当前位置: 仪器信息网 > 行业主题 > >

高通量致冷控温阵列仪

仪器信息网高通量致冷控温阵列仪专题为您提供2024年最新高通量致冷控温阵列仪价格报价、厂家品牌的相关信息, 包括高通量致冷控温阵列仪参数、型号等,不管是国产,还是进口品牌的高通量致冷控温阵列仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高通量致冷控温阵列仪相关的耗材配件、试剂标物,还有高通量致冷控温阵列仪相关的最新资讯、资料,以及高通量致冷控温阵列仪相关的解决方案。

高通量致冷控温阵列仪相关的资讯

  • 大连华微推出新产品:无极通量“阵列式单细胞超高通量柔性筛选系统”
    —“HW—TORNADO龙卷风”系列大连华微生命科技有限公司(Dalian Life Huawei Technology Co., Ltd.)(以下简称大连华微),是一家拥有自主知识产权,集研发、生产、销售及服务为一体的微流控系统一站式解决方案供应商。大连华微推出“HW—TORNADO龙卷风”系列单细胞液滴制备、混匀、检测、柔性操控与分选综合控制系统,引起业内客户高度关注。“HW—TORNADO龙卷风”系列产品,全球业内具有特色的“N×”阵列式并行模块单元结构,可积木式定制扩展,针对细胞、细菌、酶、病毒、蛋白、线虫等尺寸在0.1微米至2000微米范围的活性生物颗粒,实现高通量筛选:5亿×N个液滴/日(N=1,2,4,8,16…选用阵列数,理论上速度可任意增加);对尺寸在100纳米至2毫米米范围的生物颗粒进行液滴包裹、检测、分析及筛选,可删除空液滴,实现单个液滴只包含一个细胞、菌、酶(或其它生物颗粒);多频激光(405/488/532/561/638等)可根据用户需求配置,共聚焦实时协同作业,并可实现灵活的更换和快速升级;触摸屏软件,智能识别,实现自动化的操作处理;系统可根据客户需求定制生物芯片,实现液滴检测、混匀,以及无损操控与筛选。 大连华微成立伊始,就定位于世界前沿科技的研发与生产,其自主研发的“细胞、菌、酶液滴高通量制备、检测及柔性筛选系统”秉持民族品牌,已经发展5个系列数十种型号,成为业内知名、拥有完全自主知识产权的单细胞液滴自动化控制产品。公司本次重磅推出的:阵列式100%单细胞-巨高通量柔性筛选系统“HW—TORNADO龙卷风”系列,支持全面广泛的应用及科研需求,涵盖单细胞基因测序、基因编辑、细菌分选、药物筛选、疾病诊断、酶活筛选、基因文库构建等多个重要领域。 近一两年,国内出现很多仿制的实验室DIY型“分选系统”——依靠国外成型的功能组件、电源、信号控制部件搭接而成,智能程度低、可靠性差、误差不可控,分选过程对生物颗粒活性影响不可逆,且操作繁琐。最重要的:如果采购这种DIY型“产品”,一旦其进口电源、主控功率部件出现故障或损坏,DIY供应者无法修复,只有更换,且更换成本极高(至少需要RMB十万元以上,维修周期超过两个月,如西方限制进口则无法继续使用)。华微产品源于元器件级别的自主研发,客户众多,质量经过中科院、三甲医院、985高校等高端客户应用及检验,产品可靠性、柔性控制的性能远优于上述DIY型“产品”。华微产品除保修一年外,部件还终身享受成本价格换修(最贵的单个元件更换,不高于前述DIY供应者换修价格的三分之一),维修周期一般不超过一周,自主研发产品不存在受西方限制的核心组件,可大幅节省客户后续使用成本,这是拥有自主核心技术的底气。大连华微生命科技有限公司,依靠自有专利技术,立足独立研发民族品牌,致力于国际前沿领域的微流体控制科技产品的研发与生产,历经十年的探索磨砺,为中国乃至世界的业内客户带来全新的选择。未来公司将一如既往地重视创新科研,与广大华微客户一起携手进步,共同推动着中国生命科学的发展,做世界细分领域有话语权的中国高科技民族企业。关于华微生命科技:大连华微生命科技有限公司,坐落于素有中国“浪漫之都”之称的海滨城市大连高新区火炬路,是大连市第六批“海创工程”企业;成立伊始,就定位于世界最前沿科技的研发与生产,提供生物技术、生命科学、医疗健康、环境保护等领域的专业设备、耗材、服务,以及相关完整解决方案。
  • 使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制(上)
    摘要本期推文,编译了François Bertaux等发表在 Nature Communications期刊上的研究论文《使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制》(Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight),介绍了 ReacSight,一种用于自动测量和反应实验控制的增强生物反应器阵列的策略。ReacSight 利用低成本移液机器人进行样品采集、处理和装载,并提供灵活的仪器控制架构。作者展示了 ReacSight 在涉及酵母的三种实验应用中的能力,包括:基因表达的实时光遗传控制;营养缺乏对健康和细胞应激的影响;对双菌株混合群落的组成进行动态控制。引言小规模、低成本的生物反应器正在成为微生物系统和合成生物学研究的有力工具。它们允许在长时间(几天)内严格控制细胞培养参数(例如温度、细胞密度、培养基更新率)。这些独特的特点使研究人员能够进行复杂的实验,并实现实验的高度再现性。例如,当药物选择压力随着耐药性的发展而增加时,抗生素耐药性的表征,细胞间通信合成路径的细胞密度控制表征,以及使用组合敲除文库在动态变化温度下酵母适应度的全基因组表征。原位光密度测量只能提供总生物量浓度及其增长率的信息,而荧光测量的灵敏度低,背景高。通常还必须测量和跟踪培养细胞群体的关键特征,如基因表达水平、细胞应激水平、细胞大小和形态、细胞周期进程、不同基因型或表型的比例。研究人员通常需要手动提取、处理和测量培养样本,以便通过更灵敏和专业的仪器(如细胞仪、显微镜、测序仪)进行检测。手动干预通常繁琐、容易出错,并严重限制了可用的时间分辨率和范围(即夜间无时间点)。它还阻碍了培养条件对此类措施的动态适应。这种反应性实验控制目前正引起系统生物学和合成生物学的兴趣。它既可以用来维持种群的某种状态(外部反馈控制),也可以用来最大化实验的价值(反应性实验设计)。例如,外部反馈控制可用于解开复杂的细胞耦合和信号通路调控,控制微生物群落的组成,或优化工业生物生产。反应性实验设计在长时间不确定实验(如人工进化实验)的背景下特别有用。通过实现实时参数推断和优化实验设计,也有助于加速基于模型的生物系统表征。原则上,商业机器人设备和/或定制硬件可用于将生物反应器阵列连接到敏感的多样本(通常接受 96 孔板作为输入)测量设备。然而,这对设备采购、设备成本和软件集成提出了巨大挑战。当一个功能平台建立起来时,相应硬件和软件的升级和维护也极具挑战性。因此,迄今为止报告的例子很少。例如,只有两个小组展示了细菌或酵母培养物的自动细胞术和反应性光遗传学控制,设置仅限于单个连续培养物或具有有限连续培养能力的多个培养物。一组还展示了自动显微镜和反应性光遗传学控制单个酵母连续培养。ReacSight, 一种通用且灵活的策略,用于增强生物反应器阵列的自动化测量和反应实验控制。ReacSight 非常适合集成开放源代码、开放硬件组件,但也可以容纳封闭源代码、 仅限 GUI 的组件(如细胞仪)。首先,作者使用 ReacSight 组装一个平台,实现基于细胞术的特征描述和平行酵母连续培养的反应性光遗传学控制。重要的是,作者构建了两个版本的平台,要么使用定制的生物反应器阵列,要么使用最新的低成本、开放硬件、商业化的光遗传学 Chi.生物反应器。然后,作者在三个案例研究中证明了它的有用性。首先,作者在不同的生物反应器中用光实现基因表达的并行实时控制。第二,作者利用高度受控和信息丰富的竞争分析,探讨营养缺乏对健康和细胞应激的影响。第三,作者利用平台的养分稀缺性和反应性实验控制能力,实现对两个菌株混合群落的动态控制。最后,为了进一步证明 ReacSight 的通用性,作者使用它来增强具有吸液能力的平板阅读器,并对大肠杆菌临床分离物进行复杂的抗生素处理。结果测量自动化、平台软件集成和 ReacSight 的反应性实验控制ReacSight 战略旨在增强用于自动测量和反应实验控制的生物反应器阵列, 以灵活和标准化的方式将硬件和软件元素结合起来(图 1)。吸管机器人用于以通用方式在任何生物反应器阵列和任何基于平板的测量设备之间建立物理连接(图 1a)。生物反应器培养物样本通过连接在机械臂上的泵控取样管线发送至移液机器人(取样)。使用移液机器人的一个主要优点是,在测量(处理)之前,可以在培养样本上自动执行不同的处理步骤。然后,样品由移液机器人转移至测量装置(装载)。当然,这需要测量设备的物理定位,以便当其装载托盘打开时,机器人手臂可以接近设备输入板的孔。部分接近设备输入板通常不是问题,因为机器人可用于在测量之间清洗输入板孔,允许随着时间的推移重复使用相同的孔(清洗)。重要的是,如果不需要反应性实验控制,或者如果不是基于测量,机器人功能也可以用于处理和存储培养样本,以便在实验结束时进行一次性离线测量,从而实现具有灵活时间分辨率和范围的自动测量。ReacSight 还提供了一些软件挑战的解决方案,这些软件挑战应该解决,以解锁多生物反应器的自动测量和反应实验控制(图 1b)。首先,需要对平台的所有仪器(生物反应器、移液机器人、测量设备)进行程序控制。其次,一台计算机应该与所有仪器进行通信,以协调整个实验。ReacSight 将 Python 编程语言的多功能性和强大功能与 Flask web 应用程序框架的通用性和可伸缩性相结合,以应对这两个挑战。事实上,Python 非常适合轻松构建 API 来控制各种仪器:有完善的开源库用于控制微控制器(如 Arduinos),甚至用于基于“点击”的控制 GUI 专用软件驱动缺少 API 的封闭源代码仪器(pyautogui)。重要的是,开源、低成本的吸管机器人 OT-2(Opentrons)附带了本地 Python API。Hamilton 机器人也可以通过 Python API 进行控制。然后,Flask 可用于公开所有仪器 API,以便通过本地网络进行简单访问。然后,从一台计算机协调对多个仪器的控制的任务基本上简化为发送 HTTP 请求的简单任务,例如使用 Python 模块请求。HTTP 请求 还可以使用社区级数字分发平台Discord 实现从实验到远程用户的用户友好通信。这种多功能仪表控制结构是 ReacSight 的关键组件。ReacSight 的另外两个关键组件是(1)通用的面向对象的事件实现(如果发生这种情况,请这样做),以促进反应性实验控制;(2)将所有仪器操作详尽记录到单个日志文件中。ReacSight 软件以及硬件的源文件在 ReacSight-Git 存储库中公开提供。图1 ReacSight:用于自动测量和反应实验控制的增强生物反应器阵列的策略。a 在硬件方面,ReacSight 利用吸管机器人(如低成本、开源 Opentrons OT-2)在任何多生物反应器设置(eVOLVER、Chi.Bio、custom……)和任何基于平板的测量设备(平板阅读器、细胞仪、高通量显微镜、pH 计……)的输入之间建立物理链接。如有必要,可使用移液机器人对生物反应器样本进行处理(稀释、固定、提取、纯化……),然后再装入测量装置。如果不需要反应实验控制,处理过的样品也可以存储在机器人平台上进行离线测量(OT-2 温度模块可以帮助保存对温度敏感的样品)。b 在软件方面,ReacSight 通过基于Python 和PythonWeb 应用程序框架 Flask 的多功能仪器控制体系结构实现了全平台集成。ReacSight 软件还提供了一个通用事件系统,以实现反应性实验控制。显示了反应实验控制的简单用例的示例代码。实验控制还可以使用Discord webhooks 将实验状态通知远程用户,并生成详尽的日志文件。曼森自动化高通量发酵实验室曼森机器人自动化技术可根据客户实际需求进行定制化(可实现硬件+软件协同)完成复杂流程自动化。机器人自动化技术与平行反应器组合为生物领域科学研究助力,是实现生物技术biofoundry的重要技术基础;曼森生物致力于满足客户自动化、高通量的需求,推进合成生物技术产品快速产业化。曼森高通量发酵平台曼森实验室自动化系列曼森高通量自动样品检测机器人未完待续文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑 内容审核:郝玉有博士
  • 使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(中)
    本篇承接上文,《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(上)》(点击查看)。2.2反应性光遗传控制和酵母连续培养的单细胞解析特性作者首次应用ReacSight策略的动机是酵母合成生物学应用。在这种情况下,精确控制合成路径并在定义明确的环境条件下测量其输出,并具有足够的时间分辨率和范围是至关重要的。光遗传学为控制合成路径提供了一种极好的方法,生物反应器支持的连续培养是对环境条件进行长时间严格控制的理想方法。为了测量单个细胞的路径输出,细胞术提供了高灵敏度和高通量。因此,借助ReacSight策略,利用台式细胞仪作为测量设备,组装了一个完全自动化的实验平台,实现了对酵母连续培养物的反应性光遗传学控制和单细胞解析表征(图2a)。补充说明2提供了平台硬件和软件的详细信息,此处仅讨论关键要素。八个反应器与移液机器人相连,这意味着每个时间点都会填满一列取样板。虽然机器人可以接触到三列细胞仪输入板,但作者仅使用一列,由机器人进行广泛清洗,以实现小于0.2%的残留,使用免疫磁珠进行验证。通常在机器人平台上安装两个倾翻箱和两个取样板(2×96=192个样本),因此,在没有任何人为干预的情况下,八个反应器中的每一个都有24个时间点。为了实现基于细胞数据的反应性实验控制,作者开发并实施了算法,以在重叠荧光团之间执行自动选通和光谱反褶积(图2b)。作者首先通过对组成性表达来自染色体整合转录单位的各种荧光蛋白的酵母菌株进行长期恒浊培养来验证平台的性能(图2c)。荧光团水平的分布是单峰的,随着时间的推移是稳定的,正如在具有组成型启动子的稳定生长条件下所预期的那样。mNeonGreen和mScarlet-I在单色和三色菌株之间的分布完全重叠。这与从强pTDH3启动子表达一个或三个荧光蛋白对细胞生理学的影响可以忽略不计的假设是一致的,并且三色菌株中转录单位的相对位置(mCerulean第一,mNeonGreen第二,mCarlet-I)对基因表达的影响很小。与单色品系相比,三色品系中测得的mCerulean水平略高(~15%)。这可能是由于反褶积中的残余误差造成的,与自荧光和mNeonGreen相比,mCerulean的亮度较低加剧了这种误差。为了验证平台的光遗传学能力,作者构建了一个基于EL222系统17的光诱导基因表达路径并对其进行了表征(图2d)。正如预期的那样,应用不同的蓝光开-关时间模式导致荧光团水平的动态分布覆盖范围很广,从接近零水平(即几乎无法与自体荧光区分)到超过强组成启动子pTDH3获得的水平。高诱导表达水平的细胞间变异性也很低,变异系数(CV)值与pTDH3启动子相当(0.22vs0.20)。作者组装的第一个平台使用了一个预先存在的定制光生生物反应器阵列。这种设置有几个优点(可靠性、工作容量范围广),但其他实验室无法轻易复制。由于ReacSight架构的模块化,可以通过将这个定制的生物反应器阵列与最近描述的开放硬件、光遗传学就绪的商用Chi.生物反应器(图2a(右图))交换,快速构建具有类似功能的平台的第二个版本。为了验证该平台的另一版本的性能,作者使用图2d中相同的菌株进行了光诱导实验,并获得了各种光诱导曲线的极好的反应器到反应器再现性。图2基于ReacSight的自动化平台组装,实现对酵母连续培养物的反应性光遗传学控制和单细胞解析表征。a平台概述。OpentronsOT-2移液机器人用于将支持光基因的多生物反应器连接到台式细胞仪(GuavaEasyCyte14HT,Luminex)。机器人用于稀释细胞仪输入板中的新鲜培养样本,并在时间点之间清洗。“点击”Python库pyautogui用于创建细胞仪仪器控制API。定制算法是在Python中开发和实现的,用于实时自动选通和去卷积细胞数据。