当前位置: 仪器信息网 > 行业主题 > >

常规显微镜

仪器信息网常规显微镜专题为您提供2024年最新常规显微镜价格报价、厂家品牌的相关信息, 包括常规显微镜参数、型号等,不管是国产,还是进口品牌的常规显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合常规显微镜相关的耗材配件、试剂标物,还有常规显微镜相关的最新资讯、资料,以及常规显微镜相关的解决方案。

常规显微镜相关的资讯

  • 2020年全球生命科学显微镜市场规模将达26.14亿美元
    生命科学显微镜市场的发展体现了市场的快速转移,由于研究外包服务机构的发展,市场正快速从世界发达地区转移到了拉丁美洲和亚太地区等新兴和发展中国家经济地区。Transparency Market Research在最新的报告中研究了全球生命科学显微镜设备市场的运作方式,讨论了市场的主要驱动因素和面临的挑战。该报告题为“Life Science Microscopy Devices Market - Global Industry Analysis,Size,Volume,Share,Growth,Trends and Forecast 2014 - 2020”。  根据这份报告,预测期内,全球生命科学显微镜设备市场的年复合增长率为6.60%,市场规模将从2013年的16.56亿美元的扩张到2020年的26.14亿美元。政府的拨款和资金支持、新兴国家尚未开发的潜力、生物技术和研发工业园的不断发展将促进生命科学显微镜市场的增长。
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备
    这里是TESCAN电镜学堂第6期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!样品制备对扫描电镜观察来说也至关重要,样品如果制备不好可能会对观察效果有重大影响。通常希望观察的样品有尽可能好的导电性,否则会引起荷电现象,导致电镜无法进行正常观察;另外样品还需要有较好的导热性,否则轰击点位置温度升高,使得试样中的低熔点组分挥发,形成辐照损伤,影响真实的形貌观察。如果要进行EDS/WDS/EPMA定量检测,还需要样品表面尽可能平整。第一节 常规样品制备样品制备主要包括取样、清洗、粘样、镀膜处理几个步骤。§1. 取样在进行扫描电镜实验时,在可能的条件下,试样应该尽量小,试样有代表性即可。特别在分析不导电试样时,小试样能改善导电性和导热性能。另外,大试样放入样品室会有较多气体放出,特别是多孔材料,不但影响真空度,还大幅度增加抽真空的时间,可能也会引入更多的污染。因此对于多孔材料在放入电镜前,可以在不损伤样品的前提下,对样品进行一定的热处理,比如电吹风吹,红外灯烘烤,或者放入烘箱低温加热一段时间,将其空隙的气体排出,以减小进入电镜后的抽真空时间。对于薄膜截面来说最好能够进行切割、镶嵌、抛光等处理。在镶嵌时最好能将试样一分为二,将要观察的膜面朝里然后对粘,然后再进行镶嵌、抛光处理。这样做的好处是避免在抛光过程中因为膜面和镶嵌料之间的力学性能有一定的差异,而引起薄膜的脱落或者出现裂纹和缝隙,如图4-1。对粘后的膜面两面力学性能一样,会改善此种情况。 图4-1 单膜面力学性能不对称引起的损伤对于比较软的样品在制截面时,一般不要用剪刀直接剪断,直接剪断的截面经过了剪切的拉扯,质量较差。可以考虑用锋利的刀片切断,比如手术刀片等。或者在将试样浸泡在液氮中进行冷冻脆断。在冷冻脆断前可以先切一个小缺口,这样冻硬的样品可以顺着切口用较小的力就可发生断裂。有条件的话可以考虑用截面离子束抛光或者FIB抛光。对于粉末样品来说,取样要少量,否则粉末堆叠在一起会影响导电性和稳定性。粉末样品团聚严重的话,可以考虑将粉末混合在易挥发溶剂中(如纯水、乙醇、正己烷、环己烷等),配成一定浓度的悬浊液,用超声分散,然后取小滴滴在试样座或者硅片、铜(铝)导电胶带上。此时不要使用碳导电胶带,因为碳导电胶带不够致密,会使得样品嵌入在空隙中影响观察。等待溶剂挥发干燥后,粉体靠表面吸附力粘附在基底上,如图4-2。 图4-2 粉末超声分散制样不过值得注意的是溶剂的选择,溶剂不能对要观察的试样有影响,否则会改变试样的初始形貌而使得图像失真。如图4-3,高分子球样品在用水稀释分散后仍为球形,而用无水乙醇分散后,形貌发生了变化。 图4-3 水(左)和乙醇(右)稀释分散对形貌的影响§2. 清洗试样尽可能保证新鲜,避免沾染油污。特别是不要直接用手直接接触试样,以免沾染油脂。清洁不仅仅是针对试样的要求,同样还包括了样品台。样品台要做到经常用无水乙醇进行清洗。§3. 粘样试样的粘贴应该尽量保持平稳、牢固,并尽可能减少接触电阻,以增加导电性和导热性。特别是对于底面不平整的试样,最好用银胶进行粘贴,让银胶填满缝隙以保证平稳。如果要进行EBSD测试,最好也用银胶。EBSD采集要经过70度的倾转,重力力矩较大,而导电胶带有一定的弹性,可能会因为重力缘故而逐步拉伸,导致样品漂移。此外,平时大多数试样都是采用碳导电胶带进行粘贴,不过如果要进行极限分辨率的观察,最好也用银胶,以进一步增加导电性。我们粘贴样品的目的是使得样品要观察的表面要能和样品台底座之间具有导电通路,而不是仅仅认为表面导电就好。样品表面导电性再好,如果没有导电通路和样品台联通的话,仍然会有荷电。特别是对于不规则样品,更要注意粘贴时候的导电通路。如图4-4,左边与中间的表面并未和样品台导通,属于不合理的粘贴,而右边形成了通路,是合理的粘贴方式。 图4-4 合理(右)与不合理(左、中)的粘贴对于很多规则样品,比如块体或者薄片样品,也存在很多不合理的粘贴方式。很多人认为试样有一定的导电性,就将试样直接粘在导电胶带上,如图4-5左。样品表面和样品台之间依然会出现没有通路的情况,有时即使样品导电性好,可能也会因为有较大的接触电阻使得图像有微弱的荷电或者在大束流工作下有图像漂移。而图4-5右,则是开始将导电胶带故意留一段长度,将多余的长度反粘到试样表面去。这样使得不管样品体内导电性如何,表面都能通过导电胶带形成通路。而且即使样品整个体内都有较好的导电性,连接到表面的导电胶带相当于一个并联电路,并联电路的总电阻总是小于任何一个支路的电阻,所以无论试样的导电性任何,都应习惯性的将一段导电胶带连接到表面,以进一步减小接触电阻,增强导电性。 图4-5 将导电胶带延伸到试样表面的粘贴 对于粉末试样的粘贴,也是要少量,避免粉末的堆叠影响导电性和导热性。粉体可以取少量直接撒在试样座的双面碳导电胶上,用表面平的物体,例如玻璃板或导电胶带的蜡纸面压紧,然后用洗耳球吹去粘结不牢固的颗粒,如图4-6左。如果粉末量很少,无法用棉签或药勺进行取样,也可将碳导电胶带直接去粘贴粉末,如图4-6右。 图4-6 粉末试样的粘贴方法§4. 镀膜对于导电性不好的试样,我们通常可以选择镀膜处理。通常情况我们选择镀金Au膜,如果对分辨率有较高的要求,可以选择镀铂Pt、铬Cr、铱Ir。如果要对样品进行严格的EDS定量分析,则不能镀金属膜,因为金属膜对X射线有较强的吸收,对定量有较大影响,此时可选用蒸镀碳膜。现在的镀膜设备一般都能精确控制膜厚,通常镀5nm的薄膜就足够改善导电性,对于有些特殊结构的试样,比如海绵或泡沫状,表面不致密,即使镀较厚的导电层,也难以形成通路。所以我们镀膜尽量控制在10nm以下,如果镀10nm的导电膜仍没有改善导电性,继续增加镀膜也没有意义。一般镀金的话在10万倍左右就能看见金颗粒,镀铂的话可能需要放大到20万倍才能看见铂颗粒,而镀铬或者铱则需要放大到接近30万倍。所以对于导电性不好的试样来说,可以根据需要选择不同的镀膜。镀膜之后,由金属膜代替试样来发射二次电子,而一般镀的金、铂都有较高的二次电子激发率,在镀膜之后还能增强信号强度和衬度,提升图片质量。只要镀膜不会掩盖试样的真实细节,完全可以进行镀膜处理,而不用纠结于一定要不镀膜进行观察,除非有特别不能镀膜的要求。当然,对于要求倍数特别高或者严格测量的一些观察要求,则要谨慎镀膜处理。毕竟在高倍数下,镀膜会掩盖一定的形貌,或者使测量产生偏差。如图4-7,左边是镀金处理的PS球在SEM下的测量结果,右边是TEM直接拍摄的结果,可以发现SEM的测量结果大约在195nm左右,而TEM的测量结果在185nm左右,这就是因为给PS球镀了5nm金而引起直径扩大了10nm左右。 图4-7 PS球在SEM下镀膜观察和TEM直接观察的对比除了不导电样品需要镀膜,对于一些导热性不佳的试样,有时也需要镀膜。电子束轰击试样时,很多能量转变成热能,使得轰击点温度升高,升高温度表达式为ΔT(K) = 4.8 × VI / kd其中,V为加速电压、I为束流、d为电子束直径,k为试样热导率。对于导热性差的试样,k较低,ΔT有时能接近1000K,很容易对试样造成损伤。比如有时候对高分子样品进行观察时,会发现样品在不断的变化,其实是样品受到电子束轰击造成了辐照损伤损伤,如图4-8。而经过镀膜后,可以提高热导率,降低升温程度,避免样品受到电子束辐照损伤。 图4-8 电子束辐照损伤【福利时间】每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【奖品公布】上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】如果要对样品进行严格的EDS定量分析,可以镀金属膜吗,为什么?(快关注“TESCAN公司”微信公众号去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息:TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看: 电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统
  • 全球显微镜行业稳步增长 市场规模持续扩大
    显微镜广泛应用于半导体行业的研究开发、制造和质量分析,目前半导体已经成为世界显微镜的第二应用需求领域,近年来市场规模持续增加。 将来,检查需要、技术革新和政府支持将进一步扩大世界显微镜市场的规模。目前显微镜制造行业进入商业化成熟期,世界显微镜制造行业稳步增长,而技术创新是显微镜制造行业增长的核心动力。 根据Grand View Research的数据,2019年世界显微镜市场规模约为96亿美元,2020年世界显微镜市场规模突破了100亿美元。显微镜广泛应用于半导体、生命科学、纳米技术、材料科学等。 其中显微镜是半导体的重要检查设备之一。 显微镜广泛应用于半导体行业的开发、制造和质量分析,包括纳米晶片、纳米晶体管和用于研究纳米晶片的元件。 例如,电子显微镜被用于检测膜应力、重要尺寸、晶片表面缺陷等。 光学显微镜用于检测晶片表面缺陷等,原子力显微镜用于检测膜应力、键尺寸、晶片表面缺陷等. 现在半导体已成为世界显微镜的第二应用需求领域,超过材料科学和纳米科学,约占23%。随着未来全球半导体产业的发展,显微镜在半导体领域应用于印刷、涂料、故障分析、元素检查的需求将持续增加。 另外,显微镜在微晶体管芯片和量子点等半导体行业的应用也在扩大。 另一方面,纳米技术领域的研究持续增加的需要需要技术先进、高分辨率的显微镜,加上政府对研究开发创新的资金支持,推动了世界半导体显微镜市场的增长,2026年世界半导体显微镜市场规模将达到37亿美元。
  • 荧光显微镜市场规模递增 国家政策助推技术升级
    p  荧光显微镜行业是伴随着显微镜行业发展而逐渐兴起的一个新的光学显微领域。早期由于其发展的受限,市场规模一直处于较小的规模。在一些在光学显微镜领域发展比较好的公司,其荧光显微镜产品也只占到公司整体产品很小的比重。/pp  通过对荧光显微镜行业内100多家公司进行分析,包括对比较有代表性的行业龙头企业麦克迪奥(厦门)电气有限公司,行业内的上市公司:凤凰光学股份有限公司以及宁波舜宇仪器(集团)有限公司,进行分析之后,发现除麦克迪奥电气有限公司的显微镜业务占据主营业务比重高达50%以外,其他公司的显微镜产品比例都较低。/pp  据测算,2010年我国荧光显微镜行业市场规模为7.5亿元,到2015年增长至26亿元,年均复合增长率达到了28.23%。可见,随着国家对仪表仪器产业发展的重视,以及我国在荧光显微镜上技术的提升、品牌的逐渐建立,荧光显微镜行业市场规模不断壮大。/pp style="text-align: center "  2010-2015年荧光显微镜行业市场规模(单位:亿元)/pp  /pcenterimg alt="2010-2015年荧光显微镜行业市场规模" src="https://img3.qianzhan.com/news/201805/14/20180514-22aa96e112e26672.jpg" height="270" width="461"//centerp  荧光显微镜行业属于工具性行业,其发展不但受到上游原材料行业市场的影响,更容易受到来自其下游应用市场的影响。其主要的应用市场已经不再局限于教学研究以及医疗服务工业,开始向更加广泛的领域扩展,如检测行业、生物科学行业,随着荧光显微镜制造技术的不断提升,其应用领域将会得到更大的拓展,将转向更加高精专的行业领域。/pp  据测算,发达国家的生物医学规模每增长1个百分点,将带动光学仪器行业增长0.14个百分点。以此推算,我国生物医学行业市场规模的扩大将带动荧光显微镜行业1.3%左右的增长。结合其他应用领域,经推算,2016年我国荧光显微镜行业的市场容量将达到33亿元,到2022年,我国荧光显微镜行业市场容量将突破80亿元,年复合增长率将达到17.1%左右。/pp style="text-align: center "  2016-2022年荧光显微镜行业市场容量预测(单位:亿元)/pp  /pcenterimg alt="2016-2022年荧光显微镜行业市场容量预测" src="https://img3.qianzhan.com/news/201805/14/20180514-83bc3d91f1d120fe.jpg" height="273" width="465"//centerp  我国荧光显微镜行业发展已历70余年,如今,国内荧光显微镜品牌知名度较高的仍然是由外企生产出来的产品占据绝大多数。国内的众多公司在荧光显微镜行业与外企的竞争角逐中始终处于下风,盘踞在行业的中低端市场。/pp  随着国家鼓励科技创新、创造风气的盛行,我国荧光显微镜行业将在潮流的带动下,更多的在产品制造的技术上下功夫,在兼收并蓄的同时,积极发展自己的技术,不断创新。/pp  创新创造能力的提高离不开国家在基础设施以及创新过程中的不断投入。从我国研究与试验发展经费支出情况来看,2011年,我国研究与试验发展经费支出为8687亿元,到2015年达到了14220亿元,年均复合增长率为13.11%。/pp style="text-align: center "  2011-2015年我国研究与试验发展经费支出情况(单位:亿元,%)/pp  /pcenterimg alt="2011-2015年我国研究与试验发展经费支出情况" src="https://img3.qianzhan.com/news/201805/14/20180514-a876bce043ef7d83.jpg" height="272" width="467"//centerp  随着国家科研的不断投入,以及人才的不断培养,将对荧光显微镜行业的技术状况产生有利影响,将会慢慢改变我国荧光显微镜技术严重依赖进口的现状,促进行业技术改造升级。/p
  • 到2026年,全球电子显微镜市场规模将超过38亿美元
    接下来,小编先带大家了解下,什么是电子显微镜吧!电子显微镜,简称电镜,由镜筒、真空装置和电源柜三部分组成。作为实验研究的基本工具,其在各大领域的研究过程中发挥着不可少的作用。显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。据悉,电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。电子显微镜的出现使人类的洞察能力提高了好几百倍,不仅看到了病毒,而且看见了一些大分子,即使经过特殊制备的某些类型材料样品里的原子,也能够被看到。电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。到21世纪,电子显微镜已广泛应用到生物学、医学、材料科学、地质勘探、灾害鉴定以及工业生产等领域,拥有较大的市场规模,发展前景可期。据数据显示,近年来随着全球对生命科学、材料研究的探索和研究持续深入,以及对半导体需求不断扩大等,推动了高校、科研院所、半导体工业等领域对电子显微镜的需求。全球电子显微镜行业市场规模呈不断增长趋势。另外,由于高倍率,电子显微镜在生物学、材料科学、纳米技术和半导体工业中具有重要的应用。不断增长的研发活动,以及较易获得国家、政府科研资金等,将推动生命科学和材料学等领域利用扫描电子显微镜进行科学研究需求增加,从而推动电子显微镜的增长。因此,据预测,未来全球电子显微镜将保持5.85%的复合增速保持快速增长,到2026年全球电子显微行业市场规模将超过38亿美元。而对于我国而言,目前我国有超过20多家专业生产显微镜的厂家,但产品基本为教育类和普及类的显微镜,年营业额仅为18亿元人民币,市场竞争激烈。近年来以中国为首的发展中国家在教育、工业化、技术产业化、科研设施建设方面加快投资,我国显微镜产量呈现逐年稳步增长态势。未来,随着政府以及私人机构加大纳米技术、半导体等新兴应用领域的研发投资以及生命科学领域的蓬勃发展,显微镜的市场需求将持续增加,相关企业可重点布局。
  • 创新先锋|蔡司智能显微镜全新上市!
