当前位置: 仪器信息网 > 行业主题 > >

海底泥沙原位测试平台

仪器信息网海底泥沙原位测试平台专题为您提供2024年最新海底泥沙原位测试平台价格报价、厂家品牌的相关信息, 包括海底泥沙原位测试平台参数、型号等,不管是国产,还是进口品牌的海底泥沙原位测试平台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合海底泥沙原位测试平台相关的耗材配件、试剂标物,还有海底泥沙原位测试平台相关的最新资讯、资料,以及海底泥沙原位测试平台相关的解决方案。

海底泥沙原位测试平台相关的资讯

  • YSI pH100A在底泥,土壤的pH测量中应用
    方法概述随着环境监测日益深入,黑臭水体的监测和整治更加重要。水体,水体底泥的污染同时存在,所以监测黑臭水体的底泥和受水污染的土壤是环境监测的一个重要指标。水体的底泥,土壤和沉积物含水率差异大,难以直接测量得到一致的结果。按照(土壤检测第2部分pH检测 NYT1121.2-2006标准)测量方法适合的各类土壤pH测定,适用于底泥的测量。原理:pH的玻璃电极和甘汞电极浸入到土壤悬浊液,构成一电池反应,两者之间产生电位差,由pH仪器测量得到pH值。 土壤水浸pH的测定称取通过2mm孔径筛的风干样品10g±0.1g于50ml高型烧杯,加入25ml去除CO2蒸馏水(土/液比1:2.5),用搅拌器搅拌1分钟,使颗粒充分分散,静止30分钟测试。将电极插入到试样悬浊液中,(玻璃电极球泡下部位于土液界面处,甘汞电极在上部清液。轻轻转动烧杯以除去电极水膜,促使器快速平衡,静止片刻测试pH值。YSI独特的测量电极和仪器赛莱默分析仪器旗下YSI水质仪器的 pH100仪器可选配112-1型平头pH电极,具有极其可靠的双结点电极,是理想的底泥pH值测量的工具。pH100A设计为快速,精确的测量,提供可靠的数据。独特优点:pH探头平板的电极不会被土壤、底泥颗粒堵塞,降低电极黏泥附着,方便、容易清除干净电极。YSI的pH电极是玻璃电极和参比电极的复合电极,响应速度快,数据稳定。探头内置温度传感器,可以同时测量温度数据。主机特点配属两种探头,一种可以测试水体,一种可以测试底泥,土壤。IP67防水内置缓冲液识别(NIST和USA)自动/手动温度补偿电极偏差识别电极效率显示自锁功能保持稳定的读数30分钟不操作的自动关机功能50组数据记忆应用领域 更多应用:河流和湖泊底泥研究、湿地底泥研究、海底沉积物、污泥堆放、土壤修复。结语赛莱默分析仪器旗下YSI水质监测仪器,以其简单、易用、智能的特点获得业内的认可及广泛应用。为水质测量提供工具,为环境水污染治理提供了有力的数据支持。而赛莱默分析仪器仍将一如既往的秉承精益求精的精神,提供更优质的产品,更及时的服务,更有效的解决方案,为中国环境监测和污水治理市场贡献自己的力量!
  • 我国湖泊底泥重金属污染监测研究取得新进展
    p   湖泊重金属污染严重威胁着水生生物及人类健康,受到社会的广泛关注。中国科学院武汉植物园近日研究分析了高光谱技术在反演重金属的可行性,并讨论了重金属的反演机理,为湖泊污染监测研究提供了科学依据。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 湖泊重金属污染具有高毒性、致癌性和持久性特征,底泥作为重金属沉降富集的受体,其中富集的重金属可被水生植物吸收或因扰动再次释放造成二次污染。然而,底泥重金属来源广泛,诸如大气降尘、工业废弃物、农药等,其分布具有较大空间异质性,加重了人们监测的难度。 & nbsp /p p & nbsp & nbsp & nbsp & nbsp 现有研究表明,高光谱技术可以有效估测土壤属性信息,为当前土壤属性探测及制图开辟了新的途径。然而,土壤底泥中的重金属含量极微,其波谱特征往往被多量元素的信息掩盖,利用高光谱技术对其反演的能力及精度尚存争议。 & nbsp /p p & nbsp & nbsp & nbsp & nbsp 中国科学院武汉植物园全球变化生态学学科组科研人员以武汉东湖底泥的重金属污染为例,分析了高光谱技术在反演重金属镉、铬、汞、镍和铅等物质的可行性,并讨论了重金属的反演机理。 结果表明,光谱模型对重金属的反演能力差异显著,其中镉、汞、镍和铅等被反演性较高,而铬、铜和锌等无法被反演,这取决于重金属与总有机碳的内在关系与共生机制。 /p p & nbsp 这一研究的开展为光谱快速获取高异质性土壤重金属污染信息提供了一定的参考,相关研究成果近日在线发表在国际环境科学期刊《Catena》(《连锁:土壤科学-水文学-地貌学杂志》)。 /p
  • “科学”号科考船圆满完成“在海底做实验”任务
    我国“科学”号科考船完成首个高端用户共享航次,在目标海域获得大量科学发现,并进行了多台套国产自主研发设备的海试工作,圆满完成了“在海底做实验”的任务。  据参与本次科考的中科院海洋所副研究员王敏晓介绍,以往的研究中,深海样品被带到实验室开展后续研究,但由于压力、温度和其他化学环境骤变,深海样品的生理活动同样发生改变,真实的深海生命过程无法被准确认知。依托该航次,中科院海洋所在深海海底搭建了水下实验平台,科学家得以在深海开展水下原位实验,为揭示深海生物极端环境的适应机制提供了可靠依据。  为保障深海水下原位实验顺利进行,本航次同步搭载完成了多通道拉曼平台等多台套国产设备海试工作,通过自主研发实现了海底群落生物的标志识别等多项关键技术突破,相关数据和样品将解答深海黑暗食物链组成、深海碳源碳汇通量、生命起源等重大科学问题。  其中,“海洋之眼”深海着陆器搭配自主研发的系列拉曼光谱探针,实现了对冷泉喷口流体及喷口附近天然气水合物、自生碳酸盐岩等多类目标物的原位长期连续探测,再现了甲烷、硫化氢等关键生物化学反应标识物的时空变化规律,初步结果表明微生物串联了地球深部岩石圈、近底层水圈及黑暗生物圈间的元素转换。  科考期间,科考船上搭载的无人缆控潜器下潜作业21次,获得大量珍贵样品及数据。  据了解,本航次搭载了来自中国科学院、上海交通大学、中山大学、山东大学、厦门大学、中国海洋大学等9家单位的16个高水平研究团队的科学家。
  • 3.67亿元!238台!天津工业大学高端分析测试平台设备更新项目批复(附设备清单)
    7月4日,天津市发展和改革委员会发布了《关于天津工业大学高端分析测试平台设备更新项目可行性研究报告的批复》。经委托天津国际工程咨询集团有限公司组织专家评审,原则同意该项目可行性研究报告,项目建设主体为天津工业大学,项目代码:2405-120000-89-03-406182。该项目位于天津市西青区宾水西道399号天津工业大学现址内。主要建设内容及规模:主要购置设备238台(套),主要为基于USRP的大规模MIMO试验系统平台、低温强磁场扫描探针显微镜、纤维纳米红外光谱仪等设备;替换原有老旧设备132台(套),主要为低压透射电镜、真彩色共聚焦显微镜、冷场发射扫描电镜等设备(购置设备清单详见附件)。总投资金额为36675万元,通过申请中央资金和学校自筹等多种渠道解决。附件天津工业大学高端分析测试平台设备更新项目设备清单表序号仪器设备名称数量(台/套)1热电性能测试系统12光纤光栅解调仪13全息微观透视成像分析系统14全波段光学材料表征系统15多功能湿法纺丝制备及评价系统16阻抗分析仪17多物理场摩擦、磨损原位测试系统18人体步态体态分析系统19穿戴式身体姿态评估系统110便携式代谢测试系统111肌电与多通道生理信号测试系统112纳米级气溶胶粒子分选计数测试台113多通道薄膜压力测量及手持式自定位三维白光扫描系统114动态水蒸汽吸附分析仪115纺织材料界面风速流场测量仪116织物表面多功能电信号测量仪117多功能高分子材料成型仪118液相色谱仪119气相色谱仪120氧气透过率测试系统121可生物降解测试系统122流阻结构参数测试系统123纺丝-熔喷一体化试验机124霍尔效应测试仪125单向透湿膜材料制备及评价系统126耐高温、高精过滤材料评价系统127滤料测试及仿真模拟平台128热激励去极化电流测量系统129锥形量热仪130能源采集及测试系统131材料高频电磁参数测试系统132Materials Studio 模拟计算系统133全自动比表面积及微孔分析仪134高温燃料电池测试平台135纤维电学力学综合性能测试仪136功能材料电学综合测试系统137高温快速导热仪138头模压力及腕戴产品测试系统139红外运动分析测试系统140智能穿戴人因实体实时采集及综合分析系统141柔性电子原位测试系统142服装内热流场动态测量仪143功能纺织品润湿性评价系统144热界面材料分析仪145纺织元宇宙互动同步实训教学装置1 46纺织知识图谱与教学系统1 47柔性织物微带天线测试系统1 48纤维纳米红外光谱仪1 49基于运动学多参数生物力学采集和分析系统1 50双波长显微拉曼光谱仪1 51产业用纺织品及复合材料力学性能测试系统1 52应力动态分布可视化与裂纹预警测量系统153高性能纤维材料制备与理化环保性能测试系统15464通道无线脑电采集系统155多导睡眠/脑电监测系统156电脑测色及颜色信息管理系统157织物舒适性评价体系实验教学套装158功能纺织面料制备与性能分析实验教学套装159纤维着色与染料分散状态分析测试实验教学设备160机油滤清器流量阻力试验台161滤清器高低温脉冲试验台162滤清器效率和寿命试验台163数字化小样新型纺纱与纱线质量评定虚拟仿真系统164新型浆纱织造生产与质量检测设备系统165气囊式接触压力测试仪166纺织复合材料界面性能测试系统167热电性能分析系统168织物风格测试实验套装系统169转矩流变仪170旋转流变仪171原位X射线衍射仪172织物型水电解隔膜测试系统173纳米静电纺制备与测试系统174电极材料应力原位检测系统175落锤冲击试验机176动态和疲劳试验系统177无损检测仪器178飞秒瞬态吸收光谱系统179高低温万能材料试验机180VTC-600-3HD三靶磁控溅射仪181电动固体表面分析仪182Instron毛细管流变仪183低温强磁场扫描探针显微镜184差分式反射式高能电子衍射仪185激光解吸飞行时间质谱仪186双组份高速纺丝试验机187原位变温相位调制型光学性能分析仪188动态光散射粒度分析仪189光场耦合低温磁电输运测量仪190紫外光刻联用光学显微镜系统191高温真空磁场退火炉192激光测振仪193接触式振动试验台194纺织数据分析平台195自旋转移力矩-铁磁共振测量仪器196频谱分析仪197矢量网络分析系统198四探针测试仪199缺陷测试仪1100光谱椭偏仪1101键合丝推拉力测试机1102基于USRP的大规模MIMO试验系统平台1103高速误码率分析扫频仪1104高性能频谱仪1105故障电机系统测试台架1106电机定子测量仪1107高速电机测试平台1108电机系统振动检测设备1109电机系统局部放电检测设备1110高速高精度传感平台1111高性能多分踪录波平台1112先进电力电子器件动静态测试系统1113多通道高精度功率分析仪1114X射线CT层析仪1115功率磁件性能与损耗测试设备1116高电压局部放电测试系统1117高温栅极偏压测试系统1118高温高湿反偏测试系统1119多芯片智能贴装定位机1120器件封装强度测试仪1121热阻抗网络特性与老化测试机1122纤维面料扫描仪1123电工电子训练全过程智能检测及行为识别系统1124工业智能检测实验平台1125纺织智能制造用纱量检测及自动上纱系统1126彩色3D数据采集系统1127法学智能数据模拟分析平台1128虚实多人云协同测绘系统1129无人船载水域物理及水质分析系统1130水下三维建模系统1131空天地大尺度环境污染监测系统1132高光谱成像系统1133智慧城市实景三维测绘建模系统1134地质灾害实时监测系统1135河湖快速三维建模系统1136耕地质量野外快速监测系统1137环境专业综合训练系统1138纺织行业资源循环与污染控排分析系统1139快速金属元素分析系统1140总有机碳分析仪1141流式细胞仪1142全功能近红外光谱分析仪1143核磁共振变温分析仪1144钨灯丝扫描电子显微镜1145CGS-MTD智能材料光电气湿多场传感特性动态检测系统1146多靶位超高真空磁控溅射仪1147新型光电传感特性分析仪1148示波器1149中红外超短脉冲测量仪1150短波显微拉曼/荧光光谱仪1151柔性电子制备检测平台1152近红外超短脉冲测量仪1153脑电采集设备及运算服务器3154大规模图像数据处理设备4155极端环境医疗器械可靠性测试与评价平台1156脑电信号采集与调控平台1157动物活体成像系统平台1158三色多通道活体光纤记录系统平台1159脑重症无创快速成像系统平台1160生理教学显微成像平台1161分子束光电离飞行时间质谱仪1162发动机部件非线性振动测试系统1163叶片性能分析试验系统1164极端高压物性测试系统1165大数据智能分析实验平台1166眼动分析系统1167面部表情分析系统1168机器视觉图像处理实验平台1169小动物成像仪1170稳态瞬态荧光光谱仪1171单四级杆液相色谱质谱联用仪1172化学生物学专业实验室建设1173基础化学实验创新平台1174基础化学实验虚拟仿真系统1175高效液相色谱仪1176蛋白质纯化仪1177流式细胞仪1178全自动高通量高性能比表面及孔径分析仪1179超高速落地离心机1180高气密性自动在线光催化分析系统1181物理化学测试系统1182模块化智能高级流变仪1183综合化学实验创新平台1184细胞代谢呼吸动态分析仪1185生物分子成像仪1186在线原位光谱检测系统1187在线高通量气体吸脱附系统1188圆二色发光仪器1189手性气-质联用仪1190在线圆二色显微成像仪1191超分辨转盘共聚焦显微镜1192圆二色发光仪器1193药物在线原位分析系统1194药物质量监测与评价系统1195小角X射线散射仪1196低压透射电镜1197真彩色共聚焦显微镜1198冷场发射扫描电镜1199全自动气体吸附仪1200自动进样器的差示扫描量热仪2201Zeta电位及粒度分析仪1202X射线衍射仪1203综合热分析1204傅里叶变换红外光谱仪1205电子背散射衍射仪1206激光导热仪1207原子分辨率球差校正透射电镜1208电感耦合等离子体原子发射光谱仪1209单晶X射线衍射仪1210全自动元素分析仪1211凝胶渗透色谱仪1212与热裂解联用的气相质谱仪1213热电双倾原位透射电镜样品杆1214高效液相色谱-静电场轨道阱高分辨质谱联用仪1215透射电镜旋进电子衍射及纳米晶体分析系统1216原位电化学拉曼光谱仪1217电子万能试验机1218复合材料内部缺陷检测系统12194D显微原位CT系统1220高温RTM试验系统1221复合材料振动测试系统1222四自由度缠绕试验系统1223圆二色光谱仪(Circular Dichroism)1224台式吸收精细结构谱仪 (XAFS)1225微区电化学振幅测试系统1226比表面分析仪1227气质联用仪1228多晶合金制备系统1229蛋白质液相分析仪1230全自动耗散型压电界面分析仪1231多功能酶标仪1232高温偏光荧光显微镜1233原子力显微镜控制器及附件1合计238
  • 仪器界沸腾了!可燃冰或能成为仪器市场的“蓝海”
