当前位置: 仪器信息网 > 行业主题 > >

便携式扫描隧道显微镜

仪器信息网便携式扫描隧道显微镜专题为您提供2024年最新便携式扫描隧道显微镜价格报价、厂家品牌的相关信息, 包括便携式扫描隧道显微镜参数、型号等,不管是国产,还是进口品牌的便携式扫描隧道显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携式扫描隧道显微镜相关的耗材配件、试剂标物,还有便携式扫描隧道显微镜相关的最新资讯、资料,以及便携式扫描隧道显微镜相关的解决方案。

便携式扫描隧道显微镜相关的论坛

  • 扫描隧道显微镜STM工作原理

    [b]分析原理:[/b]隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。[b]谱图的表示方法:[/b]探针随样品表面形貌变化而引起隧道电流的波动[b]提供的信息:[/b]软件处理后可输出三维的样品表面形貌图

  • 扫描隧道显微镜的简介

    扫描隧道显微镜的简介自1993年Ruska和Knoll等人在柏林制成第一台电子显微镜后,已有许多用于表面结构分析的现代仪器问世.1982年,国际商业机器公司苏黎世实验室的Gerd Bining博士和Heinrich Rohrer博士及其同事们,研制成功了世界第一台新型表面分析仪器--扫描隧道显微镜(Scanning Twnneling Microscope,以下简称STM).它的出现,使人类能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,在表面科学、材料科学、生命科学等领域的研究中有着广阔的应用前景,被国际科学界公认为80年代世界十大科技成就之一.1986年为表彰STM的发明者,授予他们诺贝尔物理学奖.STM的基本原理是利用量子力学里的隧道效应。原理图可以简单的描述如下:探针与样品不接触,它们之间有一个势垒,因为有隧道效应,电子有一定几率穿过势垒形成电流。探针与样品之间的距离远,势垒就大,隧道电流就小,电流的大小转化为空间尺度,利用电脑分析就可以得到样品表面的图像。扫描探针一般采用直径小于1nm的细金属丝,被观测样品应具有一定导电性方可产生隧道电流.1 隧道效应理论及有关概念1.1 隧道效应理论  在量子力学中,隧道效应是粒子波动性的直接结果.当一个粒子进入一个势   垒中,势垒势能比粒子动能大时,粒子越过壁垒区出现在势垒另一边的几率为P.设Φ为矩形势垒的高度,E为粒子动能,该粒子穿透厚度为z的势垒区几率P为      P∝e-λkz. (1)其中 ,m为粒子的质量.  基于Bardeen隧道电流理论,隧道电流公式为    I=(e/h)∑f(Eμ),(2)其中f(E)是费米分布函数;U是所加偏压;Mμ,ν是探针的Ψμ态与表面Ψν态间的隧道矩阵元;Eμ是无隧穿情况下Ψμ的能量.Bardeen给出了计算矩阵元Mμ,ν的表达式:   Mμ,ν=(h2/8mπ2)∫dS(Ψμ*Ψν-ΨνΨμ*). (3)1.2 针尖-样品表面作用模型对针尖的微观结构目前并不清楚,在这里我们采用Tersoff等人的处理方法,即将针尖的最接近样品出定义为局部球形势阱,如下图:R是针尖的局部曲率半径。区域曲面中心在ro处,d是距样品表面最近的距离。在感兴趣的区域,针尖的波函数可取将近球形式,即     (4)其中 是探针体积,假设针尖的功函数Φ与样品表面的功函数相等。参数 由针尖的几何形貌、电子结构细节及针尖-真空边界条件决定。如果针尖与样品表面距离不是非常近,而偏压又很小时,隧道哈密顿方法可以用来描述这种隧穿过程.采用独立粒子模型,隧道电流I可近似表示为      I=(e/h)∫dEA(R,E,E+eU), (4) A(R,E,E′)=∫ΩΤdρ∫ΩΤdρ′UT(ρ)UT(ρ′)gS(ρ+R,ρ′+R,E)gT(ρ′,ρ,E′), (5)其中gS和gT是样品表面和针尖的格林函数的虚部,其表达式为      gS(r,r′;E)≌∑Ψμ(r)Ψμ*(r′)δ(E-Eμ),(6)      gT(r,r′;E)≌∑Ψν(r)Ψν*(r′)δ(E-Eν).(7)(5)式的积分遍及针尖的体积ΩΤ;ρ和ρ′是由固定点R处到针尖表面的极坐标;R表示针尖到样品表面的相对位置;U(ρ)表示针尖的势Ψμ;E(Ψμ,Eμ)为样品(针尖)的本征波函数及本征能量.

  • 【转帖】美科学家新技术让扫描隧道显微镜变快100倍

    据国外媒体报道,来自美国康奈尔大学和波士顿大学的科学家近日称,他们最近开发出一种新技术,能够让扫描隧道显微镜(STM)成像速度加快100倍,可以清晰地观测到原子的细微变化情况。  这是一个简单的改动,其原理基于目前在纳米电子学中应用的一种测量方法,却使得扫描隧道显微镜(STM)拥有了新的能力--包括感应单个原子大小的小点的温度,以及探测精确到0.00000000000001米(这是比原子直径小3万分之一的距离)的微型变化。扫描隧道显微镜是根据量子力学中的隧道效应原理,通过探测固体表面原子中电子的隧道电流来分辨固体表面形貌的新型显微装置。1981年,世界上第一台具有原子分辨率的扫描隧道显微镜诞生后,人类实现了从半导体技术到纳米电子学等许多领域的重大发现。  然而,由于电流可以在十亿分之一秒中发生变化,因此扫描隧道显微镜的测量速度极其缓慢。而且限制因素并不仅仅在于信号方面,还在于信号分析中涉及的基本电子学。理论上,扫描隧道显微镜可以跟电子通过隧道一样迅速地收集数据——以一千兆赫的速率(每秒10亿周波)。然而,典型扫描隧道显微镜的运行速度常常因电线中的电容或储能电容器的限制而减慢至1千赫(每秒1000周波),而这些电线正是其读出电路系统的组成部分。  为此,研究人员们曾尝试过许多复杂的补救方法。康奈尔大学物理学副教授舒瓦布表示,不料最后的解决方法竟是惊人的简单。研究人员表示,通过增加一个额外的射频波源,并通过一个简单的网络向扫描隧道显微镜发送一个波,然后就可以依据返回至射频波源的波的特点,探测隧道接口(即探针和固体表面之间的距离)的电阻。这项技术被称为反射计,它使用标准的电线作为高频波的通道,这种高频波不会受电线电容的限制而减速。  该装置还为原子分辨率温度测量法和运动探测法提供了可能,可以用来测量比原子小3万倍距离的运动。舒瓦布说:“频率的基本极限与人们的操作之间有6个量级。有了射频配合,速度就可以增加100到1000倍,希望能或多或少得到些视频图像。有了这个技术,我们就可以用扫描隧道显微镜来进行许多物理实验。我坚信,10年后将出现一大批射频-扫描隧道显微镜,被用来进行各种各样的实验。”(