    创新先锋|蔡司智能显微镜全新上市!蔡司智能显微成像技术,助您常规实验室工作更简单。德国耶拿,2019/5/7蔡司智能显微数码成像——常规实验室显微成像领域的新概念。蔡司Axiolab 5 、Axioscope 5显微镜 与 Axiocam 202或Axiocam 208 数码相机组成一套智能显微镜成像系统,帮用户完成许多繁杂工作。这套系统可以自动调整参数设置,让数码显微成像变的更简单、更高效。 Axioscope 5 智能显微镜√效率和质量是关键长期以来,想获取细节丰富,真色彩的显微镜图像需要耗费大量时间。用户不得不重复相同的步骤,并不厌其烦地调节显微镜和设置软件参数。还要频繁的在显微镜和电脑之间来回切换,费时费力。√获取细节丰富的真色彩图像,只需一键即可完成蔡司智能显微镜系统可自动调整亮度和白平衡,助您轻松完成数码成像。用户只需放置样品,找到感兴趣区域,然后按一下“拍照”按钮,即可完成图像采集。所有操作步骤可以单手完成, 用户只需专注于目镜观察样品,甚至手、眼都不用离开显微镜。步骤一:观察样品,找到感兴趣区域步骤二:按下显微镜机身上“拍照”键步骤三:获取高清真色彩图像一切就是这么简单!√高效显微数码成像更让人惊喜的是,蔡司智能显微镜系统可以实现多通道荧光一键成像。用户只需按下“拍照”键,系统会自动完成调整激发光强度、优化曝光时间、切换荧光通道以及拍图等步骤,获得带标尺的多通道荧光叠加图像。 关于蔡司 蔡司是全球光学和光电领域的先锋。蔡司致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。凭借其解决方案,蔡司不断推动光学事业的发展,并促进了技术进步。公司共有四大业务部门:工业质量与研究、医疗技术、视力保健/消费光学和半导体制造技术。蔡司集团在40多个国家/地区拥有30多座工厂、50多个销售与服务机构以及约25个研发机构。 全球约27,000名员工在2016/2017财年创造了约53亿欧元的业绩。公司于1846年在耶拿成立,总部位于德国奥伯科亨。卡尔蔡司股份公司是负责蔡司集团战略管理的控股公司。公司由Carl Zeiss Stiftung(卡尔蔡司基金会)全资所有。
  • 如何用显微镜拍出良好的图片?
    显微镜是生物实验室中必备的设备,但显微镜的类型和配置众多,需求和配置如何相互对应?又该如何去选择适合自己实验室的显微镜?让我们跟随深蓝云一起,看看显微拍摄的设备需求吧。问题1:我经常需要观察细胞,应该用什么样的显微镜?回答:细胞种类众多,但是大多数活细胞观察时都是未染色细胞。未染色的细胞为透明状态,普通明场显微镜观察不到,这种情况下,需要使用相差的观察方式。相差模式将光波通过细胞折射率和厚度不同的各部细微结构产生的相位变化变为振幅差来观察活细胞和未染色的标本。问题2:我们课题组即需要对病理切片进行观察,也需要对培养的细胞进行观察,这两种方式需要什么样的设备?回答:切片类型的样本建议采用正置观察方式,即物镜位于载物台上部,而细胞一般放置于培养瓶、培养皿中,所需要的空间更大,更适合使用倒置观察方式。因此对常规显微镜就需要一台正置显微镜、一台倒置显微镜。不过ECHO正倒置一体显微镜,既可以正置也可以倒置,一台就可以满足两种需求啦。问题3:既需要明场拍摄也需要荧光拍摄需要怎么选?回答:▲荧光产生原理图▲ 荧光光路示意图单色相机拥有更高的灵敏度以及光通量,而彩色相机拥有更好的对比度和色彩还原能力。荧光观察时需要用特定波长的激发光激发材料产生荧光,并通过滤色片最终得到特定波长的荧光,而这种荧光一般较弱,观察时需要高灵敏度的相机,因此配置采用单色相机。单色相机无法识别真实颜色,不适合进行明场拍摄,因为明场拍摄需要更好的对比度,彩色相机才可以满足此需求。如果想获得最好的荧光与明场观察效果,最佳的选择是搭配双相机系统。这里说一下哦,ECHO正倒置一体显微镜突破了常规显微镜的设计,同时配置了双相机系统,自动切换,保证无论明场还是荧光都可以获得最佳的观察效果,同时满足您的多种需求。问题4:市面上荧光显微镜的光源多种多样,我该选择哪种?回答:大多数荧光显微镜的光源波长需求都在可见光范围内,在这个范围内,LED光源要明显优于其他光源,其在不同波长范围可以做到光强一致,且寿命更长,无需预热和冷却,作为冷光源,其可以做到随开随用,且光毒性低,适合大多数实验室配置。问题5:可供选择的荧光通道那么多,我该如何选择荧光通道?回答:对于荧光通道的选择,需要根据用户想要观察的荧光波长来进行确定,如用户后续需要DAPI染色,需要进行GFP蛋白的观察,这些观察都有其对应的荧光波长范围,符合该波长范围的荧光通道就可以选择,如DAPI通道,FITC通道。问题6:物镜该如何选择?荧光观察配置什么物镜?回答:▲ 物镜物镜的分类方式很多,这里先说一个根据色差校正进行的分类,色差校正能力由高到低分别是复消色差显微镜,半复消色差显微镜(萤石物镜),消色差物镜,消色差能力越强,带来的最直观提升是NA值越高,因此分辨率更好。半复消色差物镜的校正范围为400-500,是常见荧光发射光的波段,适合进行荧光观察,因此对于荧光显微镜,一般配置半复消色差物镜。以上是一些关于如何选择和配置显微镜的常见问题,后续我们还会更新一些更加深入的信息。部分图源:来自网络,侵删。
  • 电镜厂商泰思肯进军光学显微镜市场
    泰思肯(TESCAN) 位于欧洲电子光学研发和制造基地捷克布尔诺市,主要研发和生产扫描电子显微镜,其前身是世界电子光学设备制造的领航者TESLA,有超过60年电子显微镜的研发制造历史。  一直以来,泰思肯在电子显微镜领域深耕细作,然而就在不久前,泰思肯推出了一台全息显微镜Q-Phase,开始进军光学显微镜市场。目前这款产品已在中国上市。为何泰思肯会选择推出光学显微镜产品,这款产品又有着怎样的特点和竞争优势呢?仪器信息网编辑采访了泰思肯的相关负责人。  Instrument:作为一家电镜厂商,泰思肯为何选择推出光学显微镜产品?  泰思肯:TESCAN Brno在欧洲一直是一个开放性实验室,与很多大学和科研院所保持紧密的合作。捷克的布尔诺技术大学的Radim Chmelí k教授团队一直从事全息显微镜的研究,并且在2011年之后,就进入TESCAN接续进行研发。由于双方有非常好的合作关系,并共同申请了专利。TESCAN本身也具有极强的研发和制造能力,于是成功的将全息显微镜进行了商品化。  Instrument:新推出的Q-Phase全息显微镜有什么样的特点?  泰思肯:Q-Phase利用全息干涉法以及相干门控技术,具备多种成像模式,有定量相位成像、荧光成像、模拟DIC成像和明场成像。其中定量相位成像可以提供式样的立体形态、以及细胞干重的定量信息,细胞干重精确度可到pg/um2。  此外,Q-Phase还可以选配恒温箱等附件,可以对显微镜环境(如温度、湿度、气氛等)进行精确控制,可根据用户需要,进行细胞的培养或处理,同时实时观测。  Instrument:与同类产品相比,Q-Phase有哪些技术优势?  泰思肯:和目前已有的常规技术相比,Q-Phase具有众多优势:首先,不需要进行染色处理;其次,Q-Phase所需要的光强要比一般的全息显微镜低7个数量级,对样品的损伤更小,有利于长期观察;再次,可以做到细胞干重的定量测试;然后,Q-phase具有更好的空间分辨率,没有图像失真、渐晕、伪影等;还有,Q-phase具有超出同类方法很多的扫描速度,非常适合做原位观察。  另外,Q-Phase可以在散射介质中对细胞进行直接的观察,而且依然有非常优秀的衬度。这在传统的相衬技术中是难以实现的。  Instrument:Q-Phase全息显微镜适用于哪些应用领域?  泰思肯:Q-Phase主要用于生物与生物成像领域,以及活细胞的动态成像观察。比如:细胞的分裂和繁殖、干重测试、细胞运动、生命周期的观察;癌细胞的研究,药物的测试、组织切片等领域。
  • 华润华晶微电子采购徕卡显微镜等仪器
    无锡华润华晶微电子从上海江文信息技术有限公司采购了德国LEICA DM4000M显微镜,该显微镜安装了徕卡专利的高精度膜厚测量系统,使测量准确度大大提高.  传统的半导体膜厚测量一般用椭偏仪来进行,操作复杂.常规的光谱测量仪光斑在几十个微米,无法满足半导体生产的微区测量要求,准确性不足.LEICA的膜厚测量系统测量速度快,且测量光斑可以达到亚微米,使测量准确性大大提高.  DM4000M显微镜是继INM100后LEICA推出的新一代的产品,而同代的全自动型号DM6000M更是继INM200以后的LEICA最高端显微镜,DM6000M和DM4000M为集成电路,微电子,微加工MEMS等行业的研究,生产检验提供了前所未有的高分辨率,高清晰度,高精度的检测手段.
