当前位置: 仪器信息网 > 行业主题 > >

高性能多轴运动控制器

仪器信息网高性能多轴运动控制器专题为您提供2024年最新高性能多轴运动控制器价格报价、厂家品牌的相关信息, 包括高性能多轴运动控制器参数、型号等,不管是国产,还是进口品牌的高性能多轴运动控制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高性能多轴运动控制器相关的耗材配件、试剂标物,还有高性能多轴运动控制器相关的最新资讯、资料,以及高性能多轴运动控制器相关的解决方案。

高性能多轴运动控制器相关的论坛

  • NI推出高性能嵌入式控制器

    自1976年成立,30多年来,美国国家仪器公司(NI)帮助测试、控制、设计领域的工程师与科学家解决了从设计、原型到发布过程中所遇到的种种挑战。通过现成可用的软件,如LabVIEW, 以及高性价比的模块化硬件,NI帮助各领域的工程师不断创新,在缩短产品问世时间的同时有效降低开发成本。如今,NI为遍布全球各地的30,000家不同的客户提供多种应用选择。NI总部设于美国德克萨斯州的奥斯汀市,在40个国家中设有分支机构,共拥有5,200多名员工。在过去连续十二年里,《财富》杂志评选NI为全美最适合工作的100家公司之一。作为最大的海外分支机构之一,NI中国拥有完善的产品销售、技术支持、售后服务和强大的研发团队。 近日,由NI研发的高性能嵌入式控制器NIPXIe-8115已成功上市,该产品配备了最新的Intel?第二代Core?i5双核处理器,能够缩短测试时间,是多核应用程序的理想选择。 为了提高PXI系统的稳定性,NIPXIe-8115控制器配备了In-ROM和硬盘驱动诊断功能,确保实现PXI嵌入式控制器的操作性能。除了高性能的CPU以外,NIPXIe-8115控制器还配备了6个USB2.0端口、2个可连接多台显示器的显示端口、双千兆以太网、GPIB、串行和并行端口。全新的NIPXIe-8115将诊断分析功能与NI备用硬盘驱动和内存相结合,提高了操作性能,从而减少了停工时间,并确保给应用程序带来最小的影响。 NIPXIe-8115控制器采用IntelCorei5-2510E处理器,添加了2.5GHz的基本时钟频率功能。并且还采用IntelTurboBoost技术,基于应用类型自动增加时钟频率。举例来说,当运行只生成单处理线程的应用程序时,CPU会将一个未使用的内核置于空闲状态,并将活动内核的时钟频率从2.5GHz提高至3.1GHz。这样,无需多线程的软件应用程序,就能采用最新的CPU。它既可在双核、也可在高性能的单核模式下操作,这种灵活性使得控制器可适用于各种应用,包括高性能的自动化测试和工业控制。 该产品具有多种外设I/O端口以及6个行业领先的USB2.0端口。该产品In-ROM和硬盘驱动诊断功能能够判定控制器的健康状况,从而提高操作性能,并最大限度地减少系统停工时间。将控制器与NILabVIEW系统设计软件结合,工程师可在各类测试、测量和控制应用中提升开发效率。

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 涂胶机运动控制系统分析

    [font='微软雅黑','sans-serif'][color=#666666]涂胶机是用于给机柜、灯具、蓄电池、汽车等有密封要求的产品,按照密封轨迹涂密封胶的一种工业生产机床。标准涂胶机运动控制系统为三轴联动,通过直线插补与圆弧插补完成涂胶轨迹。本文主要对三维涂胶机的运动控制系统原理与结构进行分析。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制系统是以电动机为控制对象,以控制器为核心,以电力电子、功率变换装置为执行机构,在控制理论指导下组成的电气传动控制系统。一个典型的现代运动控制系统的硬件主要由上位计算机、运动控制器、功率驱动装置、电动机和传感器反馈检测装置和被控对象等几部分组成。[/color][/font][font='Arial','sans-serif'][color=#666666][/color][/font][font='微软雅黑','sans-serif'][color=#666666]一、涂胶机运动控制器运动控制器根据结构不同的可分为:基于计算机标准总线的运动控制器;[/color][/font][font='Arial','sans-serif'][color=#666666] Soft[/color][/font][font='微软雅黑','sans-serif'][color=#666666]型开放式运动控制器;嵌入式结构的运动控制器。[/color][/font][font='Arial','sans-serif'][color=#666666] Soft[/color][/font][font='微软雅黑','sans-serif'][color=#666666]型开放式运动控制器运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]之间的标准化通用接口。用户在[/color][/font][font='Arial','sans-serif'][color=#666666]Windows[/color][/font][font='微软雅黑','sans-serif'][color=#666666]平台和其他操作系统的支持下,利用开放的运动控制内核,开发所需的控制功能,构成各种类型的运动控制系统。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]嵌入式结构的运动控制器是把计算机嵌入到运动控制器中的一种产品,它能够独立运行。运动控制器与计算机之间的通信依然是靠计算机总线,实质上是基于总线结构的运动控制器的一种变种。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三维涂胶机运动控制器为基于总线的运动控制器。用计算机硬件和操作系统,结合运动控制应用程序来实现的,具有高速的数据处理能力。总线形式上为[/color][/font][font='Arial','sans-serif'][color=#666666]104[/color][/font][font='微软雅黑','sans-serif'][color=#666666]总线、[/color][/font][font='Arial','sans-serif'][color=#666666]RS232[/color][/font][font='微软雅黑','sans-serif'][color=#666666]接口和[/color][/font][font='Arial','sans-serif'][color=#666666]USB[/color][/font][font='微软雅黑','sans-serif'][color=#666666]接口。运动控制器采用[/color][/font][font='Arial','sans-serif'][color=#666666]DSP[/color][/font][font='微软雅黑','sans-serif'][color=#666666]芯片作为[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666],可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]之间的标准化通用接口功能。控制器支持功能强大的运动控制软件库、[/color][/font][font='Arial','sans-serif'][color=#666666]C[/color][/font][font='微软雅黑','sans-serif'][color=#666666]语言运动函数库、[/color][/font][font='Arial','sans-serif'][color=#666666]WindowsDLL[/color][/font][font='微软雅黑','sans-serif'][color=#666666]动态链接库等,根据工艺需求,在[/color][/font][font='Arial','sans-serif'][color=#666666]WINDOWS[/color][/font][font='微软雅黑','sans-serif'][color=#666666]等平台下开发应用软件,组成涂胶机运动控制控制系统[/color][/font][font='Arial','sans-serif'][color=#666666].[/color][/font][font='微软雅黑','sans-serif'][color=#666666]二涂胶机运动控制方式[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制形式有点位运动控制、连续轨迹运动控制、同步运动控制。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]点位运动控制即仅对终点位置有要求,与运动的中间过程即运动轨迹无关。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]同步运动控制是指多个轴之间的运动协调控制,可以是多个轴在运动全程中进行同步,也可以是在运动过程中的局部有速度同步。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三维涂胶机控制方式为连续轨迹运动控制,又称为轮廓控制,主要对胶头的运动轨迹进行控制。该控制方式要求系统在高速运动的情况下,既要保证系统加工的轮廓精度,还要保证胶头沿轮廓运动时的切向速度的恒定。对小线段加工时,有多段程序预处理功能。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三涂胶机运动控制器硬件结构[/color][/font][font='微软雅黑','sans-serif'][color=#666666]涂胶机系统以基于[/color][/font][font='Arial','sans-serif'][color=#666666]“PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机[/color][/font][font='Arial','sans-serif'][color=#666666]+[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制器[/color][/font][font='Arial','sans-serif'][color=#666666]”[/color][/font][font='微软雅黑','sans-serif'][color=#666666]为核心,采用运动控制器、驱动器和交流伺服电动机构成一个开放式硬件结构。在该伺服控制系统中,控制器上专用[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]与[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]构成主从式双[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]控制模式。[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机负责人机交互界面的管理和控制系统的实时监控等方面的工作,例如键盘和鼠标的管理、系统状态的显示、控制指令的发送和外部信号[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]的监控等。运动控制器配备内容丰富、功能强大的运动函数库,供用户使用完成电动机的运动规划。系统采取脉冲输出的位置控制方式,脉冲频率的大小控制电机的速度,信号的正负控制电机正反转,以实现三轴的位置控制。[/color][/font][font='Arial','sans-serif'][color=#666666]X[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴、[/color][/font][font='Arial','sans-serif'][color=#666666]Y[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴、[/color][/font][font='Arial','sans-serif'][color=#666666]Z[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴原点、限位检测是通过接近开关来实现,原点检测开关作为每个轴的零点位置,限位检测开关确保每轴工作行程极限。这些状态信号送入运动控制卡状态寄存器后由[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]随时读出,达到对[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]状态信号的检测。在硬件上,运动控制器上的光电隔离措施既隔离了外设对内部数字系统的干扰,有能有效防止过电压、过电流等外界突发事件对计算机系统的损坏,大大提高了系统的控制精度和可靠性。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]四涂胶机运动控制系统的软件结构[/color][/font][font='微软雅黑','sans-serif'][color=#666666]涂胶机运动控制器配备有运动函数库,函数库为单轴及多轴的步进或伺服控制提供了许多运动函数,如单轴运动、多轴独立运动、多轴插补运动以及多轴同步运动等等。运动控制器组成的控制系统,采用[/color][/font][font='Arial','sans-serif'][color=#666666]VC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]语言开发友好的人机界面应用程序、方便的人机交互和管理。系统的程序结构模块如图所示,除了主体的运动控制程序外,还包括初始化、与[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]实时数据交互、系统保护、状态监测等部分。[/color][/font][font='微软雅黑','sans-serif'][color=#666666][back=white]五结语[/back][/color][/font][font='微软雅黑','sans-serif'][color=#333333][/color][/font][font='微软雅黑','sans-serif'][color=#666666][back=white]综上所述,三维涂胶机运动控制系统采用基于总线的运动控制器,构建了合理的硬件结构和软件结构。通过连续轨迹控制方式,完成既定运动和高精度的伺服控制。实现涂胶机的高速高精度运转。[/back][/color][/font]