  • 【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。 近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国RHK Technology公司生产的商用超高真空扫描隧道显微镜(RHK-UHV-SPM 3000)系统上自主研发了太赫兹-扫描隧道显微镜(THz-STM),首次在超高真空中对Si(111)-(7×7)样品表面执行原子分辨率THz-STM测量,展示了超高真空中的THz-STM探索原子精度的超快非平衡隧道动力学的超强能力。[align=center][img=,500,264]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311403502131_145_981_3.jpg!w500x264.jpg[/img][/align][align=center]图1:利用THz-STM在超高真空中控制极端隧道电流[/align] 在图1(a)中可以看到,超快太赫兹(THz)脉冲通过反向视窗上的透镜(左侧)聚焦到超高真空(中间)的STM探针上,在隧道结(插图)处产生隧道电流。图1(c)中展示了耦合到STM针尖的太赫兹脉冲引发随时间变化的偏压(VTHz(t),红色实线),驱动超快太赫兹感应电流(ITHz(t),蓝色实线),从而产生整流的平均隧道电流。太赫兹脉冲极性(0°, 90°, 180°)可用于控制太赫兹脉冲引起的整流隧道电流,如图1(e)所示。电子从样品向尖端流动,产生负的太赫兹极性,从尖端到样品具有正的太赫兹极性。[align=center][img=,500,358]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405019168_3214_981_3.jpg!w500x358.jpg[/img][/align][align=center]图2:Si(111)- (7×7)上的单个原子非平衡隧穿的超快控制[/align] 极限太赫兹脉冲驱动的隧道电流高达常规STM中稳态电流的107倍,实现了以0.3nm的空间分辨率对硅表面上的单个原子成像,由此确定在高电流水平下的超快太赫兹脉冲驱动隧道确实可以局域化为单一原子。此外,测试结果表明解释Si(111)-(7×7)上的太赫兹驱动的STM(TD-STM)图像的原子波纹(其中数百个电子在亚皮秒时间尺度内隧穿),需要理解非平衡充电动力学由硅表面的太赫兹脉冲引起。同时,单个原子的太赫兹驱动隧道电流的方向可以通过太赫兹脉冲电场的极性来控制。在太赫兹频率下,类金属Si(111)-(7×7)表面不能从体电子屏蔽电场,导致太赫兹隧道电导与稳态隧道电导基本机制的不同。很显然,这样一个极端的瞬态电流密度并不会影响所研究的单原子STM针尖或样品表面原子,如同在传统STM测试中具有如此大小隧道电流的Si(111)-(7×7)一样。[align=center][img=,500,214]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405376531_6859_981_3.jpg!w500x214.jpg[/img][/align][align=center]图3:太赫兹感应电流中的热电子[/align] 在高太赫兹场中观察到了来自热电子的隧道电流的额外贡献。超快太赫兹诱导的带状弯曲和表面状态的非平衡充电打开了新的传导通路,使极端瞬态隧道电流在尖端和样品之间流动。半导体表面的THz-STM为原子尺度上的超快隧穿动力学提供了新的见解,这对于开发新型硅纳米电子学和以太赫兹频率工作的原子级器件至关重要。[b]参考文献:[/b]1. Tyler L. Cocker, Frank A. Hegmann et al. An ultrafast terahertz scanning tunneling microscope. Nature Photonics, 151(2013).2. Vedran Jelic, Frank A. Hegmann et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nature Physics, 4047(2017).

  • 【转帖】光子隧道效应与近场光学显微镜

    【转帖】光子隧道效应与近场光学显微镜

    二十世纪七十年代末德裔物理学家葛.宾尼和他的导师海.罗雷尔在IBM公司设在瑞士苏黎士的实验室进行超导实验时,他们并没有把自己的有关超导隧道效应的研究与新型显微镜的发明联系到一起。但是真空中超导隧道谱的研究已经为他们今后发明扫描隧道显微镜准备了坚实的理论和实验基础。一次偶然的机会,他们读到了物理学家罗伯特杨撰写的一篇有关“形貌仪”的文章。这篇文章中有关驱动探针在样品表面扫描的方法使他们突发奇想:难道不能利用导体的隧道效应来探测物体表面并得到表面的形貌吗?以后的事实证明,这真是一个绝妙的想法。经过师生两人的不懈努力,1981年,世界上第一台具有原子分辨率的扫描隧道显微镜终于诞生了。 扫描隧道显微镜的英文名称是 ScanningTunneling Microscope,简称为STM。STM具有惊人的分辨本领,水平分辨率小于0.1纳米,垂直分辨率小于0.001纳米。一般来讲,物体在固态下原子之间的距离在零点一到零点几个纳米之间。在扫描隧道显微镜下,导电物质表面结构的原子、分子状态清晰可见。下图显示的是硅表面重构的原子照片,照片上,硅原子在高温重构时组成了美丽的图案。[img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001181030_197432_1601358_3.jpg[/img]根据量子力学理论的计算和科学实验的证明,当具有电位势差的两个导体之间的距离小到一定程度时,电子将存在一定的几率穿透两导体之间的势垒从一端向另一端跃迁。这种电子跃迁的现象在量子力学中被称为隧道效应,而跃迁形成的电流叫做隧道电流。之所以称为隧道,是指好象在导体之间的势垒中开了个电流隧道一样。隧道电流有一种特殊的性质,既对两导体之间的距离非常敏感,如果把距离减少0.1纳米,隧道电流就会增大一个数量级。[img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001181031_197435_1601358_3.jpg[/img]

  • STM扫描隧道显微镜

    请问论坛里哪位专家用STM成功扫描出过原子图片,为什么我老扫不出来?有没有好的建议?

