当前位置: 仪器信息网 > 行业主题 > >

高炉煤气在线监测系统

仪器信息网高炉煤气在线监测系统专题为您提供2024年最新高炉煤气在线监测系统价格报价、厂家品牌的相关信息, 包括高炉煤气在线监测系统参数、型号等,不管是国产,还是进口品牌的高炉煤气在线监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高炉煤气在线监测系统相关的耗材配件、试剂标物,还有高炉煤气在线监测系统相关的最新资讯、资料,以及高炉煤气在线监测系统相关的解决方案。

高炉煤气在线监测系统相关的论坛

  • 煤气流量计测量高炉煤气

    高炉煤气具有管径大、流速低、粉尘大、易堵塞等特点,其流量用常规装置测量效果不尽理想。近来,一种新型煤气流量计———煤气流量计采用独特的结构设计,在高炉煤气流量测量中取得了不少进展。本文对煤气流量计的基本原理和应用于高炉煤气测量的突出优点进行了分析,并给出了安装使用时的一些建议。1前言 在冶金企业中,高炉煤气等含杂质煤气的测量相当普遍。但是由于其具有管径大(可至2m-3m)、流速低、粉尘多、易堵塞等特点,准确测量煤气流速较为困难。常见的测量装置有标准孔板、圆缺孔板和文丘利管。用孔板测量时,尽管理论与实际应用资料丰富,但实际应用中仍有容易堵塞、流量系数长期稳定性差(漂移可超过20%)、压损大(可达40%-80%△P )、维修工作量人等问题。文丘利管尽管压力损失有所减小(15%-29%△P ),但仍不能从根木上解决防堵问题,而且安装制作麻烦。由于这些缺点,造成有些煤气流量测量不准,有时测量值仅能供参考。又因煤气运行压力一般较低,节流装置时间一长,堵塞、结垢非常厉害,严重时甚至影响工艺设备运行。 近来一种新型流量计—煤气流量计,采用独特的弹头形结构设计,保证了探头的高强度、低压损 (2%~15%△P)和实现本质防堵,在高炉煤气测量中取得了较大进展。下面对其基本原理和特点以及用于高炉煤气测量的优越性进行分析,并给出安装使用时的一些建议。2煤气流量计原理及特点 煤气流量计是均速管流量计的一种,非常适合大管道气体的流量测量。它的探头是一种差压、速率平均式流量传感器。它通过传感器在流体中所产生的差压进行气体流量测量,其取压方式如图1. 煤气流量计在高、低压区按一定准则排布多对取压孔,通过所得差压准确地检测流体的平均流速,其流量和差压的关系满足下式:式中:Q——体积流量 K——流体系数 C——流体常数在特定流体条件下是常数) △P——差压。 煤气流量计采用了根据空气动力学原理设计的弹头形探头,其工作原理如图2所示。 煤气流量计这种独特的结构设计,使得探头所受到的牵引力zui小,并且流体与探头的分离点固定。低压孔取在探头侧后两边、探头与流体分离点之前,既避免了低压孔受涡流影响,又避免了低压孔被堵,使信号稳定、。探头采用前部表面粗糙处理和防淤槽,这样,无论对高速还是低速流体,都会产生稳流边界层,使其达到降低牵引力和涡街脱洛力的目的,并在很宽的范围内保证了的流量系数。它的流量系数K在一个相当大的范围内是常量,不受雷诺数、节流面积比的影响。煤气流量计从理论上建立了K值的分析模型,精度可达±1%,且经大量测试证明,实测值和理论值之间的偏差在±0.5%以内。 煤气流量计的测量精度可达±1.0%,重复性达±0.1%,它还能够保证精度的长期稳定,因为其不受磨损、污垢和油污的影响,结构上没有可移动部件,从设计上排除了堵塞现象的发生。 流量计探头的发展经历了圆形、钻石形、机翼形、弹头形等几种形式,但除弹头形的煤气探头外,其他几种类型的流量计探头均未能胜任含杂质煤气的测量。这是因为其他类型的流量计探头在设计时忽略了临界流体的流动情况和空气动力学原理,存在着取压孔易堵塞、信号波动大、精度不高、受流体牵引力影响大等缺点,从而使其应用范围受到很大的限制。3测量高炉煤气的优点 同孔板等常规流量装置相比,煤气流量计用于高炉煤气的测量时,有着很大的优越性: 1)探头具有优越的防堵设计。弹头截面的探头能够产生的压力分布,固定的流体分离点位于探头侧后两边。流体分离之前的低压侧取压孔,可以生成稳定的差压信号,并有效防堵,内部一体化结构能避免信号渗漏,提高探头结构强度,保持长期高精度。 2)结构简单,安装方便,可在线开孔插拔。高炉煤气管线停产机会少,选用在线插拔式的结构,给安装和维护带来了极大方便。 3)煤气流量计直管段要求较低。高炉煤气管径一般较大,有时难以满足标准直管段要求。煤气流量计在较低的直管段要求下,前7D后3D仍能保证1%的测量精度,zui小直管段要求为弯管后2D. 4)压力损失很小。煤气流量计采用非收缩节流设计,比孔板的*压力损失至少降低95%以上。例如,在直径为1 000mm的管道上,煤气压力为12kPa,用圆缺孔板测量时,其zui大压力损失竟达6kPa,极有可能影响用户点压力。而用威力巴流量计,压损仅有20Pa左右,其影响完全可以忽略不计。高炉煤气压力较低,管道上压力一般在lOkPa左右,而用户热风炉、烧结机等)点压力也只有6kPa-8kPa,因此减少节流件的压力损失非常重要。4应用建议 煤气流量计一般都有供方技术人员现场指导安装,但在开始设计和日常使用时仍应注意以下问题: 1)选型时务必提供准确的工艺参数,如流量、煤气成分、含尘量、温度、压力、湿度等参数。这一点对于选用任何类型的差压式煤气流量计都非常重要。 2)要配用质量较好的变送器。同其他流量计一样,煤气流量计用于煤气测量时差压值较小,一般在20OPa-2 000Pa之间,有时需要配用微差压变送器,因此变送器的好坏直接影响到输出信号的稳定性,目前广泛使用的EJA. 3051. 1151等变送器均可满足测量要求。 3)连续工作的煤气流量计从根本上杜绝了堵塞的可能,但当系统频繁开停机或管道处于停产时,仍有可能发生堵塞,此时应注意及时采取有效的防护措施。 4)尽管煤气流量计维修简便,但是为了保证其使用效果更好,作为一次取源部件,仍建议对其进行定期维护,有条件者亦可加入反吹管路。

