当前位置: 仪器信息网 > 行业主题 > >

红外薄膜反射法

仪器信息网红外薄膜反射法专题为您提供2024年最新红外薄膜反射法价格报价、厂家品牌的相关信息, 包括红外薄膜反射法参数、型号等,不管是国产,还是进口品牌的红外薄膜反射法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外薄膜反射法相关的耗材配件、试剂标物,还有红外薄膜反射法相关的最新资讯、资料,以及红外薄膜反射法相关的解决方案。

红外薄膜反射法相关的仪器

  • 耐驰 NanoTR 热反射法薄膜导热系数测量仪 应用领域:可测量基片上金属、陶瓷、聚合物薄膜的热物性参数,如热扩散系数、热导率、吸热系数和界面热阻。 耐驰 NanoTR 热反射法薄膜导热系数测量仪 产品特点:- 精确的微米级薄膜导热测量方法- 可提供RF测量模式(后加热-前检测)和FF测量模式(前加热-前检测)- Nano TR遵循国际校准标准 耐驰 NanoTR 热反射法薄膜导热系数测量仪 技术参数:Nano TR温度范围RT,RT … 300°C(选配)测量模式RF/FF样品尺寸10×10 … 20×20mm薄膜厚度30nm … 20μm(取决于样品种类和测量模式)热扩散系数0.01 … 1000mm2/s主激光脉冲宽度 1ns光束直径 100μm激光功率 100mW详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 热反射(Thermo-Reflectance)方法基于超高速激光闪射系统,可测量基片上金属、陶瓷、聚合物薄膜的热物性参数,如:热扩 散系数、导热系数、吸热系数(Thermal Effusivity)和界面热阻。由于激光闪射时间仅为纳秒(ns)量级,甚至可达到皮秒(ps) 量级,此系统可测量厚度低至 10nm 的薄膜。同时,系统提供不同的测量模式,以适应不同的基片情况(透明 / 不透明)。 NETZSCH TR 特性:• 该方法符合日本国家标准:• JIS R 1689:通过脉冲激光热反射方法测量精细陶瓷薄膜的热扩散系数;• JIS R 1690:陶瓷薄膜和金属薄膜界面热阻的测量方法 。发展简史1990 年,日本产业技术综合研究所/日本国家计量院(AIST/NMIJ)发明热反射法,测量薄膜导热性能。2008 年,AIST 设立 PicoTherm 公司。2010 年,PicoTherm 公司推出纳秒级热反射系统 NanoTR。2012 年,PicoTherm 公司推出皮秒级热反射系统 PicoTR。2014 年,PicoTherm 公司和 NETZSCH 公司建立战略合作。由 NETZSCH 负责 PicoTherm 产品在全球的销售和服务。技术背景激光闪射法 -最主流的材料热扩散系数测试方法在现代工业中,关于材料的热性能、特别是热物理性能的相关知识变得日益重要。在这里我们可以举出一些典型领域,例如应用于高性能缩微电子器件的散热材料,作为持续能源的热电材料,节能领域的绝热材料,涡轮叶片中所使用的热障涂层(TBC),以及核工厂的安全操作,等等。在各种热物性参数之中,导热系数显得尤其重要。可以使用激光闪射法(LFA)对材料的热扩散系数/导热系数进行测定。这一方法经过许多年的发展已广为人知,可以提供可靠而精确的数据结果。样品的典型厚度在 50um 至 10mm 之间。NETZSCH 是一家世界领先的仪器制造厂商,提供一系列的热物性测试仪器,特别是激光闪射法导热仪。这些 LFA 系统在陶瓷,金属,聚合物,核研究等领域得到了广泛应用。热反射法 -测试厚度为纳米级的薄膜材料的热扩散系数随着电子设备设计的显著进步,以及随之而来的对有效的热管理的需求,在纳米级厚度范围内进行精确的热扩散系数/导热系数测量已经变得越来越重要。日本国家先进工业科学与技术研究所(AIST),在上世纪 90 年代初即已响应工业需求,开始研发“脉冲光加热热反射法”。于 2008 年成立了 PicoTherm 公司,同时推出了纳秒级的热反射仪器“NanoTR”与皮秒级的热反射仪器“PicoTR”,这两款仪器可对薄膜的热扩散系数进行绝对法的测量,薄膜厚度从数十微米低至纳米级范围。2014 年,NETZSCH 日本分公司成为了 PicoTherm 公司的独家代理。与我们现有的 LFA 仪器相结合,NETZSCH 现在可以提供从纳米级薄膜、到毫米级块体材料的全套的测试方案。为什么需要测试薄膜?薄膜的热性能与块体材料的热性能不同纳米级薄膜的厚度通常小于同类块体材料典型的晶粒粒径。由此,其热物理性能与块体材料将有着显著的不同。测量模式超快速激光闪射法 -RF 模式:后部(Rear)加热 / 前部(Front)探测可测试热扩散系数与界面热阻纳米级薄层与薄膜的热透过时间极短,传统的激光闪射法(LFA)使用红外测温,采样频率相对较低,已不足以有效地捕捉纳米级薄膜的传热过程。因此需要一种新的更快速的检测方式,可以克服经典的激光闪射法的技术局限。这一被称为超快速激光闪射法的技术,其典型模式为后部加热/前部探测方法。这一方式的测量结构与传统的 LFA 方法相同:样品制备于透明基体之上,测量方向为穿过样品厚度、与样品表面垂直。由加热激光照射样品的下表面,由探测激光检测样品上表面的传热温升过程。随着样品检测面的温度逐渐上升,其表面热反射率会相应发生变化。使用探测激光按一定采样频率对检测面进行照射,利用反射率的变化可获取检测面的温度上升曲线。基于该曲线进行拟合计算,可得到热扩散系数(如下图所示)。这里,金属薄膜(Mo)的热扩散系数测量结果为 15.9 mm2/s。时间域热反射法 -前部加热 / 前部探测(FF)测定热扩散系数与吸热系数除了 RF 方法之外,测量也可以使用前部加热/前部探测(FF)的结构进行。“Front”一词这里指的是沉积于基体上的薄膜的外表面,而“Rear”一词指的是薄膜与基体接触的一面。在 FF 测量配置中(如下图所示),加热激光与探测激光处于样品的同一面。加热激光加热的是薄膜的前表面的一个直径为几十微米的区域,探测激光则指向同一位置,观察在照射之后表面温度的变化。这一方法可以应用于非透明基体上的薄层材料,即 RF 方法不适合的场合。在下图的示例中,使用 FF 模式,金属薄膜(Mo)的热扩散系数测量结果为 16.1 mm2/s。结果证明了 RF 与 FF 模式之间结果高度的一致性(偏差2%)。NanoTR 原理NanoTR 具有先进的信号处理技术,可以进行高速的测量。测试过程中,一束脉冲宽度 1ns 的激光脉冲被周期性(间隔20us)地照射到样品的加热面上。使用探测激光记录检测面相应的温度响应。通过在极短时间内进行大量的重复测试,对重复信号进行累加,可以获得优异的信噪比。通过软件,仪器可以方便地在 RF 与 FF 两种测试方式之间进行切换,由此适合于各种类别的样品。NanoTR 遵从 JIS R 1689,JIS R 1690 标准,提供具有热扩散时间标准值的薄膜标样(RM1301-a),使结果具有 SI 可回溯性。该标样由 AIST 提供。PicoTR 原理对于皮秒级热反射分析仪 PicoTR,照射到样品的加热面上的是脉冲宽度仅为 0.5ps 的激光脉冲,重复周期为 50ns。使用探测激光,记录检测面相应的温度响应。PicoTR 允许用户在 RF 与 FF 两种模式之间进行自由切换。PicoTR 符合 JIS R 1689,JIS R 1690 标准。技术参数仪器型号NanoTRPicoTR温度范围RT,RT … 300°C(选配)RT,RT … 500°C(选配)测量模式RF/FFRF/FF样品尺寸10 × 10mm … 20 × 20mm10 × 10mm … 20 × 20mm薄膜厚度30nm … 20μm (取决于样品种类和测量模式)10nm … 900nm (取决于样品种类和测量模式)热扩散系数0.01 … 1000mm2/s0.01 … 1000mm2/s主激光脉冲宽度 1ns 光束直径 100μm 激光功率 100mW脉冲宽度 0.5ps 光束直径 45μm 激光功率 20mW
    留言咨询