使用定制的生物反应器装置(左图)或Chi生物反应器(右图)组装了两个版本的平台。b选通和反褶积算法说明。例如,显示了重叠荧光团mCerulean和mNeonGreen之间的反褶积。c多代单细胞基因表达分布的稳定性。从pTDH3启动子驱动的转录单位中组成性表达mCerulean、mNeonGreen或mCarlet-I的菌株(“三色”菌株),整合到染色体中,在浊度调节器模式下生长(OD设定值=0.5,上限图),每小时采集一次细胞仪(垂直绿线)。所有时间点的荧光强度分布(通过高斯核密度估计进行平滑)(选通、反褶积和前向散射归一化后,FSC)用不同的颜色阴影绘制在一起(下图)。RPU:相对启动子单位(见方法)。为了简单起见,未显示“三色”的OD数据,与其他类似。d基于EL222系统的光驱动基因表达电路的特性。应用三种不同的开-关蓝光时间剖面图(底部),每45分钟采集一次细胞仪。门控、去卷积、FSC标准化数据的中位数如图所示(顶部)。此图中显示的所有生物反应器实验均在同一天与定制生物反应器平台版本并行进行。源数据作为源数据文件提供。2.3使用光实时控制基因表达为了展示平台的反应性光遗传控制能力,作者开始动态适应光刺激,以便将荧光团水平保持在不同的目标设定点。这种用于体内基因表达调控的电子反馈有助于在存在复杂细胞调控的情况下剖析内源性路径的功能,并有助于将合成系统用于生物技术应用。作者首先构建并验证了光诱导基因表达的简单数学模型(图3a)。将三个模型参数与图2d的表征数据进行联合拟合,得到了良好的定量一致性。考虑到模型假设的简单性,这一点值得注意:光激活下的mRNA生成速率恒定,每mRNA的翻译速率恒定,mRNA(大部分降解,半衰期为20分钟)和蛋白质(大部分稀释,半衰率为1.46小时)的一级衰变。因此,当实验条件得到很好的控制并且数据得到适当的处理时,人们可以希望用一小套简单的过程来定量地解释生物系统的行为。然后,作者将拟合模型合并到模型预测控制算法中(图3b)。该算法与ReacSight事件系统一起,实现了对不同反应器中不同目标的荧光水平的精确实时控制(图3c)。为了进一步证明平台的稳健性和再现性,作者在几个月后进行了另一个单8反应器实验,涉及两个荧光团目标水平的四个重复反应器运行。所有的重复都能很好地跟踪目标,并且控制算法决定的光分布在相同目标的重复之间非常相似,但并不完全相同。作者还研究了之前使用的诱导系统在更长时间尺度上的遗传稳定性。遗传稳定性是工业生物生产的一个重要因素。作者观察到,EL222驱动的mNeonGreen蛋白的诱导可以持续5天以上,并且具有很好的稳定性(图3d顶部)。更进一步,作者测试了同一蛋白的分泌版本是否表现出类似的表达稳定性。作者观察到,诱导约2天后细胞水平显著降低。细胞异质性也增加了(图3d右侧)。为了弥补细胞水平的下降,作者将表达盒整合成多个拷贝(三次,串联染色体插入)。诱导后,获得了非常高的荧光水平(图3d底部)。令人惊讶的是,这些水平比非分泌蛋白高一个数量级,并伴随着强烈的应激,正如未折叠蛋白应激报告所反映的那样(pUPRmScarletI)。诱导后,细胞内蛋白质水平逐渐下降。细胞内蛋白质水平显示出明显的双峰分布,强烈的遗传不稳定性迹象(图3d右侧)。最后,当以最大诱导水平的三分之一诱导时,相同的三重拷贝结构表现出非单调行为:高水平初始反应,随后细胞内水平缓慢下降,如完全诱导的三重结构,随后长期内部高蛋白水平的非预期缓慢恢复(图3d底部)。这种恢复可以通过细胞适应高生产需求来解释,或者更可能的是,通过选择高产亚群来解释,该亚群能够更好地保存HIS3选择标记,即使在完全培养基中也具有轻微的生长优势。这个实验证明了作者的平台能够执行长时间的实验,并以相对较高的时间分辨率提供单小区信息。此外,它促使探索和利用营养素可用性对健康和压力的影响。图3闭环:使用光实时控制基因表达。a光驱动基因表达电路的简单ODE模型拟合到图2d的表征数据。拟合参数为γm=2.09h−1,σ=0.64RPU小时−1,γFP=0.475小时−1km被任意设置为等于γm,以仅允许从蛋白质中值水平识别参数。b实时控制基因表达的策略。每小时进行一次细胞仪采集,在选通、反褶积和FSC归一化后,数据被送入模型预测控制(MPC)算法。该算法使用该模型搜索10个周期为30分钟的工作循环(即5小时的后退地平线)的最佳占空比序列,以跟踪目标水平。c四种不同目标水平的实时控制结果,在不同的生物反应器中并行执行(自定义设置)。左:单个单元格的中位数(控制值)。右:单细胞随时间的分布。请注意,所有绘图都使用线性比例。d表达系统的长期稳定性和蛋白质分泌的影响。表达EL222驱动的mNeonGreen荧光报告子的细胞,无论是否分泌,在浊度调节器中生长5天,每2小时进行一次细胞仪测量。表示整个实验期间的平均表达水平。荧光分布也显示在选定的时间点(诱导后0、6、48和120小时)。细胞也有分泌应激的荧光报告子(pUPRmScarlet-I)。还提供了三个拷贝中整合的mNeonGreen报告蛋白的分泌形式的结果。相关蛋白(mNeonGreen水平)和应激水平(mCarlet-I水平)分布的时间演变如补充图11和12所示。源数据作为源数据文件提供。曼森生物高通量菌株筛选平台技术上海曼森生物科技公司专注于高通量、自动化、智能化实验室技术产品开发,逐步形成了全自动化的高通量菌株筛选平台技术,可根据用户需求定制化高通量全自动菌株筛选平台。每天筛选通量可从几千到10万,是人工通量的几十倍上百;在传统生物技术上,加速工业化菌株的遗传进化,帮助提高底物转化率和产量提升;在合成生物技术上,可为选择的平台化合物表达菌株的遗传稳定性、表观遗传进化提升效率。此外高通量筛选必须有高通量的自动化分析检测技术支撑方能发挥最大价值。曼森高通量自动样品检测机器人文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制(上)
    编者按跟踪智慧实验室的理论研究发展状况、产业发展动态、主要设备供应商产品研发动态、国内外智慧实验室建设成果现状等信息内容。本文由中科院上海生命科学信息中心与曼森生物合作供稿。 本期推文, 编 译 了 Franç ois Bertaux 等 发 表 在 Nature Communications 期刊上的研究论文《使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制》(Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight),介绍了 ReacSight,一种用于自动测量和反应实验控制的增强生物反应器阵列的策略。ReacSight 利用低成本移液机器人进行样品采集、处理和装载,并提供灵活的仪器控制架构。作者展示了 ReacSight 在涉及酵母的三种实验应用中的能力,包括:基因表达的实时光遗传控制;营养缺乏对健康和细胞应激的影响;对双菌株混合群落的组成进行动态控制。因文章篇幅较长,将分为三期来讲述。感谢关注!目录/CONTENT01/引言02/结果 2.1 测量自动化、平台软件集成和 ReacSight 的反应性实验控制 2.2 反应性光遗传控制和酵母连续培养的单细胞解析特性 2.3 使用光实时控制基因表达 2.4 探索营养缺乏对健康和细胞压力的影响 2.5 ReacSight 是一种通用策略:通过吸液功能增强平板阅读器03/讨论01引言小规模、低成本的生物反应器正在成为微生物系统和合成生物学研究的有力工具。它们允许在长时间(几天)内严格控制细胞培养参数(例如温度、细胞密度、培养基更新率)。这些独特的特点使研究人员能够进行复杂的实验,并实现实验的高度再现性。例如,当药物选择压力随着耐药性的发展而增加时,抗生素耐药性的表征,细胞间通信合成路径的细胞密度控制表征,以及使用组合敲除文库在动态变化温度下酵母适应度的全基因组表征。原位光密度测量只能提供总生物量浓度及其增长率的信息,而荧光测量的灵敏度低,背景高。通常还必须测量和跟踪培养细胞群体的关键特征,如基因表达水平、细胞应激水平、细胞大小和形态、细胞周期进程、不同基因型或表型的比例。研究人员通常需要手动提取、处理和测量培养样本,以便通过更灵敏和专业的仪器(如细胞仪、显微镜、测序仪)进行检测。手动干预通常繁琐、容易出错,并严重限制了可用的时间分辨率和范围(即夜间无时间点)。它还阻碍了培养条件对此类措施的动态适应。这种反应性实验控制目前正引起系统生物学和合成生物学的兴趣。它既可以用来维持种群的某种状态(外部反馈控制),也可以用来最大化实验的价值(反应性实验设计)。例如,外部反馈控制可用于解开复杂的细胞耦合和信号通路调控,控制微生物群落的组成,或优化工业生物生产。反应性实验设计在长时间不确定实验(如人工进化实验)的背景下特别有用。通过实现实时参数推断和优化实验设计,也有助于加速基于模型的生物系统表征。原则上,商业机器人设备和/或定制硬件可用于将生物反应器阵列连接到敏感的多样本(通常接受 96 孔板作为输入)测量设备。然而,这对设备采购、设备成本和软件集成提出了巨大挑战。当一个功能平台建立起来时,相应硬件和软件的升级和维护也极具挑战性。因此,迄今为止报告的例子很少。例如,只有两个小组展示了细菌或酵母培养物的自动细胞术和反应性光遗传学控制,设置仅限于单个连续培养物或具有有限连续培养能力的多个培养物。一组还展示了自动显微镜和反应性光遗传学控制单个酵母连续培养。 ReacSight, 一种通用且灵活的策略,用于增强生物反应器阵列的自动化测量和反应实验控制。ReacSight 非常适合集成开放源代码、开放硬件组件,但也可以容纳封闭源代码、 仅限 GUI 的组件(如细胞仪)。首先,作者使用 ReacSight 组装一个平台,实现基于细胞术的特征描述和平行酵母连续培养的反应性光遗传学控制。重要的是,作者构建了两个版本的平台,要么使用定制的生物反应器阵列,要么使用最新的低成本、开放硬件、商业化的光遗传学 Chi.生物反应器。然后,作者在三个案例研究中证明了它的有用性。首先,作者在不同的生物反应器中用光实现基因表达的并行实时控制。第二,作者利用高度受控和信息丰富的竞争分析,探讨营养缺乏对健康和细胞应激的影响。第三,作者利用平台的养分稀缺性和反应性实验控制能力,实现对两个菌株混合群落的动态控制。最后,为了进一步证明 ReacSight 的通用性,作者使用它来增强具有吸液能力的平板阅读器,并对大肠杆菌临床分离物进行复杂的抗生素处理。02结果2.1 测量自动化、平台软件集成和 ReacSight 的反应性实验控制ReacSight 战略旨在增强用于自动测量和反应实验控制的生物反应器阵列, 以灵活和标准化的方式将硬件和软件元素结合起来(图 1)。吸管机器人用于以通用方式在任何生物反应器阵列和任何基于平板的测量设备之间建立物理连接(图 1a)。生物反应器培养物样本通过连接在机械臂上的泵控取样管线发送至移液机器人(取样)。使用移液机器人的一个主要优点是,在测量(处理)之前,可以在培养样本上自动执行不同的处理步骤。然后,样品由移液机器人转移至测量装置(装载)。当然,这需要测量设备的物理定位,以便当其装载托盘打开时,机器人手臂可以接近设备输入板的孔。部分接近设备输入板通常不是问题,因为机器人可用于在测量之间清洗输入板孔,允许随着时间的推移重复使用相同的孔(清洗)。重要的是,如果不需要反应性实验控制,或者如果不是基于测量,机器人功能也可以用于处理和存储培养样本,以便在实验结束时进行一次性离线测量,从而实现具有灵活时间分辨率和范围的自动测量。ReacSight 还提供了一些软件挑战的解决方案,这些软件挑战应该解决,以解锁多生物反应器的自动测量和反应实验控制(图 1b)。首先,需要对平台的所有仪器(生物反应器、移液机器人、测量设备)进行程序控制。其次,一台计算机应该与所有仪器进行通信,以协调整个实验。ReacSight 将 Python 编程语言的多功能性和强大功能与 Flask web 应用程序框架的通用性和可伸缩性相结合,以应对这两个挑战。事实上,Python 非常适合轻松构建 API 来控制各种仪器:有完善的开源库用于控制微控制器(如 Arduinos),甚至用于基于“点击”的控制 GUI 专用软件驱动缺少 API 的封闭源代码仪器(pyautogui)。重要的是,开源、低成本的吸管机器人 OT-2(Opentrons)附带了本地 Python API。Hamilton 机器人也可以通过 Python API 进行控制。然后,Flask 可用于公开所有仪器 API,以便通过本地网络进行简单访问。然后,从一台计算机协调对多个仪器的控制的任务基本上简化为发送 HTTP 请求的简单任务,例如使用 Python 模块请求。HTTP 请求 还可以使用社区级数字分发平台Discord 实现从实验到远程用户的用户友好通信。这种多功能仪表控制结构是 ReacSight 的关键组件。ReacSight 的另外两个关键组件是(1)通用的面向对象的事件实现(如果发生这种情况,请这样做),以促进反应性实验控制;(2)将所有仪器操作详尽记录到单个日志文件中。ReacSight 软件以及硬件的源文件在 ReacSight-Git 存储库中公开提供。图1 ReacSight:用于自动测量和反应实验控制的增强生物反应器阵列的策略。a 在硬件方面,ReacSight 利用吸管机器人(如低成本、开源 Opentrons OT-2)在任何多生物反应器设置(eVOLVER、Chi.Bio、custom……)和任何基于平板的测量设备(平板阅读器、细胞仪、高通量显微镜、pH 计……)的输入之间建立物理链接。如有必要,可使用移液机器人对生物反应器样本进行处理(稀释、固定、提取、纯化……),然后再装入测量装置。如果不需要反应实验控制,处理过的样品也可以存储在机器人平台上进行离线测量(OT-2 温度模块可以帮助保存对温度敏感的样品)。b 在软件方面,ReacSight 通过基于Python 和PythonWeb 应用程序框架 Flask 的多功能仪器控制体系结构实现了全平台集成。ReacSight 软件还提供了一个通用事件系统,以实现反应性实验控制。显示了反应实验控制的简单用例的示例代码。实验控制还可以使用Discord webhooks 将实验状态通知远程用户,并生成详尽的日志文件。03曼森自动化高通量发酵实验室曼森机器人自动化技术可根据客户实际需求进行定制化(可实现硬件+软件协同)完成复杂流程自动化。机器人自动化技术与平行反应器组合为生物领域科学研究助力,是实现生物技术biofoundry的重要技术基础;曼森生物致力于满足客户自动化、高通量的需求,推进合成生物技术产品快速产业化。曼森高通量发酵平台曼森实验室自动化系列曼森高通量自动样品检测机器人未完待续Mediacenter Editor | 曼森编辑文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑 内容审核:郝玉有博士
  • 璀璨盛会闪耀新星,澳维阵列甲酯化仪C位登场
    尊敬的各位老师、朋友们,令分析界心潮澎湃的上海慕尼黑生化分析展已接近尾声,让我们一同再次聚焦E5-5710展位,看看今天新闻速报吧。 本次展会澳维隆重推出的新品:阵列甲酯化仪,是基于客户痛点的创新性产品,绝对C位亮相。这款产品是严格按照《GB5009.168-2016食品中脂肪酸的测定》分析标准的要求研制的样品水解、脂肪皂化、脂肪酸甲酯化等功能于一体的专用仪器。 同时,“同洲维普”品牌T系列微型台式冷水机也大受欢迎,伴随着冷水机行业的不断发展,我们的冷水机也在不断的优化、迭代、升级,产品整体外观越做越小,外观简约、精美,功能效率也越来越高。3天时间虽然短暂,但是收获颇丰。北京澳维仪器基于客户痛点的创新思路得到老师们的高度认可,澳维将继续努力为实验室设备领域研发更多新产品,持续优化实验室用户体验。再次感谢莅临展位以及关注北京澳维仪器的所有老师、朋友们,让我们下次盛会不见不散。阵列甲酯化仪产品介绍: 阵列甲酯化仪是严格按照《GB5009.168-2016食品中脂肪酸的测定》分析标准的要求研制的样品水解、脂肪皂化、脂肪酸甲酯化等功能于一体的专用仪器。阵列甲酯化仪可以同时处理6个样品,玻璃冷凝回流器及样品瓶可以自动升起降落,便于更换样品。间歇磁力搅拌可轻松完成样品水解。阵列甲酯化仪不仅拥有加热水浴,同时还搭载冷水浴,可以快速对处理完毕的样品进行快速降温,充分满足标准“迅速冷却至室温”的要求。主要特点: 间歇搅拌——样品水解更轻松 冷热双浴——标准要求更符合 智能升降——样品装卸更简单 中部加液——操作高度更适合 集成管路——实验室更整洁制冷冷却液循环机——冷水机产品介绍: 自主研发、生产、销售制冷冷却液循环机,制冷加热高低温循环设备,新能源(EV)测温温控系统,工业制冷循环设备,冷水气源一体机等产品,为客户最大化提升设备使用价值。 持续保持国家级高新技术企业认定,ISO9001质量管理体系保持研发、生产和管理过程严格高效,产品已广泛服务于全球40多个国家和地区的工厂及实验室。
