当前位置: 仪器信息网 > 行业主题 > >

测试仪离子交换树脂

仪器信息网测试仪离子交换树脂专题为您提供2024年最新测试仪离子交换树脂价格报价、厂家品牌的相关信息, 包括测试仪离子交换树脂参数、型号等,不管是国产,还是进口品牌的测试仪离子交换树脂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测试仪离子交换树脂相关的耗材配件、试剂标物,还有测试仪离子交换树脂相关的最新资讯、资料,以及测试仪离子交换树脂相关的解决方案。

测试仪离子交换树脂相关的论坛

  • 【转帖】离子交换树脂的性能评价!

    离子交换树脂的性能评价离子交换树脂一般不溶于水、一般的酸碱溶液和有机溶剂,是一种具有良好化学稳定性的高分子聚合物。同时,离子交换树脂必须具备一定的理化性能。1.外观)大多数商品树脂多制成球形,其直径为0.2~1.2mm。球形的优点是增大比表面积、提高机械强度和减少流体阻力。普通凝胶型树脂是透明的球珠,大孔树脂呈不透明的雾状球珠。随合成原料、工艺条件不同,树脂的颜色也有所不同,一般有黄、白、黄褐、红棕等几种颜色。2.膨胀度" 各种离子的交换树脂,都含有极性很强的交换基团,因此亲水性极强,但由于交联后具有立体型的网状结构,因而不溶于水,具有亲水凝胶的性质,吸水就膨胀,脱水就收缩。膨胀是可逆地进行的,其程度随树脂的交联度、相反离子的种类和浓度、外部溶液的浓度而变化,一般的商品树脂,每克干树脂可吸附0.5~1.0克水分,交联度较低的树脂,每克吸附1.0~3.0克水分。交联度大的树脂,膨胀度小,因而由于实验条件的变化而引起的膨胀度的差异就小。但交联度小的树脂,会显著膨胀或收缩,往往造成操作上的种种困难。3.交联度树脂的性质随着作为交联剂的DVB的含量不同而有所差异。合成树脂时,单体中DVB 的含量百分数称为交联度,在商品树脂中,通常是8%~12%。但合成时,通过改变它和苯乙烯的混合比,可制出不同含量的产品。一般说来,交联度越大,树脂越坚固,在水中不易溶胀。而交联度减少,树脂变得柔软,容易溶胀。4.交换容量交换容量是单位质量的干燥离子交换剂或单位体积的湿离子交换剂所能吸附的一价离子的毫摩尔数,是表征树脂交换能力的主要参数。其表示方法有重量交换容量和体积交换容量两种,后一种较直观的反映生产设备的能力。交换容量的测定方法如下,对于阳离子交换剂,先用盐酸将其处理成氢型后,称重并测其含水量,同时称数克离子交换剂,加入过量已知浓度的NaOH溶液,待反应达到平衡后,测定剩余的NaOH摩尔数,就可求得该阳离子交换剂的交换容量。对于阴离子交换剂,不能利用与上述相对应的方法,即不能用碱将其处理成羟型后测定交换容量。这是因为,羟型离子交换剂在高温下容易分解,含水量不易准确测定,并且用水清洗时,羟型离子交换剂易吸附水中的CO2而使部分成为碳酸型。所以,一般将阴离子交换剂转换成氯型后测定其交换容量。取一定量的氯型阴离子交换剂装入柱中,通入硫酸钠溶液,用铬酸钾为指示剂,用硝酸银溶液滴定流出液中的氯离子,从而可根据洗脱交换下来的氯离子量,计算交换容量。蛋白质等生物大分子与小分子化合物的离子交换特性有很大差别:蛋白质的分子量大,树脂孔道对其空间排阻作用大,不能与所有的离子交换活性中心接触;离子交换吸附的蛋白质分子会妨碍其他蛋白质与未吸附蛋白质的离子交换基团发生作用,并阻碍蛋白质扩散进入到其他交换区域;蛋白质带多价电荷,在离子交换中一般可与多个离子交换基发生作用。因此,蛋白质的交换容量远低于小分子化合物的交换容量。5.滴定曲线滴定曲线是检验和测定离子交换剂性能的重要数据,可参考如下方法测定。分别向几个大试管中加入1g氢型(或羟型)离子交换剂,其中一个试管加入50ml 0.1mol/L的NaCl溶液,其他试管亦加入相同体积的溶液,但含有不同量的0.1mol/L的NaOH(或HCl),使其发生离子交换反应。强酸(碱)性离子交换剂放置24h,弱酸(碱)性离子交换剂放置7日。达到平衡后,测定各试管中溶液的pH值。以每克干离子交换剂加入的NaOH(或HCl)为横坐标,以平衡pH值为纵坐标作图,就可得到滴定曲线。强酸(或强碱)性离子交换剂的滴定曲线开始是水平的,到某一点突然升高(或降低),表明在该点交换剂上的离子交换基团已被碱(或酸)完全饱和;弱酸(或弱碱)性离子交换剂的滴定曲线逐渐上升(或下降),无水平部分。利用滴定曲线的转折点,可估算离子交换剂的交换容量,而由转折点的数目,可推算不同离子交换基团的数目。同时,滴定曲线还表示交换容量随pH的变化。因此,滴定曲线比较全面地表征了离子交换剂的性质。