    p & nbsp & nbsp & nbsp 整个5月,可以称得上是“可燃冰”月。据外媒报道,美国于12日宣布正在墨西哥湾开展“可燃冰”钻探研究,日本也于4日宣布从近海“可燃冰”中提取出了甲烷。5月18日,国土资源部部长姜大明对外宣布,5月10日起,我国从南海神狐海域水深1266米海底以下203-277米的天然气水合物(也即可俗称的“可燃冰”)矿藏实现连续187个小时的稳定产气。这一消息让包括仪器界在内的不少中国人感到沸腾! br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/64c1bf22-6b1e-45a0-9c27-1e9196acd99b.jpg" title=" 189271705.jpg" / /p p   为什么大部分储存于海底的“可燃冰”能够引得当今世界上的大国们竞相研究它的开采手段呢?主要原因是“可燃冰”使得人类一下增加了很多能源来源,如果能低成本、高安全地商业开发出来,后期基本不需要再进行复杂的化工处理,相比原油/煤炭还需要裂解、建很多炼油厂要环保和省钱得多,而且燃烧后对环境的污染也非常小。 /p p   不过几乎和以往历次国家发布重大科技突破一样,此消息一出,引来各方发声。 /p p   一类声音认为,“从科学到技术创新要经历知其然(发现现象)、知其所以然(理论理解)、造其然(技术上可行)、利其然(经济上可行)的4个阶段。中国这次突破的意义,就是让利用‘可燃冰’达到了‘造其然’的阶段。” /p p   “这次中国之所以取得突破,就是因为把开采固体变成了开采气体,在原位通过降压把水合物中的甲烷释放出来,直接采甲烷,同时整个过程都保持可控,没有引发海底甲烷泄漏。” /p p   “‘可燃冰’的开采十分费劲,它深藏在高压低温的海底环境,一不小心,就容易造成海底滑坡。日本先于我国研究开采技术,却因泥沙堵塞管道问题解决不了,‘可燃冰’开采迟迟未能取得进展。虽然我国不是第一个发现‘可燃冰’的国家,也不是第一个开采出‘可燃冰’的,但我们之所以敢宣称是世界第一,是因为‘稳定开采’这四个字。” /p p   当然,也有另外一类声音:“此次使用的钻井技术,‘可燃冰’开采技术和钻井船舶都是常规技术和设备。这种用常规油气勘探开发的技术和装备来开采“可燃冰”全世界所有大石油公司都会干,都能干。” /p p   “如果出现大面积海底甲烷气溢出,就会是生态灾难......” /p p   “有什么样的技术可以把‘可燃冰’融化后溢出的甲烷气盖在海底之下而不溢出海底呢?目前世界没有,中国也没有! ” /p p   此外,在关于“可燃冰”的报道中,还闹出了“50000公里”这样的乌龙。令人遗憾的是,这个报道中的乌龙助长了另外一个方向的舆论:认为中国这次试采完全没有意义,甚至是自欺欺人。 /p p   无论对于“可燃冰”是“扬”也罢,“抑”也罢,作为科学仪器及分析测试行业的门户网站,我们更加关注的是“可燃冰”的探测技术。 /p p   据了解,深海可燃冰探测在技术上目前已经有了很大突破,然而仍存在价格昂贵(例如,“深海甲烷原位探测系统”其缆控机器人价格在4000万元/台以上)、整套探测装置非常复杂、探测能力有限、难以适应可燃冰分布特点的探测等一些问题。 /p p   不过,已经有技术专家正在着手开发新型深海可燃冰探测系统,其中包括一位年逾七旬的老人,合肥奥义克斯光电科技有限公司的技术带头人丁厚本教授。丁厚本自1963年起从事国防科技工作 1986年至1991年,任核九院工学院院长 1991年7月,作为安徽引进的高科技人才回安徽合肥工作。 /p p   他主持研发的深海可燃冰探测系统,旨在提供一种基于γ射线康普顿背散射扫描技术的深海可燃冰探测器。据奥义克斯公司相关材料显示,它能直接、快捷、安全、准确地判断是否为可燃冰 且设备生产成本低,装置构造简单,容易操作。这一项目曾经在2016年首届四川省科技工作者创新创业菁英大赛中获一等奖。 /p p   另据相关资料介绍,2011年,我国已在南海圈定25个“可燃冰”成矿区块,控制资源量达到41亿吨油当量。如果一个区块需要30套深海可燃冰探测仪,则共需750套探测仪,每套探测仪售价按200万元保守估算,750套共15亿元,并且尚有更多的成矿区块等待被发掘。因此,开发新型的“可燃冰”探测技术也具有潜在的商业价值。 /p
  • 海底滑坡光纤监测系统港池试验成功
    记者从南方海洋科学与工程广东省实验室(广州)获悉,近日,该实验室徐景平教授团队自主研制的海底滑坡光纤监测系统在广州南沙海洋地质码头圆满完成港池试验工作,为下一步开展海上试验奠定了坚实的基础。  该海底滑坡光纤监测系统包括柔性光纤形变传感器和配套的座底式海床液压贯入装置。本次港池试验成功完成了海底滑坡光纤监测系统的拆卸、组装、布放、监测、回收和数据处理与解释等工作,验证了该监测系统的总体工作性能和各项技术指标,检验了监测系统在港池条件下的可靠性、稳定性和环境适应性。  海底滑坡是海洋地质灾害研究中最具挑战性的研究主题之一,能够对海洋工程设施与装备和沿海地区人民生命财产安全造成重大损失。我国南海地区海洋油气产区多与海底滑坡区重合,因而海底滑坡的研究关系着南海能源资源的可持续开发利用。目前国内外海底滑坡研究仍多限于对其最终沉积产物的地质地球物理特征认知,而对于海底滑坡预警的最关键环节——海底失稳破坏形变过程,这一滑坡初始状态的研究非常薄弱。  徐景平教授团队研制的基于光纤形变传感技术的海底滑坡监测系统,具有结构简单、灵敏度高和环境适应性好的优势,可用于对海底数米厚沉积物的形变失稳过程进行高精度的观测,获取长期、连续、有效的原位观测数据,进而为海洋工程安全保障及防灾减灾提供强有力的科技支撑。  据了解,参与此次港池试验的人员包括南方海洋科学与工程广东省实验室(广州)首批人才团队引进重大专项“南海海底灾害过程与机理研究”项目的徐景平教授、宋章启研究员、陈宇中、钱学生等人。在项目负责人徐景平的领导下,全体工作人员齐心协力,克服高温酷暑,顺利完成了本次港池试验任务。
  • 国产电镜让采买市场更多元,对原位技术需求是深入反应体系——ACCSI2024访北京大学分析测试中心电镜平台负责人鞠晶
    “第十七届中国科学仪器发展年会(ACCSI2024)”于2024年4月17-19日在苏州狮山国际会议中心盛大召开。ACCSI定位为科学仪器行业高级别产业峰会,经过多年的发展,已被业界誉为科学仪器行业的“达沃斯”论坛。ACCSI2024 以“融合创新,质领未来”为主题,吸引了来自“政、产、学、研、用、资、媒”等各方的高端人士共计1500余人参会,共同探讨科学仪器行业的前沿趋势与发展机遇。年会现场,仪器信息网特别采访了北京大学分析测试中心电镜平台负责人鞠晶老师。在访谈中,就北京大学分析测试中心电镜平台的概况、平台在电镜技术方面的应用现状、国内电镜技术发展的整体水平,以及当前面临的不足等话题展开了深入的交流。仪器信息网:请介绍一下北京大学分析测试中心电镜平台概况?鞠晶老师:北京大学分析测试中心的电镜平台是在15年前成立的,现在拥有非常全的电镜设备,包括球差电镜、透射电镜、扫描电镜和很多电镜制样设备以及多台套的原位电镜设备。仪器信息网:目前贵平台电镜应用情况如何?主要应用于哪些学科领域?鞠晶老师:北京大学分析测试中心的电镜平台是面向北京大学全校各个科研院所以及面向全社会进行测试服务的,因此涉及到的科研领域会比较广泛,包括物理、化学、材料、生命科学,以及地质、考古等多个学科。仪器信息网:请您给大家分享下有哪些具体的案例?鞠晶老师:比如说我所在的化学学院,就是一个以化学反应著称的一个领域,那么以往的传统的电子显微学其实是比较少的涉及到化学领域,但是近几年由于电镜原位技术的发展以及电镜制样设备的进步,使得很多在传统的电子显微学上不能做的或者是比较难处理的体系现在都能够实现。比如常用的聚合物体系,因为它很多是不耐电子束辐照的,或者是里边有一些有机溶剂,这样在电子束下可能会不稳定。这样通过平台的制样设备以及原位电镜,像液体环境、冷冻环境,就可以使这些聚合物的体系在电镜里也能进行成像。仪器信息网:当前的电镜设备或电镜技术,能否满足贵平台的需求?还有哪些方面有待改善?鞠晶老师:因为平台的电镜最初购买的一批是在15年前,但电镜的更新和替代也是非常快的。经过这15年的发展,有一些新的设备是能够跟得上现在科研的要求的,但是对于一些老旧的电镜仪器,现在就处在需要更新替换的阶段。这些老旧的电镜仪器和很多制样设备、原位反应设备不能够很好的匹配,现在就需要更新替换。好在现在有很多原位电镜的设备很及时的补充到了市场上,像最初可能更多的是使用美国或者日本的电镜设备,但现在就有了国产电镜这个选项,就有很多领域可以用到国产电镜做市场的补充。仪器信息网:从应用角度,您认为目前国内电镜应用水平如何?鞠晶老师:其实国内的电子显微学领域应该在世界上都是处在非常好的一个梯队或者说是水平。有很多领域都是处在世界最前沿的科研阶段的,比如在金属的表征上、在原位的表征上,其实都是处在世界一流的科研水平,这也得益于我们国家这20年来对科学仪器的持续投入和政策的支持。仪器信息网:从电镜技术角度,近几年来您最关心的创新电镜技术有哪些?对应技术主要为应用带来哪些变革?如果给电镜企业提建议,您希望哪些技术或哪些方面需要电镜企业进一步关注或改进?鞠晶老师:我结合一下我的专业特点,因为我其实是做晶体结构和作化学反应这样的专业背景。其实现在电镜的发展更多的是向个性化或者是广泛领域的专业发展,因为最初电镜创制之初主要是为了材料学的研究服务的,比如金属材料领域用电镜会相对较多,但是现在由于很多专业学科的要求越来越多,所以现在生命科学领域或者化学领域用电镜的需求反而是超过了最传统的材料学领域的。我所在的化学学院就对原位电镜有非常强烈的需求,无论是催化领域,包括有机合成、聚合物的反应过程等等,其实都需要电镜能够追踪整个反应的最初发生、反应过程、最后终态,从而得到非常多的信息,可以让我们提炼出整个过程当中它的反应机理和反应机制是什么,这对化学来说是非常重要的,是核心的科学问题。电镜,尤其是原位电镜,现在可以很好的提供一个途径和手段,这是我觉得近10年以来在化学学科电镜带给我们的一个新的突破。现在原位电镜技术上,虽然无论是国外和国内的很多厂商都做了非常多的工作,但是在把这些设备应用到具体的反应场景中,可能还是缺乏一定的追踪或者持续跟进的能力。因为现在更多的就局限在模型体系,一个简单的催化模型或一个简单的化学反应,但事实上对于化学来说,它的反应体系是各种各样的,复杂程度也是各不相同的。如果原位设备能更多地深入到这些具体的反应体系当中,提供更关键的技术支持是非常好的。仪器信息网:今年是仪器信息网成立25周年,请您谈谈对仪器信息网未来有哪些建议或者期待?鞠晶老师:我的确是伴随着仪器信息网的成长和发展,也见证了很多非常重要的历史时刻,我对仪器信息网也有很深的感情。因为从我进入到电子显微学这个领域不久,我就接触到了仪器信息网。仪器信息网其实给了我很多帮助,认识到很多同行,有更多的学术上的交流,并且从仪器信息网的课程和讲座上学习到很多的知识。所以我觉得仪器信息网提供了一个非常好的平台——交流平台、学习平台,以及获得更多得跟企业直接面对面的交流机会都是非常好的。因为以前我们和仪器公司之间有比较大的鸿沟,我们提很多需求,仪器公司不是很直接的能够正视这些问题,通过仪器信息网这个平台很好的沟通和桥梁的作用,让使用者和仪器厂家之间的交流和沟通更加顺畅。所以我觉得这个是仪器信息网做得非常好的一块。
  • 海底寻宝丨喷金吐银的神奇“黑烟囱”
    导读约占地球表面71%的海洋里蕴含着丰富的矿产资源,海底热液硫化物(Volcanogenic massive sulphide ore deposits, VMS)是其中极具代表性的一类。上世纪科考发现海底存在大量类似火山喷发的热液异常区,其周围区域存在多种金属矿产和新生物群落,俗称“黑烟囱”。借助岛津电子探针(EPMA)高灵敏度特性,在某批采集于我国专属海底矿产资源区的热液硫化物中,成功探测到微量贵金属Au-Ag包裹体,为其科研和开采价值提供了有效的数据支撑。 海底神奇“黑烟囱”伴随着人口激增、工业高速发展,人类对矿产资源的索取成指数级增长。然而,陆地资源日渐匮乏,于是人类开始把目光投向更为广袤的海洋。海洋矿产资源种类丰富,按照海洋矿产资源形成的海洋环境和分布特征,从滨海、浅海至深海分布有:滨海砂矿、石油与天然气、磷钙土、多金属软泥、多金属结核、富钴结壳、热液硫化物以及天然气水合物(即可燃冰)等。 上世纪60年代,科考发现海底的热液异常,随后又观测到大量正在喷发的海底“黑烟囱”,以及在其周围形成的大量多金属软泥及冷却结晶形成的金属硫化物矿物,包含有Cu、Zn、Mn、Co、Ni等,及Au、Ag、Pt等贵重金属元素,并观察到大量新生物种群。 “热液硫化物”主要出现在2000米水深的大洋中脊和断裂活动带上,是海水侵入海底裂缝,受地壳深处热源加热,溶解地壳内的多种金属化合物,再从洋底喷出的烟雾状的喷发物冷凝而成的,被形象地称为“黑烟囱”。 这些亿万年前生长在海底的“黑烟囱”喷“金”吐“银”,形成含有铜、锌、铅、金、银等多种元素的海底矿藏,具有极高的开采意义。据科学家初步估算,仅红海中的热液硫化物中就有铁2400万吨、铜106万吨、锌以及伴生的铅、银和金290万吨。“热液硫化物”已成为国际日益关注的海底矿藏。 矿物中贵金属的电子探针测试特点贵金属之所以贵重,一个重要原因就是其资源相对稀缺,天然形成的矿物中贵金属含量很低,所以对测试仪器的灵敏度要求极高。 岛津电子探针通过配置52.5°的高位特征X射线取出角以及兼具灵敏度和分辨率的同一4英寸罗兰圆的全聚焦分光晶体,使之在对微量贵金属的测试中具有很大的优势。 岛津电子探针分析热液硫化物中贵金属由于微量贵金属的直观分布表征对仪器的测试灵敏度要求较高,此处使用岛津电子探针EPMA对在我国某专属海底热液活动区取样的热液硫化物中元素分布特征进行面分析。 热液硫化物矿物被散射电子像及S、Zn、Fe、Cu元素面分布图 S、Zn、Fe元素面分布图显示,该热液区硫化物矿物主要由闪锌矿、黄铁矿为代表的复杂Zn系列和Fe系列硫化物构成,包括一些黄铜矿(Cu-Fe-S系列)包裹体,且同一矿物颗粒不同位置成分差异较大;在闪锌矿中发现了Fe的异常分布带。 热液硫化物矿物中微量Au、Ag的元素面分布特征 Au、Ag元素面分布图显示,闪锌矿边界存在Au-Ag包裹体(背散射电子像中白亮颗粒);研究表明,包体金一般包裹于其他寄主矿物,寄主矿物主要是闪锌矿和黄铁矿,此处为含铁闪锌矿,经溶蚀作用后被暴露于闪锌矿晶体边界。 热液硫化物矿物中微量Au、Ag的元素确认 关于包体金的形成机制,有些学者认为硫化物在生长过程中,从富金流体中吸附Au+,在硫化物的表面被还原从而生成包体金。也有学者认为包体的形成是因为Au含量超过其在寄主矿中的溶解度极限,或是从准稳定态的寄主矿中析出。 结语借助岛津电子探针对某处的热液硫化物进行分析,发现了微量贵金属Au-Ag包裹体,显示其经溶蚀作用后被暴露于闪锌矿晶体边界。说明了海底热液硫化物的开采价值,也验证了岛津电子探针在测试微量元素方面的高灵敏度特征。 本文内容非商业广告,仅供专业人士参考。
  • 共242项!2022年度水利部重大科技项目清单公布