  • 新加坡研制出便携式新扫描电子显微镜

    新加坡研制出便携式新扫描电子显微镜 -------------------------------------------------------------------- 2005年2月4日 日前,新加坡国立大学工程系研制出新的轻便型扫描电子显微镜系统,重量仅有现有系统的十分之一。传统的扫描电子显微镜系统体积大,重量达1000公斤,非常占地,也不容易搬动。这些仪器价格也高达50万美元。国大研制的这个新扫描电镜,功能和清晰程度不逊于传统系统,价格却不到10万美元,总重量也不到100公斤,整个系统还可拆成几个各不到20公斤的部分,方便携带。  研制这个产品的国大电子工程系的安岩教授指出,扫描电镜是用聚焦电子束在试样表面逐点扫描成像,和光学显微镜相比,扫描电镜可以把影像放大多300倍。即使只有头发厚度5万分之一这么小的样本,扫描电镜还是可以将样本的细节显示成清晰的画面。  他说:“扫描电镜的用途很广泛,包括辨认病毒、药物制造、检查微晶片等。我们的扫描电镜系统集中在一个推车上,可以推进电梯、小货车,很方便携带,要在微晶片厂进行检查工作也可以轻易地从一层楼搬到另一层楼,疾病专家也可以把它带到传染病现场,不必把病毒样本带会实验室。” [em05]

  • 请教关于Veeco公司的DI D3100扫描探针显微镜的 隧道电流问题

    我们现在想用Veeco公司的DI3100扫描探针显微镜的扫描隧道模式下,想进行纳米加工。但问题是探针和试件间距离很近时,加1~15V范围内的脉冲电压,探针针尖材料滑移和试件瞬间产生接触,这样的话不知道这个仪器的隧道电流反馈系统能否接受这突然增大的电流。望各位老师和用过此设备的各位高手请多多指教,谢谢!

  • 【原创】扫描探针显微镜的1234

    1.功能扫描隧道显微镜STM 原子力显微镜AFM自动进针功能 真三维图形处理功能深度和宽度定标功能自动保存扫描参数WINDOWS 9X操作系统的控制软件2.特点整机自动化自动记录参数图象数据定标配图象处理软件3.技术指标分辨率 横向:≥0.1nm 纵向:≥0.01nm;扫描范围 3μm×3μm;18μm×18μm;扫描频率 1Hz~100Hz步进电机及丝杠控制 10nm精度光栅扫描旋转角度 0~360º样品台大小 10x10x10mmD/A精度:16bit,32通道;A/D精度:16bit,10通道偏置电压 0~10V隧道电流预置 0.5nA~10nA图像分辨率 512×512灰度等级 256计算机 优于P42.0G/256M/40G4.整套仪器的其他附件、连接电缆、软件确保仪器正常操作和日常维护,满足基本功能和以上技术参数。

  • 【注意】扫描探针显微镜版讨论范围(发贴有惊喜哦!)

    扫描探针显微镜同其它的显微镜相比,历史比较短,只有20年的时间,大家了解的少一些,这个版也相对冷清了一些,但是发展相当迅速,大有取代SEM的趋势(大胆!^_^)。希望大家多发贴,发贴的内容主要集中在以下方面:1. 扫描隧道显微镜(STM)的构造、原理;2. 原子力显微镜(AFM)的构造、原理;3. 其它扫描探针显微镜,如MFM,EFM,LFM等的结构和原理;4.扫描探针显微镜的各种成像模式:如接触模式,轻敲模式,非接触模式以及相位成像模式等等;5.扫描探针显微镜的各种模式的技巧;6.各类扫描探针显微镜在各个方面的应用:物理,化学,材料,生物等等,包括各种制样技术;7.纳米蚀刻,纳米操纵等等;8.扫描探针显微镜的发展方向。 欢迎补充!欢迎交流![em61] [em61] [em61] [em61] [em61]

