当前位置: 仪器信息网 > 行业主题 > >

环境高分辨透射显微镜

仪器信息网环境高分辨透射显微镜专题为您提供2024年最新环境高分辨透射显微镜价格报价、厂家品牌的相关信息, 包括环境高分辨透射显微镜参数、型号等,不管是国产,还是进口品牌的环境高分辨透射显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境高分辨透射显微镜相关的耗材配件、试剂标物,还有环境高分辨透射显微镜相关的最新资讯、资料,以及环境高分辨透射显微镜相关的解决方案。

环境高分辨透射显微镜相关的仪器

  • 专用扫描透射显微镜HD-2700,配备了与德国CEOS GmbH公司(总经理Max Haider先生)共同开发的球差校正仪,显著提高了扫描透射电子显微镜的性能,更适合高级纳米技术研究。由于球差校正系统校正了限制电子显微镜的性能的球差,使其与标准型号显微镜相比,分辨率提高了1.5倍,同时,探针电流提高了10倍。最近,该显微镜还配备了高分辨率镜头和冷场发射电子枪,进一步提高了图像分辨率和电子束能量分辨率。同时,该型号系列还增加了一款不带球差校正的主机配置,可以以后加配球差校正进行升级。 特点 高分辨率扫描透射电子显微镜成像 HAADF-STEM图像0.136nm,FFT图像0.105nm(高分辨率镜头(*)) HAADF-STEM图像0.144nm(标准镜头) 明场扫描透射电子显微镜图像0.204nm(w/o球差校正仪) 高速,高灵敏度能谱分析:探针电流× 10倍 元素面分布更迅速及时 低浓度元素检测 操作简化 自动图像对中功能 从样品制备到观察分析实现无缝连接 样品杆与日立聚焦离子束系统兼容 配有各种选购件可执行各种评估和分析操作 同时获取和显示SE&BF, SE&DF, BF&DF, DF/EDX面分布(*) 和DF/EELS面分布(*)图像。 低剂量功能(*)(有效降低样品的损伤和污染) 高精度放大校准和测量(*) 实时衍射单元(*)(同时观察暗场-扫描透射电子显微镜图像和衍射图案) 采用三维微型柱旋转样品杆(360度旋转)(*),具有自动倾斜图像获取功能。 ELV-3000即时元素面分布系统(*)(同时获取暗场-扫描透射电子显微镜图像)(*) 选购件技术指标 HD-2700球差校正扫描式透射电子显微镜项目描述图像分辨率w/o球差校正仪保证 0.204nm(当放大倍数为4,000,000时)w球差校正仪保证 0.144 nm(当放大倍数为7,000,000时)(标准镜头)保证 0.136nm(HAADF图像) 保证0.105 nm(通过FFT)(当放大倍数为7,000,000时)(高分辨率镜头(*))放大倍数100倍 至 10,000,000倍加速电压200 kV, 120 kV (*)成像信号明场扫描透射电子显微镜:相衬图像(TE图像) 暗场扫描透射电子显微镜:原子序数衬度图像(Z衬度图像) 二次电子图像(SE图像) 电子衍射(*) 特征X射线分析和面分布(能谱分析)(*) 电子能量损失谱分析和面分布(EV3000)(*)电子光学系统电子源肖特基发射电子源冷场致发射器(*)照明透镜系统2-段聚光镜镜头球差校正仪(*)六极镜头设计扫描线圈2-段式电磁感应线圈原子序数衬度收集角控制投影镜设计电磁图像位移± 1 &mu m试片镜台样品移动X/Y轴 = ± 1 mm, Z轴 = ± 0.4 mm样品倾斜单轴-倾斜样品杆:± 30° (标准镜头), ± 18° (高分辨率镜头(*))真空系统 3个离子泵,1个TMP极限真空10-8 Pa(电子枪), 10-5 Pa(样品室)图像显示个人电脑/操作系统PC/AT兼容, Windows® XP监视器19-inch液晶显示器面板图像帧尺寸640 × 480, 1,280 × 960, 2,560 × 1,920 象素扫描速度快扫,慢扫(0.5至320秒/帧)自动数据显示记录序号,加速电压,下标尺,日期,时间 (*) 选购件
    留言咨询
  • 国仪量子 场发射透射电子显微镜 TH-F120 TH-F120取名源自中华名山“太行”(TH),寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。产品特点肖特基场发射电子枪平行束/会聚束自适应切换照明系统对称式极靴、恒功率物镜 (高衬度/高分辨模式可选)高像素CMOS相机四轴高精度样品台全中文软件交互界面产品优势人机分离 电镜空间与工作空间分离,减少人为干扰,提升安全性,带来舒适的使用体验高效操作各模块控制高度集成至PC端,全中文软件交互界面一目了然,提升操作效率越级体验将场发射电子枪、高自动化系统等配置120 kV平台,入门即高配丰富拓展预设充足的附件加装接口以及整机升级空间,满足用户使用新需求,有效应对多样的应用场景产品参数 高衬度版高分辨版加速电压10~120 kV10~120 kV信息分辨率0.20 nm0.14 nm点分辨率0.36 nm0.30 nm放大倍率10~1,200,000 x10~1,500,000x主相机像素4096×40964096×4096样品台倾转角-90 °~+90 °-70 °~+70 °支持拓展EDS、STEM、侧插式相机、EELS、插入式冷冻盒
    留言咨询
  • Talos F200i S/TEM 产品描述更高生产率和灵活性 — 支持更多材料科学应用 用于高分辨率成像和分析应用的Thermo Scientific Talos F200i 扫描/透射电子显微镜 (S/TEM) 现可提供对称布置的双100 mm2 Racetrack 检测器“( Dual-X”),以提高分析通量。 Thermo ScientificTM TalosTM F200i S/TEM 为 20-200 kV 场发射扫描/透射电子显微镜,专为提高各种材料科学样品和应 用的分析性能和生产率而设计。其标准 X-TWIN 物镜极靴间距——可赋予应用灵活性——结合高再现性镜筒设计,可支持高分辨率 2D 和 3D 表征分析、原位动态观察及衍射应用。同时,Talos F200i 还 配备了 4k × 4k Ceta 16M 相机,可在 64 位平台上提供大 视野、高灵敏度快速成像。您可根据自身需求选择适宜的 EDS 可加装各类的能谱探头,从单 30 mm2 到双 100 mm2 特点与用途关键优势 双 EDS 技术可实现。从单 30 mm2 探头到可实现高通量 (或低剂量)分析的双 100 mm2 探头,可根据您的需求 选择理想的 EDS 高质量 S/TEM 图像和准确的 EDS。借助创新直观的 Velox 软件用户界面,可通过极其简单的操作方法,获得 高质量 TEM 或 S/TEM 图像。Velox 软件内置的特有的 EDS 吸收校准功能可实现精确的定量分析 全方位原位分析功能。加装三维重构或原位分析 样品杆。高速相机、智能软件和我们的大 X-TWIN 物镜间 距可实现 3D 成像和原位数据采集,同时可避免分 辨率和分析能力的损失 提高生产效率。超稳定镜筒,借助 SmartCam 和恒定功率 物镜实现的远程操作,用于快速的模式和高压切换。轻松 快速切换,适用于多用户环境 可重复性的数据。所有日常 TEM 合轴(例如,聚焦、 共心高度调节、电子束偏转、聚光镜光阑器对中、电子束 倾斜和旋转中心)自动完成,确保每次开始使用时都具有优质的成像条件。实验可反复重现,使您可以更多关注研 究工作本身,而非所用设备 高速大视野成像。4k × 4k Ceta CMOS 相机具有大视野, 能够在整个高压范围实现高灵敏度、高速数码缩放 紧凑型设计。本设备具有更小的尺寸和占地面积,有助于 在更具挑战性的空间内安装,同时降低安装和支持成本 产品参数TEM 线分辨率 ≤0.10 nm TEM 信息分辨率 ≤0.12 nm LACBED 会聚角可至 ≥100 mrad 衍射角可至 24°STEM 分辨率 ≤0.16 nm EDS 侧插式,可伸缩 电子枪类型 场发射枪或高亮度场发 样品操作 Z 轴运动总行程 (标准样品杆) ±0.375 mm α 倾转角可至(三维重构样 品杆) (高视野样品杆) ±90° 样品漂移 (标准样品杆) ≤0.5 nm/min
    留言咨询
  • JEM-ACE200F是日本电子透射电子显微镜系列中的一款特殊设计的产品,在兼顾高分辨高稳定性的同时,最求分析效率的最大化和操作的自动化。颠覆传统的电镜外观设计,除了让人耳目一新外,还对设置环境更具抗干扰能力。 主要技术指标: 1. 点分辨率:0.21nm; 2. 晶格分辨率:0.1nm 3. STEM 分辨率:0.136nm; 4. 信息分辨率:0.11nm; 5. 能谱:可以安装两个超级能谱 6. 洛伦兹模式:标配
    留言咨询
  • 产品简介原子分辨率300 kV透射电子显微镜在精细加工技术已进入到亚纳米级水平的半导体,先进材料的研发领域,原子分辨率电子显微镜正在成为日益重要的,不可或缺的工具。为了满足这种高端需求,日立高新技术公司研发出了 H-9500透射电子显微镜,此款高分辨透射电子显微镜不仅具备实地验证过的各种优秀性能,而且配置了很多满足客户多种需求的独特功能,并采用了数字技术,便于用户及时快速获取原子水平的样品结构信息。用户友好型的操作系统和Windows兼容的图形用户界面设计快速的样品分析,1分钟换样,5分钟内升高压至(300 kV)高稳定性,高分辨率透射电子显微镜点分辨率为0.18 nm,晶格分辨率为0.1 nm稳定可靠的5轴优中心测角台性能优异,可靠性高性能优异,可靠性高得到市场验证的10级加速器电子枪设计阻抗式高压电缆设计高档可选附件高档可选附件通用样品杆,在日立公司的TEM, FIB 和 STEM系统均可使用可为原子分辨率的动态研究提供加热,冷却和气体注入等多种样品杆备注:FPD(平板显示器)上的图像为模拟图像。规格项目说明分辨率0.10nm(晶格分辨率)0.18nm(点分辨率)加速电压300kV、200kV*1、100kV*1放大倍率连续放大模式1,000~1,500,000×选区模式4,000~500,000×低倍模式200~500×电子枪灯丝LaB6(六硼化镧灯丝,直流加热)灯丝交换自动升降式电子枪高压电缆阻抗电缆照射系统透镜四级透镜聚光镜光阑4孔可变探针尺寸微米束模式:0.05 - 0.2 μm(4级)纳米束模式:1 - 10 nm(4级)电子束倾斜±3°成像系统透镜五级透镜聚焦图像摇摆调整利用像散监视器进行正焦补偿聚焦优化物镜光阑4孔可变光阑选区光阑4孔可变光阑电子衍射选区电子衍射纳米探针电子衍射会聚束电子衍射相机长度250 - 3,000 mm样品室样品台5轴优中心海帕测角台样品尺寸3mmΦ样品位置追踪X/Y = ±1mm, Z = ±0.3 mm通过CPU控制马达驱动样品位置显示自动驱动,自动跟踪样品倾斜α = ±15°, β = ±15°(日立双倾样品台*2)防污染冷阱烘烤功能中温烘烤功能观察室荧光屏主屏:110 mmΦ 聚焦屏:30 mmΦ目镜7.5×照相室区域选择整张照相/半张曝光胶片25张(2套胶片盒)图形用户界面操作系统Windows XP显示器19英寸显示器功能数据库,测量,图像处理数码CCD 相机*3相机耦合透镜耦合有效像素1,024 × 1,024 像素A/D 分辨率12位真空系统电子枪离子泵:60 L/s镜筒涡轮分子泵:260 L/s观察室/照相室扩散泵:280 L/s前级泵:135 L/min × 3台 *1:放大倍率校准为可选项*2:可选件*3:本规格适用于可选的1,024 × 1,024像素的数码CCD相机以上规格是在加速电压为300 kV时的承诺
