当前位置: 仪器信息网 > 行业主题 > >

近红外无创血氧定量计

仪器信息网近红外无创血氧定量计专题为您提供2024年最新近红外无创血氧定量计价格报价、厂家品牌的相关信息, 包括近红外无创血氧定量计参数、型号等,不管是国产,还是进口品牌的近红外无创血氧定量计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合近红外无创血氧定量计相关的耗材配件、试剂标物,还有近红外无创血氧定量计相关的最新资讯、资料,以及近红外无创血氧定量计相关的解决方案。

近红外无创血氧定量计相关的论坛

  • 【原创大赛】人凝血因子Ⅷ酸沉淀过程分析和近红外定量模型的建立

    摘要: 目的 对人凝血因子Ⅷ酸沉淀过程效价和总蛋白建立近红外模型,实现效价和总蛋白的快速检测,并以此确定酸沉终点。 方法 实验室模拟人凝血因子Ⅷ酸沉淀过程,对不同酸沉程度下的效价和总蛋白进行测定,同时采集近红外光谱,建立模型。结果 酸沉淀过程中FⅧ比活性达到最高时的pH值并不固定,在6.1-6.5范围内波动,所以将固定的pH值作为酸沉淀的终点并不能达到最佳的效果。结论 建立的人凝血因子Ⅷ酸沉过程中效价和总蛋白模型,固定加酸法不能准确判断酸沉最佳终点,所建立的近红外分析模型为在线实时监控溶解液中的FⅧ比活性提供参考方案。 关键词:近红外光谱分析技术 人凝血因子Ⅷ 酸沉 效价 总蛋白人凝血因子Ⅷ(coagulationfactor Ⅷ,FⅧ)是治疗甲型血友病和获得性凝血因子Ⅷ缺乏而致的出血症状等的不可或缺的药品,而目前国内生产工艺相对落后,在国内29家血液制品企业中仅有4家有能力生产FⅧ,采用离子交换层析法从人血浆冷沉淀中分离纯化FⅧ的生产工艺,收率低(平均9%)、比活低。因此,针对生产现状,将现代过程分析与控制技术引入到FⅧ生产过程中的关键环节当中,增加对生产工艺过程的了解,有效控制工艺过程,提升FⅧ的收率及比活性。生产人凝血因子Ⅷ以人血浆的冷沉淀为原料,一般用含肝素钠的溶解液溶解,溶解液pH为7.2±0.1。溶解完全后依据不同蛋白质的等电点不同,加0.05M的醋酸溶液进行酸沉淀,使以纤维蛋白原为主的大量杂蛋白沉淀出来,而FⅧ大部分保留在上清液中,从而大大提升溶液的FⅧ比活性。在生产中,酸沉淀终点的控制依据经验以溶液的pH值为参考,当溶液的pH值为6.3±0.1时加酸过程终止,此时上清液中的蛋白含量较低而FⅧ的活性损失较少,因此能够得到FⅧ比活性高的产品。但是单纯以pH值为控制参数的终点控制方法,不一定能够保证不同批次的酸沉淀过程都达到最理想的状态,本试验将对FⅧ的酸沉淀过程进行分析,以检验是否不同批次溶解液的FⅧ比活性在pH=6.3时都达到最高值,并试图找到与比活性直接相关的物料参数——蛋白质含量作为酸沉淀终点的控制标准,使溶解液中FⅧ的比活提升和活性损失达到更均衡的状态。同时,利用近红外光谱分析技术,建立溶解液蛋白含量的PLS定量分析模型,进行蛋白含量的实时监控,从而实现以新参数为指标的酸沉淀终点控制。1 材料1.1 试剂 冷沉淀溶解液(山东泰邦生物制品有限公司),批号分别为201435、201436、201437、201438、201439,每批留样200mL;BCA试剂盒(碧云天生物技术研究所);凝血因子Ⅷ促凝活性检测试剂盒(成都协和生物技术中心);醋酸(国药集团化学试剂有限公司,分析纯);三蒸水。1.2 仪器 Antaris II傅里叶变换近红外光谱仪(美国ThermoFhisher公司);PB-10酸度计(德国sartorius公司);BF300恒流泵(保定齐力恒流泵有限公司);JB-3A型恒温磁力搅拌器(上海雷磁创益仪器仪表有限公司);Legendmicro 17R离心机(美国ThermoFhisher公司);TW12恒温水浴箱(德国Julabo公司);3001-1890酶标仪(美国ThermoFhisher公司)。2 方法2.1 样品的制备2.1.1 配制醋酸溶液 量取醋酸约3.0mL,加入适量蒸馏水中,然后加蒸馏水至1.0L,得到浓度约为0.05M的醋酸溶液,混匀后用0.22 μm膜过滤。2.1.2 酸沉淀过程 参照实际生产过程,在实验室进行小试规模的酸沉淀过程。将超低温冻存的冷沉淀溶解液约100mL放至室温融化,缓慢倒入烧杯中,将烧杯置于低温水浴中,用酸度计监测溶解液的pH值和温度,然后以1mL/min的速度滴加配制好的醋酸溶液,边加边搅拌,使溶液的pH值由7.2左右降低至5.9左右,此过程中溶解液的温度由室温(25℃)均匀降低至15 ℃。重复进行此实验10次,每次实验过程之间保证相同的环境温度、水浴温度、醋酸浓度、加酸速度和搅拌速度。每次酸沉淀过程中pH值每变化0.1取样800μL,取样后立即进行离心(10000 rpm,5min),保留上清液作为样品,进行后面的光谱采集和蛋白含量及FⅧ效价的测定。2.2 近红外光谱的采集 选择AntarisII光谱仪的透射模块进行上清液光谱的采集。选用4 mm光程的比色皿,加样量约为400μL,光谱扫描范围为10000-4000 cm-1,扫描次数为32次,分辨率为8cm-1,以空气为参比进行采集,每隔1小时校正一次背景,测量环境为室温,湿度30%-50%。2.3 FⅧ效价的测定 使用凝血因子Ⅷ促凝活性检验试剂盒对上清液中的FⅧ效价进行检测,试剂盒中包含正常凝血质控血浆、缺凝血因子Ⅷ血浆,APTT试剂b/a、稀释液、CaCl2溶液,现用现配。2.3.1 标准曲线的制作 除氯化钙溶液在37℃水浴预热外,其余样品、试剂均置冰水浴中。 1)将正常凝血质控血浆用稀释液1作1/2、1/5、1/10、1/20、1/40、1/80倍比稀释,其对应FⅧ:C百分活性为500%、200%、100%、50%、25%、12.5%。 2)取某一稀释度正常凝血质控血浆0.1mL、缺凝血因子Ⅷ血浆0.1 mL、APTT试剂0.1mL于透明小试管,混匀后即置37℃水浴温浴10min。 3)迅速加入氯化钙溶液0.1mL,同时启动秒表,在水浴中以1-2次/秒的频率摇动小试管,当观察到凝固出现时,立刻停表记录凝固时间。 4)以不同稀释度正常凝血质控血浆FⅧ:C百分活性为X,对应的凝固时间(秒)为Y,按照统计学方法作直线回归方程,方程形式为Y=blog X+ a,即得标准曲线。2.3.2 样品效价的测定 1)将上清液用稀释液1作1/100倍稀释,即取10µL样品液加稀释液990µL,以此代替标准曲线制作项中某一稀释度正常凝血质控血浆,按照同样方法测定凝固时间。 2)将样品凝固时间(秒)代入标准曲线方程,计算X值,即得样品FⅧ:C百分活性水平。2.4 总蛋白含量的测定样品上清液中总蛋白质的含量测定采用Bicinchoninicacid(BCA)法。BCA法是应用较为广泛的蛋白定量方法之一,其原理是在碱性条件下,蛋白质与Cu2+络合,使之还原成Cu1+,Cu1+可与BCA形成稳定的蓝紫色复合物,复合物在561nm处有强吸收且吸收值与蛋白浓度成正比。BCA法原理与Lowery法相似,但是灵敏度高,操作简单,稳定性好,干扰物质对其影响也较小。2.4.1 配制工作溶液 将BCA试剂盒铜试剂按照体积比50:1混合,得到嫩绿色的标准工作试剂(WorkingReagent,WR),WR在室温条件下十分稳定。2.4.2 配制标准蛋白溶液配制0.5 mg/mL的BSA蛋白溶液,在96孔板中用PBS缓冲液对BSA溶液进行稀释,得到相同体积的BSA标准溶液0、25、50、100、200、300、400、500μg/mL,每个浓度的BSA标准溶液再各加200μL WR。具体稀释方案如表1所示。2.4.3 测定蛋白浓度每个样品取2 μL置于96孔板中,加18μL PBS缓冲液,然后加200 μL WR,在37℃培养箱中放置30min。将反应温度冷却至室温,用酶标仪测定标准蛋白溶液和样品溶液在561 nm处的吸光度值,绘制标准曲线,计算样品的蛋白浓度。表1 标准蛋白溶液和待测样品的加样量和比例 孔数 蛋白浓度(μg/mL) 标准或待测蛋白溶液体积(μL) PBS缓冲液体积(μL) WR体积(μL) 1 0 [ali