  • FM3 CY9BFx1xN/R系列高性能Arm Cortex-M3微控制器Cypress

    [url=https://www.leadwaytk.com/article/5384.html]Cypress[/url][font=宋体][font=宋体]根据[/font][font=Calibri]Arm Cortex-M3[/font][font=宋体]的[/font][font=Calibri]MCU[/font][font=宋体],专用型内嵌式控制器,具备性能卓越和具有竞争力的成本费用[/font][/font][font=宋体]。[/font][font=宋体][font=Calibri]Cypress[/font][font=宋体]的[/font][font=Calibri]FM3[/font][font=宋体]系列[/font][font=Calibri]32[/font][font=宋体]位通用型[/font][font=Calibri]MCU[/font][font=宋体]根据[/font][font=Calibri]Arm Cortex -M3 CPU[/font][font=宋体],为许多消费和工业应用提供可扩展性平台。[/font][font=Calibri]FM3 CY9BFx1xN/R[/font][font=宋体]系列性能卓越[/font][font=Calibri]Arm Cortex-M3[/font][font=宋体]微控制器受欢迎的应用范围从电机控制系统、工业自动化、家电行业和电动工具到医疗器械、主要家电产品、数字消费设备和办公自动化设备。[/font][/font][font=宋体][font=Calibri]FM3 CY9BFx1xN/R[/font][font=宋体]系列性能卓越[/font][font=Calibri]Arm Cortex-M3[/font][font=宋体]微控制器是性能卓越组,工作电压范围为 [/font][font=Calibri]2.7V [/font][font=宋体]至 [/font][font=Calibri]5.5V[/font][font=宋体]。[/font][font=Calibri]FM3 CY9BFx1xN/R[/font][font=宋体]系列具备 [/font][font=Calibri]144 MHz CPU[/font][font=宋体]时钟速率、[/font][font=Calibri]512 KB [/font][font=宋体]闪存和 [/font][font=Calibri]16 KB [/font][font=宋体]工作闪存的高性能,并且具有用作[/font][font=Calibri]144 MHz [/font][font=宋体]零等待模式操控的预取缓冲器。[/font][/font][font=宋体]目前,立维创展拥有[/font][font=Calibri]Cypress[/font][font=宋体]品牌,现货库存[/font][font=Calibri]CYV15G0203TB-BGXC[/font][font=Calibri]CYV15G0101DXB-BBXC[/font][font=Calibri]CYV15G0204TRB-BGXC[/font][font=Calibri]CYV15G0401DXB-BGXC[/font][font=Calibri]CYV15G0104TRB-BGXC[/font][font=宋体]如需其他型号,欢迎点击右侧客服咨询!!![/font]

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】显微镜Z轴控制器的精度

    问下现在显微镜Z轴控制器的精度有多少呢?我的意思是令Z轴移动距离a,那么Z轴实际移动的距离假设为b, 那么b-a大概是多少呢?0.01微米?

  • 控制器连接电极监测水质性能如何

    水质检测监测中,选择[url=https://www.hach.com.cn/product-categories/tongyongkongzhiqishuzi]通用控制器[/url]和数字电极进行部分参数的监测,是不是比选择多参数的在线监测或者组合多个仪器性价比更高啊,运营成本包括人力方面如何呢,还有就是控制器连接电极的这种,稳定性如何。

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 阀件、控制器半导体元器件控温中的作用有哪些?

    半导体元器件控温设备中,每个配件都有着不同的作用,由于作用不同,无锡冠亚的半导体元器件控温的阀件和控制器的作用也是不同的。  半导体元器件控温的水泵,是用于加速水流动的工具,以达到加强水在换热器中换热的效果。半导体元器件控温的水流开关用作管道内流体流量的控制或断流保护,当流体流量到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的压力控制器用作压力控制和压力保护之用,机组有低压和高压控制器,用来控制系统的压力的工作范围,当系统压力到调定值时,开关自动切断(或接通)电路。  半导体元器件控温的压差控制器用作压力差的控制,当压力差到达调定值时,开关自动切断(或接通)电路。半导体元器件控温的温度控制器用作机组的控制或保护,当温度到达调定值时,开关自动切断(或接通)电路。在我们的产品上,温度的控制常用到,用水箱温度来控制机组的开停机情况。还有些象防冻都需要用到温度控制器。  半导体元器件控温视液镜用于指示制冷装置中液体管路的制冷剂的状况、制冷剂中的含水量、回油管路中来自油分离器的润滑油的流动状况,有的视液镜带有一指示器,它通过改变其颜色来指出制冷剂中的含水量。(绿色表示干燥,黄色表示潮湿)。因温度变化而引起水的体积变化,膨胀水箱用来贮存这部分膨胀水,对系统起稳压定压的作用,能给系统补偿部分水。  半导体元器件控温是一项比较新的设备,性能上面要求高一点才能使得半导体元器件控温的运行更加稳定。

  • 自动上料控制器 自动打磨控制器

    自动上料控制器 自动打磨控制器

    自动上料控制器 / 自动打磨控制器产品外形小巧,功能简单实用,参数设置少,无需繁琐操作。该表由杭州双星普天 开发设计,功能支持 定制!一、基本工作原理:监控主电机的电流,当主电机负载电流过大时,控制器输出断开信号,停止副电机工作,随着主电机处理物料的减少,主电机电流降低,控制器开启副电机工作,以此循环。二、基本参数1、供电:220V AC / 24V DC 可选2、输出:单继电器输出,触点容量 250V 3A3、采样方式:采用电流互感器 隔离采样4、量程: 10A / 50A /100A5、安装方式:面板安装 / 导轨安装 可选三、操作方式常规设置内容:报警下限电流值报警下限输出延时报警上限电流值报警上限输出延时设置方法:1、对于已知动作电流的用户,可以进入设置模式后修改设置内容2、该电流表支持快速设置模式,无需进入设置状态,通过简单的按键即可完成动作电流的设置。对于不知道电流大小 或者 需要频繁快速修改设定值的用户特别方便。四、互感器(销售时含)与该表配合使用的互感器有多种,出厂时根据用户测量电流范围选配,无需用户关注。用户只需关注 被检测线的直径,线鼻子是否顺利穿线等问题。与该表配合的常规互感器 穿心孔直径有 26mm / 11mm / 6mm 供选择。如有特别要求,比如钳形口互感器等,采购时需咨询。五、质保自采购之日起,在正常使用情况下,一年内出现质量问题,免费更换。无限期保修http://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507480_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507481_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/07/201407221106_507477_2909512_3.jpg

  • 水位控制器解析

    水位控制器解析

    [size=24px][font=宋体][url=http://http://www.eptsz.com/Products.aspx]水位控制器[/url]是用来监测液体位置的开关,控制器连接处一头是连接水泵、一头是连接电源的,当液体低于检测点位置,传感器检测到无水时,会根据其原理输出一个信号,连接水泵的开关开启自动加水。当液位高于一定的检测点,[url=http://http://www.eptsz.com/Products.aspx]传感器[/url]发出信号,连接电源的开关就会强制关闭停止加水。双重液位检测保护,防止溢缸。[/font][font=宋体]水位控制器的原理是通过传感器探头对水位进行检测,当水位达到一定位置时,传感器内部芯片输出高低电平信号,从而实现对液位的控制。该设备功耗低、体积小、防水性能好、安装维护非常方便。[img=,556,319]https://ng1.17img.cn/bbsfiles/images/2022/06/202206100932141492_1847_4008598_3.png!w556x319.jpg[/img][/font][/size]