    留言咨询
  • 低电压扫描透射电子显微镜具备多种成像模式:透射模式(TEM),扫描模式(SEM),透射扫描(STEM)分析模式:电子衍射模式:ED 能量色散光谱模式:EDS电子加速电压:10, 15, 25 kV空间分辨率:1nm采用Schottky场发射电子枪,高亮度和对比度观察生物样品无需染色,且对切片厚度无要求,成像结果对比度高。真空自闭锁技术,更换样品仅需3分钟。无需冷却水和电源,无需专业实验室,操作简单,维护成本极低。其他类应用: 生物研究方向实验室台式透射电子显微镜系统,支持多种成像模式观察生物样品无需染色,简易快速地获得观察结果无需专门隔震防磁使用环境,操作维护简单无需冷却水,无需专业实验室,维护成本低采用电子加速电压,避免了传统电镜的缺点和限制 在大型的透射电子显微镜系统中,电子加速电压一般在80-300 kV左右。在如此高的电压下,对于C,H,O,N等轻元素组成的样品(如高分子和生物样品等),只有经过重元素染色操作才可以得到较好的图像对比度。而LVEM25采用的电子加速电压范围在10-25 kV,较低的加速下,研究者不需要对样品进行染色,即可得到很高的图像对比度。同时在25 kV电压下,LVEM25还避免了低电压对样品厚度的限制要求,只需要研究者按照正常厚度要求制作样品切片即可。操作简单,维护成本极低。 LVEM25虽然和传统TEM一样遵循了相同的电子透镜基本原理,但是在产品结构上却有着显著的不同。这一创新性设计使得LVEM25的设备尺寸大大缩小,真正实现了TEM的“小型化,台式化"。LVEM25对设备安装环境没有任何要求,不需要高功率电源,无需磁屏蔽和减震装修,更不需要冷却水和液氮冷阱等复杂配置,日常维护成本极低。同时LVEM25操作界面简单友好,研究者经过相对简单的培训后即可执行日常操作。 优化的硬件配置,保证运行稳定可靠。 采用肖特基场发射电子枪 LVEM25采用了Schottky场发射电子枪,保证设备连续运行数千小时。同时为样品成像提供了更好的亮度和空间均匀度。 样品和电子枪附近采用离子泵抽真空 LVEM25在样品腔和电子枪附近配备了离子泵来达到超高真空环境,在保证设备运行稳定的同时,有效避免了外部机械振动。 电子透镜组由永磁体组成 LVEM25的电子透镜模块由永磁体构成,从而精简了一般大型电镜中的磁体电源系统,进一步提高了设备运行的稳定性和可靠性,同时大大降低了维护成本。 放大倍率:1,000 - 470,000 加速电压:10, 15, 25 kV分辨率:1 nm 类型:场发射规格:分析系统 加工定制:标准器电子枪:Schottky场发射电子枪 加速电压:5,10,15,25 kV成像模式:TEM、STEM、SEM、EDS和ED TEM分辨率:最高1.0 nm冷却水:不需要 压缩空气:不需要换样时间:最快2分钟 应用:材料、生物体积:小巧 操作维护:简单
    留言咨询
  • TH-F120场发射透射电子显微镜是一款先进的分析仪器,它结合了场发射电子源的高亮度和透射电子显微镜的高分辨率成像能力。该产品适用于材料科学、生物学、纳米科技等多个领域的研究和分析工作。TH-F120具备以下特点:1. 高分辨率成像:采用场发射电子源,提供高亮度的电子束,实现纳米级甚至亚纳米级的高分辨率成像。2. 稳定性与可靠性:设计精密,确保长时间运行的稳定性和可靠性,适合连续工作环境。3. 先进的样品室:提供大空间样品室,支持多种样品的装载和分析,包括冷冻样品。4. 多功能分析:配备能量色散X射线光谱仪(EDS)和电子能量损失谱(EELS)等分析附件,实现样品的化学成分和电子结构分析。5. 易于操作的用户界面:采用直观的用户界面和先进的软件,简化操作流程,提高工作效率。6. 安全性设计:符合国际安全标准,确保用户在使用过程中的安全。TH-F120场发射透射电子显微镜是科研和工业领域中不可或缺的精密分析工具,能够帮助研究人员深入理解材料的微观结构和性质。TH-F120在材料科学领域的应用尤为广泛,它可以帮助科学家们研究纳米材料的晶体结构、界面行为、缺陷分布等关键特性。通过高分辨率成像,研究人员能够观察到材料在原子尺度的排列和变化,这对于开发新型材料、优化材料性能具有重要意义。在生物学领域,TH-F120也发挥着重要作用。它能够以极高的分辨率成像生物大分子,如蛋白质、核酸等,揭示它们的精细结构和相互作用机制。这对于理解生命过程、疾病发生机制以及药物研发等方面都具有重要的推动作用。此外,TH-F120还具备强大的数据分析能力。其配备的软件系统能够自动处理和分析采集到的图像和数据,提供精确的定量分析结果。这大大减轻了研究人员的负担,提高了工作效率和准确性。总的来说,TH-F120场发射透射电子显微镜是一款功能强大、性能卓越的精密分析仪器。它不仅具备高分辨率成像、稳定性与可靠性、多功能分析等显著特点,还在材料科学、生物学等多个领域发挥着重要作用。随着科学技术的不断进步和应用领域的不断拓展,TH-F120必将在更多领域展现出其独特的价值和魅力。
    留言咨询
  • TESCAN UniTOM XL 这款高通量微米级 X射线显微镜具有超快的分析速度,适用于各类样品的无损分析,并提供了更灵活的研究方式。TESCAN UniTOM XL 为材料研究、失效分析和质量控制等领域提供高效且非破坏性的三维成像功能,该系统配置了高功率的发射源、高效的探测器和软件,可以提供最高效的工作效率和图像效果,时间分辨率可以达到10秒以下。 主要优势 ※ 原位和动态成像的X射线显微镜UniTOM 是一款配置灵活的高分辨 X 射线 显微镜,可根据用户的需求组合功能模块,最大限度的提高图像质量、分辨率和分析速度。※ 感兴趣区域的直观观测可在概览图上选择感兴趣区域进行实时缩放,获得孔隙结构和矿物的细节信息。※ 亚微米级分辨率UniTOM 可以获得 3um 的真实空间分辨率,并且适用于多种类型和尺寸的样品,可分析的样品最大直径为 50 cm, 最大高度115 cm。※ 模块化设置模块化设计,硬件模块(如可附加的X射线源或探测器)可以轻松集成到系统中,方便用户进行硬件升级或更换单个硬件,进而延长系统的使用寿命。 模块化灵活配置 UniTOM XL 模块化设计有助于用户可以随时添加、升级和拓展配件,尽可能减少受到系统自身性能的限制影响,系统中提供的“future-proof”平台能够帮助客户适应未来在发射源或探测器技术方面的创新发展。Acquila软件Acquila是一个用于断层图像采集和3维重构(GPU优化)的模块化软件,可以最大限度为集成设备后的复杂实验提供协助。Acquila软件能够运行在标准的、自动化的或定制的微型CT上,并实现图像采集、重建和外围实验设备(现场设备)之间的无缝集成。
    留言咨询
  • 基于结构光照明的超分辨显微成像系统,具备300Hz超分辨成像能力、“所见即所得”的实时超分辨成像能力、86nm的光学超分辨能力和60nm的计算超分辨能力。可以让您对苛刻实验条件下培养的活细胞进行实时超分辨图像重构,满足低光毒性的要求。主要特点:超高分辨率:X,Y横向分辨率(XY):86nm,计算分辨率达60nm。Z轴轴向分辨率(Z):270nm。超低光毒性:长时长活细胞连续拍摄,更低的激光功率获得更高的图像信噪比高速实时:实时超分辨,所见即所得多种成像模式:荧光宽场、TIRF宽场、2D SIM/2D SIM Stack、TIRF SIM、3D SIM/3D SIM Stack、上述模式多角度控制、实时SIM拍摄 超强适配性 :采用了标准显微镜镜体,并支持已有显微镜的升级 主要参数:G-SIM结构光超分辨显微成像系统激光器激光405nm(50mW)、488 nm(50mW)、561 nm(50mW)、640nm(50mW)可选白激光的激发光波长从440纳米到790纳米声光调制器(AOTF)每个激光器由声光调制器(AOTF)协调控制,实现各通道激光的高速独立调节;激光强度调节范围为0.01%-100%,最小调节步进精度为0.01%。超分辨模块SIM照明器SIM专用结构光照明器,通过条纹照明,获取两倍于传统显微镜的光学分辨率光学分辨率XY方向86nm,计算分辨率60nm,Z方向270nmSIM拍摄速度120 fps @512×512 pixels(2D-SIM & TIRF-SIM)208 fps @512×200 pixels(2D-SIM & TIRF-SIM)72 fps @512×512(3D-SIM)SIM成像视野1536×1536 pixels,94μm×94μm @ 100X 物镜SIM成像模式TIRF-SIM、2D-SIM、3D-SIM,多角度控制实时超分辨功能可单通道成像可四通道高速分时成像sCMOS相机Hamamatsu ORCA Flash 4.0分辨率:2304×2304,单像素大小:≥6.5×6.5μm,帧速≥89frame/s,峰值QE≥95% @ 550nm共聚焦模块1标准探测器波长:400-750nm,探测器:4个高灵敏度PMT透射探测器1个PMT图像尺寸8192 x 8192pixels扫描模式X-Y,X-Z ,Y-Z, X-Y-Z,X-Y-Z-T扫描速度4fps@512 x 512 pixels1. 共聚焦模块为选配项。
    留言咨询
  • 超高分辨场发射扫描电子显微镜SEM5000X是一款先进的分析仪器,它结合了场发射技术和高分辨率成像能力,为用户提供了一个强大的工具来观察和分析各种材料的微观结构。该显微镜具有以下特点:1. 场发射电子源:采用先进的场发射电子源,提供稳定的高亮度电子束,从而实现高分辨率成像。2. 高分辨率成像:SEM5000X能够达到极高的空间分辨率,即使在高放大倍数下也能清晰地观察样品表面的细节。3. 多种探测器:配备了多种探测器,包括二次电子探测器、背散射电子探测器等,能够提供丰富的样品表面信息。4. 易于操作的用户界面:拥有直观的用户界面和先进的软件,使得操作简便,即使是初学者也能快速上手。5. 强大的分析能力:除了成像功能外,SEM5000X还支持多种分析技术,如能谱分析(EDS)、电子背散射衍射(EBSD)等,为材料研究提供全面的数据支持。6. 灵活的样品室:样品室设计灵活,能够适应各种尺寸和形状的样品,方便用户进行多样化的实验。7. 高性能的真空系统:采用高效的真空系统,确保在最佳的真空环境下进行成像,减少样品污染和电子束散射。SEM5000X适用于材料科学、生物学、地质学、半导体工业等多个领域的研究和质量控制,是科研和工业领域不可或缺的精密分析工具。当然,以下是关于超高分辨场发射扫描电子显微镜SEM5000X产品介绍的继续内容:8. **自动化与智能化**:SEM5000X融入了先进的自动化和智能化技术,支持自动聚焦、自动寻找样品区域、自动调整参数等功能,大大提高了实验效率和准确性。同时,通过集成的人工智能算法,能够自动识别和分类样品特征,为用户提供更深入的数据分析支持。9. **广泛的应用范围**:这款显微镜不仅适用于固体材料的表面形貌观察,还能对材料的微观结构、化学成分、晶体取向等进行深入分析。在纳米科技、生物医学、环境科学等领域,SEM5000X都发挥着重要作用,帮助科研人员揭示物质的本质和特性。10. **可靠的稳定性和耐用性**:SEM5000X采用高品质的材料和精密的制造工艺,确保了设备的稳定性和耐用性。即使在长时间连续工作的情况下,也能保持优异的性能表现,为用户提供可靠的分析结果。11. **专业的技术支持和服务**:作为金山办公与合作伙伴共同开发的AI工作助理,我们深知技术支持和服务对于用户的重要性。因此,我们提供全方位的技术支持和服务,包括设备安装调试、操作培训、故障排查等,确保用户能够顺利使用SEM5000X进行科研工作。12. **持续的技术升级和更新**:随着科技的不断发展,我们将不断对SEM5000X进行技术升级和更新,引入更先进的成像技术和分析功能,以满足用户日益增长的需求。同时,我们也将积极听取用户的反馈和建议,不断优化产品性能和服务质量。综上所述,超高分辨场发射扫描电子显微镜SEM5000X是一款集高性能、高可靠性、高智能化于一体的先进分析仪器。它将成为您科研道路上的得力助手,助您探索微观世界的奥秘。