  • 【资料】近红外光谱无创血糖检测技术研究

    摘要 对现有的一些使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]无创离体和在体测量葡萄糖的研究结论,结合我们的研究结果进行评述。首先介绍建立葡萄糖光谱检测的基本理论。在光谱检测的分析研究中,离体测量表现出良好的结果;在体葡萄糖检测和预测,结果精度较差,离临床和家庭使用还有一些距离。 关键词 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];血糖无创检测 1 简介 糖尿病是一种内分泌疾病。据报导,1997年全世界的糖尿病患者超过1.2亿,到2010年将会增长到2.2亿以上。现有对糖尿病较有效的治疗手段是通过频繁的检测和胰岛素注射来对血糖浓度进行控制,从而减少或减轻由糖尿病导致的并发症。目前检测血糖的方法主要是从体内抽取血液通过生化检测进行分析,这属于有创伤检测,有创伤检测给患者带来的痛苦和不便。无创性血糖检测已引起人们极大的关注,其意义是:(1)减少患者每天采血测量的痛苦,提高病人的生存质量;(2)可提高测量次数,提高血糖控制精确度,降低糖尿病并发症发生的危险;(3)降低每次测量的成本;(4)有可能形成含有检测器和胰岛素注射的闭环循环系统;(5)其测量方法和原理可以推广应用到其它血液成分的检测。在无创性血糖检测研究中使用较多的是红外光谱分析方法,通过对一束红外光透过人体组织或者由其反射的光谱信号分析,确定组织内葡萄糖的含量。目前较有效的光谱范围是近红外区(波长为0.7um-2.5um)。 2 红外光谱检测葡萄糖的原理和方法 2.1 水溶液中葡萄糖的近红外吸收 有机分子在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区的吸收主要是由于含氢基团的分子振动的倍频与合频吸收造成的[1]。有机分子的倍频和合频光谱能够得到分子结构、组成状态的信息。有机物[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],其特征性强,受分子内外环境的影响小,但倍频和合频比基频吸收带宽得多,使得多组分样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在不同组分的谱带、同一组分中不同基团的谱带以及同一基团不同形式的倍频、合频谱带发生严重的重迭,从而使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的图谱解析异常困难。在混合物中的化学组分,很难再分离出每种组分单一、无重叠的吸收光谱。在有强烈水的背景吸收情况下的生物混合液,常规方法很难测量出低浓度物质的含量。水是生物组织中的主要成分,不但有单一的红外光谱,还有丰富的扩展到近红外区域的合频和倍频光谱。对水的红外光谱分析可知,水在波长为2.01um-2.5um的吸收较小,形成一个被称为水传输窗的区域,所以水溶液物质最好的分析波长为2.0um-2.5um。水在3um以上其吸收率大于6 AU/mm,很难测量其它物质。 2.2 葡萄糖光谱的特异性 在葡萄糖固体和葡萄糖溶液中所得的葡萄糖红外吸收的基频早已有报导。葡萄糖伸缩振动能产生很强的合频和倍频吸收带。葡萄糖水溶液的近红外(2.0um-2.5um)光谱的测量有吸收峰,葡萄糖的光谱是唯一的,但葡萄糖红外区的合频和倍频光谱与水、脂肪和血红蛋白电子吸收波段的几个合频和倍频频率相互重迭,即被其它成分的光谱所覆盖。这是葡萄糖红外光谱测量的主要干扰。有机混合物对在近红外区吸收谱带的重迭以及漫反射光谱并不是各成分单独存在时光谱的迭加。组织吸收对葡萄糖测量也有影响,在手指这样小的部位中近红外光会削弱3-4个吸收单位,而5mmoL/L的葡萄糖浓度变化,光谱吸收的变化约10-5个吸收单位。组织光散射对葡萄糖测量的影响也很大,组织散射的光强、定位误差和身体各因素的影响是最主要的测量误差,这些都影响[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]学在血糖检测中的应用。 2.3光谱分析方法 在红外光谱分析时化学计量学方法是很有效的。化学计量学(Chemometrics)采用多元分析校正统计学方法与计算技术,解析化学测量数据,由红外光谱算出样品各成分的含量。现在常用的多元分析校正方法中,进行血糖检测光谱分析效果较好的是偏最小二乘法(PLS),它将已知的葡萄糖浓度的光谱组,用主因子分析作定量计算的方法,对光谱矩阵进行特征向量分析,然后使用多元线性回归,找出极小的光谱变化和分析物浓度之间的关系,消除与葡萄糖无关的光谱变数,得出校正光谱,通过校正光谱和样品光谱的内积(即点积)确定葡萄糖浓度。 3 离体检测和在体检测的研究现状 3.1 离体[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]混合葡萄糖溶液测量 Jonathon T.Olesberg等使用80个含有葡萄糖、乳酸盐、丙胺酸、抗坏血酸盐、尿素和乙酸甘油酯样品,测量葡萄糖溶液在2.0um-2.5um波长带宽范围内的光谱,使用PLS校正光谱预测溶液成分的浓度。结果表明,在0-35mm内葡萄糖溶液的测量预测标准差为0.39mm,乳酸盐为O.12mm,丙胺酸为0.53mm,抗坏血酸盐为0.23mm,尿素为0.11mm,乙酸甘油酯为0.12mm,结果比较满意。目前在成分从简单到复杂的水溶液中是可以预测葡萄糖浓度的,但这些溶液相对血液或血浆还很简单,研究的成分最多是5种,所以还需进一步研究更多成分的水溶液来模拟血浆或血液系统。 3.2 血浆或全血[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]葡萄糖测量 Haahand从人群中获得了4个不同的全血样本,并将葡萄糖加入其中。对每个个体,准备葡萄糖浓度从(3-743)mg/dl变化的20个血液样本,然后在(1.5-2.3)um范围内收集每个样本的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],再利用参照葡萄糖浓度,用这些光谱去创建PLS定标模型。对所得光谱进行研究之后表明,2.0um-2.3um含有很有多的葡萄糖信息。利用这段区域,所得交叉校验的SEP值为30.5mg/dL。这个误差很大,但它可以通过增加定标样本的数量和控制扫描过程中样本的温度而有所减少。

