到二甲苯有很好的结果,有很好的稳定性。吸附笔+ 罐采样?化合物的检出范围BCT大化 ?SVOC被吸附笔吸附,VOC被苏玛罐采集。 ?检测2,3,4环物质BCT好的方法,沸点在250-500℃之间?比其他任何空气监测技术更普遍?气味物质只用苏玛罐无法检测到。 o重的胺类化合物 o脂肪酸 o重的硫化物 便携式气质联用仪仪器简介: 美国INFICON公司是个具有很强的专业背景及200 多年悠久生产历史的上市公司,而HAPSITE正是基于其长期的四极杆及真空技术的积累才推出来的针对环保现场使用的一台仪器,自其推出BCT今,仍然是世界上BCT的一台便携式、完全车载式气质联用仪。它完全保留了经典的四极杆气质联用仪的谱图的BCT匹配性及定量的稳定性;同时又克服了传统的实验室GC / MS 中真空泵对环境的苛刻要求的局限性。 HAPSITE主要用于现场检测、鉴别和定量有毒的工业化合物(TICs )和生化武器制剂(CWAs ) ,随时随地提供需要的结果。GC 的高效分离与MS 的准确定性相结合,被认为是分析精度BCT高,正确鉴别有机化合物BCT有效的手段之一。使用HAPSITE化学物鉴别系统,可在数分钟内取得结果,作出与生命、健康、安全和环境有关的关键性决定。 全套装备齐全的HAPSITE化学物鉴别系统是坚固牢靠和容易使用的。野外使用配备有可充电电池,24伏转换器用于有外电源的情况下。特别设计的结构可经受恶劣的气候条件,整个仪器全天候的,易于去污染。经环保局、军事部门、HAZMAT应变组、烟道测试公司和环境与工业职业保健等大公司多年使用,认为HAPSITE可靠耐用,适宜于野外分析。 主要特点: ▲采用NEG 泵真空技术,始终保持真空,可以移动中工作,轻松应对任何紧急情况 ▲BCT的GC 与MS 的接口设计,使其可实现MS 连续直接进样,且与GC 进样模式切换简单 ▲操作简单,三键式即可完成全部操作;内置标样,便于现场未知物的快速定量分析 ▲防水、防震等设计,能适应各种恶劣环境,全密闭设计大大减少了气体的消耗 ▲HAPSITE顶空进样系统提供了水和土壤中VOCs 的高精度现场分析 ▲革新的具备温度编程功能的低热容量GC 烘箱结构,扩展了单次进程可以测分析物的范围和缩短分析时间 ▲微阱注入模式使HAPSITE化学物鉴别系统可检测PPt 范围的化学物,而标准闭环注入提供从PPbBCTPPm范围的直接分析 ▲内置的全球定位系统(GPS )使HAPSITE可自动精确记录取样位置的经度与纬度,以及野外数据、时间和日期用于犯罪和/或民事的审定中可作为合法的、有辩护力的依据 ▲仪器内置操作系统和基本的AMDIS 挥发性毒物谱库,可独立使用,也可通过笔记本电脑操作 ▲野外使用配备有可充电电池,24伏转换器用于有外电源的情况下,特别设计的结构可经受恶劣的气候条件,整个仪器全天候的,易于去污染,携带方便,适宜于野外分析。AE2430在线硫分析仪
  • 中科院大化所高灵敏检测恶臭含硫化合物获新进展
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201605/noimg/80dfc663-4347-4350-99e0-bc5505ecc7f2.jpg" title=" 1.jpg" / /p p   4月30日 中科院大连化物所快速分离与检测李海洋研究团队成功研制了一种光致二溴甲烷阳离子化学电离源,该电离源与质谱技术相结合,显著提高了恶臭含硫化合物的检测灵敏度,该成果已发表在美国化学会Analytical Chemistry上。 br/ /p p   《国家恶臭污染控制标准》规定的八大恶臭气体(硫化氢、甲硫醇、二甲基硫醚、二硫化碳、三甲胺等)绝大部分都为挥发性含硫化合物(VSCs),这些恶臭化合物与人类日常生活环境息息相关,并且具有较高的毒性,ppbv量级就能对人的健康造成伤害。此外,VSCs还是人体呼出气中重要的生物标志物,如硫化氢和二甲基硫为肝硬化和肝昏迷等肝脏疾病相关的标志物。由于VSCs具有较高活性及易吸附等特点,急需一种既快速又灵敏的分析检测技术。 /p p   该研究团队利用真空紫外灯(VUV)电离高浓度二溴甲烷试剂气体获得足够多且强度稳定的CH2Br2+试剂离子,CH2Br2+试剂离子进一步与VSCs样品发生高效的电荷转移及离子加和反应,实现VSCs的高灵敏检测。实验结果表明:该离子化源对硫化氢、甲硫醇、二甲基硫等5种常见VSCs的检测限均达到pptv量级,检测时间小于1分钟,此外特异性加和离子[M+CH2Br2]+的存在,增强了物质识别。 /p p   该新型检测技术现已成功应用于人体呼出气和下水道气体中痕量VSCs的测量,因其快速高灵敏的检测性能,在医疗诊断和环境化学领域具有广阔的应用前景。 /p p br/ /p
  • 北京博赛德直播课程分享丨硫化物的分析应用和便携气质的技术应用分享
    3月4日-6日,我们积极响应当前“停工停课不停学”的号召,举办了三场在线直播课程。课程得到了老师们的积极响应和一致好评,甚BCT有些老师还表示意犹未尽,咨询针对硫化物的分析有无分享,问何时再直播?为响应各位老师的号召,我们又安排了两场精品直播课程,分享给大家:一 硫化物的分析应用分享时间:3月13日 上午10:00—12:00讲师:可贵秋内容概述:1 现有硫化物标准方法解读;2 BCT硫化物分析方案;3 硫化物采样分析常见问题、解决方案及注 意事项二 便携气质的技术应用分享时间:3月17日 上午10:00—12:00讲师:张国振内容概述:1、为什么需要便携式气质?便携式气质和实验室气质的区别;2、便携式气质必须具备的特性及核心技术介绍;3、便携式气质的应用和实际案例。对此课程有需要和感兴趣的专业人士都可以联系我们,参加课程直播。前期三场在线直播课程,从大气VOCs在线监测的难点、常见问题及解决方案,到各类前处理设备:顶空、吹扫捕集、苏玛罐、热解析、热裂解等的技术应用、使用注意事项,再到以苏玛罐系统为主的实验室采样、分析、质控、数据审核的一些实用经验分享,满满的全是干货。前 期 回 放
  • 地质地球所提出硫化物颗粒的高精度硫同位素分析方法
    硫化物是自然界中常见的一类矿物,其形成往往与地质运动或生命活动相关。硫化物中的硫同位素组成是示踪生命活动,厘定地质过程的重要依据。传统离子探针硫同位素分析精度虽然可以达到0.1-0.2 &permil ,但其束斑一般为10-30 &mu m,不适用于微生物活动相关的微细硫化物颗粒(5 mm)和硫化物复杂环带等样品的硫同位素分析。纳米离子探针具有高空间分辨的特点,但通常其分析精度较传统离子探针逊色,前人在~2 mm空间分辨下,硫化物硫同位素分析的精度仅为2-4&permil ,制约了其在地球科学中的应用。   为获得更高的空间分辨和分析精度,中国科学院地质与地球物理研究所地球与行星物理院重点实验室张建超工程师与其合作者以纳米离子探针为平台,开展了超高空间分辨与高精度的硫同位素分析方法研究。QSA效应(电子倍增器无法记录几乎同时到达的两个离子而造成的测量误差)是制约高精度同位素分析的关键因素,该研究创新性地提出了精确校正QSA效应方法,并成功研发了不同空间尺度内硫同位素高精度分析的实验方法,其空间分辨和外部分析精度分别为:~5 mm尺度内分析精度0.3&permil 、 ~2 mm尺度内分析精度0.5&permil 、 ~1 mm尺度内分析精度1&permil 。这一结果是同等空间分辨下最优的分析精度,处于国际领先水平层次,能够满足微米-亚微米尺度的硫化物颗粒(如草莓状黄铁矿)及复杂环带的高精度硫同位素分析的需求。   该研究成果近期发表在国际分析技术刊物Journal of Analytical Atomic Spectrometry 上(Zhang et al. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. Journal of Analytical Atomic Spectrometry, 2014, 29(10) : 1934-1943)。   地质地球所提出硫化物颗粒的高精度硫同位素分析方法
  • 应用方案|安杰科技为您送来硫化物测试解决方案,请您查收
    -2价硫的化合物统称为硫化物。地表水以及饮用水中检测的硫化物通常为硫化氢以及可溶性硫化物,硫化物是水体污染的重要指标。硫化氢有强烈的臭鸡蛋味,水中只要含有零点零几mg/L的硫化氢,就会引起异味;硫化氢的毒性也很大,可危害细胞色素、氧化酶,造成细胞组织缺氧,甚至危及生命;另外,硫化氢在细菌作用下会氧化生成硫酸,从而腐蚀金属设备和管道。一、产品介绍安杰科技AJ-1000流动注射分析仪,在《HJ 824-2017 水质 硫化物的测定 流动注射-亚甲基蓝分光光度法》(HJ 824-2017)、《生活饮用水标准检验方法 第5部分:无机非金属指标-N,N-二乙基对苯二胺分光光度法》(GB T 5750.5-2023)等标准基础上进行开发的一款全自动快速分析仪器,该仪器从进样到测试全程采用自动化流程,可以实现无人值守测试,自动数据分析,自动保存报告等人性化功能,具有操作简单测试速度快,结果准确等优点。二、产品优势与传统检测方法对比,AJ-1000有显著的优势:试剂添加上:传统方法需要人工添加各种反应试剂,不仅操作繁琐,而且容易出错同时也存在一定的健康风险;AJ-1000采用蠕动泵自动添加样品以及试剂,全程不需要人工干预,简便快捷不会引入人为误差,同时也最大限度降低了健康风险。反应过程上:传统方法加入试剂后需要等待显色反应达到稳定后再进行检测,显色温度会随环境温度变化,而且样品量大时显色时间很难统一;AJ-1000精确控制反应管路长度并且内置恒温装置,温度、流速以及反应时间均由PC端精准控制,显色稳定,重现性好,大大提高了检测的准确度和稳定性。检测效率上:传统方法需要人工添加各种反应试剂,手动比色,费时费力;AJ-1000采用蠕动泵自动连续进样,所有反应均在毛细管中流动状态下完成,实现了非稳态检测,不需要等待反应完全,大大提高了检测速度。并且检测数据由软件自动处理,可以立即出具检测结果,效率远高于传统方法。准确度上:传统方法精密度精密度的测定检出限的测定
  • 【创新方案】氢燃料电池用氢中痕量硫化物杂质分析