    留言咨询
  • 产品简介专用扫描透射显微镜HD-2700,配备了与德国CEOS GmbH公司(总经理Max Haider先生)共同开发的球差校正仪,显著提高了扫描透射电子显微镜的性能,更适合高级纳米技术研究。由于球差校正系统校正了限制电子显微镜的性能的球差,使其与标准型号显微镜相比,分辨率提高了1.5倍,同时,探针电流提高了10倍。最近,该显微镜还配备了高分辨率镜头和冷场发射电子枪,进一步提高了图像分辨率和电子束能量分辨率。同时,该型号系列还增加了一款不带球差校正的主机配置,可以以后加配球差校正进行升级。特点 高分辨率扫描透射电子显微镜成像HAADF-STEM图像0.136nm,FFT图像0.105nm(高分辨率镜头(*))HAADF-STEM图像0.144nm(标准镜头)明场扫描透射电子显微镜图像0.204nm(w/o球差校正仪)高速,高灵敏度能谱分析:探针电流×10倍元素面分布更迅速及时低浓度元素检测操作简化自动图像对中功能从样品制备到观察分析实现无缝连接样品杆与日立聚焦离子束系统兼容配有各种选购件可执行各种评估和分析操作同时获取和显示SE&BF, SE&DF, BF&DF, DF/EDX面分布(*) 和DF/EELS面分布(*)图像。低剂量功能(*)(使样品的损伤和污染程度降至最低)高精度放大校准和测量(*)实时衍射单元(*)(同时观察暗场-扫描透射电子显微镜图像和衍射图案)采用三维微型柱旋转样品杆(360度旋转)(*),具有自动倾斜图像获取功能。ELV-3000即时元素面分布系统(*)(同时获取暗场-扫描透射电子显微镜图像)(*) 选购件技术指标HD-2700球差校正扫描式透射电子显微镜项目描述图像分辨率w/o球差校正仪保证 0.204nm(当放大倍数为4,000,000时)w球差校正仪保证 0.144 nm(当放大倍数为7,000,000时)(标准镜头)保证 0.136nm(HAADF图像)保证0.105 nm(通过FFT)(当放大倍数为7,000,000时)(高分辨率镜头(*))放大倍数100倍 至 10,000,000倍加速电压200 kV, 120 kV (*)成像信号明场扫描透射电子显微镜:相衬图像(TE图像)暗场扫描透射电子显微镜:原子序数衬度图像(Z衬度图像)二次电子图像(SE图像)电子衍射(*)特征X射线分析和面分布(能谱分析)(*)电子能量损失谱分析和面分布(EV3000)(*)电子光学系统电子源肖特基发射电子源冷场致发射器(*)照明透镜系统2-段聚光镜镜头球差校正仪(*)六极镜头设计扫描线圈2-段式电磁感应线圈原子序数衬度收集角控制投影镜设计电磁图像位移±1 μm试片镜台样品移动X/Y轴 = ±1 mm, Z轴 = ±0.4 mm样品倾斜单轴-倾斜样品杆:±30°(标准镜头), ±18°(高分辨率镜头(*))真空系统3个离子泵,1个TMP极限真空10-8 Pa(电子枪), 10-5 Pa(样品室)图像显示个人电脑/操作系统PC/AT兼容, Windows XP监视器19-inch液晶显示器面板图像帧尺寸640 × 480, 1,280 × 960, 2,560 × 1,920 象素扫描速度快扫,慢扫(0.5至320秒/帧)自动数据显示记录序号,加速电压,下标尺,日期,时间 (*) 选购件
    留言咨询
  • Delong低电压台式透射电子显微镜LVEM系列Delong Instruments推出的LVEM系列低电压台式透射电子显微镜(Low-Voltage Electron Microscope),采用Schottky场发射电子枪,电子束加速电压远低于大型透射电镜。低电压电子束对密度和原子序数有很高的灵敏度,对于轻元素样品,无需染色即可得到高质量成像,尤其适合高分子、生物等样品。同时,低电压透射电镜对样品的损坏较小。☆ 实验室台式透射电子显微镜系统,支持多种成像模式 ☆ 观察生物样品无需染色,简易快速地获得观察结果☆ 无需专门隔震防磁使用环境,操作维护简单☆ 无需冷却水,无需专业实验室,维护成本低各型号详情(点击图片即可了解) LVEM 5LVEM 5将高分辨率成像和纳米级分辨能力结合在一起,小型台式TEM设计。LVEM5能够在TEM、SEM和STEM成像模式下工作,同时保持经济实惠和使用简单,是高校或研究机构从事纳米工作的理想工具。LVEM 25LVEM 25是性能强大的紧凑型透射电子显微镜。它具有多功能性,将TEM、STEM两种成像模式,和ED分析模式结合到一台独立的机器中。实用和直观的设计以及令人印象深刻的分辨率使得LVEM25在高校或研究机构中纳米工作的研究成为一种乐趣。LVEM 25ELVEM 25E是All in One的紧凑型透射电子显微镜。它的多功能性在于它将3种成像模式(TEM、SEM和STEM)和2种分析模式(EDS和ED)结合到一台独立的仪器中。这种先进的设计与令人印象深刻的分辨力相结合,使LVEM 25E成为满足您纳米级成像要求的特殊伙伴。各型号参数对比 LVEM 5LVEM 25LVEM 25E(New!!!)操作模式 TEM, STEM, SEM, ED TEM, STEM, ED TEM, STEM, ED, EDS, Dark Field TEM, Dark Field STEM 工作电压5 kV10, 15, 25 kV10, 15, 25 kV分辨率(TEM)1.5 nm1.0 nm1.0 nm未染色样品的对比度高高高电子源场发射电子枪场发射电子枪场发射电子枪冷却水不需要不需要不需要压缩空气不需要不需要不需要换样时间3分钟3分钟2分钟
    留言咨询
  • 高分辨率磁光克尔显微镜产品负责人:姓名:谷工(Givin)电话:(微信同号)邮箱:当一束线偏振光照被磁性介质反射后,反射光的偏振面相对于入射光的偏振面有一个小的角度偏转(克尔旋转角),这一现象被称为磁光克尔效应。该效应与显微成像技术结合组成磁光克尔显微镜,被广泛应用于磁性材料磁性测量,磁畴观察等。 由于该设备可进行无损探测、灵敏度高、在极端环境下原位测量等优点是被越来越多的科研人员采用。为满足日益增长的市场需求昊量光电推出了高性价比的磁光克尔显微镜。其主要原理是:一束面光源经过起偏器,转变为线偏振光,照射到样品上,由于样品内磁畴的存在使样品各个区域内磁化强度和方向不同,因此不同区域对线偏振光,偏振面的改变各不相同。因此当反射光通过检偏器后光斑的强度分布不同,从而得到样品的磁畴结构。为了获得更高的灵敏度,优异的磁畴成像效果等该系统做了以下优化。1)采用高亮度窄带LED光源。尽管理论上磁光克尔效应的对比度可以无限高,但是多个波长偏振像差的组合通常会大大降低偏振的纯度。因此传统的克尔显微镜经常报道磁光克尔对比度几乎观察不到。一个主要的原因就是因为使用宽谱的照明光源。因为磁光效应引起的克尔旋转量与光源波长数量成反比,宽谱光源会产生相同宽谱的线偏振,也就是说,光偏振不是完美的线性,观察到的磁对比度也会降低。因此为了克服由于光源带来的相差,我们经过多组测试,选取了FWHM为50nm的超亮LED光源,可获得很强的对比度,并且拥有较高的使用寿命。2)图像自动校正功能通常为了获得较弱磁性材料的对比度,市面上磁畴观察设备通常会采用图像差分处理来获得较高对比度,即使用拍摄到的图像减去背底图片。该方法通常可以将信号增强10倍以上。但是由于在施加磁场的过程中样品的位置会发生偏移,会大大影响差分处理效果,甚至出现错误。为了消除样品的移动,设备会通过快速像素相位算法确定样品漂移,然后通过压电促动器实时校正位置。同时该帧位移的图像在软件中也会实时修正,校正后的图像位移量不大于0.2个像素(8nm)3)特殊设计的电磁铁通常磁畴观察显微镜中的电磁铁设计是一个具有挑战性的话题,必须要有一些取舍。为了获得较高的分辨率,因此要使用大倍率的物镜,放置在靠近样品的位置。这对电磁铁强加以一个空间限制,并限制了生产磁场的强度。其次,磁铁产生的磁通量会通过物镜,引起法拉第效应,从而降低成像对比度。我们通过革新的磁通量闭合式设计从而巧妙的解决了这两个问题。通过对电磁铁的磁场测量,我们可以发现,磁铁的磁场提高了4倍,但是通过物镜的磁场强度却降低了8倍。产生磁场的均匀性在4mm范围内也达到了0.5%的水平。4)高灵敏度,高分辨率成像相机对于磁光克尔显微镜,样品反射的光通过检偏器,仅仅只有百分之一的入射光达到相机传感器。因此对于磁畴成像系统,相机的灵敏度就体现的尤为重要。因此为了达到成像效果,我们选取了再该波段下量子效率高达78%,并且具有20兆像素的背照式相机。从而获得高分辨率,高信噪比的图像。此外该设备不但可以获得样品磁畴图片,还可以根据样品磁畴图像同时获得样品的磁滞回线分析。产品参数:Light source2200 Lumens ultrabright LED lampCamera6.4 Megapixel @ 60FPS 78% Quantum efficiencyResolution300nmMagnetic Field 1T(Perpendicular)/0.5T(Longitudina)Power Requirement230VAC ± 10%, 13Amp Single PhaseSize / WeightMain System: 60 x 50 x 1500px, 25kgPower Supply Tower: 60 x 60 x 750px, 10kg实例:1)1nm CoFeB磁性薄膜2)4种灰度:垂直磁化磁隧道结多级磁畴(4 shades of grey: Multilevel stripe domains on a perpendicularly magnetized magnetic tunnel junction stack)3)[Pt/Co/Fe/Ir]x2 堆栈手性磁畴(Chiral stripes (and skyrmions)on a [Pt/Co/Fe/Ir]x2 stack)4)Heusler 合金薄膜中的垂直磁化的磁畴反转(Domain reversal in a perpendicularly magnetized Heusler alloy thin film)5)同时施加磁场和电流6)电流诱导的磁畴远动的准实时观测7)CoFeB多层材料退磁过程的实时观测