  • 【原创大赛】高炉煤气分析系统原理介绍

    【原创大赛】高炉煤气分析系统原理介绍

    [align=center][size=24px]高炉煤气分析系统原理介绍[/size][/align][align=center][color=black]概述[/color][/align][color=black]介绍某简易的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]——高炉煤气分析系统的工作原理。[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]高炉煤气是高炉炼铁工艺生产过程中产生的一种可燃气体,大致成分为一氧化碳(20-30%)、氮气(51-56%)、二氧化碳(16-18%)、氢气、少量烃类、水蒸气以及少量的二氧化硫。高炉煤气是一种低热值的气体燃料,其发热值约为3000-3600kJ/m3,可以用于冶金企业的自用燃气,如加热热轧的钢锭、预热钢水包等,也可以供给民用。[/color][color=black]高炉煤气含有大量的CO,毒性很强,煤气还有易燃、易爆特性。[/color][align=center][color=black]二 系统结构原理[/color][/align][color=black]采用Shimadzu的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]GC-2014,配置有两个TCD检测器、两个十通阀、一个六通阀(色谱柱选择阀),设计某简单的高炉煤气分析系统,其硬件结构如图1所示。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111091108017772_157_1604036_3.jpg[/img][/align][align=center]图1 高炉煤气分析系统原理图[/align][align=center][color=black]三 工作流程讲解[/color][/align][color=black]本高炉煤气分析系统总体分为两个通道,通道1使用氢气作为载气,测定样品中的氧气、氮气、甲烷、一氧化碳和微量烃类物质;通道2使用氩气作为载气,测定煤气样品中的少量氢气。[/color][color=black]双通道使用不同的载气,均可以实现较高的分析灵敏度。[/color][color=black]通道1的工作过程:[/color][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out)。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V1旋转36度,此时样品被载气携带进入预分离色谱柱PC1中(样品流经 car1 - loop - PC1 - C1 - C2 -TCD1 )。[/color][color=black]样品在PC1中被预分离,其中较轻的组分(氧气、氮气、甲烷、一氧化碳)作为合峰流入C2色谱柱。C1色谱柱将各个组分进一步分离,经不易分离的乙烷、乙烯、乙炔分离开。[/color][color=black]3 反吹[/color][color=black]当样品中的乙烷、乙烯、乙炔之前的组分全部流入色谱柱C1之后,十通阀V1旋转36度,此时预分离色谱柱PC1中的载气流速反方向流动,保留时间较长的微量重组分被反吹流出PC1柱(样品流经 car1 - PC1 - Vent1)。[/color][color=black]4 色谱柱选择[/color][color=black]样品在C1色谱柱中被分成两部分,一部分为氧气、氮气、甲烷、一氧化碳的合峰,另一部分为二氧化碳、乙烷、乙烯、乙炔。[/color][color=black]当合峰完全流入色谱柱C2中时,V2阀旋转60度,合峰中的组分被封闭在色谱柱C2中。C1中的其他组分按顺序流出色谱柱,并在TCD1上出峰,顺序为二氧化碳、乙烯、乙烷、乙炔。[/color][color=black]5 复位[/color][color=black]当乙炔完全流出色谱柱C1之后,V2阀旋转60度,恢复到系统的初始状态,C2中封闭的组分,再次流出并在TCD1上出峰,其顺序为氧气、氮气、甲烷、一氧化碳。[/color][color=black]通道2 的工作过程:[/color][color=black]1 取样[/color][color=black]如图1所示,此时将样品通入定量环(样品流经 sample in - loop -sample out)。[/color][color=black]2 进样[/color][color=black]系统启动数据采集的瞬间,十通阀V3旋转36度,此时样品被载气携带进入预分离色谱柱PC2中(样品流经 car3 - loop -PC3 - C3 - TCD2)。[/color][color=black]样品在预分离色谱柱PC2中分离为较轻组分(氢气)和较重组分(烃类和氧气、氮气、二氧化碳等)。[/color][color=black]其中保留较弱的组分——氢气——流入色谱柱C3,并在TCD2检测器上被检测到。[/color][color=black]3 反吹[/color][color=black]当色谱柱PC2中的较轻组分完全流入色谱柱C3中,十通阀V3再次旋转36度,此时色谱柱PC2内部的载气反向流动,将保留时间较强的组分反吹流出系统。[/color]系统典型谱图如图2所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111091108020604_2711_1604036_3.jpg[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111091108022610_2562_1604036_3.jpg[/img][/align][align=center]图2 系统典型谱图[/align][align=center]小结[/align]本系统为简单的十通阀应用案例,两个通道均为十通阀进样反吹。