  • 离子交换树脂可否再生?

    现在进口的XRF仪器采用的离子交换树脂如果失效了就必然要换新的离子交换树脂,仪器供应商一般会推荐原装进口的离子交换树脂。都是使用者考虑到成本问题就会想到离子交换树脂再生的问题。离子交换树脂再生是否可行?又有什么再生方法?

  • 【资料】离子交换树脂知识

    1、离子交换树脂的基本类型(1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。(3) 强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。 这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。 (4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。2、离子交换树脂基体的组成离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。苯乙烯系树脂是先使用的,丙烯酸系树脂则用得较后。这两类树脂的吸附性能都很好,但有不同特点。丙烯酸系树脂能交换吸附大多数离子型色素,脱色容量大,而且吸附物较易洗脱,便于再生,在糖厂中可用作主要的脱色树脂。苯乙烯系树脂擅长吸附芳香族物质,善于吸附糖汁中的多酚类色素(包括带负电的或不带电的);但在再生时较难洗脱。因此,糖液先用丙烯酸树脂进行粗脱色,再用苯乙烯树脂进行精脱色,可充分发挥两者的长处。 树脂的交联度,即树脂基体聚合时所用二乙烯苯的百分数,对树脂的性质有很大影响。通常,交联度高的树脂聚合得比较紧密,坚牢而耐用,密度较高,内部空隙较少,对离子的选择性较强;而交联度低的树脂孔隙较大,脱色能力较强,反应速度较快,但在工作时的膨胀性较大,机械强度稍低,比较脆而易碎。工业应用的离子树脂的交联度一般不低于4%;用于脱色的树脂的交联度一般不高于8%;单纯用于吸附无机离子的树脂,其交联度可较高。除上述苯乙烯系和丙烯酸系这两大系列以外,离子交换树脂还可由其他有机单体聚合制成。如酚醛系(FP)、环氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。3、离子交换树脂的物理结构离子树脂常分为凝胶型和大孔型两类。 凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。湿润树脂的平均孔径为2~4nm(2×10-6 ~4×10-6mm)。这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3~0.6nm。这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5~20nm,不能进入这类树脂的显微孔隙中。 大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量永久性的微孔,再导入交换基团制成。它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100~500nm,其大小和数量都可以在制造时控制。孔道的表面积可以增大到超过1000m2/g。这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力(van de Waal's force)产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。 大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。使用时的作用快、效率高,所需处理时间缩短。大孔树脂还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。4、离子交换树脂的离子交换容量离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或 meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。 1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。 2、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。 3、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。 通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。 在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。 离子树脂交换容量的测定一般以无机离子进行。这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。