    据水利部1月28日消息,为深入实施创新驱动发展战略,全面贯彻“节水优先、空间均衡、系统治理、两手发力”治水思路,加强水利科技攻关,为推动新阶段水利高质量发展实施路径提供支撑,提升国家水安全保障能力,根据《水利部重大科技项目管理办法》(水国科〔2022〕122号)相关要求和2022年度工作安排,水利部组织开展了2022年度水利部重大科技项目计划立项工作,结合前期已下达的任务类项目和通过评审公示的申报类项目,形成2022年度水利部重大科技项目清单。水利部重大科技项目形成的科技成果将统一纳入水利科技成果信息平台,面向社会发布;对于解决水利重大科技问题或产生重大效益的项目成果,主管部门择优通过多种方式继续支持或给予补助。2022年度水利部重大科技项目清单任务类项目(一)水利重大关键技术研究序号项目名称承担单位负责人1国家水网工程框架设计前期研究水利水电规划设计总院李原园2水资源计量及监测数据质量保证关键技术研究南京水利科学研究院雷四华3分散面源污水资源化利用技术集成研发与应用河海大学邵孝候4基于生态价值理论的黄河流域生态调度评估技术研究黄河水利科学研究院曹永涛5全国水资源配置格局优化与开发利用管控分区研究水利水电规划设计总院李云玲6水资源与社会经济布局匹配性评价关键技术研究水利水电规划设计总院何 君7全球变化对黄河流域水土资源的影响及水平衡优化对策研究南京水利科学研究院金君良8变化环境下水资源空间均衡多维系统调控技术与再平衡策略南京水利科学研究院王银堂9基于多源遥感信息的区域农业节水水平动态监测与评估黄河勘测规划设计研究院有限公司刘豪杰10虚拟水战略推进节水优先的关键技术研究河海大学田贵良11“节水优先”理论框架及节水管理体系建设研究长江科学院叶 松12小型水库大坝安全性态快速判别方法技术和标准化研究南京水利科学研究院王昭升13天地一体化的水利工程形变监测与安全预警技术中国水利水电科学研究院吕 娟14水库大坝病害检测及险情应急处置关键技术南京水利科学研究院何 宁15长江中下游崩岸监测预警关键技术研发与示范长江科学院朱勇辉16复杂条件下的堤坝深埋渗漏通道的精准测量技术河海大学陈 亮17全国典型地区河湖健康主成因子分区特征研究南京水利科学研究院王晓刚18高分辨率遥感卫星在河湖健康评价与监管应用研究南京水利科学研究院杨 畅19水土保持措施与固碳的关系和机理研究黄河水利科学研究院王志慧20基于多源遥感的区域水土流失变化监测关键技术研究长江科学院向大享21黄土高原淤地坝高质量建设和发展关键技术研究中国水利水电科学研究院于 沭22黄土高原砒砂岩区沟壑产沙控制技术黄河水利科学研究院申震洲23基于机器学习方法的黄河水沙预报模型研究黄河水利科学研究院夏润亮24流域水土流失自然全坡面观测与小流域控制站嵌套布设技术研究长江科学院许文盛25农田水利工程运行维护评价指标体系与评估方法研究南京水利科学研究院时元智26寒冷地区农村供水工程防冻技术研究长江科学院李亚龙27内陆干旱区农业节水抑盐关键技术与灌排协同调控黄河水利科学研究院王军涛28基于风光互补发电的新型水处理装置研发及应用河海大学郑 源29水文水资源实时分析评价关键技术研究中国水利水电科学研究院仇亚琴30泥沙自动监测技术应用研究黄河水利委员会水文局王 龙31三峡库区和长江中下游影响区生态修复与环境保护重大技术问题研究中国水利水电科学研究院彭文启32丹江口水库与引江补汉工程联合调度研究长江科学院许继军33南水北调西线工程水源点及可调水量研究长江科学院沙志贵34南水北调综合效益发挥及风险管控研究长江科学院霍军军35基于水资源承载能力的长江流域可调水量研究长江勘测规划设计研究有限责任公司雷 静36“空间均衡”理论框架及重大调水工程刚性约束研究黄河勘测规划设计研究院有限公司王 煜37调水工程多维多级水系连通及生态调度关键技术研究中国水利水电科学研究院赵进勇38河道冲刷模拟技术研究长江科学院姚仕明39黄河流域泥沙动态调控理论与技术黄河水利科学研究院王远见40鱼道过鱼效果监测评估关键技术研究长江科学院陈 端41河道整治工程水上无人化探测技术与装备黄河勘测规划设计研究院有限公司姜文龙42基于加速碳化技术的河湖污染淤泥固化资源化利用关键技术研发及应用黄河勘测规划设计研究院有限公司曹智国(二)流域水治理重大关键技术研究序号项目名称承担单位负责人1南水北调工程对长江流域水资源影响及对策研究长江勘测规划设计研究有限责任公司毛文耀2长江流域水工程生态效应研究水利部中国科学院水工程生态研究所李德旺3南水北调西线工程输水隧洞建设关键技术及装备黄河勘测规划设计研究院有限公司张金良4黄河洪水泥沙与防灾减灾技术研究黄河勘测规划设计研究院有限公司刘继祥5淮河流域智能洪水预报调度技术研究及应用淮河水利委员会水文局(信息中心)徐时进6京津冀协同发展“六河五湖”综合治理与复苏河湖生态环境关键技术研究海河水利委员会水资源保护科学研究所王立明7海河平原地下水超采综合治理—海(咸)水入侵效应分析和地下水回灌措施研究水利部海河水利委员会科技咨询中心宋秋波8珠江河口水沙变异及治理保护关键技术珠江水利科学研究院何 用9粤港澳大湾区水安全要素“空-天-地”立体观测关键技术珠江水利科学研究院扶卿华10松辽流域河湖岸线生态治理与修复技术研究松辽水利委员会水利工程建设管理站范永玉11太湖流域圩区管控措施研究太湖流域管理局水利发展研究中心刘克强12太湖特征水位研究太湖流域管理局水文局(信息中心)姜桂花(三)水利专业模型研究序号项目名称承担单位负责人1全国土壤侵蚀模型研发中国水利水电科学研究院曹文洪2水土保持碳汇作用研究中国水利水电科学研究院曹文洪3全国地下水通用模型研发中国水利水电科学研究院陆垂裕4地下水通用模型构建技术与软件平台研发南京水利科学研究院林 锦5黄河泥沙通用模型及软件研发黄河水利科学研究院赵连军6泥沙通用数学模型及软件研究中国水利水电科学研究院郭庆超7长江流域智慧化产汇流及洪水预报模型研究长江水利委员会水文局官学文8黄河中游典型区域洪水智能预警预报技术研究及应用黄河水利委员会水文局王春青9淮河流域智慧化产汇流及洪水预报模型淮河水利委员会水文局(信息中心)钱名开10海河流域智慧化产汇流及洪水预报模型研究海河水利委员会水文局杨 邦11珠江流域智慧化产汇流及洪水预报模型研究珠江水利委员会水文局钱 燕12松辽流域专用洪水预报模型松辽水利委员会水文局宁方贵13太湖流域洪水预报模型完善太湖流域管理局水文局(信息中心)林荷娟14智慧化流域产汇流及洪水预报模型软件研发中国水利水电科学研究院贾仰文15智慧化流域产汇流及洪水预报模型研发南京水利科学研究院王宗志16智慧化流域产汇流及洪水预报模型研究河海大学张行南17水资源调配模型研究水利部水利水电规划设计总院李原园18水资源调配模型软件研发中国水利水电科学研究院蒋云钟19水资源调配通用模型研究南京水利科学研究院吴永祥20水工程调度模型标准化构建技术研究长江勘测规划设计研究有限责任公司丁 毅21通用性水利工程调度专业模型研发南京水利科学研究院施 勇22防洪工程联合调度通用模型研发河海大学钟平安其他有关研究1国际河流有关研究(名称另行下达)水利部国际经济技术合作交流中心金 海申报类项目(一)水旱灾害防御领域序号项目名称申报单位负责人1基于高精度水文气象集合预报的洪旱灾害预警预报与风险评估技术河海大学段青云2极端天气城市特大暴雨洪涝形成机制及灾害级联效应研究天津大学苑希民3变化环境下流域特大洪涝灾害协同应对策略研究长江勘测规划设计研究有限责任公司要 威4大型河道型水库精细化洪水预报与数字化模拟关键技术研究与示范——以三峡水库为例中国长江电力股份有限公司鲍正风5极端干旱下珠江口咸潮风险识别关键技术与防控策略珠江水利委员会珠江水利科学研究院杨 芳6气候变化条件下福建旱情监测预警与水资源适应性调控研究福建省水利水电科学研究院曲丽英7GPU(图像处理器)异构并行框架下洪水数值模拟关键技术研究中国水利水电科学研究院张大伟8长江中下游洪涝灾害信息提取与风险评估中国科学院空天信息创新研究院张万昌9丹江口库区山洪灾害链监测预警关键技术研究长江水利委员会长江科学院董林垚10鄱阳湖圩堤系统超标准洪水联合运用研究江西省水利科学院温天福11变化环境下黄河下游洪水风险发生机制与预测技术黄河水利委员会黄河水利科学研究院李军华12城市洪涝灾情探测雷达装备与预报预警技术研究南京水利科学研究院王高旭13小型水库洪水快速预测预警关键技术研究淮河水利委员会水文局(信息中心)王 凯14流域-城市防洪排涝系统效能提升关键技术及示范应用研究长江生态环保集团有限公司王殿常15基于气象要素驱动的嫩江流域水旱灾害智慧“四预”系统研究中水东北勘测设计研究有限责任公司栾宇东16基于流域尺度的雄安新区洪水演变规律与精准四预关键技术研究河北省水利科学研究院赵 逊17黑龙江上游冰凌生消演变机理及预报系统开发研究黑龙江省水文水资源中心肖兴涛18气候变化背景下特大干旱风险识别及应对策略西北农林科技大学粟晓玲19淮河流域高分辨率陆气耦合模式研发及旱涝预报精细化应用南京信息工程大学袁 星20中小流域防洪态势感知预警关键技术与装备武汉大学陈 华21面向“四预”要求的长三角通用水利专业模型研发及应用示范河海大学高 成22气候变化背景下黄浦江韧性防洪体系构建及关键技术上海市水利工程设计研究院有限公司季永兴23黄河上游生态脆弱区防洪治理工程关键技术研究四川省水利科学研究院杨燕伟24河道风浪过程及堤防设计应用研究浙江省水利河口研究院(浙江省海洋规划设计研究院)黄世昌25变化环境下海堤韧性提升关键技术河海大学郑金海26堤防漏洞全场景感知与逐级封堵技术装备研发黄河水利委员会黄河水利科学研究院李书霞27“励智”智能高精度根石探测无人艇研制山东黄河河务局济南黄河河务局杜加雷28基于人工智能的防洪堤坝险情自动巡查监测技术装备研究中国电力建设股份有限公司刘 昊29基于数字孪生及VR/AR的洪涝灾害应急抢险关键技术与应用示范华北水利水电大学刘雪梅30基于阵列火箭锚的江河堤防溃口抢险新技术及关键装备研发华北水利水电大学王为术31基于一体化关节设计的堤坝巡检仿生机器人研究北京理工大学赵杰亮(二)水资源优化配置领域序号项目名称申报单位负责人1实施国家江河战略关键问题研究 中国水利水电科学研究院王建华2面向碳中和碳达峰的水资源合理配置中国水利水电科学研究院严登华3气候变化下长江源区径流成因和预测方法研究水利部信息中心胡健伟4基于“两手发力”的水利工程供水价格核算关键技术水利部发展研究中心王冠军5长江流域农业、工业用水效率目标研究水利部节约用水促进中心张继群6澜湄流域水文条件变化及其适应策略联合研究澜湄水资源合作中心郝 钊7河流生态水文调控关键技术及示范长江水利委员会水文局熊 明8长江源区水循环要素演变及适应性对策研究长江水利委员会长江科学院徐 平9水利水电工程施工节水及废污水资源化利用技术研究长江水资源保护科学研究所王 孟10河湖生态补水下海河流域地下水超采修复机理及智能化预警关键技术研究水利部海河水利委员会水文局王 哲11南水北调东线工程沿线地下水演化规律与智慧管理河海大学王锦国12区域地下水保护的基础理论与关键技术中国地质大学(北京)王旭升13典型超采区地下水涵养与运动时空演变研究北京市水科学技术研究院李炳华14冰期河道流量在线自动监测关键技术研究水利部南京水利水文自动化研究所陈 智15地下水分布式多点自动在线监测技术与装备研究 碧兴物联科技(深圳)股份有限公司邱致刚(三)水资源集约节约利用领域序号项目名称申报单位负责人1黑土地农田水蚀系统阻控与模拟评价技术中国水利水电科学研究院秦 伟2数字灌区“空天地”一体化作物需水感知及灌溉决策优化南京水利科学研究院和玉璞3现代灌区水量精准调控数字赋能关键技术研发与示范中国灌溉排水发展中心谢崇宝4天津市滨海平原智慧灌区关键技术研究与示范天津市水利科学研究院刘春来5地埋式渗灌关键技术研究、装备系统开发及示范推广水发机电集团有限公司韩其华6设施农业绿色高效雨水集蓄利用新技术研究与应用山东省水利科学研究院黄 乾7面向水稻规模化种植的高效灌排装备及数字孪生灌排管理系统关键技术研究浙江水利水电学院项 春8南疆绿洲灌区现代农业节水关键技术与用水安全研究与示范新疆农垦科学院周建伟9基于全过程模拟的灌区管道安全输水技术研究中国农业科学院农田灌溉研究所贾艳辉10贵州农村小型供水工程标准化水处理设备研发与应用贵州省水利科学研究院张和喜11高原山区城乡供水一体化关键技术及智能装备研发云南农业大学李 靖(四)河湖治理与生态环境复苏领域序号项目名称申报单位负责人1南水北调中线水源区总磷对库区上下游及输水干渠水质的影响风险识别与控制对策 中国水利水电科学研究院吴文强2强人类活动流域河湖水生态结构与功能复苏关键技术南京水利科学研究院吴时强3太湖地区江河湖水系连通实施效果及联合调度与水质提升关键技术研究南京水利科学研究院陆 彦4黄河游荡性河道嫩滩生境复苏目标及水沙调控指标体系研究黄河水利委员会黄河水利科学研究院张晓华5内陆湖生态补水的地表水地下水耦合响应机制黄河勘测规划设计研究院有限公司万伟锋6大藤峡水利枢纽敏感河段生态复苏关键技术研究及应用水利部珠江水利委员会水文局翁士创7粤港澳大湾区河道底泥治理关键技术及示范珠江水利委员会珠江水利科学研究院吴 琼8太湖流域浅水湖泊适宜生态水位关键技术研究太湖流域水文水资源监测中心(太湖流域水环境监测中心)吴东浩9引江济淮输水线路多节点多边界水源保护关键技术研究安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站)王振龙10陆基高光谱水质遥感智能监测技术研发与应用中国科学院南京地理与湖泊研究所张运林11长三角生态绿色一体化发展示范区背景的太浦河生态廊道复苏关键技术研究上海勘测设计研究院有限公司陈瑞方12强化微生物修复污染河流的关键技术研究中国科学院重庆绿色智能技术研究院陈 明13季节性河流生态环境治理关键技术研究与应用中建生态环境集团有限公司张云富14河湖生态环境复苏与系统修复关键技术研究与示范中国水务投资有限公司汤德勤15河湖水域岸线空间管控AI智能识别及预判预警技术研究江苏省水利科学研究院王冬梅16南方花岗岩崩岗生态治理技术研发与示范福建农林大学黄炎和17长江中下游典型湖泊演变及对洪枯调控影响研究长江水利委员会长江科学院姚仕明18三峡水库细颗粒泥沙淤积驱动机制与绿色综合利用关键技术研究长江水利委员会长江科学院金中武19三峡水库重要次级河流水工程生态调度技术体系重庆交通大学李 霞20三峡水库典型支流水华预报预警及生态调度预案研究中国长江三峡集团有限公司曹光荣21三峡库区植物篱-草沟系统调控水沙迁移关键技术研究及示范西南大学何丙辉22洞庭湖生态疏浚关键技术与装备研究及示范湖南省水利水电勘测设计规划研究总院有限公司徐 贵23太湖流域河湖湿地碳汇潜力评估方法研究南京水利科学研究院范子武24长江重要湖库碳通量核算及增汇对策研究水利部中国科学院水工程生态研究所潘晓洁25三峡库区河流湿地“碳汇”潜力评价研究北京林业大学王云琦26南方红壤区典型侵蚀退化地不同治理措施碳汇效应与计量技术研究与示范福建省水土保持试验站吴 娟27湖荡浮泥水力收集与低碳化处置成套技术中国科学院南京地理与湖泊研究所江和龙28南方山丘区输变电工程水土流失防控及碳汇潜力评价研究国网福建省电力有限公司江世雄29黄河水沙变化的趋势性研判与新水沙条件下河道中水河槽维系中国水利水电科学研究院张晓明30河口海岸泥沙运动基本理论及数模平台研发南京水利科学研究院罗小峰31小浪底和西霞院水库延缓泥沙淤积关键措施研究黄河水利水电开发集团有限公司王振凡32基于光幕成像技术的细微泥沙粒度在线分析系统南京水利科学研究院王艳红33量子点光谱法自动测水沙设备研发及在黄河流域水土保持监测应用研究水利部水土保持监测中心乔殿新34湖北省水土流失动态监测监管关键技术研究湖北省水利水电科学研究院李 璐35黄土丘陵沟壑区第一副区土壤侵蚀研究及预测黄河水利委员会黄河上中游管理局党维勤36流域错峰减洪的水土保持措施布局模式研究中国科学院水利部水土保持研究所韩剑桥37黄河中游大型煤炭基地水土保持率提升关键术研究与示范国能神东煤炭集团有限责任公司王 义38黑龙江省侵蚀沟治理技术集成与示范黑龙江省水利科学研究院高士军(五)国家水网等水利工程建设与运行领域序号项目名称申报单位负责人1复杂环境水工建筑物水下检测与修补加固集成示范与应用南京水利科学研究院向 衍2大中型水库深孔泄水设施改造与除险加固关键技术研究南京水利科学研究院唐云清3长距离输水建筑物表面防护与快速修复技术南京水利科学研究院钱文勋4堤坝渗漏险情无损快速探测关键技术与装备长江地球物理探测(武汉)有限公司张建清5雅下水电开发场址设计地震动参数研究中国水利水电科学研究院张艳红6强震区沥青混凝土面板坝抗震安全和控制关键技术研究大连理工大学邹德高7堆石坝混凝土面板多因素作用下性能演化特性及其提升研究三峡大学田 斌8长大深埋水工隧洞全生命周期性能演化机制与安全控制关键技术长江勘测规划设计研究有限责任公司颜天佑9长大引水隧洞复杂地层敞开式+单护盾双模式TBM创新研制与工程示范应用中铁十九局集团有限公司吕海明10定向靶区取心钻探及多参数全方位测井系统关键技术研究四川省水利水电勘测设计研究院有限公司高希章11水工高压隧洞精细复合灌浆处理关键技术研究与应用长江水利委员会长江科学院邵晓妹12重大水利工程硅质岩活性骨料混凝土性能提升关键技术研究与应用广西壮族自治区水利科学研究院刘鲁强13水工岩土工程连续-非连续介质流固耦合数值方法研究与软件开发河海大学赵兰浩14复杂大坝施工环境下无人碾压机群智能压实理论与方法研究天津大学王晓玲15北方引黄大型灌区现浇钢丝网片混凝土与保温一体化渠道衬砌关键技术研究与应用中国灌溉排水发展中心姚 彬16新疆高盐渍复杂侵蚀环境预应力钢筒混凝土管耐久性研究新疆水利水电勘测设计研究院有限责任公司罗纬邦17引调水工程PCCP全生命结构性态实时诊测技术装备与智能管控平台吉林省瑞洋中西部供水工程有限责任公司于永泉18多泥沙水流大型水泵抗磨蚀/空蚀关键技术研究水利部产品质量标准研究所陈小明19智能泵站关键技术研究与应用中水淮河规划设计研究有限公司方国材20南水北调后续工程生态友好型贯流泵机组关键技术研发与应用江苏大学张德胜21河口区超大跨度挡潮闸建设关键技术研究中水珠江规划勘测设计有限公司王政平22水工程智能调度控制技术装备与仿真测试平台研发中国水利水电科学研究院雷晓辉23梯级水库风险孕育机制及安全调控理论研究中国电力建设股份有限公司杜效鹄24鄂北水资源配置工程水量调度实施风险与对策研究湖北省水利水电科学研究院王平章25基于工业互联网的梯级水电通用预报调度平台构建中国长江电力股份有限公司姚华明26大渡河流域梯级运行生态环境风险实时评估与预警四川大学安瑞冬27水利工程建设项目质量标准化研究水利部建设管理与质量安全中心蔡 