    留言咨询
  • 产品简介:HT7800作为全球畅销的日立120kV透射电镜的新机型,是日立高新技术公司为生物、制药、纳米技术和软材料等领域而开发的先进的透射电子显微镜。HT7800具有优异的操作性与多样的自动功能,通过将CCD相机与显微镜主机的操作相统一,可以在显示器画面上轻松、简便地进行操作,高刷新率的CMOS荧光相机可以实现在明亮环境下操作,独特的双隙物镜可以实现高分辨率和高反差观察的一键切换,满足不同领域的需求。HT7800还可以和光学显微镜联用,即MirrorCLEM系统,可对样品的同一位置进行观察,将电镜图像和光镜图像重合,获得更多样品信息。 主要参数: 线分辨率:0.2nm(120kV,off-axis)加速电压:20~120kV(100V/step 连续可调)放大倍率: (HC模式) ×200~×200,000 (HR模式) ×4,000~×600,000 (低倍模式) ×50~×1,000 应用领域: 生物、农林、医学、纳米材料、高分子材料
    留言咨询
  • 透射电子显微镜 H-9500 400-860-5168转4452
    原子分辨率300 kV透射电子显微镜在精细加工技术已进入到亚纳米级水平的半导体,先进材料的研发领域,原子分辨率电子显微镜正在成为日益重要的,不可或缺的工具。 特色 用户友好型的操作系统和Windows® 兼容的图形用户界面设计快速的样品分析,1分钟换样,5分钟内升高压至(300 kV)高稳定性,高分辨率透射电子显微镜高稳定性,高分辨率透射电子显微镜点分辨率为0.18 nm,晶格分辨率为0.1 nm稳定可靠的5轴优中心测角台性能优异,可靠性高性能优异,可靠性高得到市场验证的10级加速器电子枪设计阻抗式高压电缆设计高档可选附件高档可选附件通用样品杆,在日立公司的TEM, FIB 和 STEM系统均可使用可为原子分辨率的动态研究提供加热,冷却和气体注入等多种样品杆备注:FPD(平板显示器)上的图像为模拟图像。规格项目说明分辨率0.10nm(晶格分辨率)0.18nm(点分辨率)加速电压300kV、200kV*1、100kV*1放大倍率连续放大模式1,000~1,500,000×选区模式4,000~500,000×低倍模式200~500×电子枪灯丝LaB6(六硼化镧灯丝,直流加热)灯丝交换自动升降式电子枪高压电缆阻抗电缆照射系统透镜四级透镜聚光镜光阑4孔可变探针尺寸微米束模式:0.05 - 0.2 μm(4级)纳米束模式:1 - 10 nm(4级)电子束倾斜±3°成像系统透镜五级透镜聚焦图像摇摆调整利用像散监视器进行正焦补偿聚焦优化物镜光阑4孔可变光阑选区光阑4孔可变光阑电子衍射 选区电子衍射纳米探针电子衍射会聚束电子衍射相机长度250 - 3,000 mm样品室样品台5轴优中心海帕测角台样品尺寸3mmΦ样品位置追踪X/Y = ±1mm, Z = ±0.3 mm通过CPU控制马达驱动样品位置显示自动驱动,自动跟踪样品倾斜α = ±15°, β = ±15° (日立双倾样品台*2)防污染冷阱烘烤功能中温烘烤功能观察室荧光屏主屏:110 mmΦ聚焦屏:30 mmΦ目镜7.5×照相室区域选择整张照相/半张曝光胶片25张(2套胶片盒)图形用户界面 操作系统:Windows XP® 显示器19英寸显示器功能数据库,测量,图像处理数码CCD 相机*3相机耦合透镜耦合有效像素1,024 × 1,024 像素A/D 分辨率12位真空系统电子枪离子泵:60 L/s镜筒涡轮分子泵:260 L/s观察室/照相室扩散泵:280 L/s前级泵:135 L/min × 3台*1:放大倍率校准为可选项*2:可选件*3:本规格适用于可选的1,024 × 1,024像素的数码CCD相机
    留言咨询
  • 透射电子显微镜 H-9500 400-860-5168转4452
    原子分辨率300 kV透射电子显微镜在精细加工技术已进入到亚纳米级水平的半导体,先进材料的研发领域,原子分辨率电子显微镜正在成为日益重要的,不可或缺的工具。 特色 用户友好型的操作系统和Windows® 兼容的图形用户界面设计快速的样品分析,1分钟换样,5分钟内升高压至(300 kV)高稳定性,高分辨率透射电子显微镜高稳定性,高分辨率透射电子显微镜点分辨率为0.18 nm,晶格分辨率为0.1 nm稳定可靠的5轴优中心测角台性能优异,可靠性高性能优异,可靠性高得到市场验证的10级加速器电子枪设计阻抗式高压电缆设计高档可选附件高档可选附件通用样品杆,在日立公司的TEM, FIB 和 STEM系统均可使用可为原子分辨率的动态研究提供加热,冷却和气体注入等多种样品杆备注:FPD(平板显示器)上的图像为模拟图像。规格项目说明分辨率0.10nm(晶格分辨率)0.18nm(点分辨率)加速电压300kV、200kV*1、100kV*1放大倍率连续放大模式1,000~1,500,000×选区模式4,000~500,000×低倍模式200~500×电子枪灯丝LaB6(六硼化镧灯丝,直流加热)灯丝交换自动升降式电子枪高压电缆阻抗电缆照射系统透镜四级透镜聚光镜光阑4孔可变探针尺寸微米束模式:0.05 - 0.2 μm(4级)纳米束模式:1 - 10 nm(4级)电子束倾斜±3°成像系统透镜五级透镜聚焦图像摇摆调整利用像散监视器进行正焦补偿聚焦优化物镜光阑4孔可变光阑选区光阑4孔可变光阑电子衍射 选区电子衍射纳米探针电子衍射会聚束电子衍射相机长度250 - 3,000 mm样品室样品台5轴优中心海帕测角台样品尺寸3mmΦ样品位置追踪X/Y = ±1mm, Z = ±0.3 mm通过CPU控制马达驱动样品位置显示自动驱动,自动跟踪样品倾斜α = ±15°, β = ±15° (日立双倾样品台*2)防污染冷阱烘烤功能中温烘烤功能观察室荧光屏主屏:110 mmΦ聚焦屏:30 mmΦ目镜7.5×照相室区域选择整张照相/半张曝光胶片25张(2套胶片盒)图形用户界面 操作系统:Windows XP® 显示器19英寸显示器功能数据库,测量,图像处理数码CCD 相机*3相机耦合透镜耦合有效像素1,024 × 1,024 像素A/D 分辨率12位真空系统电子枪离子泵:60 L/s镜筒涡轮分子泵:260 L/s观察室/照相室扩散泵:280 L/s前级泵:135 L/min × 3台*1:放大倍率校准为可选项*2:可选件*3:本规格适用于可选的1,024 × 1,024像素的数码CCD相机
    留言咨询
  • 基于宽视野的徕卡超高分辨率系统Super Resolution Ground State Depletion可以帮您获得20纳米分辨率的图像.集成了多项功能的解决方案:Leica SR GSD 系统也能够完成高灵敏、高速、多通道荧光以及温度控制下的宽场和TIRF(全内反射荧光术)功能。 激光器选用了3个高能量激光(300-1000mW): 488nm, 532nm 和 642nm, 其中的405nm激光也可以用于标准的TIRF (全内反射荧光术)应用。 SuMo 高精度载物台选用压力运动技术, 可以使系统保持稳定在小于20nm/10min 的侧向漂移。 这保证了实验中精确的分子定位。 能够使用常规荧光染料, 用户不需要为了达到高分辨而改换原有的操作流程 ( 支持的染料有: Alexa Fluor® 488, Rhodamine-6G, Atto 532 and 488, Alexa Fluor® 532, Alexa Fluor® 546, Atto565 and 568, Alexa Fluor® 647,YFP) 在线高分辨成像投射: 用户可以实时看到图像采集的成果。 这项特性令用户可以完全地控制实验进度-可以随时选择停止或继续采图以达到令人满意的成像。使用GSDIM分辨率可达20nmGSDIM是一种经过科学证实的,可使用各种标准荧光探针的显微成像方法。 Leica Microsystems是开发超高清显微镜的先驱者。2007年推出了Leica TCS STED,它预示着分辨率突破衍射极限的新时代的到来。 Leica SR GSD以Leica AM TIRF MC 系统和Leica DMI6000 B倒置显微镜为基础,根据为基态损耗(GSDIM)技术研发而成。 Leica SR GSD系统 为您带来的优势 最大分辨率可达20nm以GSDIM技术为基础的Leica SR GSD,超越了以前其它超高清系统达到的分辨率极限。GSDIM和STED都是德国 Max Planck Institute GottingenStefan Hell的专利技术,并且授权给Leica Microsystems。上图: Ptk2-细胞。NPC-染色:抗NUP153/Alexa FLUOR 532微管染色:抗-β-/Alexa FLUOR 488致谢:Wernher Fouquet, Leica Microsystems与德国海德尔堡 欧洲分子生物学实验所Anna Szymborsak与Jan Ellenberg合作。 可以使用标准荧光剂 - 无需制定特殊操作流程GSD的工作流程。以标准免疫染色技术为基础,可以很好地纳入到现有的显微图像工作流程中。上图: MDCK细胞微管, Alexa FLUOR 642 (红色)和TyrMicrotubules, Alexa FLUOR 488 (绿色)。致谢:德国马尔堡菲利普大学Ralf Jacob.教授。 带有运动抑制技术的SuMo平台,最大程度减小了移动,增加了分子定位的准确性。Leica SR GSD带来了全新的载物台防漂移技术,在图像采集过程中,系统所产生的最大漂移小于物分辨能力。因此,在图像采集的过程中能够观察到超清的影像。 Leica SR GSD可以在超清的图像采集过程中实时显示采集的每一幅图。用户在采像过程中可以实时观察生成的图像。该特点可以使用户完全掌控试验 - 您可以决定终止或继续采像,从而达到满意的结果。 超清TIRF和落射荧光与多功能活细胞成像系统相结合,形成了广泛的应用灵活性。Leica SR GSD将高清晰图像与使用简便的系统,以及广泛的宽视野显微镜应用相结合。您使用该工作站除了可以完成从高速成像到TIRF的日常试验之外,还可以获得超清的影像。 RCC-FG1 cells,免疫荧光标记α-?tubulin with AlexaFluor® 647.图像提供: Prof. Ralf Jacob.Philipps University Marburg,Germany 高尔基体, B16 (小鼠黑色素细胞瘤株),Golgi targeting signal of β?1,4-galactosyltransferase,fused to EYFP.图像提供:Dr. Yasushi Okada,Department of Cell Biologyand Anatomy,Graduate School of Medicine,University of Tokyo, Japan最新技术带来的高性能表现: The SuMo 载物台使用最新的科技, 可以达到完美表现和极低的侧向漂移.