    加拿大ASD公司推出的痕量硫化物应用方案得到了强烈的市场反响。近期,我们升级了痕量硫化物专用气相色谱分析系统KA8000plus-S,该系统重点用于超痕量水平检测氢燃料电池用氢中的所有硫基化合物,具有无需预浓缩,直接探峰1~5ppb,检测限小于0.5ppb(以重复性计),高稳定性、高灵敏度等优势,为痕量硫化物分析带来全新的解决方案。硫化物专用气相色谱KA8000plus-S该系统采用100%ASD自主技术及相关设备,其中增强型等离子体放电检测器Epd,可用于所有检测,包括已知难以分析的硫化合物和甲醛。与传统的SCD和FPD/PFPD相比,Epd技术是固态的,仅需要惰性的载气即可运行。对于包括H2S在内的硫成分,它也不需要预浓缩,直接测量样品浓度1~5ppb, 检测限案例:西南化工研究院实验室KA8000plus-S系统---氢燃料电池用氢质量分析方案特点 直接探峰1~5ppb,检测限 无需样品预浓缩 操作仪器不需要燃料气,只需氦气即可 高稳定性、高灵敏度方案基本配置◆ KA8000plus-S硫化物专用气相色谱仪 包括:SePdd 增强型等离子体放电检测器 PLSV 惰性6通阀+2ml惰性定量环◆ ASDPure载气体纯化器(出口杂质方案应用详情请联系:fzhu@asdevices.cn
  • 雷磁DGB-480携手新标准HJ 1226-2021,硫化物无处遁形
    一、背景介绍为了保护生态环境,保障人体健康,提高生态环境管理水平,规范生态环境监测工作,HJ 1226-2021《水质 硫化物的测定 亚甲基蓝分光光度法》于2021年12月16日发布,于2022年3月1日正式实施。HJ 1226-2021《水质 硫化物的测定 亚甲基蓝分光光度法》与GB/T 16489-1996《水质 硫化物的测定 亚甲基蓝分光光度法》相比,主要差异如下: 对比项目GB/T 16489-1996HJ 1226-2021适用范围本标准适用于地面水、地下水、生活污水和工业废水中硫化物的测定。本标准适用于地表水、地下水、生活污水、工业废水和海水中硫化物的测定。方法检出限当取样体积为100 ml,使用1cm 光程比色皿时,方法检出限为 0.005 mg/L当取样体积为 200 ml,使用10 mm光程比色皿时,方法检出限为 0.01 mg/L;使用30mm光程比色皿时,方法检出限为 0.003 mg/L沉淀分离法有删除“酸化-蒸馏-吸收”前处理方法无新增30mm光程比色皿仅用于地下水或低于第|一类标准的低浓度海水的测定,前处理法应采用“酸化-蒸馏-吸收”法。质量保证和质量控制无新增废物处置无新增 二、仪器推荐根据标准要求,我司推荐使用雷磁DGB-480型多参数水质分析仪进行水质硫化物的测定,下面我们来看DGB-480“连线”HJ 1226-2021后的具体表现。 DGB-480型多参数水质分析仪,采用8波长光学测量系统和90度光散射浊度检测光路,内置浊度、色度、臭氧、亚硝酸盐氮、高锰酸盐指数、CODCr、总磷、挥发酚、硫化物等50多种检测项目和方法,方法直接调用,配套雷磁专用试剂盒,测量快速、简便。方便现场测定,并满足实验室分析。● 硫化物检测方法原理经过前处理的样品在硫酸铁铵酸性溶液中与 N,N-二甲基对苯二胺反应,生成亚甲基蓝,再特定波长处测定其吸光度,硫化物含量与吸光度值成正比。● 主要参数参数方法号方法检出限mg/L测量范围mg/L重复性测量误差硫化物42亚甲基蓝法0.010.01-1.002.00%±0.05mg/L● 试剂硫化物试剂包:硫化物试剂A、硫化物显色剂粉剂、硫化物显色剂溶剂、硫化物试剂B硫化物校准液:ρ=100.0mg/L(以S计)● 仪器操作流程 ● 推荐理由HJ 1226-2021标准要求使用分光光度计配套10mm光程和30mm光程比色皿做标准曲线后进行测试,分光光度计体积较大,操作繁琐,不方便移动,无法携带至现场。雷磁DGB-480型多参数水质分析仪,体积小,配套专用试剂和辅助工具,“一箱”搞定现场水质检测。
  • LA-ICPMS和SIMS硫化物微量元素和硫同位素原位分析
    p style=" text-align: justify "   硫化物(特别是黄铁矿)可形成于各类地质环境中,在金属矿床的成矿早期一直延续到成矿后期。在观察原生硫化物及其在成岩后的变质作用、热液交代作用下生成的增生边、重结晶的次生硫化物时,通过光学显微镜和背散射图像,根据矿化、蚀变期次及矿物共生组合,可将不同结构的硫化物划分为不同期次的产物,再与LA-ICPMS硫化物原位微量元素点分析数据和面扫描图像相对应,就可知悉不同期次的硫化物各自的地球化学特征,即硫化物的地球化学分带性,这对研究沉积作用、变质作用、岩浆作用、热液交代作用如何影响硫化物中微量元素(例如Au元素)的富集行为至关重要。 /p p style=" text-align: justify "   对于金矿床来说,通过研究硫化物中不同微量元素与Au富集行为的耦合程度,有助于探讨Au在硫化物中的赋存形式及Au在硫化物晶体中的置换反应。藉由LA-ICPMS点分析的时间分辨(time-resolved)信号谱图,还可以获得硫化物样品在同一位置不同深度上的元素丰度分布,进一步讨论Au在硫化物中的赋存状态。 /p p style=" text-align: justify "   微量元素在硫化物中主要有三种赋存形式: /p p style=" text-align: justify "   (1)以固溶体的形式赋存在硫化物晶格中,不可见 /p p style=" text-align: justify "   (2)纳米级的矿物包裹体(包裹体直径& lt 0-1μm,如自然金或硫化物Fe-As-Sb-Pb-Ni-Au-S),不可见 /p p style=" text-align: justify "   (3)微米级的矿物包裹体,可见。 /p p style=" text-align: justify "   值得注意的是,这里的“可见”与“不可见”是相对于1930年的显微镜观测水平界定的,“不可见金” /p p style=" text-align: justify "   这一表述最早是由Bü rg在1930年使用的。通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和高分辨率透射电子显微镜(HR-TEM),直径数十纳米级的矿物包裹体现在已经可以被直接观测。若微量元素以固溶体形式赋存在硫化物晶格中,原来硫化物的晶格将被扭曲变形,通过特定区域的电子衍射谱图(SAED)可以直接观测晶格是否发生扭曲。 /p p style=" text-align: center " img title=" 640.webp.jpg" alt=" 640.webp.jpg" src=" https://img1.17img.cn/17img/images/201901/uepic/d7a67cbc-2c52-40d4-805a-59ef459693bd.jpg" / /p p style=" text-align: center "   俄罗斯某金矿 层状黄铁矿-石英脉中赋存的黄铁矿核部LA-ICPMS时间分辨输出信号谱图 /p p style=" text-align: justify "   在LA-ICPMS的时间分辨信号谱图上,若某微量元素的信号强度随剥蚀时间的增加而保持平缓或近似平缓,显示束斑剥蚀的纵深线上成分保持均匀性,一般认为该元素可能以固溶体的形式赋存在晶格中 抑或以微米级的硫化物包裹体存在,包裹体中该元素总量少于LA-ICPMS的检测限,信号也不会随时间发生大的波动。 /p p style=" text-align: justify "   若某微量元素的信号强度随剥蚀时间的增加而出现峰值,则指示着富含该元素的微米级矿物包裹体的存在。Large et al. (2007)采用这种方法确定了微米级的富含Bi-Ag-Au-Te的方铅矿包裹体(图)和富含Au-Te-Ag矿物包裹体(图4b)的存在。这种方法的缺点是不能区分微量元素在硫化物中上述第(1)和第(2)种赋存方式。尽管如此,该方法现被广泛应用于Au在硫化物中的赋存形式的判断。 /p p style=" text-align: justify "   节选自:范宏瑞等. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479-3496 /p p style=" text-align: justify " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 附件: /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" www.cn-ki.net_LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程.pdf" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201901/attachment/c92b9c13-20c7-4160-b0e4-a9dd0b888c02.pdf" www.cn-ki.net_LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程.pdf /a /p p & nbsp /p
  • 水中硫化物的测定 你要注意这些“东西”
    试剂的影响1实验用水将蒸馏水新煮沸并加盖冷却,所有实验用水均为无二氧化碳水。2硫酸铁铵溶液的配制配制硫酸铁铵溶液,常常出现不溶物或混浊现象,应过滤后使用。3显色剂的使用显色剂质量的好坏是整个分析过程的关键。对氨基二甲基苯胺盐酸盐为白色粉末,酸性溶液为无色透明液体,冰箱保存时间较长。存放时间过长的对氨基二甲基苯胺盐酸盐因被空气氧化,为黑色,配制出的溶液为褐色,空白值偏高,且很快变为蓝色失效。失效的蓝色显色剂不和硫离子作用生成亚甲蓝,用失效的蓝色显色剂测定硫化物会导致严重错误监测结果。4硫化钠标准溶液用于配制标准溶液的硫化钠,其结晶表面常含亚硫酸盐,从而造成测定误差,所以用水淋洗要称量的硫化钠其除去亚硫酸盐。5硫化钠标准使用溶液在配制使用液以及标准样品时,在容量瓶中加入乙酸锌-乙酸钠后,容量瓶内会出现较大絮状悬浊液。在取用已经稀释的标准样品前,必须将容量瓶摇晃使样品均匀,否则由于样品不均匀产生测定误差。水样保存过程中的影响由于硫离子很容易氧化,硫化氢易从水样中逸出。采样时每100 mL水样加0.3 mL1 mol/L的乙酸锌,摇匀,放置3~5 min,使水样中游离的S2-与Zn2+充分反应,生成ZnS悬浮物。再滴加0.6 mL1 mol/L的氢氧化钠溶液,使水样的pH值在10~12之间。加氢氧化钠一是使水样中的H2S、HS-转化成S2-,二是生成Zn(OH)2絮状沉淀,这种絮状物有吸附作用,在沉淀过程中吸附ZnS共沉淀,达到现场固定目的。不要加过多氢氧化钠,否则生成沉淀,取样时不易摇匀造成误差。进行预处理取样时,一定充分摇匀已固定的样品,使预处理样品均匀,真实代表水样。样品预处理过程中的影响水样中的还原性物质都能阻止氨基二甲基苯胺与硫离子的显色反应而干扰测定;悬浮物、色度等也对硫化物的测定产生干扰。所以需对样品进行预处理。最常用的是酸化吹气法。吹气时,氮气纯度应大于99.99%,否则,空白值增大;整个吹气装置密封性必须好,接口处应用标准磨口,否则漏气影响测定结果的准确度;水浴锅温度要保持60~70 ℃,水温过高而室温较凉时,反应瓶内上部壁上沾有水雾将吸收少量硫化氢气体,影响测定结果准确度;注意磷酸的质量,当磷酸中含有氧化性物质时,可使测定结果偏低。样品分析过程中的影响预处理过的含硫离子的水样与对氨基二甲基苯胺的酸性溶液混合,加入Fe3+后,溶液先变成红色,生成中间体化合物,继而生成蓝色的亚甲基兰染料。酸度影响亚甲基兰染料的生成,所以水样的测定必须与校准曲线相同;显色时,加入的两种试剂(对氨基二甲基苯胺溶液与硫酸铁铵溶液)均含有硫酸,应沿管壁徐徐加入,并加塞混匀,避免硫化氢逸出而损失;文献报道亚甲基蓝分光光度法测定硫化物标准样品时,实验的温度选择在18~22 ℃为宜,随着显色温度的增高或降低,亚甲基兰的吸光度均降低;试剂加入顺序不能颠倒,否则,显色度明显降低。