  • 2021年高校成为扫描电子显微镜主要采购主体
    扫描电子显微镜行业主要公司:目前国内扫描电子显微镜行业的公司主要有中科科仪、聚束科技、国仪量子、泽攸科技和善时仪器等。  本文核心数据:扫描电子显微镜市场规模、扫描电子显微镜消费量、扫描电子显微镜细分市场需求规模(按采购主体)  1、需求规模增长较快,2020年增速接近10%  我国扫描电子显微镜行业起步较晚,于1975年方才由中国科学仪器厂(中科科仪股份有限公司前身)研制出首台扫描电子显微镜。但我国对于科研创新重视程度较高,由于扫描电子显微镜在各科研领域的物质微观形貌表征观察方面应用较为广泛,故其市场需求仍在稳步增长。  结合全球扫描电子显微镜典型厂商日本电子于其决策说明会披露的全球电子显微镜、扫描电子显微镜市场规模和Grand View Research披露的中国电子显微镜市场规模,基于图表1中的基础假设和测算逻辑测算,2017-2020年中国扫描电子显微镜市场规模如下所示。 由此可知,近年来,中国扫描电子显微镜市场规模呈现逐年增长的态势,且增长速度较快,均在10%左右。2020年,中国扫描电子显微镜市场规模实现16.72亿元,受新冠疫情影响,2020年各单位对于扫描电子显微镜等科学仪器的采购预算增幅有所下调,故其同比增长率较2018年与2019年略有下滑,仅为9.21%。2、产品单价高昂,年需求量尚以百计   扫描电子显微镜属于高精密仪器,其产品单价相对高昂。根据对2018-2021年3月中国政府采购网上扫描电子显微镜中标/成交项目的统计,共有361台/套扫描电子显微镜列明了中标/成交金额。这361台/套扫描电子显微镜的中标/成交金额合计为10.67亿元,按该金额计算得到,2018-2021年3月期间中国政府采购网记录的中标/成交扫描电子显微镜平均每台/套的单价约为296.51万元。   我国政府采购的扫描电子显微镜种类宽泛,价格公允,故将2018-2021年3月期间中国政府采购网记录的中标/成交扫描电子显微镜平均价格作为中国扫描电子显微镜市场的平均价格,并根据“需求数量=市场规模/产品价格”的逻辑计算,得到中国扫描电子显微镜产品需求数量如下图所示。   由此可知,2017-2020年,中国扫描电子显微镜产品需求数量不断增长。2020年,中国扫描电子显微镜产品需求数量在564台左右。3、采购主体主要为高校、企业与科研机构   中国扫描电子显微镜的采购主体主要为高校、企业与科研机构。根据赛默飞旗下的飞纳品牌对其在中国销售的1000+台扫描电子显微镜采购主体的统计,以及2018-2021年第一季度3月中国政府采购网上扫描电子显微镜中标/成交项目的统计数据及科研设施与仪器国家网络管理平台披露的扫描电子显微镜保有情况的印证,中国扫描电子显微镜市场45%的采购主体为高校,企业和科研机构各占39%。即2020年,16.72亿元的中国扫描电子显微镜市场中,高校、企业和科研机构分别采购了约7.52亿元、6.52亿元和2.68亿元。 综合来看,我国扫描电子显微镜需求规模逐年增长,但由于价格高昂,年需求量不足千台。从其下游采购主体来看,对扫描电子显微镜存在需求的主要为高校、企业和科研机构,其中高校的需求占比较高,在45%左右。
  • 量子扭转显微镜可视材料内电子波
    据最新一期《自然》杂志发表的研究,以色列魏茨曼科学研究所的研究人员开发了一种新型扫描探针显微镜,即量子扭转显微镜(QTM),它可以创造出新的量子材料,同时观察其电子最基本的量子性质。这项研究为量子材料的新型实验开辟了道路。  大约40年前,扫描探针显微镜的发明彻底改变了电子现象的可视化方式。尽管当今的探针可在空间的单个位置获取各种电子特性,但迄今为止扫描显微镜无法实现的是,在多个位置直接探测电子的量子力学存在,并提供对电子系统的关键量子特性的直接存取。  QTM原理涉及两层原子般薄的材料相互“扭曲”或旋转。事实证明,扭转角度是控制电子行为的最关键参数:仅将其改变十分之一度,就可将材料从奇异的超导体转变为非常规的绝缘体,但这个参数在实验中也是最难控制的。  基于独特的范德华尖端,QTM可创建原始的二维异质结,这为电子隧穿进入样品提供了大量相干干涉路径。由于在针尖和样品之间增加了一个连续扫描的扭转角,这种显微镜可沿着动量空间的一条线探测电子,类似于扫描隧道显微镜沿着真实空间的一条线探测电子。  实验演示证明了针尖的室温量子相干性,研究人员还施加了较大的局域压力,观察扭曲的双层石墨烯的低能带逐渐平坦化。  研究人员称,新工具可直接将量子电子波可视化,可观察它们在材料内部表演的量子“舞蹈”,其还为科学家提供一种新“透镜”来观察和测量量子材料的性质。  如此深入地窥探量子世界,可帮助揭示关于自然的基本真相。未来,QTM将为研究人员提供前所未有的新量子界面光谱,以及发现其中量子现象的新“眼睛”。
  • 围观:用乐高积木打造出的真正显微镜(图)
    艺术家Carl Merriman用他的行动表明,乐高不仅是简单的玩具,还可以是实用的工具。  Carl Merriman用乐高积木打造一款功能齐全的显微镜,虽然不能和专业的设备相提并论,不过已经能够实现常规的显微镜操作,还可以切换不同的镜头。  用积木打造显微镜的工作,对于研究乐高创作27年的Carl Merriman来说并不难。Carl Merriman表示&ldquo 虽然你没法用它来进行高端的研究,但放大效果仍旧不错,外部旋钮带动内部复杂的机械结构,用起来很趁手。&rdquo   制作这款乐高显微镜的灵感来自于已经停产的LEGO X-POD套装。他发现X-Pod的造型很像培养皿,因此在研究其用途的时候第一时间就想到了显微镜。  经过长时间的调整,对整个系统的调焦进行了改善,使用者能够通过切换三组镜头来达到实验观察的目的,可以说这已经不再是玩具,而是真正的显微镜。
  • 日立应用|饲料显微镜检查方法
    看看家禽/家畜在吃什么?饲料,是所有人饲养的动物的食物的总称,比较狭义地一般饲料主要指的是农业或牧业饲养的动物的食物。饲料(Feed)包括大豆、豆粕、玉米、鱼粉、氨基酸、杂粕、添加剂、乳清粉、油脂、肉骨粉、谷物、甜高粱等十余个品种的饲料原料。近年来,饲料显微镜检查技术在我国逐步推广应用,取得了较大的经济效益和社会效益。饲料显微镜检查技术的重要性已经被大多数饲料生产企业认识。国家标准“饲料显微镜检查方法”(GB/T14698-93)及行业标准“饲料显微镜检查图谱”(SB/T10274-1996)已经发布实施。本文列举一些饲料原料电子显微镜照片(仪器:日立钨灯丝电镜TM3000)。 玉米淀粉:像“小馒头”一样的淀粉颗粒玉米是重要的粮食作物和重要的饲料来源,玉米是鸡最重要的饲料原料,其能值高,最适于肉用仔鸡的肥育用,而且黄玉米对蛋黄、爪、皮肤等有良好的着色效果。在鸡的配合饲料中,玉米的用量高达50%~70%。玉米养猪的效果也很好,但要避免过量使用,以防热能太高而使背膘厚度增加。由于玉米中缺少赖氨酸,所以任何体重的猪日粮中均应添加赖氨酸。电镜图显示了玉米淀粉在高倍下的形貌,呈现了不规则的颗粒特征,但是边缘相对圆润,这可能与玉米粉加工过程中的过筛过程有密切关系,粉碎之后,在相互的撞击中锋利的棱角被磨圆了。对饲料厂,养殖场及饲料监测部门来说,如何对饲料原料,特别是动物性饲料品质和掺杂物进行快速鉴别和评价,是我们关心的重要环节。而饲料显微镜检是较理想的方法,它的主要特点是简便、快速、准确。特别是对原料成份的准确分析,弥补了化学常规分析的不足。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 广州明慧|显微镜在线虫观察实验中的应用及赋能
    研究人员对线虫有着复杂的情感,崇敬、亲密,执着。几十年来,科学家已经鉴定并绘制了所有959个成年雌雄同体细胞和1031个成年雄性细胞的发育图。布伦纳称秀丽隐杆线虫为“大自然馈赠给科学的礼物”。线虫是常见的土壤线虫,线虫其个体小,体长仅1-2mm,体态透明,繁殖速度快且数量多,2-3天一代,有雌雄同体和雄虫,平均每代可产生300-500个线虫,可为实验提供大量且均一的样本。线虫在遗传与发育生物学、行为与神经生物学、衰老与寿命、人类遗传性疾病、病原体与生物机体的相互作用、药物筛选、动物的应急反应、环境生物学和信号传导等领域已经得到广泛应用。明场中的线虫筛查在常规解剖镜下可观察到虫体外形结构,使用体视显微镜可以实现对线虫的有效筛选以提高数量。配备灯架或小型照明底座的常规体视显微镜非常适用于线虫筛查,当与辅助物镜一起使用时,它可以实现更高的放大倍率和分辨率,可以轻松制作具有高对比度的线虫图像,即使在低放大倍率下也是如此。对于教学人员来说,它们也是特别好的解决方案。(型号推荐:MHZ101/MHZ201)MHZ101/MHZ201体视显微镜在明场中进行线虫筛查的优势:居中 LED,标本成像具有良好的对比度和均匀的照明;易于存放,体积紧凑轻巧,不使用时可直接置放于壁橱架子上;空间大,有足够的空间让用户用于取虫、显微注射等操作;标本处理简化,最大限度地减少了平板意外掉落的可能性;没有外部灯、电缆,也没有可能从底座上掉下来的设备,适用于学生课程。 转基因线虫育种及荧光筛选 由于转基因通常与绿色荧光蛋白 (GFP)结合,因此可以使用荧光体视显微镜对其进行选择。其他荧光标记如 DsRed在高表达水平下可能有毒,因此通常选择 GFP 标记。使用广州明慧的MHZF700和NSZ818体视荧光显微镜,可以对线虫进行高效荧光筛查。MHZF700和NSZ818体视荧光显微镜优势:搭配BGUV三色荧光模块,支持特殊波段需求定制;极佳的信噪比和清晰的荧光图像,数字成像时最为出色;具备适用于各种常规观察和检查任务从宏观到微观的灵活性;纤薄底座和高亮度LED,方便样品的取放和操作,减少样本转移耗费的时间。
  • 中山大学教授自创3D手术显微镜获专利
    近期,中山大学附属第六医院睡眠呼吸障碍诊疗中心张湘民教授用业余时间自行研制的&ldquo 通用外科3D手术显微镜演示装置专利&rdquo 。引起上海某公司的注意,成功转让并将落户投产。  张湘民教授把自家当实验室研制医用3D显微及导航装置  进口设备&mdash &mdash 要么大要么贵  据家庭医生在线了解,显微外科是现代外科技术的重要组成部分。显微外科(包括耳科、眼科、神经外科和整形外科等)的关键设备是手术显微镜,术者必须经过专业训练,要求长时间固定头位,近距离对准并凝视目镜进行显微操作,这不仅使操作者容易疲劳还常造成颈椎腰椎劳损。现有的显微手术录像显示装置多为2D平面图像,缺乏立体感,不利于手术示教。而部分进口手术显微镜可加装立体摄像装置,手术者仍须按普通显微镜操作,然而3D摄像整套装置结构复杂庞大,价格昂贵,不利于推广应用,只供演示教学使用。  张湘民表示,能否提供一种通用外科手术立体显微摄像演示装置,而且兼具本装置小巧轻便,兼有手术照明、3D实时高清摄像、录像、录音、显示及影像传输等功能,成了他当年的考虑方向。  自制设备&mdash &mdash 又轻巧又简便  因此,他利用业余时间,自筹资金、在自家实验室(小贮藏室改造而成)反复研制,组装了一套新型手术立体显微摄像演示装置(3D手术显微镜),经过近两年的测试和应用,主要技术指标达到或超过进口同类产品,并且价廉轻巧,操作简便。  张湘民所发明的这套通用外科手术立体显微摄像演示装置,是由3D高清数码摄像机、3D高清液晶显示器及调节支架所构成,其中最关键的部分是将3D高清数码摄像机原镜头前改装并加上带有显微摄像镜头及聚焦广元的显微适配器。  3D手术显微镜可方便调节显微摄像镜头距离和角度,还可调节聚焦光源光斑大小。根据3D显示屏的不同类型,手术者可能需要佩带不同的3D眼镜或头戴式立体显示眼镜,也可采用能直接用裸眼观看的3D显示屏。术者或助手可直接调控或通过遥控器调控3D高清数码摄像机,即调控变焦、对焦和摄录像等。  由于采用高清3D摄像显示模式,其图像分辨率和清晰度可达到或超过光学显微镜的效果,手术者可直接观看3D高清显示屏进行显微手术操作。手术者头位和体位可自由活动,避免常规手术显微镜操作所造成的不适和不良反应。同时手术助手和观摩学习者都可通过3D高清显示屏观看到清晰的3D手术图像。3D手术图像通过实时传输和摄录,便于教学和学术演示,适合外科系统多学科显微手术和常规开放手术使用。张湘民正是利用他的这套装置,勇当&ldquo 小白鼠&rdquo ,自己给自己完成了舌背牵拉手术  中华医学会耳鼻咽喉科分会副主任委员、耳科专业组组长、海军总医院孙建军主任在了解这项发明创造后也十分感兴趣,认为这项专利技术将有良好推广应用价值。
  • 关于数码显微镜最困扰您的 9 个问题