  • 在线焦炉煤气孔板流量计的清扫

    焦炉采用焦炉煤气或高炉煤气加热时,通常选用孔板流量计来计量煤气的用量。由于焦炉煤气中含有焦油、萘、氨、硫化物和氰化物等杂质,存在一次取压口与引压管路易堵塞、计量不准确、在线清扫困难等问题。为了保证计量的准确性并降低维修人员的劳动强度,经摸索,制造了一种实用的现场专用设备,并总结出了一种有效的处理方法,较好地解决了上述问题,取得了良好的效果,满足了生产要求。炼焦是将配制好的洗精烟煤通过高温干馏,得到高炉炼铁需要的冶金焦或其他的焦炭及气体燃料——焦炉煤气和有关化工产品。焦炉采用自产并经过精制处理的焦炉煤气或高炉冶炼过程中产生的高炉煤气加热,将配制好的洗精烟煤在炭化室加热到950~1050℃变成焦炭。焦炉炉体的特性,决定了焦炉加热与生产具有长期高度连续性的特点,通过配套回炉焦炉煤气或高炉煤气管道体系来保证加热的连续性。由于高炉煤气热值低,为了保证焦炉加热的要求,需要掺混9%的焦炉煤气进入高炉煤气系统及使用焦炉煤气进行炉头补充加热。每座焦炉加热使用的焦炉煤气约占其自身煤气发生量的45%左右,对于一座65孔,高4.3mm,宽407mm达到设计生产水平的焦炉,其焦炉煤气的使用量约9000m3/h。通常一座焦炉在其一代炉龄里,头几年与zui后的几年都采用焦炉煤气加热,中间可以采用高炉煤气或焦炉煤气加热。由于焦炉生产的能耗较大,为了控制能源消耗,保证加热及方便不同焦炉之间的比较,需要安装计量仪表和参与加热控制的计量仪表。1孔板流量计的使用1.1孔板流量计的工作原理燃气计量仪表有容积式流量计、速度式流量计、差压流量计和涡街式流量计。差压流量计又叫节流流量计,是工业上应用zui广的一种测量流体流量的仪表,根据节流件的不同分为孔板、喷嘴和文丘里管3种。由于孔板流量计结构简单,制造成本与加工精度要求相对较低,安装与使用方便,使用寿命长、适应性较广,已标准化且焦炉煤气中含有焦油、萘、氨、硫化物和氰化物等杂质,为了保证计量的准确性并达到计量仪表在管道上的布局要求,通常选用标准孔板作为检测的节流装置。其工作原理是流体在管道中通过孔板时,突然断面缩小,流体的动能发生变化产生一定的压力降,压力降的变化与流速有关,此压力降可通过孔板前后测压点的引压管路(图1),借助差压计测出,经现场变送器转换成标准的电信号传输,经组合仪表处理后可在线显示实际的煤气用量并累积计算。压力差与体积流量的关系式如下。1.2孔板流量计在焦炉上的使用(1)焦炉煤气总管?焦炉煤气加热时,煤气总管上装有显示每小时用量的孔板流量计(图1),其一次取压口一般采用标准的一英寸法兰连接,通过测量孔板前后的压力降并经组合仪表处理后可在线显示实际的煤气用量并累积计算。(2)机焦侧混合煤气支管?高炉煤气加热时,显示每小时用量的孔板流量计(与图1原理相同),其一次取压口一般采用标准的角接法,通过测量孔板前后的压力降并经组合仪表处理后可在线显示实际的煤气用量并累积计算。此外,还可将测得的煤气量信号反馈现场执行机构控制翻板开度来调节煤气用量。1.3使用中问题由于焦炉煤气中含有焦油、萘、氨、硫和氰化物等杂质,长期使用后,流量检测系统的一次取压口、引压管路极易发生堵塞使其不畅通,导致流量无法准确测量。更令人头痛的是焦炉煤气内的杂质吸附在孔板的刀口上,使孔板孔径变小,造成孔板前后压力降增大而使煤气流量计量值增大甚至不能正常运行,严重影响焦炉煤气计量和用量的调节。由此可知,焦炉煤气孔板流量计存在一次取压口或引压管路易堵塞、在线清洗频繁且困难、仪表维修工作量大、测量不准确等问题。由于焦炉煤气的使用量较大,而发生的周期短,处理又比较困难,而且必须在正常生产时进行,增加了维修人员的劳动强度。为了保证计量的准确性并降低维修人员的劳动强度,必须找到有效的清扫方法。2解决方法2.1孔板清洗方法对于孔板、孔径因积焦油、萘等杂质变小问题,通常的清洗方法是停止加热拆下清洗、更换孔板、从引压管路通入蒸汽清洗,从孔板前冷凝液排放管中用蒸汽管或水管清洗等。该方法使用时需要停止加热,影响了焦炉的正常生产。带气作业时有煤气泄漏影响安全、在线用蒸汽清洗时几千立方米每小时的煤气流量带走了蒸汽热量,中低压冷水不能融化焦油、萘等杂质,故清洗效果不理想。经过长期的摸索后,制造出了一种取材方便、投资少、制造简单、现场安装搬运调试方便的专用设备(图2),并总结了一种有效的处理方法解决了上述问题。使用方法为:将图2所示的设备搬到现场安装好,向铁桶6内注满水,用蒸汽加热到60℃以上,开动增压泵4,待看到高压水枪1侧出口小孔的水流稳定且压力表上显示达到4~8MPa后,关闭图1中计量阀门7,打开计量变送器8上方的平衡阀,拆下丝堵4,将图2中带有比枪管孔径稍大丝堵2的高压水枪1,从图1中冷凝液排放管3伸入,上好丝堵2,打开阀门5,高压水枪喷孔对准孔板上下并小角度转动,将孔板冲洗干净。该方法的优点是设备投资少,搬运、安装、调试方便,操作简单,在线清洗不需停止加热,水流在比枪管稍大的丝堵处起液封煤气的作用,操作安全,高压热水清洗效果好,清洗后的计量准确。2.2一次取压口及引压管路的清扫对于一次取压口及引压管路堵塞问题,通常的方法是用蒸汽或高压氮气清扫。由于通常的蒸汽压力只有0.5MPa左右,一次取压口径又小,堵塞不严重时,该方法是可行的,若堵塞严重,该方法的使用效果不理想。为此,将用于孔板清洗的设备去掉图2中1、2、3后与引压管路连接好清扫,然后用蒸汽清扫,效果较好,保证了生产需要