  • 近红外光谱无创血糖检测技术的研究

    对现有的一些使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]无创离体和在体测量葡萄糖的研究结论,结合我们的研究结果进行评述。首先介绍建立葡萄糖光谱检测的基本理论。在光谱检测的分析研究中,离体测量表现出良好的结果;在体葡萄糖检测和预测,结果精度较差,离临床和家庭使用还有一些距离。 1 简介 糖尿病是一种内分泌疾病。据报导,1997年全世界的糖尿病患者超过1.2亿,到2010年将会增长到2.2亿以上。现有对糖尿病较有效的治疗手段是通过频繁的检测和胰岛素注射来对血糖浓度进行控制,从而减少或减轻由糖尿病导致的并发症。目前检测血糖的方法主要是从体内抽取血液通过生化检测进行分析,这属于有创伤检测,有创伤检测给患者带来的痛苦和不便。无创性血糖检测已引起人们极大的关注,其意义是:(1)减少患者每天采血测量的痛苦,提高病人的生存质量;(2)可提高测量次数,提高血糖控制精确度,降低糖尿病并发症发生的危险;(3)降低每次测量的成本;(4)有可能形成含有检测器和胰岛素注射的闭环循环系统;(5)其测量方法和原理可以推广应用到其它血液成分的检测。在无创性血糖检测研究中使用较多的是红外光谱分析方法,通过对一束红外光透过人体组织或者由其反射的光谱信号分析,确定组织内葡萄糖的含量。目前较有效的光谱范围是近红外区(波长为0.7μm-2.5μm)。 2 红外光谱检测葡萄糖的原理和方法 2.1 水溶液中葡萄糖的近红外吸收 有机分子在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区的吸收主要是由于含氢基团的分子振动的倍频与合频吸收造成的[1]。有机分子的倍频和合频光谱能够得到分子结构、组成状态的信息。有机物[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],其特征性强,受分子内外环境的影响小,但倍频和合频比基频吸收带宽得多,使得多组分样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在不同组分的谱带、同一组分中不同基团的谱带以及同一基团不同形式的倍频、合频谱带发生严重的重迭,从而使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的图谱解析异常困难。在混合物中的化学组分,很难再分离出每种组分单一、无重叠的吸收光谱。在有强烈水的背景吸收情况下的生物混合液,常规方法很难测量出低浓度物质的含量。水是生物组织中的主要成分,不但有单一的红外光谱,还有丰富的扩展到近红外区域的合频和倍频光谱。对水的红外光谱分析可知,水在波长为2.01μm-2.5μm的吸收较小,形成一个被称为水传输窗的区域,所以水溶液物质最好的分析波长为2.0μm-2.5μm。水在3μm以上其吸收率大于6 AU/mm,很难测量其它物质。 2.2 葡萄糖光谱的特异性在葡萄糖固体和葡萄糖溶液中所得的葡萄糖红外吸收的基频早已有报导[2]。葡萄糖伸缩振动能产生很强的合频和倍频吸收带。葡萄糖水溶液的近红外(2.0μm-2.5μm)光谱的测量有吸收峰,葡萄糖的光谱是唯一的,但葡萄糖红外区的合频和倍频光谱与水、脂肪和血红蛋白电子吸收波段的几个合频和倍频频率相互重迭,即被其它成分的光谱所覆盖。这是葡萄糖红外光谱测量的主要干扰。有机混合物对在近红外区吸收谱带的重迭以及漫反射光谱并不是各成分单独存在时光谱的迭加。组织吸收对葡萄糖测量也有影响,在手指这样小的部位中近红外光会削弱3-4个吸收单位,而5mmoL/L的葡萄糖浓度变化,光谱吸收的变化约10-5个吸收单位。组织光散射对葡萄糖测量的影响也很大,组织散射的光强、定位误差和身体各因素的影响是最主要的测量误差,这些都影响[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]学在血糖检测中的应用。 2.3光谱分析方法 在红外光谱分析时化学计量学方法是很有效的。化学计量学(Chemometrics)采用多元分析校正统计学方法与计算技术,解析化学测量数据,由红外光谱算出样品各成分的含量。现在常用的多元分析校正方法中,进行血糖检测光谱分析效果较好的是偏最小二乘法(PLS),它将已知的葡萄糖浓度的光谱组,用主因子分析作定量计算的方法,对光谱矩阵进行特征向量分析,然后使用多元线性回归,找出极小的光谱变化和分析物浓度之间的关系,消除与葡萄糖无关的光谱变数,得出校正光谱,通过校正光谱和样品光谱的内积(即点积)确定葡萄糖浓度。 3 离体检测和在体检测的研究现状 3.1 离体[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]混合葡萄糖溶液测量 Jonathon T.Olesberg等使用80个含有葡萄糖、乳酸盐、丙胺酸、抗坏血酸盐、尿素和乙酸甘油酯样品,测量葡萄糖溶液在2.0μm-2.5μm波长带宽范围内的光谱,使用PLS校正光谱预测溶液成分的浓度。结果表明,在0-35mm内葡萄糖溶液的测量预测标准差为0.39mm,乳酸盐为O.12mm,丙胺酸为0.53mm,抗坏血酸盐为0.23mm,尿素为0.11mm,乙酸甘油酯为0.12mm,结果比较满意。目前在成分从简单到复杂的水溶液中是可以预测葡萄糖浓度的,但这些溶液相对血液或血浆还很简单,研究的成分最多是5种,所以还需进一步研究更多成分的水溶液来模拟血浆或血液系统。 3.2 血浆或全血[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]葡萄糖测量 Haahand[3]从人群中获得了4个不同的全血样本,并将葡萄糖加入其中。对每个个体,准备葡萄糖浓度从(3-743)mg/dl变化的20个血液样本,然后在(1.5-2.3)μm范围内收集每个样本的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],再利用参照葡萄糖浓度,用这些光谱去创建PLS定标模型。对所得光谱进行研究之后表明,2.0μm-2.3μm含有很有多的葡萄糖信息。利用这段区域,所得交叉校验的SEP值为30.5mg/dL。这个误差很大,但它可以通过增加定标样本的数量和控制扫描过程中样本的温度而有所减少。Amord等人把数字滤波技术用于牛血浆葡萄糖浓度的测定。将牛血离心以得到血浆,加入不等量的葡萄糖共配制69个样本,并在2.01μm-2.5μm范围内收集这些样本的光谱。通过对这些光谱的观察,发现有些区域含有很高的噪声,他们引人傅立叶滤波以减少噪声和基线偏移。经过PLS定标和预测得出SEP值。结果表明,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可用于测定血浆基质中的葡萄糖浓度,准确度和精度在允许的误差范围内。 我们用磷酸氢二钠和磷酸二氢钠配制不同浓度葡萄糖缓冲水溶液,葡萄糖浓度是18mg/dL-1800mg/dL。共配制20个溶液样本。另外还配制加有牛血清白蛋白(BSA)成分的葡萄糖溶液,配制时在900mg/dL的葡萄糖缓冲溶液中加入了70mg的BSA,制成样本,并在临床采集已知葡萄糖浓度的血样,使用MAGVA-AR560型近红外傅立叶变换光谱仪,在1.61xm-2.51xm段的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]范围进行研究。使用PLS分析也取得了较好的结果[4]。 3.3 在体[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]血糖测量 在体[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]血糖测量的关键是建立在体环境下的校正光谱,因为有很多误差来源影响测量,需要通过定标来消除或予以补偿。有些影响测量的误差却不容易合并到定标中,这样的误差来源主要有探测器定位误差、温度和脉搏的影响、检测设备的机械压力、水合作用、出汗、血容量以及血流比容积的变化等。现在主要有两种研究方法,一种是实验方法,在进行口服耐糖检测(OGTT)时从非糖尿病人群和糖尿病患者中无创地收集光谱信号,同时用有创伤的方法测量血糖浓度,最后在所得血糖值和无创性收集的光信号的关系基础上建立模型。这种方法不能测量出其它的代谢物、干扰物、生物噪声或者仪器与身体接触面的变化等信息,但它可计算出这些噪声所带来的影响。另一种方法是物理模型方法,在这种方法中,首先在一组标准葡萄糖溶液中测量葡萄糖的信号。然后逐渐增加标准液的复杂性来模拟人体组织,并描述每一步的精度和准确度,再用数学模型把数据关联起来,用于组织中的光线传播,最后把研究的测量方法和系统应用到人体中。所得的体内信号又与通过化学测量技术的有创伤数据关联起来。这种方法可以鉴别噪声成分,因此利用这种方法在使用化学测量技术之前消除噪声对信号的影响。 手背皮肤的近红外漫反射光谱特性,可知类似水溶液。人体组织在近红外区域也有一个传输窗,所以在2.0μm-2.5μm处有可能测量葡萄糖的浓度。一个含有脂肪和葡萄糖等的理论模型已经在2.0μm-2.5μm范围内用于模拟组织葡萄糖的光吸收[4]。在这些研究中所用的葡萄糖浓度通常要比生理浓度的范围高。但由于目前的几种技术还不能很好地确定所测的信号,对一个血糖浓度正在变化的个体来说,用口服耐糖试验的数据可以建立一个关于血糖浓度的无创性测量响应。在检测过程中产生的数据还可在后来的无创性测量中预测血糖浓度。由于无创性测量响应可能会带有非糖方面的生理影响,所以由口服耐糖试验和无创性测量回应关系所决定的临床定标就会产生一个定标曲线,这个曲线对被测个体来说是唯一的。但这种定标曲线可能需要通过有创伤的检测进行周期性的更新。用于定标的口服耐糖试验和饮食耐量试验会产生时间上连续的一系列测量值,但如果不能进行随机采样,这些由时间决定的数据就会影响多变量定标的结果。这样,光谱信号和噪声的临时分布可能会导致与血糖的不正确关联。在体经皮研究结果显示,到目前为止还不能鉴别直接测得的葡萄糖浓度和数据组内存在的偶然关系[5]。所以现在的研究水平用于家庭血糖监测仪还是不可接受的。 4 检测存在的问题 近红外在体检测葡萄糖浓度的缺点:(1)测量精度较低;(2)需要反复定标;(3)受到服用药物的影响,其它干扰因素较多;(4)水的近红外波段的吸收强度对溶解物

