当前位置: 仪器信息网 > 行业主题 > >

环境高分辨透射显微镜

仪器信息网环境高分辨透射显微镜专题为您提供2024年最新环境高分辨透射显微镜价格报价、厂家品牌的相关信息, 包括环境高分辨透射显微镜参数、型号等,不管是国产,还是进口品牌的环境高分辨透射显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境高分辨透射显微镜相关的耗材配件、试剂标物,还有环境高分辨透射显微镜相关的最新资讯、资料,以及环境高分辨透射显微镜相关的解决方案。

环境高分辨透射显微镜相关的资讯

  • 850万!高分辨率场发射透射电子显微镜设备采购安装
    1、项目编号:JNSMX公标【2022】01号2、项目名称:高分辨率场发射透射电子显微镜设备采购安装3、预算金额:850万元4、最高限价:850万元5、采购需求:高分辨率场发射透射电子显微的采购、安装、调试及售后服务等,主要用途:精确测量碳纳米材料的厚度与层数;获得碳纳米材料的结晶度信息;获得碳纳米材料催化剂的相关信息,包括催化剂的纳米形貌、元素组成、元素分布、晶体分布等。本项目共一个标段(详见采购需求)。6、合同履行期限:合同签订后8个月内将所有仪器、设备送至采购人指定地点,并安装调试到位至验收合格。7、本项目不接受联合体投标。8、本项目接受进口产品。
  • 930万!四川大学高分辨透射电子显微镜采购项目
    项目编号:CDSCQXZB-2022-0124S项目名称:四川大学高分辨透射电子显微镜采购项目预算金额:930.0000000 万元(人民币)采购需求:1.采购项目名称:四川大学高分辨透射电子显微镜采购项目;2.数量、简要技术需求或服务要求:具体详见招标文件第六章。合同履行期限:1.国产产品:政府采购合同签订生效后300天内完成交货。2.进口产品:政府采购合同签订生效后300天内完成交货。本项目( 不接受 )联合体投标。采购需求 (1).pdf
  • 三峡大学860万采购高分辨透射电子显微镜 需进口
    p style=" text-indent: 2em text-align: justify " 根据湖北省财政厅鄂采计[2018]-37773号文的要求,中元工程咨询有限责任公司受三峡大学的委托,拟就三峡大学材料分析测试中心设备采购项目进行公开招标采购,现邀请合格的投标人前来投标。本次采购仪器为高分辨透射电子显微镜。 /p p style=" text-indent: 2em text-align: left " 招标项目编号:ZBC18120619 /p p style=" text-indent: 2em text-align: left " 招标项目名称:三峡大学材料分析测试中心高分辨透射电子显微镜采购 /p p style=" text-indent: 2em text-align: left " 采购最高限价:人民币8600000.00元 /p p style=" text-indent: 2em text-align: left " 投标截止时间:2019年01月14日9时30 /p p style=" text-indent: 2em text-align: left " 开标时间:2019& nbsp 年01月14日9时30分 /p table style=" border-collapse: collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 181" valign=" top" 仪器名称 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 109" valign=" top" 数量 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 145" valign=" top" 预算金额 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 145" valign=" top" 备注 /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 181" valign=" top" 高分辨透射电子显微镜 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 109" valign=" top" 1 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 145" valign=" top" 8600000.00元 /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 145" valign=" top" 进口 /td /tr /tbody /table
  • 950万!河南师范大学高分辨场发射透射电子显微镜设备采购项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-7072、项目名称:河南师范大学2023年化学双一流高分辨场发射透射电子显微镜设备采购项目3、采购方式:公开招标4、预算金额:9,500,000.00元最高限价:9500000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20231127-1河南师范大学2023年化学双一流高分辨场发射透射电子显微镜设备采购项目950000095000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1采购内容及标包划分:包号 设备名称 数量 单位 设备简要参数 交货期 质保期 交货地点 接受进口产品 备注豫政采(2)20231127-1 高分辨场发射透射电子显微镜 1 套 1.点分辨率:≤0.23nm2.背散射电子分辨率:≤1.0nm3. STEM BF/DF分辨率:≤0.16nm;4. 放大倍率:20-200万倍 合同签订后12个月内完成供货、安装调试完毕并交付使用 自设备验收合格之日起3年 采购人指定地点 是注:采购清单中明示接受进口产品的已经财政部门备案通过。5.2质量要求及验收标准:符合国家现行规范、合格要求,同时满足采购人要求。6、合同履行期限:同交货期7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年08月04日 至 2023年08月10日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:“河南省公共资源交易中心门户网(http://www.hnggzy.net)”;3.方式:投标人使用CA数字证书登录“河南省公共资源交易中心(http://www.hnggzy.net)”网,并按网上提示下载投标项目所含格式(.hnzf)的招标文件及资料。注册、登录、下载等具体事宜请查阅河南省公共资源交易中心网站“公共服务”→“办事指南”。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南师范大学地址:河南省新乡市建设东路46号联系人:王文辉联系方式:0373-33263572.采购代理机构信息(如有)名称:河南省国贸招标有限公司地址:郑州市金水区农业路72号2号楼3层301号联系人:周鸫联系方式:173037133203.项目联系方式项目联系人:周鸫联系方式:17303713320
  • 880万!中国科学院半导体研究所高分辨场发射透射电子显微镜采购项目
    项目编号:OITC-G220570437项目名称:中国科学院半导体研究所高分辨场发射透射电子显微镜采购项目预算金额:880.0000000 万元(人民币)最高限价(如有):880.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1高分辨场发射透射电子显微镜1是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 1120万!中国科学院大连化学物理研究所高分辨场发射透射电子显微镜等采购项目
    一、项目基本情况1.项目编号:OITC-G230311958项目名称:中国科学院大连化学物理研究所高分辨场发射透射电子显微镜采购项目预算金额:720.0000000 万元(人民币)最高限价(如有):720.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1高分辨场发射透射电子显微镜1套科研合同生效后12个月720万元中国科学院大连化学物理研究所是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。合同履行期限:合同生效后12个月内交货。本项目( 不接受 )联合体投标。2.项目编号:OITC-G230311407项目名称:中国科学院大连化学物理研究所时空分辨超快显微镜系统采购项目预算金额:400.0000000 万元(人民币)最高限价(如有):400.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1时空分辨超快显微镜系统1套科研合同生效后6个月400万元中国科学院大连化学物理研究所是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。合同履行期限:合同生效后6个月内交货。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年08月31日 至 2023年09月07日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:登录东方招标平台http://www.oitccas.com/注册并购买。方式:登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院大连化学物理研究所     地址:辽宁省大连市中山路457号         联系方式: 赵老师;0411-84379707      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯; 010-68290508;010- 68290530            3.项目联系方式项目联系人:赵老师电 话:  0411-84379707
  • 1174万!中国科学院过程工程研究所高分辨透射电子显微镜和聚焦离子束扫描电子显微镜采购项目
    一、项目基本情况1.项目编号: OITC-G230572291项目名称:中国科学院过程工程研究所高分辨透射电子显微镜采购项目预算金额:751.000000 万元(人民币)最高限价(如有):751.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1高分辨透射电子显微镜1是投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G230572290项目名称:中国科学院过程工程研究所聚焦离子束扫描电子显微镜采购项目预算金额:423.000000 万元(人民币)最高限价(如有):423.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1聚焦离子束扫描电子显微镜1是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月16日 至 2023年11月23日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院过程工程研究所     地址: 北京市海淀区中关村北二街1号        联系方式:010-82544902      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、曹山010-68290529            3.项目联系方式项目联系人:窦志超、曹山电 话:  010-68290529
  • 我国首台时间分辨透射电子显微镜研制成功