  • 同阳发布同阳科技TY-ODOR-212恶臭在线监测系统新品
    一、产品简介 天津同阳科技发展有限公司根植环境领域多年,在承担国家重大仪器专项的基础上研发出的“恶臭在线监测系统”,采用传感器阵列模式,根据多个现场试验出的恶臭模型,配以远程信号传输系统、气象监测系统、气体采集系统,通过无线网络,启动在线监测仪,最终将分析的结果和所获取的气象参数、环境参数传至区域恶臭在线监控平台。该恶臭在线监测系统可以应用在诸多行业,例如污水处理厂、垃圾填埋场、畜禽养殖场等存在恶臭排放的地方。可以对国标规定的8种恶臭气体和其他多种恶臭气体均具有ppb级别的响应值。 此系统既支持本地数据库存储,也可以实现先进的云平台功能。系统可将多个区域、多个点位的恶臭在线检测设备,统一在区域恶臭在线监控平台上进行实时监测。系统通过显示臭气浓度、超标报警、样品存留等功能,可以成为环保部门的得力助手,实现对恶臭排放的有效监控。中心监控平台将子站端采集的数据进行显示、分析、统计,为决策部门提供有效的数字依据,并远程控制子站端进行留样。二、产品介绍1.基本原理采用高灵敏度金属氧化物,电化学,PID等传感器检测和阵列传感器技术。2.仪器参数仪器名称:同阳恶臭在线监测系统型号:TY-ODOR-212测量参数:臭气浓度,TVOC,硫化氢、氨气、三甲胺、甲硫醇、甲硫醚、二甲二硫、苯乙烯、二硫化碳等异味气体测量方法:金属氧化物、电化学,PID等 测量量程:臭气浓度0-1000 OU;TVOC、硫化氢、氨气、三甲胺、甲硫醇、甲硫醚、二甲二硫、苯乙烯、二硫化碳0-100 ppm;仪器类型:在线 产地:天津价格区间:40-80万3.技术优势满足国家标准及行业标准要求,适用于环保监测部门及污染排放企业;模块化设计,内嵌网络神经元算法和生命周期管理系统,最多可扩展15支传感器;气路采用负压吸入式,样品气不经过泵,无二次污染;内置高精度GPS模块,可实现恶臭溯源监测及走航监测等多种模式;通过监管平台查询数据列表、数据统计列表、臭气检测结果走势图;自动检测恶臭污染数据;可自动保存120天数据,断网情况下,数据不丢失,标配 HJ212协议。4.应用领域 环保监测部门对环境恶臭污染情况的监测与分析。 污染排放企业对恶臭的监测及控制。 工业污染源的追溯与监测,指导除臭工艺改善。 环保监测部门应对突发事件的监测。5.应用案例 天津市泰丰公园恶臭监测项目 深圳佳兆业城市广场恶臭监测项目 江苏印染行业恶臭在线检测项目 湖南望城工业园区恶臭监测项目 天津市诺维信污水洗涤塔恶臭监测项目 天津市顶益国际食品有限公司恶臭监测项目 天津市一汽丰田汽车有限公司恶臭监测项目 北京市海淀区六里屯垃圾填埋场大气环境监测系统项目 厦门东部固废24小时臭气连续监测系统项目创新点:1、较上一代恶臭监测产品,优化了系统架构模型,创新性设计了核心气室装置,采用空间矩阵结构,增设导流、稳流机构,升级人体感官污染监测匹配模型,数据算法及功能方面做了多维度提升。 2、产品基于国家重大科学仪器设备开发专项技术基础、传感器阵列检测技术和仿生学理论框架,构建符合人体特点的生物拟态模型,增加动态加热系统、源解析采样系统、自动标定系统、生命周期管理系统等功能,辅助Ai遗传信噪消除,交叉干扰,环境补偿,动态空间向量等算法。 3、核心检测装置创新性的采用空间矩阵结构 4、增加污染源解析功能接口 同阳科技TY-ODOR-212恶臭在线监测系统
  • 对话欧洲石油巨头TOTAL | 岛津新一代硫化学发光检测器 SCD-2030助力石油化工中硫化物可靠性分析
    内容概要 Nexis™ SCD-2030是岛津为解决实验室需求而开发出的新一代硫化学发光检测系统。其卓越的高灵敏度与稳定性、易维护性以及行业首创的自动化功能,显著提升实验室工作效率。 欧洲石油巨头道达尔公司(以下简称:TOTAL)与岛津欧洲公司(以下简称:SHIMADZU)目前在石油化工领域开展深度合作,其研发部门Giusti博士和Piparo博士使用硫化学发光检测器Nexis™ SCD-2030开展油品中硫化物的痕量分析研究并取得不错的成果。 岛津欧洲创新中心采访了道达尔研发部门的Giusti博士和Piparo博士,针对在使用Nexis™ SCD-2030期间:硫化学发光检测器解决了哪些问题?生物燃料未来将面临哪些挑战?双方未来将在哪些方面开展深入合作等话题进行了专访… … SHIMADZU:Giusti博士,感谢百忙之中接受这次采访。首先,请您介绍下您团队的研究方向及目前已取得的成果。道尔达研发部门的Pierre Giusti博士(左)和Marco Piparo博士(右) TOTAL:谢谢岛津公司提供这次交流机会。Piparo博士和我所属道达尔公司研发&分析部门,工作最大的聚焦点在提供最新分析工具,主要是仪器和方法。部门始终的要求是不断寻找和评价具有实用性的分析技术,适用于日程或未来的工作需求。关于实用性这点,对我们而言,最真实的需求是将研发部门建立的稳定可靠的分析方法,成功地转移到质控部门,无论分析人员的技术是否熟练,均可获得稳定的检测结果。我们部门也会提供技术指导和支持对于公司其他部门。我们时刻面临诸多挑战,例如:生物燃料的开发及使用,塑料制品的回收与再生利用等问题。 SHIMADZU:为何考虑在这方面开展研究工作? TOTAL:能源市场由于全球气候问题,技术发展以及社会因素在不断变化,能源行业正处于巨变前沿。我们的研究工作主要改善并提升石油传统分析方法,同时建立全新油品、石油燃料、聚合物的分子指纹图谱,成为全球能源市场的重要参与者。最终实现2050年二氧化碳的净零排放量这一社会目标,普及低二氧化碳排放量燃料的使用,减少对石油燃料的依赖。 SHIMADZU:关于目前开展的合作项目,为什么考虑岛津公司作为合作伙伴呢? TOTAL:我们研发部门通常会开展多个项目,而每个项目需要创新和好的想法,这需要有合作伙伴共同实现。不仅如此,仪器厂商还需要愿意倾听我们用户的真实需求和问题,持续不断地从客户角度出发,关注开发用户所需求的产品和技术,岛津公司符合以上预期和要求。在此情况下,双方开展项目合作,以及计划共同开发含氧化合物的专属分析系统并申请专利。 道达尔公司研发人员与岛津应用专家交流探讨 SHIMADZU:岛津仪器在项目中解决了哪些问题? TOTAL:岛津公司一直提供多种先进的仪器和分析方法,对我们日常研发工作起到很大的帮助。其中硫化学发光检测器(SCD),采用全新技术开发的产品,使我们可以在复杂基质中,准确地检测到痕量硫化物。同时岛津质谱仪在使用高速扫描模式采集数据时,没有发生质谱歧视或灵敏度大幅下降的情况发生,以上仪器特点对我们日常工作非常重要。此外,这么多年使用岛津仪器的感受,产品非常皮实耐用,稳定性也非常好,确保日常分析结果的准确、可靠。 岛津全新硫化学发光检测器Nexis™ SCD-2030 Piparo博士提到之前使用SCD-2030检测器分析柴油中硫化物的应用案例。为了考察检测器的选择性、重现性和等摩尔浓度,采用脱硫柴油基质,加入七种与柴油相关的不同含硫化合物(分别为硫化物、硫醇和噻吩),目标硫化物的S添加浓度为下表。 通过实验结果发现在S的最低浓度点,所有加标样品的面积重现性均低于4%(n=6);回收率为92%~106%(n=3)。“SCD-2030能够有效避免油品中复杂基质的干扰,实现硫化物的高灵敏和高选择性检测,可获得良好的重现性和回收率。” Giusti博士补充道。 最低浓度点Level1的七种硫化物的色谱图(S: 1 to 4mg/L) SHIMADZU:最后,谈谈未来的合作方式及合作方向? TOTAL:基于iC2MC实验室,希望未来双方可以建立一个项目推进讨论平台,与岛津研发人员定期进行项目探讨,开展头脑风暴等,交流最前沿的元素分析,质谱分析技术,色谱分离等不同分析技术。此外,计划两年内,开发出用于生物燃料研究的专属含氧化合物的分析系统。该系统将结合岛津的气相色谱技术以及道达尔公司的技术,以及法国波城大学和西班牙奥维耶多大学的联合研究成果,为推动生物燃料的开发、生产改善做出贡献。 *iC2MC(https://ic2mc.cnrs.fr/) 道达尔研发人员与岛津欧洲创新中心经理平冈合影 参考文献:(1) R. L. Tanner, J. Forrest, L. Newman, “Determination of atmospheric gaseous and particulate sulfur compounds. [Atmospheric SO2 sampling, calibration, and data processing],” Brookhaven National Laboratory, Upton, NY, USA, Tech. Rep. BNL-23103. Jan. 1977.(2) X. Yan, “Unique selective detectors for gas chromatography: Nitrogen and sulfur chemiluminescence detectors,” J. Sep. Sci., vol. 29, pp. 1931-1945, Jun. 2006.(3) Y. Nagao, ”Reliable Sulfur Compounds Analysis in Diesel using Sulfur Chemiluminescence Detector Nexis SCD-2030,” Shimadzu Application News.