  • 【讨论】为什么近红外定量比红外定量准

    似乎一般很少拿红外来做定量,而近红外做定量却特别准(如果线性比较好的话)。是不是这里面化学计量学的功劳很高啊?那么如果也用化学计量学软件来处理红外谱图也可以得到很好的定量分析结果呢??似乎红外的谱图比近红外的谱图更直观,不同的组分的样品在红外区域的差异比近红外的大得多,这样看来,我觉得红外定量应该比近红外定量更准啊,如果两者同时采用计量学方法。。。。不知道我的理解是否对不???实际是红外的结果不如近红外的结果,是不是因为红外的信号太强,组分微小的变化(如水)就能引起谱图比较大的改变,同时仪器和外界的影响对红外的谱图改变也很大,这样定量就不准了。。。。而近红外因为是倍频和合频,信号比较弱,谱图比较稳定,不会因为微小的变化而导致谱图大的变化。。。这样看来,信号弱的弱点反而成了优点了。。。。还请这里的专家解答啊!!!!!

  • 为什么近红外光谱定量或定性分析大多需要化学计量学方法?

    [font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]为含氢基团的倍频及合频吸收,其吸收峰均为宽峰,谱峰重叠严重,鲜有尖锐的谱峰及基线分离的谱峰,光谱指纹特征弱;而且倍频和合频吸收更易受温度和氢键的影响。因此,在实际应用中,以传统光谱分析的方式仅采用某一个峰对有机物进行定性和定量分析,其效果不理想,需要采用化[/font][font=宋体]学计量学方法解析光谱数据,最大限度地提取检测对象的有用光谱信息。[/font]

  • 【原创大赛】“敏感”的水—近红外光谱技术用于定性和定量分析的“好帮手”

    近红外(near-infrared,NIR)光谱是当分子受到近红外区域的电磁辐射后,吸收一部分近红外线,使分子中原子的振动能级与转动能级跃迁而产生的分子吸收光谱。主要反映的是含氢基团(C-H,O-H,N-H,S-H)基频振动的倍频和合频信息,其波长范围为780-2500 nm。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术以其快速分析、无损检测、操作简便等优点而成为一种重要分析手段,但其吸收信号弱,谱带重叠,需要通过化学计量学方法解析重叠光谱及消除干扰。目前结合化学计量学方法的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已在农业与食品工业、生命科学与医药、烟草工业、环境工程及石油化工等领域得到了广泛的应用。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已被公认为一种精确的水含量测定方法,由于溶剂的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中包含了有关溶质的重要信息,因此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术不仅可以作为探测水结构的工具,还可以用来确定水与环境中其他成分的相互作用。水光谱组学作为[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的一项新兴内容,借助化学计量学方法,分析不同扰动因素(温度、压强、溶质等)下水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,在分子水平上反映溶液中其他分子的信息。大量研究工作表明,温度或溶质等扰动因素的变化会引起水中氢键数目的变化,使水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]谱带的位置和强度发生改变。因此,通过分析光谱中水的谱峰变化,可以反映溶液中溶质的结构信息。由于水光谱组学能够特征识别与水结构相关的水吸收模式,近红外结合水光谱组学可以提供发掘隐藏在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的信息的可能性,为分析水溶液提供新的途径。据报道,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合水探针不仅被用作分析水和金属离子之间相互作用的生物标志物,还被用作反映蛋白质变性过程的指针。除此之外,水探针也实现了水溶液和血清中葡萄糖的准确定量。可见,“敏感”的水是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术用于定性分析和定量分析的“好帮手”。