  • 耐驰 PicoTR 热反射法薄膜导热系数测量仪 应用领域:可测量基片上金属、陶瓷、聚合物薄膜的热物性参数,如热扩散系数、热导率、吸热系数和界面热阻。 耐驰 PicoTR 热反射法薄膜导热系数测量仪 产品特点:- 精确的纳米级薄膜导热测量方法- 可提供RF测量模式(后加热-前检测)和FF测量模式(前加热-前检测)- Pico TR遵循国际校准标准 耐驰 PicoTR 热反射法薄膜导热系数测量仪 技术参数:Pico TR温度范围RT,RT … 500°C(选配)测量模式RF/FF样品尺寸10×10 … 20×20mm薄膜厚度10 … 900nm(取决于样品种类和测量模式)热扩散系数0.01 … 1000mm2/s主激光脉冲宽度 0.5ps光束直径 45μm激光功率 20mW详细参数,敬请垂询 *价格范围仅供参考,实际价格与配置、汇率等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 台式薄膜探针反射仪 FTPadvFTPadv是一种具有成本效益的台式反射膜厚仪解决方案,它具有非常快速的厚度测量。在100毫秒以内进行测量,其精度低于0.3nm,膜厚范围在50 nm -25 μm。为了便于分光反射测量操作,该仪器包括了范围广泛的预定配方。 简易的膜厚测量通过选择合适的配方,FTPadv反射仪以小于100ms的测量速度、精度小于0.3nm、厚度范围为50nm-25μm的精度进行厚度测量。 独特的自动建模通过测量反射光谱和光谱数据库的比较,将测量误差减到很小。 光谱椭偏SE为基础的材料数据库基于SENTECH精确的椭偏光谱测量的大型材料库为测量新材料的光学常数提供了配方。 应用二十年来,SENTECH已经成功地销售了用于各种应用的薄膜厚度探针FTPadv。这种台式反射仪的特点是不管在低温或高温下,在工业或研发环境中,都能通过远程或直接控制,对小样品或大样品进行实时或在线厚度测量。 台式反射仪FTPadv精确、可重复地测量反射和透明衬底上透明和弱吸收膜的厚度和折射率。FTPadv可以结合在显微镜上,或者配备有稳定的光源,用于测量厚度达到25 μm (根据要求可更厚)的膜层。更具备了从SENTECH光谱椭偏仪经验中受益的预定义的、经由客户验证的、以及随时可以使用的应用程序的广泛数据库。 FTPadv的特征在于对来自叠层样品的任何膜层的厚度进行测量,使得FTPadv成为膜厚测量的理想成本效益的解决方案。用于工艺控制的FTPadv包括具有采样器的光纤束、具有卤素灯的稳定光源以及FTP光学控制站。局域网连接到PC允许了远程控制的FTPadv在工业应用,如恶劣环境,特殊保护空间或大型机械。 反射仪FTPadv带有大量预定义的配方,例如半导体上的介质膜、半导体膜、硅上的聚合物、透明衬底上的膜、金属衬底上的膜等等。独特的自动建模,这特性允许通过与光谱库的快速比较来检测样本类型。该反射仪将操作误差减到很小。用光学反射法测量膜厚从未如此容易。 SENTECH FTPadv菜单驱动的操作软件允许单层和叠层结构的厚度测量,具有极好的操作指导。此外,它还具有强大的分析工具和出色的报告输出功能。附加的自动扫描软件可用于控制电动样品台。将软件升级到用于反射测量的高级分析的软件包FTPadv EXPERT,即可应用于具有未知或不恒定光学特性的材料。因此,单层薄膜厚度测量以及折射率和消光系数分析是可实现的。 SENTECH FTPadv菜单驱动的操作软件允许单层和叠层结构的厚度测量,具有极好的操作指导。此外,它还具有强大的分析工具和出色的报告输出功能。附加的自动扫描软件可用于控制电动样品台。将软件升级到用于反射测量的高级分析的软件包FTPadv EXPERT,即可应用于具有未知或不恒定光学特性的材料。因此,单层薄膜厚度测量以及折射率和消光系数分析是可实现的。
    留言咨询
  • 薄膜计量光谱反射仪 400-860-5168转5919
    1. 产品概述RM 1000 和 RM 2000 光谱反射仪可测量表面光滑或粗糙的平面或弯曲样品的反射率。使用SENTECH FTPadv Expert软件计算单膜或层叠的厚度、消光系数和折射率。厚度分别为 2 nm 和 50 μm (RM 2000) 或 100 μm (RM 1000) 的单片、层叠和基板可以在 UV-VIS-NIR 光谱范围内进行分析。2. 主要功能与优势突破折光率测量的限SENTECH反射仪通过样品的高度和倾斜调整以及光学布局的高光导率,具有精密的单光束反射率测量功能,允许对n和k进行可重复的测量,在粗糙表面上进行测量,以及对非常薄的薄膜进行厚度测量。紫外到近红外光谱范围RM1000 410 纳米 – 1000 纳米RM2000 200 纳米 – 1000 纳米高分辨率映射RM 1000 和 RM 2000 反射仪可选配 x-y 成像台和成像软件以及用于小光斑尺寸的物镜。3. 灵活性和模块化SENTECH RM 1000 和 RM 2000 代表我们的反射仪。桌面设备包括高度稳定的光源、带有自动准直望远镜和显微镜的反射光学器件、摄像机、高度和倾斜度可调的样品平台、光谱光度计和电源。它可以选配 x-y 成像台和成像软件,以及用于第二种光斑尺寸的物镜。除了薄膜厚度和光学常数外,薄膜的组成(例如氮化镓上的AlGaN,硅上的SiGe),增透膜(例如在纹理硅太阳能电池上,紫外线敏感的GaN器件)以及小型医疗支架上的涂层都可以通过我们的反射仪进行测量。这些反射仪支持微电子、微系统技术、光电子、玻璃涂层、平板技术、生命科学、生物技术等域的应用。用于我们的反射仪 RM 1000 / 2000 的综合性、以配方为导向的 SENTECH FTPadv EXPERT 软件包括测量设置、数据采集、建模、拟合和报告。已经内置了一个包含预定义、客户验证和即用型应用程序的广泛数据库。“自动建模”选项允许从光谱库中自动选择样本模型。基于SENTECH在椭圆偏振光谱方面的业知识,庞大的材料库和各种色散模型使我们的光谱反射仪能够分析几乎所有的材料和薄膜。操作员可以很容易地使用新的光学数据更新数据库。SENTECH通过椭圆偏振光谱法测量具有未知光学特性的新材料,为客户提供支持。
    留言咨询
  • 1. 产品概述FTPadv Expert薄膜测量软件具有FTPadv标准软件中包含的用户友好和以配方为导向的操作概念。突出显示拟合参数、测量和计算的反射光谱以及主要结果的光学模型同时显示在操作屏幕上。2. 主要功能与优势n、k 和厚度的测量该软件包设计用于 R(λ) 和 T(λ) 测量的高分析。多层分析可以测量单层薄膜和层叠的每一层的薄膜厚度和折射率。大量的色散模型集成色散模型用于描述所有常见材料的光学特性。通过使用快速拟合算法改变模型参数,将计算出的光谱调整为测量的光谱。3. 灵活性和模块化 SENTECH FTPadv Expert 软件包用于光谱数据的高分析,根据反射和透射测量结果确定薄膜厚度、折射率和消光系数。它扩展了SENTECH FTPadv薄膜厚度探头的标准软件包,适用于更复杂的应用,包括光学特性未知或不稳定的材料。可以在光滑或粗糙、透明或吸收性基材上测量单个透明或半透明薄膜的薄膜厚度、折射率和消光系数。该软件允许分析复杂的层堆栈,并且可以确定堆栈的每一层的参数。我们的FTPadv Expert薄膜测量软件具有FTPadv标准软件中包含的用户友好和以配方为导向的操作概念。突出显示拟合参数、测量和计算的反射光谱以及主要结果的光学模型同时显示在操作屏幕上。该软件包包括一个大型且可扩展的材料库,该库基于表格材料文件以及参数化色散模型。FTPadv Expert 软件可选用于膜厚探头 FTPadv,以及反射仪 RM 1000 和 RM 2000 软件包的一部分。
    留言咨询
  • 薄膜的光学特性主要有反射和干涉.NanoCalc薄膜反射测量系统可以用来进行10nm~250µ m的膜厚分析测量,对单层膜的分辨率为0.1nm。根据测量软件的不同,可以分析单层或多层膜厚。产品特点 1、可分析单层或多层薄膜2、分辨率达0.1nm3、适合于在线监测操作理论最常用的两种测量薄膜的特性的方法为光学反射和透射测量、椭圆光度法测量。NanoCalc利用反射原理进行膜厚测量。查找n和k值可以进行多达三层的薄膜测量,薄膜和基体测量可以是金属、电介质、无定形材料或硅晶等。NanoCalc软件包含了大多数材料的n和k值数据库,用户也可以自己添加和编辑。应用NanoCalc薄膜反射材料系统适合于在线膜厚和去除率测量,包括氧化层、中氮化硅薄膜、感光胶片及其它类型的薄膜。NanoCalc也可测量在钢、铝、铜、陶瓷、塑料等物质上的抗反射涂层、抗磨涂层等。
    留言咨询