奇28丹江口水库入库水质风险应急调度研究长江水利委员会水文局汉江水文水资源勘测局龙雪峰29南水北调东线工程智慧化调度关键技术研究中水淮河规划设计研究有限公司马东亮30南水北调中线总干渠影响水质类别关键指标溯源及防治措施示范中国南水北调集团中线有限公司张同颖31南水北调工程总体规划回顾性评价及后续工程研究论证相关制约影响因素分析中国水利水电科学研究院彭 祥(六)智慧水利领域序号项目名称申报单位负责人1数字孪生流域模拟仿真引擎关键技术研究及应用水利部信息中心钱 峰2数字孪生长江水工程智能调度关键技术研究长江勘测规划设计研究有限责任公司黄 艳3面向数字孪生流域的卫星“通导遥”综合应用研究中国卫通集团股份有限公司尹浩琼4小浪底工程数字孪生关键技术研究黄河水利水电开发集团有限公司孙长安5数字孪生流域数据安全关键技术研究与应用水利部信息中心付 静6数字孪生流域关键技术研究河海大学朱跃龙7长距离引调水工程泵站群运行管控数字孪生关键技术研究水利部水利水电规划设计总院温续余8水利特色河海小卫星星座建设河海大学许 峰9云河地球水利数字孪生仿真引擎研发及应用示范黄河勘测规划设计研究院有限公司安新代10国家洪水预报平台关键技术研究及应用水利部信息中心侯爱中11数字孪生大藤峡建设和工程综合调度“四预”创新关键技术研究广西大藤峡水利枢纽开发有限责任公司温 鹏12基于数字孪生的小型水库安全智能预警关键技术研究中国水利水电科学研究院刘 毅13水利大数据与智能模型驱动的数字孪生淮河原型系统应用研究淮河水利委员会水文局(信息中心)李凤生14水联网现代化灌区关键技术研究及示范应用清华大学王忠静15基于数字孪生的水利工程安全监测技术与智能化管理平台研发河海大学叶保留16水工程闸门和启闭机数字孪生与智慧运维关键技术及装备研发华北水利水电大学聂相田17基于知识图谱的防洪抗旱“四预”智慧支撑平台研究珠江水利委员会珠江水利科学研究院范光伟18基于数字孪生水利工程的海河流域水利关键信息基础设施(工控系统类)网络安全关键技术研究水利部海河水利委员会通讯中心黄 锐19基于北斗时空信息及数字孪生的智慧水利端到端系统应用研究中国移动通信集团北京有限公司杜建凤20基于数字孪生的隧洞智能感知与安全管控技术研究清华四川能源互联网研究院陈永灿21水利工程勘测全过程数字孪生解决方案及应用示范中水北方勘测设计研究有限责任公司高玉生22高性能无人船平台关键技术在智慧水利中的应用研究航天科工深圳(集团)有限公司杜俭业23面向大水域的水面巡检机器人研究与开发南昌工程学院卢全国24长三角示范区数字孪生水网多场景应用关键技术研究太湖流域管理局水利发展研究中心蔡 梅25非接触式多维感知水利巡检与监测智能机器人研发福建省水利管理中心黄院生26安全智能研判与预警技术在数字孪生水利工程中的应用中国南水北调集团水务投资有限公司李恒义27贵州地区库坝工程的综合风险分级与数字孪生模型开发研究贵州省大坝安全监测中心余再康28基于生产建设项目水土保持数据基础上的方案智慧决策系统研究与实现水利部沙棘开发管理中心(水利部水土保持植物开发管理中心)张文聪29数字孪生塔河试点建设关键技术研究与应用新疆维吾尔自治区塔里木河流域管理局张 强30数字孪生平台关键技术研发与应用武汉大学刘炳义31数字孪生流域-水利知识平台研究与建设中国水利水电出版传媒集团有限公司王 丽32基于数字孪生的百色水利枢纽工程安全运行关键技术研究水利部珠江水利委员会珠江水利综合技术中心王 康33数字孪生流域国产化平台研发及示范应用北京飞渡科技有限公司宋 彬34松辽流域水循环多源数据融合与孪生关键技术研究及应用松辽水利委员会水文局(信息中心)孔庆辉35数字孪生平台模型装配与知识管理关键技术研究长江水利委员会长江科学院王 敏36江苏省数字孪生流域智能中枢关键技术研究及应用江苏省水利科学研究院王 俊37基于低轨卫星的融合通信一体化遥测产品中海云科(北京)科技有限公司朱耀明38水利卫星星座运控与应用关键技术武汉大学张艳军39多维水利信息数字映射关键技术研究与示范应用水利部南京水利水文自动化研究所金有杰40黄河上游祖厉河流域水土流失数字孪生与治理关键技术研究兰州理工大学董建华
  • 我国建立常态化深海长期连续观探测平台
    近日,国际学术期刊《深海研究》以封面文章形式报道了中国科学院海洋研究所研制的多代深海坐底长期观测系统在我国南海冷泉区连续多年布放,实现了对该区域高清影像资料、近海底理化参数等数据的连续获取。LOOP在我国南海冷泉开展原位观测 海洋研究所供图深海热液/冷泉区域,是地球多圈层物质与能量剧烈交换的区域,同时也是极端生命发育生长的区域,逐渐成为多学科交叉的深海极端环境研究热点,是地球科学与生命科学的新结合点。然而,深海热液冷泉区域的生物群落变迁、演化以及与周围环境的相互影响均是长时序活动,目前,基于无人缆控潜器(ROV)、载人潜水器(HOV)等水下潜器的短时、随机考察无法满足以上过程的长时间连续观探测需求。为此,研究团队突破水下耐腐蚀技术、能源管理技术等关键技术,探索新型水下布放及回收模式,研制了多代深海坐底长期观测系统(Long-term ocean observation platform, LOOP),实现了对观测区域高清影像资料、近海底理化参数及保压流体样品等数据样品的综合获取。记者了解到,与以往的自由落体式着陆器不同,LOOP为实时视频指导的缆放式着陆器。布放时通过搭载的水下高清摄像头实时观测落点位置,通过科考船配合可较为精确地控制布放位置,并且在海底着陆后仍可通过同轴缆根据实际情况调整观探测参数,保障最优观探测效果。回收时通过同轴缆直接回收。LOOP在设计之初,已经考虑到各类商业化传感器、自研原位探测装备等科学负载的通讯、供电需求。团队研发的深海多通道激光拉曼光谱探测系统(Multi-RiPs)多次搭载深海坐底长期观测系统布放于我国南海冷泉区域,在“发现”号ROV辅助下,布放拉曼探头、进行原位实验,并进行长期、原位、连续探测。LOOP布放模式 海洋研究所供图据介绍,自2016年起,中科院海洋所研制的多代深海坐底长期观测系统已先后多次布放于我国南海冷泉区域,其中,单次最长连续布放天数达659天,有效工作时间为414天,累计水下布放时间1070天。通过获取的数据资料,研究团队发现盐度和溶解氧含量在冷泉喷口附近的水平和垂直方向上具有很强的空间异质性,环境参数的空间异质性可能是冷泉区域化能合成群落空间分布不均的主要驱动因素之一。据悉,深海坐底长期观测系统提供了一种创新、可控的布放和回收模式,有望成为原位、长期、连续通用水下观探测平台。
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。   新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。   美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。   加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。   据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。   本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。   模拟执行太空任务   据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。   当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。   据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。   训练海中溅落   哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。   在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。   据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
  • 强强联合打造前沿科研平台|上海凯来与南京大学国际同位素效应研究中心成立飞秒原位同位素技术合作实验室
    2024年8月15日,上海凯来仪器有限公司与南京大学国际同位素效应研究中心达成战略合作,正式成立《飞秒原位同位素技术合作实验室》,揭牌仪式在南京大学国际同位素效应研究中心(现代工程与应用科学学院大楼)三楼举行。 上海凯来仪器有限公司与南京大学国际同位素效应研究中心成立的《飞秒原位同位素技术合作实验室》,聚焦地球科学和行星科学中在高空间分辨率上亟待解决的关键科学问题,将联合研发飞秒原位同位素测试技术,包括碳酸岩碳氧同位素,有机碳同位素,黄铁矿硫同位素,叁氧和多硫同位素的微米级高空间分辨率原位高精度同位素分析测试方法。中心主任鲍惠铭教授、彭永波教授、上海凯来总经理胡勇刚、副总经理梁燕共同为联合实验室揭牌。 揭牌仪式现场中心主任鲍惠铭教授表示:“飞秒原位同位素技术合作实验室旨在加强原位同位素分析技术发展和方法开发。未来双方需要共同努力,推动技术创新和科研发展,为同位素效应理论与应用研究打开新的大门。”中心彭永波教授表示:“目前对全样样品的同位素研究已经到达极限,需要从微米级空间分辨率进行原位分析,从而寻求空间分辨率和分析精度之间的平衡发展。上海凯来全自研的国产飞秒激光剥蚀系统性能远超国际水平,与上海凯来的合作将为中心提供更多技术支持和创新动力,双方将共同努力打造前沿科研平台。”上海凯来胡勇刚总经理表示:“飞秒激光剥蚀系统短脉宽、低分馏的特点在原位同位素分析的应用前景广阔。GenesisGEO新型飞秒激光剥蚀系统是全国首台全自研国产飞秒激光系统,我们一直坚持创新自主研发,做靠谱的高端国产仪器。公司与南京大学国际同位素效应研究中心达成正式合作,期待通过双方在仪器开发优化、原位同位素技术方法开发等方面的紧密合作,在飞秒原位同位素研究领域取得创新和突破性成果。” 仪式适逢2024同位素效应研学营召开,本次课程为期两天,来自全国各个高校及研究机构的近百名参会代表参加课程,并共同见证了合作仪式。揭牌仪式结束后,中心实验室负责老师和上海凯来工程师带领现场参加揭牌仪式和参加暑期同位素效应研学营的老师同学们参观了中心实验室,并现场演示上海凯来自主研发的新型飞秒激光剥蚀系统。南京大学国际同位素效应研究中心国际同位素效应研究中心(ICIER)是国家级引进人才鲍惠铭教授全职回国在南京大学创立的跨学科的独立的研究中心。中心以研究同位素效应为核心,促进各学科的交叉,融合和突破,解决重大交叉科学问题为使命,涉及的主要学科包括:地球、行星,大气、海洋,环境,考古,生态,材料,生命等科学。凯来上海凯来成立于2004年,起始于专业代理国际先进分析仪器,定位为专业技术服务商,聚焦专业细分市场,目前已经成为多个领域的领导者。上海凯来总部位于上海临港新片区海洋科技创业园,设有应用演示及服务实验室,客户定制产品及研发中心,专注于推广和研发前沿的元素分析测试解决方案。目前在北京,武汉,成都,青岛设有应用实验室,并处于快速扩展中。公司文化:“只有精英才能生存”。
  • 迷你实验室“蹲点”东海海底
    在大小洋山附近15米深的东海海底,一座小型实验室不分昼夜地对身边的“所见所闻”进行着“实况转播”,“观众”则坐在几十公里外的同济大学实验室里细看“海景”。昨天,我国第一个海底综合观测试验与示范系统——东海海底观测小衢山试验站,通过了市科委组织的专家验收,标志着我国海底观测系统实现零的突破。   这座海底试验站常年无人值守,而由三台反应灵敏、功能各异的传感器“代为管理”。它们或“听”、或“看”、或“尝”,将各自感知到的海温、海压、流速、流向、盐度、浑浊度等数据,实时传回位于市区的实验室。自今年4月19日试运行以来,试验站已连续正常运行近70天,数据完整率达95%以上。   想象中宁静的海底其实不平静。借助迷你实验室的“实况转播”,研究人员用不着漂泊海上,就能及时捕捉各类海底大事的发生:海温骤变、污染、缺氧,甚至海底地震或海啸前兆。“形象地说,就是派人把长江口给看起来了,且全然不受天气的影响。”项目负责人、同济大学教授汪品先院士说,从海底实时传回的数据和曲线,关系着洋山港的生态环境安全。   让装备精密仪器的实验室潜入海底,将为人类认知地球提供一种全新的视角——如果说,从船上或岸上进行观测是从外面对海洋作蜻蜓点水式的“探访”,那么,在海底设站作长期实时观测就是深入到海洋内部“蹲点调查”。汪品先表示,从海底“向上”看,可以摆脱从海面“向下看”时所受的船时、天气等限制,科学家在大楼里即可通过网络实时监测自己的深海实验,命令实验设备冒险监测风暴、藻类勃发、地震、滑坡等各种突发事件。   作为地球科学第三种观测平台,海底观测网自上世纪90年代起,陆续吸引了各国政府的关注。比如由美、加两国共同实施的“海王星计划”,用3000公里光缆将上千个海底观测设备联网,通过30个节点连到陆上。未来,人们甚至可以对着电视机看海底火山喷发的“现场直播”。   据悉,小衢山试验站的建成,仅仅是我国海底观测系统建设从无到有的第一步。汪品先透露,目前科研人员正在长江口外的花鸟岛附近选址,为建设三四十米深的海底观测平台作准备。同时,在国家863项目支持下,我国还将在南海千米深的海底建设更大规模的深海观测系统。
  • 大连化物所关亚风等研制的三种深海原位荧光传感器海试成功