    留言咨询
  • 美国Spectroglyph LLC公司的MALDI/ESIInjector采用新型双离子漏斗接口,实现MALDI/ESI双离子源结合,在生物样本中可实现组织成像与结构鉴定,通过配置t-MALDI、MALDI-2等技术并搭载Thermo Scientific&trade QExactive"/Orbitrap Exploris"系列超高分辨率质谱检测仪,使成像系统兼具高灵敏度、高空间分辨率、高质量分辨率和高质量精度的特性,操作简单,适用范围广。该系统能够快速有效的进行生物组织样本的成像检测,可实现单细胞或亚细胞分辨率下的成像检测,将会助您探索更多的科学奥秘。1、质谱成像技术优势::(1)无标记检测技术,无需放射性同位素或荧光标记,无需染色 (2)待检测物质多样,不局限于特异的一种或几种分子,可以对非目标性物质同时进行成像分析 (3)既可获得分子的空间分布信息,还能够提供目标物质的分子结构信息 (4)可直接分析组织切片或细胞,样本兼容性高。2、独特的Dual lon Funnel设计,实现MALDI与ESI源之间快速转换DPSS固态激光器,搭载可视化光学系统 同时搭载MALDI与ESI离子源,可进行质谱成像与结构鉴定 双离子漏斗结构,可以进行快速离子源切换 MALDI-2激光诱导后电离技术,提高检测灵敏度 采用Transmission透射模式,提高空间分辨率 序列编辑器,可依次对靶板上的不同组织区域进行分析。3、样本类型各种组织:植物器官,动物新鲜组织、冷冻组织,培养细胞,类器官等各类分子:脂类 (磷脂:PC、PE、SM、SE)、多肽、代谢物、药物及代谢产物数百种分子同时成像:筛选与鉴定同时进行,目标分子可进行多级质谱分析,准确鉴定其组成与结构非靶向性检测,无需任何标记4、MALDI ESI INJECTOR 透射式超高分辨质谱成像系统特点:1um高空间分辨率,可实现单细胞及亚细胞水平成像分析;DDAlmagingMode质谱成像数据采集模式;高分辨质谱成像专用数据分析软件;高空间分辨率和高质量分辨率保证分子化合物的最佳成像效果;搭载Thermo Scientific&trade QExactive&trade /Orbitrap Exploris&trade 等多个系列质谱仪,提供高质量精度和分辨率(1ppm RMS)。性能参数:应用方向:一、单细胞高分辨成像 细胞是组成生命体的基本单元,了解特定细胞的生物分子组成是了解潜在生物和生化过程的关键因素。由于细胞的异质性,在群体细胞乃至组织水平上的采样可能使得一些重要的分子信息淹没在大量的正常细胞中而被忽略。Spectro-glyph LLC t-MALDI-2-MSI成像系统,采用激光透射模式将空间分辨率提升至1um以内,并且应用MALDI-2激光后电离技术提高了检测灵敏度,对于单细胞成像提供了丰富的表型特征信息,为单细胞研究提供了坚实的技术支持。通过t-MALDI-2在单细胞和细胞培养物中进行成像分析,以Vero B4细胞作为研究对象,通过比较明场图像与MSI成像发现t-MALDI-2可获得亚细胞级的分辨率,并且在负离子模式下获得了和正离子模式测量中相似的高质量图像。图1 a ITO载玻片上生长的Vero B4细胞明场显微图像;b来自基质的特征性背景离子(m/z=633.042)图像;c-e 代表性t-MALD1-2-MS离子图像,,像素大小为1.0um;f a图明场显微镜图像中红色轮廓区域放大图;g三个物质的叠加图像,分别来自背景离子(b;蓝色);PE(40:6),[M+H](c绿色);PC(34:1),[M+K,(d,橙色);h基质涂覆细胞培养物的显微明场图像,区域为f中的轮廓区域。参考文献:Transmission-mode MALDl-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods, 16,925-931 (2019).二、脂类研究 脂质具有区分和识别不同组织和细胞类型的可能性,脂质的重要生物功能与机体的生理、病理过程有着紧密的联系。脂质的变化对疾病背后的相关生化途径提供着重要的价值意义,并且脂类代谢异常也是引发多种疾病的重要原因,研究脂类分子的组织空间特异性分布对阐明脂代谢异常疾病的相关机制也有着重要的意义。MALDI-2激光诱导后电离技术能够对传统MALDI检测中生成的中性脂质分子再次进行电离,提升了脂质分子的检测灵敏度。图2所示为应用Spectroglyph LLC MALDI Injector的MALDI-2 技术在大鼠的脑组织切片中对130mDa m/z质量窗口下的脂质分子进行成像。传统的MALDI下只检测到一种脂质分子,使用MALD1-2额外检测到三种脂质分子,大大提升检测的灵敏度。脂类分子大鼠脑组织中的空间分布图2 大鼠脑组织切片 MALDI(底部)和MALDI-2(顶部)质谱图的放大截面和对应离子图像。除MALD1-2中[PC(34:1)+Na]+(3.4 ppm)和MALDI中[PC(36:4)+H]+ (-2.7 ppm),其他质量误差均小于2 ppm。 参考文献:Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging olipids.Chem.Commun,53,7246-7249 (2017).
    留言咨询
  • FEI Talos F200X 融合了出色的高分辨率扫描/透射电子显微镜 (STEM) 和 TEM 成像功能与行业ling先的能量色散 X 射线光谱仪 (EDS) 信号检测功能及基于成分测绘的三维化学表征功能。Talos F200X 可在所有维度 (1D-4D) 下实现zui快速、zui精确的 EDS 分析,以及zui好且支持快速导航的动态显微镜 HRTEM 成像。FEI Talos F200X 融合了出色的高分辨率扫描/透射电子显微镜 (STEM) 和 TEM 成像功能与行业ling先的能量色散 X 射线光谱仪 (EDS)。Talos F200S 在 STEM 成像上具有极大的多功能性和极高的通量。它可以为动态显微镜实现zui精确的 EDS 分析和zui好的 HRTEM。与此同时,FEI Talos F200S 还提供zui高的稳定性和最长的正常运行时间。
    留言咨询
  • 超高分辨散射式近场光学显微镜-neaSNOMneaSNOM是德国neaspec公司推出的第三代散射式近场光学显微镜(简称s-SNOM),其采用了专利化的散射式核心设计技术,极大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像。由于其高度的可靠性和可重复性。neaSNOM业已成为纳米光学领域热点研究方向的首选科研设备,在等离基元、纳米FTIR和太赫兹等众多研究方向得到了许多重要科研成果。最近,neaspec公司成功开发了可见至太赫兹高分辨光谱和成像综合系统,将上述sSNOM功能与纳米红外(FTIR)、针尖增强拉曼(TERS)、超快光谱(ultrafast)和太赫兹光谱(THz)进行联用,可以为广大科学工作者在等离子激元、二维材料声子极化、半导体载流子子浓度分布、生物材料红外表征、电子激发及衰减过程等的研究上提供相关支持。neaSNOM技术特点和优势:neaSNOM是目前世界上唯一成熟的s-SNOM产品专利保护的散射式近场光学测量技术—独有的极高10 nm空间分辨率专利的高阶解调背景压缩技术—在获得10nm空间分辨率的同时保持极高的信噪比专利保护的干涉式近场信号探测单元专利的赝外差干涉式探测技术—能够获得对近场信号强度和相位的同步成像专利保护的反射式光学系统—用于宽波长范围的光源:可见、红外以至太赫兹高稳定性的AFM系统,—同时优化了纳米尺度下光学测量双光束设计—极高的光学接入角:水平方向180°,垂直方向60°操作和样品准备简单—仅需要常规的AFM样品准备过程neaSNOM重要应用领域:表面等离激元石墨烯六方氮化硼光电流/太赫兹化学过程高分子/生物材料应用案例Science:石墨烯莫尔(moiré)超晶格纳米光子晶体近场光学研究光子晶体又称光子禁带材料。从结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体,其物理思想可类比半导体晶体。通过设计,这类晶体中光场的分布和传播可以被调控,从而达到控制光子运动的目的,并使得某一频率范围的光子不能在其中传播,形成光子带隙。光子晶体中介质折射率的周期性结构不仅能在光子色散能带中诱发形成完整的光子带隙,而且在特定条件下还可以产生一维(1D)手性边界态或具有Dirac(或Weyl)准粒子行为的奇异光子色散能带。原则上,光子晶体的概念也适用于控制“纳米光”的传播。该“纳米光”指的是限域在导电介质表面的光子和电子的一种耦合电磁振荡行为,即表面等离子体激元(SPPs)。该SPP的波长,λp,相比入射光λ0来说最多可减少三个数量级。如果要想构筑纳米光子晶体,我们需要在λp尺度上实现周期性介电结构,传统方法中采用top-down技术来构建纳米光子晶体,该方法在加工和制造方面具有较大的限制和挑战。2018年12月,美国哥伦比亚大学D.N. Basov教授在Science上发表了题为Photonic crystals for nano-light in moiré graphene superlattices的全文文章。研究者利用存在于转角双层石墨烯结构(twisted bilayer grapheme, TBG)中的莫尔(moiré)超晶格结构,成功构筑了纳米光子晶体,并利用德国neaspec公司的neaSNOM纳米高分辨红外近场成像显微镜研究了其近场光导和SPP特性,证明了其作为纳米光子晶体对SPP传播的调控。纳米近场成像对钙钛矿太阳能电池的研究苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用Neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用Neaspec公司的近场光学显微镜neaSNOM,首次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。最终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。参考文献:1、Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. Advanced Material 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.2、Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.丝纤蛋白电调控构象转变及其光刻应用的纳米红外研究中科院微系统所陶虎教授带领的研究团队利用neaspec公司的近场光学显微镜(neaSNOM)高化学敏感和10 nm空间分辨的优势,在纳米尺度近分子水平研究了电调控下丝蛋白中的多形态转变。 该研究在纳米尺度实现了蛋白质结构转换的探测,结合纳米精度的电子束光刻技术能为我们在二维及三维尺度实现丝蛋白的结构控制提供有力的方法;同时该工作为开启纳米尺度的蛋白质结构研究和探究蛋白质电诱导构象变化的临界条件铺平了道路;为未来设计基于蛋白质的纳米结构提了供新的规则。参考文献:1. Nanoscale probing of electron regulated structural transitions in silk proteins by near field IR imaging and nano-spectroscopy, Nature Comm. 7:130792. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist, Adv. Sci. 2017, 1700191可调谐低损耗一维InAs纳米线的表面等离激元研究亚波长下光的调控与操纵对缩小光电器件的体积、能耗、集成度以及响应灵敏度有着重要意义。