    p   10月30日,中科院条件保障与财务局组织专家对物理所李建奇课题组承担的2012年中科院科研装备研制项目“时间分辨透射电子显微镜” 进行了现场验收。项目技术测试专家组检查了设备的现场运行情况,进行了技术测试。项目验收专家组听取了项目组的工作报告、财务报告、用户使用报告以及测试报告,审核了相关文件档案。经讨论认为承担单位完成了实施方案规定的研制任务和技术指标,实现了研制目标,一致同意通过验收。 /p p   时间分辨 a href=" http://www.instrument.com.cn/zc/1139.html" target=" _self" title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 透射电子显微镜 /span /a 也称为四维超快电子显微镜(4D-UTEM)或动态电子显微镜,是近期发展起来的一种新型电子显微技术,是超快激光和高分辨电子显微术有机结合的产物, 超快电子显微术已经成为国际超快结构动力学和电子显微学的前沿领域。4D-UTEM可以在极高时间(皮秒至飞秒)和空间分辨率(纳米至埃)下观察材料中复杂的瞬态动力学过程,是研究物理、化学、生物以及材料科学中许多基本现象和机理的重要技术手段。 /p p   在研制过程中,李建奇项目小组以现代电子显微镜为平台,在多功能电子枪研制中取得了突破,并成功将超快激光引入到电子枪阴极和样品室中,实现了超快光电子脉冲的发射与样品的超快激光激发。该项目在超快电子枪设计、光发射模式下的合轴、时间零点测定及超快结构信号分析、超快电镜样品制备、弱电子剂量衍射和成像技术、超快激光精确定位及调节等方面获得一系列专利技术。 /p p   该仪器为我国首台时间分辨电子显微镜,在热发射或光发射模式下都具有优良性能。光发射模式下图像分辨率达到0.34nm,时间分辨率优于1ps,可以实现超快电子衍射和超快实空间成像,以及激光原位诱导的结构变化,对于结构动力学分析,新奇量子现象的探索和动态物理过程研究有重要意义。 /p p   基于本仪器,李建奇课题组成功研究了多壁碳纳米管受激光激发后的晶格响应过程,揭示了多壁碳纳米管中存在的显著各向异性晶格动力学过程,展示了4D-UTEM的高空间和超快时间分辨率能力,论文发表在Scientific Reports 5 (2015) 8404上。 /p p   该仪器的成功研制不仅提升了我国电子显微镜装备水平,也增强了我国科学仪器设备的自主创新能力。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/noimg/99dd246c-5f81-408a-9afc-b7fac3ce1003.jpg" title=" 图1.jpg" / /p p style=" text-align: center " 项目验收会现场 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201511/noimg/b3e9f34f-cc83-4c7a-8360-203e06678631.jpg" title=" 图2.jpg" / /p p style=" text-align: center " 现场考察及技术测试验收 /p
  • 1090万!中国科学院场发射透射电子显微镜和高分辨场发射扫描电子显微镜采购项目
    一、项目基本情况项目编号: OITC-G240261656-2项目名称:中国科学院2024年仪器设备部门批量集中采购项目预算金额:1090.000000 万元(人民币)最高限价(如有):1090.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)用户单位采购预算万元(人民币)最高限价万元(人民币)是否允许采购进口产品20场发射透射电子显微镜1国家纳米科学中心650650是包号货物名称数量(台/套)用户单位采购预算万元(人民币)最高限价万元(人民币)是否允许采购进口产品21高分辨场发射扫描电子显微镜1中国科学院兰州化学物理研究所440440是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:合同生效后15个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年07月25日 至 2024年08月01日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层方式:登录“东方招标”平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院兰州化学物理研究所     地址:兰州市城关区天水中路18号         联系方式:0931-4968123      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:冯宇图 吴旭 李媛 010-68290550、010-68290510、010-68290524            3.项目联系方式项目联系人:冯宇图 吴旭 李媛 ytfeng@oitc.com.cn电 话:   010-68290550、010-68290510、010-68290524
  • 1240万!中国科学院超高分辨率激光共聚焦显微镜和原位液体环境透射电镜采购项目
    一、项目基本情况项目编号:OITC-G240261656-2项目名称:中国科学院2024年仪器设备部门批量集中采购项目预算金额:1240.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)用户单位采购预算(人民币)最高限价(人民币)是否允许采购进口产品19原位液体环境透射电镜1中国科学院理化技术研究所 900万元 / 是包号货物名称数量(台/套)用户单位采购预算万元(人民币)是否允许采购进口产品22超高分辨率激光共聚焦显微镜1国家纳米科学中心340是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:收到订单后15个月本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年07月25日 至 2024年08月01日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层方式:登录“东方招标”平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院理化技术研究所     地址:北京市海淀区中关村东路29号        联系方式:010-82543812       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李媛 吴旭 冯宇图 010-68290524、010-68290510、010-68290550            3.项目联系方式项目联系人:李媛 吴旭 冯宇图 liyuan@oitc.com.cn电 话:  李媛 吴旭 冯宇图 010-68290524、010-68290510、010-68290550
  • 大连化物所预算869万元采购1台高分辨三维重构X射线显微镜
    近日,中国科学院大连化学物理研究所公开招标,预算869万元采购1台高分辨三维重构X射线显微镜。招标项目详情如下:项目编号:OITC-G240270123项目名称:中国科学院大连化学物理研究所高分辨三维重构X射线显微镜采购项目预算金额:869万元(人民币)最高限价(如有):869万元(人民币)采购需求:高分辨三维重构X射线显微镜 1 台/套 (允许进口产品)技术要求:1 分辨率及成像架构 ★1.1 最高空间分辨率:最佳三维空间分辨率≤0.5μm1.2 当 X 射线源距样品旋转轴 50mm 时的最佳空间分辨率≤1.0μm 1.3 最小可实现的体素(最大放大倍率下样品的体素大小)≤ 40 nm ★1.4 系统必须采用几何+光学两级放大的架构,以满足我单位对大样品进行局部高分辨率的成像需求。2 三维组织表征、重构及成像2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷。 ★2.2 利用吸收衬度原理和相位传播衬度原理,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像。 2.3 2000 张2k×2k投影重构图像数据(重构972 张Slice 图像)时间≤2.2分钟。2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据2.5 具备定位放大扫描功能2.6 具备样品移动自适应矫正、温度移动矫正、图像比对位移参照矫正等功能2.7 具备吸收衬度成像和基于边缘折射传播的相位衬度成像功能2.8 应具备硬件+软件的自动防撞机制, 可通过可见光扫描快速获取样品形状和实际轮廓,根据样品形状和轮廓,自动对源、探测器位置进行限位,以保证硬件和样品安全 。3 光源与滤波片★3.1 高能量微聚焦闭管透射式X射线源3.2 最高电压≥160kV,最低电压≤30kV,电压在最低和最高之间连续可调3.3 最大功率不小于25W3.4 Z轴可移动范围不小于190 mm 3.5 X射线泄露≤1μSv/hr(距离设备外壳25mm以上处)★3.6 带有单过滤波片支架,12个适用于不同能量段扫描的滤波片4 探测器4.1 能够实现二级放大的16 bit噪声抑制闪烁体耦合探测器, 探测器能够实现2048×2048以上的像素成像和三维重构★4.2 包含0.4X物镜探测器,实现2048×2048像素成像和三维重构4.3 包含高对比度,低分辨率的4X物镜探测器4.4 包含高对比度、高分辨率的20X物镜探测器4.5 探测器可移动范围不小于280mm★4.6 包含高分辨率40X物镜探测器5 样品台及样品室★5.1 全电脑控制高精度4轴马达样品台,具备超高的样品移动精度★5.2样品台X轴运动范围50mm;Y轴运动范围100mm;Z轴运动范围50mm 5.3 样品台旋转运动范围:360度旋转5.4 样品台最大承重范围:25kg5.5 样品台可承受样品尺寸范围:300mm★5.6 为了防止X 射线辐射泄漏、保护仪器操作人员,设备须采用全封闭式铅房设计,不能留有观察玻璃窗。样品室内配备可见光相机,确保操作人员无需通过观察玻璃窗即可监控和操作样品。5.7 配置原位台接口,可后期升级原位台。5.8 系统应具备智能防撞系统,可根据样品尺寸设定源和样品的范围,保障在实际成像过程中不会发生样品和源、探测器的碰撞损坏设备或样品。6 仪器控制与数据采集、重构、可视化及分析系统6.1 全数字化仪器控制,计算机控制工作站★6.2 具备三维数据采集及控制软件, 并提供1次免费升级服务。6.3 支持原始数据查看,图像标准特征显示(如亮度、对比度、放大等)、注释、测量6.4 可以进行基本图像测量,如图像计算、滤波等6.5具备快速三维数据重构软件6.6 具备三维数据可视化软件,展示三维重构结果,包括虚拟断层,着色、渲染、透视等,并实现基本分析功能和注释(3D Viewer)★6.7 专业的三维数据分析软件(一套):可进行高级三维重构后视图展示与三维高级数据处理与分析包括定量分析与统计分布、切片配准与图像滤波、三维图像数据分割与特征提取、多模态融合与分析、三维模型生成与导出,几何特征计算等(如可以实现三维数据处理,对样品三维数据结果进行相分割,孔隙率计算,裂纹及孔的尺寸统计与空间分布)并且可与其它三维软件兼容, 厂家自带软件全部功能开放7 三维X射线显微镜控制主机(须内附三维X射线显微镜控制单元)Microsoft Windows10操作系统、符合或优于Dual Eight Core CPU 、 CUDA-enabled 3D GPU,12TB(3×4 TB)硬盘容量、32GB内存、RAID-5可刻录式光驱、24寸液晶显示器;额外再配置一台数据处理工作站,要求不低于以下配置:Microsoft Windows 10及以上正版操作系统、双10核CPU、Nvidia RTX A6000GPU、6TB硬盘容量、512GB内存、RAID-5可刻录式光驱、24寸显示屏。8 样品座及标样8.1 配备对中和分辨率测试标样1套,配备针钳式样品座、夹钳式样品座、夹持式样品座、高铝基座样品座、高精度针钳式样品座。9 可拓展功能★9.1 可与双束系统、场发射电镜的数据相关关联,可将CT所获得的数据文件格式如CZI, ZVI, TIFF, MRC等格式的二维图像和TXM 3D X-ray volumes体量数据,导入到电镜或者双束系统的软件中,实现亚微米级到纳米级的数据关联以及数据处理。10 其他硬件10.1 人体工学操作台,大移动范围、高精度花岗岩工作台,四门式防辐射安全屏蔽罩,配备辐射安全连锁装置和“X-ray on”指示器 潜在投标人需于2024年06月11日至2024年06月18日,上午9:00至11:00,下午13:00至17:00(北京时间,法定节假日除外),登录东方招标平台www.oitccas.com注册并购买招标文件,并于2024年07月02日09点30分(北京时间)提交投标文件。联系方式:1. 采购人信息名称:中国科学院大连化学物理研究所地址:辽宁省大连市中山路457号联系方式:王老师,0411-843797072. 采购代理机构信息名称:东方国际招标有限责任公司地址:北京市海淀区丹棱街1号互联网金融中心20层联系方式:窦志超、王琪 010-682905233. 项目联系方式项目联系人:窦志超、王琪电话:010-68290523附件:采购需求.pdf
  • 999万!中国科学院高分辨核磁共振波谱仪和200KV透射电子显微镜采购项目
    一、项目基本情况项目编号:OITC-G240261656-1项目名称:中国科学院2024年仪器设备部门批量集中采购项目预算金额:999.000000 万元(人民币)最高限价(如有):999.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)用户单位采购预算(人民币)最高限价(人民币)是否允许采购进口产品4高分辨核磁共振波谱仪1套中国科学院广州能源研究所580万元580万元是包号货物名称数量(台/套)用户单位采购预算(人民币)最高限价(人民币)是否允许采购进口产品5200KV透射电子显微镜1套中国科学院微生物研究所419万元419万元是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见项目需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年07月25日 至 2024年08月01日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层方式:登录“东方招标”平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院广州能源研究所     地址:广州市天河区能源路2号        联系方式:陈晓丽 020-87057719      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:迟兆洋、叶明、荀笑尘、芮虎峥 ,020-87001523、010-68290583/0589 ytlin@oitc.com.cn 、cjwang@oitc.com.cn            3.项目联系方式项目联系人:迟兆洋、叶明、荀笑尘、芮虎峥电 话:  020-87001523、010-68290583/0589