  • 天瑞仪器:钢铁冶金行业安全气体(CO、O2)监测方案

    钢铁冶金行业安全气体(CO、O2)监测方案1. 钢铁冶金过程中烟气在线监测的必要性1.1 有利于资源再利用,降低企业成本一般来说,每生产1t粗钢约需2.1×107kJ的能量,约能产生4.2×106kJ的高炉煤气、4.2×106kJ的焦炉煤气及1.0×104kJ的转炉煤气,副产煤气约占钢铁企业能源总收入的30%-40%。因此,实现副产煤气的回收再利用可以极大地降低钢铁冶金产业的成本,实现资源的有效利用。而煤气是否有回收的价值,取决于煤气中CO等能源气体的浓度,CO和O2在线监测系统是测量气体浓度的关键。1.2 保证生产行为的安全性高炉和焦炉煤气中的CO浓度较高,它在空气中的混合爆炸极限为12.5%~74%,只要浓度达到爆炸极限,遇到明火极容易发生爆炸。一氧化碳的危害性和爆炸可能性均与其浓度相关,因此必须采用先进的技术对煤气中的CO和O2进行实时监测。1.3 环境保护的需要目前我国现有20余家年产钢量400-2000万吨的钢铁联合企业,其中相当一部分企业高炉煤气排放量为10-30万m3/H。按照这样的排放量来推理可知冶金企业可以严重影响周围数公里的空气质量,造成大气污染。严重的空气污染不仅危害着周围居民的身体健康,同时恶化了生态环境。总之冶金企业周边环境的质量的优劣与其排放的CO的浓度关系密切。2. 烟气在线监测技术现状目前在国内煤气的非分光红外气体检测和电化学检测等方法和光谱吸收型激光传感技术。其优缺点对比如表1:表1 烟气在线监测已有技术优缺点比较 优点缺点电化学检测法体积小、操作简单、携带方便传感器性能比较稳定,耗电少温度适应性比较宽(有时可以在-40℃到50℃间工作)电解液的寿命有限,一般为1年左右可测量范围窄,在气体浓度超量程时探测器容易受到永久性损坏容易受到其他气体的交叉影响非分光红外气体检测法测量准确待测气体交叉影响小受水汽和粉尘影响大,需要预处理,使维护难度和成本上升系统反映时间长(通常大于20秒)可调谐二极管激光吸收光谱技术待测气体的吸收光谱具有高分辨率、高选择性,不受粉尘、水汽和其他气体的影响速度快、灵敏度高、无需预处理价格相对较高3. 钢铁冶金行业安全生产监测系统建设方案3.1 监测仪器选择及仪器原理选取以基于可调谐二极管(TDLAS)激光吸收光谱技术的激光在线气体分析仪(图1)为本方案中所需的监测设备。http://www.skyray-instrument.com/cn/images/2015/0127/1.jpg图1 天瑞仪器激光在线气体分析仪GALAS 6V示意图这项技术的基本原理是Lamber-Beer定律(图2),气体吸收激光的强度与其浓度成正比,通过测量气体吸收激光强度可计算出气体浓度。大多数气体只吸收特定波长的光。激光的发射波长随二极管温度和电流的变化而改变,激光二极管安装了半导体制冷器和温度传感器使得发射波长稳定。3.2 监测系统建设组成根据钢铁冶金的过程以及实际监测需要,安全生产监测系统建设由3个部分组成,分别为转炉煤气监测、高炉煤气监测和焦炉煤气监测。3.2.1 转炉煤气监测如图2可见,在回收侧盅形阀/分散侧盅形阀前布设烟气在线分析仪,只有当通过CO在线监测系统测得转炉煤气中的CO浓度在30%以上时,才打开气体切换站的回收侧盅形阀进入煤气柜储存,否则通过分散侧盅形阀通过放散塔点火燃烧。在煤气柜前布设烟气在线分析仪,只有在线监测系统测分析保证煤气柜内O2含量不会超标(控制在1%以下)才允许焦煤煤气进入煤气柜,否则启动停止回收,以保证系统的稳定性和安全性。http://www.skyray-instrument.com/cn/images/2015/0127/2.jpg图2 天瑞仪器激光在线气体分析仪GALAS 6V在转炉系统中监测点的布设3.2.2 高炉煤气监测如图3所示,根据工艺生产和安全要求,高炉煤气监测系统点位布设分为以下几个部分:(1)监测点1:高炉煤气分析,CO和CO2,控制高炉炉况和回收能源气;(2)监测点2:分析热风炉烟气中O2,监控热风炉燃烧状态和优化燃烧效率;(3)监测点3、4:分别为磨机入口和布袋出口,监测O2是否超限,起安全检测和控制作用;(4)监测点5:监控煤粉仓内CO是否超限,避免煤粉仓内煤粉自燃。http://www.skyray-instrument.com/cn/images/2015/0127/3.jpg图3 天瑞仪器激光在线气体分析仪GALAS 6V在高炉系统中监测点的布设3.2.3 焦炉煤气监测如图4所示,根据工艺生产和安全要求,焦炉煤气监测系统点位布设位于电捕捉器中,分析控制电捕焦油器中的O2,防止煤气与O2混合达到一定比例爆炸。http://www.skyray-instrument.com/cn/images/2015/0127/4.jpg图4 天瑞仪器激光在线气体分析仪GALAS 6V在焦炉系统中监测点的布设4. 天瑞仪器激光在线气体分析仪GALAS 6V系统概述4.1 性能特点GALAS 6V系列激光气体分析仪由于采用了激光半导体二极管吸收光谱(TDLAS)技术,从根本上解决了采样预处理带来的诸如响应滞后、维护频繁、易堵易漏、易损件和运行费用高等各种问题。4.2 GALAS 6V系列的主要技术指标表2 天瑞仪器激光在线气体分析仪GALAS 6V测量指标 测量气体O2COH2O测量范围(标准环境)0-100%0-2%0-20%最低的检测限制100ppm-v1ppm-v5ppm-v[/t

  • 【求助】求助 煤气在线成分和热值分析用什么手段好啊?

    我是一个新手,刚进入这个行业,请各位大虾赐教:我手头碰到一个煤气分析的问题,一直在犹豫是用红外在线煤气分析仪还是用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],不知哪一种性价比最好?另外,红外在线煤气分析仪国外那种牌子最好?含预处理系统价位会是在多少(样气中含焦油、粉尘和水分,采样点温度在275度左右。)?

  • 【转帖】炼钢高炉煤气分析仪器及其方法

    高炉煤气是高炉炼铁炼钢过程中所得到的一种副产品,其主要成分CO, CO2 , N2 , H2 等, CO 约占22%~26%, CO2 约占16%~19%, H2 约占1%~4%, N2 要占58%~60%, 属于重要的二次能源。高炉煤气的化学组成情况及其热工特征与高炉燃料的种类、所炼铁的品种以及高炉冶炼工艺特点等因素有关。为了分析高炉煤气成分以及热值的大小,我们选用英国SIGNAL公司的气体过滤相关和非分散红外吸收光谱技术结合,适合于多种气体的不同测量范围和精度要求。 目前国内外炉顶煤气成分分析仪器主要有工业气相色谱分析仪、气体相关过滤非分散红外分析仪和热导分析仪。日本用工业气相色谱分析仪居多; 美国和西欧用气体相关过滤非分散红外分析仪CO,CO2,CH4; 用热导分析仪分析H2 居多。 传统的气体分析检验是采用化学分析法对煤气中各组分进行分析测定,操作过程比较复杂,必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能,做一次分析花费的时间比较长,难以实时地反映工况信息。热导式气体分析仪具有结构简单、体积小、价格便宜、响应快和使用维护方便等特点, 但只能分析煤气中单一成分的含量。红外光谱技术气体分析仪精度和灵敏度高、测量范围宽、响应速度快、良好的选择性、稳定性和可靠性好、可实现多段多组分气体同时测量、能够连续分析和自动控制。但不能分析对称结构无极性双原子分子及单原子分子气体。气相色谱分析仪具有分离效能高、样品用量少、可进行多组分分析、分析精度高和标定周期长等特点, 其缺点是价格高和对样品质量要求高。

  • 煤气检测仪的标定

    以煤为原料加工制得的含有可燃组分的气体。根据加工方法、煤气性质和用途分为:煤气化得到的是水煤气、半水煤气、空气煤气 (或称发生炉煤气) ,这些煤气的发热值较低,故又统称为低热值煤气 煤干馏法中焦化得到的气体称为焦炉煤气,高炉煤气。属于中热值煤气,可供城市作民用燃料。煤气中的一氧化碳和氢气是重要的化工原料。煤气检测仪校准标定原则:  通常情况下可燃气的校准工作由第三方国家计量院来做,但也有委托供货方来作检定.校验气体检测仪需要注意,原则上要采用经计量认证与被检测气体相匹配的尺度样气.相同的被测介质所选的尺度样气不同.  1、异丁烷是气,当被测气体为烃类混合时,其次为丙烷。  2、对于非烃类混合物或爆炸下限浓度的气体燃烧时产生的热量相差较多的烃类混合物。可使用丁烷、异丁烷、丙烷等既易得又稳定的单组分燃料作为样气。此时必需依据一定的检测信号换算关系调整报警器的量程。  3、针对固定式探测器,探头的周围环境应无可燃气体。如果有可燃气体,校验前,要先拆下防雨罩,充入一定量的洁净空气后,再连续通入样气,以保证可燃气体检测仪校验的准确性.