  • 微阵列点样自动化产品与定制服务解决方案
    微阵列是指基于固体基质上的二维阵列,是高通量测定生物分子(如DNA、RNA、蛋白质等)的重要环节,目前将样品固定在靶板上的点样操作一般由人工来完成,这种工作方式不仅效率低而且点样的精度不高,甚至影响最后的分析结果。自动化方案的出现,彻底解决了传统手动过程耗时费力问题,实现高通量、微型化处理,提高实验效率,避免人为误差。产品介绍Vitae SPOTTER生物芯片点样系统Vitae SPOTTER生物芯片点样系统是一款高效、经济的桌面型微阵列点样设备,可以将脱氧核糖核酸(DNA)、蛋白质、微生物培养液或者其它基质等化学试剂按照指定的阵列方式快速、准确的施加点样在靶板或载玻片等固相承载体上。该点样仪基于微液滴发生系统,专为nL及μL量级高值反应试剂的精密点样(100nL)需求而设计,可实现高精度微阵列打印,亦可进行灵活的定制化点样。此款点样设备应科研实验室及企业研发部门的需求而生,以高性价比为原则进行设计,满足研发的同时还能够进行小批量生产,可协助研究人员在PCR检测、细菌鉴定、微流体分配、药物输送、单细胞分离等领域进行探索,并可实现各种生物芯片和生物传感器产品的研究及制造。产品特点快速高效多种点样方式:接触式点样或非接触式点样智能点样:具有跳点功能,软件自定义点样工艺,同种样品可一次点出,节省样品量和点样时间高精度精密点样定点定位:定位精度±0.1mm,液滴滴落精度<± 0.05μm定量准确:点样最小体积100nL,尺寸一致性误差率0.1%多基材适配点样基质不限:涵盖硅基底板、载玻片、柔性膜片(NC膜、PET膜等)以及孔板(96孔板等)等基材精巧灵活软件功能齐全,可执行任意点样目标,可按需定制钢针点样枪头点样应用方向生物芯片、抗体芯片、生物传感器、MALDI-TOF MS、Lab-On-A-Chip等DNA、RNA、多肽、蛋白质、多糖阵列、核酸质谱、微流体分配、单细胞分离等定制化解决方案
  • 大连华微推出阵列式单细胞超高通量柔性筛选新品—“HW—TORNADO龙卷风”系列
    p style=" text-align: justify text-indent: 2em " 大连华微生命科技有限公司(Dalian Life Huawei Technology Co., Ltd.)(以下简称大连华微)在业内率先推出“HW—TORNADO龙卷风”系列单细胞液滴制备、混匀、检测、柔性操控与分选综合控制系统,引起业内客户高度关注。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C378571.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 386px height: 210px " src=" https://img1.17img.cn/17img/images/202004/uepic/db3d37f0-9eca-4460-bc35-a293604ec7cf.jpg" title=" 龙卷风 华微.jpg" alt=" 龙卷风 华微.jpg" width=" 386" height=" 210" / /a /p p style=" text-align: center " span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/netshow/C378571.htm" target=" _blank" 单细胞分析_分选_滴内注液_龙卷风系列“HW-TORNADO /a (点击查看详情) /strong /span /p p style=" text-align: justify text-indent: 2em " “HW—TORNADO龙卷风”系列产品,全球业内独创的N× 阵列式并行模块单元结构,可积木式定制扩展,针对细胞、细菌、酶、病毒、蛋白、线虫等尺寸在0.1微米至2000微米范围的活性生物颗粒, strong 实现极高的筛选通量 /strong :5亿× N个液滴/日(N=1,2,4,8,16& #8230 选用阵列数,理论上速度无上限);对尺寸在100纳米至2毫米米范围的生物颗粒进行液滴包裹、检测、分析及筛选,可删除空液滴,实现单个液滴仅包含一个细胞、菌、酶(或其它生物颗粒);多频激光(405/488/532/561/638等)可根据用户需求配置,共聚焦实时协同作业,并可实现灵活的更换和快速升级;触摸屏软件,智能识别,实现自动化的操作处理;系统可根据客户需求定制生物芯片, strong 实现液滴检测、混匀,以及无损操控与筛选 /strong 。 /p p style=" text-align: justify text-indent: 2em " 大连华微成立伊始,就定位于世界最前沿科技的研发与生产,其自主研发的“细胞、菌、酶液滴高通量制备、检测及柔性筛选系统”秉持民族品牌,已经发展5个系列数十种型号,成为国内唯一,国际领先的,拥有完全自主知识产权的单细胞液滴自动化控制产品。公司本次重磅推出全球领先的阵列式100%单细胞超高通量柔性筛选系统“HW—TORNADO龙卷风”系列,支持全面广泛的应用及科研需求,涵盖单细胞基因测序、基因编辑、细菌分选、药物筛选、疾病诊断、酶活筛选、基因文库构建等多个重要领域。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/855405f3-eec8-4fee-8d2e-85548ca7b48f.jpg" title=" 龙卷风 大连华微.jpg" alt=" 龙卷风 大连华微.jpg" / /p p style=" text-align: justify text-indent: 2em " 近一两年,国内出现很多仿制的实验室DIY型“分选系统”——依靠国外成型的功能组件、电源、信号控制部件搭接而成,智能程度低、可靠性差、误差不可控,分选过程对生物颗粒活性影响不可逆,且操作繁琐。最重要的:如果采购这种DIY型“产品”,一旦其进口电源、主控功率部件出现故障或损坏,DIY供应者无法修复,只有更换,且更换成本极高(至少需要RMB十万元以上,维修周期超过两个月,如西方限制进口则无法继续使用)。 /p p style=" text-align: justify text-indent: 2em " 华微产品源于元器件级别的自主研发,客户众多,质量经过中科院、三甲医院、985高校等高端客户应用及检验,产品可靠性、柔性控制的性能远优于上述DIY型“产品”。华微产品除保修一年外,部件还终身享受成本价格换修(最贵的单个元件更换,不高于前述DIY供应者换修价格的三分之一),维修周期一般不超过一周,自主研发产品不存在受西方限制的核心组件,可大幅节省客户后续使用成本,这是拥有自主核心技术的底气。 /p p style=" text-align: justify text-indent: 2em " strong 关于大连华微生命科技有限公司 /strong /p p style=" text-align: justify text-indent: 2em " 大连华微生命科技有限公司(Dalian Life Huawei Technology Co., Ltd.),国家级高新技术企业,是一家拥有自主知识产权,集研发、生产、销售及服务为一体的微流控系统一站式解决方案供应商。 /p p style=" text-align: justify text-indent: 2em " 大连华微生命科技有限公司,依靠自有专利技术,立足独立研发民族品牌,致力于国际领先的微流体控制科技产品的研发与生产,历经十年的探索磨砺,为中国乃至世界的业内客户带来全新的选择。未来公司将一如既往地重视创新科研,与广大华微客户一起携手进步,共同推动着中国生命科学的发展,做世界细分领域有话语权的中国高科技民族企业。 /p
  • 必达泰克公司将科研级背照式CCD阵列光谱仪带入大众价位
    由于背照式CCD阵列(Back thinned CCD Array)具有量子效率高,动态范围大,暗噪声低,紫外区与近红外区响应好等优点,因此非常适合于200-1100nm范围的检测需要。但由于其造价昂贵,长期以来只能作为大多数阵列式光谱仪生产厂家的高端产品存在,无法得到大范围的应用。目前,美国必达泰克公司(B&W TEK INC.)通过不懈努力,利用目前最新的背照式CCD阵列,已成功开发出全球第一台新一代背照式CCD阵列光谱仪(BRC641E),将背照式CCD阵列光谱仪带入了大众价位。该光谱仪采用了最新的2048× 1 等效元的背照式CCD阵列,动态范围可达5200:1。该光谱仪还采用了全息平场凹面光栅结构,大大地降低了杂散光,并大大增强了紫外区和近红外区的信号。同时由于采用的CCD阵列在横向上具有2048元像素,远大于以往的背照式CCD阵列的像素数量,也为高分辨率的需求提供了保证。该光谱仪采用光纤接口,配置灵活,能够根据不同的需要搭建成不同的光谱检测平台,而其高灵敏度也使其成为了紫外吸收、荧光与拉曼检测的理想选择。与传统的背照式CCD阵列相比,其价格远低于传统背照式CCD阵列光谱仪,虽然其缺少了传统背照式CCD阵列的致冷控温功能,但由于其具有暗噪声自动补偿功能,完全可以满足大部分科研工作和工业应用的需要。 美国必达泰克公司(B&W TEK INC.)一直致力于开发高性价比的阵列式光谱仪与激光器,目前已拥有近百款采用不同的阵列式检测器的光谱仪产品,波长范围覆盖190-2500nm。目前该公司正在自主研究开发其他型号以满足不同的应用需要,有望在近期内完成。届时相信将会给广大阵列式光谱仪的用户们一个更大的惊喜。
  • 基于低频振荡的微点阵阵列/图案化制备仪器系统研制成功
    生物芯片是生物分子相互作用研究的主要高通量手段,生物芯片技术具有高通量、样品消耗量少、灵敏度较高、自动化等优势。生物芯片仪器系统通常包括芯片制作单元和检测单元两个独立部分。目前商品用生物芯片制作系统大多采用基于机械手的合成后点样法,因制备工艺复杂,价格非常昂贵,使用成本较高。  中国科学院长春应用化学研究所王振新课题组聚焦这一研究方向,从科研实际需求出发,在国家自然科学基金委科学仪器研制项目的支持下,研制开发出基于低频振荡的微点阵阵列/图案化制备仪器系统。3月10日,该项目通过了国家自然科学基金委组织的专家现场验收。  该仪器基于非接触式压电振荡技术,采用点样针与压电驱动分离的点样方式实现点样;使用的毛细管点样针便于更换、清洗,制作成本较低;通过振荡频率和振幅等参数来调控点样体积,实现了单个样品点直径在几十微米至几百微米尺度内、点样量在几百皮升至几十纳升之间的微阵列点阵制作;不仅适用于液体点样,还可以推广到粉体及固液混合物的微量分配应用中;不仅可以应用于间断性的非连续微点阵阵列制备,还可以推广到连续的微图化制备中。  目前已研制工程样机3台,其中2台已在相关科研单位试用,效果良好。已申请和授权发明、实用新型专利6项。基于低频振荡的微点阵阵列/图案化制备仪器系统
  • 必达泰克正式发布Sol2.6系列光纤耦合InGaAs阵列光谱仪
    必达泰克正式发布Sol™ 2.6系列光纤耦合InGaAs阵列光谱仪   美国特拉华州当地2011年1月4日,必达泰克正式发布Sol™ 2.6系列光纤耦合InGaAs阵列光谱仪。Sol™ 2.6光谱仪采用高性能线阵256元InGaAs阵列,具有高灵敏度和高动态范围的特点,致冷温度-15°C,标准光谱范围1550-2550nm。该型光谱仪最大的优势是配备自动校零功能、极低的噪声和高动态范围。四种光谱获取水平,在弱近红外应用中能够获得非常好的测量效果。Sol™ 2.6光谱仪同时配备了三级致冷,无需外部控制模块,可以直接5V DC供电,使用和集成更为方便,体积更小。   “Sol™ 2.6系列光谱仪在同级别的光谱仪中,具有最低的坏像素水平,非常适合应用于过程监控、质量控制和生命科学领域”,必达泰克公司COO Dr.Jack Zhou如是说。   详情请关注:www.bwtek.com/product/spectrometer/sol26.html. Sol™ 2.6Sol™ 2.6阵列近红外光谱仪
  • 澳维发布阵列甲酯化仪新品
    阵列甲酯化仪是严格按照《GB5009.168-2016食品中脂肪酸的测定》分析标准的要求研制的样品水解、脂肪皂化、脂肪酸甲酯化等功能于一体的专用仪器。阵列甲酯化仪可以同时处理6个样品,玻璃冷凝回流器及样品瓶可以自动升起降落,便于更换样品。间歇磁力搅拌可轻松完成样品水解。阵列甲酯化仪不仅拥有加热水浴,同时还搭载冷水浴,可以快速对处理完毕的样品进行快速降温,充分满足标准“迅速冷却至室温”的要求。《GB5009.168—2016食品中脂肪酸的测定》分析标准摘录:5.2.1.2 试样的水解 酸水解法:食品(除乳制品和乳酪)加入盐酸溶液10mL,混匀。将烧瓶放入70℃~80℃水浴中水解40min。每隔10min振荡一下烧瓶,使黏附在烧瓶壁上的颗粒物混入溶液中。水解完成后,取出烧瓶冷却至室温......5.2.1.4 脂肪的皂化和脂肪酸的甲酯化 在脂肪提取物中加入2%氢氧化钠甲醇溶液8mL,连接回流冷凝器,80℃±1℃水浴上回流,直至油滴消失。从回流冷凝器上端加入7mL 15%三氟化硼甲醇溶液,在80℃±1℃水浴中继续回流2min。用少量水冲洗回流冷凝器。停止加热,从水浴上取下烧瓶,迅速冷却至室温。主要特点:○ 间歇搅拌——水解样品更轻松 AF6M、AF6DM热水浴搭载6位磁力搅拌器,即可以连续工作,也可以间歇工作,可以每隔10min搅拌一次样品,让样品水解更轻松。○ 冷热双浴——标准要求更符合 AF6D、AF6DM不仅拥有室温至95℃热水浴,对脂肪进行皂化及脂肪酸的甲酯化。同时还搭载5℃的冷水浴,可以在50秒内将样品冷却至室温,充分满足分析标准中“迅速冷却至室温”的要求。○ 智能升降——样品装卸更简单 AF6系列可以通过控制开关,操控玻璃冷凝回流器自动升起降落,便于更换样品。同时AF6系列拥有定时工作功能,当到达设定时间后,玻璃冷凝回流器可以自动升起。○ 中部加液——操作高度更合适 AF6系列独特设计的玻璃冷凝回流器,在中间部位设置了一个加液口,加液口的高度更适合加入氟化硼甲醇溶液的操作。○ 集成管路——实验室更整洁 玻璃冷凝回流器、冷水浴共用一台冷却循环水机,冷却水管路集成固化设计,采用快插接头连接,让实验室更整洁。创新点:阵列甲酯化仪是严格按照《GB5009.168-2016食品中脂肪酸的测定》分析标准的要求研制的样品水解、脂肪皂化、脂肪酸甲酯化等功能于一体的专用仪器,阵列甲酯化仪可以同时处理6个样品,玻璃冷凝回流器及样品瓶可以自动升起降落,便于更换样品。间歇磁力搅拌可轻松完成样品水解。阵列甲酯化仪不仅拥有加热水浴,同时还搭载冷水浴,可以快速对处理完毕的样品进行快速降温,充分满足标准“迅速冷却至室温”的要求。主要特点如下: 1:间歇搅拌——水解样品更轻松 AF6M、AF6DM热水浴搭载6位磁力搅拌器,即可以连续工作,也可以间歇工作,可以每隔10min搅拌一次样品,让样品水解更轻松。 2:冷热双浴——标准要求更符合 AF6D、AF6DM不仅拥有室温至95℃热水浴,对脂肪进行皂化及脂肪酸的甲酯化。同时还搭载5℃的冷水浴,可以在50秒内将样品冷却至室温,充分满足分析标准中“迅速冷却至室温”的要求。 3:智能升降——样品装卸更简单 AF6系列可以通过控制开关,操控玻璃冷凝回流器自动升起降落,便于更换样品。同时AF6系列拥有定时工作功能,当到达设定时间后,玻璃冷凝回流器可以自动升起。 4:中部加液——操作高度更合适 AF6系列独特设计的玻璃冷凝回流器,在中间部位设置了一个加液口,加液口的高度更适合加入氟化硼甲醇溶液的操作。 5:集成管路——实验室更整洁 玻璃冷凝回流器、冷水浴共用一台冷却循环水机,冷却水管路集成固化设计,采用快插接头连接,让实验室更整洁。 阵列甲酯化仪