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科 作者机构:青岛科技大学 橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractThe performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality, the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example, the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride), special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the β and γ crystal modifications. Therefore, it is of great significance to disclose the structure formation mechanism of polymers at all levels, to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper, we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers, including a brief introduction of the working principle of transmission electron microscopy, special techniques used for sample preparation and for instrument operation to get high-quality experimental data, analysis of the results and correlation of them to different structures.关键词聚合物   透射电子显微镜   样品制备   仪器操作   结构解释 KeywordsPolymer   Transmission electron microscopy   Sample preparation   Instrument operation   Structure explanation  聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性. 首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能. 例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5]. 对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能. 以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90 MPa和10 MPa,分子链高度取向后,模量增加到90 GPa,增幅为3个数量级,强度(3 GPa)也增加了近300% [6]. 另外,有机光电材料的性能也与分子链排列方式密切相关[7~12]. 对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20]. 由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关. 因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据. 经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势. 如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等. 相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42]. 当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59]. 例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775 nm)和c-轴(0.777 nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54]. 透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60]. 例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献. 然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术. 实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察. 为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜. 如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积. 基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰. 另外,考虑到人眼的分辨本领大概为0.1 mm,而光学显微镜的极限分辨率为0.2 μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2 μm放大到人眼能分辨的 0.1 mm. 由此可见,要观察更细微结构需要提高显微镜的分辨率. 根据瑞利准则,光学显微镜的分辨本领可表示为:Fig. 1Sketch illustrating the working principle of optical microscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA = nsinα. 可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1 μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26 × V−−√式表示,根据该公式,100 kV和200 kV电压加速电子束的波长分别为0.00387 nm和0.00274 nm,经相对论修正后变为0.0037 nm和0.00251 nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发. 如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objective lens)以及投影镜(projection lens)均由磁透镜替代了光学显微镜的玻璃透镜. 另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜. 例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig. 2Sketch illustrating the working principle of electron microscope.Fig. 3Sketch shows different electrons generated after interaction of the incident electrons with the atoms in the sample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1 µm的水. 因此,要求电镜观察用样品非常薄,在200 nm以内,最好控制在30~50 nm. 用于高分辨成像的样品需更薄,最好为10 nm左右. 因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性. 一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构. 另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品. 基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法. 下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的. 支撑膜的厚度一般为10 nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现. 如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60 ℃干燥后便可投入使用. 根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5 wt%~1.5 wt%范围内. 对有经验的学者而言,滤纸捞膜法更简洁. 如图4(b)所示,用浓度为0.5 wt%~1.5 wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig. 4Sketch illustrating the ways for preparing nitro cellulose (NC) supporting membrane used in electron microscopy experiments. (a) Sedimentation of the NC membrane on copper grids. (b) Filter paper fishing of copper grids supported by the NC membrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得. 如图5(a)所示,将沉浸于0.1 wt%~0.2 wt% PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig. 5A diagram illustrating the preparation of PVF support film through dipping a clean glass slide into its chloroform solution (a) and then floating the thin PVF layer onto the surface of distilled water (b).2.1.3无定型碳支撑膜制备用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a) 悬浮法. 对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b) 微量喷雾法. 用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集. 为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上. 微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c) 干撒法. 对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.
  • 赛默飞世尔科技推全新低温透射电子显微镜Krios解决方案 可获得更小蛋白质的高分辨率结构