  • 煤气在线分析仪的工作原理图

    监测目的:冶炼产生的烟气中含CO,CO2,N2,O2等成分,通过煤气分析仪将烟气中的CO,CO2,O2等含量分析出来,再选择C0含量、02含量合格的烟气进行回收利用,将大大降低冶炼的成本。 分析仪组成:煤气分析仪系统一般由取样单元、气体处理单元、气体分析仪、标校单元、反吹单元、PLC控制单元组成。 工作原理:样气从采样探头进来后分2个支管,一支到放散管路,另一支经过采样泵、过滤器、冷却器,然后分两路分别进人氧气分析仪及红外分析仪,出来的气体经过缓冲罐后进行放散。 红外分析仪用来分析C0、C02的成分。氧分析仪采用磁力机械式原理。 煤气分析仪维护要点:1) 排水:每天检查冷凝器、汽水分离器、排水蠕动泵的状态,确保流量计内无积水,如有积水应查明原因并排除;2) 流量调整:进人分析仪的流量确保在1L/min,放散流量计的流量等于泵的额定流量减去进人分析仪的流量;3) 探头:每2个月对探头不锈钢烧结滤芯进行清洗,并对采集管进行清灰除尘;4) 滤芯、滤纸更换:雾过滤器滤芯应2月更换一次,高分子薄膜过滤器滤纸每周更换一次;5) 标定:每3个月对氧分析仪和红外线分析仪进行一次标定。

  • 测量高炉焦炉煤气烟道气体用什么流量计比较好?

    为保证使用效果,我们必须先弄清楚这几种气体的主要成分和特点,然后才能有针对性地选择zui适合现场使用的流量计。 一、高炉煤气含尘量大。焦炉所用的高炉煤气含尘量要求zui大不超过15mg/m3。2012年以来由于高压炉顶和洗涤工艺的改善,高炉煤气含尘量可降到5mg/m3以下,但长期使用高炉煤气后,煤气中的灰尘也会在煤气通道中沉积下来,使阻力增加,影响加热的正常调节,因而需要采取清扫措施。 另外,高炉煤气是经过水洗涤的,它含有饱和水蒸汽。煤气温度越高,水分就越多,会使煤气的热值降低。从计算可知,煤气温度由20℃升高到40℃时,要保持所供热量不变,煤气的表流量约增加12%。因此要求高炉煤气的温度不应超过35℃。当煤气温度发生一定变化时,交换机工应立即调整加热煤气的表流量,以保证供给焦炉的总热量的稳定。 二、焦炉煤气,又称焦炉气,英文名为Coke Oven Gas(COG),由于可燃成分多,属于高热值煤气,粗煤气或荒煤气。是指用几种烟煤配制成炼焦用煤,在炼焦炉中经过高温干馏后,在产出焦炭和焦油产品的同时所产生的一种可燃性气体,是炼焦工业的副产品。焦炉气是混合物,其产率和组成因炼焦用煤质量和焦化过程条件不同而有所差别,一般每吨干煤可生产焦炉气300~350m3(标准状态)。其主要成分为氢气(55%~60%)和甲烷(23%~27%),另外还含有少量的一氧化碳(5%~8%)、C2以上不饱和烃(2%~4%)、二氧化碳(1.5%~3%)、氧气(0.3%~0.8%))、氮气(3%~7%)。其中氢气、甲烷、一氧化碳、C2以上不饱和烃为可燃组分,二氧化碳、氮气、氧气为不可燃组分。 三、烟道气(flue gas / stack gas)是指煤等化石燃料燃烧时候所产生的对环境有污染的气态物质。这些物质通常由烟道或烟囱排出。烟道气产生的过程大多是燃料不充分利用,不完全燃烧造成的。其主要成分为氮气、二氧化碳、氧气、水蒸气和硫化物等,若炉子操作不正常,会产生一氧化碳、氧化氮及其他有害气体。无机污染物占99%以上;灰尘、粉渣和二氧化硫含量低于1%,须经气体净化装置处理后排空,以减少对环境的污染。 综上所述,由于高炉焦炉煤气烟道气体的特殊性,含尘、含水汽、压力低、流量小,一般常用流量计如涡街流量计、涡轮流量计等都无法适应现场环境的需要,加上这些安装现场大多在高空烟囱或者管道,大多数管径又特别大,所以安装方面也是个大问题,根据以上分析和江苏奥科仪表有限公司多年现场经验,插入式热式气体质量流量计是个非常不错的选择。 热式气体质量流量计是利用热传导原理测流量的仪表。该仪表采用恒温差法对气体质量流量进行准确测量。具有体积小、数字化程度高、安装方便,测量准确等优点。 热式气体质量流量计传感器部分由两个基准级铂电阻温度传感器组成。采用桥式环路,一个传感器测量流量温度,另一个传感器维持高于流体温度的恒温差,可以在高温和高压条件下进行流量测量。具有以下优点: 1.宽量程比,可测量流速高至100Nm/s低至0.5Nm/s的气体,可以用于气体检漏。 2.抗震性能好,使用寿命长。传感器无活动部件和压力传感部件,不受震动对测量精度的影响。 3.安装维修简便。在现场条件允许的情况下,可以实现不停产安装和维护。 4.数字化设计。整体数字化电路测量,测量准确、维修方便。 如果采用RS-485通讯,或HART通讯,还可以实现工厂自动化、集成化管理的要求。