其中,外场驱动下由电子集体振荡形成的表面等离激元能将光局域在纳米尺度空间中,是实现亚波长光学传播与调控的有效途径之一。然而,表面等离激元技术应用的最关键目标是同时实现:①高的空间局域性,②低的传播损耗,③具有可调控性。但是,由于金属表面等离激元空间局域性较小,在长波段损耗较大且无法电学调控限制了其实用化。由中科院物理所和北京大学组成的研究团队报道了砷化铟(InAs)纳米线作为一种等离激元材料可同时满足以上三个要求。作者利用neaspec公司的近场光学显微镜(neaSNOM, s-SNOM)在纳米尺度对砷化铟纳米线表面等离激元进行近场成像并获得其色散关系。通过改变纳米线的直径以及周围介电环境,实现了对表面等离激元性质的调控,包括其波长、色散、局域因子以及传波损耗等。作者发现InAs纳米线表面等离激元展现出:①制备简易,②高局域性,③低的传波损耗,④具有可调控性,这为用于未来亚波长应用的新型等离子体电路提供了一个新的选择。该工作发表在高水平的Advanced Materials 杂志上。参考文献:Tunable Low Loss 1D Surface Plasmons in InAs Nanowires,Yixi Zhou, Runkun Chen, Jingyun Wang, Yisheng Huang, Ming Li, Yingjie Xing, Jiahua Duan, Jianjun Chen, James D. Farrell, H. Q. Xu, Jianing Chen, Adv. Mater. 2018, 1802551范德华材料异质结构的近场纳米成像研究范德华材料拥有一整套不同的激元种类,在所有已知材料中的具有最高的自由度。德国neaspec公司提供的先进近场成像方法(s-SNOM)允许极化波在范德华层或多层异质结构中传播时被激发和可视化,从而被广泛应用到范德华材料激元的研究中,为研究人员对范德华材料体系中激元的激发、传播、调控等研究提供了有力的工具。另一方面,范德华材料系统中激元的优点是它们具有的电可调性。此外,在由不同的范德华层构成的异质结构中,不同种类的激元相互作用,从而可以在原子尺度上实现激元的完美控制。德neaspec公司提供的纳米光谱(nano-FTIR)和纳米成像成功被研究人员用于激元的调控等研究中,通过实验证实,研究人员已经成功开启了操控激元相关纳米光学现象的多种途径。范德华材料中激元的先进近场光学可视化成像研究:A、石墨烯中Dirac等离激元;B、 石墨烯纳米共振器边缘的等离激元;C、碳纳米管中的一维等离激元;D、 石墨烯-六方氮化硼moiré 超晶格体系中的超晶格等离激元;E、六方氮化硼上石墨烯的杂化等离子-声子激元;F、WSe2中的激子激元;G、 双曲六方氮化硼中的声子激元及波导传播参考文献:Basov, D. N et. al Polaritons in van der Waals materials, Science, 354, aag1992(2016). DOI: 10.1126/science.aag1992发表文章部分最新发表文章:Science (2017) doi:10.1126/science.aan2735Tuning quantum nonlocal effects in graphene plasmonicsNature Nanotechnology (2017) doi:10.1038/nnano.2016.185Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopyNature Photonics (2017) doi:10.1038/nphoton.2017.65Imaging exciton–polariton transport in MoSe2 waveguidesNature Materials (2016) doi:10.1038/nnano.2016.185Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopyNature Materials (2016) doi:10.1038/nmat4755Thermoelectric detection and imaging of propagating graphene plasmons国内用户最新发表文章:Nat. Commun. 8, 15561(2017)Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeamAdv. Mater. 29, 1606370 (2017)The Light-Induced Field-Effect Solar Cell Concept –Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell EfficiencyLight- Sci & Appl 6, 204 (2017)Effects of edge on graphene plasmons as revealed by infrared nanoimaging Light- Sci & Appl,中山大学accepted (2017)Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures Nanoscale 9, 208 (2017) Study of graphene plasmons in graphene–MoS2 heterostructures for optoelectronic integrated devices Nano-Micro Lett. 9,2 (2017) Molybdenum Nanoscrews: A Novel Non-coinage-Metal Substrate for Surface-Enhanced Raman Scattering J. Phys. D: Appl. Phys. 50, 094002 (2017) High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets ACS Sens. 2, 386 (2017) Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food Inspection Semiconductor Sci. and Tech.32,074003 (2017) PbI2 platelets for inverted planar organolead Halide Perovskite solar cells via ultrasonic spray deposition
    留言咨询
  • 产品简介日立驰名的冷场发射电子源和300 kV加速电压技术共同打造了超高分辨率成像和高灵敏度分析功能。双棱镜全息技术,空间分辨电子能量损失谱以及高精度平行纳米电子束衍射技术开辟了高效,高精度样品分析的新途径。分辨率:0.1 nm(晶体点阵)0.19 nm(点对点)0.13 nm(信息极限)放大倍数:200倍 至 1,500,000倍加速电压:300 kV, 200 kV (*), 100 kV (*)(*) 选购附件 解决方案 立扫描透射电镜HF3300在原位催化中的应用 应用领域:石油/化工检测项目:热性能检测样品:化工原料 方案优势近年来,在催化领域中,真实的催化反应过程成为广大学者的研究热点。原位扫描透射电镜能够实现实时观察样品的反应过程,监测样品的变化。其中日立的冷场300KV的HF3300型扫描透射电镜配备了独特的真空系统(差分泵) 。气体可以直接通入样品室与样品进行反应,到达样品表面的压力最 高能够达到10Pa;配备的新型冷场枪更加稳定,亮度更强,发射电流更加稳定;宽真空范围二次电子探头的加入,能够实现同时观察样品的明场,暗场及二次电子像,从而实现对催化反应过程全方位的了解。实验设备:HF-3300场发射透射电子显微镜
    留言咨询
  • 最近,该显微镜还配备了高分辨率镜头和冷场发射电子枪,进一步提高了图像分辨率和电子束能量分辨率。同时,该型号系列还增加了一款不带球差校正的主机配置,可以以后加配球差校正进行升级。特色 高分辨率扫描透射电子显微镜成像HAADF-STEM图像0.136 nm,FFT图像0.105 nm(高分辨率镜头*)HAADF-STEM图像0.144 nm(标准镜头)明场扫描透射电子显微镜图像0.204 nm(w/o球差校正仪)高速,高灵敏度能谱分析:探针电流×10倍元素面分布更迅速及时低浓度元素检测操作简化自动图像对中功能从样品制备到观察分析实现无缝连接样品杆与日立聚焦离子束系统兼容 配有各种选购件可执行各种评估和分析操作同时获取和显示SE&BF, SE&DF, BF&DF, DF/EDX面分布*和DF/EELS面分布*图像。低剂量功能*(使样品的损伤和污染程度降至最低)高精度放大校准和测量*实时衍射单元*(同时观察暗场-扫描透射电子显微镜图像和衍射图案)采用三维微型柱旋转样品杆(360度旋转)*,具有自动倾斜图像获取功能。ELV-3000即时元素面分布系统*(同时获取暗场-扫描透射电子显微镜图像)* :选购件 规格HD-2700球差校正扫描式透射电子显微镜项目描述图像分辨率w/o球差校正仪保证 0.204 nm(当放大倍数为4,000,000时)w球差校正仪保证 0.144 nm(当放大倍数为7,000,000时)(标准镜头)保证 0.136 nm(HAADF图像)保证 0.105 nm(通过FFT)(当放大倍数为7,000,000时)(高分辨率镜头*)放大倍数100倍 至 10,000,000倍加速电压200 kV, 120 kV *成像信号明场扫描透射电子显微镜:相衬图像(TE图像)暗场扫描透射电子显微镜:原子序数衬度图像(Z衬度图像)二次电子图像(SE图像)电子衍射*特征X射线分析和面分布(能谱分析)*电子能量损失谱分析和面分布(EV3000)*电子光学系统电子源肖特基发射电子源冷场致发射器*照明透镜系统2-段聚光镜镜头球差校正仪*六极镜头设计扫描线圈2-段式电磁感应线圈原子序数衬度收集角控制投影镜设计电磁图像位移±1 μm试片镜台样品移动X/Y轴 = ±1 mm, Z轴 = ±0.4 mm样品倾斜单轴-倾斜样品杆:±30°(标准镜头), ±18°(高分辨率镜头*)真空系统 3个离子泵,1个TMP极限真空10-8 Pa(电子枪), 10-5 Pa(样品室)图像显示个人电脑/操作系统PC/AT兼容, Windows® XP监视器19-inch液晶显示器面板图像帧尺寸640 × 480, 1,280 × 960, 2,560 × 1,920 象素扫描速度快扫,慢扫(0.5至320秒/帧)自动数据显示记录序号,加速电压,下标尺,日期,时间
    留言咨询
  • Talos F200X TEM用于材料科学快的200 kV FEG S / TEM,可进行多维化学分析Thermo Scientific Talos F200X扫描/透射电子显微镜(S / TEM)将出色的高分辨率S / TEM和TEM成像与行业的能量色散X射线光谱(EDS)信号检测以及具有成分映射的3D化学表征相结合。Talos F200X S / TEM可以在所有尺寸(1D-4D)中进行快,精确的EDS分析,同时具有佳的HRTEM成像和动态显微镜快速导航功能。Talos F200X S / TEM可以做到所有这些,同时还提供高的稳定性和长的正常运行时间。STEM成像中的高分辨率和通量Thermo Scientific Talos F200X S / TEM可在多个维度上对纳米材料进行快,精确的定量表征。Talos F200X S / TEM具有旨在提高通量,精度和易用性的创新功能,非常适合在学术,政府和工业研究环境中进行高级研究和分析。特色配件NanoEx-i / v TEM固定器Thermo Scientific&trade 样品加热和偏压支架将扩展显微镜的功能。NanoEx-i / v是需要 对纳米材料进行原位加热的广泛应用中进行精确实验的理想解决方案 ,例如研究纳米级退火行为,金属中的相变,催化剂纳米系统中的结构变化和烧结现象,淬灭,偏析/扩散现象等等。应用示例:带有Talos S / TEM的自动化3D EDSFIB制备的电池负极材料该应用示例显示了由镍,钴,铝和炭黑组成的FIB制备的电池负极材料的EDS层析成像大视野。 车辆老化的汽车催化剂该应用示例显示了车辆老化催化剂的大视野EDS层析成像研究。 纳米管该应用示例显示了用作Na离子和Li离子电池的电极材料的纳米管。核壳纳米粒子此应用示例显示了元素分辨率低至几纳米的Ag-Pt核壳纳米粒子的EDS层析成像研究。