  • 光反射薄膜测厚仪原产国:美国薄膜表面或界面的反射光会与从基底的反射光相干涉,干涉的发生与膜厚及折光系数等有关,因此可通过计算得到薄膜的厚度。光干涉法是一种无损、精确且快速的光学薄膜厚度测量技术,我们的薄膜测量系统采用光干涉原理测量薄膜厚度。该产品是一款价格适中、功能强大的膜厚测量仪器,近几年,每年的全球销售量都超过200台。根据型号不同,测量范围可以从10nm到250um,它最高可以同时测量4个膜层中的3个膜层厚度(其中一层为基底材料)。该产品可应用于在线膜厚测量、测氧化物、SiNx、感光保护膜和半导体膜。也可以用来测量镀在钢、铝、铜、陶瓷和塑料等上的粗糙膜层。 应用领域理论上讲,我们的光干涉膜厚仪可以测量所有透光或半透光薄膜的厚度。以下为我们最熟悉的应用领域(半导体薄膜,光学薄膜涂层,在线原位测量,粗糙或弧度表面测量):□ 晶片或玻璃表面的介电绝缘层(SiO2, Si3N4, Photo-resist, ITO, ...);□ 晶片或玻璃表面超薄金属层(Ag, Al, Au, Ti, ...);□ DLC(Diamond Like Carbon)硬涂层;SOI硅片;□ MEMs厚层薄膜(100μm up to 250μm);□ DVD/CD涂层;□ 光学镜头涂层;□ SOI硅片;□ 金属箔;□ 晶片与Mask间气层;□ 减薄的晶片( 120μm);□ 瓶子或注射器等带弧度的涂层;□ 薄膜工业的在线过程控制;等等… 软件功能丰富的材料库:操作软件的材料库带有大量材料的n和k数据,基本上的常用材料都包括在这个材料库中。用户也可以在材料库中输入没有的材料。软件操作简单、测速快:膜厚测量仪操作非常简单,测量速度快:100ms-1s。软件针对不同等级用户设有一般用户权限和管理者权限。软件带有构建材料结构的拓展功能,可对单/多层薄膜数据进行拟合分析,可对薄膜材料进行预先模拟设计。软件带有可升级的扫描功能,进行薄膜二维的测试,并将结果以2D或3D的形式显示。软件其他的升级功能还包括在线分析软件、远程控制模块等。
    留言咨询
  • 30度镜反射附件 400-860-5168转1683
    30度镜反射附件型号规格:TL011-1000品牌:PIKE30度Spec&trade 镜反射附件适用于用镜反射法测量薄膜样品。样品仅简单地铺在附件样品罩上,即可快速得到红外光谱。30度角镜反射附件包括3/8",1/4"和3/16"样品罩。得到的高质量光谱即可用于分析涂层结构又可用于测量涂层厚度。光路设计简单有效,光通量大。通用型设计,可直接用于Bruker、thermo、PE、Varian、Shimadzu以及国产红外光谱仪上。
    留言咨询
  • 材料的热物理性质以及最终产品的传热优化在工业应用领域变得越来越重要。经过几十年的发展,闪射法已经成为常用的用于各种固体、粉末和液体热导率、热扩散系数的测量方法。薄膜热物性在工业产品中正变得越来越重要,如:相变光盘介质、热电材料、发光二极管(LED ) ,相变存储器、平板显示器以及各种半导体。在这些工业领域中,特定功能沉积膜生长在基底上以实现器件的特殊功能。由于薄膜的物理性质与块体材料不同,在许多应用中需要专门测定薄膜的参数。基于已实现的激光闪射技术,LINSEIS TF-LFA 薄膜导热测试仪(Laserflash for thin films)可以测量80nm——20μm厚度薄膜的热物理性质。 1.瞬态热反射法(后加热前检测(RF)):由于薄膜材料的物理性质与基体材料显著不同,必需要有相应的技术来克服传统激光闪射法的不足,即瞬态热闪射法。测量模型与传统激光闪射法相同:检测器和激光器在样品两侧。考虑到红外探测器测试薄膜太慢,因此检测是通过热反射方法完成的。该技术的原理是材料在加热时,表面反射率的变化可最终用于推导出热性能。测量反射率随时间的变化,得到的数据代入包含的系数模型里面并快速计算出热性能。2. 时域热反射法(前加热前检测(FF)):时域热反射技术是另一种测试薄层或薄膜热性能(热导率,热扩散率)的方法。测量方式的几何构造被称为“前加热前检测(FF)”,因为检测器和激光在样品上的同一侧。该方法可以应用于非透明基板上不适合使用RF技术的薄膜层。 3. 瞬态热反射法(RF)和时域热反射法(FF)相结合:两种方法可以集成在一个系统中并实现两者优点的结合。温度范围*RT RT -- 500°C-100°C -- 500°C 激光器 Nd:YAG 激光脉冲电流≤90mJ (软件控制)脉宽8 ns激光探头HeNe-激光器 (632nm), 2mW前端热反射 Si-PIN-Photodiode, 有效直径: 0.8 mm, 直流电压 … 400MHz, 响应时间: 1ns后端热反射quadrant diode, 有效直径: 1.1 mm直流电压 … 100MHz, 响应时间: 3.5ns测量范围0,01 mm2/s -- 1000 mm2/s样品直径圆形样品 φ10...20 mm 样品厚度80 nm -- 20 μm样品数量6样品自动进样器气氛惰性、氧化性、还原性真空度10E-4mbar电路板集成式接口USB *可更换炉体*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询。我们定会将竭尽全力为您制定完善的解决方案。
    留言咨询
  • 反射高能电子衍射仪(ReflectionHigh-Energy Electron Diffraction)是观察晶体生长最重要的实时监测工具。它可以通过非常小的掠射角将能量为10~30KeV的单能电子掠射到晶体表面,通过衍射斑点获得薄膜厚度,组分以及晶体生长机制等重要信息。因此反射高能电子衍射仪已成为MBE系统中监测薄膜表面形貌的一种标准化技术。  R-DEC公司生产的反射式高能电子衍射仪,以便于操作者使用的人性化设计,稳定性和耐久性以及拥有高亮度的衍射斑点等特长得到日本国内及海外各研究机构的一致好评和认可。用于有机薄膜晶体结构检测。世界首创!欢迎来电询问详细技术资料!
    留言咨询
  • 耐驰公司一直是激光闪射导热测量技术的引领者,已成功地将此技术的应用温度范围扩展至-125℃… 2800℃。我们从不停止技术创新和应用拓展。LFA 467 Hyperflash® 继承了耐驰的卓越传统,再一次成为业界标杆之作。激光闪射法是测定热物性的最佳方法:激光闪射法导热系数仪主要技术参数:LFA 467 HyperFlash® - 技术参数? 温度范围:-100°C ... 500°C,单一炉体 ? 非接触式测量,IR 检测器检测样品上表面升温过程 ? 数据采集速率:高达 2MHz(包括半升温信号检测,及 pulse mapping 技术)-- 对于高导热及薄膜样品,采样时间(约为半升温时间 10 倍)可低至 1ms,样品厚度最薄可至 0.01 mm 以下(取决于具体的导热系数) ? 热扩散系数测量范围:0.01 mm2/s ... 2000 mm2/s ? 导热系数测量范围:? 样品尺寸: - 直径 6 mm ... 25.4 mm(包括方形样品) - 厚度 0.01 mm ... 6 mm(样品的厚度要求取决于不同样品的导热性能) ? 16 个样品位的自动进样器 ? 20 多种支架类型 ? 丰富的测量模式,适应各种类型的样品。如各向异性材料,多层模式分析,薄膜,纤维,液体,膏状物,粉末,熔融金属,压力下的测试,等等。 ? Zoom Optics 优化检测器的检测范围(专利技术) ? 专利保护的 pulse mapping 技术(US 7038209, US 20040079886, DE 10242741 – approximation of the pulse),用于脉冲宽度修正,可以提高比热值的测量精度? 气氛:惰性、氧化性、静态/动态、负压 ? 遵从如下标准: ASTM E1461, ASTM E2585, DIN EN 821-2, DIN 30905, ISO 22007-4, ISO 18755, ISO 13826 DIN EN 1159-2, 等. LFA 467 HT HyperFlash® - 技术参数? 温度范围:RT ... 1250°C,单一炉体 ? 最大升温速率:50 K/min ? 红外检测器:InSb(RT ... 1250°C,可配备液氮自动充填设备) ? 数据采集速率:最大 2 MHz(同时适用于红外检测器与 pulse mapping 通道) ? 热扩散系数范围:0.01 mm2/s ... 2000 mm2/s ? 导热系数:? 专利的 pulse mapping 技术:用于有限脉冲修正,以及提高比热测量精度 ? 气氛:惰性,氧化性,静态与动态 ? 真空:10-4 mbar ? 样品支架:适合圆形与方形样品 ? 气氛控制:MFC 与 AutoVac
    留言咨询
  • 薄膜计量激光椭圆仪 400-860-5168转5919
    1. 产品概述SENTECH SE 500adv结合了椭圆偏振法和反射法,消除了测量透明薄膜层厚的模糊性。它将可测量的厚度扩展到 25 μm。因此,SE 500adv 扩展了标准激光椭偏仪 SE 400adv 的功能,特别适用于分析较厚的电介质、有机材料、光刻胶、硅和多晶硅薄膜。2. 主要功能与优势明确的厚度测定椭圆偏振法和反射法的结合允许通过自动识别循环厚度周期来快速、明确地确定透明薄膜的厚度。大的测量范围激光椭偏仪和反射仪的结合将透明薄膜的厚度范围扩展到 25 μm 或更多,具体取决于所选的光度计选项。突破激光椭圆偏振仪的限多角度手动测角仪具有优秀的性能和角度精度,可以测量单片和层叠的折射率、消光系数和膜厚。 3. 灵活性和模块化SENTECH SE 500adv 可用作激光椭偏仪、膜厚探头和 CER 椭偏仪。因此,它提供了标准激光椭偏仪无法达到的大灵活性。作为椭圆仪操作,可以执行单角度和多角度测量。当作为膜厚探头操作时,透明或弱吸收膜的厚度是在正常入射下测量的。SE 500adv 中的椭圆偏振法和反射仪 (CER) 组合包括椭偏仪光学元件、测角仪、组合反射测量头和自动准直望远镜、样品平台、氦氖激光源、激光检测单元和光度计。