    p style=" text-align: justify text-indent: 2em line-height: 1.5em " 在今天2019年显微镜和微分析展会中,赛默飞世尔科技推出了一种新的 strong Krios解决方案 /strong ,旨在通过改进的易用性,更快的结果和市场上最紧凑的300kV低温EM显微镜设计来打破低温EM采用的障碍。全球领先的研究机构和制药公司的科学家已经使用Thermo Scientific解决方案来加速疾病理解和药物发现的道路。新的Krios解决方案现在可以帮助他们更快地解决更多结构,同时可以 span style=" color: rgb(0, 112, 192) " strong 获得更小蛋白质的高分辨率结构 /strong /span 。 /p p style=" text-align: center line-height: 1.5em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/c398d254-14bf-4df2-9cc6-800a5f77aa4f.jpg" title=" 22222222222.jpg" alt=" 22222222222.jpg" / /p p style=" text-align: center text-indent: 0em line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " Thermo Scientific Krios G4低温透射电子显微镜(Cryo-TEM) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " “随着cryo-EM的迅速普及,研究人员必须拥有能够产生最高质量结果的快速,易用的解决方案,尤其是随着单颗粒分析和低温断层扫描等先进技术的重要性日益增加,”总裁Mike Shafer说道。 Thermo Fisher Scientific的材料和结构分析。 “我们的新Krios解决方案满足了这些需求,加速了有助于解决人类最紧迫问题的科学发现。” /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" color: rgb(0, 112, 192) " strong Thermo Fisher的下一代Krios解决方案包括以下组件: /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " T strong hermo Scientific Krios G4低温透射电子显微镜(Cryo-TEM) /strong :高度小于3米,更紧凑的Krios G4是市场上唯一适合标准尺寸实验室的自动冷冻TEM仪器,减少了需要对设施进行结构修改。它还包括性能提升,如更高的吞吐量(使用新的光学模式)和可靠性,使Krios G4更易于用于新的和经验丰富的低温EM用户。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 猎鹰4相机 /strong :一种更灵敏的直接电子探测器,猎鹰4捕捉图像的速度比以前的型号快10倍。该摄像机可安装在新的或现有的300kV和200kV Thermo Scientific低温TEM上,可提高生产率,同时提高图像质量,使其成为小蛋白质的理想检测器。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 由Athena提供支持的EPU质量监控和数据管理 /strong :这款易于使用的软件通过实时预处理提高了工作效率,因此研究人员可以在收集数据时远程监控数据质量并优化数据收集时间。数据管理软件由Athena提供支持,Athena是一个安全的平台,供研究人员轻松组织,可视化和共享工作流程结果。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " text-indent:=" " white-space:=" " text-align:=" " span style=" margin: 0px padding: 0px font-size: 18px background-color: rgb(255, 192, 0) " strong style=" margin: 0px padding: 0px " 关注【3i生仪社】掌握更多生命科学行业资讯 /strong br data-filtered=" filtered" style=" margin: 0px padding: 0px " / /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " white-space:=" " text-align:=" " img src=" https://img1.17img.cn/17img/images/201908/uepic/f1611613-5075-4769-95f2-4f9897bb2207.jpg" title=" qrcode_for_gh_91d290758d40_344.jpg" alt=" qrcode_for_gh_91d290758d40_344.jpg" width=" 204" height=" 204" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 204px height: 204px " / /p
  • FEI公司将为美国TEAM计划建造世界上最高分辨率的电子显微镜
    能源部TEAM 计划目标于直接观察0.5 埃尺度 [2004 年11 月29 日] FEI 公司(NASDAQ:FEIC)宣布,联合承担TEAM 计划的几家实验室,已选择FEI 公司作为建造世界上最高分辨率(扫描)透射电子显微镜的研发合作伙伴。TEAM 计划是由美国能源部基础能源科学司投资数千万美元资助的显微学项目。该项目将促成一台新型显微镜的诞生。这台能在前所未有的0.5 埃分辨率下直接观察和分析纳米结构的显微镜,必将创造卓越的新科学良机。0.5 埃大约是碳原子尺寸的三分之一,也是原子尺度研究的一个关键尺寸。 在此项独一无二的计划中,电子显微学领域颇有建树的五家主要实验室(阿贡国家实验室,Brookhaven 国家实验室,劳伦斯伯克力国家实验室,橡树岭国家实验室,Frederick Seitz 材料研究室)通力合作,并筛选出FEI 公司为研发伙伴。每家实验室分别在这项雄心勃勃的使命中担当不同的角色,以期实现(甚至在三维空间)直接观察原子尺度的有序度、电子结构、单体纳米结构的动态。提议中的电子显微镜,自成一小型材料科学实验室,可进行实时的分析和特征描述,以促进独特的多学科交叉研究。 像差矫正电子显微技术将是TEAM 显微镜的核心。为达到0.5 埃分辨率而需要的更密集、更明亮的电子束,也会导致更强的样品信息、更高的图像衬度、更灵敏的分析本领以及史无前例的空间分辨率。成功开发新型像差矫正器将展现最基本的原子世界景观。矫正器的设计和开发,将与CEOS 公司(FEI 公司在尖端矫正器技术上的协作单位)合作完成。 “TEAM 协作团体考察了FEI 公司,以及公司的发展规划和在尖端电子光学上的历史记录,得出结论该公司是促成这项热望中的计划成功的最佳伙伴。”TEAM 科学总监暨伯克力国家电镜中心主任Uli Dahmen 指出:“FEI 公司全新的矫正器专用平台,因为能满足像差矫正仪器严格的稳定性要求,是TEAM 显微镜的最可行的出发点。有FEI 公司作为合作伙伴,我们有信心实现TEAM 计划的挑战性目标。” “我们对被有威望和有国际声誉的TEAM 计划选中而感到自豪,” FEI 公司董事长、总裁兼执行总监Vahé Sarkissian 说:“这将给我们机会以提升我们的电子光学才能,保持在高分辨成像和分析领域的世界领先地位,保持纳米技术时代的重要设备厂商地位。FEI 公司承诺:通过与TEAM计划等的合作,与CEOS 公司的联系,我们将竭尽全力完成任务。” “我们十分自豪,TEAM 计划首肯了我们常规推广的、用于超高分辨率的300 千伏(扫描)透射专用矫正电镜。” FEI 公司(扫描)透射电镜事业部副总裁George Scholes 说。“几年来我们致力于开发具有前所未闻的可靠性和不可比拟的重复性的系统。在此过程中,我们认真听取了TEAM伙伴和其它(扫描)透射电镜科学泰斗的建议。”他补充道:“我们深感激动,将要出台的新矫正器专用平台就已被TEAM 选中。我们坚信,我们的努力将重建纳米尺度研究、发现、开发的准则。” 科研人员和工业界用户的最大收益之一,是新平台所提供的极为重要的变通性,以适应于今后的部件升级发展。将来FEI 公司和TEAM 计划所做的(扫描)透射电镜技术革新,能在这一系统上进行翻新改造。 “成功制做了200 千伏透射和扫描透射电镜的球差矫正器之后,我们很高兴被选中为TEAM计划300 千伏球差/色差矫正器的开发伙伴。” 位于德国海德堡的CEOS 公司的创办人之一Max Haider 博士说:“我们自信我们今天在FEI 公司超稳定平台上所做的工作,必将为科学家们提供新的装备,以迎接前沿开发和研究的挑战。” 关于FEI 公司: FEI 公司服务于纳米技术的装备,以聚焦离子束和电子束技术为特色,提供最高分辨率小于1 埃的3D 特征描述、分析及修改功能。公司在北美和欧洲拥有研究开发中心,在全球四十多个国家经营销售和提供维修服务。FEI 公司将纳米尺度呈献给研究人员和生产厂商,协助将本世纪一些最杰出的理念变成现实。更多的信息可在FEI 公司网页上找到:http://www.feicompany.com 关于TEAM 计划: 能源部电子束微特征描述中心提议,引导开发尖端像差矫正电子显微镜,提供必要的基础设施,使该设备能广泛地被科学界用户利用。五家在电子显微学卓有成绩的单位阿贡、Brookhaven、橡树岭、劳伦斯伯克力国家实验室、Frederick Seitz 材料研究室,将联手在国家电镜中心(运作于劳伦斯伯克力国家实验室)建造第一台TEAM电镜。更多信息,请访问: http://ncem.lbl.gov/team3.htm 和http://www.anl.gov/Media_Center/News/2004/MSD041112.html 关于CEOS公司: CEOS公司(Corrected Electron Optical Systems或矫正电子光学系统)是带电粒子透镜像差矫正器的代表。由M. Haider博士和J. Zach博士八年前在德国海德堡成立的公司,专门从事高尖端电子光学部件的研究和开发。更多信息见: http://www.ceos-gmbh.de 此新闻发布具有瞻前性的陈述,对预期产品的论述。影响到这些超前性陈述的可能因素包括(并不局限于项目的改变和取消):FEI 公司、供应商或项目伙伴在实现项目预期计划上的技术能力局限性;执行中产生的延迟因素或与预期结果相异的结论;意料之外的技术需求;主要供应商或项目伙伴破产。欲了解这些或其它有可能造成与预期目标不符的因素,请参阅10-K 和10-Q 表格,以及美国证券交易委员会的文件。FEI 公司将不予进一步陈述。 中文版译注: 1. TEAM为Transmission Electron Aberration-corrected Microscope 的字头缩写,意为透射电子像差矫正显微镜。 2. (扫描)透射电子显微镜的英文原文是scanning/transmission electron microscope 或(S)TEM,意为带有或不带有扫描透射功能的透射电子显微镜。 3. 任何中文版疑义,以英文版为准。
  • 1570万!高分辨率场发射扫描电镜、转盘共聚焦显微镜等采购项目
    1.项目编号:440001-2023-16757项目名称:惠州学院高分辨率场发射扫描电镜(场发射电子扫描探针微分析仪)科研仪器设备购置项目采购方式:公开招标预算金额:5,600,000.00元采购需求:合同包1(高分辨率场发射扫描电镜(场发射电子扫描探针微分析仪)):合同包预算金额:5,600,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他分析仪器高分辨率场发射扫描电镜(场发射电子扫描探针微分析仪)1(台)详见采购文件5,600,000.00-本合同包不接受联合体投标合同履行期限:交货时间在合同签订后6个月内。2.项目编号:HW20230022/ HBT-15123011-230415项目名称:华中科技大学转盘共聚焦显微镜采购项目预算金额:400.0000000 万元(人民币)最高限价(如有):400.0000000 万元(人民币)采购需求:华中科技大学拟采购转盘共聚焦显微镜一套,采购清单如下,具体要求见本项目招标文件第三章内容。序号货物名称是否接受进口产品单位数量简要技术要求1转盘式共聚焦显微镜是套1双相机光路,可以同步双色双相机成像合同履行期限:交货期:自合同签订之日起90天内。质保期:自验收合格之日起3年。本项目( 不接受 )联合体投标。3.项目编号:HW20230029/HBT-15123012-230416项目名称:华中科技大学近红外上转化共聚焦显微镜采购项目预算金额:430.0000000 万元(人民币)最高限价(如有):430.0000000 万元(人民币)采购需求:华中科技大学拟采购近红外上转化共聚焦显微镜一套,采购清单如下,具体要求见本项目招标文件第三章内容。序号货物名称是否接受进口产品单位数量简要技术要求1近红外上转化共聚焦显微镜是套1不少于六个独立的荧光检测器,一个透射DIC检测通器,所有通道可实时扫描、同时叠加合同履行期限:交货期:自合同签订之日起6个月内。质保期:自验收合格之日起整机质保3年。本项目( 不接受 )联合体投标。4.项目编号:SDSHZB2023-243项目名称:山东大学超声波扫描显微镜采购项目采购方式:竞争性磋商预算金额:180.0000000 万元(人民币)最高限价(如有):180.0000000 万元(人民币)采购需求:超声波扫描显微镜,亟需购置,具体内容详见磋商文件。合同履行期限:详见磋商文件本项目( 不接受 )联合体投标。技术要求.pdf惠州学院高分辨率场发射扫描电镜(场发射电子扫描探针微分析仪)科研仪器设备购置项目招标文件(2023050501) (1).zip