  • 【原创】自己动手,DIY一款山寨版的真空控制器

    【原创】自己动手,DIY一款山寨版的真空控制器

    本人曾在本版请教过旋转蒸发有无必要配真空控制器,也按照建议没有配。谁知小日本的真空泵性能实在高于预期,每次浓缩样品时真空度迅速上升,然后爆沸那么一小下;虽然只是一小下,足以让人心惊胆战了:(怎么办?看来只有配真空控制器了。可是……可是……那玩意一万多呢,快赶上一台旋蒸了;而且一时半会到不了货,我可急着要用啊!怎么办?自己动手吧。要把真空度升上去我没招,要把真空度降下来还不简单啊?原料成本:核心部件:真空表一支(36元;也有28元的,小一号);铜制针阀(18元;也有不锈钢的,要二百多,成本太高,个人觉得没必要)。配件:缓冲瓶,橡胶塞,玻璃管,真空管若干,加起来大约50人民币。开工!OK!成品如图所示,虽然山寨了一点,但其实挺好用滴。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903292119_141184_1697752_3.jpg[/img]看看背面的管道。胶塞上打了四个孔,分别接真空表,针阀,旋蒸和隔膜泵:[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903292120_141185_1697752_3.jpg[/img]使用时,先把针阀开到最大,然后缓慢关小使系统达到合适的真空度。个人经验,对于正己烷/丙酮溶液,真空度-0.05~-0.06MPa最合适了,一但超过了-0.07MPa肯定爆沸!真空控制器做好了,从此我的样品再也没有爆沸过了哈哈!不过钻了两个橡皮塞共八个孔(第一个塞子废了),胳膊疼了两天。看来该锻炼啦……

  • 【转帖】关于1553B总线控制器芯片

    现代航空航天系统内电子设备越来越多、越来越复杂,武器系统的数字化、信息化程度也在迅速提高,系统内各种设备之间非常需要获得具有高传输速率,高管理效率和高可靠性的数据互联方式。MIL-STD-1553B总线作为一种具有较高数据传输性能和管理效率、传输可靠的数据总线,已经发展为十分成熟并被广泛应用的通用化数据传输技术,在航空航天、武器装备等系统中广泛应用。  航天测控公司已掌握了1553B总线控制器数据链路层芯片内核技术,研制出了具有自主知识产权的1553B总线控制器芯片。该芯片能够工作在BC、RT、BM三种模式下,主要功能与DDC公司的BU-61580芯片兼容,但其数据传输速率比国外芯片大幅度提高,大大提高了数据传输性能和系统实时性,应用范围更加广阔。该芯片的研制成功将彻底改变1553B芯片及控制器产品依赖进口的局面,为建立新型武器装备机内高效率、高可靠总线信息传输与控制提供了技术支撑和保障。

  • 采用PID控制器实现温度、压力和振动等交变试验的自动控制

    采用PID控制器实现温度、压力和振动等交变试验的自动控制

    [size=16px][color=#339999]摘要:目前各种PID控制器仪表常用于简单的设定点(Set Point)和斜坡(Ramp)程序控制,但对于复杂的正弦波等周期性变量的控制则无能为力。为了采用标准PID控制器便捷和低成本的实现对正弦波等周期性变量的自动控制,本文介绍相应的解决方案。解决方案的主要内容一是采用具有远程设定点功能的PID控制器,二是采用外置信号发生器,发生器输出的周期信号作为PID控制器周期性改变的设定值,从而实现周期性变量的自动控制。[/color][/size][align=center][size=16px][img=正弦波等周期性变量PID自动控制的解决方案,600,365]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031128526531_6859_3221506_3.jpg!w690x420.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在各种科研生产中经常会设计一些周期性的温度、湿度、真空压力和振动等交变环境或边界条件来进行各种特定的测试和考核,这些周期性边界条件或环境所呈现出的常见形式往往会是方波、正弦波,三角波和梯形波等,这在各种物理参数的动态测试和产品构件的性能考核试验过程中体现的尤为明显,由此就要求相应的自动化系统能提供这些不同波形环境变量的准确控制,从而保证实际环境的变化与测试及试验数学模型对边界条件的描述尽可能的吻合,最终保证物理变量测试以及考核试验的准确性和可靠性。[/size][size=16px] 在各种温度、湿度、真空压力和振动等环境的形成和自动化控制过程中,基本都是采用各种小巧的工业级PID控制器和PLC可编程逻辑控制器,这些控制器非常适用于定点或变化速度较慢的线性变化控制,图1(a)所示就是这样一个非常典型温度控制变化过程曲线。[/size][align=center][size=16px][color=#339999][b][img=典型被控变量变化曲线,690,213]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031129551376_5834_3221506_3.jpg!w690x213.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 温度过程典型变化曲线:(a)折线形式;(b)正弦波形式[/b][/color][/size][/align][size=16px] 对于图1(a)所示的典型温度变化过程,采用普通的PID程序控制器进行编程设计就可以实现,并且还可以编辑多条这样的多折线控制程序进行存储和调用运行。但对于如图1(b)所示的正弦波形式的温度控制和线性升温加正弦波调制的温度控制,目前还未看到可进行这种周期性变量控制的标准化PID控制器。为了在实际应用中实现这种周期性变量的PID控制,往往需要采用计算机和PLC并进行复杂的控制程序编写才能实现这种复杂功能,但这具有较高的技术门槛。[/size][size=16px] 为了解决上述PID控制器对于复杂正弦波等周期性变量控制的无能为力,并能采用标准PID控制器便捷和低成本的实现对正弦波等周期性变量的自动控制,本文将提出以下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] PID调节器进行自动控制的基本原理是根据设定值与被控对象测量值之间的控制偏差,将偏差按比例、积分和微分通过线性组合形成控制输出量,对被控对象进行控制。这里的设定值是一种泛指,实际上包括了不随时间变化的固定设定值和随时间变化的设定曲线。[/size][size=16px] 由此可见,对于PID控制器要实现自动控制的必要前提是要已知被控对象的变化要求,并将此要求按照设定值曲线输入给PID控制器。通常的设定曲线如图1(a)所示,它可以通过设定不同的爬升速率构成控制程序曲线。如果采用此方式来进行如图1(b)所示正弦波那样的周期性被控对象,则需要设计很多个小折线才能准确代表波形曲线,而在实际应用中还需能不断调整被动对象的波幅和频率,由此可见采用这种折线方式来对正弦波类周期性变化被动对象进行设定值近似无可操作性。总之,这种问题最终可以归结到如何使得PID控制器的设定值变得符合周期性函数特征,并可以很方便的进行波形、波幅和频率的更改。[/size][size=16px] 为了可以很方便的将PID控制器设定值按照所需的函数波形进行设置,本文提出的解决方案具体内容如下:[/size][size=16px] (1)采用具有外部设定点功能的PID控制器,即PID控制器所接收到的外部任意波形信号都可以作为设定值。[/size][size=16px] (2)外置一个函数信号发生器,给PID控制器传输所需的波形信号。[/size][size=16px] 依据上述方案所确定的PID控制装置及其接线如图2所示。[/size][align=center][size=16px][color=#339999][b][img=正弦波等周期变量PID控制装置及接线图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/03/202303031146347077_9300_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 正弦波等周期变量PID控制装置及接线图[/b][/color][/size][/align][size=16px][color=#339999][b]2.1 具有远程设定点功能的PID控制器[/b][/color][/size][size=16px] 所用的具有远程设定值功能的PID控制器一般配置有两个输入通道,第一主输入通道作为测量被控对象的传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,在程序控制模式下无此功能。[/size][size=16px][color=#339999][b]2.2 函数信号发生器[/b][/color][/size][size=16px] 对于所有被控对象而言,相应的传感器测量输出无外乎就是电压和电阻这两类信号输出。因此,为了实现被控对象周期性变化的控制,可以采用各种相应的函数信号发生器输出周期性设定值,对于热电偶和热电阻的周期信号输出,可以采用专门的过程校验仪输出相应的温度设定值。[/size][size=16px][color=#339999][b]2.3 接线、参数设置和操作[/b][/color][/size][size=16px] 在如图2所示的周期性变量PID控制系统中,在主输入通道上连接过程传感器,在主控输出通道连接的是执行机构,由此传感器、执行机构和PID调节器组成标准的闭环控制回路,在一般情况下可以通过内部设定点进行PID自动控制。[/size][size=16px] 如果要对被控对象进行周期性变化的控制,则使用远程设定点功能,此时需要在辅助输入通道接入远程设定点源,即函数信号发生器或过程校验仪。[/size][size=16px] 完成外部接线后,在运行使用远程设定值功能之前,需要对PID控制器的辅助输入通道相关参数进行设置,需要满足以下几方面要求:[/size][size=16px] (1) 辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2) 辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3) 显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1) 内部参数激活方式:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)外部开关切换激活:如图2所示可连接一个外部开关进行切换来选择远程设定点功能。同时,还需在PID控制器中,设置辅助输入通道2的功能为 “禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图2中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合时为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=16px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决正弦波等周期性变量的PID控制问题,而且使用简便和门槛较低,无需再进行复杂的程序编写。[/size][size=16px] 另外,本解决方案还可以进行多种拓展,如可实现被控对象周期性调制波的加载,非常便于实现更复杂的第二类和第三类边界条件的精密PID控制。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~[/align][size=16px][/size]