    留言咨询
  • 反射/透射率积分球应用领域:材料的反射率/透射率测量不透明物体的反射率测试 浑浊样品的透射率测试颜色属性测试反射系统设计红外反射反射率与角度的关系 Labsphere的反射/透射率积分球可用于各种媒介的反射率和透射率测量。积分球内部涂料有两种选择:Spectraflect涂料,在300 – 2400 nm波长范围内效果较好;Infragold涂料适用于波长0.7 - 20 μm范围。 RT积分球有5个1英寸开口,可容纳样品和9°反射光束,在球的顶部有一个0.5英寸探测器口,镜面光束光阱用于去除镜面反射光束。 RTC积分球在RT积分球内增加了一个中心安装的样品架,用户可以针对一定角度测量反射率和透射率。积分球有5个开口可调节样品,顶部的中心安装平台装有参考光束,积分球底部有一个0.5英寸的探测器端口。 RT积分球和RTC积分球均能做任何几何角度测量。RT积分球可以测量镜面反射的9°/h结构和排出镜面反射9°/d结构;RTC除上述功能外还可测量变角度入射情况下的反射率。 积分球的开口处采用刀刃结构有助于收集大角度散射,挡板采用最小化设计,使得探测器能够非常大程度地看到球内壁表面。探测器口位于球的顶部和底部,使用挡板遮挡防止样品和参考口光束直接照射。RT-060-SF及RT-060-IG反射/透射率测试积分球 Labsphere的RT-060-XX积分球有5个1英寸的开口容纳样品和9°双光束结构结构中参考光束,也包括用于9°单光束结构测量中的端盖。两个1英寸的样品支架用于安装样品和反射/透射率标准板。积分球顶部具有0.5英寸的探测口,探测罩用以限制探测器视场范围。镜面光阱去除镜面反射光束。 积分球适合于镜面测量,包括非镜面反射测量,前散射和背散射测量,以及混浊或散射样品的透射率的测量。积分球的开口处采用刀刃形式有助于收集宽角度散射,阻挡效应可以最小化,允许有效的积分。为了保证高积分球效率,总开口面积应小于积分球表面积的5%。每个积分球拥有一个支架配件,由支杆底座和1/4-20支架组成,方便调节积分球的高度。 RTC-060-SF 和 RTC-060-IG反射率透射率积分球增加了中心样品架,方便用户测量反射率与辐射入射角度的关系,一些情况下,还能测透射率与辐射入射角度的关系。 RTC-060-IG 积分球具有5个开口来容纳样品和参考光束:三个1英寸、两个1.25英寸的开口。中心样品台安装在积分球的顶部,0.5英寸探测口在积分球底部。探测罩用于限制探测视场范围。 RTC 系列积分球配件包括四个样品架: 一个中心样品架,两个1.25英寸直径样品架和一个1英寸用于进一步灵活备用。中心样品架允许各种样品反射率与入射角度变化的测量。积分球包括颚式中心样品架,同时夹式和槽式中心样品架可供选择。颚式可以夹住1英寸*2英寸,最厚达0.38英寸的样品。夹式中心样品架设计用于薄膜或硬度不能承受颚式样品架的样品。夹式中心样品架可以夹住样品尺寸最大为1.50"x 2"x 0.125”的样品。槽式样品架为12.5平方毫米容器,可以承装液体和粉末,用于测试吸收和散射特性。订购信息及规格
    留言咨询
  • 全自动薄膜质量控制 400-860-5168转5919
    1. 产品概述SENTECH SENDURO® MEMS 提供配置灵活性,以满足生产控制和质量控制的要求。该工具可以配置反射法和椭圆偏振法中的μ点测量,以及提供准确测量位置的模式识别。所有测量都可以与边缘抓取技术相结合。 2. 传感器、MEMS 和射频/功率器件生产中的薄膜质量控制SENTECH SENDURO® MEMS 是一款全自动测量工具,用于传感器、射频/功率器件、SAW 滤波器和 MEMS 生产中的质量控制。该工具使用光谱反射法和椭圆偏振法对薄膜堆叠法进行可靠和精确的测量。晶圆从标准盒中装入,配方进行质量控制测量。该工具设计用于测量薄膜厚度,通过测量薄膜的折射率来控制沉积过程,并为滤光片准备表面修整。3. 通过边缘抓握技术实现背面保护在必须进行背面保护的过程中,SENTECH SENDURO® MEMS 可以在不接触背面的情况下测量双面图案晶圆。边缘夹持晶圆处理可用于 100 mm、150 mm 和 200 mm 晶圆。晶圆盒到晶圆盒的自动处理使用机器人、预对准器和 25 槽晶圆盒。单点和多点测量由高达 200 mm x-y 的映射支持 4. 综合薄膜分析软件 SpectraRay/4SENDURO® MEMS由SENTECH SpectraRay/4软件操作。它在测量各种薄膜和层堆叠方面提供了高度的灵活性,这在传感器和MEMS生产中很常见。SECS/GEM 软件接口选项支持制造执行系统 (MES) 和 QC 设备 (SENDURO® MEMS) 之间的通信。
    留言咨询
  • 精确的热扩散系数与导热系数测试,覆盖 RT...1250°C 的宽广温度范围耐驰公司新款闪射法导热仪 LFA 467 HyperFlash 基于成熟的 LFA 467 HyperFlash 平台构建,可在室温...1250°C之间进行精确的热扩散系数与导热系数测量。仪器使用创新的氙灯光源系统,拥有超长的光源寿命,在宽广的温度范围内提供了精确的导热测量,基本无耗材。ZoomOptics - 优化检测范围,获取精确的测量结果专利的 ZoomOptics 系统(专利号:DE 10 2012 106 955 B4 2014.04.03)优化了检测器的检测范围,消除了样品外缘的干扰信号,可大大提高测量结果的准确度。超高的数据采集速率(最高 2MHz),极窄的光脉冲宽度(最小 20μs 以下),允许测量薄的高导热的材料LFA 467 HyperFlash 系列产品的数据采集速率提升到了 2 MHz。这一超高的数据采集速率同时体现在红外检测器,以及 pulse mapping 通道上。由此,可以有效地测试传热时间非常短的高导热薄层材料,如厚度 0.3mm 左右的金属薄片,或厚度 30μm 左右的聚合物薄膜。专利的 pulse mapping 系统将有限脉冲宽度效应、以及热损耗纳入计算(专利号:US7038209 B2 US20040079886 DE1024241)。 真空密闭,保证气氛纯净,防止样品氧化仪器内置全自动真空系统,在测量开始之前可进行自动抽真空与气氛置换操作,保证了气氛的纯净性。仪器另有扩展的真空接口,可连接到外部真空泵。铂炉为真空密闭设计,最快升温速率可达 50K/min。通过四样品位+四组独立热电偶的设计,提高测样效率与测温准确性仪器通过自动进样器(ASC),实现了在宽广温度范围内的高效测试。ASC 包含四个样品位,可装载直径 12.7mm 的圆形样品,或 10mm 规格的圆形或方形样品。每个样品位都拥有独立的热电偶。这一设计极大地缩小了样品与测温点之间的温度偏差。体积小巧,高度集成化LFA 467 HT HyperFlash 是首款基于氙灯光源而能达到 1250°C 高温的 LFA 系统。仪器配备单一的炉体,带内置的自动进样器,在保持 LFA 467 HyperFlash 一贯的小巧体积的同时,覆盖了宽广的温度范围。即使在较高的温度下,有效的内部循环水冷系统仍能保证周围部件的温度处于安全范围之内,由此减少了红外检测器的液氮消耗量。LFA 467 HT HyperFlash - 技术参数• 温度范围:RT … 1250°C(LFA 467 HT)• 可选择不同红外传感器,以在不同温度范围获得最 佳信号响应• ZoomOptics 功能,优化红外测温信噪比• 激光源:氙 灯,能量可调• 导热系数:0.1 … 4000W/mK• 样品尺寸:方形 8 x 8mm,10 x 10mm 圆形 ?10mm,?12.7mm,?25.4mm 厚度 0.01 … 6mm• 测试气氛:惰性或氧化 • 样品形态:固体、液体、粉末、薄膜 • 自动进样器:最多 4 个样品位(LFA 467 HT) • 冷却设备:液氮制冷(选配)• 全新测量系统,尤其适合薄膜材料LFA 467 HT HyperFlash - 应用实例镍基合金 - 全温度范围内的高精度图中曲线为标样 Inconel 600 的热扩散系数(红点)、导热系数(蓝点)和比热(黑点)测试结果。与理论值(实线)相比,实测数据点的偏差均小于±3%,精度水平普遍好于±3%。银银具有很高的电导率,有助于降低镀线电阻,这在高频率应用时特别有利。左图对不同厚度银片样品进行热扩散系数的对比测试。在 300K 的测试温度下,不同厚度的样品测试结果(从薄到厚)与文献值相比,偏差均在 ±3% 以内。
    留言咨询