  • 离子交换树脂

    有谁用过法玛西亚的离子交换树脂,阴阳离子的都要。在网上就没找到法玛西亚树脂的资料。不知谁能提供下法玛西亚离子交换树脂的详细资料。

  • 【转帖】离子交换树脂的性质

    离子交换树脂的性质1)多孔性 树脂为疏松的,多孔的网络物质,而活性基团一般都处以树脂网孔内,外来离子必须进入网孔内才能进行离子交换。  2)不溶性 树脂在水中及稀酸、稀碱和一般有机溶剂中都不溶解,以维持其立体网状结构。  3)稳定性 离子交换树脂具有强稳定的化学性质,母体本身不与酸、碱起作用。例如强酸型阳离子交换树脂(国产732树脂)很稳定,可使用几百次,其交换能量改变不大,又可长时间浸泡于5%氢氧化钠中,1%高锰酸钾中,双氧水,0.1N硝酸,耐热性较好,可在100℃左右处理。  4)离子交换性 离子交换树脂必须具备相当数量的可交换离子或带电基团,这些离子和基团的类型决定了离子交换剂的类型,而基团的总数和他们的亲和性决定树脂的交换总量。

  • 【求助】离子交换树脂

    请教各位老师,钠盐状态的磺酸型离子交换树脂(10--15g)怎么制备?我只知道是732型的离子交换树脂,用NAOH制备,但具体的标准操作不知道。请大家帮忙指教,谢谢!

  • 【求助】离子交换树脂使用

    没做过离子交换,想了解一下,复方氨基酸注射液木糖醇的测定有一句:加至离子交换柱内(交换柱内径为10mm,高度为25cm,内填经转型并处理至中性的钠型磺酸盐阳离子交换树脂约10g),以每分钟1.5~2.0ml的流速通过柱。收集流出液于250ml量瓶中,再用水洗柱三次,每次10ml,最后用水60ml快洗,合并洗液与流出液,用水稀释至刻度,摇匀,备用。问题如下: 1:离子交换柱像滴定管一样的柱是吗? 2::转型什么意思,怎么转?处理至中性怎么处理? 3:流速怎么定,是不是需要用专用的设备实现离子交换。 4:进行上述交换操作需要什么仪器设备,及材料? 5:是不是买的离子交换树脂只分阴阳,钠型、氢型什么的需要使用是处理?磺酸盐又是怎么来的?不好意思,可能是很基础的东西,希望知道的不吝赐教。

  • 离子交换树脂的处理

    请问下氯型的201*7的离子交换树脂经硫酸处理后是变成氢型的还是硫酸根型的?哪种离子优先交换?

  • 离子交换树脂问题

    用732阳离子交换树脂制银柱除氯,最新处理的一批树脂不如之前做的,剩余氯量比之前多了三四倍,是什么原因?我的树脂预处理是先用1MNaCl浸泡24h洗净,用1:1硝酸浸泡冲洗至中性备用最新处理的这批树脂还能再生吗?怎么再生?谢谢

  • 【求助】离子交换树脂性质

    [size=4]Amberlite IR-120(H-型,16-45目)型阳离子交换树脂和AG 1-X8(甲酸型,100-200)型阴离子交换树脂的性质是怎样的?AG 1-X8能不能吸附糖类,氨基酸和蛋白质?请了解的专家指导下,谢谢![/size]