  • 【原创】近红外光谱分析技术在药学领域中的应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在药学领域中的应用摘要:综述了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在药学领域中的应用,包括[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在原料药的分析、药物制剂的分析和制药过程中的质量控制等等。关键词 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],药学,应用 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术自70年代以来取得了重要进展,特别在药学领域,已有大量文献介绍[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在这些方面的应用。1 原料药的分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法可用于原料药活性成分的分析。Mark等使用马氏距离分类技术,通过[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对制药原料进行定性鉴别。Shah等则分别用马氏距离法和SIMCA法这两种分类方法对制药原料的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行分类。另外,原料药的结晶状态、粒径和密度在制剂生产和控制主要活性成分的过程中非常重要,可用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对原料药的不同物理性质进行检测。Dreassi等利用近红外反射光谱,根据药物的不同物理性质,对扑热息痛、布洛芬等几种原料药进行了成功的鉴别。2 药物制剂的分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药物制剂的分析方面的应用有了很大的发展。在早期,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法和传统分析方法一样,需要用溶剂提取制剂样品中的待测成分后进行测定。随着近红外分析仪的发展,计算机科学和化学计量学的进步,可以用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法对制剂样品进行无损分析。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术所具备的这种传统分析方法无可比拟的优越性,也为实现生产过程实时在线的质量控制提供了新的手段。2.1 制剂中活性的含量测定 最早使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对片剂药物进行含量测定的是FDA的Sherken。他用近红外法测定一系列的甲丙氨酯标准溶液,建立了计算甲丙氨酯片含量的校正方程。几年后,Zappala等继续考察了近红外对片剂和缓释胶囊中甲丙氨酯的含量分析,对Sherken的方法作了改进。Allen用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法定量测定了片剂中的卡立普多、非那西丁和咖啡因。为降低近红外分析的检测限,Corti等尝试在分析前用氯仿进行提取,测定了口服避孕药中的炔雌醇和炔诺酮。Chasseur使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析了西米替丁颗粒的含量,并用紫外光谱法作对照,结果基本一致。Corti等在用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析胶质和粉末基质中酮替芬含量时,考察了校正样品的浓度范围对结果的影响,并在此基础上分析了雷尼替丁片的含量。为建立用于药物制剂的可靠而稳定的数学模型,Jouan-Rimbaud等考察了多种校正方法后发现,可以通过特征选择改善多元校正。 Jensen等将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于胺碘酮薄膜包衣片的分析,为消除薄膜包衣可能产生的干扰,在采集[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]前除去了包衣。而Wang等在第9届[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]国际会议上的一篇报告指出,除去包衣并不必要。他们用近红外发射光谱透过厚的胶囊壁,成功地测定了雷尼替丁胶囊中活性成分的含量。2.2 药物制剂的鉴别和分类 Ciurczak等用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对含三种活性成分的药物制剂进行了分析,分别考察了光谱的减除、光谱的再现和判别分析等数据处理方法在制剂的组成成分鉴别和制剂样品分类中的应用。Corti等将马氏距离用于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分类,对10种抗生素制剂进行定性区分,所有待测样品都得到了很好的分类。Wu等采用主成分分析和偏最小二乘算法进行光谱的特征选择,从而实现对不同剂量的同种药物制剂的区分。Lodder等在1987年提出了基于近红外反射分析检测完整胶囊的方法。为达到快速、简便测定胶囊的目的,他们设计了一种特殊的反射器,无需打开胶囊剂,即可直接放入反射器进行测定。Lodder等还将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于对片剂的直接测定,使用改进的载样装置分析阿司匹林片剂,得到了较好的分类结果。Dempster等开发了一种非侵入式近红外反射分析法,采用光纤传感器透过包装材料直接测定样品,能够识别成分相同,但包衣材料不同的片剂。 在国内,任玉林等对近红外在药品无损分析中的应用进行了一系列研究。他们应用几种多变量统计分类技术,对磺胺噻唑、美迪康等粉末药品进行了非破坏性分析,成功地鉴别出合格药、劣药和假药。2.3 水分的测定 由于水分子在近红外区有一些特征性很强的合频吸收带,而其它各种分子的倍频与合频吸收相对较弱,这使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]能够较为方便地测定药物和其它化学物质中水分的含量。Jones等利用近红外分析对冻干剂中的含水量进行了测定。用这种方法每小时可测定40个样品,并且结果与Karl Fischer法一致。作者认为,近红外法避免了空气中水分的干扰,因此与Karl Fischer法相比有其优越性。Corti等也将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法应用于盐酸雷尼替丁片中含水量的分析控制。2.4 片剂的溶出度测定 Zaunikos等将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法用于卡马西平片的溶出度测定。Drennen等继续进行了这方面的研究,用近红外法对溶出度不同的卡马西平片进行了正确分类。3 制药过程中的质量控制 制药过程控制分析是药物分析的一个重要研究内容。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的最大特点是操作简便、快速,可不破坏样品进行原位测定,可不使用化学试剂,不必对样品进行预处理,可直接对颗粒状、固体状、糊状、不透明的样品进行分析。这些特点使得近红外分析技术特别适宜于在线的过程控制分析。3.1 粉末混合过程控制 Sekulic等使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]对粉末混合均匀性进行在线监测。混合物样品中含10%苯甲酸钠、39%微晶纤维素、50%乳糖和1%滑石粉。首先用商品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]收集样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据,然后用软件包对数据进行处理。结果表明,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术作为一种对药物混合均匀性的“实时”的非侵入式分析方法是可行的、有效的。3.2 包衣过程监控 Kirsch等发现片剂样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化与包衣的厚度之间存在相关性。他们对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在片剂的包衣过程监控中的应用作了进一步的考察。在用乙基纤维素(EC)或羟丙基纤维素(HPMC)进行包衣的过程中,按一定的时间间隔取样,测定片剂样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]。采用二阶导数变换和多元散射校正两种方法对光谱进行处理,然后用主成分分析建立计算包衣厚度的校正模型。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法具有非破坏性,可以进一步测定样品的溶出度,考察包衣厚度与溶出度的相关性,从而更好地控制包衣制剂的质量。 为控制药物活性成分的释放,研究人员正在研究一种以包衣技术为核心的制剂新工艺,即在缓释药物片心外包上一层含有快速释放药物的包衣。这需要一种能够对外层包衣中药物活性成分进行快速、非破坏性的定量分析方法,对这种高精度要求的包衣过程进行监控。Buchanan等选择了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法,所得结果与HPLC测试结果一致。这表明能够用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法更加快速有效地对新的包衣工艺进行质量评价。3.3 片剂生产过程控制 Dreassi等对近红外反射分析在抗生素片剂生产控制中的应用进行了研究,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析法结合化学计量学方法对抗菌素头孢呋肟酯片剂的生产进行全过程监测。他们用对原始光谱数据的判别分析、对主成分分析得分的判别分析和聚类分析三种方法分别对头孢呋肟酯的原料药、颗粒、片心和片剂进行了鉴别,结果较好;并用多元线性回归和偏最小二乘法对该化合物的含量和含水量进行定量分析,也取得了满意的结果。 近年来,随着仪器、软件以及样品处理技术的发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在药学领域中的应用取得了很大进步。使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术对药物制剂进行快速的非破坏性分析已成为可能,制药工业企业也已开始发展近红外方法对药物生产过程的各个环节进行监控。并且,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术已得到药品质量管理部门如美国FDA和加拿大卫生部(Health Protection Branch)的重视。由此可见,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术受到了越来越多的关注。随着[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]技术的不断提高和化学计量学的发展,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药学领域中的应用将越来越广泛。

  • 【原创大赛】【我与近红外的故事】难以割舍的近红外

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!难以割舍的近红外北京市理化分析测试中心 武彦文回顾这十年来我与近红外,用“若即若离却难以割舍”来形容仿佛最为贴切。博士后期间我主攻的是中红外光谱分析技术,在读文献和学术交流时,我不时接触到近红外光谱,当时并没有太在意,认为是两种不同的分析思路。恰巧当时召开第一届近红外光谱学术会议,于是就抱着开眼界的心态去了,于是就被“震住”了。那届会议给我的印象非常深刻,对于初入分子光谱领域的新兵,我没有想到陆婉珍院士等近红外人已然做出了那么大的成绩。于是乎,在后来的研究工作中,我有意识地把近红外相关内容添加到自己的研究当中,有时是将中红外和近红外两个波段的谱图综合起来分析解读,有时是把化学计量学方法运用在中红外的谱图分析中。随后我发表了运用中红外和近红外两种方法快速分析精油成分的文章(http://www.sciencedirect.com/science/article/pii/S0731708507006772)。尽管如此,近红外在那段工作中扮演的仍然是配角,因为我的大多数研究是定性分析,即使有定量要求我也一般考虑用中红外。此外,博士后期间的研究与实际生产结合较少,使得近红外始终没有成为我的研究主体。然而,那次参会的深刻印象,使我不自觉地开始关注近红外技术点滴发展和进步,尽管始终都是默默关注。进入新的工作单位后,我的研究重心有所调整,精力主要集中在分析检测与标准方法开发上。由于近红外不是标准方法,相关的检测规范尚没有建立,还不能应用在我们这样的第三方检测机构,感觉自己好像与近红外渐行渐远。然而,随着北京市科技计划课题与自然科学基金等几个项目的连续资助,近红外再一次进入我的研究视野。在我所关注的食用油分析领域,近红外的优势已经充分展现。首先是成熟的碘值定量检测方法,由近红外仪器与定量模型集成的专用仪器,已经成为各个大型油脂企业的日常必需;其次是油脂原料中多种指标的快速定量,已经让近红外光谱在油料收购环节中大展身手;此外,近红外在线监测饼粕的蛋白含量,使得其威力在生产领域受到广泛重视。对于油脂分析的其他应用领域,如脂肪酸组成、酸值测定以及油脂的鉴定与掺伪,近红外也在跃跃欲试。近年来,在北科院(上级单位)与理化中心领导的不断支持下,我与团队应用近红外研发出一系列的油脂分析方法,包括芝麻油、花生油和大豆原油等油脂的真伪鉴别和掺伪分析,油脂中的脂肪酸组成分析等等。然而,任何技术都有其局限性,当我们发现近红外不适用于某些分析需求时,就把目光转到其他分子光谱上。但研究思路依然延续近红外,例如利用化学计量学方法与拉曼光谱、荧光光谱甚至紫外-可见光谱结合的方法,研究油脂的氧化特性,考察油脂的提取、精炼过程,等等。目的是应用更为经济的分析技术研发出简便、快捷的检测方法。在应用上述几种分子光谱技术开发食用油分析方法的过程中,我们渐渐发现自己在这方面的积累和经验越来越多,于是产生了与大家分享的念头。今年,我们团队将在课题研究之余,撰写一本专著——《分子光谱与油料油脂》。在这里,我恳请在这方面有好的实际应用案例的专家、学者以及企业与我们联系,通过丰富的实例推动分子光谱在油料油脂分析领域的进一步发展。最后我特别想感谢几位良师诤友,是近红外将我和他(她)们联系在一起,燕泽程、刘慧颖、韩东海、袁洪福、褚小立……。也许,对于一名科研工作者而言,在亲历一场ge命性技术的发展过程中,除了见证和参与,更多的收获是来自前行者的支持与鼓励。