  • 【原创】显微镜的发展史

    一、显微镜的发展史 人的眼睛不能直接观察到比0.1mm更小的物体或物质的结构细节。人要想看得到更小的物 质结构,就必须利用工具,这种工具就是显微镜。 第一代显微镜:光学显微镜,极限分辨率是200纳米。由于光的衍射效应,分辨率受制于半波长,可见光的最短波长为0.4微米。 第二代显微镜:电子显微镜。1924年,德布罗意提出了微观粒子具有波粒二象性的假设,后来这种假设得到了实验证实。此后物理学家们利用电子在磁场中的运动与光线在介质中的传播相似的性质,研制成功了电子透镜,在此基础上于1933年发明了电子显微镜。TEM的点分辨率为0.2~0.5nm,晶格分辨率为0.1~0.2nm,扫描电镜的分辨率为6~10nm。它们的工作环境都要求高真空,并且使用成本很高,在一定程度上限制了电子显微镜的发展。 第三代显微镜:扫描探针显微镜。80年代初期,IBM公司苏黎世实验室的G.Binning 和H.Rohrer发明了扫描隧道显微镜,它的分辨率达到0.01纳米。STM的诞生,使人类第一次在实 间观测到了原子,并能够在超高真空超低温的状态下操纵原子。因为这两项重大的意义,这两位 科学家荣获了1986年的诺贝尔物理奖。在STM的基础上,又发明了原子力显微镜、磁力显微镜、近场光学显微镜等等,这些显微镜都统称扫描探针显微镜。因为它们都是靠一根原子线度的极细针尖在被研究物质的表面上方扫描,检测采集针尖和样品间的不同物理量,以此得到样品表面的形貌图像和一些有关的电化学特性。如:扫描隧道显微镜检测的是隧道电流,原子力显微镜镜测试的是原子间相互作用力等等。光学显微镜和电子显微镜都称之为远场显微镜,因为相对来说样品离成像系统有比较远的距离。成像的图像好坏基本取决于仪器的质量。而扫描探针显微镜的工作原理是基于微观或介观范围的各种物理特性,探针和样品之间只有2-3埃的距离,会产生相互的作用,是一种相互影响的耦合体系。我们称它为近场显微镜。它的成像质量不单单取决于显微镜本身,很大程度上受样品本身和针尖状态的影响。所以,我们在使用这一类的仪器时,要想得到好的图像,关键是要学会分析判断各种图像及现象的产生原因,然后通过调整参数,得到相对好的图像。 二、扫描探针显微镜(SPM)原理及设计思路 1、STM的产生 STM的工作原理是基于量子力学中的隧道效应。对于经典物理学来说,当一个粒子的动能低于前方势垒的高度 时,他不可能越过此势垒,即透射系数等于零,粒子将完全被弹回。而按照量子力学的计算,在一般情况下,其透射系数不等于零,也就是 说,粒子可以穿过比它能量更高的势垒,这个现象称为隧道效应。隧道效应是由于粒子的波动性而引起的,只有在一定的条件下,隧道效应才会显著。 扫描隧道显微镜是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近 (通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。由于隧道电流(纳安级)随距离而剧烈变化,让针尖在同一高度扫描材料表面,表面那些“凸凹不平”的原子所造成的电流变化,通过计算机处理,便能在显示屏上看到材料表面三维的原子结构图。STM具有空前的高分辨率(横向可达0.1nm,纵向可达0.01nm),它能直接观察到物质表面的原子结构图,从而把人们带到了纳观世界。 STM中针尖对样品作两维扫描 隧道电流与针尖样品表面距离呈负指数关系 2、STM恒高模式的产生和局限性 2.1 恒高模式 针尖以一个恒定的高度在样品表面快速地扫描,检测的是隧道电流的变化。当针尖扫描样品表面时,记录每点的隧道电流值,经过处理后得到图像。[/f

  • 几个资料及扫描电子显微镜的安装与验收

    [color=red]资料包括:[/color]1 扫描电子显微镜: 介绍了采用半导体检测器、YA;检测器和鲁宾逊检测器等反射电子检测器,于,以低真空方式进行观察的低真空扫描电子显微镜及其在耐火材料上的应用例。2 扫描电子显微镜的应用3 扫描隧道显微镜在生物医学中的应用4 国内外扫描电镜发展的特点5 高性能多用途的扫描电子显微镜JSM—58006 常规扫描电子显微镜的特点和发展[url=http://www.instrument.com.cn/download/shtml/014678.shtml]下载资料[/url]这是《湖南冶金》杂志上的一篇文章,对我们搞电镜的很有用,等全文转载于此,希望对大家有用!并向作者张益谨、杨迈莉表示感谢![color=red][b]扫描电子显微镜的安装与验收[/b][/color][提要]本文对如何安装调试与验收扫描电子显微镜作了简单介绍,并以日立S—570型号为例,对验收技术指标、方法及误差计算进行了具体说图。随着我国科学技术与教育事业的发展,电子显微分析技术已在各个领域得到广泛的应用。现已有各种类型及规格近千台,其中半数以上为扫描电子显微镜。由于它具有制样简单,图象直观,且易掌握及理解等优点,因此,将有更多科研单位,高等院校及工厂实验宝购置这种先进仪器。这样,如何进行安装、调试及验收就成为很多人关心及要求了解的问题。一. 安装调试程序安装调试工作包括下述五个环节。1.安装前的准备 (1)安装条件:主要捡查水电供应,接地电阻,防震,防电磁干扰等条件是否满足仪器说明书的要求。可参阅《实验技术与管理》 (2)1986。(2)翻译说明书及操作人员的预先培训。 (3)安装调试除准备一套开箱、运输工具外,还要求准备下列仪器材料如示波器、数字万用表、电离真空计、超声波清洗器、恒温干燥箱、放大冲洗设备、化学药品(如酒精、丙酮)等等。

  • 扫描探针显微镜一套

    山东大学从美国维柯公司DI分部购进扫描探针显微镜一套,该设备是属于多功能配套设备。它包含如下功能:①原子力显微镜;②隧道力显微镜;③电力显微镜;④磁力显微镜;⑤摩擦力显微镜。工作模式可分为:接触式,非接触式,敲打式,力调制等。功能之全是国际上一流的。为此,山东大学于2001年9月9日派遣任可、刘宜华、孙大亮三人赴美国圣巴巴拉市维柯公司DI分部接受培训(扫描探针显微镜生产厂家为美国、、、、、、、

  • 便携式生物显微镜特点及应用

    [url=http://www.f-lab.cn/biomicroscopes/goren-bio.html][b]便携式生物显微镜[/b][/url]是专业为野外研究或现场应用而设计的手持便携式显微镜,具有便携而多功能的独特优势,结构紧凑且坚固耐用,是现场观察研究的理想显微镜。[b]便携式生物显微镜特点[/b]便携式设计且具有实验室级显微镜的性能和实惠的价格多功能设计,可以很容易地修改执行为明场,暗场,相衬,或偏振显微镜多样显微镜器件达到实验室显微镜水平:照明元件、调焦机构、子级光学系统,样品台可由电池供电或110V / 240v电源供电。[img=便携式生物显微镜]http://www.f-lab.cn/Upload/Goren-Bio.jpg[/img][b]便携式生物显微镜[/b]应用 地质学、考古学、生物学、教育、司法、地球科学、生物学、医学、Botany、热带疾病,病理学,艺术学,Mineralogy。[b]便携式生物显微镜结果[img=便携式生物显微镜]http://www.f-lab.cn/Upload/Goren-Bio-results.jpg[/img][img=便携式生物显微镜]http://www.f-lab.cn/Upload/goren-application.JPG[/img][/b](A)数组(“涂抹部分”)从Maresha附近的中始新世沉积放射虫、以色列(显微镜放大倍数:40×);(B)场浸渍和光薄片的土从Tsaghkasar、亚美尼亚(100×,正交偏光镜);(C)结核杆菌(600×,油浸);(D)硅藻(舟形藻,200×)。更多生物显微镜官网:[url]http://www.f-lab.cn/biomicroscopes.html[/url]