    James DeRose 博士 Georg Schlaffer徕卡显微系统数码显微系统是显微镜学的流行语之一,此外,还有一些非常有用的常识。徕卡显微系统的产品经理 Georg Schlaffer 常常会被客户和同仁问及有关数码显微系统方面的问题。为了答疑解惑,他与科学作家 Jim DeRose 共同合作,对最重要的几个问题进行了全方位解答。到底什么是数码显微系统?数码显微镜属于带数码相机的光学显微镜,无需配备目镜。电子监控器显示屏会直接显示观察和分析的样品图像。数码显微镜还可以是常规体视或复式显微镜,它们同时配备目镜和相机,能够保存显微镜状态和相机设定值的反馈信息。在本文的接下来部分中,我们提到的“数码显微镜”是指不带目镜的显微镜,例如,Leica DVM6、Leica DMS1000,和 Leica DMS300,而不是配备相机的体视或复式显微镜。左:Leica DVM6 数码显微镜右:镀金焊盘,汽车用电子设备,总放大倍率:120:1。图像由 Leica DVM6 获取。哪些应用领域可以使用数码显微镜?在研发、生产和检测、质量控制和保证,以及失效分析过程中,数码显微镜是分析部件和样品并生成检测报告的理想仪器。左:镀金焊盘,汽车用电子设备,总放大倍率:360:1。图像由 Leica DVM6 获取。右:通过 Leica DVM6 倾斜显示屏予以显示。数码显微镜的优势何在?数码显微镜最显著的优势在于仪器的人机工程学设计。由于监控器会直接显示样品图像,用户可以在保持舒适、放松的直立坐姿的同时,还能即时观察样品,并利用软件分析样品图像,保证用户能以舒适的姿态高效地完成工作。在需要处理高通量样品,或每天需要在显微镜上花费较长时间的情况下,数码显微镜的人机工程学设计就显得意义非凡了。此外,很多数码显微镜还提供允许存储多个用户配置文件的软件。在多人共用一台显微镜时,这项功能非常有用,凭借这项功能,每个用户只需选择自己的显微镜配置文件,几乎无需调节显微镜工作台,即可轻松开始工作。左:纸上印刷图案,总放大倍率:750:1,环形光照明。图像由 Leica DVM6 获取。右:纸上印刷图案,总放大倍率:750:1,起偏镜开启时的同轴照明。图像由 Leica DVM6 获取。数码显微镜有哪些限制条件?相比体视或复式显微镜,数码显微镜存在一个明显的限制条件,即需要电源连接,因为数码显微镜未配备目镜,而样品图像却始终需要显示在监控器上。因此,至少需要一根电源线。通常情况下,数码显微镜还需要连接 PC,或至少需要连接显微镜的显示屏。通过传统的显微镜,用户仍可以选择使用目镜获取样品图像。左:Leica DMS1000 数码显微镜右:金属部件上的一个孔;自动更新每项变焦设置比例,实现快速测量。图像由 Leica DMS1000 获取。通过数码显微镜和目镜分别观察到的样品图像相比,结果如何?原则上,图像是相同的。视场角可能存在差别,这主要取决于我们正在讨论的数码相机和目镜的类型。但是,还有一个重要差别:采用体视显微镜的双筒目镜观察样品,将为您带来数码显微镜的二维图像无法达到的深度。左:表壳,通过环形光照明 (Leica LED3000 RL) 和入射光座捕捉。图像由 Leica DMS1000 获取。右:Leica DMS1000 B 图像:利用透射光座捕捉的秀丽隐杆线虫图像;因不断编码变焦,从而保证快速、简单地测量,即使在不配备电脑的单机模式下亦可实现。数码显微镜操作上比带目镜的显微镜要简单吗?尤其对于无经验的用户而言,利用数码显微镜,他们也能够更简单、更快速地获取样品图像。造成上述差别的主要原因是,熟悉设置和调整传统型显微镜,并透过目镜观察样品,这些操作需要花费较长时间。左:果蝇属筛查。图像由 Leica DMS1000 B 获取。右:利用固定在摇臂机架上的 Leica DMS300 观察印刷电路板样品“编码”的含义是什么?当显微镜硬件可直接与计算机软件进行通信,且能够利用图像数据完成对特定参数值的追踪和保存时,表示显微镜已完成“编码”。这些特定参数将得以被设定,并因此被称之为已编码参数值。正常情况下,触摸相关按钮,即可调用这些已编码参数,令重复工作和报告变得更轻松。必须成为显微系统的专家,才能操作数码显微镜吗?当然不需要。无论是显微系统的新手还是专家,都可以轻松使用数码显微镜。徕卡显微系统提供的数码显微镜,其设计宗旨就是简单易用、开箱即用,最大程度地减少培训时间。它们配备已编码的功能,能够轻松生成分析报告,令重复工作更加高效。数码显微镜需要配备哪些部件?所需配件依据应用领域而定。例如,可以根据所需的放大倍率范围,选择物镜透镜。您还可以在一系列主机和照明系统中进行选择。以下这些问题会帮助您决定需要哪些部件或功能: 是否需要快速获取高质量数字图像?如果需要,您可以选择高分辨率数码相机。 是否需要高通量样品的快速、实时图像显示?如果需要,您可以将相机速度设置为每秒 30 帧或更快。 是否需要从不同角度观察样品?如果需要,倾斜显微镜镜头或转动样品载物台,实现工作过程或物体的动态观测。 是否需要定性或定量分析样品?如果需要,必须认真选择软件功能。 是否需要平衡图像,同时清晰展示明亮和暗色部分?如果需要,您可以选择 HDR(高动态范围)功能,它能够为您精确提供所需的图像类型。了解更多:https://www.leica-microsystems.com/?nlc=20191231-SFDC-008340
  • 《生命科学中的电子显微镜技术》正式出版
    由丁明孝、梁凤霞、洪健、李伯勤、王素霞、朱平领衔主编的《生命科学中的电子显微镜技术》,经过八年编著,于今日正式出版。它凝聚了国内外45位电镜专家的经验和智慧,是一部综合性、实用性、专业性极强的经典著作。本书以促进生物电镜实验水平和制样效率的不断提高为目的,主要介绍了当前各类生物电镜技术,侧重实验技术的难点要点,实验问题和解决途径,强调实验设计理念与具体操作细节。全书共分为8章,包括:常规生物电镜样品制备技术,电镜原位成分分析技术,电镜三维重构技术,光电关联显微成像技术,植物组织的透射电镜样品制备技术,医学电镜超微病理诊断及电子显微镜的结构、原理及操作要点等内容。这部著作凝结着编写组的知识和心血,代表着一代中国电镜工作者的最高水平,将成为我国生命科学电镜技术及电镜教育事业的里程碑。八年来,全国生物电镜工作者一起见证了它的酝酿和诞生。这部著作在当前特殊的国际形势下诞生,具有特别的现实意义和历史意义,是全体电镜人的骄傲。为庆祝这部著作的发行,且应广大读者要求,希望获得领衔作者丁明孝教授的寄语签名,经过与丁老师沟通,中镜科仪将准备100册,由丁老师集中签名。请需要购买的老师尽快在如下链接中进行登记。点击链接填表订书: https://f.wps.cn/fw/N0vNiDmQ/
  • 超高分辨率显微镜:显微镜发展史上的新突破
    显微镜技术经过长期发展,加之近年来物理学界接二连三出现的重大科研进展,终于,在2008年,显微镜发展史上的新成果&mdash &mdash 超高分辨率荧光显微镜为科学家所研制出。人们预言,它定会成为生物学家的好帮手。  Stefan Hell打破了物理学界的传统看法  自从1873年Ernst Abbe第一次发现光学成像具有衍射限制现象以来,物理学界就公认,显微镜的分辨率具有极限,该极限与光源的波长有关。直到一个多世纪之后,罗马尼亚物理学家Stefan Hell推翻了这一观点。他是首位不仅从理论上论证了,而且用实验证明了使用光学显微镜能达到纳米级分辨率的科学家。  罗马尼亚物理学家Stefan Hell,现任德国马克斯· 普朗克生物物理化学研究院(Max Planck Institute of Biophysical Chemistry)主任。  早在上世纪80年代中期,当时师从德国海德堡大学(University of Heidelberg)一位低温固态物理学家的Stefan Hell就已经发现,如果不是像常规那样使用一个透镜聚焦,而是将两个大孔径的透镜组合在一起聚焦,就可以提高光学显微镜的分辨率。Stefan Hell是首位发现这一现象的研究人员。  Hell于1990年顺利完成了他的博士学业,但同时,这也意味着他将无法再凭借奖学金的资助进行研究了。Hell最终决定独自一人继续在家研究以上的发现,并最终成功发明了4Pi显微镜。4Pi显微镜,超高分辨率成像中的一个步骤  时任美国马萨诸塞州坎布里奇市哈佛大学(Harvard University)化学系教授的Sunney Xie遇到了Hell,当他了解了Hell发明的4Pi高分辨率显微镜时,Xie对Hell勇敢地对传统物理学观点提出挑战的精神表示赞许。  随后,Hell带着他的发明来到了位于德国海德堡的欧洲分子生物学实验室(European Molecular Biology Laboratory, EMBL),并获得了德国科学基金会提供的奖学金。1991年,Hell在该实验室开始他的博士后研究工作。  起初,许多科学家,包括那些声名显赫的物理学家都认为Hell的工作对于提高光学显微镜的分辨率没有太大的意义。他们认为,Hell仅用他那少得可怜的科研经费来从事这项研究简直就是在冒险。但Hell却始终坚信他能够打破衍射极限。  Hell的努力没有白费,他的冒险终于获得了回报。1992年,Hell第一次用他的4Pi高分辨率显微镜证明了他的确能将传统光学显微镜的分辨率提高3~7倍。然而,尽管Hell提高了Z方向的分辨率,他还是没能突破衍射极限的限制。  此后不久,Hell又在芬兰土尔库大学(University of Turku)得到了他的第二个博士后职位。一个星期六的早晨,Hell正躺在研究生公寓的床上看一本有关光学量子理论的书,突然,灵光一闪,Hell脑海里浮现了一个想法:如果使用一种合适的激光,仅激发一个点的荧光基团使其发光,然后再用一个面包圈样的光源抑制那个点周围的荧光强度,这样就只有一个点发光并被观察到了。Hell给他的这项发明取名STED,即受激发射损耗显微镜(stimulated emission depletion)。有了这个想法后,Hell立即行动,冲进实验室进行相关实验。每当回想起当时的心情,Hell都会觉得那是他科研生涯中最激动的时刻。  曾在EMBL与Hell共事,并共同研发4Pi显微镜的Pekka Hanninen指出,Hell在土尔库大学进行研究工作时非常刻苦。那时,他经常被许多问题困扰。尽管如此,研究过程中还是有许多快乐萦绕着他们。Hell不仅是一名严谨的科学研究者,还是一名音乐爱好者,每当工作至深夜时,实验室走廊总会回响起Hell吹奏萨克斯风的动听乐声。由共聚焦显微镜(左图)和STED(右图)成像的一个神经元。  1994年,Hell在《光学快报》(Optics Letters)上发表了他关于STED的理论文章。不过直到多年以后,这项理论才得以在实践中被证实。在那段时间里,Hell一面继续研究工作,一面四处奔走筹集科研经费,还卖掉了他4Pi 显微镜的专利。  但是那个时候Abbe的衍射极限理论仍然在学界占统治地位,许多物理学家对Hell的理论都持怀疑甚至批评态度,因此他们也都将研究重点放在其它的成像技术上。尽管如此,Hell还是在1997年与马普生物物理化学研究所签订了一份长达5年的合同,以继续他的STED研究。  1999年,Hell将他的研究成果分别投给了《自然》(Nature)杂志和《科学》(Science)杂志,不过都被退稿。当时两位杂志的主编都没有意识到他的研究成果将会改变整个显微镜领域。  直到2000年,事情才终于有了转机&mdash &mdash 《美国国家科学院院刊》(PNAS)发表了Hell的科研成果。采用 Hell的STED技术,人们第一次得到了纳米级的荧光图像。Hell的工作由此获得了广泛的肯定,2002年,他获得了马普研究所的终身职位。从此,Hell一直在马普研究所从事成像技术的研究工作。  紧随STED这项开创性工作之后,世界各地实验室等研究机构内陆续出现了一批高分辨率的显微镜技术。例如,由珍妮莉娅法姆研究学院(Janelia Farm Research Campus)的物理学家兼工程师Mats Gustafsson领导的研究团队开发出了结构光学显微镜(structured-illumination microscopy, SIM)。果蝇卵母细胞内的肌动蛋白的3D SIM成像,该照片拍摄于完整的卵泡内。  SIM技术的原理是通过一系列光成像的图案对低分辨率莫尔条纹形式的精细结构进行成像,此类图像是采用其它技术所无法观察到的。然后再由计算机处理、分析这些条纹中包含的信息,最终就可以获得高分辨率的图像。  同年,Gustafsson小组得到了HeLa细胞中肌动蛋白细胞骨架的图像,他的图像相比传统显微镜的图像来说,在测向上的分辨率提高了2倍。随后,Gustafsson小组又使用非线性技术将整体分辨率提高了4倍。  科研竞赛  2006年,超高分辨率显微镜研究行业翻开了新的篇章。Eric Betzig、Harald Hess以及Lippincott-Schwartz小组、Samuel Hess小组以及庄晓威(音译)科研小组几乎同时报道了他们提高显微镜分辨率的科研成果,下面分别介绍这三个小组的研究情况。  Eric Betzig、Harald Hess以及Jennifer Lippincott-Schwartz小组  2005年夏天,细胞生物学家Jennifer Lippincott-Schwartz卸下了她在美国马里兰州贝塞斯达美国国立卫生研究院(HIV)暗室里的红色灯泡。Lippincott-Schwartz正在为赋闲在家的两位物理学家Eric Betzig和Harald Hess腾出空间,筹备实验室。正是这两位物理学家研制出了光敏定位显微镜(photoactivated localization microscopy, PALM),他们的这种新产品能将荧光显微镜的分辨率提升至纳米级水平。  接下来的整个冬天,Eric Betzig、Harald Hess以及Lippincott-Schwartz等人都一直在那间狭小的没有取暖设备的实验室里工作。现在就职于美国弗吉尼亚州阿士伯恩霍华德休斯医学研究所珍妮莉娅法姆研究学院(Howard Hughes Medical Institute&rsquo s Janelia Farm Research Campus in Ashburn, Virginia)的Hess承认,自己与Betzig对生物学的认识都不深。不过近15年来,他们一直都在努力,希望能运用生物学知识获取高分辨率的显微图像,但是没有取得明显进展。然而,当Hess和Betzig了解到Lippincott-Schwartz和George Patterson在2002年发明的光敏绿色荧光蛋白(photoactivatable green fluorescent protein)后,他们知道他们已经找到了解决问题的关键所在。  回想起当时的情形,Lippincott-Schwartz指出:&ldquo 他们当时非常激动。我还记得当我们得到第一张显微图像时,你根本无法看出那是什么东西。直到我看到他们将荧光图像和电镜图像叠加之后的结果才相信,我们成功了。我当时觉得这一切真是太神奇了。&rdquo   2006年,Eric Betzig、Harald Hess以及Lippincott-Schwartz小组在《科学》(science)杂志上发表了他们的PALM研究成果。使用PALM可以清楚得看到细胞黏着斑和特定细胞器内的蛋白质。  Samuel Hess小组  Samuel Hess小组是上述三个小组之一。Hess是美国缅因州立大学(University of Maine)物理系的助理教授。2005年夏天,Hess一直在和他们学校的化学工程师和生物学工程师,就如何提高观察活体细胞脂筏结构的分辨率等问题进行交流。  2005年的一个夏夜,Hess被邻居家举办舞会的声音吵醒。半睡半醒的Hess走下楼来,随手画了一副设计图,他的这种设计是需要借助荧光标记的蛋白质来显示细胞形态的。第二天早上,当Hess重新翻看这幅非清醒状态绘制的潦草的设计图时,不由得大笑起来。不过令人吃惊的是,他的这幅设计图竟然没有一点问题。于是他把这幅图拿给物理系的同事检查,但同事也没有发现任何问题。  接下来,Hess就按照他的设计图开始制作显微镜了。此时,他的科研经费所剩不多,而结题时间转眼就到。因此,Hess等人以最快的速度组装好显微镜,并进行了试验。同时,在不到两天的时间里,缅因州立大学表面科学技术实验室的同事就为Hess制备好供检验显微镜效果的蓝宝石晶体样品。  对于同事们的帮助,Hess总是不胜感激。  2006年,《生物物理学期刊》(Biophysical Journal)刊登了Hess小组的科研成果。他们将这项研究成果命名为荧光光敏定位显微镜(fluorescence photoactivation localization microscopy, FPALM)。