  • 【资料共享】干法布袋除尘系统在高炉的应用

    摘要:本文根据实际工程案例,阐述了高炉煤气干法布袋除尘工艺及高炉煤气余压回收透平发电装置(TRT),同时对干法和湿法除尘系统进行了技术经济比较。关键词:高炉煤气干法布袋除尘系统;环缝洗涤系统;八压回收透平发电装置1 前言高炉煤气的净化工艺分干式和湿式两大类。在大型高炉中煤气净化常用的干式除尘器有重力除尘器、旋风除尘器、袋式除尘器和静电除尘器;湿式除尘器有环缝洗涤器和串联双级R形可调喉口文特里洗涤器等。某钢厂高炉容积1000m3,高炉煤气除尘采用全干法布袋除尘工艺,并配套高炉煤气八压回收透平发电装置(简称TRT,下同)。2 高炉煤气布袋除尘系统2.1主要工艺参数(1)高炉煤气发生量:正常170900m3*h-1,最大188000m3*h-1(2)炉顶煤气温度:正常150~250℃,事故400℃(持续30min)(3)炉顶煤气压力:高压操作时压力为0.2Mpa(设备能力0.25Mpa)(4)煤气含尘量:粗煤气含尘量12g*m-3,净煤气含尘量≤10g*m-32.2工艺流程简述高炉煤气净化采用干式布袋除尘系统,流程如下:[img=,739,189]http://www.kelian.cn/ZeroCMS_1.0/UploadFiles/2011-08/201181894125.jpg[/img]从重力除尘器来的荒煤气,当温度在正常范围(80~260℃)时,直接进入布袋除尘器进行净化处理,除尘后的煤气经TRT膨胀降温后,用管道输送到高炉热风炉,剩余煤气送入煤气管网。当TRT不运行时,除尘后煤气经减压组、消音器后,与TRT出口管道汇合。当荒煤气温度高于260℃时,由炉顶喷水降温装置降低荒煤气温度;当荒煤气温度低于80℃时,通过4个布袋筒体应对短时低温工况,以确保正常生产。2.3布袋除尘器系统设置直径3.6m布袋除尘器12个,双排并联布置,由整体框架支撑。通常考虑1个布袋除尘器作检修,1个布袋除尘器进行反吹,10个布袋除尘器在工作。布袋清灰采用氮气脉冲反吹法,通常是12个除尘器定期按顺序清灰,两次清灰间隔时间可由实际操作数据自主确定。在两次间隔期间,一旦某个除尘器煤气进出口差压超过设定值时,该除尘器可以优先单独清灰。布袋除尘器的卸灰采用气力输送方式,每组除尘器设置输灰用的氮气流化装置;每个除尘器卸下来的灰尘,可以采用氮气输送,流入高架灰罐。灰罐上部设有短布袋,氮气通过布袋除尘后高空放散;灰罐下部设有输灰机、卸灰阀和加湿装置,煤气灰由汽车外运。2.4主要设备主要设备有布袋除尘器、减压阀组、消声器、煤气切断阀、卸灰输灰装置和灰罐等。(1) 布袋除尘器 布袋除尘器12个,直径3.6m,高度16m,布袋材质氟美斯,布袋规格130mm×6m。(2) 减压阀组减压阀组1×Φ400+3×Φ700,分别为紧急快开阀、调节阀和限程阀,液压驱动。(3) 消音器 阴抗复合型音器1台,直径4m,长度18m,吸音材料为超细玻璃棉。(4) 灰罐 布袋除尘器1个,直径3.6m,高度16m,布袋材质氟美斯,布袋规格130mm×2m。3 高炉煤气余压透平发电装置TRT是将高炉炉顶有压煤气的压力通过余压透平装置回收并将其转化成电能的装置,是一项既不消耗燃料又无污染的环保型节能措施。该装置具有以下功能:一是利用高炉煤气余压发电;二是利用透平的可调静叶控制高炉炉顶煤气压力。3.1工艺流程经布袋除尘后的净煤气依次通过TRT入口煤气管道上的电动蝶阀、电动盲板阀、流量计、紧急切断阀之后,进入干式轴流透平膨胀机做功,推动发电机旋转发电。膨胀降压后的低压煤气经过TRT出口煤气管道上电动蝶阀、电动盲板阀,再汇入净煤气管道。3.2TRT主要参数透平机入口煤气压力 0.2Mpa透平机入口煤气温度 150~250℃透平机入口煤气含尘量 ≤10mg*m-3透平机出口煤气压力 0.013Mpa透平机转速 3000r*min-1额定电压 10.5KV发电机额定功率 6000KW3.3主要设备TRT装置主要构成为透平主机与发电机机组系统、润滑油系统、液压伺服控制系统、发配电控制系统、自动化控制系统、大型阀门系统、给排水系统、氮气密封系统。(1) 透平主机设备透平主机为干式两级轴流反动式,静叶可调。进排气方式均为下进下出。轴封采用迷宫式氮气密封,透平动静叶片材质选用高强度不锈钢,以提高耐磨、耐腐蚀性,确保使用寿命≥4万h,确保透平年正常运行时间不小于8000h。(2) 发电机设备发电机为三相交流同步发电机,其额定功率为6000KW,额定电压为10.5KV。控制功能为自动恒电压调节,自动恒无功调节,自动恒功率因数调节;发电机运转可转为电动机运转;冷却方式为水—空气冷却;励磁方式为无刷励磁;润滑方式为强制给油。4 干式和湿式煤气除尘系统对比在大力提倡减少环境污染、降低能耗的现今,随着科学技术的发展,高炉煤气全干法布袋除尘工艺得到了广泛应用,已从小型高炉过渡到大型高炉。同炉容高炉干式和湿式煤气除尘系统技术经济比较见表1。表1 布袋除尘(干法)和环缝洗涤系统(湿法)技术经济对比表项目名称 布袋除尘系统 环缝洗涤系统运行费 比布袋除尘系统多2倍电耗 比环缝洗涤系统少60%水耗 比布袋除尘系统多20倍TRT装机容量(KW) 6000 4500TRT发电量 比环缝洗涤系统多30%占地面积 比环缝洗涤系统少50%投资 同环缝洗涤系统相当环境 比环缝洗涤系统环保维护工作量 比环缝洗涤系统大5 结论全干法布袋除尘系统具有占地少、TRT发电量高、节水、节电、煤气温度高、煤[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量好、环境污染小等优点;环缝洗涤煤气净化工艺具有技术成熟可靠、对高炉煤气温度的适应性强等优点,但与干式除尘相比,其运行费、能耗较高,且环境污染也大。由此可见,高炉煤气净化采用全干法布袋除尘系统,社会效益和效益明显,有着十分广阔的应用前景。

  • 矿井气在线监测气相色谱仪的技术对比?

    我想了解矿井气在线监测气相色谱仪的技术原理,和各个公司之间的对比。各家原理都不同,求专业资深人士给个指导和评价!GC-4085型矿井气体多点参数色谱自动分析仪煤矿井气体分析专用气相色谱仪 南京科捷SP-2120矿井气分析专用气相色谱仪 北分。。。。。。求各家对同时处理低浓度CO(ppm)、高浓度CO2(%)怎么设计的?有用过的大侠请给个建议,他们的痕量和常量线性如何?