  • LFA 467 HyperFlash – 闪射法导热仪宽广的温度范围,从 -100°C 到 500°C无须更换检测器或炉体, LFA467 HyperFlash在同一台仪器上可实现 -100°C 到 500°C 的宽广温度范围。加上目前市场上种类最丰富的可选配件,开创了热物性测量的新天地。进样器附有 16 个样品位,样品容纳量为原来的 4 倍LFA 467 HyperFlash 的一大优势是可以在整个温度范围内连续测量 16 个样品,大大缩短了测量时间。液氮补给系统可以实现对检测器与炉体的自动补充液氮,保证仪器全天候不间断测量。 ZoomOptics 得到的测量结果更准确,减少测量误差专利技术的 ZoomOptics 优化了检测器的检测范围,从而消除了孔径光阑的影响。显著增加了测量结果的精度。极高的采样频率(2MHz),特别适合于薄膜样品薄膜样品及高导热材料需要快速的数据采集速率,来精确地记录样品上表面的升温过程。LFA 467 HyperFlash 可以提供 2MHz 的数据采集速率,这是 LFA 系统前所未有的。LFA 467 HyperFlash - 技术参数• 温度范围:-100°C/RT … 500°C(LFA 467)• 可选择不同红外传感器,以在不同温度范围获得最 佳信号响应• ZoomOptics 功能,优化红外测温信噪比• 激光源:氙 灯,能量可调• 导热系数:0.1 … 4000W/mK• 样品尺寸:方形 8 x 8mm,10 x 10mm 圆形 ?10mm,?12.7mm,?25.4mm 厚度 0.01 … 6mm• 测试气氛:惰性或氧化 • 样品形态:固体、液体、粉末、薄膜 • 自动进样器:最多 16 个样品位(LFA 467) • 冷却设备:液氮制冷(选配)• 全新测量系统,尤其适合薄膜材料LFA 467 HyperFlash - 应用实例Pyroceram 标样测试 - 更大的装样数,更高的测试效率LFA 467 HyperFlash 的高样品装载量可以提高操作效率。LFA 467 HyperFlash 最多可装载16个样品。这在保证测试质量的前提下显著节省测试时间和精力。集成的自动进样器可以保证整个温度范围内、每个位置上的每一个样品都处于最佳位置。测量时,系统对所有样品同时进行加热或冷却,然后逐一测量。这样可以大大节省测试时间。谱图显示了使用 LFA 467 一次装载 16 个 Pyroceram 样品(厚度为 2.5mm,直径为 12.7mm)进行室温至 500℃ 的测试。测量结果与理论值之间的偏差 2%。集成自动进样器可同时测试 16 个样品,并具有极高的精度和重现性。 镍基合金 - 全温度范围内的高精度图中曲线为标样 Inconel 600 的热扩散系数(红点)、导热系数(蓝点)和比热(黑点)测试结果。测量覆盖 LFA 467 HyperFlash 完整温度范围(-100℃ 至 500℃)。与理论值(实线)相比,实测数据点的偏差均小于±3%,精度水平普遍好于±3%。LFA 467:在一次测量中即可完成全温度范围的热扩散系数测试。图中样品为 Inconel 600 标样,实线为文献数据。高导热铜箔图中展示了不同厚度的铜样品的测量数据,这个实例清楚地表明,该系统可以成功地测试具有很高热扩散系数的样品,另外,将样品厚度从3.0mm减小到0.25mm进行测试对比可见,即使样品很薄仍可获得很高的测试精度。此类测试得益于 LFA 467 HyperFlash 具有高达 2MHz 的数据采集速率和低至 20μs 的脉冲宽度。当样品厚度降低时,其厚度不确定性对误差的影响将增大。因此对于较薄的样品测试,样品的制备与厚度测量都需格外小心。LFA 467:不论样品的厚薄程度,测试得到的铜样品的热扩散系数与理论值都十分吻合
    留言咨询
  • 红外光源,TO46,带反射镜,开放式具有反射器和高调制频率的红外光源,有效面积0.65x0.65 • 高调制频率• 高辐射输出• 使用寿命长• 低功耗输入描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能薄膜由纳米非晶碳制成,可达到高达850°C的薄膜温度。它具有长期稳定的辐射性能。 发射器的低输入功率要求也允许其独立和手持式应用。包装变型帽适合测量2厘米起的距离。可以与MTS热电堆传感器一起使用。技术数据型号JSIR350-5-BL-R-D3.6-0-0 项目编号6352.04-0.04外壳TO46窗口/滤光片No填充气体No有效区域[mm2]0.65 x 0.65能量消耗Low 红外光源,TO46,带反射器,填充气体Kr和滤光片A4红外光源,带反射器和透射紫外线的滤光片-14 μm,优化性能,有效面积0.65x0.65• 高调制频率• 高辐射输出• 使用寿命长• 输入功率低但光学性能相同,因此效率很高描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能薄膜由纳米非晶碳制成,可达到高达850°C的薄膜温度。它具有长期稳定的辐射性能。填充气体和滤光片的组合可优化从UV到14 μm波长范围内的发射。发射器的低输入功率要求也允许其独立和手持式应用。包装变型帽适合测量2厘米起的距离。可以与MTS热电堆传感器一起使用。技术数据型号JSIR350-5-BL-R-D3.6-2-A4项目编号6352.04-1.12外壳TO46附加装置Reflector窗口/滤光片Available 填充气体Yes有效区域[mm2]0.65 x 0.65能量消耗Low 红外光源,TO46,带反射器,填充气体Kr和滤光片A2红外光源,带反射镜和透射紫外线的滤光片-12 μm,优化性能,有效面积0.65x0.65 • 高调制频率• 高辐射输出• 使用寿命长• 输入功率低但光学性能相同,因此效率很高描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能薄膜由纳米非晶碳制成,可达到高达850°C的薄膜温度。它具有长期稳定的辐射性能。填充气体和滤光片的组合可优化从UV到12 μm波长范围内的发射。发射器的低输入功率要求也允许其独立和手持式应用。 包装变型帽适合测量2厘米起的距离。可以与MTS热电堆传感器一起使用。技术数据型号JSIR350-5-BL-R-D3.6-2-A2项目编号6352.04-1.02外壳TO46附加组件Reflector窗口/滤光片Available填充气体Yes有效区域[mm2]0.65 x 0.65能量消耗Low 红外光源,TO46,带反射镜和滤光片A4红外光源,带反射镜和滤光片,透射紫外线-14 μm,有效面积0.65x0.65• 高调制频率• 高辐射输出• 使用寿命长• 低功耗输入描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能薄膜由纳米非晶碳制成,可达到高达850°C的薄膜温度。它具有长期稳定的辐射性能。填充气体和滤光片的组合可优化从UV到14 μm波长范围内的发射。发射器的低输入功率要求也允许其独立和手持式应用。包装变型帽适合测量2厘米起的距离。可以与MTS热电堆传感器一起使用。技术数据型号JSIR350-5-BL-R-D3.6-1-A4项目编号6352.04-1.31外壳TO46附加装置Reflector窗口/滤光片Available填充气体Yes有效区域[mm2]0.65 x 0.65能量消耗 Low红外光源,TO46,带反射镜和滤光片A1 红外光源,带反射镜和滤光片,透射紫外线-5.5 μm,有效面积0.65x0.65• 高调制频率• 高辐射输出• 使用寿命长• 低功耗输入• 滤光片坚固耐用,不受环境影响 描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能薄膜由纳米非晶碳制成,可达到高达850°C的薄膜温度。它具有长期稳定的辐射性能。填充气体和滤光片的组合可优化从UV到5.5 μm波长范围内的发射。发射器的低输入功率要求也允许其独立和手持式应用。包装型瓶盖适合测量2厘米起的距离。可以与MTS热电堆传感器一起使用。技术数据型号JSIR350-5-BL-R-D3.6-1-A1项目编号6352.04-1.21外壳TO46附加装置 Reflector窗口/滤光片Available填充气体Yes有效区域[mm2]0.65 x 0.65能量消耗Low红外光源,TO46,带反射镜和滤光片A2红外光源,带反射器和透射紫外线的滤光片-12 μm,有效面积0.65x0.65• 高调制频率• 高辐射输出• 使用寿命长• 低功耗输入描述用于NDIR气体分析和其他红外测量应用的红外辐射源。 MEMS红外发射器的高性能薄膜由纳米非晶碳制成,可达到高达850°C的薄膜温度。它具有长期稳定的辐射性能。 填充气体和滤光片的组合可优化从UV到12 μm波长范围内的发射。 发射器的低输入功率要求也允许其独立和手持式应用。包装变型帽适合测量2厘米起的距离。可以与MTS热电堆传感器一起使用。技术数据 型号JSIR350-5-BL-R-D3.6-1-A2项目编号6352.04-1.01外壳TO46附加组件Reflector窗口/滤光片Available填充气体No有效区域[mm2]0.65 x 0.65能量消耗Low