  • 智易时代发布ZWIN-EC06恶臭在线监测仪新品
    ZWIN-EC06恶臭在线监测仪产品介绍 恶臭在线监测仪是天津智易时代科技发展有限公司运用多年大气环境监测经验,依照《恶臭污染物排放标准(GB14554-1993)》,专门针对垃圾处理、污水站、固定污染源、厂界等容易产生异味的场所,自主研发生产的一款恶臭浓度在线监测仪;ZWIN-EC06恶臭在线监测仪整套设备由供电单位、采样单元、样气过滤单元、传感器检测单元、数据处理单元、显示单元和传输单位组成。可同时监测包括恶臭在内的六种气体、外加PM2.5、PM10、温度、湿度、风速、风向、大气压等多项参数指标;工业级高精触摸屏,完美显示当前浓度值,内置大容量存储芯片,可轻松存储长时间数据,并通过专用接口数据导出;兼容TCP、IP、MODBUS等通信协议,即可无线数据上传对接当地环保局,也可有线远传组网;恶臭在线监测仪集气体采样、粉尘过滤、实时浓度显示、智能计算、GPRS无线数据上传为一身,并免费开放基准线调整、零点调整、数据修正、标气校准、时间调整等实用功能,是一款真正意义的智能化、标准化、模块化、专业化恶臭在线监测系统;可广泛适用于垃圾处理厂、垃圾转运站、污水处理厂、化工园区、医药车间、城市街道、厂界等行业; 产品性能指标:产品名称恶臭在线监测仪产品型号ZWIN-EC06产品描述集成对于OU、NH3、H2S和TVOC的恶臭在线监测设备主要技术标准规范恶臭污染物排放标准(GB14554-93)监测组份OU、H2S、NH3、TVOC、气象5参、可扩展环境适应性环境温度(-20~40)℃相对湿度 0 ~ 50 ppm (异丁烯)甲硫醚:0~10ppm甲硫醇:0~10ppm二甲二硫:0~10ppm二硫化碳:0~10ppm苯乙烯:0~10ppm三甲胺:0~10ppm重复性≤ 10 % (OU: ≤ 15 %)准确度±10 % (OU: ±20 %)响应时间(T90)≤ 60 s 产品特点:? 多参数可以选配,功能强大? 国外原装进口四电极气体传感器,性能稳定,分辨率高? 智能化拔插式气体模组设计,维护方便? 集成简单,可拓展空气质量微型站监测因子、气象五参数? 数据和国控站数据一致性好? 体积小、重量轻、智能化、标准化、模块化、方便产品二次开发? 液晶显示具备数据存储功能创新点:本产品为智易时代首个专用于恶臭监测领域的产品,并且可同时监测包括恶臭在内的六种气体、外加PM2.5、PM10、温度、湿度、风速、风向、大气压等多项参数指标。
  • LA-MC-ICP-MS微区硫化物Fe-Cu-S同位素测试技术研究进展
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。 为促进学术交流和思想碰撞,国家地质实验测试中心主办期刊《岩矿测试》携手仪器信息网于2023年8月24日组织召开新一期“现代地质及矿物分析测试技术与应用”网络研讨会。期间,中国地质大学(武汉)副研究员张文将分享报告《LA-MC-ICP-MS微区硫化物Fe-Cu-S同位素测试技术研究进展》。激光剥蚀多接收等离子体质谱(LA-MC-ICP-MS)是目前发展速度最快的同位素微区分析测试技术,已经被成功应用于铁、铜、锆、锂、硼、镁、硅、硫等多种同位素的高精度准确分析。通过仪器关键部位的改进、仪器分析条件的调整、数据处理模式优化等方面进行技术研发,目前LA-MC-ICP-MS可以更准确地刻画和校正同位素分馏行为,使激光微区稳定同位素分析测试精密度达到0.05‰-0.1‰水平,空间分辨率提升至 10m尺度, 有助于地质学家更准确地识别出矿物颗粒在微米尺度上的微弱同位素分馏信息,为示踪重要地质过程提供关键的地球化学证据。欢迎大家报名听会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 硫化物的分解代谢可改善缺氧性脑损伤
    硫化物的分解代谢可改善缺氧性脑损伤个硫化物的分解代谢可改善缺氧性脑损伤 -哺乳动物的大脑极易遭受缺氧影响- 大脑对缺氧敏感的机制尚不完全清楚。H2S是一种抑制线粒体呼吸的气体,缺氧可以诱导H2S的积累。Eizo Marutani等人研究发现,在小鼠、大鼠和自然耐缺氧的地松鼠中,大脑对缺氧的的敏感性与SQOR的水平及分解硫化物的能力成反比。硫醌氧化还原酶(sulfide: quinone oxidoreductase , SQOR)是一种谷胱甘肽还原酶家族的膜结合黄素蛋白,为硫化物氧化解毒的一种关键酶。沉默的SQOR增加了大脑对缺氧的敏感性,而神经元特异性的SQOR表达则阻止了缺氧诱导的硫化物积累、生物能量衰竭和缺血性脑损伤。降低线粒体中SQOR的表达,不仅增加了大脑对缺氧的敏感性,也增加了心脏和肝脏对缺氧的敏感性。硫化物的药理清除维持了缺氧神经元的线粒体呼吸,并使小鼠能够抵抗缺氧。相关研究于2021年5月发表在Nature子刊Nature communications上,题为《Sulfide catabolism ameliorates hypoxic brain injury》,该研究由美国马萨诸塞州总医院以及哈佛医学院共同完成。该研究团队一开始的研究方向并不是寻找可以治疗脑卒中的靶点,他们的研究方向是「人体冬眠」,就像以往科幻电影里的那种,得了某种不治之症,然后进行冷冻或者其他技术的冬眠,等待科技进步以后,再次复苏。一开始,他们是要寻找可以对小鼠进行催眠的物质,锁定在了H2S。期初,吸入H2S的小鼠进入了一种「冬眠」状态,体温下降,无法动弹。但是,令人惊讶的是,小鼠很快就对吸入H2S的影响产生了耐受性。到了第五天,他们行动正常,不再受到H2S的影响。更有趣的现象是,研究团队发现,对H2S耐受的小鼠,对缺氧也能非常好的耐受。因而研究团队提出了SQOR基因在耐缺氧中起发挥重要作用的假设。实验方法描述所有小鼠都被饲养在12小时的昼/夜循环中,温度在20-25°C之间,湿度在40%-60%之间。 -间歇性H2S吸入- 小鼠暴露于80 ppmH2S的空气中连续5天,每天4小时。实验过程中实时监测H2S浓度和FiO2。每天在H2S吸入前后测量直肠温度,以检查H2S对体温的影响。 -CO2产生量的测量- 最后一次的吸入空气或H2S24小时后,在对照组或硫化物预处理小鼠中测量二氧化碳的产生。将小鼠放置在全身体积描记系统内,并测量二氧化碳的产量。 -小鼠的缺氧和缺氧耐受性- 为了测量缺氧耐受性,在最后一次空气或H2S吸入24小时后,将小鼠放入透明的塑料室中。然后,用低氧气体混合物以1 L/min连续冲洗腔室,以达到所需的FiO2。在缺氧暴露期间连续观察小鼠最多60 min,当小鼠出现严重痛苦迹象(扭动或发作、呼吸频率低于6/分钟和尿失禁)时,将其取出,用5%异氟烷安乐死并视为死亡。 -组织采集- 将小鼠采用异氟醚麻醉,呼吸机机械通气。用空气或缺氧气体混合物通气3 min后,将小鼠进行安乐死,开始取材。实验数据a:对照组和硫化物预处理组(SPC)小鼠的体温b:二氧化碳产生率(VCO2) c:血浆中硫化物的浓度d:血浆中的硫代硫酸盐、脑组织中的硫化物浓度f:脑组织中的硫代硫酸盐、 g:存活率h:小鼠在5% O2低氧下的VCO2i:常氧和5%低氧下,脑组织中的硫化物j:per sulfide,k NADH/NAD+比l:乳酸水平。m脑组织中的SQOR相对表达量,n、o:脑组织和心脏组织中 SQOR蛋白水平p、q:离体脑线粒体的氧气消耗速率 (OCR)r:计算得到的 ATP转换率。地松鼠的缺氧耐受性和硫胺分解代谢增强研究团队用RNA沉默SQOR,发现可增加大脑对缺氧的敏感性,而神经元特异性SQOR的表达可阻止缺氧诱导的硫化物积聚、生物能衰竭和缺血性脑损伤。SQOR可改善神经元细胞的线粒体功能降低线粒体的SQOR基因的表达,不只是大脑,而且心脏、肝脏对缺氧的敏感性都增加了。硫化物清除剂的作用通过药物清除硫化物,可维持缺氧神经元的线粒体呼吸过程,使小鼠耐受缺氧。该研究阐明了硫化物分解代谢在缺氧时能量平衡中的关键作用,并确定了缺血性脑损伤的治疗靶点。 在自然界中很多强有力的证据可以证明该研究的结论。例如,已知雌性哺乳动物比雄性哺乳动物更能抵抗缺氧,而前者的SQOR水平更高。当女性的SQOR水平被人为降低时,她们就更容易缺氧(雌激素可能是观察到的SQOR增加的原因),例如更年期。此外,一些冬眠动物,如地松鼠,对缺氧有很强的耐受性,这使得它们能够在冬季身体新陈代谢减缓的情况下生存下来。一只地松鼠的大脑比同样大小的老鼠的SQOR高出100倍。该研究的主要研究者说:“人脑的SQOR水平非常低,这意味着即使是少量的H2S积累,就可以影响神经元的健康。我们希望有一天我们研发出像SQOR一样有效的药物,这些药物可以用来治疗缺血性中风,以及心脏骤停引起的缺氧。 -塔望科技-解决方案- 全身体积描记系统小鼠放置于体积描记器内,可以实时监测呼吸,也可进行低氧干预、H2S暴露。可进行低氧耐受实验,也可监测动物的 耗氧量、CO2产生量、呼吸代谢率等。全身暴露染毒系统可以进行长期H2S暴露染毒、低氧实验等。动物能量代谢系统可以综合评估动物不同处理后的各种表型变化:进食量、进水量、进食进水模式、活动量、耗氧量、CO2产生量、呼吸代谢率等。动物低氧高氧实验系统各种常压/低压/高压下的缺氧/高氧实验。可进行恒定低氧,也可进行间歇低氧。 -相关文献- Marutani E, Morita M, Hirai S et al. "Sulfide catabolism ameliorates hypoxic brain injury".[J]. Nat Commun 12, 3108 (2021). &bull end &bull
  • GC-PFPD快速准确检测天然气和气体燃料中的硫化物
    引言 天然气和其他气体燃料中含有不同数量和类别的硫化合物,这些化合物可能有气味,对设备有腐蚀性,并抑制或破坏气体处理中使用的催化剂。即使是微量的硫也会对加工造成破坏。为了安全起见,天然气和其他石油产品中也会添加少量硫,大约1到4 ppmv。准确识别和测量硫的种类在石油工业中是至关重要的,然而,由于硫化合物在采样和分析过程中的反应性和不稳定性,分析可能具有挑战性。脉冲火焰光度检测器(PFPD)与其他硫检测器相比,具有明确的硫检测和对碳氢化合物基质的选择性、更高的灵敏度和等摩尔硫响应等优点。本应用将描述使用GC与Ol脉冲火焰测量检测器(PFPD)对各种基质中的硫进行分析。 实验 系统描述:Ol Analytical 5383 PFPD 5383 PFPD的优越灵敏度使其成为硫和其他元素分析的首选检测器。它对硫的线性等摩尔响应允许从低ppb-ppm水平选择性检测每个硫化物,并可将总硫作为单个峰展现。从单个PFPD检测器同时获得硫和碳氢化合物色谱的独特能力使其与其他硫检测技术区别开来。该系统由一个气相色谱仪和两个电控气动阀组成,采用安捷伦具有独特惰性和选择性的低硫精选柱,能够很好地从C2基质中分离H2S和从C3基质中分离COS。PFPD设置为最佳硫响应,并配置为在线性模式下进行硫和碳氢化合物的检测。利用PFPD的双栅功能,可以从单个检测器生成相互选择的硫和烃的色谱图。 图2:发射脉冲视图监视器 表1:仪器配置及操作条件 分析了含有天然气、乙烯和乙烷、丙烯和丙烷的样品。并对比样品加标以观察碳氢化合物是否会对硫化物产生任何基质效应。标准品和样品色谱图见图3 – 8 图3. 500mL/min 标准品 图4. LPG样品 图5. LPG样品加标 图6. 25%乙烯和乙烷样品图7. 25%乙烯和乙烷样品加标 图8. 25%丙烯和丙烷样品 结果与讨论 相关系数均大于0.999,MDL和IDOC的研究也得到了可接受的数据。请参阅表2。这些数据显示出良好的检出率、选择性和一致性。PFPD还具有良好的响应和稳定性,硫化物从基体中得到了很好的分离。 表2结果 结论 GC-PFPD为分析各种基质中的硫化物提供了一种快速、可靠的方法。与其他硫检测器相比,PFPD更容易维护和操作。内部自清洁式设计,完全消除了在其他检测器中发现的焦化问题。由于PFPD具有等摩尔响应,未知化合物可以有信心地定量。其他化合物或基质也可以用该系统进行分析,而无需对方法进行重大更改。最终,基质浓度可以与所需的硫敏感性和GC分流比或样品稀释度相平衡,以优化各种分析的性能。 参考 ASTM D6228 – 19, “Standard Test method for Determination of Sulfur Compounds in Natural Gas and Gaseous Fuels by Gas Chromatography and Flame Photometric Detection”. 2019.想要获得更多5383 PFPD产品信息,您联系我们。400-889-1179
  • CIOAE2021论在线分析仪器在“碳中和”背景下的创新