  • 2130万!中科院长春应化所原子分辨率双球差透射电子显微镜公开招标
    东方国际招标有限责任公司受中国科学院长春应用化学研究所委托,根据《中华人民共和国政府采购法》等有关规定,现对中国科学院长春应用化学研究所原子分辨率双球差透射电子显微镜招标采购项目进行公开招标,欢迎合格的供应商前来投标。  项目名称:中国科学院长春应用化学研究所原子分辨率双球差透射电子显微镜招标采购项目  项目编号:OITC-G16031838  项目联系方式:  项目联系人:王军  项目联系电话:68725599-8440  采购单位联系方式:  采购单位:中国科学院长春应用化学研究所  地址:吉林省长春市人民大街5625号  联系方式:苑老师 0431-85262186  代理机构联系方式:  代理机构:东方国际招标有限责任公司  代理机构联系人:王军 68725599-8440  代理机构地址: 北京市海淀区阜成路67号银都大厦15层  一、采购项目的名称、数量、简要规格描述或项目基本概况介绍:  二、投标人的资格要求:  1) 符合《中华人民共和国政府采购法》第二十二条要求 2) 按本投标邀请的规定获取招标文件。3) 投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。4) 代理商投标必须有授权书。  三、招标文件的发售时间及地点等:  预算金额:2130.0 万元(人民币)  时间:2016年11月17日 09:00 至 2016年11月23日 17:00(双休日及法定节假日除外)  地点:5、 招标文件采用网上电子发售购买方式,招标文件销售时间:2016年11月17日—23日.(5个工作日,节假日除外):1)有兴趣的投标人可登陆网址(http://www.o-science.com招标在线频道 频道服务电话:68729910),完成投标人注册手续(免费),然后登录系统浏览该项目下产品的“技术指标”,已注册的投标人无需重新注册。如决定购买招标文件,请完成标书款缴费及标书下载手续,并与招标机构进行确认。每包600元人民币。2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号),在开标现场向东方国际招标有限责任公司索取标书款发票。  招标文件售价:¥600.0 元,本公告包含的招标文件售价总和  招标文件获取方式:5、 招标文件采用网上电子发售购买方式,招标文件销售时间:2016年11月17日—23日.(5个工作日,节假日除外):1)有兴趣的投标人可登陆网址(http://www.o-science.com招标在线频道 频道服务电话:68729910),完成投标人注册手续(免费),然后登录系统浏览该项目下产品的“技术指标”,已注册的投标人无需重新注册。如决定购买招标文件,请完成标书款缴费及标书下载手续,并与招标机构进行确认。每包600元人民币。2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号),在开标现场向东方国际招标有限责任公司索取标书款发票。  四、投标截止时间:2016年12月06日 14:00  五、开标时间:2016年12月06日 14:00  六、开标地点:  在东方国际招标有限责任公司1513会议室公开开标  七、其它补充事宜  本项目允许采购进口产品。  招标机构名称:东方国际招标有限责任公司  地  址:北京市海淀区阜成路67号银都大厦15层 邮  编:100142  电  话: 68725599-8440 传  真:68458922  电子信箱:wangjun@osic.com.cn 联系人:王军  人民币支付银行:  开户名(全称):东方国际招标有限责任公司  开户银行:招商银行北京西三环支行  帐号:862081657710001  招标人:中国科学院长春应用化学研究所  地址:吉林省长春市人民大街5625号  电话:0431-85262186  备注:鼓励以电汇方式购买招标文件、递交投标保证金和支付中标服务费:  须在电汇凭据附言栏中写明招标编号及用途。  以电汇方式购买招标文件的,还需注明项目名称、供应商名称、联系人及联系方式、邮寄地址等相关信息(传真010-68458922)。  投标保证金只能采用电汇或银行保函支付。  a)信用信息查询渠道:“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)等。  b)信用信息查询截止时点:同投标截止期,即查询投标人截止到投标截止期的信用信息记录。  c)信用信息查询记录和证据留存的具体方式:信用信息查询记录将以网站截图打印稿形式与其他采购文件一并保存。  d)信用信息的使用规则:如投标人为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人或重大税收违法案件当事人名单的供应商,或为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商,则其投标将被拒绝。  八、采购项目需要落实的政府采购政策:  中华人民共和国政府采购法
  • 9642万元预算!2022年扫描电镜、透射电镜、原子力显微镜采购意向盘点(4-12月)
    2022年4月,部分高校在中国政府采购网陆续公布了其2022年4-12月的仪器采购意向。仪器信息网将各高校和研究所2022年4-12月扫描电镜、透射电镜、原子力显微镜等采购意向加以整理,涉及共约28台(套)仪器,采购预算总额高达约9642万元。仪器采购单位涉及19个高校及研究所,包括电子科技大学、东北林业大学、南京航空航天大学、天津大学、中国科学技术大学、中南大学、中国科学院半导体研究所、中国科学院大连化学物理研究所、中国科学院电工研究所、中国科学院福建物质结构研究所、中国科学院金属研究所、中国科学院兰州化学物理研究所、中国科学院青海盐湖研究所、中国科学院上海光学精密机械研究所、中国科学院上海硅酸盐研究所、中国科学院上海应用物理研究所、中国科学院生态环境研究中心、中国科学院苏州纳米技术与纳米仿生研究所、中国科学院武汉病毒研究所、中国科学院长春应用化学研究所。从采购时间上看,2022年4月采购7台(套),5月采购8台(套),6月采购4台(套),7-8月各采购1台(套),9-10月各采购2台套。12月采购3台(套)。从采购金额上,扫描电镜最低采购预算为100万,最高采购预算530万元;透射电镜采购预算最低为380万元,最高采购预算金额为980万元;原子力显微镜最低采购预算金额为163万元,最高采购预算金额为300万元。由于部分高校仅集中发布了4-6月的仪器采购意向,后续仍将对各大高校研究机构采购信息进一步跟踪。各高校2022年4-12月扫描电镜、透射电镜、原子力显微镜等采购意向整理序号采购单位采购项目名称采购品目采购需求概况(点击查看)预算金额(万元)预计采购日期1中国科学技术大学透射电镜原位实验系统A033499其他专用仪器仪表详见项目详情6002022年5月2中国科学技术大学原子力显微镜A02100301显微镜详见项目详情3002022年10月3天津大学天津大学机械学院大样品台原子力显微镜A02100301显微镜详见项目详情1632022年5月4电子科技大学扫描电子显微镜A02100305-电子光学及离子光学仪器详见项目详情3902022年5月5中南大学中南大学基础医学院扫描探针显微镜采购项目A02100301 A02100301显微镜详见项目详情1502022年4月6南京航空航天大学快速扫描探针显微镜A02100301-显微镜详见项目详情2002022年4月7南京航空航天大学场发射高分辨透射电子显微镜A02100301-显微镜详见项目详情8202022年4月8东北林业大学多维材料表征平台一期建设项目(透射电子显微镜)A02100301显微镜详见项目详情9802022年5月9中国科学院大连化学物理研究所扫描电子显微镜A02100301详见项目详情1002022年8月10中国科学院大连化学物理研究所电子束-离子束双束显微镜A02100305详见项目详情7502022年6月11中国科学院长春应用化学研究所透射电镜CMOS相机A0202050105详见项目详情*2022年4月12中国科学院上海硅酸盐研究所具有原位拉伸功能的台式扫描电镜A02100301显微镜详见项目详情1312022年6月13中国科学院生态环境研究中心高分辨原子力显微镜A02100301详见项目详情1102022年12月14中国科学院福建物质结构研究所透射电镜A02100301显微镜详见项目详情3802022年5月15中国科学院兰州化学物理研究所原子力显微镜A02100301显微镜详见项目详情2602022年5月16中国科学院青海盐湖研究所扫描电镜A02100304详见项目详情1502022年4月17中国科学院武汉病毒研究所电镜序列断层成像超薄切片机采购项目A02100604生物、医学样品制备设备详见项目详情1202022年4月18中国科学院半导体研究所高分辨场发射透射电子显微镜A033499-其他专用仪器仪表详见项目详情8002022年5月19中国科学院半导体研究所扫描电子显微镜(SEM)A033499-其他专用仪器仪表详见项目详情418.12022年5月20中国科学院半导体研究所高分辨场发射透射电子显微镜A033499-其他专用仪器仪表详见项目详情7002022年9月21中国科学院半导体研究所扫描电子显微镜A033499-其他专用仪器仪表详见项目详情5302022年9月22中国科学院上海光学精密机械研究所EBSD扫描电子显微镜A02100699-其他试验仪器及装置详见项目详情3002022年6月23中国科学院电工研究所高分辨场发射扫描电镜A02100399详见项目详情4002022年10月24中国科学院金属研究所扫描探针显微镜A02100301显微镜详见项目详情1502022年6月25中国科学院苏州纳米技术与纳米仿生研究所原位扫描电子显微镜A02100399-其他光学仪器详见项目详情2802022年12月26中国科学院苏州纳米技术与纳米仿生研究所原位扫描电子显微镜-真空腔体A032199-其他电工、电子专用生产设备详见项目详情1802022年12月27中国科学院青海盐湖研究所扫描电镜A02100304详见项目详情1502022年4月28中国科学院上海应用物理研究所透射电镜原位高温力学测量杆A02100416分析仪器辅助装置详见项目详情1302022年7月
  • 球差校正透射电子显微镜新技术及应用研讨会在陵水成功举办
    3月7日,“中国电子显微镜学会第十一届常务理事会”召开同期,由中国电子显微镜学会主办的“球差校正透射电子显微镜新技术及应用研讨会”在陵水举办,研讨会邀请数位青年专家代表以报告和座谈讨论的形式分享各自在球差校正透射电镜技术及应用方面的新应用进展。同时,出席本次研讨会的还包括中国电子显微镜学会常务理事代表、电镜类科学仪器公司代表等,大家在讨论环节,针对应用进展、仪器技术需求、更好合作等话题进行了深层次的交流探讨。研讨会现场中国科学院院士、浙江大学教授张泽致辞张泽院士在致辞中表示,电子显微学是一门涉及物理、化学等,且与电镜相关仪器设备紧密关联起来的交叉学科,交叉学科的发展,无论技术研究、方法学研究,还是仪器技术开发等,大家都需要互相支持、互相欣赏。其次,从电镜等设备引进时间分布来看,大家有先后,建议大家互通有无,共同发展。同时强调,仪器设备技术对于原创性、变革性成果至关重要,仪器设备的自主发展是学科将来更好发展的必经之路。最后表示,青年学者们的工作情况代表着中国电子显微学界发展的进展,希望大家在本次交流中收获进步,在进步中相互支持、共谋发展。报告人:浙江大学教授 田鹤报告题目:电荷与自旋相关局域有序特性的探索研究电荷与自旋相关局域有序特性对于进一步发现关联材料等的新奇物性具有重要意义,田鹤在报告中分享了团队十余年来,利用原子尺度电子显微技术方法研究电荷与自旋相关局域有序特性的一些探索。围绕电荷成像的瓶颈与关键问题、自旋成像的瓶颈与关键问题、涡旋电子探针问题、散射理论与实验设置问题等依次展开讨论。实现了电荷、自旋局域有序特性的一些探测,包括原子层面的电荷、轨道、自旋耦合,电荷、轨道、自旋等多自由度调控等。最后,田鹤表示,电子显微学方法的研究虽然周期较长,但是是值得付出一生的事业,这也呼应了那句古语“工欲善其事必先利其器”。报告人:中国科学院大学教授 周武报告题目:功能材料的单原子尺度谱学研究在催化剂中起到关键作用的可能是一些单个金属原子的原子尺度结构特征,所以除了看到这些单个金属原子,还需要分析这些金属原子的种类、这些单个金属原子跟周围其它非金属原子发生怎样的配位相互作用等。报告中,周武主要分享了团队近年来关于功能材料单原子尺度谱学的研究进展。研究主要基于独特的单色仪球差校正透射电镜开展,该电镜是国际上能量分辨率和空间分辨率最高的30kV低压电镜之一。报告首先介绍了孤立单金属原子谱学分析首要解决的孤立单金属原子成像问题,通过仪器方法的突破案例等分享了如何保证成像的质量。接着,讲解了进一步谱学分析的相关进展。并分享了利用这些方法应用于单原子催化剂等实际样品中的一些案例和取得的系列成果,说明了球差显微镜的重大意义。报告人:清华大学副研究员 陈震报告题目:Electron psychography for ultrahigh resolution imaging of atomic structure and spin texture陈震长期致力于开发新型电子显微学技术,尝试突破现有球差透射电子显微镜成像技术的极限,进一步提高球差透射电子显微镜的空间分辨率。