    留言咨询
  • SR-C 反射膜厚仪 400-860-5168转4689
    一、概述 SR-C 紧凑型高精度反射膜厚仪,利用光学干涉原理,通过分析薄膜表面反射光和薄膜与基底界面反射光相干涉形成的反射光谱,快速准确测量薄膜厚度、光学常数等信息。■ 光学薄膜测量解决方案;■ 非接触、非破坏测量;■ 核心算法支持薄膜到厚膜、单层到多层薄膜分析;■ 是膜厚重复性测量精度:0.02nm■ 配置灵活、支持定制化二、产品特点■ 采用高强度卤素灯光源,光谱覆盖深紫外到近红外范围;■ 采用光机电高度整合一体化设计,体积小,操作简便;■ 基于薄膜层上界面与下界面的反射光相干涉原理,轻松解析单层薄膜到多层;■ 配置强大核心分析算法:FFT分析厚膜、曲线拟合分析法分析薄膜的物理参数信息;三、产品应用 反射膜厚仪广泛应用于各种介质保护膜、有机薄膜、无机薄膜、金属膜、涂层等薄膜测量。技术参数
    留言咨询
  • 精确的热扩散系数与导热系数测试,覆盖 RT...1250°C 的宽广温度范围耐驰公司新款闪射法导热仪 LFA 467 HyperFlash 基于成熟的 LFA 467 HyperFlash 平台构建,可在室温...1250°C之间进行精确的热扩散系数与导热系数测量。仪器使用创新的氙灯光源系统,拥有超长的光源寿命,在宽广的温度范围内提供了精确的导热测量,基本无耗材。ZoomOptics - 优化检测范围,获取精确的测量结果专利的 ZoomOptics 系统(专利号:DE 10 2012 106 955 B4 2014.04.03)优化了检测器的检测范围,消除了样品外缘的干扰信号,可大大提高测量结果的准确度。超高的数据采集速率(最高 2MHz),极窄的光脉冲宽度(最小 20μs 以下),允许测量薄的高导热的材料LFA 467 HyperFlash 系列产品的数据采集速率提升到了 2 MHz。这一超高的数据采集速率同时体现在红外检测器,以及 pulse mapping 通道上。由此,可以有效地测试传热时间非常短的高导热薄层材料,如厚度 0.3mm 左右的金属薄片,或厚度 30μm 左右的聚合物薄膜。专利的 pulse mapping 系统将有限脉冲宽度效应、以及热损耗纳入计算(专利号:US7038209 B2 US20040079886 DE1024241)。真空密闭,保证气氛纯净,防止样品氧化仪器内置全自动真空系统,在测量开始之前可进行自动抽真空与气氛置换操作,保证了气氛的纯净性。仪器另有扩展的真空接口,可连接到外部真空泵。铂炉为真空密闭设计,最快升温速率可达 50K/min。通过四样品位+四组独立热电偶的设计,提高测样效率与测温准确性仪器通过自动进样器(ASC),实现了在宽广温度范围内的高效测试。ASC 包含四个样品位,可装载直径 12.7mm 的圆形样品,或 10mm 规格的圆形或方形样品。每个样品位都拥有独立的热电偶。这一设计极大地缩小了样品与测温点之间的温度偏差。体积小巧,高度集成化LFA 467 HT HyperFlash 是首款基于氙灯光源而能达到 1250°C 高温的 LFA 系统。仪器配备单一的炉体,带内置的自动进样器,在保持 LFA 467 HyperFlash一贯的小巧体积的同时,覆盖了宽广的温度范围。即使在较高的温度下,有效的内部循环水冷系统仍能保证周围部件的温度处于安全范围之内,由此减少了红外检测器的液氮消耗量。
    留言咨询
  • EMP 2000A便携式红外发射率/反射率测定仪,可在3-35微米范围内测试半球反射率测试(总半球反射率),提供法线方向和半球方向300K环境条件下的发射率测定。 可取代已经停产的业界标准GIER邓克尔DB 100 E408标准。TEMP2000A中采用的光学元件、镀膜材料决定了其还可以在更宽的波长范围进行测试。TESA2000是在温度2000A基础上增加光谱半球反射率测定功能,光谱范围250~2500纳米,主要用于太空材料太阳吸收特性测试。 波长3微米 35um(并不限定于过滤器,窗等)测量精度(镜面反射和漫样品)-灰色样本满量程的± 1%- ± 3%满量程非灰样品重复性- 满量程的± 0.5%或更好样品类型任何样品,包括金属箔,绝缘体等样品尺寸和几何形状- 平面:&ge 0.4英寸(1厘米)直径- 凹面: &ge 6.5英寸(16.5厘米)直径-凸面:&ge 1英寸(2.5厘米)直径 样品温度房间温度,环境显示的属性- 红外反射- 正常发射率(300K)-半球发射率(300K)读数数字液晶面板米可选红外发射率或反射率显示测量范围(反射率)0.00~1.00尺寸光学头:直径5.25&ldquo X 6.8&rdquo 长控制和显示单位:4.5× 7.75× 7英寸便携包:12.5× 17× 11英寸重量光学头:5磅,控制和显示单元:4磅,携带箱:11磅保1年部件和人工
    留言咨询
  • 闪射法导热仪LFA 467 HyperFlash 系列热扩散系数与导热系数的测量方法,技术,应用导热系数/热扩散系数多少热量被传递?传递速度多快?一直以来,研究人员和工程师都在寻找一种最佳的测试方法,这种方法可精确测定高导热材料在中低温下,陶瓷和耐火材料在高温下的热物性。解决这些问题的关键其实只需要精确地得到两个参数:热扩散系数和导热系数,而这两个参数都可使用激光闪射法仪器测得。激光闪射法操作简便,测试结果精确可靠。此类方法可满足研究热传导过程中遇到的典型问题,例如:&bull 铝锭凝固有多快?&bull 催化转化器中的陶瓷部件传热有多快?&bull 陶瓷刹车片在使用过程中的温度分布是怎样的?&bull 对于处理器,如何选择合适的热交换材料?多年来,耐驰公司一直是激光闪射导热测量技术的引领者,已成功地将此技术的应用温度范围扩展至-125°C…2800°C。我们从不停止技术创新和应用拓展。LFA 467 Hyperflash和LFA 467 HT Hyperflash继承了耐驰的卓越传统,再一次成为业界标杆之作LFA 467 HyperFlash优化结构设置与闪射光源LFA 467 HyperFlash仪器整体设计为垂直式结构。其中,激光源位于仪器底部,样品置于中间部位,检测器在顶部。脉冲能量可通过软件自动调节,亦可通过选配的滤光片转盘进一步优化;脉冲宽度可在10µ s至1500µ s范围内调节。16位自动进样器,极高的测量效率LFA 467 HyperFlash可配备高达16位的自动进样器。其中可放置4个支架,每个支架内最多可容纳4个样品;样品的形状可自由选择圆形或方形。仪器配备大容量的液氮杜瓦瓶,保证检测器长时间正常工作。宽广的温度范围无需更换炉体和检测器,LFA 467 HyperFlash的检测温度即可覆盖-100°C(低于橡胶材料的玻璃化转变温度)至高温500°C。用户可根据需求配备不同冷却设备,大大减少测量时间。该仪器加热速率最高可达50K/min,且保证控温的高稳定性灵活配备冷却系统该仪器可配备液氮制冷系统,测试温度最低至-100°C。如配备真空系统,使得样品处于低压气氛中,可进一步减少热损耗的影响,得到更加精确的结果。此外,也可选配压缩空气装置。所有冷却设备使用时均可同时吹扫惰性气氛。设计独特,性能优异配备氙灯光源的高温测试系统LFA 467 HT HyperFlash的诞生基于LFA 467 HyperFlash的成熟技术,拥有创新的光源系统。长寿命的氙灯可在1250°C范围内提供高性价比的测试,没有任何昂贵的耗材宽广的温度范围LFA 467 HT HyperFlash是市面上第一台配置氙灯光源、且最高温度可达到1250°C的激光导热仪。结合集成的自动进样器,可以覆盖整个温度范围,同时保持LFA 467HyperFlash系列一贯的测量准确性。外部的循环水浴可有效保护炉体周围的部件,即使炉体在高温下,其周围的部件仍处于安全的温度范围,进而提高测量可靠性,并降低检测器的液氮消耗量。真空密闭炉体,确保气氛纯净,防止氧化仪器可配备真空泵,支持每一次测试开始前自动抽真空,以确保气氛纯净。仪器也可连接外部真空泵。真空密闭的铂炉支持最大50K/min升温速率。内置微型管式炉,更高的测量效率仪器配备四个独立的微型管式炉。高速加热炉体使得LFA的测试效率非常高。仪器配备四个样品位,每一个下方都配备有单独的热电偶,使得控温稳定时间大大缩短。您可以在一个小时以内完成全温度范围内十个温度步阶测量。仪器配备有自动进样系统,可适用于Ø 12.7 mm的圆形样品支架和Ø 10mm的圆形或方形样品支架。高数据采集速率- 用于薄膜与高导热材料的解决方案LFA 467 HyperFlash系列的数据采集速率提高到了2MHz(包括IR检测器和pulse mapping通道)。因此,仪器可以可靠地测试传热时间极短的一些样品,如高导热材料、薄膜材料等。在测试金属(0.3mm)与聚合物薄膜(30µ m)时,可以选择最优的采样速率与脉冲宽度。结合专利的pulse mapping系统(专利号:US7038209 B2US20040079886DE10242741),可对脉冲宽度效应与热损耗进行有效修正。