  • 集成化微阵列系统用于多类型贵金属@Cu-MOF制备及其拉曼增强性能筛选
    微流体合成作为一种绿色的合成方法,进一步实现了最小消耗、最少污染以及按需精准合成的目标。高通量液滴阵列合成平台不仅可以实现多种材料的批量绿色合成,还可以通过多个并行的微液滴反应器完成多合成参数的分析和优化。然而,微流体合成系统也面临一些挑战。特别是在这种微系统中如何实现多种反应物的快速和可控混合。不均匀混合会影响材料的成核、生长,进而影响材料的形貌及其一系列性质。将超声波与微流体合成系统相结合,可以实现多种反应物的快速高效的混合。由于更快的传质过程,集成化的合成系统有助于实现材料形貌的精确调控,同时具有消耗少、污染小、易于调节、效率高等优势。最近,超声辅助微流体系统的材料合成的研究大多停留在单组分材料形貌或者尺寸分布等方面。然而通过成本和污染更低的集成化平台进行自动化复合材料合成和高通量性能筛选的报道较少,特别是将贵金属纳米粒子与金属有机框架材料相结合。高效准确地负载可以显著降低应用成本,同时可以有效避免纯纳米粒子的自团聚和氧化,从而显著提高稳定性,进一步扩大应用范围。深圳大学张学记、许太林团队报道了一种将超声与高通量液滴阵列相结合的微流体合成平台实现了绿色、低成本、高通量的多种类型复合材料制备及其拉曼增强性能筛选。集成超声模块可以很好地解决液滴合成系统中的快速微混合的问题,而且可以加速材料的形成并提高Cu-MOF对多种贵金属纳米粒子的封装效果。上述制备的多种复合材料的拉曼增强性能可以一次性地通过微柱基阵列进行高通量、低消耗和低污染的筛选和评估。该平台未来有潜力可以通过与机器人平台和人工智能技术相结合扩展到多个应用领域。图1 集成化微阵列系统复合材料合成与拉曼增强性能筛选示意图图2 探究超声对材料形成速度及形貌的影响。A图是没有超声存在的情况下,记录了Cu-MOF的生长情况;B图是存在超声的情况下,记录了Cu-MOF的生长速度;C图是存在超声的情况下,AgNPs@Cu-MOF的生长情况分析。D-F分别对应三种材料在不同时间点下沉淀物颜色分析。G-I分别对应最后沉淀物的SEM结果及其产物照片。图3 材料表征及超声对封装效果的探究。A-C分别是AuNPs,AgNPs和PtNPs纳米颗粒的TEM表征。D-F是AuNPs@Cu-MOF的TEM,元素分布及其紫外表征。G-I是AgNPs@Cu-MOF的TEM,元素分布及其紫外表征。J-L是PtNPs@Cu-MOF的TEM,元素分布及其紫外表征。M-O对比了有无超声的情况下,相同面积内Cu-MOF对不同纳米颗粒封装数量的统计对比结果。图4 超声存在下,材料生长演化过程示意图及其时间序列TEM图像。B1-B3是Cu-MOF;C1-C3是AuNPs@Cu-MOF;D1-D3是AgNPs@Cu-MOF;E1-E3是PtNPs@Cu-MOF。图5 材料吸收性能考察以及多类型材料的拉曼增强性能的评估和筛选
  • “阵列”与“多维”的完美结合——访复旦大学化学系教授张祥民
    色谱仪作为复杂物质的分离工具,在日常化合物的分离分析中发挥了巨大的作用,多数色谱仪属于一维色谱,适合于含几十至几百个物质的样品分析。随着现代科技的进步,传统的一维色谱分离方式已经不能满足人们对诸如天然产物、中药药物和蛋白质组等的常规分离,迫切需要更高效的分离方式来完成复杂样品精细分离的需要。因此,能够提供更大峰容量和更高分辨率的多维色谱技术日益受到人们的关注。相对于一维色谱分离而言,多维色谱分离具有更高的峰容量。从本质上说,多维色谱就是简单的一维色谱加复杂的阀切换技术。  目前,发展速度较快的多维色谱技术包括:全二维气相色谱、多维高效液相色谱、高效液相—毛细管电泳多维色谱、高效液相—气相多维色谱和多维超临界流体色谱等。近年来,国内外有些仪器公司陆续推出了一些多维色谱仪,但主要是二维色谱仪。例如岛津、沃特世、SCIEX、安捷伦和赛默飞等,其中赛默飞和SCIEX推出的二维液相色谱仪主要应用于蛋白质组的分析。安捷伦和沃特世推出的二维液相色谱仪,其使用主要集中在药物小分子的筛选。在已商品化的全二维气相色谱中,LECO 全二维气相色谱结合chromaTOF 软件,一次可解析大于100000个峰,降低了研究领域的谱峰解析难度。同时,国内色谱专家在阵列多维色谱系统的设计和应用上也有了杰出的研究成果。  近期,仪器信息网编辑就多维色谱目前发展状况、技术优势及未来产业化前景等内容与国内较早开始研究多维色谱技术的复旦大学化学系张祥民教授进行了深入的交流。  多维色谱破解蛋白组学研究密码  多维色谱技术包括二维色谱、三维色谱等高维色谱,近年来其应用越来越广泛。张祥民介绍,多维色谱不是简单的将每个柱子接起来。多维色谱指的是第一维分离出来数十到上百个馏分后,第二维相当于把第一维做出来的每个馏分再重新做一遍,以此类推。例如汽油,一维色谱可以分出来三、四百个组分,两维色谱其组分可以达数千,有学者曾用三维色谱去分,其组分可达六千多个。起初,张祥民教授团队提出用多维色谱技术来做中药成分分析。由于中药成分较为复杂,其中活性成分较难确定。通过多维色谱和高效毛细管电泳的结合,可以将中药里上千个馏分分离出来,这样就可以很好的鉴别不同中药里组分的活性和差异。复旦大学是最早建立多维色谱仪器系统并作为新技术手段用于解决实际问题的单位之一,这主要得益于复旦大学良好的仪器研发基础。  20世纪90年代,作为功能基因组学的重要支柱——蛋白质组学的出现,使得多维色谱的研究成为新的研究的热点。蛋白质组传统的研究方法是采用双向凝胶电泳分析。在双相凝胶电泳分析中,一维用来跑等电聚焦,另一维用来跑分子量,两维组合起来就可以将蛋白点分离出来。蛋白质组刚出来时几乎都在用这个方法做。双相凝胶电泳虽然可以分离出来几千个蛋白组分,但其工作量较大,难以实现自动化。张祥民谈到,起初其复旦大学研究团队使用双向电泳凝胶技术鉴定人肝中的蛋白质,团队三十几个人需要花费一两个月才能鉴定两千多个蛋白出来,过程中耗费了大量的人力和物力。现在采用多维色谱技术对蛋白质组进行分离鉴定一个人仅需要几个小时可鉴定5000-8000个蛋白,而且花费仅为数千元。多维色谱技术的突破迅速推动了生物医学难题的解决,例如重大疾病和各种癌症中的重大技术瓶颈问题。通过采用多维色谱技术可以寻找到一些关键蛋白质分子、疾病标志物和药靶蛋白,从而实现临床上的疾病诊断和新的治疗药物的发现。  目前,多维液相色谱技术已广泛的运用到由小分子到大分子的分离分析中,其商品化的色谱仪器日益完善。同时,研制我国自主知识产权的关键设备,开发相应的分离分析方法已成为当下值得关注的焦点之一,也是提高我国科技能力的一个重要方面。现阶段,尽管新技术新方法不断涌现,但是还不能完全满足实际应用的需要,尤其是缺少蛋白质组学中核心技术设备和应用于临床疾病研究的创新技术方法。然而,随着多维色谱分离技术的提高,分离方法不断进步,具有高通量高分离能力的多维色谱必将在蛋白质组学等领域发挥更大的作用。  国内多维色谱研究的开创者  张祥民于1986年进入中科院大连化学物理研究所工作,师从卢佩章院士和张玉奎院士。1994年张祥民进入复旦大学,从事博士后研究工作,后留复旦大学化学系工作至今。目前,张祥民为复旦大学化学系和复旦生物医学研究院双聘教授。还历任中国化学学会理事、中国化学会色谱专业委员会委员、中国色谱学会常务理事、中国分析仪器学会常务理事、中国蛋白质组学会理事、上海市分析测试协会副理事长, 并担任Proteomics, Anal Bioanal Chem (ABC)和《色谱》杂志编委等。  张祥民课题组是国内最早开始研究多维色谱技术的团队之一,其多项有关多维色谱技术的论文发表在国内外高水平的期刊杂志上。目前,张祥民课题组主要依托于复旦大学化学系、生物医学研究院和教育部创新科学仪器工程研究中心,课题组实验室共有三十余名科研人员从事多维色谱技术的研究。迄今为止,张祥民课题组累计发表SCI论文230多篇,申请发明专利50多项,获得2项教育部自然科学奖。复旦大学化学系和复旦生物医学研究院双聘教授张祥民  从原理上对传统技术发起挑战  目前,国内分析仪器企业与国外公司相比体量还比较小,主要提供的是中低端仪器和量大面广的产品。因此,国内分析仪器生产企业对新型的仪器研发投入热情很高,但也存在心有余力不足的局面。上海市科委从“十五”到“十二五“一直对分析仪器行业有持续的资金投入,张祥民教授课题组参与承担了一系列仪器攻关项目研究,与企业开展产学研联合开发,先后与上海精科、舜宇恒平、上海天美等仪器公司合作,研发了十多种新型分析仪器,取得了一批创新技术成果。近年来国家开始逐步加大对国内分析仪器研发的支持力度,特别是“十二五“期间一些国家重大科学仪器开发专项资金的投入力度很大,一改研发资金不足的处境,这些资金的投入已经产出了大批先进的仪器和制造技术,相信国内分析仪器未来在仪器研发和创新上会有很大的发展和突破。张祥民谈到,“我们起初研发色谱仪器的想法很简单,主要是基于前沿研究课题需要和一些生产实际过程中的急需。因为商品仪器不能满足要求,在没有充足的购置经费时,创新便成为必要的选项。然而,创新色谱仪器的研制也不是想象的那么复杂,设计原理新、技术方案简单、成本低是前提,于是就根据需要自己搭建一套。“  发明的热膨胀泵就是典型的案例之一。色谱泵是色谱仪中运动部件最多,机械磨损最严重、较容易出故障的设备。色谱泵作为色谱仪的核心部件,其性能的好坏直接影响整个仪器和分离的可靠性。张祥民课题组研发的全新色谱泵——微流高压梯度热膨胀泵,采用一种全新的原理,其样机已成功应用于高效毛细管液相色谱与质谱联用仪器中,并得到安捷伦等国际企业研发机构的关注。由于液体具有热胀冷缩的特点,当温度升高时,毫升级密闭加热腔内液体体积就会有纳升到微升级的微小膨胀,从而溢出密闭加热腔,实现流量输出。热膨胀泵是以密闭腔体内液体受热体积膨胀为驱动力,从而实现流体定向输出。张祥民谈到,热膨胀泵的特别之处在于:从原理上还没有相关的商品化仪器。根据得到的理论方程,热膨胀泵只要精密控制好其温度和升温方式就可以保证过程中流量的恒流输出。热膨胀泵最大的优势是整机中几乎没有机械运动的部件,运行中听不到任何噪声,但其输出的压力却可以很高,可达到100 MPa。同时,热膨胀泵可以很好的避免传统泵中活塞杆、单向阀和密封环等部件在系统运行过程中损耗产生的费用,其成本比传统色谱仪低3~5倍。  “阵列”与“多维”的完美结合  阵列多维色谱仪研制的想法源于实验过程中的需要,是为实验而服务的。阵列多维色谱仪中的“阵列”代表着多通道和同时分离。2003年复旦大学蛋白质组研究团队购买了一台最快的TOF-TOF串联飞行时间质谱仪,其激光打谱的频率可以达到每秒两百张图,传统的多维色谱分离速度明显跟不上该仪器对蛋白质的鉴定需求。张祥民谈到,传统多维色谱遇到的最大问题是分析样品速度较慢,尽管目前已有超高压液相色谱,但总体来说分离速度还是受到限制。例如,从第一维色谱中分离出100个组分,如果每个组分分离需要1小时,那么第二维分离将达到100小时,时间太长。如果将多维色谱后一维做成阵列式,那么仪器运行过程就可以平行进行,从而使得效率成倍增加。基于此,张祥民课题组研制了一台18通道的阵列多维色谱仪,其分离速度提高18倍,可以与飞行时间质谱仪很好的进行匹配,大大缩短了实验过程中的分析时间。图1. 阵列式多维液相色谱分离系统工作原理图。详见Anal. Chem. 2016, 88,2440-2445和《分析化学》 2015, 43: 1472-1478。(1) HPLC梯度泵 ;(2)六通阀;(3)第一维分离柱;(4)紫外检测器;(5) 10通道顺序切换阀;(6)三通;(7)第二维阵列预柱;(8)8通道分流器;(9)第二维阵列分离柱;(10)96孔板。  目前,阵列多维色谱仪技术瓶颈问题已经得到解决。其中的关键技术已经在团队承担的国家973项目和国家863专项的实施过程中得到全面的发展、完善和实际应用。以刚刚完成开发工作的国际最先进的阵列式多维液相色谱仪器为例,张祥民教授的团队利用该仪器在人血浆高丰度蛋白去除方面取得了新的技术突破。这项成果于近日已发表在《Analytical Chemistry》上。 图2. 阵列多维液相色谱仪器系统。下图为阵列色谱系统照片,组件依次为第一维高效液相色谱泵,第二维高效液相色谱泵、阵列多维切换系统、阵列色谱柱组件,阵列馏分收集仪和系统自动化控制系统。上部分左边为阵列色谱捕集柱、分析柱及其连接流路,右边为阵列馏分收集系统结构图。  对于人血浆样品的蛋白组分析,一个重大挑战是大量高丰度蛋白存在掩盖了人们最感兴趣的低丰度蛋白的信号。为此,必须使用免疫亲和柱来处理血浆样品,利用抗体来捕获血浆中的高丰度蛋白,并将它们去除掉。但是,实验过程发现,去除高丰度蛋白的同时大量附着的低丰度的蛋白也一同被除掉。而且,目前这类商品化亲和柱最多只能去除20个高丰度蛋白质。为了解决这些问题,张祥民教授的团队研究开发了这台阵列式的多维色谱仪器,第一维采用阴离子交换色谱(SAX),第二维采用8支反相液相色谱(RPLC)柱和8支蛋白捕集柱,开展了多循环并行分离。血浆高丰度蛋白的去除时间,由以往的一个星期缩短到四个小时,鉴定蛋白的浓度范围达9个数量级,一次可去除84个高丰度蛋白。与免疫亲和柱的方法相比较,获得蛋白质鉴定数量有大幅提高。在实际样品分析中,可鉴定出1332到1955个蛋白,包括一些丰度极低的膜体趋化因子、雄激素受体和肌苷脱氢酶等含量低至0.01 ng/mL的蛋白质。已经能够满足临床常见的疾病标志物甲胎蛋白(AFP)等标志分子检测需要。  阵列多维色谱仪市场还需培育,其应用前景广阔  在产业化过程中,阵列多维色谱仪也遇到的不少问题主要是市场的培育。由于阵列多维色谱技术比较新颖,因此前期需要市场培育和宣传,投入资金较多。此外,阵列多维色谱不像传统二维色谱可在线与质谱仪连接,它需要和高通量质谱联用匹配。但是,随着分析样品越来越复杂,高通量的阵列多维色谱仪将迎来快速发展阶段。张祥民谈到,例如多维色谱技术,出现好多年一直没有多少人去使用,近些年随着生命科学发展,需要解决的问题越来越复杂,特别是各种组学研究如蛋白组、代谢组等复杂体系的分离问题解决不了,因此多维色谱技术被派上大用场。阵列多维色谱也是这样,它的普及尚需要一个过程,但最后肯定会商品化,同时被广大用户所广泛使用。 采访编辑:郭晓东
  • 科学家研制出超高灵敏度光学超声传感器阵列
    近日,中山大学电子与信息工程学院(微电子学院)教授李朝晖和副教授沈乐成率领的研究团队基于硫系微纳加工平台,成功研制出了包含15个微腔的超高灵敏度光学超声传感器阵列,并融合新型通信算法数字光频梳技术,开展基于硫系片上阵列器件结构的并行信号解调及光声计算成像相关研究。相关研究论文发表于Nature Communications。 基于硫系微环传感器阵列和数字光频梳解调技术的光声成像示意图。研究团队 供图近年来,李朝晖/沈乐成团队一直致力于搭建面向硫系微纳器件的制备平台,并依此开展多物理场的传感与成像应用研究。在算法研究方面,他们提出了基于先进光信息处理算法的数字光频梳技术,具有高效、大带宽以及多维解调等优势,并结合光学微腔实现双共振模式下的超声信号解调;在技术创新方面研发了具有高调制效率的非悬浮硫系声光调制器;在成像应用与调控方面开展了面向生物医疗的高通量全息成像和高速光场调控。这些研究成果表明先进光信息处理技术与新型硫系材料器件的结合在生物成像、医疗传感等方面具有巨大的潜力和前景。基于上述积累,该团队近日研制出包含15个微腔的超高灵敏度光学超声传感器阵列。该微环传感器阵列具有高灵敏度、大带宽和小尺寸等优点,其中单个微环传感器具有175 MHz(-6 dB)的检测带宽和2.2?mPaHz?1/2的噪声等效压力,性能指标领先。基于可调的数字光频梳技术,研究团队还研发了一套可与微环传感器阵列相匹配的高性能并行信号检测方案,对高速动态粒子、静态叶脉和活体斑马鱼等展示了光声计算成像结果。上述研究工作得到科技部重点研发计划、国家自然科学基金和南方海洋科学与工程广东省实验室(珠海)的资助。
  • 综述:高通量太赫兹成像进展与挑战