报告主要分享了利用psychography(叠层技术)方法对原子结构和磁结构高分辨成像的研究。研究主要基于四维扫描透射电子显微术(4D-STEM)。陈震首先介绍了psychography方法的一系列优势,分辨率方面,基于球差校正高分辨的基础,进一步把球差透射电子显微镜的空间分辨率提高2.5倍,至0.3埃以下。他进一步介绍了psychography方法在电磁场成像方面的发展情况,并介绍了团队在超高分辨率的磁结构成像的最新进展:揭示复杂氧化物中最邻近的氧原子的分布细节,且精确测出铁原子间距。叠层球差透射电子显微技术在工程材料等领域有着广泛的应用潜力。报告人:北京工业大学 李志鹏报告题目:透射电镜原位原子尺度多场耦合研究平台开发及应用李志鹏博士长期致力于发展原子分辨的材料力学性能原位实验装置。他介绍了他参与发展的世界最先进(领先)的“球差透射电子显微镜力-热-电学实验装置”,可以实现原子分辨的单一(力、热、电)或耦合外场(力-热-电)原位实验。该类实验在原子尺度阐明先进材料结构-性能相关性,为高性能新材料开发提供关键实验数据和重要理论支撑。李志鹏博士介绍了多种球差电子显微镜原位原子尺度力-热-电单/多场耦合实验室的研发及其在金属、合金、半导体等多种材料领域和研究方向中的应用。其参与发展的多项成果在百实创(北京)科技有限公司转化,并推出INSTEMS系列球差透射电镜原位原子分辨力热电集成实验室系统。在高校与企业优势互补下,李志鹏博士进一步介绍了最近拓展的系列国际前沿新技术,例如原子级漂移校正技术等,这些项技术预计在今年成熟并推广应用。另外李志鹏博士也介绍了百实创发展的多个先进球差电镜功能化实验室(实验装置),如球差电镜霍尔样实验台、球差电镜多样品载具、透射电镜通用标准双倾样品杆等。报告人:浙江大学教授 余倩报告题目:金属力学性能和位错调控结构金属材料的应用广泛而重要,但长久以来,金属材料强度和塑形不可兼得的问题一直难以解决,这往往是由位错等缺陷导致的。余倩在报告中从三个方面介绍了其团队如何调控位错,进而改变材料的力学性能,以追求更高强度的前提下,保证足够的塑性变形能力。第一部分为加入微量合金元素,使得位错结构发生改变,产生一些新的交互作用;第二部分则通过大量的合金元素来制造无序结构,即利用近年国际前沿的复杂合金体系(高熵合金)去调控位错行为;第三部分是利用界面调控,即使用一种更强的显微结构界面进行位错形核与运动行为调控。报告人:南京理工大学副教授 周浩报告题目:原子尺度镁合金界面偏析及其形成机理研究金属纳米材料的概念已经被提出很久,但当前工程应用依旧困难,主要是剧烈塑性变形技术提出至今已35年,尚未解决;另外受限纳米晶体界面,界面稳定性低。周浩报告中针对以上问题,团队从镁合金入手,分享了工程材料提高界面稳定性相关的研究进展。研究以溶质元素的界面偏析调控界面结构,提高界面稳定性为金属材料纳米化提供了新的思路,具体结论包括孪晶界面的周期性导致偏析结构呈现显著周期性,具体晶格结构受元素类型、界面能等因素影响;晶界偏析也呈现显著周期性结构,偏析结构与热处理工艺无明显关系;Ag等低温固溶度低、扩散速率快的元素易于形成位错偏析等。仪器技术及应用交流环节,除了电子显微学前沿应用,大家也针对疫情下售后零部件供货周期问题、进口高端透射电镜功能附件的维修周期、高端电镜后台软硬件开放权限、国内产业化、人才培养、国内期刊发展、操作人员变动频繁等相关问题进行了广泛探讨。同时,中小国产科学仪器企业呼吁国家、高校、研究所等相关部门给予国产科学仪器企业与国际大公司在付款方式等方面同等的公平待遇。会后留影
  • 半年安装四台!生物型透射电子显微镜顺利落户国内多所知名院校
    2024年截止目前,我司已连续完成军事兽医研究院、复旦大学、香港城市大学、中国海洋大学共计4台LVEM5与LVEM25生物型透射电子显微镜的安装落户工作。同时,我司工程师对客户进行了生物型透射电子显微镜的专业操作培训,客户均可以独立操作使用设备。Delong Instrument公司推出的LVEM5&25生物型透射电子显微镜采用了5kV与25kV的低加速电压设计,对生物样品成像条件更加温和,摆脱了传统重金属染色在染色与负染过程本身可能对生物样品结构造成的损害,可以高效、高衬度地对生物与有机样品进行透射电镜成像。军事兽医研究院LVEM25生物型透射电子显微镜香港城市大学LVEM5生物型透射电子显微镜中国海洋大学LVEM5生物型透射电子显微镜复旦大学LVEM5生物型透射电子显微镜 LVEM5生物型透射电子显微镜对生物样品和有机纳米颗粒等轻质样品成像衬度高、操作便捷且无需负染等优势,将协助军事兽医研究院、复旦大学、香港城市大学、中国海洋大学等高校及科研院所提高其在生物、医学、药学、材料学等多个研究领域的科研观测水平,助力多学科、多领域的科研发展。工程师现场安装调试LVEM5生物型透射电子显微镜 工程师在香港城市大学给师生培训LVEM5生物型透射电子显微镜 产品简介Delong Instrument公司推出的LVEM生物型透射电子显微镜(LVEM5&25E)采用了5kV与25kV的低加速电压设计,为生物样品的电镜成像提供最为便捷高效的解决方案。高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.0 nm的图像分辨率。高效方便:真空准备只需要5分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。LVEM生物型透射电子显微镜(LVEM5&25E)部分高分文献:[1] Babaei-Ghazvini A , Cudmore B , Dunlop M J , et al. Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties[J]. Carbohydrate Polymers, 2020, 247:116688.[2] Process Pathway Controlled Evolution of Phase and Van‐der‐Waals Epitaxy in In/In2O3 on Graphene Heterostructures[J]. Advanced Functional Materials, 2020.[3] Sun C , Ma Q , Yin J , et al. WISP-1 induced by mechanical stress contributes to fibrosis and hypertrophy of the ligamentum flavum through Hedgehog-Gli1 signaling[J]. Experimental & Molecular Medicine.[4] Wang H , Maimaitiaili R , Yao J , et al. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis[J]. Hypertension, 2021.[5] Weiss M , Fan J , Claudel M , et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential[J]. Journal of Nanobiotechnology, 2021, 19(1).[6] Wang H, Wang T, Rui W, et al. Extracellular vesicles enclosed‐miR‐421 suppresses air pollution (PM2. 5)‐induced cardiac dysfunction via ACE2 signalling[J]. Journal of Extracellular Vesicles, 2022, 11(5): e12222.[7] Su, Yu, et al. "Steam disinfection releases micro (nano) plastics from siliconerubber baby teats as examined by optical photothermal infrared microspectroscopy." Nature nanotechnology 17.1 (2022): 76-85.[8] Hrapovic S, Martinez-Farina C F, Sui J, et al. Design of chitosan nanocrystals decorated with amino acids and peptides[J]. Carbohydrate Polymers, 2022, 298: 120108.[9] Han, Dongni, et al. "Enhanced electrochemiluminescence at microgel-functionalized beads." Biosensors and Bioelectronics 216 (2022): 114640.[10] Chen, Rui, et al. "Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy." Journal of Nanobiotechnology 20.1 (2022): 304.[11] Pizzi, Andrea, et al. "Emergence of Elastic Properties in a Minimalist Resilin‐Derived Heptapeptide upon Bromination." Small 18.32 (2022): 2200807.[12] Jiang J, Ni L, Zhang X, et al. Platelet Membrane‐Fused Circulating Extracellular Vesicles Protect the Heart from Ischemia/Reperfusion Injury[J]. Advanced Healthcare Materials, 2023, 12(21): 2300052.[13] de Medeiros T V, Macina A, Bicalho H A, et al. Engineering the surface chemistry and morphology of polymeric carbon nitrides towards greener heterogeneous catalysts for biodiesel synthesis[J]. Small, 2023, 19(31): 2300541. 部分用户单位:相关产品1、低电压台式透射电子显微镜-LVEM5(生物领域)
  • 发布超高分辨率显微镜新品
    微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。创新点:微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。
  • 550万!上海应用技术大学场发射透射电子显微镜采购项目
    项目编号:SHXM-00-20220824-1149项目名称:上海应用技术大学场发射透射电子显微镜预算编号: 0022-28718 预算金额(元): 5500000(财政资金)最高限价(元): / 采购需求: 包名称:场发射透射电子显微镜 数量:1 预算金额(元):5500000 简要规格描述或项目基本概况介绍、用途:主要用于材料的高分辨形貌观察、微区的晶体结构分析和成分分析等 合同履约期限: 合同签订后12个月内到用户现场 本项目( 否 )接受联合体投标。
  • 550万!上海应用技术大学场发射透射电子显微镜采购项目
    项目编号:SHXM-00-20220824-1149项目名称:上海应用技术大学场发射透射电子显微镜预算编号: 0022-28718 预算金额(元): 5500000(财政资金)最高限价(元): / 采购需求: 包名称:场发射透射电子显微镜 数量:1 预算金额(元):5500000 简要规格描述或项目基本概况介绍、用途:主要用于材料的高分辨形貌观察、微区的晶体结构分析和成分分析 合同履约期限: 合同签订后12个月内到用户现场 本项目( 否 )接受联合体投标。
  • 680万!常州大学场发射透射电子显微镜采购项目
    1.项目编号:常润公2022-0019号2.项目名称:常州大学场发射透射电子显微镜采购3.预算金额:人民币680万元4.最高限价:人民币680万元5.采购需求:本项目采购内容为常州大学场发射透射电子显微镜采购,该设备主要用于材料的高分辨形貌观察、微区的晶体结构分析和成分分析。系统有电子光学系统、高压系统、真空系统、扫描透射单元(STEM)、单倾样品杆、低背景双倾样品杆、能谱仪、数字成像系统等部分组成。本项目包括设备的制造(采购)、运输、装卸、安装、调试、测试、售后服务、技术培训等,直至通过采购单位及其他相关部门的验收以及质量保修、免费维保等全部工作。具体技术参数详见项目需求。6.合同履行期限:合同签订后10个月内完成设备供货安装调试、培训,直至通过验收。7.本项目是否接受联合体:□是 ■否。8.本项目是否接受进口产品响应:■是 □否。
  • 分辨率最高可达0.6 nm!国仪量子超高分辨场发射扫描电子显微镜SEM5000X