  • 【分享】树脂进行离子交换反应的性能和再生问题

    【树脂进行离子交换反应的性能和再生问题】 一、交换能力氢型阳离子交换树脂在水中可解离出氢离子(H+),当遇到金属离子或其它阳离子,就发生互相交换作用,但交换后的树脂,就不再是氢型树脂了。例如,当水中的阳离子如钙离子、镁离子的浓度相当大时,磺酸型的阳离子交换树脂中的氢离子,可和钙、镁离子进行交换,而形成「钙型」或「镁型」的阳离子交换树脂,如下式: 2R-SO3H + Ca2+ → (R-SO3)2Ca + 2H+ (钙型强酸性阳离子交换树脂) 2R-SO3H + Mg2+ → (R-SO3)2Mg + 2H+(镁型强酸性阳离子交换树脂) 氢型阳离子交换树脂的交换能力与被交换的阳离子的价数有密切关系。在常温下,低浓度水溶液中,交换能力随离子价数增加而增加,即价数越高的阳离子被交换的倾向越大。此外,若价数相同,离子半径越大的阳离子被交换的倾向也越大。如果以自来水中经常出现阳离子列为参考对象,则氢型阳离子交换树脂的交换能力顺序可表示如下: 强酸性:Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+>H+ 弱酸性:H+>Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+ 由上述交换能力顺序可知:强酸性与弱酸性阳离子交换树脂的母体,对阳离子交换能力顺序完全相同,唯一的差异是:两者对H+的交换能力不同,强酸性对氢离子的亲和力最弱,弱酸性对氢离子的亲和力最强,这个特性可能会深深影响它们在水草缸的作用与功能。 虽然氢型弱酸性阳离子交换树脂对氢离子的亲合力最强,但氢离子(H+)与氢氧离子(OH-)结合成水(H2O)的亲合力更强,所以在碱性水质中,弱酸性阳离子交换树脂中的H+会快速被OH-所消耗,OH-主要来自KH硬度(HCO3-)的水解反应: HCO3- + H2O ←→ H2CO3 + OH- H+所遗留之「活性位置」再改由其它阳离子如Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+……等依序取代,一直持续到HCO3-完全被消除为止(KH=0)。因此弱酸性阳离子交换树脂的主要作用区间是在于pH=5 ~ 14的水质。由于HCO3-为暂时硬度的阴离子,因此当HCO3-完全被消除后,它的「当量阳离子」,如如钙、镁等离子也同时完全被取代,故能消除所有暂时硬度的「当量阳离子」。 氢型强酸性阳离子交换树脂对氢离子(H+)的亲合力最弱,使它在任何pH之下,它都具有交换能力,因此可以完全除去GH硬度(暂时硬度及永久硬度)。  二、交换容量离子交换树脂进行离子的交换反应的性能,主要由「交换容量」表现出来。所谓交换容量是指每克干树脂所能交换离子的毫克当量数,以m mol/g为单位。当离子为一价时(如K+),其毫克当量数即为其毫克分子数,对于二价(如Ca2+)或更多价离子(如Fe3+),其毫克当量数即为其毫克分子数乘以其离子价数。交换容量又分为「总交换容量」、「操作交换容量」和「再生容量」等三种表示方法。「总交换容量」表示每克干树脂所能进行离子交换反应的化学基总量,属于理论性计量。「操作交换容量」表示每克干树脂在某一定条件下的离子交换能力,属于操作性计量,它与树脂种类、总交换容量,以及具体操作条件(如接触时间、温度)等因素有关,可用于显示操作效率。「再生容量」表示每克干树脂在一定的再生剂量条件下,所取得的再生树脂之交换容量,可用于显示树脂再生效率。由于树脂的结构不同(主要是活性基数目不同),强酸性与弱酸性阳离子交换树脂的交换容量也不相同。一般而言,弱酸性的活性基数目通常多于于强酸性,故总交换容量较高约7.0 ~ 10.5 m mol/g,相形之下,强酸性仅约3.2 ~ 4.5m mol/g而已,但在实际应用中,弱酸性的操作交换容量却不一定高于强酸性,例如,pH值低于5时,弱酸性的操作交换容量为零,根本无交换作用。在pH值为6.5时,两者的操作交换容量相似;但在碱性溶液中,弱酸性远高于强酸性。在再生容量方面,弱酸性则通常高于强酸性,故弱酸性的使用寿命会更长一些。  三、再生离子相对浓度高低对树脂的交换性质会产生很大的影响。当水溶液中氢离子的浓度相当大时,钙型或镁型的阳离子交换树脂中的钙离子或镁离子,可与氢离子进行交换,重新成为氢型阳离子交换树脂。