    仪器信息网讯 “第十四届中国在线分析仪器应用及发展国际论坛暨展览会(简称:CIOAE 2021)”于2021年12月9日在南京国际展览中心盛大开幕!本届论坛的主题是“高效 优质 低耗 安全 环保”。大会报告今年的一大亮点是多位专家从不同角度探讨了碳中和对在线分析仪器市场的机遇和挑战。会议现场中国仪器仪表学会分析仪器分会曹以刚副理事长主持大会,中国仪器仪表学会分析仪器分会刘长宽常务副理事长、中国仪器仪表行业协会分析仪器分会曾伟秘书长、黄步余主任委员分别致辞。CIOAE2021大会报告围绕碳中和、环境监测、环境治理、石油化工等热门领域中在线分析仪器的发展进行了探讨。碳中和中国科学院合肥物质科学研究院刘建国研究员分析了光谱技术在大气温室气体监测中的应用。围绕碳中和国家可持续发展战略以及全球盘点需要,中国需要突破温室气体浓度监测、排放反演及减排评估等方面的关键技术方法,目前国际上将排放源的监测、地面观测站、航飞的监测以及碳卫星的监测形成不同尺度和不同层面的天地一体化的温室气体核算网络,并将浓度监测结果与数值模型结合,反推全球不同区域的碳源/碳汇。目前,安光所在高分五号上搭载了大气主要温室气体监测仪、在合肥建立了超高分辨总碳柱观测站,是中国唯一TCCON候选站、研发了大气本底温室气体光腔衰荡仪器、开放光路QCL-TDLAS痕量气体监测、海水-大气界面CO2通量的实时测量装备等。为促进碳监测技术发展,安光所建设了陆地碳汇国产监测设备研发校验平台,目前是产出核心装备、高端仪器和技术标准,并促进技术转移转化。西克麦哈克田元元产品高级经理介绍了超声流量计在碳中和发展中的应用。根据欧洲经验,碳交易的价格会随时间上升,而价格足够高的时候,碳排放采用核算法就无法满足需求,需要采用高精度全范围排放计量,而目前CEMS采用皮托管测流速,对流量计算不准确,而超声流量计可以对声道流速整体取样,对流量计量更准确。新能源的大量使用必定需要能源区域间传输,而电解水+现有天然气网络掺氢可以实现能源高效远距离传输是一种很好的解决方案,而超声流量计可以实现天然气计量以及掺氢计量。在二氧化碳捕集、利用和封存中,必定需要CO2的计量,而超声流量计可以实现纯CO2流量计量。江苏舒茨测控Andreas Hester介绍了碳中和将影响的重点工业以及工业气体传感器在这些工业中的应用。环境监测中国环境监测总站张颖研究员介绍了恶臭气体在线监测技术在环境领域的应用。目前,恶臭主要是仪器测定法(用气相色谱仪或分光光度计等测量成分及浓度并换算成恶臭强度)和官能测定法(三点比较式臭袋法)。为促进恶臭的在线监测,中国环境监测总站正在制定恶臭在线连续监测技术规范,其中规定必测项目为氨、三甲胺、硫化氢、甲硫醚、二甲二硫醚、二硫化碳、苯乙烯和臭气浓度,其他特征污染物可为参考项目。赛默飞刘泽介绍了工业园区VOCs在线监测。Sentinel Pro环境过程质谱仪,可实现VOCs多点动态监测,用于厂区内VOCs泄漏溯源。MiTAP户外VOCs监测系统采用微色谱模块和传感器阵列模块,高度集成化,仪器尺寸仅为120*46*93cm,用于园区厂界特征VOCs监测。VOCs污染监测车,凭借多种VOCs监测手段相结合,进行工业园区VOCs污染排查和监测服务。中国环境监测总站齐文启研究员介绍了我国环境监测现状和发展。我国目前大气监测点位1.4万个,地表水点位3.3万个,土壤8万个,噪声19.5万个,海洋、地下水、辐射等环境质量监测网正在建设中。未来大气监测将加强臭氧和PM2.5协调控制监测,并对PM2.5、9种水溶性无机离子、24种无机元素、有机碳、总碳、多环芳烃等进行手工监测;地表水监测将开展水生生物监测以及水生生物环境DNA监测试点;海洋监测将布设1359个水质,552个沉积物点位,正在进行自动监测点位选址工作中。上海市环境监测中心王向明总工程师介绍了长三角生态绿色一体化发展示范区生态环境监测统一行动展望,为跨行政区进行统一环境监测进行探索和示范。北京市排水集团翟家骥高级工程师介绍了现场应急监测分析方案的确定及监测分析的质量控制。国科瀚海李幼安介绍了烟道贯通式氨逃逸精确监测。环境治理哈希雷斌售前应用经理讲述了哈希两款在工业污水处理中应用的新产品。污泥毒性监测预警方案主要针对工业园区污水成分复杂,容易对污泥造成损害的问题,通过监测活性污泥系统的呼吸速率,间接评估污泥活性,从而判断污泥是否受到毒性物质抑制。BIOTECTOR TOC主要解决的是工业污水含盐量高、悬浮物多、色度高等特性造成的COD测量困难,此款仪器采用了哈希的二级高级氧化技术,加上更粗的管道、耐腐蚀的材质,从而实现对难测量工业污水的TOC测量。一念传感王曜总经理介绍了TDLAS技术在垃圾焚烧发电过程中的应用,包括垃圾储存坑气体安全监测(硫化氢、甲烷、氨气、水)、炉排炉/二燃室燃烧优化(一氧化碳、氧气、甲烷、水)、吸收塔酸性气体检测(氯化氢、氟化氢、二氧化硫)。一念传感的TDLAS技术采用智能光谱分离算法,可实现两种或以上气体同时监测。石油化工恒力石化佟旭介绍了恒力(大连长兴岛)产业园以及所用的在线分析仪。恒力2000万吨/年炼化项目共安装在线分析仪表746套,其中气体分析仪表占57%(主要是氧气等)、液体分析仪表占43%(主要是电导率、pH值等)、环保仪表19台套,共建设分析小屋35间。恒力150万吨/年乙烯项目安装在线仪表591台套,其中气体分析仪表占57%(主要是色谱仪和红外分析仪等)、液体分析仪表占43%(主要是电导率、pH值等)、环保仪表11台套,共建设分析小屋29间,园区内另设4套环境大气监测站。化工仪表的主要用途包括监控工艺流程、监控关键设备、控制、连锁和环境监测。中国石化工程建设公司孙磊副总工程师(黄步余主任委员代)介绍了石油化工在线分析仪发展与智能工厂。石油化工行业正朝着“大型化、炼化一体化、基地化、全产业链”方向发展,从石化企业逐渐向能源企业转型,逐步打造智慧工程,建设智能工厂,从而提高企业竞争力。因此,未来在线分析仪在石油化工行业的应用汇越来越多。潽洛因思王帅帅技术服务经理介绍了COSA9610热值仪在石化行业的应用。除此之外,西门子沈毅产品经理介绍了西门子新升级产品GA700,通过模块化配置、现代通讯方式、即插式测量、所有模块使用公共操作接口、预见性维修等方式,大大提高了仪表的使用和维护水平,可搭载西门子U7、O7、C7等模块。旭海光电陈亮董事长介绍了简波气室在安全和环保方面的应用。优倍电气王林研发总监介绍了功能安全型仪表在分析仪器领域中的应用。重庆科技学院电气工程学院院长唐德东教授介绍了六氟化氢绝缘设备带电检测研究现状与进展。此次论坛还得到了ABB、Sievers、凯隆、雪迪龙、布鲁克、大特气体、普洛斯因、国科瀚海、哈希、春来、舒茨测控、聚光科技、凯爱、迈蒂康、霍普斯、三鸣智、优倍电气、恩伊欧、赛默飞、唯锐、康宁、华天通力、西克麦哈克、西门子、旭海光电、一念传感等120多家厂商的大力支持。
  • 中国科大全固态电池新突破 硫化物电解质成本降92%
    中国科学技术大学马骋教授团队开发了一种用于全固态电池的新型硫化物固态电解质,其原材料成本仅14.42美元每公斤,不到其它硫化物固态电解质原材料成本的8%。该成果近日发表在国际著名学术期刊《德国应用化学》(Angewandte Chemie International Edition)上。全固态电池有望克服锂离子电池难以兼顾续航和安全性的瓶颈,从而突破目前电池技术的玻璃天花板。固态电解质是成功构筑全固态电池的关键,性能优异的硫化物则被普遍认为最有希望实现全固态电池的实际应用。“日本丰田、韩国三星等知名企业,都在过去的十几年内对此类材料进行了大量的研发投入。”马骋说,但硫化物固态电解质的成本普遍超过195美元每公斤,远高于实现商业化所需要的50美元每公斤。这一问题的根源,在于硫化物固态电解质的合成需要使用大量昂贵的硫化锂(不低于650美元每公斤)。在此次研究中,马骋开发了一种不以硫化锂作为原料的硫化物固态电解质——氧硫化磷锂,该原材料成本仅14.42美元每公斤,具有很强的成本竞争力。据介绍,氧硫化磷锂保留了硫化物固态电解质独特优势。它和锂金属组成的对称电池能实现4200小时以上的室温稳定循环,而它和硅负极、高镍三元正极组成的全固态软包电池,在60℃下循环200次后,仍具有89.29%的容量保持率。马骋说:“我们的工作表明硫化物固态电解质的成本问题并非无解。氧硫化磷锂作为一种新材料,在性能上仍有望实现进一步提升,我们也在为此继续努力。”
  • 恶臭监测新力量,明德恶臭在线监测仪
    恶臭污染面对日益严重的环境污染,恶臭污染影响生活质量和生态环境。为此,全新的恶臭在线监测仪应运而生,成为了环保领域的监测新力量。1.先进的气路保护明德恶臭在线监测仪采用先进气路保护,避免气体污染,提升检测精度和仪器寿命。创新设计确保数据准确,增强仪器稳定可靠。2.可拓展 颗粒物浓度监测明德恶臭在线监测仪还能够同时监测PM2.5和PM10两种主要的空气污染颗粒物。通过实时监测和数据分析,我们可以更好地了解空气质量状况,及时采取有效的措施进行改善。3.强大的数据处理能力除了气路保护和准确检测外,明德恶臭在线监测仪设计集成化,安装维护方便,并具备强大数据处理能力,实时生成详细报告,为环保部门提供可靠数据支持。明德恶臭在线监测仪凭借其独特的气路保护功能和全面的监测能力,成为了环保领域的得力助手。随科技与环保意识发展,它将在环保工作中发挥更大作用。
  • 科技部关于发布863计划资源环境技术领域“典型有毒有害工业废气净化关键技术及工程示范”重点项目硫化氢和恶臭性典型废气净化技术与设备等2个课题申请指南的通知
    各有关单位:  工业排放的气态污染物是大气污染的重要来源之一,其中有毒有害废气因具有特殊的毒性对人群健康和生态安全造成严重的威胁。针对我国在工业废气污染控制关键技术与设备方面的迫切需求,本领域启动了“典型有毒有害工业废气净化关键技术及工程示范”重点项目,下设4个课题,其中“氯代有机物典型废气净化技术与设备”、“氰化氢混合废气净化技术与设备”2个课题已经通过公开发布指南的方式确定课题承担单位。  现继续发布“硫化氢和恶臭性典型废气净化技术与设备”、“含氨典型废气净化技术与设备”2个课题的申请指南。  一、申请资格与要求  课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn,有关申请的程序要求和注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。项目申请受理的截止日期为2009年1月10日17时。  课题指南具体要求见附件。  二、咨询方式  联系人: 王 磊 张书军 梁鹏  联系电话:010-58884866,58884867,58884869  Email: wanglei@acca21.org.cn zhshujun@acca21.org.cn;  liangpeng@acca21.org.cn. 附件:863计划资源环境技术领域“典型有毒有害工业废气净化关键技术及工程示范”重点项目硫化氢和恶臭性典型废气净化技术与设备等2个课题申请指南        863计划资源环境技术领域办公室     二OO八年十一月十八日 附件:863计划资源环境技术领域“典型有毒有害工业废气净化关键技术及工程示范”重点项目硫化氢和恶臭性典型废气净化技术与设备等2个课题申请指南
  • 安杰科技水质氮硫化物检测技术全面进入石油化工领域并获重要认可
    中国石油和化学工业联合会、中国化工环保协会于2018年在全国范围内开展了适用于石油和化工行业环境保护、清洁生产工作的先进技术和装备的征集、评选工作,历时三个月的严格评审,评选结果于11月15日在陕西西安召开的环保技术交流会上公布。安杰科技的AJ系列气相分子吸收光谱仪从100余项先进技术(装备)中脱颖而出,被成功评选为“石油和化工行业环境保护与清洁生产重点支撑技术”。AJ系列气相分子吸收光谱仪主要用于水质氨氮、总氮、硫化物、硝酸盐氮、亚硝酸盐氮、凯氏氮、硫化物等的快速测定。近年来安杰科技将该技术已经推广至国内五大国有石油化工企业(中国石油安全环保技术研究院、中国石油化工股份有限公司武汉分公司、中国石化集团重庆川维化工有限公司、陕西长庆油田技术监测中心、华北油田环境监测站、延长石油延安能源化工有限责任公司、永坪炼油厂、大庆中石油供水公司等)中,并且获得了广泛的好评。安杰科技作为国际上率先研发并将气相分子吸收光谱分析法并投入应用领域的高新技术企业,将继续致力于产品的高端创新发展方向,并将这一拥有我国自主知识产权的产品推向世界。
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。
  • 青岛能源所硫化物全固态电池失效机制研究获进展
    近日,中国科学院青岛生物能源与过程研究所研究员崔光磊带领的固态能源系统技术中心,在硫化物基全固态电池失效机理研究和性能提升方面取得重要进展。相关成果发表在《科学通报》(Science Bulletin )上。   由高理论容量的高镍层状正极材料和锂金属负极组成的硫化物基全固态锂金属电池有望解决目前商用锂离子电池能量密度低、安全性差等问题,是颇具前景的下一代高比能电池技术之一。实验研究表明,全固态电池存在循环寿命短、库仑效率低、容量衰退快等问题,影响了其进一步的发展与应用。由于缺乏合适的表征手段,全固态电池的衰退机制尚不清晰,因而需要准确、可靠的先进表征手段来剖析电极材料降解失效原理以阐明电池内在的衰退机制。   科研人员采用先进高分辨无损三维同步辐射X射线断层扫描成像技术(SXCT),对LiNi0.8Co0.1Mn0.1O2(NCM)|Li6PS5Cl|Li固态电池衰退机制开展研究。实验结果表明,因正极电化学-机械力学耦合失效诱导的反应异质性产生不均匀的锂离子通量并传输到负极,进而产生不均匀的锂沉积、溶解行为及死锂的产生等。锂负极不均匀的电化学反应行为又反作用于正极并强化其反应异质性,形成一种正负极衰退互相促进的正强化机制。随着电池继续循环,正负极不均匀反应加剧造成结构破坏,同时正负极体积缩胀引起电解质的塑性变形,最终致使电池失效。对比实验表明,采用LiZr2(PO4)3 (LZP)对正极进行改性,有效抑制了正极的电化学-机械力学耦合失效,并显著提高了负极锂沉积-溶解均匀性和电解质的结构完整性。该工作揭示了硫化物基全固态电池中由锂离子传输动力学的动态演变引起的正负极之间正强化的衰退机制,首次提出了全固态金属锂电池正负极相互信赖、相互关联的失效行为,为进一步优化和发展全固态电池提供了新的思路和指导方向,并为开发下一代高能量密度与高安全性的高镍三元硫化物基全固态电池奠定了研究基础。   研究工作得到国家自然科学基金、中科院战略性先导科技专项、中科院青年创新促进会和山东能源研究院等的支持。青岛能源所硫化物全固态电池失效机制研究获进展
  • 基于单层过渡金属硫化物的单光子源研究获进展