    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。然而,太赫兹成像系统的最新进展极大地提高了成像通量(imaging throughput),并使实验室中的太赫兹技术更加接近现实应用。据麦姆斯咨询报道,近日,美国加州大学洛杉矶分校(University of California Los Angeles,UCLA)的科研团队在Light: Science & Applications期刊上发表了以“High-throughput terahertz imaging: progress and challenges”为主题的综述论文。该论文第一作者为Xurong Li,通讯作者为Mona Jarrahi。该论文主要从硬件和计算成像两个角度回顾了太赫兹成像技术的发展。首先,研究人员介绍并比较了使用热探测、光子探测和场探测的图像传感器阵列实现频域成像与时域成像时的各类硬件。随后,研究人员讨论了利用不同成像硬件和计算成像算法实现高通量捕获飞行时间(ToF)、光谱、相位和强度图像数据的方法。最后,研究人员简要介绍了高通量太赫兹成像系统的未来发展前景和面临的挑战。基于图像传感器阵列的太赫兹成像系统(硬件方面)然而,并非所有类型的图像传感器都能够扩展到大型阵列,但这是高通量成像的关键要求。这部分内容重点介绍了基于各类图像传感器阵列的高通量太赫兹成像系统。这些太赫兹成像系统的性能主要通过空间带宽积(SBP)、灵敏度、动态范围以及成像速度等指标在其工作频率范围内进行量化。太赫兹频域成像系统在热探测太赫兹成像仪中,微测辐射热计是最广泛使用的图像传感器之一,它将接收到的太赫兹辐射所引起的温度变化转化为热敏电阻材料的电导率变化。氧化钒(VOx)和非晶硅(α-Si)是室温微测辐射热计最常用的热敏电阻材料。使用微测辐射热计图像传感器阵列捕获太赫兹图像的示例如图2a所示。热释电探测器是另一类热成像传感器,它将接收到的太赫兹辐射所引起的温度变化转化为能以电子方式感测的热释电晶体的极化变化。图1 目前最先进的频域太赫兹图像传感器的性能对比图2 基于图像传感器阵列的太赫兹频域成像系统示例对于室温太赫兹成像,场效应晶体管(FET)图像传感器是微测辐射热计图像传感器的主要竞争对手。FET图像传感器的主要优势之一是具有出色的可扩展性。与室温微测辐射热计图像传感器相比,FET图像传感器通常工作在较低的太赫兹频率下,其灵敏度也较低。然而,由于无需热探测过程,FET图像传感器可以提供更高的成像速度。使用FET图像传感器阵列捕获太赫兹图像的示例如图2b所示。光子探测器作为可见光成像仪中最主要的图像传感器,在太赫兹成像中也发挥着至关重要的作用。除低温制冷要求外,太赫兹光子探测器还有另外两方面的限制:工作频率限制(高于1.5 THz)以及可扩展性限制(难以实现高像素的探测器阵列)。使用光子探测图像传感器阵列捕获太赫兹图像的示例如图2c所示。另外,可以利用量子点或激光激发的原子蒸汽将从成像物体接收到的太赫兹光子转换为可见光子,并且可以利用光学相机在室温下实现对大量像素的高通量成像。然而,太赫兹到可见光的光子转换过程需要复杂且笨重的装置来实现。与光子成像仪相比,超导太赫兹成像仪可以提供同等水平甚至更高的灵敏度。同时,它们具有更好的可扩展性,并且能够在较低的太赫兹频段工作。超导成像仪主要有四种类型:过渡边缘传感器(TES)、动态电感探测器(KID)、动态电感测辐射热计(KIB)和量子电容探测器(QCD)。使用超导图像传感器阵列捕获太赫兹图像的示例如图2d所示。到目前为止,所讨论的频率域太赫兹成像仪均是进行非相干成像,并且仅能解析被成像物体的强度响应。相干太赫兹成像可使用外差探测方案来解析成像物体的振幅和相位响应。通过将接收到的来自成像物体的辐射与本振(LO)波束混合,并将太赫兹频率下转换为射频(RF)中频(IF),可将高性能射频电子器件用于相干信号探测。超导体-绝缘体-超导体(SIS)、热电子测辐射热计(HEB)、肖特基二极管、FET混频器和光电混频器可用于太赫兹到射频的频率下转换。由于外差探测架构的复杂性,所展示的相干太赫兹成像仪灵敏度被限制在数十个像素。太赫兹时域成像系统基于时域光谱(TDS)的太赫兹脉冲成像仪是另一种相干成像仪,它不仅能提供被成像物体的振幅和相位信息,还能提供被成像物体的超快时间和光谱信息。THz-TDS成像系统使用光导天线或非线性光学操纵在泵浦探针成像装置中产生和探测太赫兹波(如图3)。图3 太赫兹时域成像系统示意图:(a)太赫兹光电导天线阵列成像;(b)太赫兹电光取样成像。传统的THz-TDS成像系统通常是单像素的,并且需要光栅扫描来获取图像数据;而为了解决单像素THz-TDS成像系统成像速度慢、体积庞大又复杂的问题,基于电光效应和光导效应的图像传感器阵列已被采用。图4a为使用光学相机的电光采样技术捕获太赫兹图像的示例。基于电光采样的无光栅扫描THz-TDS成像系统既可用于远场太赫兹成像,也可用于近场太赫兹成像(如图4b)。无光栅扫描THz-TDS成像的另一种方法是使用光导图像传感器阵列(如图4c)。基于光导效应和电光效应图像传感器的无光栅扫描THz-TDS成像系统能够同时采集所有像素的数据。然而,时域扫描所需的光学延迟阶段的特性对整体成像速度造成了另一个限制。图4 基于电光效应和光导效应的图像传感器阵列的太赫兹时域成像系统示例研究人员对基于图像传感器阵列的不同太赫兹成像系统的功能和局限性进行了分析,如图5所示。频域成像系统只能解析被成像物体在单一频率或宽频率范围的振幅响应,无法获得超快时间和多光谱信息;但同时,它们配置灵活,可以使用不同类型的太赫兹光源,以实现主动和被动太赫兹成像。时域成像系统则既可以解析被成像物体的振幅和相位响应,也可以解析超快时间和多光谱信息;然而,它们只能用于主动太赫兹成像,并且需要带有可变光学延迟线的泵浦探针成像装置,从而增加了成像硬件的尺寸、成本和复杂性。图5 基于图像传感器阵列的不同太赫兹成像系统的功能和局限性分析虽然太赫兹成像系统的功能通常由上述原理决定,但可以通过修改其运行架构,以实现新的和/或增强功能。太赫兹光谱各类成像方案如图6所示。图6 太赫兹光谱各类成像方案太赫兹计算成像这部分内容主要介绍了各类计算成像方法,这些方法不仅提供了更多的成像功能,而且减轻了由太赫兹成像带来的对高通量操作的限制(放宽了对高通量太赫兹成像硬件的要求)。太赫兹数字全息成像全息成像允许从与物体和参考物相互作用的两光束的干涉图中提取目标信息。太赫兹全息成像系统利用离轴或同轴干涉。与利用THz-TDS成像系统进行相位成像相比,太赫兹数字全息成像无需基于飞秒激光装置并且更具成本效益。对太赫兹辐射源和图像传感器阵列的选择也更加灵活,可以根据工作频率进行优化。然而,太赫兹数字全息成像对成像物体有着更多限制,并且在对多层次和/或高损耗对象成像时受到限制。基于空间场景编码的太赫兹单像素成像与使用太赫兹图像传感器阵列直接捕获图像相比,太赫兹单像素传感器可以通过利用已知空间模式序列来顺序测量并记录空间调制场景的太赫兹响应,从而重建物体的图像。与用于频域和时域成像系统的太赫兹图像传感器阵列相比,该成像方案得益于大多数太赫兹单像素传感器的优越性能(如信噪比、动态范围、工作带宽)。图7总结了太赫兹单像素成像系统的发展。值得一提的是,压缩感知算法不仅适用于单像素成像,也可用于提高多像素图像传感器阵列的成像通量。图7 基于空间波束编码的太赫兹单像素成像系统的发展基于衍射编码的太赫兹计算成像到目前为止,本文介绍的太赫兹成像系统遵循的范式主要依赖于基于计算机的数字处理来重建所需图像。然而,基于数字处理的重建并非没有局限性。为了解决的其中一些挑战,最佳策略可以是为特定任务的光学编码设计光学前端,并使其能够接管通常由数字后端处理的一些计算任务。近期,一种新型光学信息处理架构正兴起,它以级联的方式结合了多个可优化的衍射层;这些衍射表面一旦优化,就可以利用光与物质相互作用,在输入和输出视场之间共同执行复杂的功能,如图8所示。近年来,衍射深度神经网络技术(D²NN)在太赫兹成像方面有着非常广泛的应用,例如图像分类,抗干扰成像,以及相位成像。图8 基于衍射深度神经网络(D²NN)的太赫兹计算成像系统示意图总结与展望综上所述,高通量太赫兹成像系统将通过深耕成像硬件和计算成像算法而持续发展,目标是具有更大带宽、更高灵敏度和更大动态范围的超高通量成像系统,同时还能为特定应用定制成像功能。太赫兹计算成像技术有望与量子探测、压缩成像、深度学习等技术相结合,为太赫兹成像提供更多的功能及更广泛的应用。研究人员坚信太赫兹成像科学与技术将蓬勃发展,未来太赫兹成像系统不仅会大规模应用于科学实验室和工业环境中,而且还将在日常生活中显著增长。这项研究获得了美国能源部资金(DE-SC0016925)的资助和支持。论文链接:https://doi.org/10.1038/s41377-023-01278-0
  • 澳维发布北京澳维仪器 阵列旋转蒸发仪 miniRotar新品
    阵列旋转蒸发仪产品介绍:阵列旋转蒸发仪是一款可以同时进行多样品浓缩处理的创新型前处理设备,由多个miniRotar旋转蒸发仪单元、真空系统、溶媒冷凝回收系统组成,实现多样品处理的同时,可以大幅提高实验室空间利用率。阵列旋转蒸发仪所搭载的多个miniRotar,既可以满足同时使用,也支持独立操作,可以独立的进行温度设置、转速调整、释放真空等操作,不干扰其他旋转蒸发仪单元的正常工作。(阵列旋蒸搭载溶媒回收仪原理图)(阵列旋蒸搭载冷却循环水系统)阵列旋转蒸发仪产品特性:极致mini——节约空间:miniRotar创新性采用旋转轴纵向设计,将产品宽度缩小到25cm,是传统旋转蒸发仪宽度的三分之一,1.8米标准通风橱最多可以放置5台miniRotar,充分节约通风橱空间资源。阵列组合——提升效率: miniRotar的特殊接口设计,可以实现多台并联使用,共一个真空系统、冷凝回收系统。非常适合多个样品同时处理的需求,提升工作效率。 每一个miniRotar均可以独立设置温度、转速、时间等工作参数,可以独立的进行将样品瓶升起降落操作。miniRotar 500s拥有独立的快捷释放真空按键,可以独立释放真空,不影响其他miniRotar正常工作。定时工作——减少看护:miniRotar500s具有定时工作能力,可以按照经验设定好工作条件以及工作时长,到达时间后miniRotar500s将自动停止旋转、释放真空,将样品瓶升起,脱离加热水浴,自动停止样品蒸发浓缩。双重保护——避免污染:miniRotar搭载防止液体回流接口,可有效阻止在样品处理过程中管路中的液体回流,避免污染样品,保证分析结果的准确性。三级冷凝——减少排放:eSR系列溶媒回收仪可以同时满足6台miniRotar溶剂蒸汽冷凝回收需求,eSR320溶媒回收仪采用低温压缩机制冷,溶剂蒸汽进入后经过三级冷凝液化收集,实现高效冷凝回收(二氯甲烷蒸汽回收率优于98%),减少溶剂蒸汽的排放,保护实验室环境,呵护实验者健康。eSR系列溶媒回收仪不需要添加任何冷却循环液,也不需要外接玻璃冷凝器,减少了管路连接,日常无需维护,使用简单。eSR320s溶媒回收仪内部管路具有超强的防腐能力,可以耐受高浓度氯离子侵蚀。创新点:阵列旋转蒸发仪主要特点及创新之处如下: 1:体积小巧,创新性采用旋转轴纵向设计,产品宽度缩小至25cm,为实验室通风橱节省宝贵使用孔间 2:阵列组合使用,独立设置转速、温度、时间等工作参数,独立释放真空不影响其他单元,从而实现多样品同时处理,大幅提升实验效率 3:可以设定工作时长,自动停止旋转,释放真空,升起样本瓶,保护实验精准性,释放工作人员劳动力 4:创新性双重防止污染保护措施,防止液体回流污染样品,保证样品准确性 北京澳维仪器 阵列旋转蒸发仪 miniRotar
  • 科学岛团队在贵金属自组装阵列研究方面取得新进展
    近期,中科院合肥物质院固体所纳米材料与器件技术研究部团队在贵金属自组装阵列的研究中取得了新进展,合成了以多孔Au@AuAg纳米棒为阵列基元的高通量传感器,并探究了其在近红外波段(NIR)的表面增强拉曼散射(SERS)性能,相关研究成果发表在Journal of Materials Chemistry C 上。   生物化学分子的不当使用会导致严重的环境问题,因此迫切需要寻求一种低成本的可以检测环境中生物化学分子的传感器。基于SERS研发检测的传感器因其高灵敏度和特异性而受到广泛关注,但其受到低利用率和高成本的限制,无法进一步实际应用。   鉴于此,研究人员将喷墨打印技术与等离子体金属纳米颗粒相结合,开发了一种高通量、高灵敏度的NIR-SERS生化传感器(HNIR-SERS传感器)。首先利用压印技术制造了网格基板,其中分离的区域呈典型的立方排列;再将多孔Au@AuAg纳米棒(NRs)作为组装单元,通过喷墨打印将其组装在基板上,形成HNIR-SERS传感器。研究发现,这种新型HNIR-SERS传感器可以在一个衬底中实现多生化分子的高灵敏度检测。例如,该HNIR-SERS传感器能够有效检测4-氨基苯硫酚(4-ATP)和罗丹明6G (R6G), 4-ATP的增强因子高达108。该工作为实现高通量、低成本的NIR-SERS传感器提供了一种有效的方法,为推动NIR-SERS传感器在拉曼检测芯片中的实际应用提供了依据。   上述工作得到了国家杰出青年科学基金、国家自然科学基金、重大专项和中科院仪器专项等项目的支持。图1. 多孔Au@AuAg纳米棒的(a)合成示意图、(b)SEM图、(c)TEM图、(d)STEM-HAADF及其元素分布图。图2. (a)HNIR-SERS传感器的制备示意图;(b-d)多孔Au@AuAg纳米棒阵列的SEM图。图3. (a)加入10-6 M浓度的4-ATP处理后的多孔Au@AuAg纳米棒及其前驱体的拉曼光谱图;(b) HNIR-SERS传感器的拉曼测试示意图;(c) HNIR-SERS传感器在加入10-8 M浓度的不同待测分子后的拉曼光谱图;(d) HNIR-SERS传感器在加入不同浓度梯度的4-ATP的拉曼光谱图。
  • 万众瞩目: Eppendorf 5920 R 冷冻高速超高通量离心机新品上市!
    2016最新上市的 5920 R 冷冻离心机具有非比寻常的高通量,它的尺寸和其它品牌 3 L冷冻离心机相同,然而 Eppendorf 离心通量高达4 L。强大而智能的制冷系统配备卓越的温控管理,最大限度地保护您的样品。5920 R离心机凭借卓越的人体工程学设计荣获2015美国好设计荣誉大奖。 5920 R 离心机特别推出一款转子组合:S-4×1000水平转子适配三种吊篮,兼具多功能、超高转速和卓越的人体工程学设计,可同时离心工作板和离心管,无需单独购买工作板吊篮。更可选配气密性 Eppendorf QuickLock快速锁定吊篮盖,离心危险样品时更安全。 5920 R 离心机适用于细胞培养和细胞研究实验室、微生物和分子生物学实验室以及临床应用。实现较大体积样品的简便而安全地处理。 4 L 的离心容量:5920 R 离心机可兼容 Nalgene 1 L 标准试剂瓶,为台式离心机设立了新标准。 高通量吊篮:S-4×1000 水平转子适配高通量吊篮不仅可以容纳高通量的离心管(108×15 mL/52×50 mL 锥形管或 196 ×13 mm 采血管),适合细胞培养,而且可以同时进行离心管和工作板的离心。 Eppendorf专利动态压缩机控制技术:可稳定而可靠地进行温度调节,确保设置的温度更稳定、精准度更高。 FastTemp pro自动快速制冷编程功能:可以在设置的日期和时间进行自动预冷,提前一天预设冷冻温度,适用定时定期对样品进行冷冻离心。 简便而智能的操作系统:操作更直观舒适,同时确保更准确和高重复性的实验结果。 更多产品信息,请登录:www.eppendorf.com/centrifugation Eppendorf中文官网:http://www.eppendorf.cn Eppendorf官方微博:http://weibo.com/eppendorfchinaEppendorf官方微信:eppendorfchina 关于艾本德(Eppendorf)德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的系列仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific (NBS) 公司,2012年收购德国DASGIP公司,拓展了其细胞培养领域的产品线。 关于艾本德中国(Eppendorf China Ltd.)2003年Eppendorf在中国成立代表处,随后注册了艾本德(上海)国际贸易有限公司和艾本德中国有限公司,分别在北京、广州设立分公司,启动直销的经营模式,为中国客户提供更便捷的技术售后服务。目前全国雇员数量200多名,产品销售覆盖各大中型城市,是Eppendorf全球发展最快的子公司。
  • 拒绝霜冻, 奥豪斯离心机实现动态控温预制冷!