    分辨率最高可达0.6 nm!国仪量子超高分辨场发射扫描电子显微镜SEM5000X#NEWS超高分辨场发射电镜发布近日,国仪量子在2023全国电镜年会期间发布了全新的超高分辨场发射扫描电子显微镜SEM5000X,分辨率达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV,进一步夯实了国产高端电镜发展的基础。深度挖掘用户需求 全新升级实现超强性能国仪量子在服务客户时发现,传统的场发射扫描电镜在拍摄一些特殊样品时会出现成像质量不佳的问题。例如,纳米材料的导电性较差,样品的粒径通常也非常小,观测难度较高。但随着科研水平不断进步,对材料的观测尺度也将不断缩小,观测难度愈发提高。为解决这一难题,国仪量子显微镜研发团队在调研用户需求后,基于深厚的技术储备与产品工程化能力,推出了“挑战极限”的超高分辨场发射扫描电子显微镜SEM5000X。SEM5000X如何“挑战极限”?极限挑战一:挑战超高分辨率SEM5000X在15 kV下分辨率优于0.6 nm,1 kV下分辨率优于1 nm,成功挑战了热场发射扫描电镜的极限分辨率。国仪量子对SEM5000X电子光学系统中的物镜部分做了特殊的改进优化,电透镜和磁透镜的重合度进一步提高,使得色差减小了12%、球差减小了20%,整体上提升了电镜的分辨率。极限挑战二:不惧高难样品在SEM5000X产品设计中,增加了样品台减速模块,采用了高压隧道和样品台减速的组合,实现双减速技术,能够挑战极限样品拍摄场景。极限挑战三:适应复杂环境此外,我们自研了高精度的优中心样品台,采用了超稳定的机架,还额外设计了可屏蔽环境干扰的全包围式屏蔽系统,使SEM5000X能够轻松适应各种复杂环境。产品优势SEM5000X01超高分辨率成像,达到了突破性的0.6 nm@15 kV和1.0 nm@1 kV02样品台减速和高压隧道技术组合的双减速技术,挑战极限样品拍摄场景03高精度机械优中心样品台、超稳定性的机架减震设计,可搭配整体罩壳设计,极大减弱环境对极限分辨率的影响04最大支持8寸晶圆(最大直径208 mm)的快速换样仓,满足半导体和科研应用需求如果您需要一台更高性能,更高分辨率的电镜,那您一定不能错过超高分辨场发射扫描电子显微镜SEM5000X。应用案例展示介孔二氧化硅/1kV(Dul-Dec)/lnlens阳极氧化铝板/10 kV/Inlens芯片/5 kV/BSED-COM肾脏切片/5 kV/BSED-COMP泡沫镍/2 kV/ETD-SE蓝宝石衬底/5 kV/ETD-SE金颗粒/1 kV/Inlens光刻胶/2 kV/ETD-SE磁性粉末/10 kV/Inlens二氧化硅球/3 kV/ETD-SE催化剂/1 kV/ETD-SE波导/1 kV/ETD-SE
  • 350万!嘉庚创新实验室透射电子显微镜货物类采购项目
    项目编号:[350200]WSCG[GK]2022009 项目名称:嘉庚创新实验室透射电子显微镜货物类采购项目 采购方式:公开招标 预算金额:3500000元 包1: 合同包预算金额:3500000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100301-显微镜透射电子显微镜1(套)是1、工作条件1.1 电力供应:220V(±10%),50Hz,1φ 380V(±10%),50Hz,3φ;1.2 工作温度:15℃-25℃;1.3 工作湿度:60%。2、透射电镜基本单元2.1 电子枪为LaB6或W灯丝,提供备用灯丝至少2根;2.2 TEM模式下分辨率:点分辨率: ≤0.30 nm,线分辨率: ≤0.15 nm;2.3 最高加速电压≥120 kV,提供最高加速电压下的合轴文件;2.4 TEM模式下的放大倍数范围至少满足x100–x650,000;2.5 照明系统束斑尺寸:对于W灯丝:80-4000 nm,对于LaB6灯丝:40-2000 nm,且照明系统束斑具有高的稳定度。2.6 具备高衬度成像模式以获得样品的更多细节和高分辨观测效果;2.7 具有合轴调整快速调用功能,透射/能谱分析/电子衍射分析三种模式仅需通过软件实现快速切换;2.8 具备会聚束电子衍射功能;2.9 配备全自动样品台:计算机控制,全对中,高稳定性,全自动马达样品台(至少4轴),支持单倾/双倾样品台,样品移动范围:X轴/Y轴≥2 mm;Z轴≥0.4 mm,样品台α倾斜角度:≥±30°;2.10 提供1根单倾样品杆,1根双倾样品杆;2.11 为保证不同用户的不同测试需求,电镜操作者可以根据需要,在透射、电子衍射等不同模式下设置一套或多套电镜状态参数,每套状态参数相互独立,可在使用过程中迅速切换调用。可设置任意多个用户,每个用户之间的参数设置相对独立,同时还可以相互调用。3、高速高分辨CMOS相机系统3.1 为保证成像质量,应配备一体化底装高灵敏度的CMOS相机;3.2 相机应具备高的像素数,其中最高像素数≥2048×2048,并可实现在不同像素数下的拍照和视频录制;3.3 相机的计算机平台应为Win10的64-bit,图像储存格式多样,如TIFF,BMP,JPEG,PNG等;3.4 相机具备直接拍摄电子衍射功能;3.5 相机具备自动对焦、自动对中、自动消像散等功能,提高样品拍摄的智能化和便捷化;3.6 相机应支持样品台导航功能,保证目标样品的快速定位和测试;3.7 支持DigitalMicrograph处理工具包进行数据处理,漂移校正,滤波,图像增强,图像裁切,可进行在线或后续的离线分析和数据处理。4、能谱仪系统4.1 探测器应具备高分辨、高信噪比和高稳定性且易于维护,SDD电子制冷探测器,无需其他辅助制冷手段,没有震动,探测器可自动伸缩,保护能谱仪免受高能电子辐照;4.2 能谱仪探测器应具有较大的有效面积,提高能谱仪计数率,保证有较强的接收信号,有效面积≥60 mm2;4.3 EDS系统应配备高的能量分辨率和大的元素分析范围;4.4 探测器具备防污染功能,减小样品对能谱仪的污染;4.5 能谱应用软件必须能够进行定性和定量分析。定性分析能够实现自动标识谱峰,也可手动选择元素标识谱峰,无禁止自动标定的元素;定量分析能够实现自动或手动对目标区域元素进行定量分析,可实现对测试样品任一区域、任一形状,任一面积的定量分析,获得原子百分比,元素质量比,元素重量比等多种形式的数据。能谱应用软件支持分屏显示及远程控制,支持中、英文等多种操作界面,可进行在线或后续的离线分析。5、系统配置5.1 具有高性能的硬件和软件配置,兼顾基本的原位实验。主机电脑内存RAM≥32G;显卡:显存≥8GB GDDR6,核心频率≥1845 MHz,显存位宽≥256 bit,视频输出支持DP/HDMI;CPU:主频≥3.7GHz,核心数量≥8核,线程数≥18线程,三级缓存≥20MB;固态硬盘容量≥3T,机械硬盘容量≥4T;数字化操作系统,Windows10的64-bit计算机控制系统,在用户图形界面上完成电镜的操作控制,支持包含高速相机软件、电子衍射分析软件、能谱软件等64位软件。5.2 提供足够的数量的数据处理软件拷贝(包含相机图片分析软件和能谱分析软件),方便后续对电镜测试数据进行处理,提供在线版license文件不少于1个,离线版license文件不少于6个。6、真空系统具有离子泵、扩散泵系统(前级机械泵)等,保证最优真空度,电子枪室≤1×10-7 Pa,样品室≤2×10-5 Pa。7、样品杆、存放架、套管、标样/标具、工具包7.1、提供原装单/双倾角样品杆,原装样品杆存放架,套管等至少一套;7.2、提供标样及耗材配件包,包含标样/标具,真空脂、密封圈、样品夹、样品杆固定螺丝等至少一套8、附件系统8.1 为保证透射电镜正常运行,必须配备相应的附件系统,包括稳定的电源供给,不间断电源设备(UPS),遇到断电,停电,主电源故障等不能供电情况,UPS立即切换工作,继续为透射电镜稳定供电至少2小时。此外,要求UPS设备对电压过高或电压过低都能提供保护;8.2 配备空气压缩装置;8.3 保证相机正常工作,配备空冷式循环冷却水装置;9、设备的场地动力条件要求9.1 提供设备的现场安装方案说明和图纸,主要包括设备占地面积、重量、动力要求(用电、用水、用气、尾排等);9.2 根据设备安装方案对场地进行必要的改造、装修,使其满足设备安装要求;9.3 在指定实验室除就位安装,并负责完成该设备相关的二次配工程,包括用气、用水、用电、尾排等,保证设备能够快速定位安装投入使用。另外要确保该二次工程符合国家相关标准,能够保证设备安全正常使用。3500000 合同履行期限: 合同签订后 (180) 天内交货 本合同包:不接受联合体投标
  • 上海交大预算7000万元采购2套冷冻透射电子显微镜
    近日,上海交通大学发布冷冻透射电子显微镜系统(第一期)采购项目国际公开招标公告。该项目预算7000万元,采购1套300kv透射电子显微镜和1套120kv透射电子显微镜,主要用于蛋白质、蛋白质复合物和大分子机器(如病毒)的结构生物学研究。详情如下:一、项目基本情况项目编号:招设2022A00012(招标编号:1069-224Z20221161)项目名称:上海交通大学冷冻透射电子显微镜系统(第一期)采购项目预算金额:7000万元(人民币)最高限价(如有):7000万元(人民币)采购需求:产品名称数量简要技术规格300kv透射电子显微镜1套1. 电子光学系统1.1 电子枪:冷场场发射电子枪(Cold-FEG),亮度:≥ 7.5x107 A/m2srV.1.2 加速电压:最高加速电压为300kV,在80kV和300kV间可实现加速电压连续可调并正常稳定工作1.3 照明系统:三聚光镜完全平行光系统,可实现多模式照明,在TEM模式中对大视野和可变视野都能够平行照明120kv透射电子显微镜1套物镜1.1 TEM分辨率:线分辨率优于0.204 nm1.2 使用恒定功率物镜设计,高对比度模式设计,配置物镜高对比度极靴,无需切换可实现高分辨率和高对比度,适合于生命科学应用1.3 焦距≥ 3.4 mm二、获取招标文件时间:2022年5月23日至2022年5月30日,每天上午9:00至11:00,下午13:00至16:00。地点:上海市普陀区曹杨路528弄35号中世办公楼5楼或微信公众号报名方式:现场购买或微信公众号报名售价:¥500元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年6月15日10点00分开标时间:2022年6月15日10点00分地点:上海市普陀区曹杨路528弄35号中世办公楼会议室(详见一楼大屏幕)四、其他补充事宜报名须提交的下述资料:1、单位负责人委托书2、被授权代表身份证注:①供应商携带上述报名资料,在上述时间段内至代理公司进行现场报名、领购招标文件,逾期不再办理。报名时提供的资料应与投标文件中的资格证明文件一致,如有不同,以投标文件为准。供应商领取文件后需自行登入“上海交通大学数字化采购平台(https://pboffice.sjtu.edu.cn)”进行供应商注册”及关注“中世建咨”微信公众号,主界面右下角点击“投标报名”完成微信报名登记。 ②投标人在投标前应在必联网(https://www.ebnew.com)或机电产品招标投标电子交易平台(https://www.chinabidding.com)完成注册及信息核验。评标结果将在必联网和中国国际招标网公示。③其余内容详见附件。五、对本次招标提出询问,请按以下方式联系1. 采购人信息名称:上海交通大学地址:上海市东川路800号联系方式:陆老师/021-54744366 ,技术联系人:伍老师/021-64370045转6107212. 采购代理机构信息名称:上海中世建设咨询有限公司地址:上海市普陀区曹杨路528弄35号中世办公楼联系方式:沈思骏、侯烨飞 86-021-525558173. 项目联系方式项目联系人:沈思骏、侯烨飞电话:86-021-52555817
  • 专题推荐|低压透射电子显微镜LVEM在病毒学研究中的应用