  • 【原创大赛】【我与近红外的故事】意外的近红外应用纯粹之旅- 分享在欧美工业界20年的经历

    【原创大赛】【我与近红外的故事】意外的近红外应用纯粹之旅- 分享在欧美工业界20年的经历

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!意外的近红外应用纯粹之旅- 分享在欧美工业界20年的经历谱源顾问科技有限公司 罗苏秦前言:当我还在大学做最后一年的课题研究时, 除了对环境污染及临床化学的应用感兴趣外, 同时也对一篇出自于科学期刊的文章印象深刻, 那是有关过程分析和化学测量的介绍 (Science, p312, Vol 226,1984)。当时也没有特别留意到出国留学之后, 冥冥中的安排我一脚踏入光谱过程分析的世界里。当然二十多年的近红外光谱应用生涯非几页纸可说完,加上最近工作实在繁忙,交稿在即,借助近红外平台分享我在美国各个工作期间的近红外应用琐事和心得,其实每份工作成功或失败经历都值得纪念,希望以后有机会再分享本文之后在美国Barr Laboratories (现为Teva Pharma),美国先灵葆雅公司(Schering-Plough) (现为 Merck & Co 默克药厂),英国葛兰优素公司(GlaxoSmithKline- 新加坡分厂)工作时的经历。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191702_673984_2648817_3.png 美国的近红外研究生涯初開始“误入歧途”——选择专业和导师1985年赴美留学之前,我的研究所计划是分析化学,临床分析或是环境分析均是我考虑的目标。然而进入美国罗得岛大学的化学系之后,面临的分析化学抉择却影响我的一生科研方向。当时系上有两位叫布朗的教授,一个是色谱(HPLC)的Phyllis Brown, 我佩服她的原因主要是她结婚生子之后才开始念研究所,最后成为HPLC在药物生化分析的大师。现在药典中化学分析的标准仪器色谱技术,就是她在上世纪70年代初奠立起来的!可惜那时她的研究生太多,无法适时加入。系上另外一位教授是Chris W Brown,是主攻分子光谱分析以及化学计量学应用,曾和红外光谱大师Peter Griffiths先后博士后研究,上世纪70年代申报政府研究经费时最为称道的是以红外光谱指纹辨识海岸石油污染方法,因为每艘货船的油料独特,因此可判断出港湾附近油料污染来源自于何处。研究进展到以迷你计算机计算取代肉眼判读,因此他的实验室有一台像电冰箱的Nova mini-computer,及卡片阅读机,而他的研究方法也成为美国海岸防卫队的海洋油污来源检测法。布朗教授也与工业界合作,曾经是那时期首屈一指的Bio-Rad Digilab FTIR公司和Beckman紫外-可见光仪器公司的技术顾问,因此教研室的各种光谱仪器比较齐全。我那时抱着光谱分析不就是看图说故事的心理,意外的进入分子光谱和计量学世界,在之后的三十年中,我参与杰出学者的百家争呜,评估各种技术的特性,发展现场光谱应用和观看仪器厂商起起落落的惊奇之旅!比耳定律和化学计量学的初步较量第一次接触到近红外数据分析之际,我一直百思不解是在大学本科所接触到的一个非常简单的比耳定律(Beer-Lambert Law)。为什么一旦涉及到部分光谱区域,就必须处理矩阵排列,诸如反矩阵,真的把我搞的晕头转向!所以初步学习中,实在是入门困难。尤其当时导师倡导所谓的P-Matrix(反最小平方差-就是现在常用的多变量线性回归)定量校正模型,虽自成一格,但也需要符合光谱波长数目小于或等于样品数目。因此我们釆用「优化选择波长数」和「傅立叶变换」来降低波长数目。记得在那一段日子中,导师常常和另一位提倡K-Matrix(最小平方差)研究学者David Haaland互相辨证K或P-Matrix的方法优劣。这种争议出现在不同的科学论文或会议中,直到PCR/PLS普及之后才勉强终结战火。化学系的另一位教授,James Fasching也曾开过化学计量学的研究课程,我也曾经有幸研究他的教材以及在迷你计算机上执行AUTHUR图型识别程序(那时和SIMCA分庭抗礼)。在研究所中,第一次所使用的近红外光谱仪是未完全商业化的Bio-Rad Digilab的FT-NIR。由于是初试仪器,所以教研室的每位研究生必须学习如果开机,进行双手微调干涉仪的性能。虽然歩骤有点繁琐,但是在我早期收集不同近红外光谱数据库中,高分辨率(4cm-1)的图谱的确给了我们对近红外光谱所代表官能机结构启发,例如CH2和CH3在芳香族和非芳香族的差别,以及水分中自由水和约束水的影响等!这些近红外光谱库也造就了我未来和另外一位近红外专家Louis Weyer(她最近发表解析近红外谱图的书,国内有中译版)的合作!直到1990年左右,我们得到另一台捐赠的Pacific ScientificNIRSystems光栅型近红外分析仪,我的师弟妹们才开始增加近红外应用的范围。纯物质在那里? 初探混合物数据库鉴别在研究所中第一次近红外应用是建立中红外及近红外的标准光谱库,然后进行混合物鉴别(Mixture library search)!当时的研究思路是在一般图谱搜寻时,如果未知物是混合物,传统的一对一比对方式无法有效检测出目标物。因此如何利用化学计量学来定性「分离」出混合成份是研究重点。初期时以C语言处理光谱数据,一个含有3300个气相光谱数据,仅仅是进行主成份分析,在IBM第一代计算器(8086/8088处理器)下的运作就需要至少7个小时,还得配上基于目标光谱重建的验证。所以对我早期不懂程序语言的我,又意外的为光谱分析而学习C语言!然而这项当初想法简单的研究以为到此为止,谁知道在我未来的工业职涯发展中,却总是出现「混合物分析」的实际体验!搞点在线分析- 近红外技术测量天然气除此之外,我的第一个近红外实际化工应用则是和美国天然气研究中心合作,以近红外光谱仪计算天然气的热含量,目的是取代传统的气相色谱分析。其计算方式是基于近红外光谱,定量预测不同烷类含量,配合温度、压力、及相对压缩系数计算而成。我们先在100,250和500 psi压力下以偏最小二乘法回归(PLS)分别计算,由于各气体的压缩比例不同, 温度也不同, 后来进展再以非线性的人工神经网络综合不同压力计算。那时候实验室有至少30个标准气体钢瓶,用来做建模之用,因此做实验时必须小心考虑高压气体(500psi)的爆炸性!不过从单独气体样品池到光纤在线分析,我们总算熬过去而没有意外!直到最近有朋友还在质疑近红外是否可以做气体分析,答案是肯定的!而且我们的研究并证明可以用较为便宜的二极阵列近红外取代高分辩率的FI-NIR。 药物溶出度定量测定,第一次跟C语言说bye-bye在毕业前最后的一篇论文是以当时Beckman的最新型二极阵别紫外可见光仪器,做为药片溶出度试验。当然药典中规定单成份分析可直接用紫外光谱仪定量,而多组份(如感冒头疼止咳药)药物则须以液相色谱分析。我们以化学计量学模型预测溶出度,并可呈现较高密度的溶出度曲缐。但是这篇研究的最挑战之处是我必须重写C语言,控制抽取循环样品,仪器测量,移动样品池,收集光谱,预测浓度,以达到自动化软件控制。这个实验及程序再开发,拖延了我半年,完成之后,布朗教授也体会出「宁为光谱分析专家,不为计量学程序开发」的决心,教研室也正式的向C程序语言正式说再见,学弟妹们也松了一口气。 其他指导应用工作:水质分析,生物检体,生物发酵,纺织品等当我开始成为大师兄级别后(意谓着应该毕业滚蛋),我也和师弟师妹们讨论指导他们研究的方案,林杰博士来自于厦门大学海洋化学,所以他「致力」于以近红外技术测试水溶液的pH值,温度及离子度!当时我们就评估近红外的光谱变化是来自于氢键的「间接」影响水分子的OH结构,但是闲暇之余,我们常常调侃林师弟用5万美金的近红外去当温度计或pH meter! 师妹葛振方博士毕业于上海复旦大学,她则致力于以近红外分析生物检体,包括子宫颈抹片和那时候非常具有潜力的无损血糖分析,她和德国一家生技公司合作测试眼球内溶液和血糖关系,实验室看着大大的牛眼球,却始终无法有一致性的结果。现在葛博士美国FDA工作,也算是我的GMP咨询好友。教研室另外一位师妹李悦博士,研究方向放在近红外非线性神经网络为主的生物发酵模型,并且曾经和美国AT&T合作以近红外在线监控清洁半导体晶圆的有机溶剂质量, 她的表现也令AT&T惊喜。另外一位来自台湾大学的陈淇旭博士,我曾经指导他利用近红外分析纺织品的组成和色素的研究,原本想法是我们的教研室缺乏HPLC或GC, 因此纺织品成份和色素鉴别不