  • 控制器作用

    液相控制器的作用是什么就是连接机器和显示器吗,如果关掉控制器的话机器还能进行检测吗?只看到岛津的机器有单独的控制器,那安捷伦和WATERS是安在内部了还是不是所有的机器都需要控制器啊

  • 【资料】控制阀性能差问题分析

    一、控制阀的选择问题: 更多阀门选型知识请点击进入:阀门选型专题。 目前,工程中普遍使用的控制阀主要是:电磁阀系列电磁阀 和电动阀。但在使用中它们均有缺陷,如电磁阀易被异物堵塞、水阻大,须长期专人维护等;而电动阀虽然无水阻,但由于需有必要的控制电路,所以,防水汽侵蚀影响使用寿命也是困扰推广的主要问题。    二、如何解决控制阀性能差的问题    无论是电磁阀还是电动阀,水垢不但会造成阀门泄漏,严重时甚至会影响阀门的正常工作,所以如何消除水垢的影响,已是业内人士普遍关注的问题。 控制阀的工艺要涉及的范围实在太广,不能在这里一一给你说清楚,有关这方面的内容还的自己亲自去查资料了。不过由于设计执行机构和使用填充材料不同造成控制阀性能差还是可以总结出其规律的: 1、工艺过程里死区的存在会使过程变量偏离原设定点。所以控制器凸轮控制器 的输出必须增大到足于克服死区,只有这一纠正性的动作才会发生。 2、 ①影响死区的主要因素。摩擦力、游移、阀轴扭转、放大器的死区。各种控制阀对摩擦里敏感是不一样的,比如旋转阀对于由高的阀座负载引起的摩擦力就非常敏感,故使用时注意到这一点。但是对于有些密封型式,高的阀座负载是为了获得关闭等级所必须的。哈哈,这样,这种阀设计出来就非常差,容易引起很大的死区,这对过程偏差度的影响是显而易见的,简直是决定性的。 ②磨损。阀门在正常使用时出现磨损是在所难免的,但是润滑层的磨损是最厉害的的,根据我们实验证实,润滑旋转阀只经过几百次循环动作,润滑层差不多可以刚刷子使用(夸张点,不然写文章很郁闷)。另外压力引起的负载也会导致密封层的磨损,这些都是导致摩擦力增加主要因素。结果呢?就是给控制阀的性能于毁灭性! ③、填料摩擦力是控制阀摩擦力的主要来源,使用的填料不同,造成的摩擦力有很大的差别。 ④,执行机构的类型不同也对摩擦力有根本性的影响,一般来说弹簧薄膜执行机构比活塞执行机构好。    3、定位器电气动定位器 的设计问题。 从设计的最初思维着想,执行机构与定位器设计必须一起考虑的。怎么来设计一个好的定位器呢?从他的重要特性就知道,必须是个高增益装置。其增益是由两部分组成的:静态增益和动态增益。提高静态增益的方法是设计一个前置放大器。例如喷嘴--挡板装置。那么有朋友要问动态增益怎么获得?是通过一个动力放大器获得的,这个动力放大器是滑阀(一般)。现在有人已经利用微处理器来设置定位器了。看样子阀门以后还会说话告诉咱们他哪里坏了。那时侯做维修的就简单了。言归正传。同时具有高静态和高动态增益的高性能定位器能为任何一个给定的阀门组件提供降低过程偏差度方面的最佳总体性能。

  • 【原创大赛】发酵控制器之后续报道【附 文章截图】

    【原创大赛】发酵控制器之后续报道【附 文章截图】

    发酵控制器之后续报道——————http://ng1.17img.cn/bbsfiles/images/2012/11/201211271552_407639_2019107_3.jpg欢迎大家来参加生命科学版的原创大赛!! 基于单片机的微生物发酵控制器的设计 研究背景1、微生物发酵是指利用微生物,在适宜的条件下,将原料经过特定的代谢途径转化为人类所需要的产物的过程。 2、生物发酵过程属于缓慢的不可逆的生化反应过程,一系列分解代谢和合成代谢引起了发酵罐中温度、PH、溶解氧浓度的变化。一般发酵微生物对环境条件很敏感,一旦超出了限制,不仅会影响菌种的生长繁殖,而且会影响菌种代谢产物的形成,严重时可能造成代谢产物改变、菌种死亡。 3、生物发酵具有非线性、时变性和大滞后等的特点,属于不确定过程的复杂系统,不能准确建立数学模型和传递函数,此前使用的采用PID工业控制算法的通用控制器已不能进行准确控制。 控制系统工作原理 1.研究思路及方法控制方式上选用基于反馈形式的在线控制 。事实和理论证明在线控制反应迅速,对发酵过程中被控系统动力学特性的变化和其它影响因子变化的适应性强。控制算法的核心选用基于人工神经网络的控制(ANN-Based Control)的“误差逆传播算法”BP算法。神经网络控制系统具有很强的自适应性和自学习能力、强大的非线性映射能力、鲁棒性和容错能力,控制精度高。单片机—— 单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。单片机成本低廉,体积小,功耗低,精简指令集,抗干扰性好,可靠性高,灵活性高等特点,非常适合用于设计专用控制器。2、设计方案——采用上、下位机的方式构建系统。上位机采用工控机,可以直接发出操控命令,显示和保存各种信号数值(温度、pH、溶氧),同时实现智能算法的运算。下位机是单片机平台。下位机主要获取发酵设备状况,实现数据采集并直接控制设备。上下位机通过RS-232C或者USB进行通讯下位机硬件设计系统核心MCU:Silicon Lab公司开发的C8051F340芯片,属于完全集成的混合信号片上系统(System on Chip,SoC)型芯片,其内部集成了多种功能模块,功能强大,工作稳定可靠。工作电压2.7 V-3.6V,40个I/O口线,所有口均耐5V电压,4个通用16位计数器/定时器,10位200 kbps的单端/差分ADC,带模拟多路器和USB通讯。http://ng1.17img.cn/bbsfiles/images/2012/11/201211271541_407626_2019107_3.gifD/A模块:选用由美国MAXIN公司推出的高性能D/A转换器Max536。片内集成了4路独立的,可同步控制的12位高精度双缓冲数模转换器。使用3线串行接口进行数据交换,节省了单片机I/O口使用。选用DIP16脚封装[fo

  • 微流控控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html]微流控控制器[/url][/b]是[b]控制微流体器件[/b]如微型泵,微型阀的功能强大的[b]流控控制器[/b],[b]微流控控制器[/b]简化了实验室科研的复杂设计。微流控控制器OEM版本操作简单,更加有效,更适合微流体和微流控产业化使用,可以广泛用于医疗设备,生物处理系统,实验室仪器,化学仪器和科学设备和许多其它使用流体控制装置(泵,阀等)的领域,方便用户集成和制造工具。[img=微流控控制器]http://www.f-lab.cn/Upload/flowtest_.jpg[/img][b][/b]微流控控制器:[url]http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html[/url][b]微流控控制器[/b]FlowTest™ OEM版本结合:[list][*]现代化和高品质的控制板,不仅是设计和流体控制子系统开发的关键工具,也是在工业化和制造阶段新直接整合成新的先进仪器的关键工具。[/list][list][*]开发和集成成套套件是一个灵活的,有效的和用户友好的软件套件,用于快速开发,高效编程和易于集成。这些软件大大简化了新先进仪器的流体功能。也降低了集成的成本和时间,同时在工业化工作期间促进在仪器内的操作控制器。[/list]

  • 【求购】Waters 510双泵控制器

    本人老师有Waters510双泵,现控制梯度的控制器损坏,想买个2手的控制器。不知哪位有相关信息。请与赵老师联系。电话13957149763(杭州)