2007年,Hess小组证明了FPALM可以分辨细胞膜脂筏上的蛋白质簇。  庄晓威科研小组  与此同时,另一个研究小组&mdash &mdash 哈佛大学霍华德休斯医学研究所(Howard Hughes Medical Investigator at Harvard University)的研究员庄晓威科研小组也在研究高分辨率成像技术。  通过3D STORM观察到的一个哺乳动物细胞内线粒体网状系统。传统荧光成像(左图) 3D STORM成像(中图),其中,采用不同颜色标记出z的位置 3D STORM成像中xy维图像(右图)。  其实,这三个小组都有一个共同的也是非常简单的理念,那就是先获得单分子荧光图像,再将成千上万个单分子图像叠加在一起,获得最终的高分辨率的图像。  早在2004年初,庄等人就已经意外发现了有一些花青染料可以用作光敏开关。这也就意味着这些染料既可以被激活发出荧光,也可以被关闭不发光,人们可以使用不同颜色的光束来随意控制这些花青染料的开和关。  从那以后,庄等人就一直在研究如何用光敏开关探针来实现单分子发光技术。他们希望能用光敏开关将原本重叠在一起的几个分子图像暂时分开,这样就能获得单分子图像,从而提高分辨率。Eric Betzig小组和Samuel Hess小组也都采用了同样的策略,只不过他们使用的不是光敏开关而是一种可以先被荧光激活继而被漂白失活的探针。  2006年,庄的科研成果在《自然-方法》(Nature Methods)杂志上发表,他们将这项成果命名为随机光学重建显微镜(stochastic optical reconstruction microscopy, STORM)。使用STORM可以以20nm的分辨率看到DNA分子和DNA-蛋白质复合体分子。  此后几年,超高分辨率荧光显微镜又得到了进一步的发展。现在,生物学家已经能够使用超高分辨率荧光显微镜在纳米水平上观察细胞内部发生的生化变化了。以往那些大小在200nm至750nm之间的模糊泡状图像再也无法对他们造成困扰了。尽管早在上世纪80年代,科研机构里就已经出现了超高分辨率显微镜的构思,但只是最近几年里这项技术才伴随着它的商业化进程获得了快速发展。现在,已经有几十家实验室安装了这种最新型的显微镜并投入了使用。正像Lippincott-Schwartz所说的,超高分辨率显微镜正在以飞快的速度被科研界接受,在生物学界更是如此。  超高分辨率显微镜的成绩  已经开始使用这些显微镜的生物学家对这项技术都表示出了极高的热情。Jan Liphardt这位在美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)工作的生物学家,还清楚地记得他2006年第一次在《科学》(science)杂志读到Betzig的那篇有关PALM技术的论文时的激动心情。当他看到那幅线粒体蛋白的图像时立刻想到了该技术可以用于他自己的微生物研究领域。  Liphard说道:&ldquo 通常,我们得到的大肠杆菌荧光图像都只有20像素,甚至更低,现在突然有一幅几千像素的图片摆在你面前,你可以想象那是一种什么感觉。&rdquo   Liphard现在正与Betzig以及其他一些研究人员一起研究大肠杆菌的趋化现象(chemotaxis)。Liphard还提到:&ldquo 我从没想到这项技术达到的分辨率有这么高,可以如此清楚地看到细胞内单个蛋白质分子的定位,甚至还能定量。而对我来说,每天的工作实际上就是在弄清楚这些蛋白质在什么位置,什么时候存在。而之前我们的研究主要采用间接方法。但超高分辨率显微镜这项新技术是我从事科研工作这么长时间以来,感触最深,获益最大的一项科技成果。&rdquo   美国丹佛市科罗拉多州立大学医学院(Medicine at the University of Colorado Denver)的助理教授Nicholas Barry也正在和Betzig合作,他们使用了一台蔡司的全内反射荧光成像系统(total internal reflection fluorescence imaging, TIRF)来研究肾细胞顶端胞膜上的蛋白质簇。  Barry指出,只需要一台蔡司显微镜和普通电脑,差不多就足够了。此外,他们还花费3万美元添置了两台激光发射器。现在,Barry等人可以在8分钟内得到一幅图像,这幅图像由10000帧图像合成,每一帧图像上显示10个分子。最后的图像文件大小大约是0.3GB。Barry等人还使用Perl语言自己开发了一套免费程序。Barry表示:&ldquo 这里面包含了每帧图像的资料信息,客户可以根据这些信息进行相关计算。&rdquo Barry充满信心地提到,很快就会有人为NIH的那套免费图像分析软件ImageJ开发出一套运算程序作为插件使用。  美国斯坦福大学(Stanford University)化学及应用物理系教授W.E. Moerner曾于1989年第一个在试验中使用光学显微镜得到了单分子图像。W.E. Moerner教授表示,这几年来,超高分辨率显微镜研究领域已经取得了巨大的进展,终于达到了纳米级单分子分辨率。他兴奋地说:&ldquo 经过了近20年对单分子成像课题的研究,我们终于取得了完美的成果。&rdquo   展望  自从2006年STORM技术和PALM技术问世以来,科技工作者就一直在不断努力,对它们进行改进、完善和提升。2008年,Lippincott-Schwartz的研究团队将PALM技术和单颗粒示踪技术(single-particle tracking)结合,成功地观测到活体细胞胞膜蛋白的运动情况。同年,庄小威研究组在《科学》(science)杂志上也发表了他们的3D STORM成像成果,该技术的空间分辨率比以往所有光学3D成像技术的分辨率都要高出10倍。论文中,他们展示了用3D STORM成像技术拍摄的肾细胞内微管结构图和其它的分子结构图。随后,他们又进一步将该技术发展成了多色3D成像技术(multicolor 3D imaging)。Gustafsson,还有其他一些科研工作者使用3D SIM技术(该技术使用3束干涉光,而不是常见的2束)观察到了共聚焦显微镜(confocal microscopes)无法观测到的哺乳动物细胞核内结构。位于德国的世界知名光学仪器制造公司蔡司公司进一步发展了SIM和PALM技术,不过他们将PALM称为PAL-M。蔡司公司预计将于2009年末推出全新的成像产品。  2008年,Hell小组使用STED技术通过抗体标记目标蛋白,观察到了活体神经元细胞中突触小泡(synaptic vesicles)的运动过程。同年稍晚些时候,他们又使用4Pi显微镜和STED技术得到了固定细胞内线粒体的3D图像,分辨率达到了40至50nm。最近,他们又使用超高分辨率显微镜成像技术对脑切片组织中的形态学变化进行了研究,并得到了活体神经元细胞树突棘(dendritic spines)的3D图像。PALM在哺乳动物细胞内拍摄到的粘附复合物。  由于最近几年这些新技术的不断涌现,现在可以对活体细胞进行三维观察了。Gustafsson指出,随着PALM技术和STORM等新技术的出现,以前很多看起来不可能的事情现在都变得可能了。  尽管已有许多科学家从这项技术进展中获益,但是仍然可以进一步提高,以使更多的研究人员能够在自己的工作中使用它。到目前为止,那些成功应用此项技术的实验室都采取了正确的技术组合:研究人员可以很好地将物理学与生物学相结合&mdash &mdash 他们将显微镜装配并做适当的调节,然后用它对生物学样品进行检测。Moerner指出,软件的编写也不容小觑:对检测到的光子进行定位和报告需要进行准确计算,从而得到合适的分辨率。  仅仅是显微镜的价格就已经限制了它的普及性,Leica&rsquo s TCS STED显微镜高达100万美元。因此,如何获得相应的资金来购置显微镜仍然是摆在研究人员面前的一个难题,位于丹佛市的科罗拉多大学(University of Colorado)光学显微镜组主任Bill Betz这样说道。  Betz曾申请用于显微镜购置的资金,但遭到了拒绝。但他表示,他们已经计划再次申请相关资金。而Stefan Hell曾指出,激光领域的技术进展已经可以使得研究人员自己在实验室内构建一个STED平台,花费只需不到10万美元。  除了要将这一技术方法普及,使生物学家能够加以利用之外,该项技术的研发人员还表示,他们已经开始致力于研究更宽范围及更多样的荧光探针了。更好的探针当然能够为我们带来更高的分辨率及更快速的图像处理。美国纽约阿尔伯特&bull 爱因斯坦医学院(Albert Einstein College of Medicine)解剖学及结构生物学副教授Vladislav Verkhusha说到:&ldquo 为了对活体哺乳动物细胞进行研究,你就需要有一整套的荧光标记蛋白和可通过光控开关控制的蛋白质。&rdquo 他本人在荧光蛋白领域的研究工作就受益于PALM的出现。  庄晓威的众多项目之一便是与Alice Ting及其在麻省理工学院(MIT)的实验室合作,对蛋白标记技术进行研究,希望能够找到一种方法可以将小和明亮的光控开关可控的探针标记于细胞的特异蛋白上,从而可以对活细胞进行成像。她提到:&ldquo 将遗传标记方法与小而明亮且可被光控开关控制的探针结合在一起,将是今后发展分子级别超高分辨率成像的十分理想的一种方法。&rdquo   尽管研发人员还将继续努力,以进行相应技术的提高,但是超高分辨率荧光显微镜更加广泛的应用还是毫无疑问地成为新的一年的标志。Harald Hess说:&ldquo 这一技术的确会为生物学家的工作带来很大的帮助。同时,我们也在不断询问,&lsquo 你们想要用它做什么精彩的实验?&rsquo 事实上,我们也得到了许多精彩的答案。&rdquo
  • 观察者---显微镜下的空间与时间
    从古至今,人类一直在追寻更高更远的真相,从远洋航行到太空探索,人们不断征服一个个宏伟的目标,但是人们肉眼所见的宏观世界不是世界的全部,还有人眼无法看清的微观世界,它同样也吸引着无数人去探索和追寻。无论宏观还是微观事物,我们的观测都是基于三维空间的属性,即XYZ三维,而对事物形态变化的观察则需要再引入一个衡量因素--时间T,因此对事物观察的最完备方式一定是XYZT的同时记录,即形态+时间的长时间摄影,这也是显微镜的终极功能。经过三百多年的发展,现代显微镜提出分辨率、景深、视野等概念,并不断提出解决方案,显微镜已经初步满足我们对微观世界观察的需求,帮助我们记录下微观世界的空间和时间。微观世界观察最重要的是细节的分辨,分辨率的概念便由此诞生,分辨率是指人眼可以区分的两个点之间的最小距离,只在XY维度有效,根据瑞利判据,Rayleigh Criterion,正常人能分辨的极限是明视距离25cm处0.2mm的两个点,当我们使用显微镜后,我们可以看清更小距离的两个点,这便提升了我们观察的分辨率。随着现代研究的不断深入,人们对分辨率的要求也在不断提高,而科学家们也在不断的提升显微镜的分辨率,如电子显微镜将分辨率提升至纳米级别,实现了对病毒的观察,超高显微成像技术,将显微镜的分辨率从200纳米提升到几十纳米,实现了对活细胞细胞器的观察。分辨率的提升也带来了新的问题,即视野和景深的减小,当用普通中央照明法(使光线均匀地透过标本的明视照明法)时,显微镜的分辨距离为d=0.61λ/NA,可见光波长范围为400—700nm,取其平均波长550nm,波长是固定常量,因此,增大NA数值,即可得到更小的D值,也就是可以分辨的两点之间的距离更小,可以让人眼看清楚更小的物体。NA值即数值孔径,描述了透镜收光锥角的大小,NA = n * sinα,即透镜与被检物体之间介质的折射率(n)和孔径角(2α)半数的正弦之乘积。n为物镜与样本之间介质的光折射率,当显微镜物方介质为空气时,折射率n = 1 , 采用折射率高于空气的介质,可以显著提高NA值,水浸介质是蒸馏水,折射率为1.33;油浸物镜介质是香柏油或其它透明油,其折射率一般在1.52左右,接近透镜和载玻片的折射率,因此,油镜的NA值高于空气镜。孔径角又称“镜口角”,是透镜光轴上的物体点与物镜前透镜的有效直径所形成的角度,增大镜口角,可以提高正弦值,其实际上限约为72度(正弦值为0.95),乘以香柏油折射率1.52,可以得出最大NA值为1.45左右,代入分辨率计算公式,可以得出常规显微镜极限XY平面分辨率为0.2um左右。NA值还会直接影响显微镜的视野亮度(B)。由公式B∝N.A.2/ M2 我们可以推出,亮度随数值孔径(N.A.)的增大或者物镜倍率(M)的降低而增加。从理论上来说,我们应该追求尽可能高的NA值,以获得更好的XY平面分辨率和视野亮度。然而凡事都有两面性,XY平面分辨率的提升,会带来Z轴景深和观察视野的减小。显微镜一般都是垂直向下取景的,通过视场直径内观察到的物体表面凸起的位置与凹下的位置都能够看的很清楚时,那么凸点与凹点之间的高度差就是景深了,对于显微镜来说景深越大越好,景深越大在观察高低不平整的物体表面时,能够得到更好更立体的清晰度画面,大景深有助于我们对微观世界进行垂直方向形态的观察,也就是XYZ三维形态中的Z轴信息。景深就是象平面上清晰的象所对应物平面的前后空间的深度:dtot=(λ*n)/NA + n/(M∗NA) * e,dtot:景深,NA :数值孔径,M :总放大率,λ:光波波长, (通常λ=0.55um),n: 试样与物镜之间介质的折射率(空气: n=1、油: n=1.52)根据这个公式,我们可以知道,Z轴景深与XY平面NA值成反比。除了景深外,视野也受到NA值的影响,通过仪器固定注视一点时所能看见的空间范围即视野,它的计算与物镜的放大倍数直接相关,观察所看到的实际视野直径等于视场直径除以物镜的放大倍数,目镜会表明对应视场数,如10/18,即放大倍数10倍,视场直径18mm,因此当目镜确定后,放大倍数越大则观察的视野越小。XY平面分辨率是对局部细节的解析,而视野则决定了我们对样本的观察范围,视野必然是越大越好,但受限于当前的技术,我们必须采用高倍物镜,才可以得到良好的NA值,因此,视野和NA值有间接的负相关系。当我们需要观察的样本大于我们的视野时,每次观察只能看到一个局部,为了解决这个问题,拼图技术便应运而生。通过在XY方向移动样本,连续拍下不同位置的图像,最后拼接在一起,就可以得到一张全视野的图像。▲镜下局部视野▲拼接后全视野▲手动拼接▲自动拼接(图源:Echo显微镜)拼接分为手动和自动两种,手动拼图成本低廉,但是对人员的操作水平,经验要求很高,如上图,操作人员稍有不慎,就会出现图片接缝问题,同时手动拼图速度慢,不适合大批量,高通量样本处理,比如医院病理科日均上百病理切片观察,手动拼图方式无法满足要求。自动拼图的核心部件是全自动载物台,结合软件,可自动实现全自动,大范围全视野拍摄,结合自动Z轴对焦补偿,即可得到全视野的清晰图像。Echo Revolution 全自动荧光显微镜Echo Revolution全自动荧光显微镜,将XYZ三轴全部实现电动化,从而实现自动完成多图拼接的大视野高分辨率成像,而电动化的Z轴可以帮助用户实现自动聚焦、自动定焦和Z-Stacking 多层扫描大景深成像。Echo Revolution全自动荧光显微镜还添加了延时摄影功能,可以帮助用户实现长时间观察和时间回溯,使用户可以进行更全面的观察实验。