换言之,交换反应也可以反方向进行。由于离子交换过程是可逆的,因此当交换树脂交换了一定量的离子后,可用相对浓度较高的氢离子再取代下来,使之一再重复被循环使用,这种作用称为再生(regeneration)。其反应式如下: (R-SO3)2Ca + 2H+ → 2R-SO3H + Ca2+ (R-COO)2Ca + 2H+ → 2R-COOH + Ca2+ 当氢型树脂中的氢离子,都被其它硬度离子交换后,这些树脂就没有软化水质作用,此时之状态称为「饱和」状态。再生操作主要目的就是将已经达到「饱和」状态的树脂,利用「再生剂」洗出所交换来的阳离子,让树脂重新再回复到原有的交换容量,或所期望的容量程度,或原有的树脂型态等。无论是强酸性或弱酸性阳离子交换树脂,都可以使用稀硫酸或稀盐酸作为再生剂,但一般认为以稀硫酸作为再生剂,效果可能会好一些。因为树脂若吸附有机物的话,稀硫酸较稀盐酸更能解析出有机物,所以一般工艺多采用稀硫酸为再生剂。不过实际应用时,可能因为硫酸的取得较为困难,所以多使用盐酸作为再生剂居多。  四、影响再生特性的主要因素氢型树脂的再生特性与它的类型和结构有密切关系,强酸性氢型树脂的再生比较困难,需要的再生酸液的剂量比理论值高许多,而且必须较长的接触时间。相形之下,弱酸性氢型树脂的再生则比较容易,需要的再生酸液的剂量仅比理论值高一些,也不需要长的接触时间。一般认为,在硫酸或盐酸的用量为其总交换容量的二倍时,每次再生树脂与再生酸液浸泡接触时间是:强酸性约30 ~ 60分;弱酸性约30 ~ 45分。此外,氢型树脂的再生特性也与它们的「交联度」有关。所谓交联度乃是定量树脂中所含的交联剂(如苯乙烯)的质量百分率。通常交联度低的树脂,其特征是聚合密度较低,内部空隙较多,网孔大,对水的溶胀性好,但对离子选择较弱,交换反应速度快,较易再生,因此每次再生树脂与再生酸液浸泡接触时间较短。反之,交联度高的树脂,则需要较长再生酸液与树脂接触的时间。无论强酸性或弱酸性氢型树脂的「交联度」均可以在制造时控制。由于氢型树脂的网孔不仅提供了良好的离子交换条件,而且也像活性碳一般,能产生分子吸附作用,也可能吸附各种有机物,因此容易受到有机物污染,而影响其操作效率,也使得其再生操作发生困难。如果树脂在使用过程中,吸附了有机物,特别是大分子有机物,再生接触时间必须更久,而且通常要提高温度(70 ~ 80℃)才能除去大部分有机物,以免其效能降低太快,同时在高温下操作,也可以加速再生反应时间,使浸泡接触时间得以因而缩短。在这方面应用的再生剂,以硫酸较佳,理由是硫酸在加热时相当安定,盐酸则可能会产生有毒的氯化氢气体。  五、再生液浓度与再生效率的关系树脂再生的化学反应是它原先交换的逆反应,按化学反应的平衡原理,提高反应物浓度,可促进反应向另一边进行,故提高酸液浓度可加速再生反应速率,进而提高再生效率。但是,这并不表示酸液浓度越高越好,假如没有经过实验去评估交换树脂所需要的酸量,就会发生「过犹不及」的问题。虽然再生酸液浓度不足时,使树脂的再生率降低,将多少会影响后续的硬水软化功能。相反地,若所用酸液过多,平日浪费了酸液,增加了再生的成本,也是不划算的。为了让消费者了解再生酸液的剂量问题,有些服务较好的厂商,都会主动提供最适合的浓度供人参考。有,如果水还中酸液氢离子浓度超过1mol/l以上时,再生反应速率可能会受到网孔扩散作用的限制,因此网孔较小的树脂,不宜使用高浓度酸液再生,否则可能也会造成浪费酸液的现象。此外,尽管硫酸是很好的再生剂,但仍要防止被树脂吸收的钙离子与硫酸反应,而在树脂中生成硫酸钙沉淀物,若要避免此问题发生,可在第一次操作时,先倒入1 ~ 2﹪硫酸浸泡洗脱一次,在第二次操作时,再使用较高浓度硫酸处理。最后,如果打算仅使用「一次操作再生」即要完成再生作业,无妨斟酌提高酸液的操作浓度,以增加其再生效率。虽然这种操作方式最方便,但再生效率将不如将该相同剂量酸液稀释,分两二次或多次浸泡处理来得好。不过,要进行多次操作,还得考虑为了多增加一点再生效率,值不值得发花力气去处理。  两种氢型阳离子交换树脂重要性质作一归纳:一般强酸性树脂可在所有pH值范围内操作,但其交换容量较小,而必须经常再生,此外又因再生效率较差,所需再生剂费较高,但可以除去所有硬度离子,或调节pH。弱酸性树脂具有较高的交换容量,再生效率较高,所需再生剂较少,但仅能在有限的pH值范围内操作,以及仅能除去暂时硬度离子。