  • 盐雾试验箱的温度控制器操作说明

    [url=http://www.dongguanruili.com/product/26.html][color=#000000]盐雾试验箱[/color][/url]可以进行中性、酸性、铜盐醋酸的盐雾腐蚀的环境模拟,主要是人工模拟了自然环境下的盐雾腐蚀场景和一些工业生产中产生的盐雾腐蚀场景。通过对自然场景的模拟,让盐雾腐蚀试验更加具备有效性。盐雾试验箱主要用于一些金属或表面电镀材料的耐腐蚀试验,根据试验结果来改善产品耐腐蚀的性能。[align=center][img=盐雾试验箱,500,342]http://www.dongguanruili.com/d/file/bb3c2f0825bdad95decb557f54fe93a0.jpg[/img][/align]  盐雾试验箱进行试验时,有时需要采用加热盐溶液的方式来对试验物品进行加速腐蚀,我们在进行设备操作时,就可以通过盐雾试验箱上的温度控制器来进行操作,分别对盐雾试验箱的箱内温度、压力桶温度进行调整,以保证能够达到加速腐蚀的效果。  温度控制器操作说明:  1. 点击△/▽键直接加减温度值到所需温度即可,控制器将自动确认设定值。  注:如做中性盐雾试验时,设置实验室温度为35℃,压力桶温度为47℃,如做酸性测试时,设置实验室温度为50℃,压力桶温度为63℃  2. 当显示温度上下波动不稳定时,点击O键,控制器显示AT OFF,此时只需点击△键,OFF变为ON 控制进入自动调整状态,此时不要关闭电源,机台运转十分钟左右温度就可以稳定。  3. 当计量温度与显示温度不符合时,点击O键,控制器显示AT OFF,此时只需点击C键切换,控制器显示CN5,此时点击△/▽键,调整与检测温度相偏差值即可。

  • 国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    国产化替代艾默生ER5000系列电子压力控制器及其功能扩展