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " & nbsp 近日,我国三种深海原位荧光传感器工程样机在深海勇士号/探索一号TS16南海科考航次中,搭载“深海勇士号”载人潜水器先后11次进行水下试验,最大潜深达3497.6米。此三种传感器由中国科学院大连化学物理研究所微型分析仪器研究组(105组)关亚风研究员、耿旭辉副研究员团队与中国科学院深海科学与工程研究所(简称“深海所”)共同研制,深海所负责耐压水密封外壳的研发和海试。 /span br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8e566b26-b3bd-4d52-a9cd-1aaf3d6c49da.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 该系列传感器包括深海原位叶绿素荧光传感器、深海原位微生物荧光传感器和深海原位多环芳烃荧光传感器。此前,经深海所测试,此三种传感器均通过净水压力试验,最大工作深度均为4500米。本航次海试过程中,深海原位叶绿素荧光传感器共进行5潜次海底试验,最大试验深度为3497.6米;深海原位多环芳烃荧光传感器共进行3潜次海底试验,最大试验深度为3340.0米;深海原位微生物荧光传感器共进行3潜次海底试验,最大试验深度为2371.4米。该系列传感器分别测量了南海海水中从海平面到海底整个剖面的叶绿素a、微生物和多环芳烃的浓度。原位探测深海中叶绿素a的浓度,反映了深海中浮游植物生物量或现存量,是计算初级生产力的基础。原位探测深海中微生物的浓度,具有很高的科学研究价值和衍生的经济价值。原位探测深海中多环芳烃的浓度,有助于勘探海底原油溢油,具有重要的能源勘探价值。此次勘探所得数据为海洋生物、物理海洋等多学科研究提供了重要的原始数据。该系列仪器均属我国首套该类型的深海原位荧光传感器。其中,深海原位微生物荧光传感器也是国际首套该类型仪器。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/90a692f8-c50e-412c-9933-cf17f7162a8d.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " 该团队自21世纪初开展高灵敏荧光检测器及应用研究,该系列仪器的研发成功是该团队在深海极端条件应用的原位荧光探测技术研究方面的重要进展。该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,中国科学院大连化学物理研究所负责深海原位有机组分气相色谱-质谱联用仪与荧光传感器的研发。 /p p style=" text-indent: 2em " strong 关于“深海/深渊智能技术及海底原位科学实验站”专项 /strong /p p style=" text-indent: 2em " 中国科学院A类战略性先导科技专项 “深海/深渊智能技术及海底原位科学实验站”于2018年11月正式启动(简称深海智能技术专项),执行周期为五年,牵头单位为中科院深海所,参与单位包括多家中科院院内及院外单位。 /p p style=" text-indent: 2em " 加快打造深海研发基地、发展深海科技事业、推动海洋强国建设,中科院论证启动了深海智能技术专项。通过专项的实施,产出重大原创成果,坚持自主可控、自主发展,重视成果转化应用,实现深海/深渊长周期、无人原位科考,促进我国深海技术从“平台时代”向“平台+载荷时代”转型。 /p p style=" text-indent: 2em " strong 项目执行时间: /strong /p p style=" text-indent: 2em " 2018年10月-2023年10月 /p p style=" text-indent: 2em " strong 参与单位: /strong /p p style=" text-indent: 2em " 声学研究所、大连化学物理研究所、金属研究所、海洋研究所、中国科学技术大学等 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/202004/uepic/2be48132-ad69-441a-a985-e3619efd04b2.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " “探索一号”科考船 /span span style=" text-indent: 2em color: rgb(127, 127, 127) " (图片来源于中科院深海所网站) /span /p p br/ /p
  • 1100万!中国科学院海洋研究所高分辨率原位质谱成像系统等采购项目
    一、项目基本情况1.项目编号:OITC-G230661389项目名称:中国科学院海洋研究所海洋生物微区原位代谢组学研究平台(区域中心)高分辨率原位质谱成像系统采购项目预算金额:550.0000000 万元(人民币)最高限价(如有):550.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包高分辨率原位质谱成像系1套550万人民币拟购置的高分辨率原位质谱成像系统主要用于小分子代谢物、短肽或蛋白的鉴定、定量及成像分析功能。具体而言,可以针对各种海洋生物细胞或组织开展各类分子如脂类(磷脂:PC、PE、SM、SE)、多肽、代谢物、药物及代谢产物等数百种分子的同时成像;能实现物质筛选与鉴定同时进行,目标分子可进行多级质谱分析,准确鉴定其组成与结构;实现高空间分辨率、高质量精度、高质量分辨率的非靶向性快速检测,且无需任何标记。合同签订后8个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后8个月内交货。本项目( 不接受 )联合体投标。2.项目编号:OITC-G230310496项目名称:中国科学院海洋研究所2023改善科研条件专项-深海岩芯原位分析测试平台微区X射线荧光光谱仪采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包微区X射线荧光光谱仪1套300万人民币可以对岩心、矿石、沉积物等进行多元素分布成像,还可以自动识别2000多种矿物,进行矿物分布成像、矿物分类统计,突破了以往数字化测试的局限,通过成像的方式带给科研人员元素和矿物分布信息。采购的设备需满足元素分布成像、矿物分布成像功能合同签订后5个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后5个月内交货。本项目( 不接受 )联合体投标。3.项目编号:OITC-G230610913项目名称:中国科学院海洋研究所2023改善科研条件专项-深海岩芯原位分析测试平台场发射扫描电镜及能谱系统采购项目预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包场发射扫描电镜及能谱系统1套250万人民币场发射扫描电镜及能谱系统基于扫描电镜的微观形貌和能谱得到的元素分布扫描,全自动快速得到目标材料样品(包括矿物岩心、海底岩石、沉积物、废石废物、冶炼残渣、金属制品、陶瓷器等)的夹杂物(矿物)分布与组成、元素分布信息和夹杂物(矿物)的颗粒尺寸等,配合相关设备,可进行化学和成分分析。合同签订后12个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后12个月内交货。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月04日 至 2023年07月11日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:登录“东方招标”平台http://www.oitccas.com注册并购买。方式:登陆“东方招标平台”(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院海洋研究所     地址:青岛市市南区南海路7号         联系方式:王老师;0532-82898629       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李雯、王军、郭宇涵; 010-68290530;010-68290508            3.项目联系方式项目联系人:王老师电 话:  0532-82898629
  • 首届原位电离质谱学术会议在厦门召开
    仪器信息网讯 2013年4月2-3日,中国首届原位电离质谱学术会议在美丽的厦门召开,150位来自国内外高等院校、科研院所、政府检验监督机构以及仪器企业的代表参会。 会议现场   “绿色”、“快速”、“无损”、“原位”代表了分析检测行业的新的发展方向,其中以原位电离质谱(Ambient Ionization Mass Spectrometry,AIMS)技术为代表的分析方法逐渐兴起,以其经济、准确、无污染、即时的优势在行业内逐层渗透,开始影响未来分析检测技术的开发和利用。自几年前商业化原位电离质谱技术在中国市场上出现以来,已经有一批知名学者在使用该技术,并陆续取得不少研究成果。预计未来会有更多人关注、使用和发展该技术。   为了响应原位电离质谱技术在中国范围内日趋扩大的影响力,中国质谱学会主办、华质泰科生物技术(北京)有限公司承办了此次会议,会议宗旨是共享新理念、研讨新热点、交流新经验,推动实时科学与质谱行业的整体发展。 中国质谱学会理事长李金英致开幕词   会议由大会报告和主题培训两个版块组成。大会报告涉及的主题有:原位电离质谱技术前沿与基础研究、原位电离质谱技术的应用、原位电离质谱技术方法开发初探及原位电离质谱技术产业化趋势等。   围绕以上主题,中科院长春应化所刘淑莹研究员等多位专业人士作了大会报告,报告总数共达22个,提及最多的是原位电离技术尤其是DART(实时直接分析)及其应用,还有少量报告涉及的是DESI(解吸电喷雾离子化)、DAPCI(表面解吸常压化学电离源)等其它原位电离技术,研究中所用的样品的范围也较为广泛。 报告主题:DART电离源中的化学反应及人参活性成分分析-机理探讨 报告人:中科院长春应用化学研究所、吉林省人参科学研究院刘淑莹研究员 报告主题:DART的艺术:实时直接分析、茶叶快速识别 报告人:IonSense公司总裁Brian Musselman博士 报告主题:DART和Chip-Based ESI MS在中药复方制剂研究中的应用 报告人:中国药科大学盛龙生教授 报告主题:凝胶电泳胶内蛋白质的直接原位电离质谱分析 报告人:复旦大学杨芃原教授 报告主题:蔬菜水果中有机磷农药残留的快速DART-MS分析初探 报告人:中国农业大学潘灿平教授 报告主题:DART-MS与液相色谱和毛细管电泳的联用分析 报告人:北京大学刘虎威教授 报告主题:DART-MS在中药研究及新生儿疾病筛查中的应用 报告人:中科院长春应用化学研究所宋凤瑞研究员 报告主题:DART在法庭科学方面的应用 报告人:公安部二所物证鉴定中心   会议期间,本网编辑采访了多位专家和学者,他们一致认为原位电离技术的显著优势就是更直接、更快速,省去了样品制备的时间或者仅需要简单的样品前处理,而整个样品分析时间更是有了显著的缩短,与液质联用技术相比,以往需要几个小时才能完成的工作现在仅需不到半小时就能完成。当然,该技术目前在灵敏度及重现性上仍有一些不足。总之,整体而言,原位电离技术代表了一种新的技术发展方向,其快速、操作简便、低消耗的特点使其有了显著独特的优势,参加此次会议的不少听众是因为对DART等原位电离技术感兴趣而来,会议全程都在用心聆听或交流。   此外,关于“原位”的定义也被众多与会者所关心,这关系到大家所共同探讨的技术的范围界定问题,该术语的来源是英文Ambient,目前在国内存在几种译法,常见的如“常温常压敞开式”,包括了DART、DESI、DAPCI等,通过这次会议正式以“原位”二字将这类技术统一起来,这也是几位专业人士在探讨时产生的,意在表达样品在原位直接电离的意思。   赛默飞、安捷伦、华质泰科、PEAK、上海创和亿、绿绵科技赞助了此次会议。仪器信息网、丁香园、色谱网、分析测试百科网为大会支持媒体。   根据承办方华质泰科CTO刘春胜博士介绍,虽然是首次举办这类会议,但从现场情况及效果来看还是很成功的,演讲报告水平高,有不同技术层面的碰撞,交流氛围良好,明年将继续举办该会。 参会者交流
  • 145万!山东大学全自动免疫组化及原位杂交染色科研平台采购项目
    项目编号:SDJDHF20220450-Z219/HYHA2022-2547项目名称:山东大学全自动免疫组化及原位杂交染色科研平台采购采购方式:竞争性磋商预算金额:145.0000000 万元(人民币)最高限价(如有):145.0000000 万元(人民币)采购需求:采购全自动免疫组化及原位杂交染色科研平台,具体参数详细见“第四章 采购内容及项目要求”合同履行期限:自合同生效之日起至本项目质保期满为止。本项目( 不接受 )联合体投标。凡对本次采购提出询问,请按以下方式联系。1.采购人信息名称:山东大学地址:山东大学中心校区明德楼联系方式:王老师0531-883697972.采购代理机构信息名称:海逸恒安项目管理有限公司地址:山东省济南市历下区华润置地广场A5-6号楼27楼招标三部联系方式:徐玉镯、吕宁、李雨莹0531-82661997、187658755653.项目联系方式项目联系人:徐玉镯、吕宁、李雨莹电话:0531-82661997、18765875565全自动免疫组化及原位杂交染色平台-附件.pdf
  • 采用大连化物所技术的国内首台4500米级深海原位荧光传感器海试成功
    p   由大连化物所关亚风研究员、耿旭辉副研究员带领的微型分析仪器研究组与中科院深海所共同研制的我国首台4500米级深海示踪剂原位荧光传感器工程样机于2月18日海试成功,大连化物所于近日收到设备参航证书。 /p p   在深海勇士号/探索一号西南/中印度洋TS10-03科考航次中,该工程样机搭载“深海勇士”号载人潜水器SY145潜次进行海底试验,最大试验深度为2450米。该仪器是我国首台应用于深海原位探测的荧光传感器,它的成功研发将提升我国对深海中目标流的轮廓和分布范围,包括对冷泉、热液羽流扩散的探测能力,具有重要科学价值。 /p p br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 415px " src=" https://img1.17img.cn/17img/images/201912/uepic/b6f61c9a-9698-47fe-a775-b6eabfc79c8b.jpg" title=" 297b308acbabd1e4c93f9dd3d14cff7d.jpg" alt=" 297b308acbabd1e4c93f9dd3d14cff7d.jpg" width=" 600" height=" 415" border=" 0" vspace=" 0" / /p p   基于大连化物所微型分析仪器研究组在高灵敏荧光检测器多年的学术积累,该仪器进一步提高了检测灵敏度,检测灵敏度与国际上最高水平相当。另外,在深海条件下,仪器面临高压(约245个大气压)等极端条件,这对传感器的性能提出了苛刻的要求。该团队与中科院深海所合作,通过科学设计,反复验证,成功研发出满足深海极端条件应用的原位荧光传感器。   /p p   该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,大连化物所负责深海原位有机组分气相色谱-质谱联用仪与荧光传感器研发。 /p
  • 感知海底2万里 新设备助力海底地震探测
    p & nbsp center img alt=" " src=" http://news.sciencenet.cn/upload/news/images/2017/7/20177241010489020.jpg" width=" 500" height=" 382" / /center p /p p style=" TEXT-ALIGN: center"   Jerry Paros发明的石英传感器,将把海底监测的精确度提高到1厘米。 /p p   家住华盛顿州的Jerry Paros担心大地震就像一颗定时炸弹威胁着邻居和自家。因为美国西海岸正好处在环太平洋地震带上。但与其他数百万干着急的人不同,Paros尝试用实际行动抵御风险。他的公司发明了用于地震监测的石英传感器。该传感器最初用于化石能源开采等行业,现在,Paros打算用它帮助全世界免遭自然灾害的影响。 /p p   现年79岁的Paros在办公室展示了他的发明:在一个排球大小的金属架内部,传感器通过上下移动感应大气压力的微小变化,甚至开关门造成的气压变化都能被它捕捉到。在海底,该设备能感应水压的变化,从而推测海底深处的震动。 /p p   Paros希望打造一个海洋地震预警系统。他向华盛顿大学捐赠了200万美元资金,与大学科研人员在太平洋西北海岸海域进行测试。日本和智利等许多沿海国家也在研究海底地壳活动监测技术,安装测试各种传感设备。 /p p   多年来,海底的断层运动一直让地球物理学家感到棘手,地球70%的表面被水覆盖,标准探测工具在海洋环境中毫无作用。Paros创造的传感器让无计可施的地球物理学家第一次有机会探测海底活动。这些传感器网络可以揭示哪些海底断层是无害的,哪些有可能在为下一次大地震积攒能量。 /p p   “它将帮助我们定位活动区域,这正是我们此前办不到的事。”华盛顿大学海洋学家Emily Roland说。 /p p   沉睡的巨人 /p p   当Paros于1970年迁来华盛顿州时,他并不了解西北太平洋沿岸地震频发的危险。 /p p   该地区有记录以来最大的地震发生在1949年4月13日。当时,华盛顿州奥林匹亚市发生了7.1级地震。但从1980年代开始,研究人员发现南起加州北至英属哥伦比亚,北美洲整个西海岸都面临着9级强震和大海啸的威胁。危险根源来自距海岸50公里远的海洋底部,这个位置下面正是板块交界处。 /p p   卡斯卡迪亚俯冲带长达1000公里,是环太平洋火山地震带的一部分。