  • 【原创大赛】【我与近红外的故事】曾仲大:近红外数据分析之路

    【原创大赛】【我与近红外的故事】曾仲大:近红外数据分析之路

    [align=center][b]个人简介[/b][/align] [img=,640,477]http://ng1.17img.cn/bbsfiles/images/2017/08/201708091048_01_2984502_3.jpg[/img] 曾仲大,男,博士,现任大连达硕信息技术有限公司总经理。 曾博士师承梁逸曾教授,2006年获得工学博士学位,主要从事化学计量学基础算法研究,以及色、质、光谱等分析技术在制药、烟草和代谢组学等复杂体系分析中的应用及其数据分析挖掘等。近年来在大数据的分析与应用方面亦有涉猎。 曾博士先后工作于香港理工大学、澳洲RMIT大学、Monash大学,以及中国科学院大连化学物理研究所。迄今已发表SCI论文40余篇,在2013-2016近三年时间里,以第一作者或合作者在美国分析化学杂志发表7篇研究论文,同时获邀为TrAC等权威期刊撰写化学计量学及化学数据分析处理方面的综述。 曾博士曾获得中国科学院大连化学物理研究所“所百人”引进人才计划,大连“海创工程”计划、高层次人才创新创业支持计划、新兴技术创新成长计划,以及国家人社部高层次海归人才创业计划的支持。公司主要提供复杂化学与生物数据分析服务,数据挖掘软件产品开发,以及个性化数据应用的整体解决方案。[b]人生格言:[/b]有志者,事竟成。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#7030A0] 随感:[/color][color=#7030A0]“[/color][color=#7030A0]我与近红外的故事[/color][color=#7030A0]”[/color][color=#7030A0]征文近一年了,看过许多老师情真意切的表达,真是把乐趣融入到了近红外的研究与应用之中,也更加深切地感受到同行们对国内近红外发展的使命感和责任感。而自己与近红外的故事,几次动笔却都没能写下几个字。时间肯定不是借口,惰性真是害人啊。好在拖到春节,总算能静下心来了。就像与近红外的相遇相知,既是机缘巧合,更是某种必然吧。[/color][/b] 初识近红外,都是博士毕业一年以后的事了。那时已经在香港理工大学周福添教授课题组从事博士后研究一年多了,主要方向还是老本行-化学计量学基础算法研究,解决中药和代谢组学等复杂体系分析中的数据处理问题,从GC-MS,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]到中药指纹与药物活性关系。一次Daniel MOK博士找到我,询问是否有意愿到陈新滋院士课题组从事中药质量分析与鉴别方面的工作,陈院士那时是理大副校长(后任香港浸会大学校长,现受聘中山大学教授、学委会主任),研究组的条件与学术水准自不必说,就这样幸运地开始了近二年的近红外数据分析之旅。 对香港熟悉的朋友一定对其大街小巷的名贵中药材印象深刻,尤其是弥墩道,应该是内地赴港旅游人士的必经之地吧,一是去旺角购买电子产品的旅游大巴必定经过这里,另一方面则是这条大道两旁大大小小的中药材店。记得第一次见到时,很是疑惑哪来的那么多冬虫夏草、燕窝和野生人参?说回到陈院士负责的这个研究课题,由香港赛马会中药研究院提供500万研究经费,对包括上述中药,以及石斛、灵芝、阿胶等在内的30味名贵中药材进行质量鉴别分析和研究,目的是帮助那些大街小巷的药材经销店铺,中间批发商,甚至普通消费者,以快速、经济、简便的方法识别药材真假,甚至质量等级。这些药材大多价格不菲,若能够有效识别真假,其商用价值可想而知!顺便一提,香港赛马会中药研究院很多年前已经解散,个中原因无法深究,但在目前国家大力践行中医药研究开发与应用的今天,这也算是一件憾事吧,包括设想中的香港国际中医药中心。 说到这里,近红外分析可以派上用场了!无论是十年前,还是十年后的今天,应没有什么分析技术比近红外更适合完成这项使命,综合考虑时间效率、分析成本,亦或是平衡多重因素影响下定性定量分析结果的准确性!记得当时我们使用的是FOSS公司的XDS快速含量分析仪(Type XM 1100Series),以及Polychromix手持式近红外分析仪(Model:1600-2400)。由于项目定位于实际应用,需要适应不同场合下的快速分析,对数据分析本身的要求同样也是比较高的,比如涉及模型传递,尽可能简化数据分析的过程及对使用者的要求,亦确保结果的准确可靠性。基于此编写了功能完备的近红外数据分析软件系统,一站式地完成近红外数据分析的完整流程,从各种各样的预处理方法到特征选择,再到定性定量模型的构建、评价与验证预测,以及模型传递等。[img=,587,242]http://ng1.17img.cn/bbsfiles/images/2017/08/201708091049_01_2984502_3.jpg[/img] 说实在的,那时对化学计量学的多元校正方法并不是特别熟悉,我的整个硕士和博士研究,都是多元分辨方向,也就是如何从中药和烟草等复杂体系分析的联用仪器数据中,发展“数学分离”的方法,获取化学纯组分的定性定量信息,即纯组分的光谱和色谱信息。幸运的是,得益于在梁逸曾教授研究组六年时间里耳濡目染的学习,比如许青松教授对统计分析的讲解,杜一平教授的QSAR研究等等,使得我无论对复杂数据的理解,还是化学计量学方法的应用与发展,都有足够基础支持我去解决近红外数据分析中遇到的各种问题。在香港的几年时间里,梁教授每年也都会利用假期去香港一段时间,与香港同行合作交流化学计量学及其应用方面的成果,更是继续指导我解决研究中遇到的实际难题。每每想到这些,总会浮现与恩师相处过程中的点点滴滴。至于上面提到的中药质量分析研究项目,我们对包括阿胶、珍珠、川贝母、藏红花、黄连在内的多味中药进行了深入分析研究,获得了非常不错的结果,陈院士对此也给予了很高的评价。很清楚地记得因此第一次上了电视新闻,是香港亚洲卫视针对我们使用近红外分析技术,如何快速识别真假中药,及其质量等级的采访报道。当然,这些研究很多也是和理工大学的同事,以及杨大坚教授(现任重庆市中药研究院院长)、董玮玮博士等一起完成的,我主要负责数据分析,以及数据软件产品开发与实现方面的工作。[img=,574,238]http://ng1.17img.cn/bbsfiles/images/2017/08/201708091050_01_2984502_3.jpg[/img] 离开香港后,很长一段时间内都没有与近红外分析有直接的关联。先是在Philip Marriott 教授课题组做research fellow,从事全二维色谱数据分析方面的工作,主要方向是全二维分离的模拟、预测,以及化学计量学新方法的发展。2012年回国后则作为引进人才,在中科院大连化物所许国旺教授研究组,从事代谢组学数据分析与高分辨[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url][i][sup]n[/sup][/i]数据处理新算法的研究等。看似这些工作与近红外分析不怎么挨着边,但老实说,同其他研究一样,数据分析也是一通百通的事!数据来源与数据结构可能不一样,数据背景与数据分析结果,以及数据处理方法亦可能存在差别,但数据分析的本质却是高度一致的,无论是色谱分离的模拟,亦或是代谢小分子标志物的发现!从这个意义上来说,也算是一直在这个圈子吧。 近红外技术的发展,面临非常多的机会,无论从国内快检还是工业智能化的需要来看,还是从国外近红外发展的轨迹来看。然而近红外分析更广阔的应用,仍有一系列需要解决的难题,这其中当然包括仪器硬件的小型化、便携式,以及智能化与场景化。但从数据及数据分析的角度来说,快速、准确的模型构建,模型的通用性、更新及转换等仍是需要加以研究的内容。基于此,离开化物所后创办的大连达硕信息技术有限公司,第一个数据产品“魔力”,便专注近红外数据的分析,这也算是真正走在了近红外技术与数据分析的商业应用之路上。希望能够以智慧化、便捷化的方式,分析挖掘科学研究与工业应用中的海量数据。无论对于近红外分析的初入者,还是有了相当经验的人员,一旦采集到数据,便能快速得到好用的模型及结果,这也是目前非常欠缺的,主要原因就在于近红外数据分析的过程长,可变因素多,涉及的算法也很多,传统上要快速得到一个好用的模型并不容易。尽管大多数研究者并没有把数据分析提升到特别核心的位置,但其价值显而易见,甚至在某些方面可与硬件本身相得益彰,弥补硬件的物理劣势! 另一方面,近红外分析以其简单方便的前处理,加上非常快速的数据采集方式,使得数据的获取,甚至大数据的积累顺理成章。然而即使对同一组数据,不同的研究者亦极有可能得到完全不同,甚至相反的分析结果或结论,即使在固定分析方法的情况下!这是一个容易被忽视,却又至关重要的问题,否则不管如何将近红外分析的硬件评价,以及实验测试全过程标准化,也无法得到可相互比较的结果。数据“横看成岭侧成峰”的魅力,不应是由于数据分析方法或人员的不同导致,而是数据背景的属性差异或者数据分析目的的不同产生。基于此,我们也正采用近红外数据分析的通用准则,使用粒子群等最优化的方法,开发全新的近红外数据分析软件产品,自动优选数据分析算法,以及方法的使用顺序,并全局优化方法的参数。这样我们获得数据后,只需按照标准化的流程一步一步走,便可获得最优的数据分析模型与模型结果。从而使得近红外数据的分析,如同实验分析一样,结果的重现性与可比性也就不再是个问题。避免像现在这样,往往是漫无目的的数据探索,耗费漫长时间也不一定能得到合适好用的模型!这无论在研究中,还是在工业生产中,都是需要花大力气迎接的挑战。在这一过程中,得到了袁洪福教授、吴海龙教授、邵学广教授、杜一平教授、褚小立教授、闵顺耕教授等诸多老师的大力支持与帮助。从老师们关切的眼神中,能读懂那份殷殷之情,也唯有努力做点事情,为国内近红外的发展做些有益的工作,方不负此情。近红外分析能做的事情很多,近红外数据分析如是,尤其站在移动互联时代,站在大数据分析挖掘的视角与高度。近红外有其自身特有的巨大优势-本身就是物联网中的一个 绝佳传感器!从这个意义上来说,近红外分析代表着某种未来,只是通往未来的路上,还需要我辈站在前辈的肩膀上,不断付出智慧和汗水。 “师者也,教之以事而喻诸德也。”,数据分析之路上,深深地烙上了梁逸曾教授的影响。亦师亦友者,感恩、深切缅怀您。