  • 高炉煤气氧组分峰面积变化大,重复性差,什么原因?

    钢铁厂的,做高炉煤气,标样(氢 氧 氮 甲烷 一氧化碳 二氧化碳 百分数含量),外标法,GC2014,六通阀进样,P/Q-5A柱,有简单的切割程序,载气是管道氩气。作样时,氧的峰面积变化很大,第一针的峰面积是20000左右,第二针10000左右,第三针7000左右 ,后面慢慢的在7000稳定下来了,第二天作分析,氧在4000左右稳定下来了,求解!这是什么原因?

  • 消除环境样气在线监测湿度干扰心得

    消除环境样气在线监测湿度干扰心得

    [align=center][font=宋体][size=24px]消除环境样气在线监测湿度干扰心得[/size][/font][/align][font=宋体] 经济要发展,环境要保护。现在环境保护越来越被重视,环境监测、检测要求也是越来越高。在线监测、检测是环境监测的重头戏,是环境治理与保护的先头兵。[/font][font=宋体] 现场工况各种各样复杂多变,给在线监测、检测过程及结果带来了非常头疼的麻烦。最主要的一是监测、检测结果不准确,二是容易引起设备故障。[/font][font=宋体] 其中温度、湿度、流量、压力、振动、霉菌、酸碱度、灰尘粉尘以及雷电、供电、静电、电磁场等都可能是影响因素。[/font][font=宋体] 下面我们主要要说的是环境样气湿度对在线监测、检测结果影响的消除。常见的比如采用红外光谱法、[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法、紫外光谱法等原理的设备检测某些特定物质就会受到干扰,干扰程度百分之几百分之几十甚至更高都有可能。检测结果的可靠性需要保证,干扰完全消除不现实,但我们要想尽一切办法尽量减小。[/font][font=宋体] 常规环境样气在线监测、检测系统。[/font][img=,690,150]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011335031523_3799_2369266_3.jpg!w690x150.jpg[/img][img]file:///C:/Users/Administrator/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg[/img][font=宋体] 改进后环境样气在线监测、检测系统。[/font][img=,690,219]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011335148916_6702_2369266_3.jpg!w690x219.jpg[/img][img]file:///C:/Users/Administrator/AppData/Local/Temp/msohtmlclip1/01/clip_image004.jpg[/img][font=宋体] 样气除湿方法有很多种,常见的有对样气降温、旋转、加压、吸附,还有采用结构比较复杂的汽水分离器,特殊材料的分离膜等等。[/font][font=宋体] 我们采用的方式主要包括降温、加压、吸附等。[/font][font=宋体] 我们做的改进主要包括在系统中增加一个制冷器,增加一个温压平衡器。传统除湿方法主要采用分子筛除水器,分子筛除水器虽然能除去样气中多数的水气,但仍有一小部分水气会对监测、检测结果造成影响。另外如果环境样气湿度较高,分子筛除水效率很快就会降低,这样更换或维护分子筛除水器的频率就会较高。[/font][align=center][img=,690,383]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011335281710_735_2369266_3.jpg!w690x383.jpg[/img][/align][align=left] [font=宋体]常规除湿方法(单一除湿法)在有些场景和要求下也能满足要求,但这种方法处理效果毕竟有限,对于一些湿度大数据结果要求高的情况就很难满足。[/font][/align][align=left][font=宋体] 我们改进的方法是在系统中增加一个制冷器配合分子筛除水器除湿,同时换用一个能产生一定正压的抽气泵,这样的处理结果会使样气中水分含量小很多,检测结果也更加准确,同时分子筛除水器更换、维护频率也低了很多。除此之外由于经制冷器出来的样气温度较低,压力较大,我们在系统中又增加了一个温压平衡器(温度设定为[/font]20-25[font=宋体]℃,压力可控,一般设为[/font]1.1-1.5[font=宋体]标准大气压),这样检测效果更好,同时还能减小低温样气对仪器的损坏。[/font][/align][align=left][font=宋体] 制冷器主要由压缩机、加热棒和温控器构成,控制精度可达±[/font]0.1[font=宋体]℃。经过实验我们发现样气温度控制越低除湿效果越好,但温度达到[/font]0[font=宋体]℃或以下,冷凝水会结冰,堵塞管路,损坏设备,所以制冷器温度一般不能设置[/font]0[font=宋体]℃或以下。大量实验数据显示该温度控制在[/font]2-4[font=宋体]℃效果较好,[/font]2[font=宋体]℃效果更佳。[/font][/align][align=left][font=宋体] 实验证明制冷器加温压平衡器加分子筛除水器对样气除湿效果更好,检测结果更准确,同时延长了分子筛除水器更换、维护周期,减小样气对仪器的损坏。[/font][/align][align=left][font=宋体] 但这种方法也不是完美无缺的。比如样气湿度本来就不大,检测结果要求不高,采用该种方法,就会造成系统结构复杂,运行成本高,不是理想的选择。对于[/font]NO[font=宋体]、[/font]CO[font=宋体]、[/font]CO2[font=宋体]等不溶于水或微溶于水的气体的检测(湿度对检测结果有影响)采用该种方法效果较好。不适用于[/font]HCl[font=宋体]、[/font]HF[font=宋体]、[/font]NO2[font=宋体]、[/font]SO2[font=宋体]、[/font]CH2O[font=宋体]等易溶于水的气体在线检测。[/font][/align][align=left][font=宋体] 所以方法再好不适用那也是白搭,盲目选择不一定能达到理想效果,既能满足要求又适用的方法是才是最明智的选择。以上内容是自己一点小小心得,仅供参考,希望对大家有用。[/font][/align]

  • 【资料】空气和废气在线监测介绍

    本投影介绍了空气和废气监测的相关方法和知识,还是比较全的,虽然发在这里不是很适合,但里面还是有一些介绍环境大气和废气在线监测的知识,与大家共享了。[~120583~]