  • 便携式显微镜 助力高校实验室建设

    [align=center] 近日,北京市教育委员会、北京市财政局联合印发《北京实验室建设运行和经费管理法》,鼓励高校创建“北京实验室”,指出“北京实验室是依托北京高校建设的科研平台,是北京高校承接国家和北京市重大任务的重要载体”,这一举措旨在推动科研创新和高精尖学科建设。[/align][align=center][img=,690,800]https://ng1.17img.cn/bbsfiles/images/2024/07/202407161705140026_3092_1603833_3.jpg!w690x800.jpg[/img]便携式显微镜助力高校“北京实验室”建设在这样的背景下,一批高端实用的仪器设备将会在“北京实验室”大展身手。如便携式显微镜作为一种先进的科研工具,可以在多个方面助力北京实验室的建设。以下是便携式显微镜如何助力实验室建设的具体分析:提升科研效率与灵活性显微镜是实验室必要仪器,而便携式显微镜是便携性、易用性、时尚性,融为一体的产物,可广泛应用在传统显微实验室内,助力传统显微镜生出翅膀,实现原位观察与测量,是对传统显微实验室一种有力补充,能够极大助力高校实验室建设。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407161700078899_7890_6379815_3.png[/img][/align][align=center]Anyty(艾尼提)便携式显微镜3R-MSA600S观察虫类[/align] 另外,与传统显微镜相比,便携式显微镜具有无须制样、原位观察、突破空间等优势,新一代的青年学子更喜欢这种简单、直接的沟通方式,生动而活泼的实验氛围,就像给传统实验室加上翅膀,增加对科学的兴趣和理解,能有效体会到更简单、更快捷的接近事物的本质,能促进人,从底层逻辑的思考,实现从0到1的启发。丰富科研手段与方法便携式显微镜通常配备多种观察模式和功能,如显微镜3R-MSA600S定制款,可任意切换白光、红外、紫外等光源,能够满足不同科研需求。科研人员可以根据实验需要选择合适的观察模式,获取更全面、更准确的样本信息。另外,便携式显微镜支持图像和视频采集功能,科研人员可以方便地记录实验过程和结果。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407161700081492_1847_6379815_3.png[/img][/align][align=center]便携式显微镜3R-MSA600S高校实验室应用[/align]价格优惠有助于普及相较于传统显微镜,便携式显微镜的价格更为亲民,这使得更多的学校和教育机构能够购买并配备这种设备。当师生能够人手一台便携式显微镜时,他们可以更加频繁地进行显微观察实验,从而加深对微观世界的理解,提高科学素养。[img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407161700083362_1201_6379815_3.png[/img][align=center]便携式显微镜3R-MSBTVTY高校实验室应用[/align]综上所述,便携式显微镜以其便携性、实时性、多样性和跨学科性等特点,在北京实验室建设中能够发挥着重要作用。它不仅提升了科研效率和灵活性,丰富了科研手段与方法,而且价格优惠,使用简单。因此,北京实验室在建设过程中应充分考虑便携式显微镜的应用和推广。

  • 【讨论】原子力显微镜

    【讨论】原子力显微镜

    原子力显微镜(atomic force microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德?宾宁与斯坦福大学的Calvin Quate于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子穿隧效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或喀希米尔效应等来呈现样品的表面特性。1. 工作原理原子力显微镜的原理示意图: Detector and Feedback Electronics 侦检器及回馈电路; Photodiode 感光二极管; Laser 激光器; Sample Surface 样品表面; Cantilever & Tip 微悬臂及探针; PZT Scanner 压电扫描器 AFM的关键组成部分是一个头上带有一个用来扫描样品表面的尖细探针的微观悬臂。这种悬臂大小在数十至数百微米,通常由硅或者氮化硅构成,其上载有探针,探针之尖端的曲率半径则在纳米量级。当探针被放置到样品表面附近的地方时,悬臂会因为受到探针头和表面的引力而遵从胡克定律弯曲偏移。在不同的情况下,这种被AFM测量到的力可能是机械接触力、范德华力、毛吸力、化学键、静电力、磁力(见磁力显微镜)喀希米尔效应力、溶剂力等等。通常,偏移会由射在微悬臂上的激光束反射至光敏二极管阵列而测量到,较薄之悬臂表面常镀上反光材质( 如铝)以增强其反射。其他方法还包括光学干涉法、电容法和压电效应法。这些探头通常由采用压电效应的变形测量器而制得。通过惠斯登电桥,探头的形变何以被测得,不过这种方法没有激光反射法或干涉法灵敏。 当在恒定高度扫描时,探头很有可能撞到表面的造成损伤。所以通常会通过反馈系统来维持探头与样品片表面的高度恒定。传统上,样品被放在压电管上并可以在z方向上移动以保持与探头之间的恒定距离,在x、y方向上移动来实现扫描。或者采用一种“三脚架”技术,在三个方向上实现扫描。扫描的结果S(x,y)就是样品的表面图。AFM可以在不同模式下运行。这些模式可以被分为接触模式(Contact Mode)、非接触(Non-Contact Mode)、轻敲模式(Tapping Mode)、侧向力(Lateral Force Mode)模式。2. 优点与缺点 相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812311440_127077_1664664_3.jpg[/img]