海底俯冲带曾导致有记录以来的多次超级地震,其中包括1960年的智利9.5级大地震。1700年,卡斯卡迪亚发生海底强震,估计强度达到9级,地震引起的海啸让北美沿岸深受重创,太洋另一端的日本也受到波及。 /p p   卡斯卡迪亚俯冲带就像一颗定时炸弹让科学家提心吊胆。谁也不知道下次地震什么时候到来,可能是明天,也可能是数世纪以后。目前,科学家监测了其他俯冲带的地质活动,并通过监测小型地震的模式评估未来强震的风险。 /p p   加拿大地质调查局地震专家Kelin Wang称,卡斯卡迪亚俯冲带通常十分平静,近年来只检测到很少几次轻微震动,暗示该地区的板块运动处于平静期。这使得卡斯卡迪亚成为一个沉睡的巨人,同时也是一个危险的巨人——波特兰和西雅图等城市的命脉把握在它手上。 /p p   在陆地上,工程师可以使用全球定位系统(GPS)测量跟踪细微的地质运动迹象,包括火山爆发前山体周围地面的隆起,或者石块沿地质断层滑动,例如加州的圣安地列斯断层。但在海底进行地质运动监测则困难且昂贵。直到近几年,得益于监测工具和部署方式的创新,海底测量学才逐渐赶上陆地测量水平。 /p p   从新西兰、日本再到智利,各国的地球物理学家都在试图了解长期地质运动的风险,并在地震和海啸发生之初及时发布警报。大部分此类工作都基于政府资助建立的海底传感器网络,另外也有少部分由Paros这样的私人出资建造。Paros在俄勒冈州沿岸的海域安装了6个石英压力传感器,监测卡斯卡迪亚俯冲带运动状况。 /p p   科学家根据地表GPS测量得出了两个不同的卡斯卡迪亚俯冲带运动模型。其中一个显示,下降板块的活动十分缓慢,在整个过程中释放出压力。另一个认为,两个板块被锁定在一起,产生了压力积聚的危险。 /p p   释放压力 /p p   人们无法仅通过陆基仪器判断这两个模型正确与否。“我们不知道板块锁定到了什么程度,所以才需要海上测量。陆基测量已经不够用了。” Wang说。 /p p   海洋学家时常在卡斯卡迪亚海底安装监测仪器,但只能“撒撒胡椒面”。华盛顿大学和加州斯克利布斯海洋研究所联合组建的科研团队正尝试建立一个能够在时间维度上测量海底运动的系统,并从中评估威胁的性质。Paros的石英传感器在这项工作中扮演关键角色。 /p p   Paros在50年前就开始研发能够测量加速度、压力变化和温度等物理因素的石英传感器。其部署在海底的传感器能测量其上的水压变化,在纠正了波浪和潮汐带来的干扰之后,海洋学家能将海底的上下移动精确到1厘米。 /p p   Paros的公司是制造海洋压力传感器的公司之一。而他自己具有商业和科研的双重背景,现在已与当地的地球物理学家打成一片。华盛顿大学海洋地球物理学家William Wilcock表示:“Paros喜欢与工程技术人员和科技工作者进行互动,一心一意达成目标。” /p p   早在1983年,Paros的传感器就参与了美国国家海洋和大气管理局的海啸观测系统,对太平洋地区的海洋运动进行监测。2004年印尼发生大海啸,他向华盛顿大学捐赠100万美元促进传感器网络的研发。在这笔捐赠以及2012年的另一笔100万美元捐款的帮助下,大学研究人员设计和测试新一代海底压力传感器。研究人员将搜集到的数据与数学模型进行对比,有望在十年内对海底断层状况得出结论。 /p p   不过,即便是最好的压力传感器,也只能揭示海底板块上下维度的运动,而无法检测到水平方向的位移。研究者使用另一种手段弥补这一不足。 /p p   科学家在海底以两三公里的间隔放置转换器。每隔差不多1年,科学家就测定转换器的准确位置信息。通过计算信通过海水的时间,研究者可以判断与上次测量时相比,海底是否发生了水平移动。 /p p   倾听运动的声音 /p p   目前,这种海底声学测距技术被广泛应用在世界各地。德国亥姆霍兹海洋研究中心在2015年为智利沿岸俯冲带上安装了这样一个传感器网络,帮助智利政府监测地震威胁。日本海岸警卫队每年会投入几个月的时间收集自数十个国家海岸线上的数据。而斯克里普斯研究所地球物理学家David Chadwell尝试使用自动航行的机器收集数据以减轻运行成本。 /p p   为了解卡斯卡迪亚俯冲带隐藏的实际危险,地球需理学家需要部署多种工具,包括地震仪以及分别用于海洋和陆地的大地测量仪器。关于仪器放置的位置以及如何得到最佳数据,侧重基础研究的科学家和那些专注地震、海啸预警的研究者之间存在分歧。而华盛顿大学希望新的网络能够同时满足这两个群体的需要。 /p p   “我们需要也能够让这些科学设备服务多种目的,例如增进科学知识和监测灾害。”华盛顿大学地震学家Heidi Houston说。 /p p   目前,卡斯卡迪亚俯冲带已有两个基本监测系统。海洋观测计划电缆阵列用一条长达900公里的线缆往返连接俄勒冈州海岸和一处海底火山。在加拿大那边,加拿大海洋网络有一条长度类似的线缆连接到海底俯冲带。两条线缆在布线沿途都连接有各种测量仪器。 /p p   而新方案的规模要比现有方案大的多,更类似于去年完工的日本DONET-2海底监测项目。日本横滨大陆海洋科学与技术局天文台副主任Katsuyoshi Kawaguchi表示,DONET-2骨干线缆长达500千米,沿途连接29个独立监测点。 /p p   此外,日本目前正在建设第二个规模更大的海底监测项目,计划铺设5700千米的海底线缆,连接150个监测点。这两个观测系统的数据将汇入日本全国地震和海啸预警系统。 /p p   未来某天,Paros或许能看到他的传感器遍布卡斯卡迪亚海域,成为自然灾害监测网络的一部分。近日,华盛顿大学的工程师在加州蒙特利湾的一个小型有线海底监测站部署了一套新传感器,并将在那里对传感器进行数月测试。 /p p   “我一直在做西西弗斯式的事,试图将巨石推向山顶。” Paros说。“我只是想播下种子证明这是可行的,同时希望政府认识到这是一个重要的公众安全议题。” /p /p
  • 中海达实现高端水下测量国产化
    2014年,江苏中海达(300177)海洋信息技术有限公司选址落户在江北新区智能制造产业园北斗大厦,开始在导航定位技术、水下声呐技术、无人平台技术等相关领域发力突破。而在当时,水下测量领域几乎被海外产品垄断,海外产品市场占有率达95%以上,并且价格昂贵。中海达的目标就是“实现高端水下测量国产化”。  水下放大镜——  声学多普勒流速剖面仪  “我们的征途是星辰大海!”中海达海洋公司常务副总经理周正朝在谈及公司主营业务时说道。既然踏上征途,那么一定要有“硬核科技”加持,才能让星辰大海的奥秘熠熠生辉,而这一切的基础便是声呐技术。  “利用声波在水下的传播特性,通过电声转换和信息处理,完成对水下目标进行探测、定位和通信,这也就是我们俗称的声呐。”周正朝介绍,这款声学多普勒流速剖面仪(ADCP)通过换能器向水中发射超声波脉冲,并接受水体反射信号,获取水中颗粒物的运动轨迹和水体分层流速信息,从而测量出水流的速度。  据了解,这款ADCP由中海达海洋公司自主设计、研发和生产,是国内首个量产化的产品。其作为水文行业流速、流量测验的利器,目前广泛运用在河流、航道流量测验及海上流场水文调查等领域。  “安全、可靠、便捷、精确,是我们研发产品的核心追求。我们相关产品的综合性能已经达到国际先进水平。”周正朝表示,企业以ADCP为主力,配合中海达的其它产品,无论是面对高泥沙还是大流量,都能应对自如。  位于山东省济南市泺口镇黄河大堤南岸的泺口水文站,常年为国家防总和黄河防总测报水情,由于汛期来临,受黄河上游调水调沙及冲刷的影响,黄河山东段的河水含沙量大,流速和流量增加,使得泺口水文站一直面临在较大含沙量环境下测流的难题。  “面对这样的情况,我们除了配备专业的ADCP,还派出了我们研发的最新测深仪和定位定向仪。中海达海洋公司推出“全明星”(改单引号)阵容,最终克服大含沙量的恶劣条件影响,完成了测量作业任务。”周正朝自豪地说。  乘风破浪向前去——  iBoat智能无人测量船  “要ADCP发挥出功效,所用载体平台非常重要。”周正朝说,这就要瞧瞧我们的iBoat智能无人测量船了。  中海达iBoat系列智能无人测量船,配备中海达测深仪,及HiMAX控制测量集成软件。船体采用载重型三体船设计,拥有阻力小、载重大、航行平稳、小巧轻便、可单人作业、运输方便等特点。“如果是使用传统航标船测量的话,体积大、油耗高自不用说,而且需要配足人手,无法进行单人操作。现在有了无人测量船,一个人就能搞定。开车的话,直接把船放在后备厢就行,简单便携。”  至于动力,中海达iBoat系列智能无人测量船标配智能化电池,高度集成,超大容量,而且外置可拆卸,更换电池只需三分钟。“所有测量结果都可以一体化导出,效率大大提升。”透过周正朝手持的控制台,所有信息在显示器上一目了然。  这款酷炫的无人测量船现在已经广泛应用于内陆水域的河道断面测量、水库库容测量、淤积土方测量、港口施工测量、航道水深测量等专业领域。  在安徽省怀远县境内的淮河河道,中海达iBoat系列智能无人测量船承担着水下地形测量的重任。在作业过程中,iBoat BSA智能无人测量船既可以自动生成航迹线,又可以现场手动布线。所谓手自一体,也在无人测量船上实现。当经过复杂水域环境时,iBoat BSA智能无人测量船能轻松穿越水上树林,获取水深数据。  通过作业,iBoat BSA智能无人测量船获取了高精度的水下地形测量成果,为淮河流域的河道管理、非法采砂治理等工作的科学决策提供了可靠的数据依据。  侧扫声呐上阵——  水下无秘密  除了声学多普勒流速剖面仪和无人测量船,中海达海洋公司还自主研发了单波束测深仪、双变频测深仪、浅水多波束测深仪、惯性导航系统、侧扫声呐等专业设备。  近期,在东海某海域海上风电装机的升压站周边基础地形和海底电缆路由监测任务中,中海达海洋公司投入多台设备进行协同作业,对浅埋海底电缆进行搜寻、探测,并评估其冲刷状况,从而获取更加详实、精确的水深地形数据及水下结构图像。  “iSide 5000多波束侧扫声呐兼具低速和高速两种模式。低速模式为单波束双频侧扫,高速模式为高频多波束侧扫。一般的产品会随着量程的增加导致分辨率下降,但这款产品就能做到高速高分辨力全覆盖侧扫。简单来说,就是出来的图像更清晰,工作覆盖的监测范围更大、更精确。两种模式的搭配使用好比汽车的闭缸技术,既能做到高品质,又兼顾经济实用。”周正朝介绍。  随着产品技术和质量的不断提升,作为国产高端水下探测装备的中坚力量,中海达海洋公司的许多产品也已走出国门,远销海外。“希望通过我们的努力,为国家在海洋探测和水文水利领域提供先进的科技支持和保障,也希望能有更多的人在我们产品的助力下,去深入了解大川大河,浩瀚碧海。”周正朝说。  江河湖海,孕育生命万物,塑造人类文明。作为这颗蔚蓝星球上普遍又神秘的存在,其最深处的景色无时无刻不在召唤着我们。一切正如凡尔纳所言:“这是一种超自然而又神奇的生命载体,它是运动,是爱,像一位诗人所说的,是无垠的生命。”  中海达海洋公司所研制的海洋探测和水文水利产品,如同一艘艘承载梦想和使命的鹦鹉螺号潜艇,有了它,我们能更加轻松、便捷、从容地化身为阿龙纳斯教授和尼摩船长,潜入那令人心驰神往的水波,漫游在海底两万里。
  • 他们用大科学装置为海底“拍CT”
    文 | 《中国科学报》 记者 沈春蕾近日,中国海洋石油集团有限公司(以下简称中国海油)发布消息称,“海洋石油720”深水物探船搭载我国自研的海洋拖缆地震勘探采集装备“海经”系统,首次完成超深水海域地震勘探作业,并发布了我国首张超深水三维地质勘探图,使我国成为全球第三个拥有全套海洋地震勘探拖缆采集装备的国家。而上述成果背后离不开一家成立不满两年的初创公司——合肥中科采象科技有限公司(以下简称中科采象),他们为“海经”系统提供了技术支持。不久前,《中国科学报》记者来到中科采象的“新家”——合肥中安创谷科技园主楼的38层,这里本是园区自留的办公地点。“我们刚从中国科学技术大学先进技术研究院搬到这儿不久,能找到这么好的办公区得感谢合肥市高新区科技局的帮助和中安创谷科技园园区的支持。”中科采象总经理张可立说。一家看似名不见经传的初创公司凭什么能参与深海油气勘探关键核心技术装备的研制?这家公司又是如何获得当地政府创业扶持的?工作人员调试海底地震勘探采集装备“海脉”。受访者供图 “上天、入地、下海”海洋地震勘探采集装备研制需要多学科融合,行业门槛高、技术难度大。全球各大物理勘探服务公司纷纷投入巨额资金,开展海洋地震勘探采集相关核心装备的研发制造,且不对外售卖核心技术,从而确保其在行业发展的优势。“在海洋地震采集装备研制领域,我们毫无经验可以借鉴,必须探索一条全新的自主化发展之路。”张可立介绍道,中科采象获得参与研发资格还得从公司早年的技术积累说起。2005年4月,中国科学院高能物理研究所与中国科学技术大学近代物理系共同创办了核探测技术与核电子学联合实验室。2013年11月,核探测技术与核电子学联合实验室通过了建设验收,获批核探测与核电子学国家重点实验室。“核电子学技术可以应用于‘上天、入地、下海’,无所不能。”张可立举例说,“‘上天’我们有‘悟空号’暗物质粒子探测卫星,‘入地’我们可以为四川锦屏山地下2400千米的实验室提供先进探测器,“下海”的应用包括深海原位探测、深水油气地震勘探装备等。”中科采象的核心成员均来自核探测与核电子学国家重点实验室,先后参与了北京谱仪BESIII重大升级改造、中国散裂中子源反角白光中子实验装置建设、深海原位科学实验站建设等,其间积累的技术为行业应用做了充分的准备。为了开展自主化海洋地震采集装备的研制,打破技术限制和价格垄断,在国家“863”计划和中国海油的长期持续资助下,核探测与核电子学国家重点实验室科研团队将大科学装置的高能物理实验信号采集、时间测量和系统同步等技术,应用于解决国家海洋油气勘探的关键难题,打造了国内首台海洋物探设备样机。以“海经”为例,其固体拖缆采集系统由中科采象创始人、中国科学技术大学副教授曹平带领科研团队联合中海油田服务有限公司自主研制。该装备突破了进口设备12.5米通道间距精度的限制,能对数公里深的海底地质层进行精确三维成像。赋权改革试点的产物在科技成果转化和产业化的道路上,核探测与核电子学国家重点实验室一直在探索中前行。2017年,核探测与核电子学国家重点实验室在中国科学技术大学先进技术研究院成立先进测量仪器应用工程技术中心。张可立介绍,先进测量仪器应用工程技术中心组建了由科学家群体牵头的专业化、专门化研发团队,成功解决了数据采集装备批量生产和质量评测等工程工艺难题,形成了多达数百个关键工艺节点的制造流程体系,打通了传统校企合作的“堵点”,为产业链凝聚了队伍、留住了人才。“先进测量仪器应用工程技术中心成立后,研发团队研制出我国首台全新一代高精度深水油气地震勘探数据采集核心装备——海亮II型固体拖缆采集装备。”张可立介绍,该装备最大作业深度达100米,可实现深拖、斜缆宽频等特殊作业模式,性能稳定,采集成像效果优异,将我国海洋物探采集装备技术提升至国际先进水平。2019年,上述油气装备成果入选合肥综合性国家科学中心重大科技成果和中国科学院70周年院庆创新成果展。2020年,列装在6缆物探船上的“海亮”系统首次在渤海高密度作业的商业应用中取得成功。在应用领域小试牛刀后,科研团队迎来了科技成果转化的利好消息。2020年,科技部等9部门联合印发《赋予科研人员职务科技成果所有权或长期使用权试点实施方案》,中国科学技术大学成为全国试点单位之一。张可立记得赋权改革试点公布不久,中国科学技术大学就提出了“赋权+转让+约定收益”创新模式,学校将职务科技成果所有权赋予科研团队,团队以作价入股方式成立转化公司,学校以科技成果的20%与科研团队约定收益,而不持有转化公司股权,实现了成果转化从“分粮”到“分田”的重大突破。在此政策背景下,曹平带领团队成立了中科采象。今年3月,中科采象作为唯一一家企业代表,受邀参加科技部召开的赋予科研人员职务科技成果所有权或长期使用权试点工作推进会议。“赋权改革大大加快了科技成果转化进程和高端装备的产业化进程,促进大科学装置‘沿途下蛋’,即将装置在建设、运行过程中衍生的技术,及时转移转化。”张可立说。为海底地层做扫描“海上的石油勘探首先需要物探船用地震勘探的方法扫描整个地质层构造。”张可立告诉《中国科学报》,高精度深水油气地震勘探数据采集装备如同一台巨大的CT机(计算机X射线断层摄影机),扫描海底地质构造,从而获得油气藏的位置与形态。中科采象技术团队在数据采集系统架构、超大范围时钟精确同步、高性能数据采集和长距离传输、大容量数据实时读出等方面做了系统性研究,形成一套完整的大型海洋油气勘探装备关键核心模块的研制体系。张可立告诉记者,2022年,中科采象参与完成了亚洲最大12缆物探船“海洋石油720”的大型深水油气地震勘探采集装备列装,意味着国产装备成功替代进口装备。今年7月,我国自主研发的海底地震勘探采集装备“海脉”在渤海海域投入使用,该装备由中科采象和中海油田服务有限公司联合研发。“‘海脉’装载的海底地震勘探采集装备能够捕捉到万米地层的地震波信号,该信号相当于蚊子声1/150大小,据此可以描绘出高清油气藏数据信息。这标志着我国在高端海洋油气勘探技术上迈出关键一步。”张可立说。目前,中科采象已参与完成包括万吨级国产物探船在内的多艘大型物探船的列装,使之全面进入产业化进程,解决了长期制约我国海洋油气物探的关键技术难题,使我国摆脱了海洋物探高端装备长期依靠进口的局面。除了在高端海洋油气地震勘探装备方面的应用,中科采象的模块化技术与仪器也在更多的领域与行业形成拓展应用。张可立告诉记者,中科采象在模块化仪器方面已形成信号处理系列产品、授时及同步触发系列产品、通用化数据读出主机等,并依据开源模块化仪器技术,研发了超高速多通道数字化仪、时间测量仪等高端仪器。