    留言咨询
  • 红外辐射源,TO39,带反射器,开式产品单价非实际销售价格,详细报价请咨询客服!!! 带有反射器的红外辐射源,具有高调制频率• 高调制频率• 高辐射功率• 使用寿命长• 测量距离为2厘米描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能薄膜由纳米非晶碳组成,其薄膜温度高达850°C。它可以实现长期稳定的高辐射输出。带反射器的包装形式适用于测量2 cm以上的截面。技术指标型号JSIR350-4-AL-R-D6.0-0-0项目编号6355.04-A.00套管TO39附加组件Reflektor红外辐射源,TO39,带反射镜,填充气体K和滤光片A4红外辐射源,带有反射器和滤光片,透射紫外线-14μm,具有较佳性能• 高调制频率• 高辐射功率• 使用寿命长 • 较低的输入功率和相同的光功率• 测量距离为2厘米描述用于NDIR气体分析和其他红外测量应用的红外辐射源 MEMS红外发射器的高性能膜由纳米非晶碳组成,其膜温度高达850°C。它可以实现长期稳定的高辐射输出。填充气体和滤光片的组合可优化从UV到14 μm波长范围内的发射。反射器包装形式适用于测量2 cm以上的截面。与MTS热电堆传感器配合使用。技术指标标题反射器,填充气体k和过滤器A4 | 微型混合动力型号JSIR350-4-AL-R-D6.0-2-A4项目编号6355.04-8.02套管TO39附加装置Reflektor窗口/滤光片Available填充气体 Ja有效区域[mm2]2.2 x 2.2能量消耗Normal红外辐射源,TO39,带反射镜和滤光片A4 带有反射器的红外辐射源,用于透射紫外线的气体分析-14 μm• 高调制频率 • 高辐射功率• 使用寿命长• 测量距离为2厘米描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能膜由纳米非晶碳组成,其膜温度高达850°C。它可以实现长期稳定的高辐射输出。填充气体和滤光片的组合可优化从UV到14 μm波长范围内的发射。反射器包装形式适用于测量2 cm以上的截面。与MTS热电堆传感器配合使用。 技术指标型号JSIR350-4-AL-R-D6.0-1-A4项目编号6355.04-8.41套管TO39附加装置Reflektor窗口/滤光片Available填充气体Ja有效区域[mm2]2.2 x 2.2能量消耗Normal红外辐射源,TO39,带反射镜和滤光片A2 红外辐射源,带有反射器和透射紫外线的滤光片-12 μm• 高调制频率• 高辐射功率• 使用寿命长• 测量距离为2厘米描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能膜由纳米非晶碳组成,其膜温度高达850°C。它可以实现长期稳定的高辐射输出。填充气体和滤光片的组合可优化从UV到12 μm波长范围内的发射。 反射器包装形式适用于测量2 cm以上的截面。与MTS热电堆传感器配合使用。技术指标 型号JSIR350-4-AL-R-D6.0-1-A2项目编号6355.04-8.31套管TO39 附加装置Reflektor窗口/滤光片Available填充气体Ja 有效区域[mm2]2.2 x 2.2能量消耗Normal红外辐射源,TO39,带反射镜和滤光片A1带有反射器的红外辐射源,用于透射紫外线的气体分析-5.5μm• 高调制频率• 高辐射功率 • 使用寿命长• 测量距离为2厘米描述用于NDIR气体分析和其他红外测量应用的红外辐射源。MEMS红外发射器的高性能膜由纳米非晶碳组成,其膜温度高达850°C。它可以实现长期稳定的高辐射输出。填充气体和滤光片的组合可优化从UV到5.5 μm波长范围内的发射。反射器包装形式适用于测量2 cm以上的截面。与MTS热电堆传感器配合使用。技术指标 型号JSIR350-4-AL-R-D6.0-1-A1项目编号6355.04-8.11套管TO39 附加装置Reflektor窗口/滤光片Available填充气体Ja有效区域[mm2]2.2 x 2.2能量消耗Normal红外辐射源,TO39,带盖,打开 具有高调制频率的辐射源,适用于所有NDIR气体分析应用 • 高调制频率• 高辐射功率• 使用寿命长描述用于NDIR气体分析和其他红外测量应用的红外辐射源。用于MTS热电堆和MPS热电探测器。MEMS红外发射器的高性能膜由纳米非晶碳组成,其膜温度高达850°C。它可以实现长期稳定的高辐射输出。带盖的包装形式适用于测量Max.2 cm的截面。技术指标 型号JSIR350-4-AL-C-D5.8-0-0项目编号6355.04-2.00套管TO39 附加装置Kappe窗口/滤光片Nein填充气体Nein有效区域[mm2] 2.2 x 2.2能量消耗Normal光谱功率[μm]Typ. 1 … 20温度系数 Typ. 500时间常数[ms]Typ. 17额定功率[W]0,65
    留言咨询
  • ● SPECTRAFIRE 解决了远红外测试时使用积分球造成 的能量损耗问题。● SPECTRAFIRE可以测试毛玻璃、半透明聚合物薄膜 等非透明样品● SPECTRAFIRE可以容易的安装到客户现有的Thermo Nicolet FTIR 红外光谱仪上 SPECTRAFIRE 是一个远红外反射率测试附件,可装配到 Thermo-Nicolet 的FTIR 光谱仪上,使用傅里叶变 换的方法进 行光谱半球反射率测试,其中使用了AZ 公司专利 的 ellipsoidal Collection半球能量收集技术,避免了传统的积分球技术对能 量的吸收损耗问题。仪器可从1.67um 到40um的范围内扫描测 试近法向半球反射率。所有的空间都可以被清除以最小化由于水和CO2造成的信号损失。法向发射率根据测试的光谱反射率数据和黑体曲线进行计算。SPECTRAFIRE 有2种测试模式,绝对测量模式和相对测量 (差分式)模式。在绝对测量模式中,近法向如射,半球反射率通过与配有校正臂的内置探测器直接测到。在这种情况下,无需校正。在相对测量(差分式)模式下,内置校正臂不起作用,而是提供一个参考样品进行背景扣除,然后测试样品。此外,该系统通过特殊标定的参考根据样品的光谱,来得到不透明样品的总半球发射率。使用Spectrafiar计算发射率并不需要知道光源的光谱,也不一定需要限定光源的色温在300K. SPECTRAFIRE 还可以用于正确的测量300K以外的发射率和非灰体的 发射率。准直的红外光束从Nicolet红外光谱仪进入到SPECTRAFIRE左边的入口处。通过一个离轴抛物面镜将该光束汇聚到样品上。样品口在系统的顶部,样品置于专利的收集器的顶部。入射光经样品反射并被收集汇聚到探测器上。探测器的信号由FTIR光谱仪进行处理。.在收集器里还内置一个光束偏离装置,用于绝对测量时的背景扣除。该偏离装置的反射率完全匹配收集器的反射率 。仪器里面的所有光学元件都镀了非保护性金膜,以获得在测试光谱范围内的最大反射率。Spectral resolution0.5 to 32/cmSpectral range2.5 to 40 microns (4000 to 250 cm -1 wave number)Sample size and geometry&ge 0.33 inches (8.3 mm) diameterDimensions: FTIR with SPECTRAFIRE attached.-Footprint: 33 x 25 inches-Height: 13.5" at the SPECTRAFIRE sample portElectrical requirement for Nicolet120 VAC, 60 HzWarranty1 year parts and labor*Note: terms reflectance, emittance and absorptance and terms reflectivity, emissivity and absorptivity are often used interchangeably. Spectroreflectometer, spectro-reflectometer and spectral reflectometer are also used interchangeably.