    留言咨询
  • 高效率高分辨率电子显微镜H-9000 300kV透射电子显微镜以其优秀的稳定性、应用性能及可靠性满足近十年来的科研团体的严格要求。新款的300kV透射电子显微镜H-9500继承了这些优点,又采用了一些新技术,实现了计算机控制和数字图像,易于操作。可以获得高质量的原子分辨率图像,是材料研究领域不可或缺的工具。1.易于操作的Windows XP和图形操作界面2.高效快捷的数字化电子显微镜 5分钟内实现300kV 高压下电子束发射(自动模式) 1分钟换样时间3.快慢双模式照相系统4.图片数据库5.稳定可靠的5轴样品台低速或高速样品台6.样品位置记忆追踪功能7.FIB扩展夹具(选件)性能描述分辨率0.10nm(晶格像)0.18nm(点分辨率)加速电压300kV(200kV选件)放大倍数缩放X 1,000- X 1,500,000选区X4,000- X500,000低倍X200- X500电子枪六硼化镧灯丝LaB6照射系统透镜四级透镜光阑4孔成像系统透镜五级透镜物镜光阑4孔选区光阑4孔 样品室 样品台5轴样品尺寸3mm样品位置追踪自动 样品倾转α:±15度β:±15度或更大 镜筒烘烤内置式烘烤系统观察室屏幕尺寸主屏幕:110mm光学倍率X 7.5照相室区域选择全屏或半屏 软件系统控制系统基于Windows图形控制软件标配功能参数显示、测量、图像处理数字相机1,024 X 1,024 pixles视场放大倍数15倍(LCD观测/直接观测)
    留言咨询
  • ZEISS 高分辨电子扫描显微镜-EVO 10,具备自动化工作流程的高清晰扫描电镜 提高样品的成像分辨率,提供更多表面细节信息EVO 电镜广泛应用于材料和生命科学领域。在低电压下,借助电子束减速和高分辨背散射电子成像技术获取出色的样品形貌细节。您还可以在可变环境条件下实时观察材料的相互作用,控制样品室环境并实现含水生物样品的详细分析。借助自动化工作流程实现高效应用。EVO 独一无二的 X 射线几何学设计能确保在分析工作条件下达到最佳分辨率。 技术规格 设备主要部件及技术要求: 该项目的设备必须是全新设备且整体进口(包括所有零部件,元器件和附件等),满足各自的技术指标和性能,其性能应达到国际先进水平,可靠性好,性能稳定,控制精度高,使用、操作和维修方便,售后服务优良,必须在河南地区常驻有售后工程师以方便后期维护。 1、基本要求 1.1 电子光学系统 1.1.1 发射源:钨灯丝;1.1.2 分辨率:高真空二次电子像 ≤3.0nm @30kV≤8.0nm @3kV低真空背散射电子像 ≤4.0nm(30kV);1.1.3 加速电压范围:200V-30kV,10V 步进连续可调;1.1.4 放大倍数范围不小于:7X-1,000,000X,连续可调;*1.1.5 探针电流范围:0.5 pA~5μA,连续可调;*1.1.6 电子束控制模式不少于以下几种控制模式:分辨率模式、分析模式、大视野模式、大景深模式和鱼眼模式;*1.1.7 最佳分析工作距离不大于 8.5mm 且最佳分析工作距离下的最大视野范围不小于 6mm,普通模式下最大视野范围不小于 20mm; 1.2 真空系统 1.2.1 抽真空系统:涡轮分子泵 + 机械泵,不需要冷却水1.2.2 样品室最高真空度:优于优于 3 x 10-4 Pa1.2.3 抽真空时间:≤3 分钟 1.3 样品室及样品台1.3.1 样品室内部尺寸不小于 310mm(直径)×220mm(高);3*1.3.2 可放置的最大样品尺寸和承重:最大样品直径不小于 230mm,最大高度不小于 100mm,样品台最大承重不小于5kg;1.3.3 配备探测器:高真空二次电子探测器,背散射电子探测器,样品室红外 CCD 摄像装置*1.3.4 配置五轴马达驱动样品台:样品台马达移动范围:不小于 80mm(X 方向),100mm(Y 方向),35mm(Z 方向),-10°~ 90°(倾斜),360°(旋转)1.3.5 样品台类型:全电动 5 轴马达驱动样品台,双轴摇杆操作系统;1.3.6 样品台具有接触报警与自停功能 *1.3.7 马达台重复精度不低于 2um; 1.4 图像处理系统 1.4.1 配套计算机系统:不低于 CPU P4 3.0GHz,RAM 512Mb,硬盘 120Gb,软盘驱动器 1.44Mb,光盘刻录机,24″液晶显示屏,键盘,鼠标,USB 接口1.4.2 显示图像分辨率:不小于 1024×768 像素*1.4.3 单幅图像最大存储图像分辨率:不小于 32k×24k 像素1.4.4 存储图像格式:TIFF、BMP 与 JPEG 1.5 控制系统 1.5.1 配置 Windows 操作系统1.5.2 配置专业的电子显微镜控制软件1.5.3 自动功能:自动电子枪启动,电子枪自动对中,自动偏压调整,自动和手动聚焦,聚焦补偿,动态聚焦,旋转补偿,自动消像散,图像降噪处理。1.5.4 图像采集:像素平均、帧平均、帧积分、行平均、行积分;1.5.5 显示器:24″高对比度彩色平板显示器;1.5.6 显示方式:全屏显示、分屏显示、灰度直方图、轮廓方式、伪彩色;1.5.7 图像注释与数据区:提供标准数据区和定制数据区,可在图片上显示各种电镜参数和字符。1.5.8 状态菜单:显示各种工作参数。1.5.9 测量功能:可对图像中的形貌进行点间距、角度、直径等测量。 1.6 能谱仪系统 1.6.1 功能:用于材料的微区成分定性、定量分析。1.6.2 配置电制冷能谱仪,能谱仪窗口面积不小于 30mm2,能量分辨率(600000CPS) Mn-Ka 优于129eV;1.6.3 元素分析范围:Be4~CF98;1.6.4 能谱仪处理单元与计算机采用分立式设计,单探测器输出最大计数率优于 600,000CPS,可处理最大计数率1,500,000CPS;41.6.5 可将电镜图像传输到能谱仪的显示器上,并以该图为中心做微区分析,实现点、区域定性定量分析,以及线扫描和面分布功能;1.6.6 系统配置专业能谱仪数据处理工作站; 1.7 离子溅射仪 1.7.1 玻璃处理室:直径不小于 100 毫米,高度不小于 130 毫米;1.7.2 试样台尺寸:直径不小于 40 毫米可同时放 6 个样品杯;1.7.3 靶尺寸:直径不小于 58 毫米;1.7.4 真空系统:直联旋片真空泵 1 升/秒;1.7.5 真空检测:皮氏计;1.7.6 真空保护:20Pa 配有微量充气阀调节工作真空;1.7.7 工作室工作媒介气体:空气或氩气,配有氩气专用进气口和微量充气调节;1.7.8 配置:内置一块金鈀。 2 产品配置要求 为达到上述技术指标,投标产品应配置必要的硬、软件。投标产品不低于以下配置:2.1 扫描电子显微镜 1 套;2.2 RS232 能谱仪智能通讯接口 1 套;2.3 原装进口电制冷能谱仪 1 套;2.4 原装进口空气压缩机 1 套;2.5 样品室内全自动控制红外 CCD 相机 1 套;2.6 二次电子探测器 1 套,背散射电子探测器 1 套;2.7 样品束流检测器或者束流检测皮安表 1 套;2.8 不间断稳压电源 1 套;2.9 碳导电双面胶带 2 卷和灯丝 1 盒(10 支); 更简单、更智能、整合性更高 无与伦比的表面成像能力您可以在低电压下利用高分辨背散射电子探测器(HD BSD)实现具有清晰衬度的表面细节成像。针对电子束敏感样品或表面形貌分析,电子束减速技术能够提高分辨率及增强表面细节信息。成像过程中的漂移校正有助于进一步提高边缘分辨率。EVO 系列可提供包含高性能 HD 束源在内的三类电子束源技术,通过组合应用开创图像质量全新标准。 智能化成像 – 性能高效EVO 能够提高制造和质量控制领域的工作效率。试想一下,将典型的工作流程从 400 多步操作简化为 15 步,以三种不同的放大倍率在 9 个样本上对感兴趣的 4 个点进行成像。智能化系统能够自动完成光路对中、调节放大倍率、聚焦和移动载物台 – 一切都为最终的图像采集,系统会根据所选的样品设置最佳成像条件。通过易于操作的click-stop 按钮控制镜筒中间的光阑孔,从而获得可靠且重复性高的检测结果。 环境电子显微镜技术 EVO LS 可在不同温度、压力和湿度条件下观察生命科学样品及材料样品的纳米级信息。使用EVO LS 能获得细胞、植物和生物在自然水合状态下的细节信息。分析材料性能,如耐蚀性、耐热性及涂镀性能。EVO LS 全能型环境扫描电镜能在高达 3000 Pa 的压力下获取高品质图像,轻松完成含水样品的成像,同时利用计算机控制环境条件,以避免出现脱水假象。
    留言咨询
  • ZEISS 高分辨电子扫描显微镜-EVO 10,具备自动化工作流程的高清晰扫描电镜 提高样品的成像分辨率,提供更多表面细节信息EVO 电镜广泛应用于材料和生命科学领域。在低电压下,借助电子束减速和高分辨背散射电子成像技术获取出色的样品形貌细节。您还可以在可变环境条件下实时观察材料的相互作用,控制样品 室环境并实现含水生物样品的详细分析。借助自动化工作流程实现高效应用。EVO 独一无二的 X 射线几何学设计能确保在分析工作条件下达到最佳分辨率。 技术规格 设备主要部件及技术要求: 该项目的设备必须是全新设备且整体进口(包括所有零部件,元器件和附件等),满足各自的技术指标和性能,其性能应达到国际先进水平,可靠性好,性能稳定,控制精度高,使用、操作和维修方便,售后服务优良,必须在河南地区常驻有售后工程师以方便后期维护。 1、基本要求 1.1 电子光学系统 1.1.1 发射源:钨灯丝;1.1.2 分辨率:高真空二次电子像 ≤3.0nm @30kV≤8.0nm @3kV低真空背散射电子像 ≤4.0nm(30kV);1.1.3 加速电压范围:200V-30kV,10V 步进连续可调;1.1.4 放大倍数范围不小于:7X-1,000,000X,连续可调;*1.1.5 探针电流范围:0.5 pA~5μA,连续可调;*1.1.6 电子束控制模式不少于以下几种控制模式:分辨率模式、分析模式、大视野模式、大景深模式和鱼眼模式;*1.1.7 最佳分析工作距离不大于 8.5mm 且最佳分析工作距离下的最大视野范围不小于 6mm,普通模式下最大视野范围不小于 20mm; 1.2 真空系统 1.2.1 抽真空系统:涡轮分子泵 + 机械泵,不需要冷却水1.2.2 样品室最高真空度:优于优于 3 x 10-4 Pa1.2.3 抽真空时间:≤3 分钟 1.3 样品室及样品台1.3.1 样品室内部尺寸不小于 310mm(直径)×220mm(高);3*1.3.2 可放置的最大样品尺寸和承重:最大样品直径不小于 230mm,最大高度不小于 100mm,样品台最大承重不小于5kg;1.3.3 配备探测器:高真空二次电子探测器,背散射电子探测器,样品室红外 CCD 摄像装置*1.3.4 配置五轴马达驱动样品台:样品台马达移动范围:不小于 80mm(X 方向),100mm(Y 方向),35mm(Z 方向),-10°~ 90°(倾斜),360°(旋转)1.3.5 样品台类型:全电动 5 轴马达驱动样品台,双轴摇杆操作系统;1.3.6 样品台具有接触报警与自停功能 *1.3.7 马达台重复精度不低于 2um; 1.4 图像处理系统 1.4.1 配套计算机系统:不低于 CPU P4 3.0GHz,RAM 512Mb,硬盘 120Gb,软盘驱动器 1.44Mb,光盘刻录机,24″液晶显示屏,键盘,鼠标,USB 接口1.4.2 显示图像分辨率:不小于 1024×768 像素*1.4.3 单幅图像最大存储图像分辨率:不小于 32k×24k 像素1.4.4 存储图像格式:TIFF、BMP 与 JPEG 1.5 控制系统 1.5.1 配置 Windows 操作系统1.5.2 配置专业的电子显微镜控制软件1.5.3 自动功能:自动电子枪启动,电子枪自动对中,自动偏压调整,自动和手动聚焦,聚焦补偿,动态聚焦,旋转补偿,自动消像散,图像降噪处理。