  • 谱尼测试获“江苏省中小企业公共服务示范平台” 授牌认定
    近日,由苏州市工信局指导,苏州工业园区管委会主办的专精特新“小巨人”培育系列活动启动仪式暨江苏省中小企业公共服务示范平台授牌仪式成功举办。   为促进中小企业公共服务平台高质量发展,提升中小企业公共服务能力水平,会议对获认定为“江苏省级中小企业公共服务示范平台”的企业进行了现场授牌。谱尼测试凭获“江苏省中小企业公共服务示范平台”授牌认定。   此次获得授牌,是对谱尼测试多年来精心打造服务平台,优化提升服务水平,长期积极推动中小企业创新发展的极大认可。本次会议由各级领导及苏州工业园区行业协会、专精特新企业、中小企业公共服务示范平台代表等70余人参会。中小企业公共服务示范平台是经江苏省工业和信息化厅认定,为中小企业提供信息、技术、创业、培训、融资等公共服务,业绩突出、公信度高、服务面广,具有示范带动作用的服务平台。   近年来,谱尼测试为提升中小企业成长韧性,精准对接“专精特新”企业需求,紧密围绕江苏省战略性新兴产业,不断加强食品安全、生命健康、医学医疗、新能源汽车、节能环保、计量校准等领域检验检测能力建设提升,强化产业链支撑水平;全面提升线上线下检验检测委托服务能力,确保为中小企业提供窗口星级服务、客户一站式服务,切实贯彻惠民利企政策,通过减免检测收费,帮助企业降本减负。   下一步,谱尼测试将继续秉承使命和初心,依托科研优势和专业人才优势,进一步加强公共服务平台建设,提高资源整合能力和示范引领作用,积极承担政府部门委托的各项任务,主动开展公益性服务活动,加速检验检测技术的推广应用,为中小企业提供针对性服务,搭建中小企业专业化服务生态圈,为推动区域产业集群建设及社会经济的高质量发展贡献更多力量。
  • 首都科技条件平台—北京师范大学基地 “百进千”对接会在京成功举办
    p strong 仪器信息网讯 /strong & nbsp 6月5日下午,首都科技条件平台—北京师范大学基地“百进千”对接会在北京成功举办,会议由首都科技条件平台北京师范大学研发实验服务基地、北京师范大学科技集团主办,首都科技条件平台检测认证领域中心& nbsp 、首都科技条件平台生物医药领域中心、首都科技条件平台顺义工作站和首都科技条件平台门头沟工作站协办,并邀请了10多位专家,20多家企业代表共计60余人参加。本次会议旨在切实有效推动首都科技条件平台“百家实验室进千家企业”即简称“百进千”活动的全面深入开展,实现由支持科技资源开放方向转变为支持需求方向的拓展。会议由首都科技条件平台北京师范大学研发实验服务基地副主任常崇艳主持。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/b8be7d0a-6b21-41da-9f99-84f7ccd3d7e7.jpg" title=" 724201386.jpg" alt=" 724201386.jpg" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/7e9a02fa-cce7-4f5f-a057-a6d21199d150.jpg" title=" 企业微信截图_15601514203050.png" alt=" 企业微信截图_15601514203050.png" / /p p style=" text-align: center " 对接会现场 /p p & nbsp & nbsp 会议开始北京师范大学研发实验服务基地李崧主任对平台和基地情况做了介绍,并对大家的到来表示了欢迎。接着原科技日报北京记者站站长晏燕发表了讲话,对首都科技平台和北京师范大学基地的工作表示了认可,晏燕指出科学成果转化的最重要的就是诚信文化,首都科技条件平台的文化经过10多年的发展已经比较成熟,希望继续保持并吸引更多的成员加入进来。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/ca55b0e5-ea7f-42bc-a892-08d1b20e435b.jpg" title=" li.jpg" alt=" li.jpg" / /p p style=" text-align: center " 北京师范大学研发实验服务基地& nbsp 李崧主任 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/3fddc3ed-5bb4-4095-9b32-3d2e30d74373.jpg" title=" DSC06510.JPG" alt=" DSC06510.JPG" / /p p style=" text-align: center " 原科技日报北京记者站站长晏燕 /p p & nbsp & nbsp 石胜杰老师对首都科技条件平台及首都科技创新券政策分别进行了介绍。首都科技条件平台以“小核心、大网络”为组织架构,“小核心”包括27家研发服务基地,12家领域中心,14家区县工作站,“大网络”包括成员单位、区域工作站、国际工作站,平台服务包括引导促进开放共享、培育国产科学仪器产业、服务创新创业等。首都科技创新券政策是北京市科学技术委员会与北京市财政局共同组织推出的服务政策,2014年开始实施,主要用于鼓励小微企业和创业团队充分利用国家级、北京市级重点实验室、工程技术研究中心、北京市设计创新中心及经认定的公共服务机构开展研发活动和科技创新。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/783a6d38-0639-4f79-be4f-e2dbb4fd6add.jpg" title=" DSC06511.JPG" alt=" DSC06511.JPG" / /p p style=" text-align: center " 石胜杰老师介绍首都科技条件平台及创新券政策 /p p & nbsp & nbsp 而后,北京地下水污染控制与修复教育部工程研究中心分别与北京沃特开元水处理技术有限公司、光合强化(北京)生物科技有限公司就项目“适用于饮用水处理的高效除氟吸附材料研发与应用”、“用于降解农田土壤中除草剂阿特拉津复合菌剂的研发及应用条件优化”进行了签约,地表过程与资源生态国家重点实验室与北京易科立德生态环境科技有限责任公司就项目“EL-RS径流泥沙自动监测设备测试分析“完成了签约。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/214e8a62-1b1f-449f-a9f0-bc9ff125eade.jpg" title=" 未命名_meitu_0.jpg" alt=" 未命名_meitu_0.jpg" / /p p style=" text-align: center " 签约现场 /p p & nbsp & nbsp 接着,北京师范大学水科学研究院豆俊峰教授做了水和土壤污染治理的功能材料及设备研发的主题分享。针对材料研发、反应器设备处理、工艺流程的研究成果和推广应用进行了介绍。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/cbc9ccc2-be1b-4feb-8f08-6c007fd9bd77.jpg" title=" DSC06537.JPG" alt=" DSC06537.JPG" / /p p style=" text-align: center " 北京师范大学水科学研究院& nbsp 豆俊峰教授 /p p & nbsp & nbsp 北京师范大学中国基础教育质量监测协同创新中心马晓博士分享了运动促进大脑健康发展的理论与实践主题报告。基于对运动员和普通人、儿童青少年、成年期个体、老年期个体身心效益的分析,聚焦运动对脑的塑造作用,基于观察的经验,通过科学实验方案全面揭示运动身心效益及其脑机制。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/e78e8862-92ac-493b-b590-f8608dcaf802.jpg" title=" DSC06543.JPG" alt=" DSC06543.JPG" / /p p style=" text-align: center " 北京师范大学中国基础教育质量监测协同创新中心& nbsp 马晓博士 /p p & nbsp & nbsp 北京师范大学地理学部刘瑛娜高级工程师为大家介绍了地表过程与资源生态国家重点实验室房山综合实验基地,北京师范大学房山综合实验基地是北京市政府和教育部共建的重点项目,基地总面积31000平方米,主要研究方向有土壤水蚀模拟与水土流失防治、干旱、洪涝灾害防治和地震灾害损失评估。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/5808ccd1-0079-4513-a159-b0d7d709fd62.jpg" title=" DSC06548.JPG" alt=" DSC06548.JPG" / /p p style=" text-align: center " 北京师范大学地理学部& nbsp 刘瑛娜高级工程师 /p p & nbsp & nbsp 最后,首都科技平台各成员单位进行了资源分享,大家自由对接,现场气氛非常活跃,各方代表交流的如火如荼。本次对接会为需求方和科技资源开放方搭建了一个沟通交流的平台,有效促进了项目的落地执行,实现资源合理化运用,进一步推动了首都科技条件平台“百家实验室进千家企业”活动的开展。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/f3274a89-a4d8-4bb9-8122-12eb5d40fd0e.jpg" title=" 交流环节.jpg" alt=" 交流环节.jpg" / /p p & nbsp /p p br/ /p
  • 厦大化学系大学室友自主研发原位芯片 打破国外垄断
    p   原位芯片的直径约为3毫米,图为芯极自主研发的高分辨自封闭原位芯片效果图。 /p p style=" text-align: center " img title=" 31.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/106fc216-d2f7-4958-b427-f98362ab0a7b.jpg" / /p p style=" text-align: center " strong 原位芯片的直径约为3毫米,图为芯极自主研发的高分辨自封闭原位芯片效果图。 /strong /p p style=" text-align: center " img title=" 32.jpg" src=" http://img1.17img.cn/17img/images/201803/insimg/17a79729-e6a8-450e-9d6d-766174930234.jpg" / /p p style=" text-align: center " strong 芯极的三位创始人是大学室友。左起依次为:邱晓滨,廖洪钢,欧阳亮。 /strong /p p   厦企自主研发的原位芯片,出现在了美国加州大学伯克利分校的实验室里,这是中国原位芯片出口迈出的第一步。日前,由集美区产业投资公司支持孵化的初创企业——厦门芯极成为国内首个实现原位芯片出口的企业而在业界引发关注。 /p p   “原位芯片”听上去专业拗口,但作为基础材料,它就像一个支点,可撬动多领域的应用,且与我们生活息息相关。比如,在原位芯片的“助攻”下,电子显微镜观测能力将大幅度提高,能全程高清拍摄每个原子的变化和运动轨迹,借由这项技术,可以研究汽车尾气、废水等。再比如,原位芯片高通量、少样本量的特性,可满足超快速体外诊断(如用尿液检测微量蛋白、尿糖、尿酸等)的需求,比传统的光学检测精度更高,速度也更快。 /p p   目前,芯极已自主研发了多款研发分析原位芯片、应用原位芯片和多功能原位电子显微镜样品台,并将原位芯片技术应用于医疗检测、生物分析、环保检测等领域。合作伙伴包括华大基因、复星医药、美国加州大学伯克利分校、南京大学、厦门大学等业内领军企业和高校。 /p p   值得一提的是,芯极已与中美尖端的MEMS加工平台长期稳定地合作,并计划分阶段将芯片生产平台全部引入厦门,进而打造芯片产业链。据悉,原位芯片的主要材质是硅,表层覆盖纳米级氮化硅薄膜,关键加工工艺目前仍被美国垄断,如果把生产平台引入国内,将具有里程碑的意义。 /p p   【幕后】 /p p   大学时同住厦大“芙一” 相约做有情怀的创业者 /p p   有趣的是,芯极的三位创始人是大学室友,他们是厦门大学化学系99级学生,住的宿舍就是知名的“芙蓉一”。 /p p   创办芯极的想法,最初源于学霸室友廖洪钢的回国任教。这位“80后”教授的履历令不少人佩服:他是中美联合培养的博士,在美国劳伦兹· 伯克利国家实验室担任副研究员期间,完成了原位液体透射电镜的开创性研究,其相关研究成果多次发表在美国《科学》等世界顶级刊物上。2014年,廖洪钢入选国家“千人计划”青年人才,随后回到母校厦门大学化学系工作。 /p p   “中国有能力也有市场培育原位芯片的成长土壤,甚至打破美国芯片出口垄断,研发和制造出品质、性能更优的原位芯片。”对于廖洪钢来说,留美还是回国并不是一个需要纠结的问题,他希望为我国原位芯片研究做贡献,缩小与国外的差距。 /p p   回国后不久,新的问题摆在廖洪钢眼前——如何让原位芯片生产及原位电镜技术等科研成果走出实验室。毕竟,这项技术的时间窗口期也就最近这几年,科研成果转化宜早不宜迟。他和大学室友邱晓滨、欧阳亮聊起了这个问题,三位老同学一合计,决定干脆自己组建团队,让科研成果在厦门落地。 /p p   于是,2016年年底,芯极在厦门成立,而后在政府引导扶持下入驻集美区高校创新创业园。团队分工明确:廖洪钢主攻科研,曾在知名新材料公司担任高管的邱晓滨负责运营,有过多年贸易经验的欧阳亮负责市场。廖洪钢的导师孙世刚院士也十分支持学生的想法,担任芯极的顾问。 /p p   大学室友创业,自然默契十足。三人发挥所长,一方面潜心科研,另一方面链接商业资源,拓展应用。很快,芯极研发的原位芯片打入市场,价格比进口芯片低50%。许多客户听说了芯极,“打飞的”来厦门谈合作。 /p p   当然,也有烦恼的时候。原位芯片研究周期长,投入大,主要靠三人自筹资金维持。好消息是,今年初芯极成功入选我市第十批“双百计划”,并获得集美区创新创业启动扶持资金。 /p p   一同经历了纯真年代,如今又携手创业,三位老同学感慨说,同学情谊编织的创业梦坚不可摧,他们想做“有情怀的创业者”,希望在深耕原位芯片研究的基础上,打造世界顶级的科研、医疗、生物、环保全产业链,利国利民。 /p