    近日,华南师范大学物理与电信工程学院/广东省量子调控工程与材料重点实验室副研究员朱起忠与香港大学博士翟大伟、教授姚望合作,在单层过渡金属硫化物的激子特性方面取得重要研究进展。他们在理论上提出了基于层内激子产生偏振与轨道角动量锁定的单光子源及其阵列的方案。相关研究发表于国际权威学术期刊Nano Letters。  单光子源在量子信息和量子通讯中具有重要的应用价值。近些年来,研究人员发现单层过渡金属硫化物(TMD)中的激子可以作为很好的单光子源,具有高度的可集成性和可调控性,并且莫尔周期外势中的激子普遍被认为可以实现单光子源阵列。这引起了研究人员的广泛兴趣和大量研究。  然而,目前研究的基于TMD的单光子源发出的光子只有偏振自由度,而我们知道光子除了偏振自由度外还有轨道角动量自由度。能否利用TMD中的激子来产生携带轨道角动量以及偏振和轨道角动量纠缠的光子呢?如果可以做到,这将在充分利用TMD中单光子源的优势的基础上提供一个新的产生内部自由度纠缠的单光子源,预期将在领域内引起广泛的兴趣。  最新研究中,研究人员在考虑TMD层内激子的能谷轨道耦合的基础上,发现通过利用将TMD铺在各项同性的纳米泡上产生的各向同性的应力束缚势,应力外势中的激子本征态具有能谷和轨道角动量纠缠的特性。利用光与激子的耦合理论,他们进一步证明了这样得到的能谷和轨道角动量纠缠的激子可以被携带轨道角动量的光子激发,也可以通过激子复合发出偏振和轨道角动量纠缠的单光子。  研究组又进一步提出,基于转角氮化硼衬底产生的大周期莫尔外势,TMD中的带电激子在此基础上可以形成发出偏振和轨道角动量纠缠的单光子源的阵列。  该研究工作提出了基于TMD中的激子产生偏振和轨道角动量纠缠的单光子源及其阵列的一种新方案,对基于TMD的单光子源研究起到了推动作用,具有潜在的应用前景。  上述研究得到了国家自然科学基金和广东省自然科学基金的支持。华南师范大学硕士研究生张迪为该论文第一作者,朱起忠为通讯作者,华南师范大学为第一单位。
  • 恶臭气体在线监测仪器研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 144" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 504" colspan=" 3" p style=" line-height: 1.75em " 恶臭气体在线监测仪器 /p /td /tr tr td width=" 144" p style=" line-height: 1.75em " 联系人 /p /td td width=" 156" p style=" line-height: 1.75em " 张思祥 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " zhangsx@hebut.edu.cn /p /td /tr tr td width=" 144" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 504" colspan=" 3" 河北工业大学 /td /tr tr td width=" 144" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 504" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 √通过小试 √通过中试 □可以量产 /p /td /tr tr td width=" 144" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 504" colspan=" 3" p style=" line-height: 1.75em " √技术转让 □技术入股 √合作开发& nbsp & nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp 通过对现有试验室色谱分析仪器性能的研究,研发出在线式的基于微流控芯片技术的在线恶臭气体检测仪器。仪器的检测限可达到ppb浓度等级。可针对不同的恶臭气体进行定量与定性分析,分析物质可以达到10种以上,分析时间根据物质种类的不同可以控制在10-20分钟之内。可以应用到工厂生产排放饿气体浓度实时检测,也可以针对公共场合的环境质量检测。可以进行在线监测与便携式仪器的检测应用。 br/ & nbsp & nbsp & nbsp strong 核心器件: /strong 微流控芯片气体传感器,PID模块检测,自动进样模块 br/ & nbsp & nbsp & nbsp strong 性能指标: /strong ppb浓度检测,实时分析,快速检测时间10-20分钟 br/ & nbsp & nbsp & nbsp strong 关键技术 /strong :微流控芯片的集成技术 /p p br/ /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 主要应用于在线式气体检测与便携式的气体浓度分析。 /p p br/ /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp strong 专利: /strong strong /strong /p ol class=" list-paddingleft-2" li p style=" line-height: 1.75em " 一种用于气体分离的填充式微流控芯片. 中国. 发明专利. 申请公开,申请公布号: CN & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 104084248 A& nbsp /p /li /ol p style=" line-height: 1.75em " 2. & nbsp 基于微流控芯片的恶臭气体检测装置. 中国. 发明专利. 申请公开,申请公布号: CN 103940939 A. /p p style=" text-align: left line-height: 1.75em " 3. & nbsp & nbsp 一种PID传感器气室. 中国. 实用新型专利. 授权,授权公开号:CN 203811576 U. /p p style=" text-align: left line-height: 1.75em " 4.一种多用途光离子化传感器气室. 中国. 实用新型专利. 授权,授权公开号:CN 203838131 U. /p p style=" text-align:left " br/ /p /td /tr /tbody /table p br/ /p
  • 关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定硫化学发光气相色谱法》标准宣贯及研讨会的通知
    p style=" text-align: center " strong   全国气体标准化专业技术委员会气体分析分技术委员会 /strong /p p style=" text-align: center " strong   分析秘字〔2017〕 8号 /strong /p p & nbsp /p p style=" text-align: center "   关于举办国家推荐性方法标准GB/T 33318-2016《气体分析 硫化物的测定硫化学发光气相色谱法》标准宣贯及研讨会的通知 /p p   各有关单位: /p p   由全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)归口的国家推荐性方法标准GB/T 33318-2016《气体分析硫化物的测定 硫化学发光气相色谱法》已于2016年12月13日由中华人民共和国质量监督检验检疫总局、中国国家标准化管理委员会批准发布,并于2017年7月1日起正式实施。该项标准为首次制定实施,与其它现行相关标准存在较大的技术差异。 /p p   为了满足标准使用相关方的实际需求,加深对标准的理解,减少标准使用过程中的偏差,保证标准的有效实施,全国气体标准化专业技术委员会气体分析分技术委员会(SAC/TC 206/SC 1)决定于近期联合标准制定单位中国测试技术研究院和安捷伦科技(中国)有限公司共同举办该项标准的宣贯及相关技术研讨会,由标准主要起草人进行系统的标准宣讲,并开展气体分析领域相关技术研讨。 /p p   因会议时间按国标委要求临时提前,报名截止时间延迟到8月20日,欢迎参会。现将有关事项通知如下: /p p strong   一、参会对象 /strong /p p   与气体分析相关的企业(石化行业)、环境监测、质检部门、第三方检验检测机构、仪器厂家等标准使用相关方的专业技术人员、管理人员等。 /p p strong   二、宣贯内容 /strong /p p   1、GB/T 33318-2016《气体分析 硫化物的测定 硫化学发光气相色谱法》标准制定概况及条款释义 /p p   2、分析检测实验过程的试验技巧、重点及注意事项 /p p   3、其他相关硫化物分析技术介绍 /p p   4、石油化工、环境监测领域气体检测技术与行业发展方向交流研讨。 /p p   5、交流与答疑 /p p   6、标准项目承担单位(中国测试技术研究院)气体分析实验室考察。 /p p strong   三、宣贯时间、地点及费用 /strong /p p   1、会议时间:2017年8月31日到9月2号(8月31号报到)。 /p p   2、会议地点:瑞升· 芭富丽大酒店(成都市成华区玉双路7号) /p p   会务组不负责接送,请各位代表自行前往酒店,可参考以下路线: /p p   (1) 乘坐机场专线1号线至地铁省体育馆站下车,乘坐地铁三号线,至市二医院站转地铁四号线,至玉双路站A出口出站,步行400米可到达。 /p p   (2) 乘坐机场专线3号线,火车南站东站下车,步行174米,至天和西二街中环路口站乘坐74路,水碾河站下车,步行600米可到达。 /p p   (3) 双流国际机场打车至瑞升· 芭富丽大酒店,约23公里,出租车费约70元。 /p p   3、会议费:800元/人(含资料、餐费等费用)。 /p p   4、会议住宿费(费用自理):360元/间(标间或大床房)。 /p p   strong  四、会务承办单位: /strong 成都思创睿智科技有限公司 /p p    strong 五、注意事项 /strong /p p   1、请各位代表于8月20日前将会议所有回执(见附件1)反馈至六中联系方式中所示电子邮箱。 /p p   2、会务组只收取会务费、开具会务费发票 住宿费由酒店收取、酒店开具发票。请各位代表提前将开票信息、发票邮寄信息登记表(见附件1)反馈至六中联系方式中所示电子邮箱。 /p p strong   六、报名参会联系方式 /strong /p p   秘书处联系人:潘 义(13880777735),(028)84403610 /p p   王维康(18980409695),(028)84403036 /p p   黄慎敏(18111280301),(028)84403036 /p p   秘书处电子邮箱:TC206SC1@126.com /p p   会务承办单位联系人:金慧琳 (13096377829),13806895@qq.com。 /p p style=" text-align: right "   全国气体标准化专业技术委员会 /p p style=" text-align: right "   气体分析分技术委员会秘书处 /p p style=" text-align: right "   2017年7月4日 /p p   附件:标准宣贯报名回执表 /p p   表1 参会代表回执登记表 /p table width=" 568" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 35px " td width=" 88" height=" 35" style=" padding: 0px 7px border: 1px solid windowtext background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 姓名 /span /strong /p /td td width=" 149" height=" 35" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td td width=" 58" height=" 35" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 性别 /span /strong /p /td td width=" 81" height=" 35" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td td width=" 85" height=" 35" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 职称 /span /strong /p /td td width=" 107" height=" 35" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr tr style=" height: 30px " td width=" 88" height=" 30" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 单位名称 /span /strong /p /td td width=" 480" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 5" br/ /td /tr tr style=" height: 30px " td width=" 88" height=" 30" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 邮寄地址 /span /strong /p /td td width=" 288" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 3" br/ /td td width=" 85" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: justify text-justify: distribute-all-lines " strong span style=" font-family: 楷体 " 邮编 /span /strong /p /td td width=" 107" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr tr style=" height: 34px " td width=" 88" height=" 34" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 电子邮箱 /span /strong /p /td td width=" 288" height=" 34" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 3" br/ /td td width=" 85" height=" 34" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: justify text-justify: distribute-all-lines " strong span style=" font-family: 楷体 " 手机 /span /strong /p /td td width=" 107" height=" 34" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr tr style=" height: 30px " td width=" 88" height=" 30" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " rowspan=" 2" p style=" text-align: center " strong span style=" font-family: 楷体 " 住宿预订 /span /strong /p /td td width=" 207" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 2" p style=" text-align: center " strong span style=" font-family: 楷体 " 普标( /span /strong strong span style=" font-family: Times New Roman " 360 /span /strong strong span style=" font-family: 楷体 " 元 /span /strong strong span style=" font-family: Times New Roman " / /span /strong strong span style=" font-family: 楷体 " 间 /span /strong strong span style=" font-family: Times New Roman " / /span /strong strong span style=" font-family: 楷体 " 天) /span /strong /p /td td width=" 81" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td td width=" 85" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 是否合住 /span /strong /p /td td width=" 107" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr tr style=" height: 30px " td width=" 207" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 2" p style=" text-align: center " strong span style=" font-family: 楷体 " 普单( /span /strong strong span style=" font-family: Times New Roman " 360 /span /strong strong span style=" font-family: 楷体 " 元 /span /strong strong span style=" font-family: Times New Roman " / /span /strong strong span style=" font-family: 楷体 " 间 /span /strong strong span style=" font-family: Times New Roman " / /span /strong strong span style=" font-family: 楷体 " 天) /span /strong /p /td td width=" 273" height=" 30" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 3" br/ /td /tr tr style=" height: 28px " td width=" 88" height=" 28" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 入住日期 /span /strong /p /td td width=" 207" height=" 28" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 2" br/ /td td width=" 81" height=" 28" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 离会日期 /span /strong /p /td td width=" 192" height=" 28" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 2" br/ /td /tr tr style=" height: 28px " td width=" 88" height=" 28" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 是否参加交流考察 /span /strong /p /td td width=" 207" height=" 28" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 2" br/ /td td width=" 81" height=" 28" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 身份证号 /span /strong /p /td td width=" 192" height=" 28" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " colspan=" 2" br/ /td /tr tr style=" height: 35px " td width=" 568" height=" 35" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " colspan=" 6" p style=" text-align: center " strong span style=" font-family: 楷体 " 请正确填写通讯信息,以便邮寄发票 /span /strong /p /td /tr tr style=" height: 45px " td width=" 568" height=" 45" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " colspan=" 6" p style=" text-align: center " strong span style=" font-family: 楷体 " 请于 /span /strong strong span style=" font-family: Times New Roman " 8 /span /strong strong span style=" font-family: 楷体 " 月 /span /strong strong span style=" font-family: Times New Roman " 20 /span /strong strong span style=" font-family: 楷体 " 日前将电子版的注册回执( /span /strong strong span style=" font-family: Times New Roman " word /span /strong strong span style=" font-family: 楷体 " 文档)发至: /span /strong /p p style=" text-align: center " strong span style=" font-family: Times New Roman " TC206SC1@126.com& nbsp & nbsp 13806895@qq.com /span a name=" _GoBack" /a /strong /p /td /tr /tbody /table p   *如不参加考察交流则不用填身份证号码 /p p   *如同一单位多人参会,请复制上表,重新填写,谢谢! /p p   表2 参会单位开票资料 /p p   如需要增值税专用发票请填写下表: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 13px " td width=" 130" height=" 13" valign=" top" style=" padding: 0px 7px border: 1px solid windowtext background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 单位名称 /span /strong /p /td td width=" 438" height=" 13" valign=" top" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr tr style=" height: 13px " td width=" 130" height=" 13" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 纳税人识别号 /span /strong /p /td td width=" 438" height=" 13" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr tr style=" height: 15px " td width=" 130" height=" 15" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 地址、电话 /span /strong /p /td td width=" 438" height=" 15" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr tr td width=" 130" valign=" top" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" font-family: 楷体 " 开户行及账号 /span /strong /p /td td width=" 438" valign=" top" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr /tbody /table p   如不需要增值税专用发票请填写下表: /p table width=" 559" border=" 0" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 34px " td width=" 143" height=" 34" style=" padding: 0px 7px border: 1px solid windowtext background-color: transparent " p style=" text-align: center " strong span style=" color: black font-family: 楷体 " 开票单位名称 /span /strong /p /td td width=" 416" height=" 34" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr tr style=" height: 34px " td width=" 143" height=" 34" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " p style=" text-align: center " strong span style=" color: black font-family: 楷体 " 纳税人识别号 /span /strong /p /td td width=" 416" height=" 34" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " br/ /td /tr /tbody /table p   *同一单位多人参会,发票是否合并开具? (请填写是或否) /p p & nbsp /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201707/ueattachment/9344811b-8070-466c-b357-0400af407fd1.pdf" 20170704-GC-SCD国家标准宣贯通知.pdf /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201707/ueattachment/d79b2f98-ff39-4321-b598-c33c4d03cf09.pdf" GBT 33318-2016 气体分析 硫化物的测定 硫化学发光气相色谱法.pdf /a /p p br/ /p