    “生物样品控温离心实验常见的离心温度为4℃或7℃,如何能提供一个稳定的控温环境是这类离心实验的关键因素之一。奥豪斯FC5000系列冷冻离心机为您提供了预制冷(Pre-cooling)功能, 在运转中实现动态控温,给样品提供更稳定的离心环境温度。何为动态控温?我们设置您需要的温度如7℃,并在无样品状态下低速运行设备,边运转离心边降温。动态控温的好处是什么?冷冻离心机和冰箱制冷原理类似,同样的也会出现结霜的现象,长时间的待机制冷或者控温制冷不离心,在室内湿度较大时,腔内会大量结霜,甚至转子体和电机轴结冰。使设备无法正常使用。奥豪斯离心机低速运行动态制冷功能,助您告别结霜造成转子结冰出现碎渣的问题。钻木取火的故事家喻户晓,其实电机在高速运转的过程也会产生大量的热量,导致离心腔体内温度升高,我们使用动态控温预制冷(Pre-cooling)功能时,当温度稳定在设定温度时,已经抵消了部分由于电机散热造成的温升可以更大化地提升离心实验时离心腔体温度控制的稳定性。FC5000预制冷(Pre-cooling)功能,双键落下,温度尽在掌握!奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 从测序仪产品阵列全覆盖到多组学仪器创新,真迈生物夯实生命科学领域的“新基建”
    新春伊始 ,万象更新。2024 年年初,继连续获得两项 " 前沿生物技术 " 重点专项后,由真迈生物牵头的科技部国家重点研发计划 " 基础科研条件与重大仪器设备研发 " 重点专项 " 高通量核酸片段分析仪研发 " 项目获得正式立项批复。这是在跨越新年的一个月里,真迈生物获批的第三项国家重点研发计划。就在不久前,真迈生物凭借其卓越的技术实力和市场表现,成功入选了 2023 年 Venture50 生命健康榜单,并荣获了 2023" 德勤中国明日之星 " 的殊荣。10 年的时光流转,足以见证一个蹒跚学步的婴儿蜕变为自信奔跑的少年;同样,这 10 载春秋也足以让一个深植于创新沃土的初创企业,成长为枝繁叶茂的参天大树。在时间的滋养下,真迈生物逐渐展现出其独特的生命力与活力。这是一家怎样的公司?在自主研发和国产替代上,它走过了怎样的成长道路?其技术产品有何创新成果和优势?它对于未来又有怎样的战略规划思考?带着一系列的问题,动脉网专访了真迈生物董事长颜钦博士。突破技术壁垒,打造解码生命信息的国之重器真迈生物成立伊始,正值国内基因测序服务迅猛发展时期。但在基因数据产出的上游核心设备领域,即基因测序仪方面,却处于真空地带。当时的测序仪主流市场被个别国外巨头制霸,高昂的价格,漫长的供应周期,严苛的使用条件,通过设备和技术壁垒,国外公司垄断着整个产业链条的话语权。" 基因测序仪就是基因测序行业的‘光刻机’,只有做出中国自己的基因测序仪,才能真正保障国家民生健康和民族基因信息安全。" 在这样的信念驱使下,2014 年真迈生物团队决定走向自主研发,打造国产测序仪。一边是测序仪制造对光、机、电、液、生化、芯片、算法等诸多前沿学科融合的技术高壁垒,另一边却是人才、资金、产业基础的紧缺,要实现产品的突破困难可想而知。" 当时国内没有哪家公司成功地把基因测序仪做出来,没有任何样板可以参考,对于基因测序仪的功能实现和核心技术,没有明晰的概念,相当于是在一个无人区里面探索。" 颜钦回忆道。和所有追求原始创新的企业一样,虽然起步艰难,但真迈生物却坚定地向前迈进。从在小黑屋手动测序开始,到首次观测到 DNA 分子荧光信号,到实现测序流程自动化、原理样机诞生,再到算法自动化、显微成像系统的自主研发,以及碱基的自主合成生产……在经历一系列从 0 到 1 的探索和攻坚克难后,2017 年 7 月,真迈生物成功发布首款自主研发的基因测序仪—— GenoCare 1600 单分子基因测序仪。通过持续创新,真迈生物已突破基因测序仪各项 " 卡脖子 " 技术和工艺难题,在高分辨率光学系统、精密流体控制系统、化学试剂、测序芯片、生信软件等测序系统的核心模块上已掌握了自主设计开发能力,形成了拥有自主知识产权的 "SURFseq" 测序技术体系,获得授权和申请中的国内外专利已超过 400 项,实现从方法学到关键工艺技术的全方位保护。科研生产齐步走,实现从 Gb 到 Tb 级通量产品阵列的国产替代在攻克研发难关的同时,真迈生物也坚持生产建设齐步走战略。自 2018 年落地首条国产单分子测序仪产线以来,到目前投入使用的研发、生产总面积超 10000 平米,建有测序仪生产基地、试剂盒 GMP 产线、芯片实验室、有机合成实验室、酶工程实验室,测序仪年产能可达 1000 台,试剂盒 240 万人份。基于自主研发和制造能力,真迈生物真正实现了 " 仪器 - 试剂 - 芯片 - 软件 " 全平台的自主可控和国产替代。自 GenoCare 1600 后,真迈生物测序设备布局日臻完善,又接连推出自主研发的GenoLab M 系列、FASTASeq 300 系列、SURFSeq 5000 系列高通量基因测序仪,形成了从 Gb 到 Tb 级通量全覆盖,满足从科研到临床需求的低中高通量测序产品阵列,可全力赋能基因测序应用。其中,GenoLab M 是一款精准、高效、灵活、开放的桌面型高通量基因测序仪,兼容市面上主流的 NGS 文库和数据分析流程,且兼具双芯片平台和滚动上机模式,可为 NGS 检测应用开发提供多元化选择。FASTASeq 300 主打靶向测序、全基因组低深度测序,加之其极致灵活、极简操作、极速交付的优点,可帮助用户轻松应对生育健康、病原检测、肿瘤检测和分子育种等领域应用需求。SURFSeq 5000 是真迈生物首款 Tb 级桌面型基因测序仪,其定位为 " 多快好省,广域全能 ",它突破了测序的仪器成本低、开机成本低、单位数据成本低 " 不可能三角 ",可以以一台桌面机的仪器成本,小样本数量的开机成本,实现与大型机满载运转相当的单 Gb 测序价格。构建产业生态,赋能前沿探索和精准医疗" 如果把基因测序产业生态比喻成一棵树,基因测序平台是产业的根基,临床和科研的各个领域就是这棵生态树的分枝,各个领域不同场景应用及解决方案便是树的果实。" 颜钦认为,无论是累累硕果还是行业生态的繁荣,都需要产业链伙伴紧密协同,形成合力。一直以来,真迈生物以基因测序仪为 " 基石 ",致力于推动国产测序仪的应用研究和落地,积极与合作伙伴开展联合开发、联合注册以及解决方案的整合,也在空间组学、蛋白组学、DNA 合成与存储等领域为合作伙伴提供深度赋能,共建健康多元的高质量行业生态。目前,真迈生物在生育健康、遗传病、肿瘤防控、传感染、法庭科学、分子育种等领域均实现与行业领先企业的合作,其测序仪在合作伙伴的实验室中稳定运行,发挥着底层 " 基建 " 作用,赋能基因测序应用,助力行业价值实现。例如在关乎国家种业安全的分子育种领域,真迈生物携手中芯种业,推动以 NGS 技术为基础的基因组学在农业分子育种领域的应用和发展,助力种业振兴,传递基因价值。在深层创新方面,真迈生物与中国科学院生物物理研究所、深圳市环境科学研究院等科研伙伴携手,合作开发直接 RNA 测序、共建藻类基因组数据库,强链补链,共拓国产化基因测序新生态。真迈生物不仅在国内取得了显著成就,还积极向世界展示中国的科技实力。其产品广销欧洲、亚洲等多个国家和地区,累计在超过 200 家海内外客户装机 300 余台套测序仪。" 如今,中国制造的质量和口碑在国际市场上与 10 年前已不可同日而语。" 颜钦深有感触地说道," 拥抱全球市场是我们战略规划中不可或缺的一部分,未来我们将继续加大投入,为全球用户提供更多元化、高性能的设备选择,让生命可读,让健康可塑。"基于自主底层技术的开放合作,真迈生物的国产测序平台正在从 " 进口替代 " 走向 " 深层创新 ",从 " 用起来 " 走向 " 用得好 ",从 " 国产国用 " 走向 " 国产全球用 "。关于产业生态构建的愿景,颜钦表示:" 我们希望以基因测序仪为核心工具,通过聚焦产业最底层软硬件,提供生命科学领域的基础平台,让万千伙伴的内容、技术在上面得以拓展和应用,形成丰富场景,赋能前沿探索和精准医疗,让技术加速惠及百姓健康。"联动政产学研医战略力量,助力基因测序产业更高层次发展从启动自主研发到形成自主知识产权的技术体系;从实验室创新到产品转化再到产品阵列化;从 " 仪器 - 试剂 - 芯片 - 软件 " 全平台自主生产到产业生态的构建,真迈生物已成为全球少数拥有测序仪产品阵列及商业化交付能力的测序系统制造商之一。身处关乎民众健康和国家生物经济发展的战略新兴产业,着眼未来,真迈生物正全面联动 " 政产学研医 " 战略力量,聚焦生命科学仪器核心技术研发与应用开发,全力攻坚关键核心技术,加快创新突破,打造生命科学领域的大国重器,助力基因测序产业更高层次发展。在面向未来发展的人才力量方面,真迈生物建立起了一支业内少有的兼具产研经验与坚定信念的顶尖团队。测序仪的量产和商业化之所以难,在于从实验室到落地用户端,不仅要将所有零部件集成为一台可稳定运行且能够规模化生产的精密仪器,还需要很多的学科融合、数据积累、场景开发。颜钦表示:" 人才及其科研、创新的精神,是产品和应用持续创新的不竭动力。"作为中国领先的基因测序设备自主品牌、国家级专精特新 " 小巨人 " 企业,在推进科技成果创新方面,真迈生物与中国科学院陈润生院士合作建立了基因测序仪领域首个广东省院士工作站、深圳市院士工作站。此外,还获批建有广东省工程技术研究中心、深圳市单分子测序平台及应用工程研究中心等多个高层次创新平台,凝聚产学研一体化力量,源源不断为测序仪核心技术研发与成果转化注入新动能。围绕国家基础研究与科技创新重大战略需求,真迈生物联合国内产、学、研、医机构,分别牵头承担和积极参与多项科技部国家重点研发计划,通过 " 基础科研条件与重大仪器设备研发 "、" 前沿生物技术 " 等重点专项项目,在高端科学仪器和生命科学平台领域持续推出新的创新技术和产品。真迈生物的历程是国产测序仪自立自强发展之路的缩影。中国科技力量与生命健康事业高质量融合发展正当时,动脉网相信,打造生命科学领域的大国重器,引领生命科学新时代,中国科技企业有能力肩负起时代使命。
  • 多肽芯片为什么那么火?了解下Aurora微阵列点样仪
    多肽芯片是一种新型的生物芯片,是研究蛋白质与蛋白质或其他物质(如核酸、多糖、化合物)之间相互作用最直观的研究技术。多肽芯片在诸多领域中具有广泛的应用前景,如疫苗开发、药物研发和筛选、临床检测以及蛋白质的基础功能研究。 多肽芯片是将已知的蛋白序列或任意设计的氨基酸序列分解成包含重叠氨基酸的多肽片段,将这些多肽片段按一定次序固定在经特殊处理过的载体基质上,每张芯片包含成千上万甚至更多的肽链。将待测物与芯片反应,经过免疫检测技术发现与待测物有结合反应的位点/域,经过图像数据处理与分析,寻找蛋白质/氨基酸与待测物的结合部位。 多肽芯片应用于:抗原表位筛选:多肽芯片在抗原表位筛选方面体现出巨大的优势,可大量缩短开发时间,为前期的抗体筛选提供准确的指标和快速的反馈;药物开发及筛选:多肽芯片为药物开发及筛选提供有效的解决平台,可有效提高新药研发的成功功率,降低研发失败的可能性,加快药物研发进程;临床检测:现代医疗技术显示,大多数疾病与蛋白质表达异常有关,通过检测患者样本中的蛋白活性即可找到其发病机理,多肽芯片技为该难题提供了快捷的方法,使得对症下药成为可能。 多肽芯片点样——Aurora多肽芯片点样仪Aurora集团30年来致力于制造生物医药领域自动化高通量设备。Aurora多肽芯片点样仪采用化学固相合成法,可按需制备稳定的多肽微阵列芯片,如新冠病毒原始毒株及其突变体奥密克戎S蛋白、N蛋白的微阵列芯片,更多产品详情可进一步了解产品价格或技术参数等信息,联系Aurora销售人员。【内容源自Aurorabiomed公众号《多肽芯片为什么那么火?》,转载请注明】
  • 安捷伦推出用于产前和产后研究的三款全新微阵列芯片
    2020 年 3 月 5 日,北京——安捷伦科技公司(纽约证交所:A)于近日推出三款全新 Agilent GenetiSure Cyto 微阵列芯片,用于满足细胞遗传学实验室进行产前和产后研究的需要。Cyto 微阵列芯片包含来自权威数据库的最新临床相关内容,芯片上的探针可实现拷贝数变异的高分辨率检测,以及与与发育迟缓、神经精神疾病、智力障碍、先天异常或遗传性 DNA 样品中不明原因畸形体征相关的拷贝数中性杂合性缺失的高分辨率检测。安捷伦基因组学解决方案事业部总经理 Kevin Meldrum 表示:“随着新一代测序的发展,新的基因-疾病关联不断被发现,数据库也需要随之迅速演进,不断将这些发现囊括在内。临床研究人员需要这样一个平台以满足检测这些相关基因突变的需求。”Meldrum 指出,安捷伦是高品质拷贝数分析微阵列芯片的领先制造商,可提供从样品前处理到解析的完整工作流程。此次发布的全新微阵列芯片专注于临床相关区域,提供不同规格芯片,根据不同应用(产前和产后研究),其分辨率可达到外显子级。Svetlana Yatsenko 博士是宾夕法尼亚州匹兹堡市匹兹堡大学医学中心 Magee-Women 医院细胞遗传学实验室的负责人,他对新款微阵列芯片发表了自己的看法:“作为一家高通量细胞遗传学实验室,我们的一项关键需求就是要有一个包含最新临床相关内容的微阵列芯片平台,而 Agilent GenetiSure Cyto 微阵列芯片恰好满足了我们的需求。这款微阵列芯片的靶向设计涵盖超过 3600 个基因,且兼容种类丰富的临床相关样品,力求满足或升级微阵列芯片检测需求的所有实验室均可将其作为首选解决方案。”关于安捷伦科技安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者。安捷伦现已进入独立运营的第二十年,一直致力于为提高生活质量提供敏锐洞察和创新经验。安捷伦的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。2019财年,安捷伦营业收入为51.6亿美元,全球员工数约为16300人。如需了解安捷伦公司的详细信息,请访问 www.agilent.com。关注“安捷伦视界”公众号,获取更多资讯。
  • 442万!福建技术师范学院计划采购高通量冷冻研磨仪等设备
    一、项目基本情况项目编号:[3500]RWZB[GK]2022152项目名称:中印尼海洋食品联合研发中心采购方式:公开招标预算金额:4,420,000.00元采购包1(中印尼海洋食品联合研发中心):采购包预算金额:4,420,000.00元采购包最高限价: 4,420,000.00元投标保证金: 40,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02101000-农林牧渔仪器叶绿素含量测定仪2(台)否详见招标文件39,600.001-2A02322800-消毒灭菌设备及器具自动不锈钢立式压力蒸汽灭菌器4(台)否详见招标文件80,000.001-3A02310100-化学原料药加工机械高通量冷冻研磨仪等设备1(批)否详见招标文件56,000.001-4A02121000-化学计量标准器具移液器15(套)否详见招标文件297,000.001-5A02109900-其他仪器仪表垂直电泳槽等设备1(批)否详见招标文件2,144,600.001-6A02069900-其他电气设备超纯水系统等设备1(批)否详见招标文件898,000.001-7A02059900-其他机械设备超声波清洗仪等设备1(批)否详见招标文件904,800.00本采购包不接受联合体投标合同履行期限:自合同签订之日起30日二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:采购包1:无3.本项目的特定资格要求:采购包1:(1)按照财库〔2019〕9号、财库〔2019〕19号规定,台式计算机、便携式计算机、平板式微型计算机、激光打印机、针式打印机、液晶显示器、制冷压缩机(冷水机组、水源热泵机组、溴化锂吸收式冷水机组)、空调机组【多联式空调(热泵)机组(制冷量>14000W)、单元式空气调节机(制冷量>14000W)】、专用制冷、空调设备(机房空调)、镇流器(管型荧光灯镇流器)、空调机【房间空气调节器、多联式空调(热泵)机组(制冷量≤14000W)、单元式空气调节机(制冷量≤14000W)】、电热水器、普通照明用双端荧光灯、电视设备【普通电视设备(电视机)】、视频设备(监视器)、便器(坐便器、蹲便器、小便器)、水嘴等品目为政府强制采购产品(具体品目以《节能产品政府采购品目清单》中“★”标注为准)。本次采购若有涉及,投标人在投标时须提供所投政府强制采购节能产品由国家确定的认证机构出具的、处于有效期之内的节能产品认证证书复印件。;(2)所投货物若属于医疗器械管理范畴,按照国家《医疗器械监督管理条例》,应符合以下标准①投标人为生产企业的,投标货物若属于第一类医疗器械产品,须提供《第一类医疗器械生产备案凭证》(进口产品除外),?投标货物若属于第二类、三类医疗器械产品,须提供《医疗器械生产许可证》(进口产品除外) 投标人为经营企业的,投标货物若属于第三类医疗器械产品,须提供《医疗器械经营许可证》,投标货物若属于第二类医疗器械产品,须提供《第二类医疗器械经营备案凭证》,投标货物若属于第一类医疗器械产品,则无须提供此项 ②投标货物属于《医疗器械监督管理条例》规定的第一类医疗器械产品须提供《第一类医疗器械产品备案凭证》,属于第二类、第三类医疗器械产品则须提供完整的《医疗器械注册证》复印件。所有证件必须真实、有效。。三、采购项目需要落实的政府采购政策进口产品:不适用节能产品:适用于(所有采购包或品目号),按照《关于印发节能产品政府采购品目清单的通知》财库〔2019〕19号执行环境标志产品:适用于(所有采购包或品目号),按照《关于印发环境标志产品政府采购品目清单的通知》财库〔2019〕18号执行信息安全产品:适用于(所有采购包或品目号)信用记录:(所有采购包或品目号),按照下列规定执行:①信用记录查询的截止时点:信用记录查询的截止时点为本项目投标截止当日。②信用记录查询渠道:信用中国(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)。③信用记录的查询:由资格审查小组通过上述网站查询并打印投标人的信用记录。④经查询,投标人参加本项目采购活动(投标截止时间)前三年内被列入失信被执行人名单、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他重大违法记录且相关信用惩戒期限未满的,其资格审查不合格四、获取招标文件时间: 2023-01-30 至 2023-02-06 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费五、提交投标文件截止时间、开标时间和地点2023-02-23 09:30:00(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日)地点:福建省福州市鼓楼区洪山园路52号华润万象城(三期)S11号楼6层福建榕卫招标有限公司2号开标室-鼓楼华润六、公告期限自本公告发布之日起5个工作日。七、其他补充事宜无八、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:福建技术师范学院地址:福建省福清市龙江校园新村1号联系方式:159600486862.采购代理机构信息(如有)名称:福建榕卫招标有限公司地址:福建省福州市鼓楼区洪山镇洪山园路52号华润万象城(三期)S11#楼6层01-03、05-13、15-17、33办公联系方式:0591-875123573.项目联系方式项目联系人:林停电话:0591-87512357网址: zfcg.czt.fujian.gov.cn开户名:福建榕卫招标有限公司福建榕卫招标有限公司2023年01月30日
  • 酷搏科技推出q900系列384孔高通量荧光定量PCR系统
    96孔荧光定量PCR仪已成为分子生物学实验室的必备工具,但对于基因表达分析、基因分型研究(SNP/CNV)、病原体检测、核酸药物开发、测序文库定量、作物育种等细分领域,依然存在更高通量的荧光定量检测需求。为此,酷搏科技于2023年夏天推出全新产品——Quantagene q900系列384孔荧光定量PCR系统,以更全面的功能、更快速的检测、更准确的定量结果助力用户更高效的实验室研究。产品特点一台优秀的荧光定量PCR仪,需要在运行快速、操作简便的基础上最大程度实现每个反应孔温度、光学性能的一致,从而得到准确的检测结果。为了实现这一目标,q900的热循环系统设计了3组独立输出的Peltier模块,分别对加热模块的 3个区域独立控制,确保不同区域间的温度均一性。反应体积5µ l,全部384孔使用完全一致的反应溶液时Tm值的分布。图中Tm最大与最小值之差为0.18°C,Tm平均值为80.52°C。另一方面,q900 采用独特的双重反射静态光学模组阵列技术。每个光学通道配置独立的长寿命 LED光源、滤光片组和CMOS相机,双重反射的设计在小体积的机身中延长光路,降低孔板中心和边缘的荧光信号差异。左:在q900MX上使用四种探针(蓝色:FAM,绿色:HEX,黄色:ROX,红色:Cy5)分别进行7个浓度10个梯度稀释(n=6)的一步法四重RT-qPCR实验。右:双重反射静态光学模组阵列结构示意图。性能展示优秀的384孔整板Ct一致性得益于均一的热循环系统和稳定的光学系统,q900可以轻松实现整板Ct标准差小于0.05,有效消除边缘效应,在任何孔位进行实验都可以获得相同的准确结果。实验一实验二实验三仪器编号123Ct平均值17.77517.78317.580Ct 标准差0.0220.0200.031Ct CV0.12%0.11%0.18%使用q900进行整板实验的全384孔归一化扩增曲线图及Ct值附近局部放大图大范围浓度精准定量q900可以在100-1010拷贝/反应范围内进行定量检测,稳定均一的温控系统确保全浓度范围高效扩增,为文库定量、基因表达定量等应用提供更准确的数据结果。仪器型号q225q900扩增效率100.1%100.1%R20.99960.9996使用q225及q900进行连续2倍梯度稀释实验,反应体积5μl,每一浓度三个平行反应。在Ct值为4-30的区间范围内,q900均可以进行准确定量,且结果与q225实验结果高度一致。1-25μl反应体积均可适配考虑到操作方便性,q900推荐反应体积为5-10μl。而对于样本或试剂较为珍贵的情况,在q900上使用低至1μl的反应体系,依然可以获得相同准确性的测试结果,配合拟合算法计算Ct值,使得相同反应体系在不同反应体积下可以获得完全一致的Ct结果。反应体积Ct平均值Ct标准差20μl17.9180.05010μl17.9150.0075μl17.9330.0092μl17.9390.0271μl17.9540.026新品试用活动已开启,诚邀您来体验q900系列384孔荧光定量PCR仪的高效、准确与便捷。详询北京酷搏科技有限公司或各地销售伙伴。
  • 应用案例 | 基于环形阵列永磁体的法拉第旋转光谱NO2传感器