    [color=#990000]摘要:本文主要介绍了国产化替代方面所做的工作,替代产品为艾默生TESCOM ER5000系列电子压力控制器及其背压阀。本文介绍了进口产品的性能特点和不足,提出了国产化替代技术路线,描述了国产化替代产品的性能指标,介绍了国产化替代产品的功能扩展和技术创新,使国产化替代产品具有了更高的性价比和使用灵活性。[/color][align=center][img=国产化替代,690,408]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182018432207_7188_3384_3.jpg!w690x408.jpg[/img][/align][size=18px][color=#990000]1. 艾默生ER5000系列压力控制器[/color][/size][size=16px][color=#990000]1.1. 压力控制器结构和原理[/color][/size]艾默生最新一代TESCOM ER5000系列电子压力控制器,是一种多功能集成式的压力控制器,集成了压力传感器、PID(比例-积分-微分)控制器和电动比例阀三个部件,集传感器、控制器和电子阀门于一体构成一个完整的控制机构。TESCOM ER5000电子压力控制器及其基本结构如图1-1所示。[align=center][color=#990000][img=国产化替代,690,249]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025069214_3530_3384_3.png!w690x249.jpg[/img][/color][/align][align=center][color=#990000]图1-1 TESCOM ER5000电子压力控制器结构示意图[/color][/align]从图1-1可以看出,ER5000电子压力控制器的功能就是控制底部出口处的压力,将进气压力降低并控制在设定压力上,使底部出口处的压力始终与设定压力一致。ER5000电子压力控制器实际上是一款电子式的减压阀,其工作原理如图1-2所示。外部气源向ER5000供给压力,供给压力通过打开的进气阀成为出口处的输出压力,同时此输出压力通过压力传感器反馈至PID控制器。如果反馈值低于压力设定值,控制器继续控制进气阀处于开启状态直到反馈值与设定值相等。等到上述两个值相等,进气阀将关闭,此时出口处持续输出恒定的设定值压力。如果反馈值高于设定值,则控制器将启动排气阀,从而排放过量的出口压力直到反馈信号等于设定值。等到上述两个值相等,排气阀将关闭,此时出口处同样持续输出恒定的设定值压力。[align=center][img=国产化替代,690,284]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025348584_2251_3384_3.png!w690x284.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图1-2 TESCOM ER5000电子压力控制器原理图[/color][/align][size=16px][color=#990000]1.2. 典型应用[/color][/size]ER5000压力控制器主要有两类应用方向,一是单机应用,二是与其他特殊阀门的配合应用,以达到不同范围内的压力调节和控制。(1)单机应用:从上述结构和原理可知,TESCOM ER5000电子压力控制器是一款非常典型的电子式减压阀,在单机使用情况下,控制器本身可对压力8.2bar以下的气源进行减压并准确控制,甚至可以实现对粗真空的控制。另外,在单机应用中,可分别采用内部和外部反馈两种控制模式,如图1-3和图1-4所示。[align=center][img=国产化替代,690,244]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025483237_8169_3384_3.png!w690x244.jpg[/img][/align][align=center][color=#990000]图1-3 艾默生ER5000电子压力控制器内部反馈控制模式单机应用[/color][/align][color=#990000][/color][align=center][img=国产化替代,690,266]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182025582943_2239_3384_3.png!w690x266.jpg[/img][/align][align=center][color=#990000]图1-4 艾默生ER5000电子压力控制器外部反馈控制模式单机应用[/color][/align](2)配合使用:ER5000电子压力控制器的一个重要应用是作为先导阀与其他调节阀配合使用,以调控更大的压力范围。更大压力减压应用如图1-5所示,与背压阀配合应用如图1-6所示[align=center][color=#990000][img=ER5000国产化替代,690,301]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026370215_476_3384_3.png!w690x301.jpg[/img][/color][/align][align=center][color=#990000]图1-5 艾默生ER5000电子压力控制器典型减压应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,450]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182026463023_179_3384_3.png!w690x450.jpg[/img][/align][align=center][color=#990000]图1-6 艾默生ER5000电子压力控制器典型背压应用[/color][/align][size=16px][color=#990000]1.3. 性能指标[/color][/size]由于TESCOM ER5000系列电子压力控制器是由压力传感器、PID控制器和双阀结构压力调节器三部分的集成,每部分的技术指标则代表了控制器的整体性能,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大8.2bar(820kPa)(4) 出气口压力(绝对压力):最小0.07bar(7kPa),最大8.2bar(820kPa)(5) 输入信号:USB、RS485、4~20mA、1~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、1~5V或0~10V。(7) 内部压力传感器测量精度:±0.10%(FSO),其中包括了±0.05%(FSO)线性度和±0.05%(FSO)迟滞。(8) 控制器A/D转换:16位。(9) 控制器重复性:±0.05%(FSO)。(10) 控制器分辨率灵敏度:±0.03%(FSO)。(11) 控制方式:PID(需结合专用软件ERTune进行PID参数调试和优化)。(12) 控制模式:内部反馈、外部反馈和双环三种模式。这里特别介绍ER5000压力控制器的三种控制模式,这是此控制器的一个技术亮点:(1)内部反馈模式:该模式仅使用内部传感器。内部反馈模式使用ER5000内部压力传感器以监控控制器内部1~100psig/0.07~6.9bar范围内的绝对压力。(2)外部反馈模式:该模式仅使用外部传感器。外部反馈模式利用用户提供的外部传感器以监控系统压力,该传感器安装于过程管线中并向ER5000提供直接反馈。(3)双环模式:该模式是在“循环内循环”配置中同时使用内部和外部传感器。双环模式在一个PID循环中执行另一个PID循环。内部回路使用控制器的内部传感器,外部回路使用外部传感器。[size=16px][color=#990000]1.4. 功能和特点[/color][/size]从上述介绍,可归纳出ER5000压力控制器的以下几方面功能和特点:(1) ER5000压力控制器最主要功能是可进行气体压力(不是流量)控制,即可实现密闭型容器和管道内压力的准确控制。(2) 整体集成式结构,集成了压力传感器、PID控制器和双阀调节器执行结构,使得整体结构小巧,并便于安装使用和多台并行使用。(3) 作为一种典型的压力控制器,即可直接对最大8.2bar的气源压力进行减压并准确恒压控制(进气口为正压),也可用来控制低压(粗真空,进气口为真空),最低压力可达0.07bar(7kPa)。(4) ER5000压力控制器可作为先导阀来驱动各种大量程的减压阀和背压阀,控制器的出口与其他背压阀的先导口连接,可实现更大量程范围内压力调节和控制。(5) 压力传感器±0.1%的测量精度和16位的A/D转换,属于中高端技术指标,可满足大多数应用场合。(6) 数字PID控制方式可实现压力的快速和准确控制。(7) 内部反馈、外部反馈和双环三种控制模式,使ER5000压力控制器具有较大的使用灵活性,可根据实际使用要求选择最佳控制模式。[size=16px][color=#990000]1.5. 压力控制器存在的不足[/color][/size]尽管ER5000压力控制器有上述诸多功能和特点,但在实际应用中还存在以下多方面的限制和不足。(1) ER5000压力控制器集成了真空压力控制领域中三种最常用部件,但由于是集成式结构而不是模块化积木式结构,这反而限制了ER5000压力控制器应用。如ER5000压力控制器中集成了两个电磁阀,但仅能进行气体压力控制,而无法进行只需单电磁阀的气体流量控制。(2) ER5000压力控制器更侧重于正压控制,也可进行部分的负压控制,这主要是由于所用阀门的漏率太高造成,从而并未发挥传感器(特别是外置传感器)和PID控制的强大功能。如果能降低控制器内部阀门的气体漏率,则控制器完全可覆盖整个真空度范围的控制,将目前的7kPa的真空度扩展到1Pa左右。(3) 在驱动各种大量程减压阀和背压阀应用方面,使用价格较高的ER5000压力控制器作为先导阀其性价比非常低,完全可以使用高性价比的国产替代产品。(4) ER5000压力控制器16位的A/D转换,属于中高端技术指标,如果采用外置高精度的压力传感器则需要24位的A/D转换器,这使得ER5000压力控制器无法满足一些测量控制精度要求较高的场合。(5) 尽管ER5000压力控制器采用了PID控制方式,但PID参数的调节都需要使用专用软件,控制器自身缺乏PID参数自整定功能,还需连接计算机,现场操作非常繁复。(6) ER5000压力控制器自身缺乏显示功能,还需连接计算机和使用配套软件才能进行调试和显示控制过程和结果。(7) ER5000压力控制器的整体价格偏高,而且操作复杂,对操作人员有较高的要求。再结合控制器上述不足,这使得ER5000压力控制器的性价比并不高,很多场合下使用显着非常的奢侈和浪费。[size=18px][color=#990000]2. 国产化替代技术路线[/color][/size]对艾默生公司最新一代TESCOM ER5000系列电子压力控制器的国产化替代,技术路线是首先实现ER5000压力控制器的测控功能,提供高性价比国产压力控制器。然后采用模块结构技术路线,将真空压力传感器、PID控制器和电子阀门分离为各自独立模块,每一类模块由一系列不同技术指标的部件组成,通过这些不同性能指标模块的组合来实现不同控制功能和精度要求,拓展控制器功能,满足不同需求,并具有高性价比。[size=16px][color=#990000]2.1. 实现ER5000压力控制器功能[/color][/size](1) 国产化替代产品要达到ER5000电子压力控制器绝大部分功能,即实现ER5000压力控制器自身的减压和控压功能。(2) 国产化替代产品同时与ER5000压力控制器一样,可作用先导阀来对大量程高压范围的气体进行减压和控压。(3) 国产化替代产品具有设定值输入和显示功能,无需软件和连接计算机进行操作。(4) 国产化替代产品价格低,具有高性价比。[size=16px][color=#990000]2.2. 模块化结构和功能拓展[/color][/size](1) 模块化结构分为传感器、PID控制器和电子阀门三个模块。(2) PID控制器模块是所有模块的核心器件,决定了测控精度,决定了可配合使用的传感器和电子阀门的种类,决定了控制方式和控制模式。PID控制器模块将采用24位A/D转换器提高测控精度,集成两个独立控制通道可同时控制2路真空压力或1路真空压力和1路温度,可连接多种真空压力和温度传感器,2通道结合可进行正反双向控制以满足真空压力的上下游控制模式,2通道结合可具备双传感器自动切换功能以覆盖宽泛测控量程,PID控制器带程序设定功能可输入多条控制工艺曲线,可输入和存储多组PID参数,PID参数调整带自整定功能,控制器带彩色液晶屏显示全过程参数和结果。(3) 电子阀门模块由多种规格型号的电子阀门构成,主要有流量调节阀和压力调节阀两大类。流量调节阀主要有小流量电动针阀和大流量大口径电动球阀蝶阀,这些流量调节阀都属于高速调节阀,开闭速度都在1s以内。压力调节阀主要有真空型背压阀和高压型背压阀,两种背压阀都可以在水气两相介质下工作。(4) 传感器模块主要是外协配套件,由多种规格型号的压力传感器和温度传感器构成,主要分为高压传感器、低压(真空)传感器、热电偶、铂电阻、热敏电阻、红外测温仪和直流电压信号,由此可覆盖几乎所有压力和温度范围内的测量。[size=18px][color=#990000]3. 国产化替代产品[/color][/size]根据上述的国产化替代技术路线,上海依阳实业有限公司研制了相应的产品,现分别介绍如下。[size=16px][color=#990000]3.1. 数显压力控制器[/color][/size]国产化的数显式压力控制器包括正压型和真空型两种规格,其压力控制原理和基本结构与艾默生TESCOM ER5000系列电子压力控制器一样,如图3-1所示。[align=center][color=#990000][img=ER5000国产化替代,690,390]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027032534_5519_3384_3.png!w690x390.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 国产化电子压力控制器及其结构原理[/color][/align]国产化的数显式压力控制器同样是压力传感器、控制器和双阀结构压力调节器三部分的集成结构,相关技术指标和功能分列如下:(1) 压力控制原理:双电磁阀三通控压。(2) 介质类型:清洁、干燥的惰性气体或仪表级空气。(3) 进气口压力(绝对压力):最小(真空泵压力),最大50bar(5MPa)(4) 出气口压力(绝对压力):最小0.21bar(21kPa),最大30bar(3M Pa)(5) 输入信号:4~20mA、0~5V或0~10V。(6) 外部传感器反馈信号:4~20mA、0~5V或0~10V。(7) 内部压力传感器测量精度:±1.0%(FSO),其中包括了±0.5%(FSO)线性度和±0.5%(FSO)迟滞。(8) 控制器A/D转换:12位。(9) 控制器重复性:±0.5%(FSO)。(10) 控制器分辨率灵敏度:±0.2%(FSO)。(11) 控制方式:内置PID自动控制,无需人工干预。(12) 控制模式:内部反馈和外部反馈。从上述技术指标可以看出,国产化压力控制器的有些技术指标进行了降低,如12位的A/D转换和±1.0%测量精度,但拓宽了使用压力范围,增加了显示和输入功能,压力控制器可独立使用无需外接计算机和软件调试,降低了操作难度,提高了性价比,基本上能满足绝大多数领域的应用。[size=16px][color=#990000]3.2. 背压阀(高压型和真空型)[/color][/size]国产化的新型背压阀模块单独分为高压型和真空型背压阀,两种背压阀都采用上述数显压力控制器做先导阀进行控制,但新型背压阀对艾默生TESCOM等传统背压阀做了重大改进。传统的背压阀,都具有一个固定在阀体上的阀座,此阀座与阀芯紧密贴合,来达到密封效果。它可以为大多数简单过程提供基本的压力控制,在这种设计中,通过弹簧或其他的方式提供一个预设加载力,这个加载力使得阀芯与阀座密封。当管路压力作用到阀芯上的力,与加载力相同时,则背压阀在预设的压力状态下正常工作;当阀门的入口端压力升高,使作用在阀芯上的力超过预设的加载力时,阀芯和阀座分离,释放入口端多余的压力,直至恢复预设的压力。传统背压阀结构,在瞬时流量变化较大、或入口压力波动频繁的情况下,控制压力的精度较低,原因如下:(1) 由于大多数控制压力超过20bar的传统背压阀,采用了活塞的方式作为阀芯的负载机构,活塞中的O形密封圈增加了动作摩擦,从而使阀芯动作卡滞;(2) 传统背压阀的进出口流道,多为单一且固定截面积的通路,当阀门入口的流量迅速增加或降低时,阀门的Cv值(流通能力)却没有变化,这样会使入口压力产生剧烈波动;(3) 传统背压阀阀芯和阀座,因密封需要,贴合时存在应力或摩擦,频繁的开合,会使其彼此互相磨损和消耗,破坏初始的形状,使Cv值发生不可预知的改变。新型背压阀是上向下相连接的阀盖和阀体结构,如图3-2所示。阀盖和阀体之间连接有膜片,阀盖顶部开设先导气孔,先导气孔通过阀盖内部开设的气源通道连通至阀盖底部开设的供膜片中部起伏运动的活动槽,形成上下贯通的通路,阀体侧壁上分别开设相对设置的介质入口和介质出口,介质入口与阀体上表面开设的多个入口小孔相连通,介质出口与阀体上表面开设的多个出口小孔相连通。新型背压阀的突出特点是整个动作无摩擦,不会产生压力滞后,入口压力稳定性高,具备更大的流通能力。[align=center][color=#990000][img=ER5000国产化替代,690,259]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027186867_2208_3384_3.png!w690x259.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-2多孔式结构新型背压阀[/color][/align][size=16px][color=#990000]3.3. 双通道高精度PID控制器[/color][/size]针对PID控制模块,为满足广泛的真空压力控制要求,上海依阳实业有限公司出品了VPC2021系列PID控制器,此系列控制器可进行真空、压力和温度的测量、显示和控制。采用了24位数据采集和人工智能PID控制技术,可接入各种型号的真空、压力和温度传感器,可控制多种型号的电动针阀、电动阀门和加热器等执行结构,可实现高精度真空、压力和温度等参量的定点和程序控制,是替代国外高端控制器产品的高性能和高性价比控制器。如图3-3所示,VPC2021系列PID控制器具有双通道独立测控功能,可对不同通道上的参数同时进行测量、显示和控制。如果两个通道接入相同类型但量程不同传感器,如图3-4所示,可以根据测试值实现两个传感器之间自动切换,由此可覆盖宽量程的测量和控制。[align=center][img=ER5000国产化替代,690,348]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027332455_2803_3384_3.png!w690x348.jpg[/img][/align][align=center][color=#990000]图3-3 VPC2021系列双通道高精度PID控制器及其应用[/color][/align][color=#990000][/color][align=center][img=ER5000国产化替代,690,369]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182027510730_967_3384_3.png!w690x369.jpg[/img][/align][align=center][color=#990000]图3-4 双通道高精度PID控制器的双传感器自动切换[/color][/align]VPC2021系列双通道高精度PID控制器主要技术指标如下:(1) 测量精度:±0.05%FS(24位A/D)。(2) 输入信号:可连接众多真空压力传感器,32种信号输入类型(电压、电流、热电偶、热电阻)。(3) 控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。(4) 控制算法:PID控制和自整定(可存储和调用20组PID参数)。(5) 控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。(6) 通道:双通道,双通道传感器自动切换。(7) 通讯方式:RS 485和以太网通讯。(8) 供电电源:交流(86-260V)或直流24V。(9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)[size=16px][color=#990000]3.4. 高速电动流量调节阀[/color][/size]针对电子阀门模块,为满足不同大小流量的高速调控,上海依阳实业有限公司推出了两个系列的电子阀门,一个系列是电动针阀用于小流量调控,另一个系列是电动球阀和蝶阀用于大流量调控。这两个系列电子阀门的最大特点是可电控,并具有1s以内的高速闭合时间,是国内非常罕见的快速电子阀门。如图3-5所示,电动针阀NCNV系列是将步进电机的精度和可重复性优势与针阀的线性和分辨率相结合,其结果是具有小于2%滞后、2%线性、1%重复性和0.2%分辨率的可调流量控制,是目前常用电磁比例阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,599,513]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182028158401_6212_3384_3.png!w599x513.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-5 NCNV系列电子针阀[/color][/align]NCNV系列电动针阀主要技术指标和特点如下:(1) 多规格节流面积:从低流量的直径0.9mm(0~50L/min气体)到高流量的直径4.10mm(0到660 L/min气体)的多种规格针阀节流面积,可满足不同的应用需要。(2) 高度线性:小于2%的线性度,简化了查表或外部控制硬件和软件的配套,简化了命令输入和流量输出之间的关系。(3) 高重复性:通过每次达到0.1%的相同流量,NCNV系列电动针阀可提供长期稳定的一致性。(4) 宽压力范围:通过5或7bar巴的真空,取决于孔的大小,入口环境可覆盖宽泛的压力范围。电机的刚度和功率确保阀门在相同的输入指令下打开,与压力无关。(5) 低迟滞:小于2%的迟滞使积分和编程变得简单,在增加和减少达到设定点时能提供一致的流量。(6) 高分辨率:0.2%的分辨率允许NCNV系列电动针阀根据调节指令的微小变化进行最小流量调整,提供了出色的可控性。(7) 快速响应:整个行程时间小于1秒,由此可提供及时快速的流量调节和控制。(8) 工作电压:VDC 24V。(9) 输入信号:4~20mA、0~5V和0~10V。如图3-6所示,电动球阀NCBV系列是将高速电动执行器及高品质V型球阀组成,是目前常用慢速电动球阀的升级产品。与依阳公司VPC2021系列真空压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][color=#990000][img=ER5000国产化替代,377,500]https://ng1.17img.cn/bbsfiles/images/2021/11/202111182029196473_3852_3384_3.png!w377x500.jpg[/img][/color][/align][align=center][color=#990000]图3-6 NCBV系列电动球阀[/color][/align]NCBV系列电动球阀主要技术指标和特点如下:(1) 最大扭力:2N.m。(2) 阀球转动角度:90°。(3) 开关阀时间:小于1秒。(4) 工作电压:VDC 24V(5) 输入信号:4~20mA、0~5V和0~10V(6) 防护等级:IP67。(7) 环境温度\湿度:-20℃至45℃;≤85%(不凝露)。(8) 介质温度和压力:0~100℃;≤1.0MPa [size=18px][color=#990000]4. 总结[/color][/size]综上所述,通过一系列国产化替代产品的开发,基本可以完全替代艾默生最新一代TESCOM ER5000系列电子压力控制器及其背压阀,且性价比大幅度提高。重要的是,在国产化替代基础上,设计了更灵活易用的模块化结构,对单项模块产品进行了功能扩展和技术创新,开发了新型背压阀和高速电动流量调节阀,新开发的PID控制器具有更强大的功能和测量精度,整个系列的国产化替代产品具有较高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】请教:气相 载气控制器没显示问题?