  • 走向客户(Go to customer)——赛莱默分析仪器中国厦门大学之行
    2018年3月20日~21日,应厦门大学马剑教授邀请,赛莱默分析仪器中国总经理潘桂东先生,赛莱默分析仪器海洋与近岸垂直市场经理高瑛女士,挪威安德拉公司科学顾问Anders Tengberg先生一行走访了厦门大学海洋与近岸国家重点实验室,针对智慧海洋观测的新技术与新方法,与来自厦门大学、海洋三所、福建海洋预报台的众多客户进行了交流。现场实况潘总在会上发言表示:提到赛莱默在座的各位可能比较陌生,但提到安德拉、YSI,各位可能更熟悉,其实它们都是赛莱默旗下分析仪器业务的子品牌。除安德拉、YSI之外,我们还有用于实验室与在线监测的WTW,有做海洋数据采集和分析的Hypack、有海洋工程的Tideland、有做走航测流和港口监测的Sontek以及做实验室流动注射的OI等多个品牌,公司在中国要整合我们旗下的多个品牌,走向用户,加强与高校科研单位的交流合作,改善我们的服务,希望各位老师都能够用上我们的产品,享受到赛莱默优质的服务。Anders 先生会上做了题为“Multi-Parameter Observations from Surface Water to the Sediment”的报告,报告中引用大量的科学文献和实际应用案例介绍了赛莱默多参数观测平台在初级生产力研究、珊瑚礁研究、水表层走航式观测等多方面的应用,并从科学的角度介绍如何提高数据的测量精度等,报告收到良好的效果,与会专家与Anders针对不同科学问题进行了深入讨论和热烈的交流。会议结束后,赛莱默分析仪器中国潘总一行在厦门大学海洋国重马剑教授陪同下参观了厦门大学东山太古海洋观测与实验站(简称东山站),东山站一期工程于2017年5月31日落成。东山站的功能包括近海原位观测、海洋实验生态研究及监测仪器测试等,旨在了解海洋生态系统对海洋动力环流的响应机制,探索气候变化和人类活动对海洋生态系统的影响及发展趋势。东山站二期将修建栈桥与观测平台,扩建多功能生态实验场,建设海底观测网基站,并建立公共教育区、行政、宿舍等区域,将建成集成海洋观测、实验与教育为一体的开放式、国际化实验基地,并成为区域海洋观测系统的重要组成部分。东山站一期岩礁-珊瑚生态长期观测系统项目2017年第四季度我司中标,采用的是我司安德拉观测链+座底式观测平台+浮标方案,该项目的成功对于加深与厦门大学海洋国重的紧密合作具有里程碑的意义。这次厦门大学之行,加快了赛莱默分析仪器中国公司与国内海洋科研重点高校合作的步伐,与会双方一致表示未来将加强交流与合作,充分发挥各自优势,在海洋监测与观测方面进一步加大合作。
  • 江苏省中小企业公共服务示范平台名单发布,谱尼测试实力入选
    近日,江苏省工业和信息化厅公布了2022年度江苏省中小企业公共服务示范平台名单,谱尼测试以强大的技术实力及专业的业务水平在众多企业中脱颖而出,成功入选“江苏省中小企业公共服务示范平台”。 江苏省中小企业公共服务示范平台,是指由法人单位建设和运营,具有服务开放性、资源共享性等特征,为中小企业提供信息、技术、创业、培训、融资等公共服务,管理规范、业绩突出、公信度高、服务面广,具有示范带动作用的公共服务平台。谱尼测试不断提高自身服务、创新和发展的能力,为提升中小企业成长韧性,精准对接“专精特新”企业需求,紧密围绕江苏省战略性新兴产业,不断加强数字经济、新能源汽车、生命科学、节能环保、医学医疗等领域检验检测能力建设提升,强化产业链支撑水平;全面提升线上线下委托业务能力,确保为中小企业提供一站式业务支持,切实贯彻惠民利企政策,通过减免检测收费,帮助企业降本减负。在顺利通过的基础上,谱尼测试将延续支持企业的示范先导作用,通过提高自身技术能力和组织带动社会服务资源的能力,主动为中小企业开展公益性活动,充分彰显责任担当,积极承担政府部门委托的各项任务,在检验检测认证领域做出更多的贡献,让检测技术更好地推动产业高质量发展。
  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 拟支持公共服务检测、研发平台名单公布
    现将2012年拟支持公共服务平台项目名单予以公示,公示期为2012年7月11日-7月17日。如有意见,请将意见以书面(实名)形式,反馈财政部经济建设司经贸处或工业和信息化部规划司投资计划处。   财政部经济建设司:  联系电话:010-68552518   传  真:010-68552879   工业和信息化部规划司:联系电话:010-68205132   传  真:010-66038830   财政部 工业和信息化部   二〇一二年七月十一日 2012年拟支持工业转型升级公共服务平台项目名单 序号 项目名称 项目单位 示范基地 1 超深亚微米ESL软硬件协同设计实现平台 北京集成电路设计园有限责任公司 电子信息北京中关村科技园区 2 海淀园中关村软件园云计算公共服务平台 北京中关村软件园发展有限责任公司 软件和信息服务北京中关村科技园区海淀园 3 高性能计算和云计算公共服务平台 国家超级计算天津中心 电子信息天津经济技术开发区 4 玻璃及深加工新品种新工艺研发及检测平台 河北省沙河玻璃技术研究院 玻璃制造及深加工河北沙河 5 扩建“检测车间”及检测设备配套 盐山县中原金属材料与防腐检测有限公司 钢材深加工河北盐山 6 通化医药产业示范基地中试平台建设项目 通化万通药业股份有限公司 医药产业吉林通化市 7 吉林省生物化工产业公共技术研发中心 吉林省石油化工设计研究院 生物产业长春经济技术开发区 8 黑龙江省林木产品质量监督检验中心扩建项目 黑龙江省林木产品质量监督检验中心 轻工(林木产品制造)黑龙江穆棱经济开发区 9 张江药谷新药产业化加速器 上海张江生物医药基地开发有限公司 生物医药• 上海市张江高科技园区 10 微纳机电制造(MEMS)中试平台 苏州工业园区纳米产业技术研究院有限公司 电子信息江苏苏州工业园区 11 分子诊断和基因测序技术研发 江苏华创医药研发平台管理有限公司 医药江苏泰州医药高新技术产业开发区 12 杭州高新技术创新公共服务平台 杭州国家软件产业基地有限公司 电子信息(物联网)杭州高新区(滨江) 13 产业用纺织品公共服务平台建设项目 浙江海宁经编生产力促进中心 纺织(产业用纺织品)• 浙江海宁市 14 国家铜铅锌及制品质量监督检验中心项目 安徽国家铜铅锌及制品质量监督检验中心 铜及铜材加工安徽铜陵经济开发区 15 福建省软件评测中心-嵌入式软件测试公共平台 福建省软件评测中心 软件和信息服务福州软件园 16 钨与稀土产品质量检验检测、研发服务能力建设 江西省钨与稀土产品质量监督检验中心 有色金属(稀土新材料)江西赣州经济开发区 17 功能糖产品检验检测研发中心提升项目 山东福田药业有限公司 生物产业• 山东德州市 18 精细化工和高分子材料公共技术服务平台 淄博高新技术创业服务中心 新材料山东淄博高新技术产业开发区 19 烽火科技-机械设计和加工制造平台 武汉光谷机电科技有限公司 电子信息(光电子)湖北武汉东湖新技术开发区 20 宜昌市磷化工公共服务平台建设项目 宜昌兴磷科技有限公司 化工(磷化工)• 湖北宜昌经济技术开发区 21 风电装备检测检验平台建设项目 湘潭高新科技园区开发有限公司 装备制造(能源装备)湖南湘潭高新技术产业开发区 22 民爆器材生产设备自动消防及高性能金属粉末工业雾化检测试验项目 湖南平江工业园区建设投资开发有限公司 军民结合湖南平江工业园区 23 面向现代照明产业技术创新能力提升的公共服务平台 中山市古镇镇生产力促进中心 轻工(灯饰)广东中山市古镇 24 工业设计共性技术公共服务平台 广东工业设计城发展有限公司 工业设计广东佛山顺德区 25 广西汽车零部件产品质量监督检验中心汽车零部件产品检测能力提升项目 柳州市产品质量监督检验所 汽车产业广西柳州市 26 消费电子及军工电子产品检测验证平台 四川长虹电器股份有限公司 军民结合• 四川绵阳科技城 27 物联网共性技术及产品检测认证公共服务平台建设 重庆电信研究院 电子信息(物联网)• 重庆南岸区 28 稀贵金属电接触新材料产业化应用 贵研铂业股份有限公司 新材料(稀贵金属)• 昆明高新技术产业开发区 29 宁夏山羊绒工程技术研发平台建设项目 宁夏中银绒业股份有限公司 纺织(羊绒制品)• 宁夏灵武市 30 光伏系统集成技术研发及关键设备研制特变电工新疆新能源股份有限公司 电子信息(太阳能光伏)• 乌鲁木齐高新技术产业开发区 31 氯碱化工资源综合利用平台建设 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 化工• 新疆石河子经济技术开发区 32 海信家电电子公共服务平台升级改造 海信集团有限公司 家电及电子信息山东青岛市 33 家电产品检验检测能力建设项目 宁波赛宝信息产业技术研究院有限公司 家电产业• 浙江余姚 34 国家环境保护机动车污染控制技术中心(厦门) 厦门环境保护机动车污染控制技术中心 装备制造• 厦门集美台商投资区
  • 谱尼测试收购中佳合成制药 打通一站式技术平台“最后一公里“
    近日,谱尼测试集团成功收购湖北中佳合成制药股份有限公司,具备了原料药GMP生产体系和生产能力,打通生物医药一站式技术平台“最后一公里”。至此,谱尼测试可为生物医药的研发提供小试、中试和放大的全流程技术支持,增强了集团综合竞争力。凭借强大的科研技术实力,PONY谱尼生物医药已拥有上海和北京两大生物医药研发基地,是集药物设计、药物合成、工艺开发、药物活性筛选、制剂研究、药效学评价、药代动力学评价、毒理学评价以及新药注册为一体的综合技术平台,具备CMA、CNAS资质,按照GMP、GLP执行,并得到了国内和国际药品管理部门的认可。中佳合成制药公司成立于2011年11月,是集化学原料药研发、生产、营销为一体的现代化制药企业。公司生产的部分药品获得国家食品药品监督管理局颁发的《药品生产许可证》、生产批准文号。中佳合成制药的原料药生产车间均已通过GMP认证,具备完善的生产管理制度和操作规程,严格按照GMP规范组织生产。公司不断完善药品生产管理的规范化与标准化,精益求精、持续改进,以保证公司产品质量。此次收购,进一步扩展了PONY谱尼生物医药业务领域范围,具备承接化合物的工厂生产、创新药的临床GMP生产和仿制药工艺的工厂落地等业务的能力。可为国内生物医药行业提供一体化、端到端的药品研发和生产服务,全面覆盖从研究、开发、测试到生产和商业化的环节。
  • 搭平台、聚产研、谋创新!2024第十六届试验与测试技术发展论坛圆满召开
    7月18日至19日,2024年第十六届试验与测试技术发展论坛于吉林省长春市圆满召开。会议旨在为试验领域的科技工作者提供一个重要的学术交流平台,加快发展新质生产力,提升人才队伍成长,促进科研机构、高校、企业联合攻关,助力实验室能力建设提升,有效推动国内试验与测试技术高质量发展。会议现场本届论坛由中国仪器仪表学会试验机分会主办,中机试验装备股份有限公司、吉林大学机械与航空航天工程学院、中机检测有限公司承办,中国检验检测学会智能制造与重大装备检测分会、联恒光科(苏州)智能技术有限公司、深圳市海塞姆科技有限公司协办,仪器信息网支持。中机试验装备股份有限公司党委书记、总经理白爽致辞白爽讲到,随着传统产业持续升级、新兴产业快速发展,市场需求增长叠加政策支持,国内试验机行业的整体技术水平有了较大提升,与国外同行相比,已实现由全面跟跑到部分并跑、局部领跑的转变;然而,国内试验与测试技术的发展还面临着创新能力不强、应用生态不健全等诸多挑战。他表示,作为行业内的“国家队”,中机试验相继突破了静压支撑技术、极端环境模拟、多通道控制等技术瓶颈,研制出超高温材料力学性能测试系统、大吨位海洋运输管道疲劳测试系统等首台/套重大装备,回顾中机试验乃至整个试验仪器领域的发展历程,都离不开专家学者们的大力支持,也得益于技术交流的融合创新,希望通过本次论坛,大家能够碰撞出思想的火花,激发出创新的灵感,共同面对行业发展中的难题,为推动我国试验与测试技术的进步作出贡献。论坛首日,吉林大学副校长、唐敖庆卓越教授赵宏伟,清华大学工程力学系教授刘彬,中国科学院金属研究所研究员张哲峰,中国国检测试控股集团中央研究院院长、教授级高工万德田,航天一院七〇二所研究员朱曦全,天津大学讲席教授徐连勇,西北工业大学教授张程煜等分别带来精彩报告。吉林大学副校长、唐敖庆卓越教授 赵宏伟赵宏伟教授作《模拟复杂工况材料-构件使役性能测评技术及装备》主题报告,介绍了吉林大学联合中机试验历时多年攻克的模拟服役环境力学测试理论与关键技术,研制的复杂机械载荷、多物理场耦合、模拟服役环境等三类测试技术与仪器,成功实现材料服役性能的准确测评,推动我国力学试验由单一工况非原位测试到复杂工况原位测试的跨越式发展。清华大学工程力学系教授 刘彬刘彬教授作《复合材料多轴力学性能测试探索》主题报告,介绍了复合材料的广泛应用,以及课题组针对复合材料多轴力学试验复杂问题进行的理论和计算研究、软件开发等系列工作进展。中国科学院金属研究所研究员 张哲峰张哲峰研究员作《构件失效分析与抗疲劳设计制造》主题报告,介绍了构件失效分析-力学评价、疲劳理论创新-构件抗疲劳制造等方面的工作进展。其失效分析中心队伍在2000-2023年为全国27个省级行政区430家企业开展各类工程构件失效案例1125项;力学性能评价队伍可开展全部力学性能测试方法评价;疲劳断裂研究队伍提出以拉伸性能预测疲劳性能、以短期性能预测长期性能的两个创新思路,用疲劳理论成功实现抗疲劳材料制备。中国国检测试控股集团中央研究院院长、教授级高工 万德田万德田教授作《陶瓷材料高温和超高温弹性模量测试技术及应用挑战》主题报告,重点介绍了陶瓷高温弹性模量测试技术概况,陶瓷高温和超高温弹性模量测试新技术。他讲到,陶瓷高温和超高温弹性模量可利用弯曲挠度和相对缺口环法获得;并指出,超高温环境的应变测量需要重点关注,研发非接触式应变测试系统,高温和超高温性能测试技术还应标准化。航天一院七〇二所研究员 朱曦全朱曦全研究员作《新一代运载火箭试验验证技术》主题报告,介绍了新一代运载火箭的基本情况,新一代运载火箭的试验技术体系,各系统典型试验,飞行试验,以及今后发展面临的挑战等内容。天津大学讲席教授 徐连勇徐连勇教授作《深水浮式平台焊接结构疲劳设计与验证方法》主题报告。该团队构建了多尺度、多环境、多荷载的“材料级-节点级-结构级”焊接结构疲劳测试体系,解决了深水浮式平台复杂焊接节点、复杂焊接工况下的疲劳性能测试;建立了考虑焊趾形貌、厚度效应、残余应力、腐蚀环境影响的焊接接头设计S-N曲线,形成了船体结构疲劳规范设计曲线的修正方法;建立了基于断裂力学的含小缺陷焊接接头疲劳寿命设计方法,解决了“深海一号”能源站的疲劳设计与验证、运维管理疲劳寿命预测等卡脖子难题。西北工业大学教授 张程煜张程煜教授作《连续纤维增强陶瓷基复合材料(CMC)的力学性能测试技术及标准》主题报告,详细介绍了CMC性能表征体系、CMC力学性能测试方法和标准、GJB 10311-2021概况。他讲到,现阶段还需持续开展测试方法验证,不断优化测试方法;尚有很多难测性能,需要发展新的试验原理、研究新的测试方法;提出将“基础研究-关键技术攻关-工程应用”有机结合,跟踪与创新研究、自主研发与引进吸收协同,人才培养与技术攻关联动。论坛次日,吉林大学机械与航空航天工程学院副院长、唐敖庆学者领军教授马志超,中国船舶科学研究中心水面结构试验室主任、研究员韦朋余,天津大学教授赵雷,北京科技大学副研究员程磊,中机试验副总工程师、高级工程师杨秀光,中机检测副总工程师、高级工程师崔东凯等依次带来精彩报告。报告嘉宾会议期间特别安排了中机试验参观环节,通过一系列精心设计的展示互动,让参会嘉宾们进一步了解前沿测试技术和设备,加深研究学者、仪器企业之间的知识与经验双向流通,也为推动我国试验与测试技术领域的进步注入新的活力和动力。与会嘉宾参观中机试验此外,论坛还设置了展览区域,吉林大学、联恒光科、海塞姆等携仪器产品亮相。展区一隅
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制