  • 【资料】离子交换树脂的基础知识

    离子交换树脂的基础知识1、离子交换树脂的基本类型(1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 (2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。(3) 强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。 这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。 (4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。2、离子交换树脂基体的组成离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。苯乙烯系树脂是先使用的,丙烯酸系树脂则用得较后。这两类树脂的吸附性能都很好,但有不同特点。丙烯酸系树脂能交换吸附大多数离子型色素,脱色容量大,而且吸附物较易洗脱,便于再生,在糖厂中可用作主要的脱色树脂。苯乙烯系树脂擅长吸附芳香族物质,善于吸附糖汁中的多酚类色素(包括带负电的或不带电的);但在再生时较难洗脱。因此,糖液先用丙烯酸树脂进行粗脱色,再用苯乙烯树脂进行精脱色,可充分发挥两者的长处。 树脂的交联度,即树脂基体聚合时所用二乙烯苯的百分数,对树脂的性质有很大影响。通常,交联度高的树脂聚合得比较紧密,坚牢而耐用,密度较高,内部空隙较少,对离子的选择性较强;而交联度低的树脂孔隙较大,脱色能力较强,反应速度较快,但在工作时的膨胀性较大,机械强度稍低,比较脆而易碎。工业应用的离子树脂的交联度一般不低于4%;用于脱色的树脂的交联度一般不高于8%;单纯用于吸附无机离子的树脂,其交联度可较高。 除上述苯乙烯系和丙烯酸系这两大系列以外,离子交换树脂还可由其他有机单体聚合制成。如酚醛系(FP)、环氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。3、离子交换树脂的物理结构离子树脂常分为凝胶型和大孔型两类。 凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。湿润树脂的平均孔径为2~4nm(2×10-6 ~4×10-6mm)。这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3~0.6nm。这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5~20nm,不能进入这类树脂的显微孔隙中。 大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量永久性的微孔,再导入交换基团制成。它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100~500nm,其大小和数量都可以在制造时控制。孔道的表面积可以增大到超过1000m2/g。这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力(van de Waal's force)产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。 大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。使用时的作用快、效率高,所需处理时间缩短。大孔树脂还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。 4、离子交换树脂的离子交换容量离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或 meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。 1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。 2、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。 3、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。 通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。 在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。 离子树脂交换容量的测定一般以无机离子进行。这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。

  • 离子交换树脂

    谁能说一下用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]测定硫酸雾时需要的离子交换树脂是怎样的?是买一套装置设备吗?

  • 【求助】离子交换树脂测定纯度-失败的原因?

    硝酸钾纯度的测试,按照下列方法进行,但出现问题,希望各位大虾能指导一下:准确称取400mg的硝酸钾溶于100ml水中.将该溶液以5ml/min的流速通过阳离子交换树脂(722强酸性树脂),将流出液收集于500ml锥形瓶中.再用水以10ml/min冲洗树脂,收集流出液于同一个锥形瓶中,并加入0.15ml酚酞指示剂,5分钟后用0.1mol/l氢氧化钠溶液滴定直至粉红色终点.但是问题是我一加入酚酞后溶液就变成粉红色了.应该就是说我的流出液已经是碱性了.我不知道为什么,试了几次都是同样的结果.我怀疑是因为树脂没有交换出氢离子来,而可能是因为树脂的问题.树脂用的处理方法为:第一次直接用水浸泡.第二次用5M盐酸浸泡一日,然后用蒸馏水冲洗至流出液为中性。但是两次的结果相同,有可能是什么原因呢?