    近日,来自中国科学院安徽光学精密机械研究所、中国科学院沈阳应用生态研究所、中国科学技术大学、法国蓝海岸大学法国滨海大学的联合研究团队发表了一种基于法拉第旋转光谱的、采用环形阵列永磁体NO2传感器。Recently, the joint research team from Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Institute of Applied Ecology, Chinese Academy of Sciences, University of Science and Technology of China, and Université du Littoral Cô te d’Opale published a NO2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets.法拉第旋转光谱(FRS)通过检测沉浸在外部纵向磁场中的气体介质所引起的线偏振光偏振状态的变化,从而实现对顺磁分子的高选择性和高灵敏度检测。该光谱检测方法对水汽、CO2等抗磁性分子具有天然的免疫力,这使得其表现出高度的样品特异性。同时,由于采用了一对相互接近正交的偏振器极大抑制了激光噪声,因此法拉第旋转光谱具有非常高的检测灵敏度。Farraday Rotational Spectroscopy (FRS) achieves highly selective and sensitive detection of paramagnetic molecules by detecting the changes in polarization state of linearly polarized light induced by the gas medium immersed in an external longitudinal magnetic field. This spectroscopic detection method exhibits inherent immunity to diamagnetic molecules such as water vapor and CO2, which results in a high degree of sample specificity. Additionally, the implementation of a pair of closely spaced orthogonal polarizers effectively suppresses laser noise, thus providing FRS with a very high detection sensitivity.通常情况下,使用螺线管提供纵向磁场来产生磁光效应。然而,这种方法存在功耗过大和易受电磁干扰的缺点。研究团队提出了一种基于钕铁硼永磁体环形阵列和Herriott多次通过吸收池相结合的新型FRS方法。根据磁场的空间分布特性,使用14个相同的钕铁硼永磁体环以非等距形式组合,产生纵向磁场。在长度为380毫米的范围内,平均磁场强度为346高斯。宁波海尔欣光电科技有限公司为该项目提供了前置放大制冷一体型碲镉汞红外探测器(HPPD-B-08-10-150 K),项目团队使用量子级联激光器以40毫瓦的光功率,针对最佳的441 ← 440 Q支氮氧化物跃迁(1613.25 cm–1,6.2 μm)。与Herriott多次通过吸收池耦合,积分时间为70秒,实现了0.4 ppb的最低检测限。实验结果也表明,低功耗FRS二氧化氮传感器有望发展成为一个稳健的现场可部署的环境监测系统。Usually, a solenoid coil is used to provide a longitudinal magnetic field to produce the magneto-optical effect. However, such a method has the disadvantages of excessive power consumption and susceptibility to electromagnetic interference. The research team proposed a novel FRS approach based on a combination of a neodymium iron boron permanent magnet ring arrayand a Herriott multipass absorption cell is proposed. A longitudinal magnetic field was generated by using 14 identical neodymium iron boron permanent magnet rings combined in a non-equidistant form according to their magnetic field’s spatial distribution characteristics. The average magnetic field strength within a length of 380 mm was 346 gauss. HealthyPhoton Co.,Ltd provided an integrated TE-cooled mercury cadmium telluride (MCT) infrared detector with front-end amplification(HPPD-B-08-10-150 K) for this project. A quantum cascade laser was used to target the optimum 441 ← 440 Q-branch nitrogen dioxide transition at 1613.25 cm–1 (6.2 μm) with an optical power of 40 mW. Coupling to a Herriott multipass absorption cell, a minimum detection limit of 0.4 ppb was achieved with an integration time of 70 s. The low-power FRS nitrogen dioxide sensor proposed in this work is expected to be developed into a robust field-deployable environment monitoring system.静态磁场法拉第旋转光谱传感装置Static magnetic field Faraday rotation spectral sensing device海尔欣前置放大制冷一体型碲镉汞红外探测器(HPPD-B-08-10-150 K)Integrated preamplifier and cryocooler type mercury cadmium telluride (MCT) infrared detector环形阵列永磁体及其纵向磁场分布特征Circular array permanent magnets and their longitudinal magnetic field distribution characteristics(a) 对于等距离的NdFeB永磁环阵列,模拟得到了中央纵向磁场的分布情况。(b) 对于非等距离的NdFeB永磁环阵列,模拟得到了中央纵向磁场的分布情况(黑线),并进行了实测(红线)。(c) 示意图显示了Herriott腔和非等距离的NdFeB永磁环阵列的配置。(a) Simulated distribution of the central longitudinalmagnetic field for an equidistant NdFeB permanent magnet ring array (b) simulated (black line) and measured (red line) distributions of the central longitudinal magnetic field for a non-equidistant NdFeB permanent magnet ring array (c) schematic configuration of the Herriott cell and the non-equidistant NdFeB permanent magnet ring array.法拉第旋转光谱信号及其信噪比与检偏器偏转角度的变化关系The Relationship between FRS signal and its SNR and the Deflection Angle of the Polarizer(a) 法拉第旋转光谱信号幅度(b) SNR作为分析器角度α的函数(a) FRS signal amplitude and (b) SNR as a function of the analyzer angle α.Reference:Yuan Cao, Kun Liu, Ruifeng Wang, Xiaoming Gao, Ronghua Kang, Yunting Fang, Weidong Chen,NO2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets, Anal. Chem. 2023, 95, 2, 1680–1685https://doi.org/10.1021/acs.analchem.2c04821Copyright © 2023 American Chemical Society
  • 应用案例 | 基于钕铁硼环形磁体阵列的双中红外波长法拉第旋转光谱NOx传感器
    近日,来自中国科学院安徽光学精密机械研究所、先进激光技术安徽省实验室、中国科学技术大学、法国滨海大学大气物理化学实验室联合研究团队发表了《基于钕铁硼环形磁体阵列的双中红外波长法拉第旋转光谱NOx传感器》论文。Recently, the joint research team from Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Advanced Laser Technology Laboratory of Anhui Province, University of Science and Technology of China, Laboratoire de Physicochimie de l′ Atmosph`ere, Universit´ e du Littoral C&circ ote d′ Opale, published an academic papers Dual mid-infrared wavelength Faraday rotation spectroscopy NOx sensor based on NdFeB ring magnet array.氮氧化物(NOx,包括二氧化氮(NO2)和一氧化氮(NO))是对流层臭氧的重要前体,同时也影响羟基和过氧基自由基的浓度。大多数气态化合物在被氧化和从空气中去除或转化成其他化学物质时,都会直接或间接接触到NOx。在典型的羟基自由基水平下,NOx的寿命取决于季节和光化学反应速率,通常为几小时。根据IPCC第六次评估报告,NOx的排放导致净正向变暖,因为它既形成短期臭氧(变暖),又破坏环境甲烷(冷却)。此外,NOx还导致酸沉降以及化学烟雾和气溶胶的形成。NO和NO2在大气光化学反应中起着核心作用,针对它们的检测有助于理解这两种气体的来源和去向,以及研究陆地生态系统与大气之间的NOx交换通量。Nitrogen oxides (NOx, the sum of nitrogen dioxide (NO2) and nitric oxide (NO)) are important precursors of tropospheric ozone, and they also influence the concentration of hydroxyl and peroxyl radicals. Most ofthe compounds that are oxidized and removed from the air or converted to other chemical species are in direct or indirect contact with NOx. At typical hydroxyl radical levels, the life time of NOx depends on the season and the photochemical reaction rate, which is typically a few hours. According to the IPCC sixth assessment report, the emissions of NOx result in net-positive warming from the formation of short-term ozone (warming) and the destruction of ambient methane (cooling). Additionally, NOx contributes to acid deposition and the formation of chemical smog and aerosols. Since NO and NO2 play a central role in atmospheric photochemical reactions, their simultaneous detection helps to understand the sources and sinks of these two gases, in addition to studying the NOx exchange fluxes between terrestrial ecosystems and the atmosphere.化学发光检测(NO + O3 → NO2 + O2 + hν)是测量NOx的传统方法。在通过化学发光反应(Mo + 3NO2 → MoO3 + 3NO)测量之前,NO2首先需要在高温(~325°C)下转化为NO。虽然这种方法被广泛使用,但其他氧化氮化合物,如过乙酰亚硝酸酯(PAN)和硝酸(HNO3),可能会在测量NOx浓度时引起交叉干扰。同时,这种方法不能区分NO和NO2。红外吸收法也可用于测量NO和NO2。在这种方法中,通常需要通过转化器将NO2还原为NO。由于NO和NO2是顺磁分子,法拉第旋转光谱(FRS)可以用作实现其高度敏感和选择性检测的潜在方法。FRS通过检测气态介质在纵向磁场中引起的光偏振状态的变化,实现对物种浓度的高灵敏度检测。该方法通过测量光学色散实现气体浓度的检测,因此其动态测量范围比基于比尔-兰伯定律的吸收光谱(动态范围上限≤10%)更大。FRS的另一个重要优势是它对于抗磁性分子(如水和二氧化碳)具有较强的抗干扰能力,从而使其具有高样品特异性。Chemiluminescence detection (NO+O3→NO2+O2+hν) is the conventional method for measuring NOx. NO2 first needs to be converted to NO at high temperature (~325 ◦ C) before it can be measured by chemiluminescence reaction (Mo+3NO2→MoO3+3NO). Although this method is more widely used, other oxidized nitrogen compounds, such as peroxyacetyl nitrate (PAN) and nitric acid (HNO3), can cause cross-interference in the measurement of NOx concentrations. Simultaneously, this method is non-selective in discriminating between NO and NO2. The infrared absorption method can also be used for NO and NO2 measurements. In this method, NO2 usually needs to be reduced to NO by the converter. As NO and NO2 are paramagnetic molecules, Faraday rotation spectroscopy (FRS) can be used as a potential method to achieve their highly sensitive and selective detection. FRS enables highly sensitive detection of species concentrations by detecting changes in the polarization state of light induced by a gaseous medium immersed in a longitudinal magnetic field. This method realizes the detection of gas concentration by measuring optical dispersion, so it has a higher dynamic measurement range than absorption spectroscopy (dynamic range upper limit ≤10%) based on Beer-Lambert law. Another significant advantage of FRS is that it is reasonably immune to diamagnetic species (e.g., water and carbon dioxide), which allows it to exhibit high sample specificity. 大多数这些报道的FRS传感器使用螺线管提供外部纵向磁场,从而导致能耗高和产生过多焦耳热。同时产生目标磁场所需的高电流交流电路会产生不受控制的电磁干扰(EMI),通常会降低FRS传感器的长期稳定性。此外,当前报道的FRS传感器只能在吸收池中进行单组分测量,不能满足复杂环境中同时进行多组分测量的需求。Most of these reported FRS sensors use solenoid coils to provide an external longitudinal magnetic field, which makes them suffer from high power consumption and excessive Joule heat generation. The high-current alternating current circuit required to generate the target magnetic field produces uncontrolled electromagnetic interference (EMI), which usually deteriorates the long-term stability of the FRS sensors. In addition, the currently reported FRS sensors are only capable of single-component measurements in the absorption cell and cannot meet the demand for simultaneous multi-component measurements in complex environments.在本研究中,提出了一种新型的低能耗FRS传感器,基于钕铁硼(NdFeB)环形磁体阵列,实现在单个吸收池中同时检测NO和NO2。分析了同轴双波长赫里奥特池(DWHC)的环形磁体阵列的磁场分布特性。使用两台室温连续波中红外量子级联激光器(QCL),波长分别为5.33 µ m(1875.81 cm&minus 1)和6.2 µ m(1613.25 cm&minus 1),同时探测DWHC内的磁光效应。通过对激光波长进行高频调制,有效抑制了1/f噪声。优化了双波长FRS NOx传感器的性能,包括调制幅度、调制频率、样品气压和分析器偏置角。本研究提出的FRS传感器为现场可部署的微量气体检测设备提供了理想解决方案。宁波海尔欣光电科技有限公司为此研究提供了HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器,用以分别检测2个激光束。In the present work, a novel low-power FRS sensor based on a neodymium-iron-boron (NdFeB) ring magnet array was proposed to achieve simultaneous detection of NO and NO2 in a single absorption cell. The magnetic field distribution characteristics of a ring magnet array coaxial to a dual-wavelength Herriott cell (DWHC) were analyzed. Two room-temperature continuous wave mid-infrared quantum cascade lasers (QCL) with wavelengths of 5.33 µ m (1875.81 cm&minus 1) and 6.2 µ m (1613.25 cm&minus 1), respectively, were used simultaneously to probe magneto-optical effects within the DWHC. The 1/f noise was effectively suppressed by high-frequency modulation of the laser wavelength. The performance of the dual-wavelength FRS NOx sensor was optimized with respect to modulation amplitude, modulation frequency, sample gas pressure, and analyzer offset angle. The FRS sensor proposed in this work provides a preferable solution for field deployable trace gas detection equipment. The laser detected by two TEC-cooled mid-infrared thermoelectrically cooled mercury-cadmium- telluride (MCT) photodetectors (Healthy Photon, model HPPD-B- 10–150 K).(a) Schematic diagram of the dual mid-infrared wavelength FRS NOx sensor based on a NdFeB ring magnet array (b) Optical layout of the FRS NOx sensor.thermoelectrically cooled mercury-cadmium- telluride (MCT) photodetectors (Healthy Photon, model HPPD-B- 10–150 K),结论本研究开发了一种基于NdFeB环形磁铁阵列的双中红外波长FRS传感器,用于同时检测NO2和NO。在光学路径长度为23.7米,积分时间为100秒的条件下,NO2和NO的检测限分别为0.58 ppb和0.95 ppb。高频激光波长调制与外部静态磁场相结合,最大程度地减小了低频噪声对FRS信号的影响。基于有限元方法分析了使用的永磁体阵列的磁场分布特性,帮助确定与其耦合的吸收池长度。采用双波长赫里奥特池放大两种不同偏振光波长与氮氧化物分子之间的相互作用,从而实现了在单个吸收池内对两种顺磁分子的高灵敏度检测。本文提出的FRS NOx传感器在大气环境监测或生态系统NOx通量观测等领域,具有进一步发展成为便携式、可在实地使用的仪器的巨大潜力。Conclusion In this work, a dual mid-infrared wavelength FRS sensor based on a NdFeB ring magnet array was developed for the simultaneous detection of NO2 and NO. The detection limits for NO2 and NOwere 0.58 ppb and 0.95 ppb, respectively, at an optical path length of 23.7 m and an integration time of 100 s. High frequency laser wavelength modulation was combined with an external static magnetic field to minimize the effect of low frequency noise on the FRS signal. The magnetic field distribution characteristics of the used permanent magnet array were analyzed based on the finite element method, which helped to determine the length of the absorption cell coupled to it. A dual-wavelength Herriott cell was used to amplify the interaction between two different wavelengths of linearly polarized light and nitrogen oxide molecules, thus achieving highly sensitive detection of two paramagnetic molecules within a single absorption cell. The FRS NOx sensor presented in this work shows great potential for further development into a portable, field-deployable instrument with applications in atmospheric environmental monitoring or ecosystem NOx flux observation. (a) Schematic diagram of a dual-wavelength Herriott cell (DWHC) with a NdFeB ring magnet array (b) Characteristics of the magnetic inductance line distribution around a NdFeB ring magnet array (c) Ray tracing results in a DWHC (d) Spot distribution on a concave mirror.Optimization of laser modulation frequency for the dual mid-infrared wavelength FRS NOx sensor.Optimization of laser modulation amplitude for the dual mid-infrared wavelength FRS NOx sensor.(a), (b) Measured FRS NOx signal as a function of analyzer angle (c), (d) Calculated FRS NOx noise as a function of analyzer angle (e), (f) Calculated SNR as a function of analyzer angle.