    刚买的杭州科晓GC1690,我现在想用TCD检测器,载气是氮气,里面有三根柱子,我开仪器升温不是所以的柱子都升温了啊,但是我只通氮气了啊,空气泵和氢气发生器都没开,这样会损坏柱子吗? 我开氮气后,载气控制器没显示,燃气控制器氢气2却有显示,感觉不对啊 有没有提点一下啊,今天刚开,不敢乱动

  • 冷凝水试验箱控制器功能介绍

    冷凝水试验箱控制器采用日本原装进口“优易控”品牌温湿度仪表,7英寸高清真彩液晶触摸显示屏,带给您触觉和视觉的尊贵与舒适; 冷凝水试验箱控制器功能介绍: 1、具有1000段程式、每段可循环999步骤的容量,每段设定最大值为99小时59分;10组程序链接功能; 2、控制器可存储600天内历史数据(24小时运行状态下,记录间隔1min以上,温湿度数据同时记录时),且可回放上传的控制内历史数据曲线; 3、可随时插入U盘导出或上传数据,并可通过随机赠送软件在电脑查看或转成EXCEL格式; 4、仪表配备USB端口,可直接通过端口驱动微型打印机预览及打印(选配); 5、控制器面板标配有10M/100M以太网络接口,自动获取IP地址远程控制。可支持实时监控、历史曲线回放、程序编辑、FTP上传下载、历史故障查看、远程定值/程序控制等功能;