  • 【原创大赛】实验室不容忽视的湿度变化对扫描探针显微镜测试结果的影响

    【原创大赛】实验室不容忽视的湿度变化对扫描探针显微镜测试结果的影响

    前言:扫描探针显微镜它包括扫描隧道显微镜、原子力显微镜、扫描近场光学显微镜、静电力显微镜、磁力显微镜等20多个品种的庞大显微镜家族。这类显微镜的问世不仅仅是显微技术的长足发展,而且标志着一个科技新纪元——纳米科技时代的开始。这类显微镜自问世以来,在物理学、化学、医学、生物学、微电子学与材料科学等领域获得了极为广泛的应用,并一直是国内外科技人员研究的热点。作为仪器使用技术人员,虽不能开发出更出色的仪器,但是如何充分利用它,如何让它发挥到极至得到理想的结果,是我们仪器使用者应该探索的。实验室不容忽视的温湿度变化,对扫描探针显微镜测试结果影响有多大呢?本文研究了扫描探针显微镜,在四种不同湿度环境下(实验室温度调节受限这里不做研究)测试三种不同材料表面形貌,并对测试结果进行对比,得出仪器最佳使用湿度环境。 一、仪器介绍http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669577_2224533_3.jpg 图A图A为布鲁克公司型号为Nano man VS 扫描探针显微镜http://ng1.17img.cn/bbsfiles/images/2017/10/2016082509141228_01_2224533_3.jpg 图B图B为海瑞弗公司的精密空调机(有快速除湿功能) 二、测试过程及分析选择一个阴雨天气,首先关闭精密空调机除湿功能,等待室内湿度加大,湿度显示90%时,对实验材料表面扫描成像(不需要抬起探针保持扫描状态)开启除湿机,湿度显示80%时保存一张形貌图,等湿度降到70%、60%分别保存一张形貌图。如此,重复以上操作步骤,分别对普通载玻片、普通硅片、非晶材料三种不同材料表面测试,得到如下图结果。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016082509174389_01_2224533_3.jpg http://ng1.17img.cn/bbsfiles/images/2017/10/2016082509175648_01_2224533_3.jpg 上图随机选取普通载玻片某个区域,在湿度90%时,图1.1a、b区域,出现非常明显的干扰条纹,这种条纹的出现,一般是由于测试表面比较湿或者样品在微动引起的。这里很明显是因为空气湿度过大,在载玻片表面已经形成了水珠,对扫描过程干扰过强导致扫描失败。再看图1.2,这时候湿度降到80%,强烈的干扰条纹基本消失,但是图片上颗粒状不明显,棱角模糊,这是因为样品表面还残留着一层水膜,有的区域探针无法穿透水膜扫描到真实的样品表面,所以扫描出来的图像在感官上有一种朦胧的感觉。再看图1.3湿度降到70%,图像上的颗粒明显,棱角清晰,这说明残留水膜基本消失。图1.4湿度降至60%的时候已经达到理想效果。http://ng1.17img.cn/bbsfiles/images/2017/10/2016082509192148_01_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016082509193007_01_2224533_3.jpg上图非晶材料做完纳米压痕实验后残留的一个压痕印迹,图2.1湿度90%时虽然没有出现强烈干扰条纹,但是a、b区域有着很厚的水膜,显然扫不出清晰的图片。图2.2湿度80%,可见上半部小部分处于模糊状态,水膜未彻底消失,当湿度降至70%[color=windowtex

  • 【分享】宏观量子隧道效应

    【分享】宏观量子隧道效应

    隧道效应目录 定义 概述 原理 发现者 用途 隧道二极管 隧道巨磁电阻效应 宏观量子隧道效应     隧道效应   tunnel effect编辑本段定义  由微观粒子波动性所确定的量子效应。又称势垒贯穿 。考虑粒子运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子具有一定的概率,粒子贯穿势垒。理论计算表明,对于能量为几电子伏的电子,方势垒的能量也是几电子伏 ,当势垒宽度为1埃时 , 粒子的透射概率达零点几 ;而当势垒宽度为10时,粒子透射概率减小到10-10 ,已微乎其微。可见隧道效应是一种微观世界的量子效应,对于宏观现象,实际上不可能发生。  在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒,实际也正是如此,这种现象称为隧道效应。对于谐振子,按经典力学,由核间距所决定的位能决不可能超过总能量。量子力学却证明这种核间距仍有一定的概率存在,此现象也是一种隧道效应。   隧道效应是理解许多自然现象的基础。编辑本段概述  在两层金属导体之间夹一薄绝缘层,就构成一个电子的隧道结。实验发现电子可以通过隧道结,即电子可以穿过绝缘层,这便是隧道效应。使电子从金属中逸出需要逸出功,这说明金属中电子势能比空气或绝缘层中低.于是电子隧道结对电子的作用可用一个势垒来表示,为了简化运算,把势垒简化成一个一维方势垒。   所谓隧道效应,是指在两片金属间夹有极薄的绝缘层(厚度大约为1nm(10-6mm),如氧化薄膜),当两端施加势能形成势垒V时,导体中有动能E的部分微粒子在E<V的条件下,可以从绝缘层一侧通过势垒V而达到另一侧的物理现象。   产生隧道效应的原因是电子的波动性。按照量子力学原理,有能量(动能)E的电子波长=(其中,——普朗克常数;——电子质量;E——电子的动能),在势垒V前:若E>V,它进入势垒V区时,将波长改变为λ′=;若E<V时,虽不能形成有一定波长的波动,但电子仍能进入V区的一定深度。当该势垒区很窄时,即使是动能E小于势垒V,也会有一部分电子穿透V区而自身动能E不变。换言之,在E<V时,电子入射势垒就一定有反射电子波存在,但也有透射波存在。编辑本段原理  经典物理学认为,物体越过势垒,有一阈值能量;粒子能量小于此能量则不能越过,大于此能量则可以越过。例如骑自行车过小坡,先用力骑,如果坡很低,不蹬自行车也能靠惯性过去。如果坡很高,不蹬自行车,车到一半就停住,然后退回去。  量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好像有一个隧道,故名隧道效应(quantum tunneling)。可见,宏观上的确定性在微观上往往就具有不确定性。虽然在通常的情况下,隧道效应并不影响经典的宏观效应,因为隧穿几率极小,但在某些特丁的条件下宏观的隧道效应也会出现。编辑本段发现者  1957年,受雇于索尼公司的江崎玲於奈(Leo Esaki,1940~)在改良高频晶体管2T7的过程中发现,当增加PN结两端的电压时电流反而减少,江崎玲於奈将这种反常的负电阻现象解释为隧道效应。此后,江崎利用这一效应制成了隧道二极管(也称江崎二极管)。 1960年,美裔挪威籍科学家加埃沃(Ivan Giaever,1929~)通过实验证明了在超导体隧道结中存在单电子隧道效应。在此之前的1956年出现的“库珀对”及BCS理论被公认为是对超导现象的完美解释,单电子隧道效应无疑是对超导理论的一个重要补充。 1962年,年仅20岁的英国剑桥大学实验物理学研究生约瑟夫森(Brian David Josephson,1940~)预言,当两个超导体之间设置一个绝缘薄层构成SIS(Superconductor-Insulator- Superconductor)时,电子可以穿过绝缘体从一个超导体到达另一个超导体。约瑟夫森的这一预言不久就为P.W.安德森和J.M.罗厄耳的实验观测所证实——电子对通过两块超导金属间的薄绝缘层(厚度约为10埃)时发生了隧道效应,于是称之为“约瑟夫森效应”。 宏观量子隧道效应确立了微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而穿透绝缘层,使器件无法正常工作。因此,宏观量子隧道效应已成为微电子学、光电子学中的重要理论。编辑本段用途  隧道效应本质上是量子跃迁,电子迅速穿越势垒。隧道效应有很多用途。如制成分辨力为0.1nm(1A)量级的扫描隧道显微镜,可以观察到Si的(111)面上的大元胞。但它适用于半导体样品的观察,不适于绝缘体样品的观测。在扫描隧道显微镜(STM)的启发下,1986年开发了原子力显微镜(AFM),其工作原理如图5所示。利用金刚石针尖制成以SiO2膜或Si3N4膜悬臂梁(其横向截面尺寸为100μm×1μm,弹性系数为0.1~1N/m),梁上有激光镜面反射镜。当针尖金刚石的原子与样品的表面原子间距离足够小时,原子间的相互作用力使悬臂梁在垂直表面方向上产生位移偏转,使入射激光的反射光束发生偏转,被光电位移传感器灵敏地探测出来。原子力显微镜对导体和绝缘体样品都适用,且其分辨力达到0.01mm(0.1A),可以测出原子间的微作用力,实现原子级表面观测。  [img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624047_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200811517289_01_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008115172816_01_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008115172825_01_1602049_3.jpg[/img]