  • 离子交换树脂怎么选?

    我们的X荧光仪内循环离子交换树脂需要更换了,买原厂的有点贵,想到市场上买。不知怎么选?

  • CJ-2变色阳离子交换树脂

    CJ-2变色阳离子交换树脂变色树脂使用范围:监测和控制给水、凝结水和蒸汽的氢电导率,是保证水汽质量,控制火电厂水汽系统腐蚀结垢的重要手段之一。由于水汽中氨的浓度、取样流速经常变化,加上机组启停等原因,难以判断H型交换柱何时失效。H型交换柱失效初期,由于少量铵离子穿透,使氢电导率测量值偏低;当H型交换柱完全失效,大量铵离子透过,氢电导率测量值又偏高。因此,当交换柱失效后引起氢电导率变化时,难以及时判断是水质恶化还是交换柱失效。目前国外采取的解决办法是采用变色阳离子交换树脂,失效层与未失效层颜色不同,可以在H型交换柱失效前及时进行再生处理,可以及时发现水质恶化问题并及时采取解决措施。西安热工研究院1995年研制成功CJ-2变色阳离子交换树脂,并已经在全国五十多个发电厂成功应用。CJ-2变色阳离子交换树脂在H型时呈青色,失效后变成粉红色,变色明显。交换容量与普通强酸阳离子交换树脂相同。变色树脂使用方法:新购买的变色树脂是未处理的Na型树脂,必须经过以下方式处理才可以使用:(1)将新树脂放入容器中,以除盐水清洗2~3遍,至水清澈;如果树脂变干,则清洗前需要加入10%NaCl溶液浸泡2小时,以防止树脂因急剧膨胀而破裂。(2)将清洗干净的树脂装入实际交换柱中,以不少于10倍树脂体积的5%HCl再生液动态逆流再生(与交换柱运行水流方向相反),再生流速控制3m/h~5m/h,保证再生液与树脂接触时间不小于30min;(3)再生液进完后以除盐水按交换柱运行水流方向大流量冲洗交换柱(冲洗流速10m/h~20m/h),冲洗时间不低于12h;(4)再生完毕、清洗干净的氢交换柱可装入实际系统进行氢电导率的测定。(5)失效的变色树脂氢型交换柱可直接进行再生处理,再生步骤同(2)~(4)。变色树脂的储存:需要长期储存的树脂,应再生成氢型树脂后储存。 性能指标: 项 目 指 标 体积全交换容量(mmol/m

  • 【求助】阳离子交换树脂转化处理再生

    [color=#DC143C]请教大家?做氨基酸注射液中木糖醇/甘露醇,用离子交换法(转化并处理至中性的钠型磺酸盐阳离子交换树脂)谁做过。能不能帮忙说说是乍做的?主要是阳离子交换树脂的转化、处理、再生什么的,没做个搞不懂!用什么型号的交子交换树脂?谢谢[/color]

  • Axios的离子交换树脂怎么再生?

    最近突然想到一个问题,X荧光仪内循环水系统中的离子交换树脂使用期限就几年,如果更换也是一笔不小的费用。关于离子交换树脂,大家有好的再再生和洗脱的方法吗?

  • 关于离子交换树脂的再生和洗脱

    各位大侠好 最近准备做离子交换树脂测量水中的硒,选用强盐性阴离子交换树脂,关于洗脱和再生所用的试剂树脂=强盐性阴离子交换树脂再生=一般是NaOH溶液洗脱=一般是盐酸和硝酸根据原理,洗脱的话可以通过调节洗脱液pH值使目的物质带相反电荷或者失去电荷而脱落,这样可以选择盐酸或者硝酸 ; 或者高浓度的同性离子通过质量定律使目的物质脱落,根据这个原理的话也可以使用NaOH溶液。但是关于洗脱的话很少有提到使用NaOH溶液的,不知道是我的想法有错误还是什么,望各位大侠指导。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制