  • 《中国电子显微镜市场研究报告|2018版》正式发布
    电子显微学是近代物理学、生命科学、材料科学,尤其是纳米科学研究的重要手段,近年来许多重要材料、纳米材料、生命科学的科技突破,都离不开电子显微学的贡献。在各领域前沿科技的发展、生产企业对产品质量要求的提高等多方终端市场需求的不断爆发式增长背景下,电子显微镜生产商的无形竞争也日趋激烈,从争相广泛寻求最新技术合作,以抢占前沿技术商机 到不断资本整合,以完善产品线短板 再到全球潜在市场上没有硝烟的营销战场。在欧美高端设备市场逐渐走向饱和的情况下,大兴科技建设的中国便成为主流电镜商们必争的市场所在。  在长期的技术发展与资本整合之下,当前主流电镜品牌以进口为主,格局明了,但基于中国市场特殊性,高校、企业等新老用户分布广泛,需求层次错综复杂,不同品牌之间多重交叉,信息需求难以及时互通。不便于广大用户及电镜厂商的共同发展,在此背景下,仪器信息网(http://www.instrument.com.cn)特组织了“中国电子显微镜市场调研”活动,以期从终端用户市场及电镜配置现状的角度,对中国电子显微镜市场做更全面的梳理,对当下中国电子显微镜市场现状、用户需求、电镜品牌现状、市场拓展等信息进行调研分析,为电镜商在中国市场的市场营销及推广提供决策参考。  《中国电子显微镜市场研究报告(2018版)》内容包含了电子显微镜技术发展概述,2018中国电子显微镜及相关附件/零部件进出口海关数据分析、2018年中标分析、中国电镜用户调研分析、电镜热点应用领域分析、主流电镜品牌市场分析等。  《中国电子显微镜市场研究报告(2018版)》得到了广大调研用户、相关企业以及业内专家的大力支持。495位(有效461位)来自高校院所、企业研发、企业QA/QC、第三方检测机构、事业机构等领域的电镜用户参与在线调研。结合仪器信息网大数据平台,还对近三年所有电镜相关仪器专场用户大数据、相关电镜商在线营销大数据、行业应用栏目相关电镜解决方案大数据等进行了统计分析。同时,报告详细统计分析了2018年近500条电镜相关中标信息、500余篇电镜表征相关国内核心期刊文献,以及400余项电镜相关标准整理。在此,谨对报告所有参与者表示最衷心的感谢!  报告链接:《中国电子显微镜市场研究报告(2018版)》  欢迎感兴趣的网友联系购买报告事宜,电话:010-51654077转销售部  报告节选:  第一章电子显微镜概述  ......  第二章2018年中国电子显微镜市场规模分析  2.1由2018年海关数据看中国电子显微镜及零部件进出口情况  ......  表2017年全年电镜进出口数据汇总表商品名称计量单位进口出口12个月数量同比(%)12个月金额(万美元)同比(%)12个月数量同比(%)12个月金额(万美元)同比(%)显微镜(光学显微镜除外);衍射设备台........................显微镜(光学显微镜除外)及衍射设备的零件千克........................  ......  2.1.12018年1-12月海关电子显微镜进出口数据整体分析  ......  表电镜相关产品2018年1-12月海关进出口金额统计表货品名称进口数量进口总额/元出口数量出口总额显微镜(光学显微镜除外)及衍射设备............显微镜(光学显微镜除外)及衍射设备的零件............  ......  2.1.22018年1-12月海关电子显微镜各省进出口数据分析  图1-12月海关电子显微镜各省进口数据分布图  ......  图1-12月海关电子显微镜零部件/附件各省进口数据分布图  ......  图1-12月海关电子显微镜零部件/附件各省出口数据分布图  ......  2.1.32018年1-12月海关电子显微镜各国家进出口数据分析  图1-12月海关中国进口来源的各个国家的电子显微镜数据分布图  ......  图1-12月海关中国电子显微镜出口至各国家数据分布图  ......  图1-12月海关电子显微镜零部件/附件各国家进口数据分布图  ......  图1-12月海关电子显微镜零部件/附件各国家出口数据分布图  ......  2.1.42018年1-12月海关电子显微镜各月份进出口数据分析  ......  图1-12月海关电子显微镜各月份进出口金额分布图  ......  图1-12月海关电子显微镜零部件/附件各月份进出口金额分布图  ......  2.2由多方行业数据看中国电子显微镜市场规模情况  2.2.1由SDI报告数据看中国电子显微镜市场规模  表2015-2020年全球电子显微镜市场数据表(数据摘自SDI报告)201520162017201820192020GAGR市场容量/百万美元2015-2020电子显微镜.....................  ......  2.2.2由历史数据看中国电子显微镜市场历史演变  根据历史资料及多方参考数据,整理我国近二十年电镜保有量情况如下表:  表我国近20年电镜历史保有量数据表(数据摘自国内已发表历史文献)年份电镜台数TEM/台SEM/台国产份额1997............2004............2009............2015............2016............2018............  ......  第三章中国电子显微镜市场情况分析  3.1中国主流电镜品牌及2018电镜新品发布统计  目前,中国电镜品牌以进口为主,主要进口电镜生产商包括:赛默飞(FEI、飞纳)、日立高新、日本电子、蔡司、泰思肯、库赛姆等,国产电镜生产商包括中科科仪、聚束科技、善时仪器等。本小节将对部分主流生产商概况及2018年发布的15款电镜新品信息等进行分别简单分析介绍。  3.1.1赛默飞...3.1.2日立高新...3.1.3日本电子....3.1.4蔡司...3.1.5泰思肯...3.1.6...  3.2由2018年电子显微镜中标数据看中国电镜市场分布  3.2.1统计样本电镜采购用户画像  ......  图统计样本采购单位性质分布图  ......  3.2.2统计样本电镜采购行为月份分布分析  ......  图统计样本采购台数及采购金额不同月份分布图  ......  图统计样本中标平均单价随月份变化图  ......  3.2.3统计样本电镜中标类型分布分析  ......  图中标电镜明细分类数量分布图  ......  图中标电镜明细分类平均单价分布图  3.2.4统计样本电镜中标品牌分布分析  ......  图统计样本中标品牌金额与数量分布图  ......  3.3由2018年中标数据看中国球差/冷冻高端电镜市场分布  ......  表2018年冷冻电镜/球差校正电镜采购中标详表采购单位中标设备名称型号中标金额/万元中标品牌A............B............C............D............E...........................  ......  第四章中国电子显微镜用户调研分析  4.1.1调研电镜用户地域分布情况  图调研电镜用户地图分布图(数字代表有效问卷份数)  ......  图调研电镜用户单位性质分布图  图调研电镜用户职业性质分布图  4.2调研用户电镜配置及使用状况分析  4.2.1调研用户配置电镜情况分析  ......  图调研用户配置电镜类型分布图  图调研用户配置电镜台数分布图  ......  4.2.2调研用户电镜使用情况分析  图调研用户电镜电镜平均使用年限分布图  图调研用户电镜使用使用频率分布图  ......  4.3调研用户电镜品牌分布及电镜使用评价分析  4.3.1调研用户配置电镜品牌分布情况  图调研用户电镜品牌分布情况  ......  4.3.2调研用户对电镜品牌影响力认知度分析  图调研用户对主流电镜品牌的品牌影响力综合评分情况  ......  4.3.3调研用户对配置电镜使用评价分析  图调研用户对配置电镜评分情况图  ......  4.4调研用户采购行为及其他问题反馈分析  4.4.1用户采购品牌选择的影响因素分析  图调研用户电镜采购关注因素分布条形图  ......  4.4.2用户采购方式及采购周期分析  图调研用户电镜采购方式分布图  图调研用户电镜采购周期分布图  ......  4.4.3用户电镜实验室搬迁、环境改造项目需求分析  ......  图4.15调研用户电镜实验室搬迁、环境改造项目需求分布图  4.4.4用户近期电镜采购需求分析  图4.16调研用户电镜采购需求意向分布图  ......  第五章中国电子显微镜应用领域分析  5.1由中国相关电镜标准实施情况看电镜应用领域  表电镜相关标准发布情况  ......  图我国电镜标准归口单位分布图  ......  图统计标准中明确应用领域的标准的领域分布图  ......  5.2中国电镜热点应用领域之锂电行业应用分析  (1)显微镜品类分布...(2)品牌分布...(3)各品牌地区市场分布...(4)各地区不同品牌市场渗透率...(5)部分品牌主流产品型号分布  ......  第六章仪器信息网大数据看近三年中国电镜市场晴雨表  ......  6.1仪器信息网大数据之近三年电镜用户活跃度晴雨表  ......  图6.1仪器信息网大数据之近三年电镜用户活跃度分布图  ......  6.2仪器信息网大数据之近三年电镜厂商线上营销晴雨表  图主流电镜厂商线上营销活跃度分布图  图主流电镜厂商线上产品及品牌认可度分布图  6.3仪器信息网大数据之近五年电镜厂商关注领域晴雨表  图近五年电镜相关解决方案行业领域分布图  图近13年电镜相关解决方案电镜类型分布图  第七章总结  正文目录:   第一章电子显微镜概述  1.1电子显微镜定义及分类......6  1.2电子显微镜技术发展简史......6  第二章2018年中国电子显微镜市场规模分析  2.1由2018年海关数据看中国电子显微镜及零部件进出口情况......15  2.2由多方行业数据看中国电子显微镜市场规模情况......26  第三章中国电子显微镜市场情况分析  3.1中国主流电镜品牌及2018电镜新品发布统计......28  3.2由2018年电子显微镜中标数据看中国电镜市场分布......35  3.3由2018年中标数据看中国球差/冷冻高端电镜市场分布......41  第四章中国电子显微镜用户调研分析  4.1调研电镜用户样本情况分析......50  4.2调研用户电镜配置及使用状况分析......54  4.3调研用户电镜品牌分布及电镜使用评价分析......56  4.4调研用户采购行为及其他问题反馈分析......59  第五章中国电子显微镜应用领域分析  5.1由中国相关电镜标准实施情况看电镜应用领域......64  5.2中国电镜热点应用领域之锂电行业应用分析......67  第六章仪器信息网大数据看近三年中国电镜市场晴雨表  6.1仪器信息网大数据之近三年电镜用户活跃度晴雨表......74  6.2仪器信息网大数据之近三年电镜厂商线上营销晴雨表......75  6.3仪器信息网大数据之近五年电镜厂商关注领域晴雨表......76  第七章总结  7.12018年中国电子显微镜市场规模......80  7.22018年中国电子显微镜主流厂商行为分析......80  7.32018年中国电子显微镜用户行为分析......81
  • 显微镜还能细胞计数--你所不知道的细胞计数方式
    前言当我们进行细胞实验的时候,很多时候都会对培养或者消化细胞的数量进行计算,最常规的就是细胞计数了。原始的细胞计数方法是通过对细胞进行染色,在显微镜下人工观察细胞状态判断细胞死活,进行计数。显微观察是细胞计数的基本原理,但是人工细胞计数是一件非常耗时耗力的工作,特别是要面对大量样本的计数需求时,因此就衍生出了细胞计数仪。我们常见的细胞计数仪是这样的:图源:网络,侵删这些自动细胞计数仪的原理又是怎样的呢?它们的底层原理是这样的:图源:网络,侵删其实自动细胞计数仪就是一个简化版的显微镜,然后搭载了对图片进行识别的软件功能,从而实现对细胞的计数。既然自动细胞计数仪可以做到,那么专业显微镜一定可以做得更好。Echo Rebel和传统的细胞计数仪不同,其具有极高的普适性,无需细胞计数仪的专用耗材,无论载玻片还是培养皿都可以进行计数。Echo Rebel的细胞计数仪是这样的:还可以是这样的:与传统的细胞计数仪相比,Echo Rebel细胞计数采用嵌入式设计,与显微镜完美融合,细胞计数时间短,普适性高,无需专用耗材,使用和维护成本低。你以为这就结束了,不,我们还可以这样:
  • 新型Mesolens显微镜 助新药开发“大提速”