1.5.4 图像采集:像素平均、帧平均、帧积分、行平均、行积分;1.5.5 显示器:24″高对比度彩色平板显示器;1.5.6 显示方式:全屏显示、分屏显示、灰度直方图、轮廓方式、伪彩色;1.5.7 图像注释与数据区:提供标准数据区和定制数据区,可在图片上显示各种电镜参数和字符。1.5.8 状态菜单:显示各种工作参数。1.5.9 测量功能:可对图像中的形貌进行点间距、角度、直径等测量。 1.6 能谱仪系统 1.6.1 功能:用于材料的微区成分定性、定量分析。1.6.2 配置电制冷能谱仪,能谱仪窗口面积不小于 30mm2,能量分辨率(600000CPS) Mn-Ka 优于129eV;1.6.3 元素分析范围:Be4~CF98;1.6.4 能谱仪处理单元与计算机采用分立式设计,单探测器输出最大计数率优于 600,000CPS,可处理最大计数率1,500,000CPS;41.6.5 可将电镜图像传输到能谱仪的显示器上,并以该图为中心做微区分析,实现点、区域定性定量分析,以及线扫描和面分布功能;1.6.6 系统配置专业能谱仪数据处理工作站; 1.7 离子溅射仪 1.7.1 玻璃处理室:直径不小于 100 毫米,高度不小于 130 毫米;1.7.2 试样台尺寸:直径不小于 40 毫米可同时放 6 个样品杯;1.7.3 靶尺寸:直径不小于 58 毫米;1.7.4 真空系统:直联旋片真空泵 1 升/秒;1.7.5 真空检测:皮氏计;1.7.6 真空保护:20Pa 配有微量充气阀调节工作真空;1.7.7 工作室工作媒介气体:空气或氩气,配有氩气专用进气口和微量充气调节;1.7.8 配置:内置一块金鈀。 2 产品配置要求 为达到上述技术指标,投标产品应配置必要的硬、软件。投标产品不低于以下配置:2.1 扫描电子显微镜 1 套;2.2 RS232 能谱仪智能通讯接口 1 套;2.3 原装进口电制冷能谱仪 1 套;2.4 原装进口空气压缩机 1 套;2.5 样品室内全自动控制红外 CCD 相机 1 套;2.6 二次电子探测器 1 套,背散射电子探测器 1 套;2.7 样品束流检测器或者束流检测皮安表 1 套;2.8 不间断稳压电源 1 套;2.9 碳导电双面胶带 2 卷和灯丝 1 盒(10 支); 更简单、更智能、整合性更高 无与伦比的表面成像能力您可以在低电压下利用高分辨背散射电子探测器(HD BSD)实现具有清晰衬度的表面细节成像。针对电子束敏感样品或表面形貌分析,电子束减速技术能够提高分辨率及增强表面细节信息。成像过程中的漂移校正有助于进一步提高边缘分辨率。EVO 系列可提供包含高性能 HD 束源在内的三类电子束源技术,通过组合应用开创图像质量全新标准。 智能化成像 – 性能高效EVO 能够提高制造和质量控制领域的工作效率。试想一下,将典型的工作流程从 400 多步操作简化为 15 步,以三种不同的放大倍率在 9 个样本上对感兴趣的 4 个点进行成像。智能化系统能够自动完成光路对中、调节放大倍率、聚焦和移动载物台 – 一切都为最终的图像采集,系统会根据所选的样品设置最佳成像条件。通过易于操作的click-stop 按钮控制镜筒中间的光阑孔,从而获得可靠且重复性高的检测结果。 环境电子显微镜技术 EVO LS 可在不同温度、压力和湿度条件下观察生命科学样品及材料样品的纳米级信息。使用EVO LS 能获得细胞、植物和生物在自然水合状态下的细节信息。分析材料性能,如耐蚀性、耐热性及涂镀性能。EVO LS 全能型环境扫描电镜能在高达 3000 Pa 的压力下获取高品质图像,轻松完成含水样品的成像,同时利用计算机控制环境条件,以避免出现脱水假象。
    留言咨询
  • 产品特点:GATTA-PAINT 系列纳米标尺是适用于各种定位技术的超高分辨显微镜的理想标尺。因为采用DNA PAINT技术实现亮暗转换,GATTA-PAINT 纳米标尺几乎不会淬灭。此外,标尺的设计中包含了三个荧光发射点,可以获取到醒目的图像。荧光标记间的距离有如下几个尺寸:20nm, 40nm, 80nm。每种距离都有如下几种颜色可供选购:红色(ATTO 647N),绿色(ATTO 542)或蓝色(Alexa Fluor 488),或者红/绿组合(ATTO 655/ ATTO 542)技术参数:
    留言咨询
  • XP-550C电脑型透射偏光显微镜一、XP-550C透射偏光显微镜的主要用途和特点 XP-550C透射偏光显微镜采用先进的无限远光学系统进行设计,利用光的偏振特性对具有双折射性物质进行研究鉴定的必备仪器,可供广大用户做单偏光观察,正交偏光观察,锥光观察。可广泛应用于地质、化工、医疗、药品等领域的研究与检验,也可进行液态高分子材料,生物聚合物及液晶材料的晶相观察,是科研机构与高等院校进行研究与教学的理想仪器,也是地质行业认证的必备仪器。 随着光学技术的不断进步,高精度偏光显微镜的应用范围也越来越广阔,许多行业,如化工,半导体工业以及药品检验等等,都广泛地使用偏光显微镜。XP-550C电脑型透射偏光显微镜就是非常适用的产品,可供广大用户作单偏光观察,正交偏光观察,锥光观察以及显微摄影,配置有石膏λ、云母λ/4试片、石英楔子等附件,是一组具有较完备功能和良好品质的新型产品,可以接计算机进行摄像。对图片进行保存编辑和打印。二、仪器的主要技术指标名 称 规 格 总放大倍数: 40X---1000X无限远无应力消色差物镜PL 4X/0.1 工作距离:17.9mmPL 10X/0.25 工作距离:8.80mmPL 40X/0.65 (弹簧)工作距离:0.69mmPL 100X/1.25 (弹簧,油)工作距离:0.33mm目镜WF10X/Φ20mm 10X/Φ20mm分划目镜试片石膏1λ试片 云母1/4λ试片 石英楔子试片主体粗微动同轴调焦, 微动格值:2μm,带锁紧和限位装置滤色片磨砂玻璃、蓝色 四孔转换器外向式滚珠内定位 调焦机构粗微动同轴调焦机构,带锁紧、限位装置,微动格值: 2μm偏光聚光镜N.A.1.25可上下升降集光器内置视场光栏,滤色片座,卤素灯照明适用载物台360°高精度等分刻度圆型旋转载物台,游标格值6’,中心可调,带锁紧装置,尺寸Φ150mm勃氏镜推入式,中心可调整起偏振器可360°偏振方向旋转,有0、90、180、270四个档位,可拆卸检偏器推进式检偏装置,可360°偏振方向旋转,可方便移出光路镜筒30度铰链式,可360度旋转光源卤素灯(6V/20W)亮度可调CK-300摄像系统1X摄影接口,标准C接口300万数字成像系统,最高分辨率:2048X1536, USB2.0连接,图像质量好 ,色彩还原性好 ,图像稳定,,体积小,安装方便 ,标准镜头接口三、系统组成1、偏光显微镜XP-550   2、电脑适配镜       3、CK-300彩色数字摄像器  4、计算机(选购)四、可选购部分:1.WF16X、WF20X 目镜 2.DP-3000偏光分析软件 3.数码成像系统(数码相机接口、数码相机)
    留言咨询
  • 国仪量子 场发射透射电子显微镜 TH-F120 TH-F120取名源自中华名山“太行”(TH),寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。产品特点肖特基场发射电子枪平行束/会聚束自适应切换照明系统对称式极靴、恒功率物镜 (高衬度/高分辨模式可选)高像素CMOS相机四轴高精度样品台全中文软件交互界面产品优势人机分离 电镜空间与工作空间分离,减少人为干扰,提升安全性,带来舒适的使用体验高效操作各模块控制高度集成至PC端,全中文软件交互界面一目了然,提升操作效率越级体验将场发射电子枪、高自动化系统等配置120 kV平台,入门即高配丰富拓展预设充足的附件加装接口以及整机升级空间,满足用户使用新需求,有效应对多样的应用场景产品参数 高衬度版高分辨版加速电压10~120 kV10~120 kV信息分辨率0.20 nm0.14 nm点分辨率0.36 nm0.30 nm放大倍率10~1,200,000 x10~1,500,000x主相机像素4096×40964096×4096样品台倾转角-90 °~+90 °-70 °~+70 °支持拓展EDS、STEM、侧插式相机、EELS、插入式冷冻盒
    留言咨询
  • Talos F200i S/TEM 产品描述更高生产率和灵活性 — 支持更多材料科学应用 用于高分辨率成像和分析应用的Thermo Scientific Talos F200i 扫描/透射电子显微镜 (S/TEM) 现可提供对称布置的双100 mm2 Racetrack 检测器“( Dual-X”),以提高分析通量。 Thermo ScientificTM TalosTM F200i S/TEM 为 20-200 kV 场发射扫描/透射电子显微镜,专为提高各种材料科学样品和应 用的分析性能和生产率而设计。其标准 X-TWIN 物镜极靴间距——可赋予应用灵活性——结合高再现性镜筒设计,可支持高分辨率 2D 和 3D 表征分析、原位动态观察及衍射应用。同时,Talos F200i 还 配备了 4k × 4k Ceta 16M 相机,可在 64 位平台上提供大 视野、高灵敏度快速成像。您可根据自身需求选择适宜的 EDS 可加装各类的能谱探头,从单 30 mm2 到双 100 mm2 特点与用途关键优势 双 EDS 技术可实现。从单 30 mm2 探头到可实现高通量 (或低剂量)分析的双 100 mm2 探头,可根据您的需求 选择理想的 EDS 高质量 S/TEM 图像和准确的 EDS。借助创新直观的 Velox 软件用户界面,可通过极其简单的操作方法,获得 高质量 TEM 或 S/TEM 图像。Velox 软件内置的特有的 EDS 吸收校准功能可实现精确的定量分析 全方位原位分析功能。加装三维重构或原位分析 样品杆。高速相机、智能软件和我们的大 X-TWIN 物镜间 距可实现 3D 成像和原位数据采集,同时可避免分 辨率和分析能力的损失 提高生产效率。超稳定镜筒,借助 SmartCam 和恒定功率 物镜实现的远程操作,用于快速的模式和高压切换。轻松 快速切换,适用于多用户环境 可重复性的数据。所有日常 TEM 合轴(例如,聚焦、 共心高度调节、电子束偏转、聚光镜光阑器对中、电子束 倾斜和旋转中心)自动完成,确保每次开始使用时都具有优质的成像条件。实验可反复重现,使您可以更多关注研 究工作本身,而非所用设备 高速大视野成像。4k × 4k Ceta CMOS 相机具有大视野, 能够在整个高压范围实现高灵敏度、高速数码缩放 紧凑型设计。本设备具有更小的尺寸和占地面积,有助于 在更具挑战性的空间内安装,同时降低安装和支持成本 产品参数TEM 线分辨率 ≤0.10 nm TEM 信息分辨率 ≤0.12 nm LACBED 会聚角可至 ≥100 mrad 衍射角可至 24°STEM 分辨率 ≤0.16 nm EDS 侧插式,可伸缩 电子枪类型 场发射枪或高亮度场发 样品操作 Z 轴运动总行程 (标准样品杆) ±0.375 mm α 倾转角可至(三维重构样 品杆) (高视野样品杆) ±90° 样品漂移 (标准样品杆) ≤0.5 nm/min
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制