  • 【原创】原子力显微镜的原理

    【原创】原子力显微镜的原理

    一、原理 原子力显微镜(Atomic Force Microscopy, AFM)是由IBM 公司的Binnig与史丹佛大学的Quate 于一九八五年所发明的,其目的是为了使非导体也可以采用扫描探针显微镜(SPM)进行观测。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191623_119371_1601358_3.jpg[/img] 图1、原子与原子之间的交互作用力因为彼此之间的距离的不同而不同,其之间的能量表示也会不同。 原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。假设两个原子中,一个是在悬臂(cantilever)的探针尖端,另一个是在样本的表面,它们之间的作用力会随距离的改变而变化,其作用力与距离的关系如“图1” 所示,当原子与原子很接近时,彼此电子云斥力的作用大于原子核与电子云之间的吸引力作用,所以整个合力表现为斥力的作用,反之若两原子分开有一定距离时,其电子云斥力的作用小于彼此原子核与电子云之间的吸引力作用,故整个合力表现为引力的作用。若以能量的角度来看,这种原子与原子之间的距离与彼此之间能量的大小也可从Lennard –Jones 的公式中到另一种印证。 img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191628_119373_1601358_3.gif[/img] 为原子的直径 为原子之间的距离 从公式中知道,当r降低到某一程度时其能量为+E,也代表了在空间中两个原子是相当接近且能量为正值,若假设r增加到某一程度时,其能量就会为-E 同时也说明了空间中两个原子之距离相当远的且能量为负值。不管从空间上去看两个原子之间的距离与其所导致的吸引力和斥力或是从当中能量的关系来看,原子力式显微镜就是利用原子之间那奇妙的关系来把原子样子给呈现出来,让微观的世界不再神秘。 在原子力显微镜的系统中,是利用微小探针与待测物之间交互作用力,来呈现待测物的表面之物理特性。所以在原子力显微镜中也利用斥力与吸引力的方式发展出两种操作模式: (1)利用原子斥力的变化而产生表面轮廓为接触式原子力显微镜(contact AFM ),探针与试片的距离约数个?。 (2)利用原子吸引力的变化而产生表面轮廓为非接触式原子力显微镜(non-contact AFM ),探针与试片的距离约数十个? 到数百个?。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191628_119373_1601358_3.gif[/img]

  • 便携式金相显微镜求购

    想采购一台,便携式金相显微镜,不知道大家有没有知道哪个品牌,哪种型号的好用,请推荐个啊,谢谢了!