  • 谈恶臭气体检测:主动出击 把握先机——访河北工业大学张思祥教授
    p   说起大气监测,公众首先想起的是PM sub 2.5 /sub ,环境监测从业人员可能会想到二氧化硫、氮氧化物、臭氧、一氧化碳、挥发性有机物等等,但是关注恶臭监测的人员还相对较少。而据不完全统计,在我国环境投诉中,恶臭投诉约占30%~40%,其数量仅次于噪声居第二位。 /p p   在投诉率如此高的情况下,为什么恶臭监测没有得到大家的重视?我国的恶臭监测现状如何?恶臭监测的未来需求在哪?还有哪些工作需要开展?近日,仪器信息网编辑专门采访了河北工业大学张思祥教授,张教授是国家重大科学仪器设备开发专项“恶臭自动在线监测预警仪器开发及应用示范”中仪器研发的主要负责人,主要开发基于传感器原理的在线恶臭监测仪器。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201602/insimg/38308eda-7e5e-4029-967f-e4a8c8826889.jpg" title=" 张思祥教授.jpg" / /p p style=" text-align: center " strong 河北工业大学 张思祥教授 /strong /p p    strong 发现需求 专注于恶臭在线仪器开发 /strong /p p   谈到为什么选择了做恶臭监测仪器开发,张教授如是说:“求学期间,我学习的是光学仪器和分析仪器专业。1999年在河北工业大学参加工作,接到的第一个任务就是研发水质COD分析仪,研发的仪器后来成功地实现了产业化。自此以后开始关注环境监测类仪器,我们与天津环科院国家环境保护恶臭污染控制重点实验室一直有合作,后来发现我国的恶臭气体检测还有很多薄弱环节,因此开始计划对此领域进行系统研究。” /p p   目前,我国的恶臭检测主要依赖人工嗅辨,需要人员多、耗时长、对测试环境条件要求高。而我国恶臭投诉在不断增多,人工嗅辨技术已远远不能满足实际应用的需求。除人工嗅辨外,基于传感器阵列的恶臭在线监测系统是国际上比较成熟的一种恶臭在线监测技术。但在我国,这种技术的发展还不能满足实际应用。 /p p   首先是传感器的选择。气体传感器主要有金属氧化物传感器、电化学传感器和PID传感器三种,单一传感器只能检测特定类的气体且对气体的选择性都较差。而恶臭气体含硫化氢、氨气、挥发性有机物等4000多种成分,单一传感器无法满足检测需求,故一般都采取传感器阵列。 /p p   传感器阵列采取的是将不同传感器集成到一个模块上或者在一个芯片上沉积不同的传感器材料,故基于传感器阵列的恶臭在线监测仪器开发的首要任务就是开发出合适我国的传感器组合,满足恶臭气体种类和浓度的检测需求。虽然气体传感器种类众多,在食品、医药、安全等领域应用广泛,但恶臭气体的一大特点是气体组分未知,这就对传感器的选择和组合造成了很大困难。 /p p   其次是恶臭气体组分分析问题。传感器对气体的选择性较差,在混合气检测中,很难检测出气体组分。张教授就想到了色谱分离,将恶臭气体先进行分离再检测。经过慎重考虑,张教授最终选择了微流控技术,一是微流控技术可以做成固态元件,二是可以与热导检测器、PID检测器或电化学传感器等集成到一个芯片上,从而便于将来进行在线和小型化设计。 /p p   微流控芯片大部分是做液体分离,为了实现气体分离,张教授团队主要进行了两种设计。一种是填充式,即在微流控芯片的沟道里填充吸附性物质,如经过修饰处理的硅藻土,利用吸附脱附原理实现气体分离。另外一种是表面涂覆,涂覆之后利用毛细原理对气体进行溶解和析出的分离。目前已经可以实现100ppb范围内的气体分离,基本达到当初预期的指标。 /p p    strong 不断深入 建立恶臭在线监测预警系统 /strong /p p   虽然微流控芯片与传感器阵列的组合可以实现恶臭气体成分和浓度的检测,但是张教授认为恶臭在线检测系统要想满足实际应用需求,如与现行的国家标准方法相对应、接到投诉后如何快速锁定污染源等,还需要进一步的研究。 /p p   首先是低嗅阈值气体传感器的开发。有些恶臭气体的嗅阈值非常低,达到亚ppb级别,但目前气相色谱上常用传感器对此类的检测还存在问题。由于张教授所在单位河北工业大学在新材料方面有很多研究,故张教授想在此基础上,对传感器材质进行一些研究。如碳化硼材料对气体的吸附、富集和析出性能良好,可以考虑其在恶臭气体的吸附和富集方面的应用 石墨烯也是一种新型材料,可以研究一下其在提高气体传感器的气敏性和精度方面的作用。 /p p   其次是气体辨别模型的建立。虽然经过了前端的分离,但是由于气体组分过于复杂, 传感器对特定恶臭气体的检测,仍可能会受到其它气体的干扰。此时就需要增加一种传感器,通过信息融合和数据分析(如模式识别、神经网络分析等)来排除干扰,即通过建立模型来实现气体辨别。 /p p   检测结果与国家标准的对接也是一个值得研究的课题。按照现行国家标准,恶臭检测的最终结果应该为恶臭等级,而此系统的分析结果为恶臭成分和浓度。因此需要建立一个恶臭成分浓度与恶臭等级对应的模型,包括单一物质,物质浓度与恶臭等级的关系 两种或者多种物质混合之后,物质浓度和混合比例与恶臭等级的关系。最终的目标是需要建立一个仪器检测代替人工方法的标准来进行恶臭评价。 /p p   还有一个工作就是恶臭的溯源。一个是恶臭来源区域判断,如果检测到恶臭浓度超标,需要能根据风力、风向、大气压以及恶臭浓度的梯度变化等相关参数,来推断恶臭可能的排放来源。另一个就是建立恶臭气体指纹,根据工厂的生产情况调查其恶臭气体的基本组分,当检测到恶臭气体时,根据气体成分可以快速初判出污染源。 /p p    strong 把握时机 促进国产仪器发展 /strong /p p   仪器开发的最终目的是实现应用,对于恶臭仪器的产业化和我国恶臭监测市场发展,张教授也谈了自己的看法。 /p p   恶臭仪器产业化应尽早。我国PM sub 2.5 /sub 监测最初受到关注是某国公布了监测结果,之后我国政府公布的监测数据受到很多的质疑,这是因为先入为主。因此我国应该尽早发展自己的比较权威的仪器,并将监测数据发布,从而掌握主动权。而且从仪器使用上来说,用户习惯一种仪器之后,再接受新的仪器就需要一个过程,这也需要我国厂商应尽早推出有自主知识产权的仪器。 /p p   从国产仪器产业发展角度来看,目前我国的恶臭监测还不适宜大规模推广。全球范围内,法国和韩国的恶臭监测技术发展较早,而我国的恶臭监测仪器还不成熟。如果国家现在推广恶臭监测的话,那么市场上的仪器肯定是国外厂商为主,对国产仪器发展将是一个很大的打击。 /p p   从推广形式来看,恶臭监测可以考虑与挥发性有机物监测结合来推广。目前VOCs监测已经受到了国家的重视并开始布局,而恶臭气体包括氨气、硫化氢和多种VOCs,因此可以在某些应用上将恶臭监测和VOCs监测统筹考虑。而且可以根据不同的应用场合开发特定的恶臭监测仪器,如用于公共卫生间的以硫化氢和氨气检测为主的恶臭监测仪。 /p p   在采访最后,张教授表示,非常愿意与企业合作,实现恶臭在线监测预警仪器的产业化,为我国的恶臭监测尽一份力。 /p p    strong span style=" font-family: 楷体,楷体_GB2312,SimKai " 后记: /span /strong span style=" font-family: 楷体,楷体_GB2312,SimKai " 以前我国的环境治理以减少污染物的排放为约束性指标,而环保“十三五”规划以改善环境质量为核心,更加注重公众认同感,从雾霾、黑臭水体等词语的频繁出现即可略见一二。就譬如恶臭问题是与公众感受直接相关的环境问题,可能因其局域性、瞬时性和阵发性而没有受到广泛关注,但是在特定区域已成为困扰居民的严重环境问题。 /span /p p span style=" font-family: 楷体,楷体_GB2312,SimKai "   随着环境治理的不断深入,恶臭受到关注仅是一个早晚的问题,而恶臭监测预警系统可以为恶臭治理提供很好的监管依据。故我国恶臭监测系统需要更多像张思祥教授这样的专家以及仪器厂商的努力,加强技术储备,从而在未来的恶臭问题中把握先机,掌握主动权。 /span /p p style=" text-align: right " span style=" font-family: 楷体,楷体_GB2312,SimKai "   采访编辑:李学雷 /span /p p style=" text-align: right " span style=" font-family: 楷体,楷体_GB2312,SimKai " /span /p p    strong span style=" font-family: 楷体,楷体_GB2312,SimKai " 附录:张思祥教授个人简介 /span /strong /p p style=" text-align: left " span style=" font-family: 楷体,楷体_GB2312,SimKai "   河北工业大学机械工程学院教授,机械工程学科博士生导师,河北工业大学国家大学科技园管理中心主任,全国高校互换性委员会常务理事, 中国仪器仪表学会分析仪器学会常务理事。主要教育经历:1993/09-1996/06,天津大学,精密仪器与光电子工程学院,获得博士学位 2010/10—2011/05,美国克莱姆森大学 访问学者 1990/09-1993/06,浙江大学,光学与电子科学仪器系,获得硕士学位 1978/09-1982/06,天津大学,精密仪器系,获得学士学位 /span /p p style=" text-align: left " span style=" font-family: 楷体,楷体_GB2312,SimKai "   主要从事机械几何量测量理论与技术、光电检测方法、计算机图象处理技术研究。主持和完成国家重大科学仪器设备开发专项、国家自然科学基金重点项目、河北省自然科学基金、天津市自然科学基金、河北省高教委博士科研资助基金、国家“十五”科技攻关重大项目子项、总装备部预研项目等国家、省部级纵向课题。完成“污水COD在线检测设备开发研制”等十余项企事业委托的横向课题。在国际、国内重要学术会议和学术刊物上发表学术论文100多篇。获得河北省科技进步二等奖、天津市科技进步三等奖各一项,各项专利30余项。目前有国家重大科学仪器设备开发专项、总装备部预研项目、企业委托项目在研。 /span br/ /p
  • 【格哈特应用方案】赛默得通氮蒸馏仪—聚焦中草药二氧化硫/粮食磷化物/土壤硫化物等检测,为您提供通氮蒸馏应用方案!
    一、仪器简介基于享誉全球的TURBOTHERM 特博森红外快速加热系统,德国格哈特专门开发了先进的通氮快速蒸馏系统,专业用于样品中二氧化硫、硫化物、氰化物、高氯废水COD、氟化物、磷化物、甲醛、挥发酚、挥发性脂肪酸、二硫代氨基甲酸酯等的检测分析。先进红外加热技术,加热和冷却时间短,蒸馏效率明显提高。整体化设计,结构紧凑,带专业滴漏盘的专用支架放置冷凝管和高效吸收冷阱,操作安全便利,节省空间。独立冷凝系统,确保冷凝效果。可调气体流量计,4个蒸馏管流量可独立精准控制。二、特点1.自动程序控制①自动控制蒸馏时间和加热功率;②先进的程序控温,确保温度稳定,高重现性;③可设定和储存9个程序,每个程序可设定多达9步的加热条件/时间。工作过程可随时手动调整,应用灵活方便;④工作状态液晶清晰显示,随时提示程序步骤。2.仪器组成由红外快速加热系统基本单元、玻璃冷凝管、高效吸收阱、玻璃滴液漏斗、蒸馏管、气体流量计、带滴漏盘的专业支架,磁力搅拌器(可选)等。3.多功能性①批处理4个样品,蒸馏条件一致,稳定可靠;②两种蒸馏管和吸收冷阱可选,满足不同样品不同应用的需求;③磁力搅拌功能可选,提供更灵活应用;④可拓展为凯氏消化系统,可配套各种规格试管。⑤也可扩展作为流动注射的消化系统或湿灰化系统。4.高效吸收冷肼专业设计,无损收集蒸馏产物,极高的回收率,安全环保。三、应用资料基于Gerhardt一百多年专业知识的应用数据库,结合国内相关标准,我们可提供药典中二氧化硫残留量的测定、土壤和沉积物硫化物的测定、粮食磷化物残留量测定等通氮蒸馏应用方案。德国Gerhardt为实验室用户提供最全面的蒸馏解决方案,特点鲜明的“蒸馏家族成员”VAPODEST(维普得)水蒸汽蒸馏仪、THERMODEST(赛默得)通氮蒸馏仪、KJELDEST(凯尔得)直接蒸馏仪,总能满足您各种蒸馏应用需求。更多蒸馏应用方案,欢迎您致电咨询了解!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制