    病毒作为一种病原体一直受到学术界的广泛关注。然而由于病毒通常尺寸较小,传统的光学显微镜往往难以满足其形态观测的需求,这使得高分辨率的透射电子显微镜成为了当前病毒学研究的一个重要手段(图1),可以用来研究病毒的结构和成分。目前使用的透射电子显微镜进行病毒颗粒的检测和识别仍面临着巨大的挑战。这是因为病毒的主要组成部分多为含碳的轻元素有机物,这类样品很容易被高能电子束穿过,造成其光学衬度较低,且由于共价键化合物的低稳定性使得其在传统电子显微镜的高加速电压 (一般为80-200 kV) 下非常不稳定,不适合直接进行观察。因此病毒的形态学观察一般采用负染色成像技术,需要在观测前对样品进行复杂的负染操作,占有大量的时间,且可能会掩盖掉一些病毒的形貌特征,造成使用透射电子显微镜观测病毒的门槛较高。图1. (A)80 kV 和 (B)5 kV加速电压下透射电子显微镜下观测到的SV40感染的小鼠胰腺切片(Microscopy Research and Technology, DOI:10.1002/jemt.20603)为了解决这一难题,低压透射电子显微镜(Low Voltage Electron Microscope, LVEM)应运而生。LVEM突破了传统透射电子显微镜的80 kV加速电压的低限,研究人员可在低压下观察轻质生物样品,无需染色,简化了样品制备流程;同时该设备可在保证高图像对比度的前提下,使用温和的加速电压进行病毒形态学的检测和识别,能够识别以往可能被污渍和负染的瑕疵所掩盖的病毒特征。Delong Instruments公司的LVEM 5&25是一类专门针对低电压设计研发出的透射电子显微镜。LVEM使用特殊设计的倒置式肖特基(Schottky)场发射电子枪,提供高亮度高相干性的电子束,这种低能电子束与样品的相互作用比传统透射电子显微镜中的高能电子要强得多,使得电子被轻质有机材料强烈散射,导致了特征的异常分化(Microscopy Research and Technology, DOI: 10.1002/jemt.22428)。在病毒学研究方面,该设备大放大倍数高于通常观测病毒所需要的大约50,000倍的放大率,且依然保持不错的分辨率(2 nm),可满足病毒形态和结构研究的需求。相比于高电压,5kV 的加速电压提供的电子束与样品的作用更强,对密度和原子序数有更高的灵敏度,对低至0.005 g/cm3的密度差别仍能得到很好的样品图像对比度,有效提高了轻元素样品的成像质量,适合针对病毒学的研究。需要指出的是,LVEM 25与LVEM 5建立在相同的平台之上,前者在一个稍高的加速电压下工作,在满足轻元素样品观测的要求下可进一步提高终的图像分辨率。图2. LVEM 5的结构示意图(A)和小鼠心脏超微结构成像 (B) 。(Microscopy Research and Technology, DOI:10.1002/jemt.22659)LVEM 5&25显微镜可用于检测腺病毒(图3A)、HIV(图3B)、轮状病毒(图3C)、球状病毒(图3F)、棒状病毒(图3 G-H)、星形病毒、杯状病毒、诺瓦克样病毒、疱疹病毒和乳头瘤病毒等。另外对于类病毒载体的研究,LVEM 5&25也是一项利器。它能够在不负染的情况下直接观测类病毒载体的形态,帮助研究者快速筛选载体,解决传统电镜制样难,机时紧张等问题(Journal of Nanobiotechnology, DOI: 10.1186/s12951-016-0241-6)。图3. (A-C) LVEM 5观察多种非负染的病毒样品 (D-E) LVEM 5&25 实物图 (F-H) LVEM 25观察多种负染后的病毒样品。 (图片来源于Delong Instruments官网)LVEM的高对比度成像技术匹配快速的时间-图像周期、高通量研究,可作为一种快速诊断方法,用于识别病毒感染源和辅助病理研究,是快速检测具有公共卫生重要性病原体的有力工具。LVEM 5&25 更是一台多种功能集成的电子显微镜,具有四种不同的成像模式——透射电镜(TEM)、扫描电镜(SEM)、扫描透射电镜(STEM)和电子衍射(ED),能够为病毒学研究工作者同时提供多种表征所需的成像模式,全面的对病毒样品的结构和成分进行分析(图4)。图4. 使用LVEM 5 对HIV膜蛋白结构同时进行(A)TEM和(B)ED分析。(Journal of Virology,DOI:10.1128/JVI.01526-19.)除了拥有高质量成像和多功能集成的特点外,LVEM 5&25的体积小 (无需专业实验室),维护费用低廉(无需冷却水和专用电源),在使用期间基本不会产生任何额外的费用,大大降低了研究所需的成本。另外它采用了真空自闭锁技术,换样仅需3分钟,降低了仪器操作难度,对广大的非专业用户变得更加友善。我们相信随着低压透射电镜的不断发展,LVEM 5&25将成为一个强有力的工具,使得病毒形态的观测变得越来越简单,更多以往被传统电镜所忽略的细节结构信息将被挖掘出来,大的提高研究人员对病毒结构和成分的认知,为人们的科研和生活服务。
  • 6630万!天津大学双球差校正透射电子显微镜等设备采购项目
    项目编号:0618-224TC229908R(TDZC2022J0045)项目名称:天津大学资产处学科交叉平台电镜中心双球差校正透射电子显微镜等设备采购预算金额:6630.0000000 万元(人民币)最高限价(如有):6630.0000000 万元(人民币)采购需求:序号设备名称数量1双球差校正透射电子显微镜1套2200KV透射电子显微镜1套3原位气/液-固材料表界面原子级超高分辨率表征系统1套4电子探针X射线显微分析仪1台合同履行期限:合同签订后360天内交货及到货后180天内完成安装调试并具备验收条件等;本项目( 不接受 )联合体投标。
  • 一文看懂透射电子显微镜TEM
    p   透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。 /p p   strong  1 背景知识 /strong /p p   在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。 /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height=" 316" width=" 521" / /p /center p style=" text-align: center " strong 电子束与样品之间的相互作用图 /strong /p p & nbsp & nbsp & nbsp 来源:《Characterization Techniques of Nanomaterials》[书] /p p   透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。 /p p    strong 2 TEM系统组件 /strong /p p   TEM系统由以下几部分组成: /p p   电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。 /p p   聚光镜:将电子束聚集得到平行光源。 /p p   样品杆:装载需观察的样品。 /p p   物镜:聚焦成像,一次放大。 /p p   中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。 /p p   投影镜:三次放大。 /p p   荧光屏:将电子信号转化为可见光,供操作者观察。 /p p   CCD相机:电荷耦合元件,将光学影像转化为数字信号。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height=" 359" width=" 358" / /center p style=" text-align: center " strong 透射电镜基本构造示意图 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 3 原 理 /strong /p p   透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height=" 333" width=" 422" / /center p style=" text-align: center " strong 电镜和光镜光路图及电镜物镜成像原理 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 4 样品制备 /strong /p p   由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。 /p p   试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。 /p p   制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height=" 296" width=" 406" / /center p style=" text-align: center " strong 超细颗粒制备方法示意图 /strong /p p & nbsp & nbsp & nbsp 来源:公开资料 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height=" 325" width=" 404" / br/ strong 材料薄膜制备过程示意图 /strong /center p   来源:公开资料 /p p   strong  5 图像类别 /strong /p p    strong (1)明暗场衬度图像 /strong /p p   明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。 /p p   暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height=" 306" width=" 237" / br/ strong 明暗场光路示意图 /strong /center center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height=" 318" width=" 294" / br/ strong 硅内部位错明暗场图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (2)高分辨TEM(HRTEM)图像 /strong /p p   HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height=" 312" width=" 213" / /center p style=" text-align: center " strong HRTEM光路示意图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height=" 234" width=" 321" / br/ strong 硅纳米线的HRTEM图像 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (3)电子衍射图像 /strong /p p   选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。 /p p   会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。 /p p   微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br/ /p p    /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height=" 296" width=" 227" / /p p strong 电子衍射光路示意图 /strong /p /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height=" 174" width=" 173" / /center p style=" text-align: center " strong 单晶氧化锌电子衍射图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height=" 174" width=" 175" / /center p style=" text-align: center " strong strong 无定形氮化硅电子衍射图 /strong /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height=" 174" width=" 170" / br/ strong 锆镍铜合金电子衍射图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong 6 设备厂家 /strong /p p   世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。 /p p    strong 7 疑难解答 /strong /p p    strong TEM和SEM的区别: /strong /p p   当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。 /p p   SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。 /p p    strong 简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理: /strong /p p   单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。 /p p   多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。 /p p   非晶的衍射花样为一个圆斑。 /p p   strong  什么是衍射衬度?它与质厚衬度有什么区别? /strong /p p   晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。 /p p    strong 8 参考书籍 /strong /p p   《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /p p   《电子衍射分析方法》 黄孝瑛著 /p p   《透射电子显微学进展》 叶恒强,王元明主编 /p p   《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /p p   《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。 /p p   来源:中国科学院科普文章《透射电子显微镜基本知识介绍》 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制