    留言咨询
  • SR-Mapping反射膜厚仪 400-860-5168转4689
    一、概述 SR-Mapping 系列利用反射干涉的原理进行无损测量,通过分析薄膜表面反射光和薄膜与基底界面反射光相干涉形成的反射谱,同时搭配R-Theta位移台,兼容6到12寸样品,可以对整个样品进行快速扫描,快速准确测量薄膜厚度、光学常数等信息,并对于膜厚均匀性做出评价。■ 光学薄膜测量解决方案;■ 非接触、非破坏测量;■ 核心算法支持薄膜到厚膜、单层到多层薄膜分析;■ 膜厚重复性测量精度:0.02nm■ 全自动测量,测量点数跟位置在Recipe中可根据需要编辑 ■ 采用高强度卤素灯光源,光谱覆盖紫外可见光到近红外范围;■ 采用光机电高度整合一体化设计,体积小,操作简便;■ 基于薄膜层上界面与下界面的反射光相干涉原理,轻松解析单层薄膜到多层;■ 配置强大核心分析算法:FFT分析厚膜、曲线拟合分析法分析薄膜的物理参数信息;三、产品应用 广泛应用于各种介质保护膜、有机薄膜、无机薄膜、金属膜、涂层等薄膜测量。技术参数
    留言咨询
  • 410Vis-IR 可见-红外反射率/发射率仪是为了替换经典的 Gier Dunkle DB100反射率仪而开发的,可测量13个光谱波段的反射率。可见光测量头测量范围为335nm~2500nm,红外测量头测量范围为1.5μm~21μm。利用太阳辐照度函数或黑体函数,通过20°和60°两个角度计算太阳能吸收率或热辐射,通过计算定向发射率推测半球总发射率。两个测量头可以互换使用,可现场测量,操作极为简便。测量时只需把样品放置在测量单元的顶部即可直接测定。通过与手柄连接,该仪器可作为一个手持单元操作,一次完整的测量用时仅约10秒。随机配备镜面金质标样,并可选提供NIST可溯源标定。功能特点 在接近法线和掠角两个角度测量定向热发射率 半球热辐射的预测 测量太阳能吸收/反射 在335至2500nm光谱范围内,测量总辐射、镜面反射和漫反射能量 可测量光谱范围:从可见到中远红外 NIST可溯源标准 快速和便携式使用 PDA触摸屏操作,内置SD卡应用领域 航空工业 天文望远镜检查 涂层领域 太阳能领域优化太阳能利用性能 节能建筑 光学材料质量控制技术参数 410Vis-IR便携式太阳反射率及发射率测量仪 符合标准 ASTM E903、ASTM C1549、ASTM E408 测量参数 定向半球反射比(DHR) 测量方法 波段范围内积分总反射比 输出参数 总发射比,漫反射比,和20°角的镜面反射 波段区间 335~2500nm范围内7个波段:335~380、400~540、480~600、590~720、700~1100、1000~1700、1700~2500nm IR范围内6个波段:1.5~2、2~3.5、3~4、4~5、5~10.5、10.5~21μm 入射角 20°&60°法线入射 样品表面 任何表面,6”半径凸面,12”半径凹面 测量时间10秒/次;90秒预热 光源 VIS:钨灯,IR:铬铝钴合金 测量探头 模块化设计,测量头可更换 操作界面 触摸式液晶屏软件界面 工作环境 储存环境:-25~70℃;操作环境:0~40℃,非冷凝 供电 两块可充电镍氢电池 重量 2.1Kg,含电池
    留言咨询
  • 反射光谱膜厚仪SD-SR-100是一款专为薄膜厚度测量而设计的先进仪器。以下是对该产品的详细介绍:1. 测量范围与精度: - 该仪器能够测量从2纳米到3000微米的薄膜厚度,具有高达0.1纳米的测量精度。2. 测量功能: - 在折射率未知的情况下,SD-SR-100不仅可以测量薄膜的厚度,还能同时测量其折射率。 - 可用于测量半导体镀膜、手机触摸屏ITO等镀膜厚度、PET柔性涂布的胶厚、LED镀膜厚度、建筑玻璃镀膜厚度等多种应用场景。3. 测试原理: - 利用薄膜干涉光学原理进行厚度测量及分析。通过从深紫外到近红外可选配的宽光谱光源照射薄膜表面,探头同位接收反射光线,并根据反射回来的干涉光,用反复校准的算法快速反演计算出薄膜的厚度。4.软件支持: - 配备易于安装和操作的基于视窗结构的软件,界面友好,操作简便。 - 软件功能强大,支持多层膜厚的测试,并可对多层膜厚参数进行测量。 - 提供大量的光学常数数据及数据库,支持多种折射率模型,如Cauchy, Cauchy-Urbach, Sellmeier等。5. 特点与优势: - 先进的光学设计和探测器系统,确保系统性能优越和快速测量。 - 光源设计独特,具有较好的光源强度稳定性。 - 提供多种方法来调整光的强度,以满足不同测量需求。 - 配备微电脑控制系统,大液晶显示和PLC操作面板,便于用户进行试验操作和数据查看。 - 支持自动和手动两种测量模式,以及实时显示测量结果的较小值、平均值以及标准偏差等分析数据。6. 应用领域: - 广泛应用于医疗卫生、生物产业、农业、印刷包装、纺织皮革等多个行业,特别是在薄膜分析领域表现出色。综上所述,反射光谱膜厚仪SD-SR-100凭借其高精度、多功能和广泛的应用领域,成为薄膜厚度测量领域的理想选择。
    留言咨询
  • 优秀的可见光透射率/反射率测量系统集成的可见光光谱分析仪集成的氙灯,或者卤钨灯,作为光源内置探头可以实现纺织品颜色检测纺织品透过率检测眼镜透过率检测半导体膜厚检测LED灯泡检测等应用举例一:布料反射率测量案例测试系统搭建如上图测试要求,计算近红外区域780-880nm的反射率和可见光区域610-710nm的反射率之比1. 左边是卤钨灯350-2500nm光源,光源由德国进口的灯泡2. 中间是反射式积分球,3. 右侧是采用日本进口滨松探测器的光谱仪器 SPM3-350-1050,波长范围350-1050nm,分辨率最小0.6nm,美国产进口600线光栅4. 搭配电脑,数据通过USB采集测试一过程1. 关闭光源,采集光谱设备电子噪声2. 打开光源,设置1000ms曝光时间,放置白板,采集参比光谱3. 移除白板,放置被测物,采集被测物光谱,坐标轴X轴为光谱波长, Y轴为波长对应的反射率应用举例二:高分子材料/纳米材料相对石英的反射率测量测试一过程1. 关闭光源,采集光谱设备电子噪声2. 打开光源,设置500ms曝光时间,放置白板,采集参比光谱3. 移除白板,放置被测物,采集被测物光谱,此数据表明,样品1和样品2的反射光谱, 样品1(下面一条曲线),350-1000nm范围反射率72%, 样品2(上面一条曲线),350-1000nm范围反射率 82%,坐标轴X轴为光谱波长, Y轴为波长对应的反射率测试二过程,相对于黑板1. 关闭光源,采集光谱设备电子噪声2. 打开光源,设置500ms曝光时间,放置黑板,采集参比光谱3. 移除黑板,放置被测物,采集被测物光谱,此数据表明,样品1和样品2的反射光谱, 样品1(上面一条曲线),350-1000nm范围相对于黑板的反射率, 样品2(下面一条曲线)相对于黑板的反射率,坐标轴X轴为光谱波长, Y轴为波长对应的是被测物相对黑板的反射率应用举例三:薄膜材料的透射率测量测试一过程1. 关闭光源,采集光谱设备电子噪声2. 打开光源,设置500ms曝光时间,放置白板,采集参比光谱3. 移除白板,放置被测物,采集被测物薄膜的光谱
    留言咨询
  • 薄膜测量仪 400-860-5168转4585
    总部位于德国柏林科技园区的SENTECH仪器公司,已成为光伏生产设备世界市场之 一.我们是一家快速发展的中型公司,拥有60多名员工,他们是我们有价值的资产我们団 队的每个成员都为公司的成功做出贡献,我们总是在寻找与我们志同道合的新工作伙伴,我 们诚挚期待您的加入。薄膜测量仪器反射膜厚仪RM 1000和RM 2000扩展折射率指数测量极限我们的反射仪的特点是通过样品的高度和倾斜调整进行精确的单光束反射率测量,光学布局的高光导允许对n和kffl 行重复测量,对粗糙表面进行测量以及对非常薄的薄膜进行厚度测量. 紫外-近红外光谱葩围 RM 1000 430 nm-930 nm RM 2000 200 nm - 930 nm 高分辨率自动扫描 反射仪RM 1000和RM 2000可以选配x-y自动扫描台和自动扫描软件、用于小光斑尺寸的物镜和摄像机。综合薄膜测量软件FTPadv Expert宽光谱范围和高光谱精度 SENresearch4.0光谱椭偏仪覆盖宽的光谱范围,从190 nm(深紫外)到3500 nm(近红外)。 傅立叶红外光谱仪FTIR提供了高光谱分辨率用以分析厚度高达200|jm的厚膜。 没有光学器件运动(步进扫描分析器原理) 为了获得测量结果,在数据采集过程中没有光学器件运动。步进扫描分析器(SSA)原理是SENrsearch4.0光谱椭偏仪的一个独特特性。 双补偿器2C全穆勒矩阵测量 通过创新的双补偿器2C设计扩展了步进扫描分析器SSAJ京理,允许测量全穆勒矩阵。该设计是可现场升 级和实 现成本效益的附件。 SpectraRay/4综合椭偏仪软件 SpectraRay/4是用于先进材料分析的全功能软件包,SpectraRay/4包括用于与引导图形用户界面进 行研究的交互 模式和用于常规应用的配方模式.激光椭偏仪SE400adv亚埃精度稳定的氣氤激光器保证了 0.1埃精度的超薄单层薄膜厚度测量。 扩展激光欄偏仪的极限 性能优异的多角度手动角度计和角度精度优越的激光椭偏仪允许测量单层薄膜和层叠膜的折 射率、消光系数和膜厚. 高速测量 我们的激光椭偏仪SE 400adv的高速测量速度使得用户可以监控单层薄膜的生长和终点检 测,或者做样品均匀性的自动扫描。综合薄膜测量软件FTPadvExp测量n, k,和膜厚 该软件包是为R(入)和T(入)测量的高级分析而设计的。 查层膜分析 可以测量单个薄膜和层畳膜的每一层的薄膜厚度和折射率. 大量色散模型 集成的色散模型用于描述所有常用材料的光学特性。利用快速拟合算法,通过改变模型参数 将计算得到的光谱调整到实测光谱。
    留言咨询
  • 产品简介:SR-C系列紧凑型高精度反射膜厚仪,利用光学干涉原理,通过分析薄膜表面反射光和薄膜与基底界面反射光相干涉形成的反射谱,快速准确测量薄膜厚度、光学常数等信息。反射膜厚仪广泛应用于各种介质保护膜、有机薄膜、无机薄膜、金属膜、涂层等薄膜测量。 产品型号SR-C系列紧凑型高精度反射膜厚仪主要特点1、光学薄膜测量解决方案2、非接触、非破坏测量3、覆盖单层到多层薄膜4、核心算法覆盖薄膜到厚膜5、配置灵活、支持定制化6、采用高强度卤素灯光源,光谱覆盖可见光到近红外范围7、采用光机电高度整合一体化设计,体积小,操作简便8、基于薄膜层上界面与下界面的反射光相干涉原理,轻松解析单层薄膜到多层9、配置强大核心分析算法:FFT分析厚膜、曲线拟合分析法分析薄膜的物理参数信息技术参数型号SR-CVSR-CN基本功能获取薄膜厚度值以及R、N/K等光谱光谱波长范围380-800nm650-1100nm测量厚度范围50nm-20um100nm-200um测量时间1s光斑尺寸0.5-3mm重复精度0.1nm(100nmSiO2/Si)绝对精度±1nm or 0.5%入射角方式垂直入射可选配件1温控台2Mapping扩展模块3真空泵
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制