  • 具有分程控制功能的超高精度PID控制器及其应用

    具有分程控制功能的超高精度PID控制器及其应用

    [size=16px][color=#339999]摘要:分程控制作为一种典型的复杂控制方法之一,常用于聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等领域。为快速和便捷的使用分程控制,避免采用PLC时存在的控制精度差和使用门槛高等问题,本文介绍了具有分程控制功能的超高精度VPC-2021系列PID控制器,以及使用分程控制时的参数设置、接线和具体应用。[/color][/size][align=center][size=16px][img=超高精度PID控制器的特殊功能(4)——分程控制功能及其应用,650,440]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191326452103_3866_3221506_3.jpg!w690x468.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 分程控制简介[/color][/size][/b][size=16px] 分程控制是采用一个输出变量来控制几个不同操作变量之间协调运行的一种复杂控制方式,如单个控制器用于控制两个执行机构(例如两个阀门、加热和制冷器等),控制这两个操作变量将一个受控变量保持在设定点上。分程控制主要包括以下三种不同方式:[/size][size=16px] (1)分程控制(Split Range Control)[/size][size=16px] (2)顺序控制(Sequence Control)[/size][size=16px] (3)正反向动作控制(Opposite Acting Control)[/size][size=16px] 一个典型的分程控制且应用广泛的是密闭容器的真空压力控制,控制回路上有两个控制阀,一个阀负责进气加压,另一个阀负责排气。图1(a)曲线图显示了阀门开度与真空压力的关系。[/size][align=center][size=16px][color=#339999][b][img=01.分程控制的三种形式,690,249]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329331841_5111_3221506_3.jpg!w690x249.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 分程控制三种形式的操作示意图[/b][/color][/size][/align][size=16px] 如果需要对阀门进行顺序控制,其工作方式如图1(b)所示。在这种顺序阀操作中,当PID控制器输出为0~50%时,阀门A将从0~100%打开。当PID控制器输出达到50%时,阀门A将100%打开,然后阀门B将在PID输出达到50%后开始打开。因此,对于PID控制器输出50%至100%,阀门B将从0%至100%打开。[/size][size=16px] 在正反向动作控制中,对于0~100%的PID控制器输出,阀A将从0~100%开始打开,同时对于相同的PID控制器输出,阀B将从100%到0%关闭。[/size][size=16px] 在上述分程控制的具体实施过程中,普遍需要采用具有PID控制功能的相应装置。目前这种控制装置大多采用PLC形式才能实现,存在使用门槛高和控制精度差等问题。为此本文将介绍一种具有分程控制功能的超高精度PID控制器,以及分程控制时的参数设置、接线和具体应用。[/size][size=18px][color=#339999][b]2. 具有分程控制功能的超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列超高精度PID控制器的内核是一款双通道控制器,其中VPC2021-1系列是具有分程控制功能的PID控制器,而VPC2021-2系列则是独立双通道PID控制器。本文将重点介绍具有分程控制功能的VPC2021-1系列PID控制器,此控制器如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.VPC2021-1控制器及其电气接线图,690,199]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191329550947_4629_3221506_3.jpg!w690x199.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 VPC2021-1控制器及其电气接线图[/b][/color][/size][/align][size=16px] VPC-2021系列PID控制器的主要技术特征如下:[/size][size=16px] (1)尽管VPC-2021系列PID控制器的内核是双通道控制器,具有两路传感器输入和两路控制信号输出,但为了实现分程控制功能,控制器仅配置了一套PID控制模块,所以在实际应用中还是一款单通道PID控制器。[/size][size=16px] (2)具有两路控制信号输出(主控输出1和主控输出2),两路输出可以分别控制相应的阀门、加热和制冷器,适合真空压力和温度的分程控制功能实现。[/size][size=16px] (3)具有一路变送输出通道,可变送输出测量值PV、设定值SV、输出值OP和偏差值DV四个控制参数中的任选一种,这也有助于分程控制功能的实现和拓展。[/size][size=16px] (4)具有两路传感器信号输入通道,可连接相同测量参数(如真空压力或温度)但量程不同的传感器,可实现两个传感器之间的自动切换,由此可进行宽量程范围内的PID控制。[/size][size=16px] (5)所具有的两路输入通道,还可实现本地设定和远程设定功能之间的切换,通过远程设定功能,可任意改变设定值(如周期性波形形式的设定曲线),实现周期性复杂波形的控制。[/size][size=16px] (6)具有程序控制功能,支持20条编程曲线,每条50段,支持段内循环和曲线循环。[/size][size=16px] (7)具有超高的测量和控制精度,24位AD、16位DA、双精度浮点运行和0.01%最小输出百分比。控制器是面板安装式的标准工业调节器,最大开孔尺寸为92mm×92mm。[/size][size=18px][color=#339999][b]3. 分程控制功能的具体应用[/b][/color][/size][size=16px] 针对图1所示的三种分程控制形式,采用VPC2021-1控制器的具体实施方法如下。[/size][size=16px][color=#339999][b] (1)分程控制应用[/b][/color][/size][size=16px] 对于典型的分程控制,PID控制器的具体接线如图3(a)所示,将两个被控对象,如常闭型阀门或加热制冷器,直接连接到主控输出1和主控输出2接线端。测量传感器连接到主输入1接线端。[/size][align=center][size=16px][color=#339999][b][img=03.分程控制接线示意图,690,222]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191330182623_478_3221506_3.jpg!w690x222.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 两种分程控制形式的PID控制器接线示意图[/b][/color][/size][/align][size=16px][color=#339999][b] (2)顺序控制应用[/b][/color][/size][size=16px] 对于顺序控制,PID控制器的具体接线如图3(b)所示,将一个被控对象,如常闭型阀门,直接连接到主控输出1接线端,将第二个被动对象,如常闭型阀门,连接到变送输出接线端。测量传感器连接到主输入1接线端。[/size][size=16px][color=#339999][b] (3)正反向控制应用[/b][/color][/size][size=16px] 对于正反向控制,PID控制器的具体接线与图3(a)所示相同,区别只是所连接阀门一个是常闭型,另一个是常开型。[/size][size=16px] 在使用PID控制器进行分程控制之前,还需进行以下几项控制器参数的设置:[/size][size=16px] (1)设置仪表功能的控制方式为“双输出”。[/size][size=16px] (2)在分程控制中,根据实际被控对象设置“死区”范围。[/size][size=16px] (3)如需采用变送功能,还需进行相应的变送参数设置。[/size][size=16px] (4)如需采用双传感器切换功能,还需进行相应的切换参数设置。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文详细介绍了具有分程控制功能的VPC2021-1系列超高精度PID控制器,采用此控制器可直接用于相应分程控制的实施,且具有很高的控制精度。[/size][size=16px] 分程控制在实践中应用广泛,然而,由于忽视了与之相关的独特挑战,分程控制经常会被误用或滥用。在许多应用中,如上述的顺序控制和正反向动作控制中,采用如VPC2021-2这种独立双通道PID控制器,无论在配置、调试和故障排除上都要简单得多。[/size][align=center][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align][align=center][color=#339999][/color][/align]

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 自动水位控制器开关

    自动水位控制器开关

    [font=&][color=#333333]自动水位控制器开关,也称为鱼缸自动补水器,是一种用于鱼缸或水族箱的设备,可以自动监测和控制水位,确保鱼缸中的水位始终保持在适当的范围内。它通常包括一个水位传感器和一个控制开关。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]水位传感器是自动水位控制器的核心部件,它可以通过不同的原理来检测水位。其中,光电液位传感器是一种常用的水位传感器。它利用发射器和接收器之间的光束来检测水位。当水位低于设定值时,光束被阻挡,接收器接收到的光信号减弱,从而触发控制开关,启动补水装置。当水位达到设定值时,光束不再被阻挡,控制开关停止补水。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]鱼缸自动补水器的工作原理如下:首先,将水位传感器安装在鱼缸中,确保传感器的位置能够准确地检测到水位。然后,将补水装置连接到自动水位控制器,并将补水管放入鱼缸中。当水位低于设定值时,光电液位传感器会触发控制开关,启动补水装置,补充鱼缸中的水。当水位达到设定值时,光电液位传感器会停止触发控制开关,补水装置停止工作。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]选择合适的自动水位控制器开关时,需要考虑以下几个因素:首先,根据鱼缸的大小和水位需求,选择适当的控制开关和水位传感器。其次,考虑自动水位控制器的稳定性和可靠性,选择具有高品质和可靠性的产品。此外,还需要考虑自动水位控制器的安装和操作便捷性,以及价格和性价比。[/color][/font][font=&][color=#333333][/color][/font][align=center][img=鱼缸补水器,673,582]https://ng1.17img.cn/bbsfiles/images/2023/07/202307071357083064_4373_4008598_3.jpg!w673x582.jpg[/img][/align][font=&][color=#333333] [/color][/font][font=&][color=#333333]总之,自动水位控制器开关是一种方便实用的设备,可以帮助鱼缸或水族箱保持适当的水位。通过光电液位传感器的检测和控制,自动水位控制器可以自动补充鱼缸中的水,确保鱼类的生活环境稳定和舒适。选择合适的自动水位控制器开关时,需要考虑水位需求、稳定性、可靠性、安装便捷性和价格等因素,以确保其能够满足鱼缸的需求。[/color][/font][font=&][color=#333333][/color][/font]

  • 温度控制器

    您好!我一朋友现在用的岛津的液相,想外配一个温度控制器,将其温度控制在10°左右,想请教一下您,一般有哪些型号,这个通用吗?

  • 控制器数据存储

    水质监测用那种在线的[url=https://www.hach.com.cn/product/orbisphere410]智能数字控制器[/url]连接电极,监测数据是能存储到控制器然后通过u盘给导出来吧?这种控制器,可以操作存储数据的存储次数和间隔嘛?比如我想一个小时存储几次之类的。

  • 防水型压力控制器

    防水型压力控制器:怎么防水呢?采用什么材质?(YWK-50/C)型防水型压力控制器是怎么输出的。具体资料有没有啊

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制