    3月5日消息,格拉斯哥的斯特拉斯克莱德大学研究员们正在研发一种新型显微镜,它将大大加快新药的开发速度。以往用显微镜完成观察过程需要几个小时,如今可缩短至几秒钟。这种透镜能同时呈现出两种图像——细胞和组织内部的三维图像以及整个生物体的图像。目前,任何一种成像设备都无法实现这种效果。  创新造就了这台世界上独一无二的Mesolens显微镜。常规显微镜往往难以清楚捕捉生命体的细节特征,而Mesolens显微镜能够突破这一瓶颈实现生物体的大范围观测。同时,它将在癌组织以及大脑皮层研究方面发挥重要作用。顶尖专家学者正与医药领域密切合作,试图研发出更为先进的技术,实现更及时准确的疾病监测确定更完备的治疗手段,以及终身疾病预防。  Amos博士说,“21世纪急需全新有力的治疗手段应付全球健康挑战,但是药物从研发到投入使用的过程往往费时费钱。”显微镜传递的信息对于这一过程至关重要,但显微镜每次成像可能需要若干小时。同焦透镜可以实现两个部分同时成像——单独细胞和整个生物体的表面或内部,它具有很高的分辨率,并且可以提供3D图像,极大地突破了2D图像的局限性。“观测的精密程度将为新的发现带来无限可能,为战胜全球疾病提供一大助力。”他说。Amos博士是医学研究委员会(MedicalResearchCouncil)分子生物学实验室研究组荣誉组长,也是皇家学会会员。  斯特拉斯克莱德大学药学和生物医学学院的讲师GailMcConnell博士也是这项研究的合作伙伴。她说:“我们的研究彰显了斯特拉斯克莱德大学技术创新的精神,将带来巨大的影响力。现存的透镜已经应用了二维技术,但是三维技术将会为我们带来图像效果革命性的进步。目前没有一个成像平台能够比拟其成像范围以及多功能性方面的优势。”  Amos博士借调到斯特拉斯克莱德大学由英国工程和自然科学研究委员会的一个知识转移账户赞助,这项研究也得到了医学研究理事会的资助。Amos博士和McConnell博士正与斯特拉斯克莱德大学的研究与知识交流服务展开密切合作,实现研究成果产业化。  这项研究属于“先进科技”——斯特拉斯克莱德大学科技创新中心的主要课题之一。该大学科技创新中心是世界领先的研究和技术中心,它转变着大学,商业和行业间的合作方式。  斯特拉斯克莱德大学药学和生物医学学院的访问科学家BradAmos博士,已于2月13 日在伦敦皇家学会著名的列文虎克讲座(LeuwenhoekLecture)中针对这一设备进行探讨。列文虎克讲座每三年召开一次,在生命科学领域成就卓越。Amos博士的演讲全程将向公众开放,并在皇家协会的官方网站上同步播放,网站地址:http://royalsociety.org/live/。现场演讲地点:RoyalSociety,CarltonHouseTerrace,LondonSW1Y。  编者注:  1.上图展示了一只通过Mesolens显微镜捕捉到的跳蚤(此图像由英国医学研究委员会无偿使用)。该图像在英国皇家学会成立350周年之际举行的一系列庆典活动中展出。英国人罗伯特-胡克1665年借助于粗制的放大镜观察,描绘成的跳蚤,在外观上已经精美到几乎无以复加的地步。今天人们通过Mesolens扫描到的跳蚤,与胡克的图像近乎一致。这张图像利用样本3毫米长的自然荧光,使其在紫外线下发光。这张图像不仅证实了胡克的描绘从各方面来讲都无可厚非,还通过高达150兆像素的清晰度–相当于10部现代消费者数码相机像素的总和– 展示了样本的细节。这台巨大的Mesolens显微镜的光学错误矫正率比任何相机的透镜都高,因此可同时用于高功率显微镜和整体低倍放大的图像,例如这张图。这台显微镜可以扫描出跳蚤隐藏的触角,和只能通过高倍放大图像后才能发现的多处细节,而这些在胡克的绘图里并没有体现出来。跳蚤如今在英国已经绝迹,而这份样本是由剑桥大学动物昆虫博物馆提供,自1890年起就保存在酒精里。借助荧光绘制图像已几乎成为生化研究的通用手段。它能检测到特定分子和特殊化学成分,包括基因和蛋白质。  2.皇家学会是英国国家科学院,建立于1660年。皇家学会有三大功能,即提供独立的科学建议、提供科技交流的平台、及资助和举办科学活动。我们的专业素质来源于来自英国和国际的顶尖科学家。
  • 《中国电子显微镜市场研究报告(2021版)》发布
    电子显微学是近代物理学、生命科学、材料科学,尤其是纳米科学研究的重要手段,诸多重要材料、纳米材料、生命科学的科技突破,都离不开电子显微学的贡献。在各领域前沿科技的发展、生产企业对产品质量要求的提高等多方终端市场需求不断增长背景下,电子显微镜市场竞争日趋激烈。在欧美高端科学仪器市场逐渐放缓背景下,中国已经成为最大的单一市场。2018年,仪器信息网(instrument.com.cn)曾发布《中国电子显微镜市场研究报告(2018版)》,三年来,全球电子显微镜进口市场经历了近六年的首次下滑,加之新冠疫情影响,全球电子显微镜市场风云变幻;另一方面,中国市场电镜及周边国产技术逐渐涌现,不断有国产品牌加入中国电子显微镜产业赛道。此背景下,仪器信息网进一步整理发布《中国电子显微镜市场研究报告(2021版)》,以期对中国电子显微镜市场最新动向全面梳理,对当下中国电子显微镜市场现状、用户需求、电镜企业竞争格局等进行调研分析,为电镜企业在中国市场的战略决策及资本市场投融资提供参考。《中国电子显微镜市场研究报告( 2021版)》内容包含了电子显微镜技术发展概述,近20年全球电子显微镜及相关附件/零部件进出口贸易数据分析、2020-2021年中标分析、中国电镜用户调研分析、中国电镜配置分析、主流电镜企业分析等。《中国电子显微镜市场研究报告( 2021版)》详细统计分析了近20年全球130余国家电镜相关贸易数据、中国近5年电镜相关贸易数据, 3000余电镜用户调研信息,近一年1000余项电镜招中标信息、4000余国内配置电镜信息等。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=253欢迎感兴趣的网友联系购买报告事宜,电话:010-51654077转销售部报告目录1 研究报告概述 1.1 电子显微镜概述 1.2 电子显微镜技术发展简史 1.3 报告分析数据说明 2 全球与中国电子显微镜市场规模分析 2.1全球电子显微镜市场规模分析 2.2近20年全球贸易数据看全球电子显微镜市场格局2.3近5年中国海关数据看中国电子显微镜市场格局 3 2021年中国电子显微镜保有市场及用户分析 3.1 2021年中国科研领域电子显微镜配置现状分析 3.2 2021年中国电子显微镜用户分析 4 2020-2021年中国电子显微镜采购分析 4.1 2020-2021年中国电子显微镜采购用户端分析 4.2 2020-2021年中国电子显微镜采购中标品牌分析 5 中国市场主流电子显微镜企业分析 5.1 主流进口品牌分析5.2 国产企业分析6 总结 6.1 关于全球电镜市场格局 6.2 关于中国市场6.3 关于国产品牌
  • 光学显微镜的主要观察方法之荧光观察
    应用专家 易海英 荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过程中电子损失一些能量②。电子离开激发态(S1)并回到基态的过程中③,会释放出激发过程中吸收的剩余能量。荧光分子在激发态驻留的时间为荧光寿命,一般为纳秒级别,是荧光分子本身固有的特性。利用荧光寿命进行成像的技术叫荧光寿命成像(Fluorescence Lifetime Imaging,FLIM),可以在荧光强度成像之外,更加深入地进行功能性精准测量,获取分子构象、分子间相互作用、分子所处微环境等常规光学成像难以获得的信息。荧光的另一个重要特性是Stokes位移,即激发峰和发射峰之间的波长差异(图2)。通常发射光波长比激发光波长更长。这是由于荧光物质被激发之后、释放光子之前,电子经过弛豫过程会损耗一部分能量。具有较大Stokes位移的荧光物质更易于在荧光显微镜下进行观察。图2:Stokes位移荧光显微镜及荧光滤块荧光显微镜是利用荧光特性进行观察、成像的光学显微镜,广泛应用于细胞生物学、神经生物学、植物学、微生物学、病理学、遗传学等各领域。荧光成像具有高灵敏度和高特异性的优点,非常适合进行特定蛋白、细胞器等在组织及细胞中的分布的观察,共定位和相互作用的研究,离子浓度变化等生命动态过程的追踪等等。细胞中大部分分子不发荧光,想要观察它们,必须进行荧光标记。荧光标记的方法非常多,可以直接标记(比如使用DAPI标记DNA),或利用抗体抗原结合特性进行免疫染色,也可以用荧光蛋白(如GFP,绿色荧光蛋白)标记目标蛋白,还可以用可逆结合的合成染料(如Fura-2)等。图3:Leica DMi8倒置荧光显微镜及滤片转轮目前荧光显微镜已成为各个实验室及成像平台的标配成像设备,是我们日常实验的好帮手。荧光显微镜主要分为三大类:正置荧光显微镜(适合切片)、倒置荧光显微镜(适合活细胞,兼顾切片)、荧光体视镜(适合较大标本,如植物、斑马鱼(成体/胚胎)、青鳉、小鼠/大鼠器官等)。荧光滤块是显微镜荧光成像的核心部件,由激发滤片、发射滤片和二向分光镜三部分组成,安装在滤片转轮里,如Leica DMi8配有6位滤片转轮(图3)。不同的显微镜转轮位数会有区别,也有些显微镜使用滤块滑板。滤块在荧光成像中起着重要作用:激发滤片选择激发光来激发样品,阻挡其他波长的光;通过激发滤片的光经过二向分光镜(其作用是反射激发光和透射荧光),反射后通过物镜聚焦,照射到样品,激发出对应的荧光即发射光,发射光被物镜收集,透过二向分光镜,到达发射滤片。如图4中:激发波长为450-490nm,二向分光镜反射短于510nm的光、透过长于510nm的光,发射光接收范围为520-560nm。图4:荧光显微镜光路图荧光显微镜常用荧光滤块可分为长通(long pass,简称LP)和带通(band pass,简称BP)两种类型。带通通常由中心波长和区间宽度确定,如480/40表示可通过460-500nm的光。长通滤色片如515 LP,表示可以通过波长长于515nm的光(图5)。图5:FITC光谱曲线及滤片荧光物质具有其特征性激发(吸收)曲线和发射曲线,激发峰为最佳激发波长(激发效率最高,从而可以降低激发光能量,保护细胞和染料),发射曲线为发射荧光波长范围。因此,在实验中,我们会尽可能选择与激发峰最接近的波长进行激发,而接收范围需包括发射峰。如Alexa Fluor 488的激发峰为500nm,在荧光显微镜中可以选择480/40的激发滤片。图6:Alexa Fluor 488光谱曲线滤块的详细信息可以在显微镜成像软件里看到。了解染料并找到最匹配样品的滤块对于荧光成像有着至关重要的作用。荧光染料和荧光蛋白的光谱信息一般在说明书中会注明,也可在网上查阅(如https://www.leica-microsystems.com/science-lab/fluorescent-dyes/、https://www.leica-microsystems.com/science-lab/fluorescent-proteins-introduction-and-photo-spectral-characteristics/)。滤块的选择除考虑荧光探针的激发、发射波长,对于多色标记样品还需考虑是否有非特异激发、是否串色。此外还需考虑所使用的荧光光源,目前常用的荧光光源有汞灯、金属卤素灯,以及近年来飞速发展的LED光源。荧光光源的光谱有连续的和非连续的,在不同波段能量也会不同。LED光源因为其相对较窄的光谱带、更稳定的能量输出、超长的寿命、更安全环保等诸多优点,正逐步成为荧光显微镜的主要光源。除了显微镜内置的滤块,还有外置快速转轮(图7),徕卡的外置快速转轮相邻位置滤片转换速度为27ms,可实现高速多色实验,如FRET及Fura2比例钙成像(图8)等。图7:徕卡外置快速转轮EFW图8:钙成像,Fura2, Cultured hippocampal astrocytes from 18-day-old embryos of Sprague-Dawley rats. Courtesy of: Drs. Kazunori Kanemaru and Masamitsu Iino, Department of Pharmacology, Graduate School of Medicine, The University of Tokyo 丰富多样的荧光显微成像技术为了满足不同的荧光成像需求,除荧光显微镜外,还发展出了各种荧光显微成像解决方案:? 宽场高清成像系统,如Leica THUNDER Imager,采用Leica创新的Clearing专利技术,在成像时高效去除非焦平面干扰信号,呈现清晰图像,同时兼有高速成像的优点;? 共聚焦激光扫描显微镜,利用针孔排除非焦平面干扰,实现光学切片,得到高清图像及三维立体图像;? 突破衍射极限的超高分辨率显微镜及纳米显微镜,可对小于200nm的精细结构进行观察;? 利用多光子激发原理进行厚组织及活体深层成像的多光子成像系统;? 具有高时空分辨率的光片成像技术,成像速度快、分辨率高、光毒性低,特别适合进行发育、活体动态观察等研究;? 荧光寿命成像(FLIM),不受荧光物质浓度、光漂白、激发光强度等因素的影响,能更加深入地进行功能性精准测量;? 荧光相关光谱(FCS)及荧光互相关光谱(FCCS),测量荧光分子的分子数、扩散系数,从而分析分子浓度、分子大小、粘性、分子运动、分子结合/解离、分子的光学特性等;? 全内反射荧光显微镜(TIRF),极高的z轴分辨率,非常适合细胞膜表面的分子结构和动力学研究。 荧光显微成像技术应用广泛,种类丰富,而且新技术还在不断涌现,大家可以选择最适合的技术去完成自己的研究。
  • 最小最轻远程医疗显微镜面世 仅重46克
    最小最轻的远程医疗显微镜面世可助资源条件落后地区提高医疗卫生水平  据物理学家组织网4月22日报道,美国科学家发明了一种世界上最小、最轻的微型显微镜。该新型无透镜成像技术被认为不仅削减了与医疗照顾相关的成本,还将给资源条件有限的地区提供快捷、廉价的医学诊断,也将远程医疗向前推进了一步。  美国加州大学洛杉矶分校的电子工程副教授艾多安奥兹坎使用了一种“基于侧影成像的无透镜超宽视野单元监测阵列平台”(LUCAS)的成像技术。LUCAS的特点是,摈弃放大物体所用的透镜,通过采用发光二极管照亮物体及数字传感阵列来捕捉影像,从而产生微粒或细胞的全息图像。分析样本经由一个小芯片载入,芯片内装有用以监测健康状况的唾液或血液涂片。在使用血液涂片时,该显微镜能准确鉴别出细胞或微粒,如红细胞、白细胞和血小板等。  这台显微镜和一个鸡蛋的重量差不多,仅46克,是一个自成一体的成像设备,其仅有的外设为一个可与智能手机、掌上电脑(PDA)或计算机相连的USB接口,可经此供电。除了比常规显微镜更为紧凑轻巧外,该无透镜显微镜还省却了要经过专业技术人员才能分析成像的需要,图像经由计算机分析后就可即时获取结果。再加上一些不太昂贵的附件后,还能改装成一个微分干涉对比显微镜(亦称诺玛尔斯基显微镜),改装附件的成本仅100美元至200美元。微分干涉对比显微镜可用以获取样本的密度信息,通过突出线条和边缘的对比度来形成看似立体的图像。  这台功能强大、成本低廉的无透镜显微镜可装入一个极小包装;大量设计元素将使其在资源条件有限的地区,特别是非洲的一些国家大显身手,帮助监测诸如疟疾、艾滋病和肺结核等疾病。  在以上地区,医疗的两个关键需求是:易用性和耐久性。该显微镜的使用将培训减至最低程度,其大视野成像的特点,令样本不再需要在显微镜内进行扫描或精确对齐;操作简单到只需将样本装满芯片,然后将其移至显微镜边上的一个槽内 由于其具有大孔径,还能避免因碎屑阻塞光源引起的问题 另外,由于几乎没有活动部件,使得显微镜相当坚固 而且还能被数字化集成为远程医疗网络的一部分,成为填补基础设施和移动工具之间缺隙的典范。  相关研究成果发表于英国皇家化学会《芯片实验室》杂志网络版。
  • 新品首发!DSX1000 数码显微镜强势来袭!