  • 煤质在线实时检测分析与监控系统简介

    “煤质在线实时检测分析与监控系统”(以下简称为煤质在线检测系统)是我们在国际上率先开发的,用于电厂入炉煤炉前煤质在线实时检测分析、入厂煤全程实时监测的绿色环保、低能高效、无辐射的高科技产品。该系统应用高精的红外检测分析技术,在国际上率先真正实现了原煤的热值及灰份、挥发份等工业分析值的在线实时检测与分析,其检测分析方法于一九九九年通过全国鉴定,结论为国际领先水平,在没有应用推广及经济效益的情况下,获辽宁省科技进步三等奖。煤质在线检测系统采用全封闭恒温保护设计,于二零零三年六月十二日在阜新发电厂通过在线实时检测分析现场验收。为我国乃至世界的原煤检测分析技术尤其是热值的直接检测,开辟了一种快速、简便、高效、实时、全程监控的新方法。一、 主要技术路线及技术关键煤质在线检测系统采用傅立叶变换红外光谱分析技术,红外光是一种电磁能量,当其照射到样品时,由于样品内有机成份在不同波数对红外光吸收能量不同,将这些不同记录下来,既得到红外光谱,当对红外光谱所包含的信息进行分析后,就会得到样品内不同有机成份的性质及含量。煤质在线检测系统是利用红外探测光对在线(输煤皮带上)原煤样品进行实时测量,通过对燃煤中各种官能团对红外光吸收各有差异的特点,应用计算机将这些差异进行识别处理,从而准确地测量出燃煤的热值及灰份、挥发份等工业分析值。 煤质在线检测系统的技术关键是根据样品光谱中的信息特征,利用设计开发的软件及建立的数学模型系统,通过计算机识别,进行定性与定量分析。定性分析是利用模式识别与聚类的一些算法,主要用于将所测到光谱进行分类。定量分析是根据比耳定律,应用化学计量学的方法,建立全谱区的光谱信息与含量及性质间的数学关系,通过严格的统计验证并选择最佳数学模型,计算出对应成分的含量或性质。 该技术是将硬件和软件相结合,特别是利用软件,解决红外光谱中谱峰重叠、高背景底强度的信息、图谱不稳定等难点,充分提取红外光谱的信息,达到分析的目的。二、达到的指标 此前,由于没有有效的在线实时检测手段,火力发电厂入炉原煤检测只是每天在炉前进行抽样,经混样、缩分、制样,化验分析等步骤,要二十四小时后才能出具一份工业分析值报表,供生产调度参考。这种方式,使得燃煤在已经燃烧后很长时间才得到其工业分析值,不能起到指导生产、节约成本的目的,使燃煤成本的结算始终处于负平衡态,因此,无法实现发电厂竟实时竟价上网的目标。 煤质在线检测系统完全改变了原始的离线检测方法与手段,实现了在线、实时、连续检测分析与监控:1. 检测与分析时间:全程连续跟踪检测一组数据(包括低位热值、弹筒热值、空干基灰份、干燥基灰份、收到基灰份、干燥无灰基挥发份、空干基挥发份等),需时间约为60s;2. 检测指标为:(1) 热值(低位、弹筒):±1000J/g;(2) 灰份(空干基、干燥基、收到基):±2%;(3) 挥发份(空干基、干燥无灰基):±1%。 由于上述指标的实现,可使燃煤结算达到分时及炉前预知燃煤成本的正平衡态,从真正意义上实现了指导生产,从而为实现竟价上网提供了重要的手段。三、 傅立叶变换红外光谱仪的原理傅立叶红外光谱仪的原理是把光源发出的光,经迈克尔逊干涉仪调制成干涉光,再让干涉光照射样品,由检测器获得干涉图,由计算机把干涉图进行傅立叶变换,得到全波段吸收光谱. 傅立叶变换红外光谱仪在整个检测过程中,只有一个可动镜在实验过程中运动;它的测量波段宽,光通量大,检测灵敏度高,具有多路通过的特点,故所有频率可同时测量;它的扫描速度最快可达60次/秒,因使用调制音频测量,故杂散光不影响检测;因样品放置于分束器后测量,大量辐射由分束器阻挡,样品接受调制波,故使热效应极小;因检测器仅对调制的声频信号有反响,其自身的红外辐射不会被检测器吸收。 四、 傅立叶变换红外光谱仪的特点 付立叶变换红外光谱仪共具备六个特点,既高光通量的特点,采用光能量损失很小的反射镜,以使入射光全部通过光孔,使光通量很大;高信噪比的特点,将入射光按不同的频率被干涉仪调制成不同的声频信息值,使所用检测器既获得强度的信息,又获得频率的信息,使各种频率光同时落在检测器上,无须分辨测量既测完全部光谱;高测量精度的特点,使动镜在无摩擦的空气轴承上移动,通过激光干涉图零点取样,用计算机自动完成数据输出及绘图,无人为因素干扰;高分辨率的特点,采用多路通过的方法,使分辨率随采样数据增加而加多;测量速度快的特点,采用多次扫描类加法消除光谱噪声,改善信噪比,提高灵敏度;测量波段宽、全波段分辨率一致的特点,用干涉法采集数据,以数字形式存储运算,使采集范围广且达到全波段分辨率一致。五、现场应用情况“阜新发电厂煤质在线实时检测”科研课题测试工作于二零零三年四月十二日在二十万机组五段输煤栈道进行。装置开机时间九点零六分,结束时间十三点五十八分;现场在线实时采集原煤样品六十四个,实际得到四十九组化验室化验数据,在线实时采集光谱十六组。对比数据见下表:测试指标化验室化验 平均值装置检测 平均值绝对 误差低位热值(g/J)19984.319924.3-60弹筒热值(g/J)22607.323106.8499.5空干基灰份(%)25.8827.791.91干燥基灰份(%)26.5027.951.45收到基灰份(%)23.5423.690.15空干基挥发份(%)29.8830.350.47干燥无灰基挥发份(%)41.6941.38-0.31 阜新发电厂参加建模原煤样品离线化验按照化验室的工作要求进行,建模用原煤样品光谱采取周累计采集方法进行;建模时温度控制在24~26℃,其中低位热值分布范围为10508J/g至29588J/g;弹筒热值分布范围为12392 J/g至29388 J/g;干燥基灰份分布范围为8.49%至55.33%;空干基灰份分布范围为8.1%至53.16%;收到基灰份分布范围为7.27%至50.86%;空干基挥发份分布范围为19.21%至35.55%;干燥无灰基挥发份分布范围为28.26%至52.8%,在建模的过程中,严格按照设备的使用要求进行测试,既设备预热时间大约为40分钟。目前阜新发电厂已正常使用煤质在线检测系统。 综上,煤质在线检测系统以高精的技术、稳定的模型、实时的测量、全程的监控等技术,完全实现了原煤的在线实时检测,它不仅可用于发电厂发电燃煤成本的实时结算,还可用于入厂煤的实时检测监控,一定会为我国的燃煤企业及电力系统的节能带来无穷的经济效益和广泛的社会效益。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制