  • 上海技物所在1~2 K温区复合制冷循环研究方面取得重要进展
    近日,上海技物所党海政研究员课题组以四级高频脉冲管循环作为前级、JT循环作为终端的复合制冷循环实验方案,获取了迄今为止公开报道的基于多级高频脉冲管耦合JT的复合制冷循环实际获取的最低温度——1.36 K。在此基础上,该团队针对目前获取2 K以下温度的具体实践均需使用昂贵而稀缺的氦-3工质,严重阻碍实用化推广的缺点,提出了以氦-4为唯一工质的创新复合制冷循环方案,并进一步联合上海微系统所尤立星团队,将以氦-4为唯一工质的复合制冷机应用于冷却实际的超导纳米线单光子探测器(SNSPD),通过对系统探测效率和暗计数率等关键指标的实测,结果表明该制冷机可以为SNSPD提供1.84 K工作温度和良好电环境,使其保持稳定可靠的工作状态。以上研究结果为该类复合制冷循环技术在未来的空间应用和进一步实用化奠定了重要基础,相关成果先后发表于低温和超导领域国际期刊《Cryogenics》、《IEEE Transactions on Applied Superconductivity》及国内综合性学术期刊《科学通报》上。 相关工作得到国家自然科学基金、上海市“量子信息技术”市级重大科技专项、上海市产业协同创新项目以及上海市科技创新行动计划项目资助。上海量子科学研究中心、上海铂钺制冷科技有限公司、中科院上海微系统与信息技术研究所、赋同量子科技(浙江)有限公司、中国科学院大学等作为合作单位给予了重要支持。上海技物所1~2 K温区复合制冷机典型实物图:(a)系统整体布置 (b) 低温端细节 【附】相关已发表的系列学术论文链接如下:(1)以氦-4为唯一工质的1.8 K复合制冷机:https://engine.scichina.com/doi/10.1360/TB-2021-1305 (2)复合制冷循环获取1.36 K的实验验证:https://doi.org/10.1016/j.cryogenics.2022.103452 (3)工作于1 K温区的复合制冷循环理论:https://doi.org/10.1016/j.cryogenics.2021.103282 (4)复合制冷循环获取1.52 K的实验结果:https://doi.org/10.1109/TASC.2021.3060357 (5)3.3 K四级高频脉冲管循环理论研究:https://doi.org/10.1016/j.cryogenics.2019.103014 (6)3.3 K四级高频脉冲管循环实验验证:https://doi.org/10.1016/j.cryogenics.2019.103015 (7)三级高频脉冲管循环理论与实验:https://doi.org/10.1016/j.cryogenics.2018.05.005
  • 小菲课堂|详细解读制冷型与非制冷型光学气体成像热像仪
    十多年来,FLIR光学气体成像(OGI)热像仪一直用来可视化各种气体泄漏。这些OGI热像仪的开发是为了“看到”各种气体,包括碳氢化合物、二氧化碳、六氟化硫、制冷剂、一氧化碳、氨等。FLIR OGI热像仪被应用于各行各业,包括减少排放、提高生产效率和确保安全的工作环境。与其他检测技术相比,OGI热像仪的一大优势是该技术能够在不中断工业过程的情况下精准定位气体泄漏部件。从历史上看,OGI热像仪一直采用制冷型红外探测器,与非制冷型红外探测器相比具有多个优势,但成本往往更高。非制冷型红外探测器技术的进步使得像FLIR OGI热像仪这样的制造商,能够为相关行业设计和开发成本较低的OGI解决方案。尽管成本较低,但与使用制冷型探测器的热像仪相比,使用非制冷型红外探测器的热像仪存在一定局限性。光学气体成像背后的科学在我们讨论OGI热像仪中制冷或非制冷探测器的问题之前,我们可以先解释这项技术背后的理论。光学气体成像可以比作通过普通的摄像机进行观察,但操作员看到的是一股类似烟雾的气体喷出。如果没有OGI热像仪,这将是肉眼完全看不见的。为了能看到这种气体飘动,OGI热像仪使用了一种独特的光谱(依赖于波长)过滤方法,使它能够检测到特定的气体化合物。在制冷型探测器中,滤波器将允许通过探测器的辐射波长限制在一个非常窄的波段,称为带通,这种技术被称为光谱自适应。光谱自适应OGI热像仪利用某些分子的吸收特性,将它们在原生环境中可视化。热像仪焦平面阵列(FPAs)和光学系统专门调整到非常窄的光谱范围,通常在数百纳米左右,因此具有超选择性。只能检测到由窄带通滤波器分隔的红外区域中的被气体吸收的红外波段。大多数化合物的红外吸收特性取决于波长。氢、氧和氮等惰性气体无法直接成像。黄色区域显示了一个光谱滤波器,设计用于对应大部分背景红外能量将被甲烷吸收的波长范围。(图中横坐标代表波长,纵坐标代表甲烷气体的透射率)如果将OGI热像仪对准没有气体泄漏的场景,视野中的物体将通过热像仪的镜头和滤光片透射和反射红外辐射。如果物体和热像仪之间存在气体云,并且该气体吸收滤波器带通范围内的辐射,那么通过气体云到达探测器的辐射量将减少或增加。具体情况要看气体云与背景的关系,云与背景之间必须有一个辐射的对比。总而言之,让气体可见的关键是:气体必须吸收热像仪看到的波段中的红外辐射;气体云必须与背景形成辐射对比;气体云的表面温度必须与背景不同。此外,运动使气体云更容易可视化。熟悉光学气体成像相关的波长为了解决理解“制冷与非制冷”光学气体成像热像仪的挑战,您需要了解与光学气体成像相关的波长以及这些热像仪中使用的探测器。OGI热像仪的两个主要波长通常被称为中波(3到5微米)和长波(7到12微米)。在气体成像领域,这些区域也可以称为“功能区”和“指纹区”。在功能区,一个热像仪可以看到单一类别的更多气体,而许多单独的气体在指纹区有特定的吸收特征。几乎所有碳氢化合物气体都在FLIR GF320的过滤区域(黄色部分)吸收能量,但在长波或指纹区域(蓝色部分)有不同的吸收特征虽然许多气体在中波和长波区域都有吸收特性,但也有气体仅在一个红外波段发射和吸收。有些气体在中波而非长波光谱中发射和吸收(如一氧化碳/CO)和吸收,另一些仅在长波光谱中发射和吸收(如六氟化硫/SF6)。这些气体不属于指纹或功能区,通常指烃类气体。下面是CO和SF6气体的红外光谱图。制冷与非制冷型探测器制冷型OGI热像仪使用需要冷却到低温(约77K或-321°F)的量子探测器,可以是中波或长波探测器。检测功能区碳氢化合物气体(如甲烷)的中波热像仪通常在3-5μm(微米)范围内工作,并使用锑化铟(InSb)探测器。检测SF6等气体的制冷型长波热像仪在8-12μm范围内工作,可以使用量子阱红外光电探测器(QWIP)。制冷型OGI热像仪有一个集成了低温冷却器的成像传感器,其可以将传感器温度降低到低温。传感器温度的降低对于将探测器噪声降低到低于被成像场景的信号水平是必要的。制冷机运动部件的机械公差非常小,随着时间的推移会磨损,氦气也会慢慢通过气体密封。最终,在运行1万至1.3万小时后,需要对冷却器进行重建。带有制冷探测器的热像仪有一个与探测器连接的滤波器。这种设计可以防止滤波器和探测器之间的任何杂散辐射交换,从而提高图像热灵敏度,进而会使光学气体成像仪更有效地可视化某些气体,甚至使OGI热像仪符合美国环保局的OOOOa或其他要求等监管标准。用制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像用非制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像非制冷OGI热像仪使用微测辐射热计探测器,不需要制冷探测器所需的额外零件。它们通常由氧化钒(VOx)或非晶硅(a-Si)制成,在7-14μm范围内具有响应性。它们比制冷型热像仪更容易制造,但热灵敏度或噪声等效温差(NETD)较差,这使得更难以可视化较小的气体泄漏。NETD是一个指标,表示热像仪可以探测的最小温度差异。上图显示了制冷和非制冷探测器灵敏度的差异。更好的NETD将使制冷型OGI热像仪检测气体的效果至少是非制冷的五倍。用于确定OGI热像仪检测气体效果的类似标准是噪声等效浓度长度(NECL),该标准确定在定义的拍摄距离上可以检测到多少气体。例如,用于甲烷检测的FLIR GF320制冷型OGI热像仪(3-5μm探测器)的NECL小于20 ppm*m,而非制冷型(7-14μm探测器)的NECL大于100 ppm*m。对于非制冷型的OGI热像仪,另一个需要考虑的是滤波器。有些热像仪没有在长波光谱中过滤,这意味着它们只是一个完全开放的探测器,使用独特的分析来可视化气体。FLIR的高灵敏度模式(HSM)是利用软件和分析来增强气体可视化的热像仪示例。有些热像仪内部设置更有针对性的过滤器。这些滤波器可能与镜头有关,在探测器和镜头之间,以多种方式设计。使用非制冷过滤,由于限制到达热像仪探测器的辐射,您会失去热灵敏度。这将导致产生更高的NETD热灵敏度值,但可以提供与气体成像相关的更好图像。随着光谱滤波器宽度变窄以聚焦于特定气体时,来自场景的辐射减少,而探测器的噪声保持不变,来自滤波器的反射辐射增加。这会产生与气体成像相关的更高质量的图像,但会降低热像仪用于温度测量(辐射测量)的热灵敏度。当你使用冷滤镜时,比如制冷型OGI热像仪,这种现象就可以避免,因为反射的辐射量非常小。如何选择制冷与非制冷型OGI热像仪FLIR GF320甲烷和VOC检测用红外热像仪
  • 无锡冠亚制冷加热控温设备助力制药化工,参展CPHI 2019
    为了加强制药化工行业交流,分享行业内外对应的成果,2019年6月18日-20日为期三天的CPHI CHINA 2019在上海新国际博览中心隆重举办,当然,无锡冠亚作为仪器设备行业的翘楚,在本届CPhI上,我们将为制药化工行业提供高性能的制冷加热控温设备,诚挚邀请新朋老友莅临展台(展位号:W5P22),洽谈合作!  CPhI China 世界制药原料中国展是一场国际化、高质量的行业盛宴,在众多制药化工和仪器设备厂家的共同的努力下不断前进,无锡冠亚恒温制冷技术有限公司致力于制冷加热控温系统、超低温冷冻机、新能源电池/电机控温系统、加热循环系统、防爆电气设备、试验设备、工业冷冻室的研发、生产和销售。  经过近10多年的发展,无锡冠亚提供的制冷加热控温设备为制药、化工、科研、新能源、元器件等领域带来了强有力的技术支持。从2005年开始,无锡冠亚便立志为客户提供全面的制冷加热控温解决方案,为后来的发展中争取了更多合作厂商,创造了更大的市场价值。  无锡冠亚的成功源于公司制冷加热控温设备强大的技术支持,成立至今,公司凭借与个制药化工企业之间的战略合作关系,以及不断优化的公司自身运作和服务质量,无锡冠亚每年都为数以千计的客户提供产品,服务于科研机构、元器件、化工、制药等众多领域。  “诚信、公开、诚实、公平”是无锡冠亚多年坚持的原则,正是因为有这样的坚持,才塑造了公司员工和客户之间的互相尊重、坦诚沟通、高效互动的健康环境。如今,每一位冠亚人都坚信“科学技术能为人们带来高品质的生活”,并以此为目标而不断奋斗,立志生产出更加专业、精密、实用的科学仪器。  2019年6月18-20日,第十九届世界制药原料中国展,展位号:W5P22,无锡冠亚制冷加热控温设备与您不见不散!
  • 焜腾红外推出全系列T2SL制冷红外探测器,全面覆盖中波和长波多种面阵规格
    ——记HOT T2SL Ⅱ类超晶格探测器量产第三年 致力于Ⅱ类超晶格制冷型红外探测器产业化的焜腾红外,在过去三年已经完成Ⅱ类超晶格红外探测器工程化批产超千支。尽管已是焜腾红外120k高工作温度制冷型探测器实现量产的第三年,但是在技术迭代和产品开发方面,焜腾红外却从未止步。在稳定批产的同时,焜腾红外也在逐步发力150k制冷探测器的批量生产以及长波Ⅱ类超晶格制冷型探测器的工程化工作。现阶段已经研发出温度更高(160K)、面阵更大(2Kx2K)、重量更轻(260 g)、波长更长(12 μm)、寿命更久(45000小时)的Ⅱ类超晶格制冷型红外探测器,全面覆盖中波和长波多种面阵规格。 经过技术研发人员过去三年的持续努力,焜腾红外现已研制出适用于不同场景和应用条件的多种T2SLⅡ类超晶格探测器。仅重量方面就已经研制出550 g、350 g、和260 g三种规格,其中重量仅重260 g的探测器其芯片的工作温度已经能达到150K,部分甚至可达160K的芯片工作温度。在制冷机的配置上,除了旋转式斯特林制冷机外,还可以根据客户需求搭配线性制冷机,以实现挥发性有机化合物(VOCs)气体在线泄漏检测系统应用高达45000小时的寿命的特殊需求。除了重量和制冷机配置上可以适配用户的不同需求外,焜腾红外在探测器面阵上也已经可以做到2Kx2K,覆盖范围除中波之外,也已研制出最长波长达12 μm的长波探测器。焜腾红外能为广大客户提供多种阵列规格和响应波长的产品,分别为320x256、640x512、1280x1024以及2048x2048,其光谱响应范围涵盖3.2 μm – 3.5 μm、3 μm – 5 μm、7.5 μm – 9.5 μm及10.3 μm – 10.7 μm多个波段,基本上实现了中波和长波全规格探测器的技术供应。 焜腾红外的技术研发路线集中于深耕Ⅱ类超晶格制冷红外探测器这一新型探测器技术路线,研制出并生产覆盖中长波的Ⅱ类超晶格制冷型红外探测器,下一步的研发方向将会向着更长波发力,以及研发覆盖波段更全、应用范围更广、在有害气体检测方面能检测到更多气体种类的II类超晶格探测器。除了现有生产基地之外,焜腾红外在嘉兴的新厂(占地35亩的焜腾光电芯片产业园项目)已经结顶并即将落成投入使用,届时该产业园将会成为国内最具竞争力的覆盖Ⅲ-V族化合物半导体制冷型芯片与探测器组件及VCSEL芯片的重要基地,预计达产后年产红外探测器一万支,最终实现国产化探测器的全规格批产。 在第24届中国国际光电博览会中(9月6-8日),焜腾红外将携自研和生产的各类探测器、探测器组件和VCSEL芯片亮相,展位在深圳国际会展中心(宝安新馆)CIOE红外技术及应用8号馆8B023,欢迎各位莅临展位进行洽谈合作!本次展会展品介绍V340红外热成像气体泄漏检测仪V340红外热成像气体泄漏检测仪是一款针对VOCs的非接触式泄漏检测设备,产品工作波段为3.2 µm – 3.5 µm,可检测甲烷、乙醇、汽油、苯等400余种VOCs气体或挥发性液体的微小泄漏。机载式VOCs气体泄漏可视化巡检系统U-330机载式VOCs气体泄漏可视化巡检系统U-330应用于甲烷及其他VOCs的泄漏检测,整套系统由大疆M300RTK无人机搭载吊舱式VOCs气体泄漏红外成像仪D330组成。在线式VOCs气体泄漏可视化检测系统M330在线式VOCs气体泄漏可视化检测系统M330应用于甲烷及其他VOCs的泄漏检测。探测终端内采用高灵敏度320x256高工作温度的二类超晶格中波制冷红外焦平面探测器、通过有线网络可实时观测VOCs气体泄漏状态的双光图像,系统适用于工业领域VOCs气体泄漏的实时在线监测。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制