    奥林巴斯公司(代表董事兼总裁:竹內康雄)宣布在全球范围内推出 DSX1000 数码显微镜,它极大地改善了用户的检验工作流程,能够通过简易的操作实现对各种样品的分析。这款新产品由奥林巴斯科学事业于2019年6月3日面向全球发布。 DSX 系列数码显微镜将我们卓越的光学技术与先进的数字技术融为一体。DSX1000 数码显微镜用于观察和测量各种样品,包括电子元件和金属材料。此显微镜使用简单,只要放上样品,就可以轻松地完成 3D 观察、测量、报告自动生成等一系列操作。 您只需要一台 DSX1000 显微镜就可满足各种观察和分析需要,改善检验的工作流程。镜头数量增加至 15 个,涵盖20-7,000X的放大倍率。用户还可以利用该显微镜的六种观察方法,对各种样品进行观察与测量。比如突出显示样品表面的不规则和轮廓形貌。显微镜头部和载物台可以分别进行± 90°的自由角度调节,从而满足对各种复杂外形样品的任意角度观察。另外,新开发的算法可以实现更快的 3D 图像采集,与奥林巴斯传统数码显微镜相比,速度快了近十倍。最后,我们将根据每位用户的工作环境校准显微镜,以帮助用户实现精确、高效的观察和测量。新 品 首 发NEW ARRIVAL主要特点放大倍率范围 20–7,000X,可旋转式载物台。可迅速切换物镜和六种观察方式。远心光学系统保证了在整个放大范围内的测量准确度。放大倍率范围 20–7,000X,可旋转式载物台DSX1000 数码显微镜新增了 5 个物镜,物镜总数达到 15 个。20-7,000X 的放大倍率范围实现了精确观察,而长工作距离物镜则实现了对不规则样品的观察,例如电路板和机加工零件。显微镜头部和载物台都可以旋转± 90°,更易于观察和分析薄样品,如晶圆,或大型样品,如汽车部件。 可调节的头部和载物台显微镜头部和载物台可以分别旋转± 90°使用高分辨率长工作距离的物镜长工作距离使用户能够观察不规则形状的电子基板。 20–7,000X 放大倍率下的晶圆图像对比可迅速切换物镜和六种观察方式显微镜的电动变焦光路结合了先进的观察功能,可实现六种观察方法和对比度增强功能:明场、暗场、MIX、偏光、简易偏振和微分干涉。偏光观察和对比度增强功能可以突出样品表面的不规则和轮廓形貌。例如,此功能可用于在观察晶圆表面较大的不规则形状与细微破损和划痕之间快速切换。从而用户可以观察到使用其他方法难以检测到的对象。太阳能电池图像对比(左图:明场观察,右图:偏光观察)单侧光线照射突出了表面的不规则形状。该项技术适用于观察不规则形状、扭曲的样品和槽口。集成电路 (IC) 芯片图像对比(左图:常规;右图:带对比度增强功能)色彩清晰明亮的图像替代了明暗图像。远心光学系统保证了在整个放大范围内的测量精确性。*汽车制造商、精密设备和其他产品制造商必须精确测量和分析产品的规格,以证明产品的安全性。DSX1000 数码显微镜使用远心光学系统,在整个放大范围内图像失真极低,实现了有保证的准确度和重复性的高精度测量。为了确保准确度,在完成 DSX1000 显微镜的安装后,奥林巴斯的技术人员将根据客户使用环境对每台显微镜进行校准。 远心光学系统和非远心光学系统的图像采集对比图改变聚焦位置不会改变图像大小。此新闻稿中的公司名称和产品名称分别是其对应公司的商标或注册商标。*必须由奥林巴斯进行校准。奥林巴斯科学事业科学事业的主要产品为光学显微镜、工业视频内窥镜、无损检测设备和合金分析仪。通过这些产品,科学事业帮助维持社会基础设施的安全和稳定,包括医疗、生命科学和工业领域的研发;生产设施的质量改善;飞机和其他大型设备的检验等等。奥林巴斯将于 2019 年 10 月 12 日迎来百年华诞。我们向支持我们公司发展的客户和股东表示诚挚的感谢。我们期待秉承“实现世界人民的健康、安心和幸福生活”的使命,继续为社会做出贡献。
  • 徕卡法医学比对显微镜---助力得出科学的鉴定结论
    法医学比对显微镜介绍:徕卡FS C、FS M和FS CB系列法医学比对显微镜可用于检测弹道、工具痕迹、毛发、纤维和其他司法鉴定证据,并将提取的证据与所有物中发现的蛛丝马迹进行比对。徕卡FS系列法医学比对显微镜优点 一、便于记录配备高性能相机和软件应用,便于记录、测量、注释和存档精确测量样本,从不同角度观察,可以在案例报告上添加注释利用软件拼接功能,轻松记录超大视野利用高分辨率相机,记录微小的细节 二、多样化的比对方法利用多功能比对桥,支持多种高精度比对利用可调节分割线,轻松改变比对方法,协助您的鉴证工作;全部到左边,全部到右边,或者相互叠加以0.1%的放大精度比对右侧和左侧的图像,确保对结果充满信心。适应变形样本,+/- 4%的变焦放大调整(FS C,FS CB)三、可靠比对 利用高规格光学器件,得出可靠的比对结果对于远心目标,必须以正确角度观察通过物镜复消色差校正和单独虹膜控制,准确观察并记录证据精确的校准和测量,采用固定放大物镜和带编码的物镜转换器(适用于FS C以及搭配带编码显微镜的FS CB)四、采用多种人体工学组件 长时间工作依然舒适人体工学工作台,高度可电动调节,确保坐感舒适可调节观察角度,确保全天保持正确坐姿载物台、焦距和照明控制均触手可及,尽可能减少重复性手动操作。 五、提供多种照明选项,可清晰检测各种样本使用光纤光导、独立聚光,或多段环形光源,观察表面结构 利用同轴照明很容易观察到高反射表面利用透光分析半透明样本的内部结构 使用标准显微镜的所有对比技术,如荧光、相衬、偏振光、微分干涉对比(徕卡CFS CB比对桥可用于常规和高级显微镜平台)进行复杂结构的对比徕卡法医学比对显微镜应用介绍:法医学实验室将现场的弹壳与发射的进行比对分析破坏锁具的工具痕迹,并将其与所有物中发现的工具进行比对调查证件是否伪造将车祸中的毛发、纤维和油漆与“肇事逃逸"的车辆进行比对 凭借精确可靠的功能,助力得出科学的鉴定结论 :配备高性能相机和软件模块,便于记录、测量、注释和存档利用多功能比对桥,支持多种高精度比对利用高规格光学器件,得出可靠的比对结果采用多种人体工学组件,即使长时间工作也不会感到疲劳提供多种照明选项,可清晰检测各种样本。 堪称是取证实验室的理想选择 徕卡FS C / FS M / FS CB法医学比对显微镜的技术:特殊比对桥设计 采用特殊比对桥设计技术,确保可以持续观察利用比对桥中的颜色中性棱镜,精确重现色彩凭借比对桥的精密机械和光学结构,对左右视野进行精确比对。 相关产品:FS CFS MFS CB比对桥
  • 青岛宝石鉴定技能大赛 显微镜、折射仪等各显神通
    日前,青岛市第十四届职业技能大赛宝石鉴定赛区决赛在青岛经济职业学校和青岛市职业技能鉴定中心开赛。这也是宝石鉴定赛项首次纳入青岛职业技能大赛。  本次比赛设立学生组和职工组两个组别,吸引了来自省内数所开办珠宝专业的中高职院校、本科高校的在校生和珠宝、典当行业从业者共计242人报名参赛。比赛分为理论考试和技能操作两大板块。作为大赛的重头戏,技能操作环节的比试于23日在青岛经济职业学校珠宝鉴定实验室举行,参赛选手运用常规珠宝鉴定仪器,如宝石显微镜、折射仪、分光镜、偏光镜、二色镜等对珠宝玉石的内外部显微特征、折射率、二色性、吸收光谱、光性等进行细致地观察和测量,进而对未知宝石定名。  通过比拼,两个组的前10名分别胜出获得荣誉证书,其中各组前六名选手将分获800-10000元不等的奖励。职工组前三名选手将获“青岛市技术能手”称号,技能状元还将有机会继续冲击10万元的“振超技能大奖”。学生组第一名将获“青岛市第十四届职业技能大赛学生组宝石鉴定竞赛冠军”和“青岛市技能新星”称号。
  • 人工显微镜检测逐渐消失 专家疾呼挽救
    时下,各种自动化检验设备可谓日新月异,检测速度和准确性不断提高,传统的人工显微镜检查还有用武之地吗?在近日举行的2012年全国血液体液形态检验诊断学学术会议上,不少专家大声疾呼,在充分发挥现代自动化检验技术优势的同时,不应忽视以传统人工显微镜检查为主要手段的细胞形态学检查的重要价值。  一张小涂片解决了大问题  “一张小小的痰涂片,解决了困扰我一年多的慢性咳嗽。”会上,北京大学第一医院检验科王建中教授与大家分享了自己的经历,  一年前,王建中因受凉患了肺炎,此后一直断断续续地咳嗽,夜里常常咳得无法入睡。痰培养、胸透、肺功能、CT,该做的检查全做了,就是找不到原因,各种对症治疗也效果不佳。家人和同事甚至开始担心他得了肺癌。  直到有一天,王建中为自己做了一张痰涂片,显微镜下发现其中有大量嗜酸性粒细胞,表明咳嗽很可能是由过敏导致的。根据这一检验结果,在医生指导下服用相应抗过敏药物后,王建中终于治愈了病痛。  “形态学检验对疾病的诊断具有独到之处。”他深有感触地说。  据专家介绍,作为临床检验的核心和基础,形态学检验主要是在显微镜下对血液体液标本中的细胞或有形成分进行观察,是临床诊断、疗效观察、预后判断等的重要依据。  人工镜检结果还是一些疾病诊断的“金标准”。如在白血病的血液与骨髓标本中髓系原始细胞计数时,血液或骨髓涂片的显微镜下形态学检查和流式细胞仪分析两者均可用,但世卫组织最新的造血与淋巴组织肿瘤分类方案仍要求以形态学检查为准。  “即使是在临床检验技术自动化大发展的背景下,人工镜检依然是医学检验中不可缺少的重要手段。”王建中说,比如临床最常用的血尿常规检查,自动化仪器目前仍只能作为筛选手段,需要按照一定比例进行人工镜检的复检。  南方医科大学附属中山博爱医院检验科主任技师黄道连说,自动化仪器都是按照正常细胞的相关参数进行设定的,而病变细胞的结构和形态往往会发生改变,病得越重,变化越大,此时,自动化仪器就难以分辨,甚至张冠李戴,造成误诊、漏诊。  对于人工显微镜检查的重要性,很多专家不约而同地提到了曾在社会上引起轩然大波的“茶水发炎”事件。2007年和2012年,两度有记者用茶水代替尿液送到医院化验,结果被检测出炎症。虽然这一做法有违科学原理,但也从另一侧面向检验界敲响了警钟:显微镜检查的环节必不可少。“倘若检验人员能够对出现白细胞阳性的标本进行显微镜复检,也许就可以发现这一明显的谬误。”北京协和医院检验科张时民教授说。  河北医科大学第二医院检验科李顺义教授也举例说,抗凝剂在全自动血细胞分析仪上的使用,有可能造成假性血小板减少,如果不进行进一步镜检就直接发出检验报告,会导致患者接受不必要的辅助检查。  被忽视只因“费时费力还不挣钱”  让与会者感到的担忧的是,人工显微镜检查这一不可或缺的重要检验方式正在被严重忽视和弱化,成为许多医院检验科的“短板”。  这种忽视和弱化首先体现在人工镜检的比例大幅缩水,甚至被取消。“不少医院基本就不做了。”张时民说。  据了解,即使全血细胞分析仪判定为正常的标本中,也有5%是假阴性。2005年,世卫组织涂片复检协作组调查复检结果发现,每天有25%~30%的标本需要进行显微镜复检。但目前不少医院的复检率低于5%,甚至为0。  “自动化仪器主要看细胞数量的变化,而人工镜检则重点关注细胞‘质’的改变,两者本应是左右手的关系,但现在普遍是‘一手硬、一手软’。”黄道连说,他所在的检验科形态学检查做得不错,临床医生从中尝到了甜头,医院也因此非常重视人工镜检,“我们医院要求每一位住院病人在检查血常规时必须同时做血涂片。但据我了解,很少有医院这样要求”。  其次,检验人员对各种细胞的识别能力有限,难以为临床诊断提供有价值的信息。“认得出就认,认不出就当作没看见。”张时民说。  人工镜检被忽视的另一个突出表现是愿意干的人少,干着的人培训进修机会少,专业从事形态学检验的人员严重不足,不少医院采用轮岗、兼职的办法来安排人手。  “青黄不接是普遍现象。”黄道连曾对中山市4家三级医院的检验科人员进行问卷调查,仅有17%的人表示愿意从事形态学检查工作,约12%的人员接受过为期1个月以上的形态学检验诊断培训,而免疫、生化等其他检验项目的检验人员接受培训的比例则为25%~30%。  中国中医科学院广安门医院检验科刘贵建教授指出,过度倚重自动化设备,对仪器的局限性以及人工镜检的重要性认识不足,认为机器检查可以取代人工镜检,加之临床工作量激增,面对每天成百上千份的血尿标本,且要在1小时甚至半小时内出检验结果,检验人员超负荷工作,无暇完成进一步镜检,是人工镜检在检验科被忽视的主要原因。  另一个原因则是收费问题。目前,医院检验项目的收费标准主要按照耗费的物力成本计算,人工镜检所需试剂少、仪器简单,因而这一检验项目基本不收费或收费很低。在目前的医院运行机制下,对于“费时费力还不挣钱”的人工镜检,医院普遍缺乏关注热情。  张时民举例说,在该院做一套肝肾功能血脂检查的收费在300元左右,1小时自动化检验设备大约可以处理上百个标本,而一名检验医师1小时仅能处理约10个普通标本,复杂的标本甚至只能处理两三个。  “有时一张涂片看不到病变细胞,但根据经验判断觉得有问题,为了找到证据,就得多看几张甚至十几张片子,可能花费一天时间就为了找到一个恶性细胞。”黄道连说,“在美国,形态学检查被视为技术含量极高的检验项目,费用也相应较高,属于医保的限检项目。一套骨髓涂片的形态学检查收费为400美元~500美元,而我们的收费只有50元~60元。”  张时民指出,一名成熟的形态学检验技师需要至少10年的经验积累,而现在愿意待在显微镜前的人越来越少,非常不利于我国形态学检验诊断领域的发展。  形态学检查有广阔发展空间  “形态学检查是一门古老的学科,也有着广阔的发展空间,绝不应该是检验科的弱项。”上海交通大学医学院附属瑞金医院王鸿利教授说,在形态学检验的基础上发展起来许多新的检验方法,流式细胞仪就是典型代表。同时,细胞生物学、分子生物学等新兴技术领域都与形态学有关。“放弃了形态学,就放弃了临床检验学的基础。”  王建中表示,近年来逐渐发展成熟的全自动血细胞数字图像分析等现代技术,将为形态学检查的未来发展带来“革命性”的变化。“标本制备的全自动化、仪器自动获取细胞图像,可以减少人工制备标本时间,检验者可以在电脑屏幕上看到标本的显微图像,同时通过网络实现资料共享,同行间可以相互交流,这有助于提高检验诊断的效率和准确性。”  张时民认为,当前应着力加强形态学检验技术骨干的培养和基本技能的培训。在政策允许的情况下,提高形态学检查项目的收费,适当提高从事形态学检验人员的待遇。黄道连建议,应该在岗位安排、人才培养、进修培训、岗位津贴等方面实行政策倾斜,“让从事形态学检验的人员能够安心本职工作,不断提高业务水平,为临床医生提供更有价值的诊断信息”。
  • 电子显微镜在制药行业的应用
    电子显微镜助力药品检测制剂的表面和内部形貌观察药物制剂的种类非常多,按照物态分为固体剂型、半固体剂型、液体剂型、气体剂型。固体剂型(包括片剂、丸剂等)、半固体剂型和少数气雾剂的观察一般适合用SEM,液体剂型和纳米固态剂型的观察一般用TEM。固态药粉的放大形貌图药粉的导电性一般都比较差,因此在SEM的拍摄中一般采取喷镀金属膜层的方法提升导电性。但是由于镀膜过程带来的热效应可能会对脆弱的药物样品造成一定损伤,造成形貌失真,所以优先采用不喷金直接观察,这时,对SEM的性能就提出了更高的要求。上图中的两种不同的药物采用了不同的拍摄条件,左图采用无镀膜的方式直接UVD探头拍摄低真空下的SE图像,有效避免了荷电和热损伤;右图的药粉耐热性较好,不容易出现损伤,采用了喷镀金属膜的前处理方式,使用高真空SE探头低加速电压拍摄高分辨率形貌。片剂、冲剂、针剂、丸剂、气雾剂等常规剂型,需要每日用药多次,不仅使用不便,而且血液中的药物浓度起伏很大,会出现“峰谷”现象:当血药浓度处于高峰时,超过了最合适的治疗浓度,容易引起副作用;反之,药物浓度降到低谷时,又远在所需浓度之下,难以发挥治疗作用。于是,人们迫不及待地需要新型制剂来解决这个问题。在这个背景下,新的药物剂型———缓释制剂与控释制剂就应运而生了。a.丸剂和片剂的表面和截面形貌图(含局部放大图)缓释和控释技术在药物中应用后,能在较长时间内持续释放药物。与普通制剂相比,这种给药方式有三大优势:延长药效、减少服药次数,尤其适用于需要长期服药的慢性病患者;提供平稳、持久的有效血药浓度,避免或减小峰谷现象,有利于提高药物使用的安全性,减少不良反应,对胃肠道具有保护作用;药物作用时间较长、化学稳定性较好,减少了在贮存时易变质失效或口服后经胃酸作用被破坏的几率。已压制成型的缓释丸剂和片剂肉眼或外表面看起来差别并不大,但心部可能存在较大差别。上图显示了部分丸剂和片剂的表面和截面形貌。可以看出,对于某些片剂或丸剂,刀片切割已经能够几乎完全反映内部的形貌特征,分层情况和多孔的分布情况可以清楚地被看到。正是由于这些像“3D滤网”一样的分层或多孔的镂空结构,研究人员通过模拟人体内的肠胃微环境,控制这些细微结构在人体内对药物有效成分的透过率,缓释药才能真正发挥疗效。然而,如果想要分析每一层截面上局部的成分和含量,可能还要借助其他样品前处理设备完成。b.丸剂的截面(Hitachi IM4000plus离子研磨仪处理)图b所示,相对于图a,丸剂的剖面被更清晰地观察到。从低倍到高倍、从全貌到局部充分展现了丸心、内层、中层、外层的形貌特征。背散射电子的成分衬度,使图像衬度更加明显,甚至单一分层内部的片状微粒组合方式也得到完美呈现。从外观上说,很明显,图b比图a中的样品截面看起来更加平整、杂质附着也更少。这主要是由于使用Hitachi IM4000plus离子研磨仪进行了样品前处理,样品更为干净,完美避免了手动切开或者机械抛磨带来的刮擦、变形、外来污染物引入等问题,使得此样品更适合做EDS成分分析。药品的研发过程中,日立扫描电镜助力研究人员解决研究过程中出现的难题,找到新的研究方向。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制