  • 便携式显微镜:工业检测、科研、考古的得力助手

    [font=arial, helvetica, sans-serif][size=18px][color=#000000]便携式显微镜之所以在工业检测、科研和考古等领域得到广泛应用,主要是因为它克服了传统显微镜笨重、不易移动、操作繁琐等缺点。便携式显微镜设计紧凑,重量轻,携带方便,可以随时随地进行检测。[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]便携式显微镜的几个典型的应用场景如下:[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]一、表面检测[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]在制造业中,产品的表面质量对其性能和使用寿命至关重要。便携式显微镜可以快速准确地检测产品表面的微观缺陷,如划痕、凹坑等。[/color][/size][/font][align=center][img=1.png,600,400]https://img1.17img.cn/17img/images/202403/uepic/dbcb498a-48cf-49e5-ac9f-8616c8fc609a.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif]便携式自动对焦显微镜MSBTVTY检测喷漆划痕[/font][/align][font=arial, helvetica, sans-serif][size=18px][color=#000000]二、电子行业[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]在电子行业中,对元器件的检测要求非常高。便携式显微镜可以用于观察、检测电路板、芯片等元器件的微观结构,确保其质量。[/color][/size][/font][align=center][font=arial, helvetica, sans-serif][size=18px][color=#000000][img=2.png,600,411]https://img1.17img.cn/17img/images/202403/uepic/e75cccd4-a757-40d5-81b9-18827bc8d623.jpg[/img][/color][/size][/font][/align][align=center]同轴光金相显微镜检测晶圆示意图[/align][font=arial, helvetica, sans-serif][size=18px][color=#000000]三、金属加工[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]金属加工过程中,常常需要对工件进行无损检测。便携式显微镜可以通过观察金属的微观结构和质量,以及焊接点的连接质量等,检测其内部缺陷,提高工件的质量和可靠性。[/color][/size][/font][align=center][img=3.png,600,340]https://img1.17img.cn/17img/images/202403/uepic/381b932e-9bb4-4b3c-b20e-1b6851963e85.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif]便携式显微镜MSA600S检测刀具划痕[/font][/align][font=arial, helvetica, sans-serif][size=18px][color=#000000]四、纺织行业[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]纺织品的纤维结构和品质对其性能和外观至关重要。便携式显微镜可以用于观察纺织品的纤维结构,检测其质量和均匀性。[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]五、考古行业[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]便携式显微镜是分析鉴定和保护文物工作最常用的分析工具之一。由于其小巧便携、价格便宜、实用性强、操作简单等特点,越来越多的博物馆、科研机构的科技考古实验室都配备了便携式显微镜。便携式显微镜多用于观察纸张、织物、陶瓷、青铜器、石器等各类文物,也可以在考古现场对土壤等进行微观观察,是考古时最常用的工具之一。[/color][/size][/font][align=center][font=arial, helvetica, sans-serif][size=18px][color=#000000][img=4.png,600,450]https://img1.17img.cn/17img/images/202403/uepic/7c050adc-bc21-4fbd-a986-060d88ea197f.jpg[/img][/color][/size][/font][/align][align=center][font=arial, helvetica, sans-serif][color=#000000]便携式显微镜看古玩[/color][/font][/align][font=arial, helvetica, sans-serif][size=18px][color=#000000]六、生命科学研究[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]在细胞生物学和解剖学研究中,便携式显微镜有助于观察细胞、组织、器官的超微结构和形态特征,以及病理变化等问题。在医学诊断中,它能够帮助医生对皮肤、黏膜等部位进行快速、准确的检测和诊断,例如用于鉴别癌细胞、真菌感染、精子计数等。[/color][/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#000000]随着科技的不断进步,便携式显微镜的性能和应用领域还将继续拓展,为科研和实际应用带来更多可能性。[/color][/size][/font][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【转帖】STM的工作原理

    STM 概述  1982年,国际商业机器公司苏黎世实验室的G..Binnig和Heinrich Rohrer及其同事们共同研制成功了世界上第一台新型的表面分析仪器—扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)。STM的出现,使人类第一次能够实时地观察单个原子在物质表面的排列状态,研究与表面电子行为有关的物理和化学性质,在表面科学、材料科学等领域的研究中具有重大的意义和广阔的应用前景,被国际科学界公认为八十年代世界十大科技成就之一。为表彰STM的发明者们对科学研究的杰出贡献,1986年宾尼和罗雷尔因此获得诺贝尔物理学奖。STM是继高分辨透射电子显微镜,场离子显微镜之后,第三种在原子尺度观察物质表面结构的显微镜,其分辨率在水平方向可达0.1nm,垂直方向可达0.01nm,它的出现标志着纳米技术研究的一个最重大的转折,甚至可以标志着纳米技术研究的正式起步,这是因为STM具有原子和纳米尺度的分析和加工的能力。使用STM,在物理学和化学领域,可用于研究原子之间的微小结合能,制造人造分子;在生物学领域,可用于研究生物细胞和染色体内的单个蛋白质和DNA分子的结构,进行分子切割和组装手术;在材料学领域,可以用于分析材料的晶格和原子结构,考察晶体中原子尺度上的缺陷;在微电子领域,则可以用于加工小至原子尺度的新型量子器件。STM的工作原理  STM是利用量子隧道效应工作的。若以金属针尖为一电极,被测固体样品为另一电极,当他们之间的距离小到1nm左右时,就会出现隧道效应,电子从一个电极穿过空间势垒到达另一电极形成电流。且 其中Ub:偏置电压;k:常数,约等于1,Φ1/2:平均功函数,S:距离。从上式可知,隧道电流与针尖样品间距S成负指数关系。对于间距的变化非常敏感。因此,当针尖在被测样品表面做平面扫描时,即使表面仅有原子尺度的起伏,也会导致隧道电流的非常显著的、甚至接近数量级的变化。这样就可以通过测量电流的变化来反应表面上原子尺度的起伏,如下图右边所示。这就是STM的基本工作原理,这种运行模式称为恒高模式(保持针尖高度恒定)。STM还有另外一种工作模式,称为恒流模式,如下图左边。此时,针尖扫描过程中,通过电子反馈回路保持隧道电流不变。为维持恒定的电流,针尖随样品表面的起伏上下移动,从而记录下针尖上下运动的轨迹,即可给出样品表面的形貌。恒流模式是STM常用的工作模式,而恒高模式仅适于对表面起伏不大的样品进行成像。当样品表面起伏较大时,由于针尖离样品表面非常近,采用恒高模式扫描容易造成针尖与样品表面相撞,导致针尖与样品表面的破坏。[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807012329_95931_1615922_3.gif[/img]

  • 【求助】STM/SEM

    大家好!我本人是要做STM(扫描隧道显微镜)的,想在这上面加上SEM。请问哪位可以推荐一款SEM可以和STM相结合的?

  • 【求购】STM探针腐蚀用钨丝

    请教大家一个问题:扫描隧道显微镜用的钨丝从哪里可以买到?有什么具体的技术指标要求?纯度要求多少?谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制