  • 【原创大赛】【我与近红外的故事】路漫漫其修远兮,吾将上下而求索

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!路漫漫其修远兮,吾将上下而求索清华大学范桂芳 我2006年从清华大学化学系硕士毕业后,到清华大学核研院成为了一名工程师。2011年进入了清华大学核研院生物质能研究室,研究室开发了甜高粱秆乙醇连续固体发酵工艺,需要对发酵过程进行监控,领导提到用近红外光谱。硕士期间跟随导师张复实教授研究光化学,听到分子光谱就感到很亲切。做了一点调研后,我就跟领导讲近红外的原理、特征等等。领导觉得我似乎还懂,决定带我去拜访中国近红外光谱的领路人——尊敬的陆婉珍院士。  我的工作记录显示,拜访陆院士那天是2011年5月24日,这天是值得纪念的日子,开启了我的近红外之门。带着一篇近红外光谱测酵母的文献就去拜访陆院士了,我们向陆院士咨询在发酵罐上进行近红外在线检测的可行性。陆院士针对我们的情况,建议我们先将样品拿到她们的仪器上离线检测,如离线的模型行得通再考虑在线检测。后续的工作陆院士让我们联系褚小立博士,并将褚老师介绍给我们。我们攒够了40个样品后,6月16日再去石科院,褚老师为我们的发酵体系做了第一个定量模型。在我们还没下定决心买近红外光谱仪时,ABB的曾贤臣先生对我们的工艺感兴趣,给我们提供了一台样机,王军工程师也帮助我们建了定量模型。这期间我们也考察了拉曼光谱。过程控制需要在检测速度与精度之间权衡,最终我们决定购置近红外光谱仪进行更为系统的研究。  2014年4月我们买的近红外光谱仪到货,研究就更方便了,鉴于我们做低浓度样品的固体漫反射,我们选了有积分球配件的赛默飞的仪器。第一次我们用60个发酵样品建立了近红外光谱的定量模型。PLS回归后,软件给出了乙醇这一组分的纯光谱,我看着这个纯光谱,认为这不是乙醇的光谱,学《分子光谱学》课程时,唐应武教授开玩笑的讲过:“判断光谱是洛伦茨线型的成分大还是高斯线型的成分大就看光谱是胖一点,还是瘦一点。”所以,我心里对光谱的位置和形状是有预期的。根据量子理论,能级都处于定态,而实际的光谱则是能级差对应频率周围的带状谱。这也许不是常规近红外定量分析需要考虑的问题,而我却纠结了一段时间。  我开始了解算法,了解到模型回归过程是以波长作为变量来考虑的,组分波长重叠严重是近红外光谱的特点。在多变量数据分析时,通过主成分分析来对数据进行降维是很有效的处理方法,而这些主成分又不能与体系中的组分直接对应,某一组分是这些主成分的组合。对于我来说,这是全新的思维方式,也许研究各种变量选择与模型回归算法是近红外光谱研究的主流,近红外光谱群里也闪耀着梁老师、吴老师、邵老师等化学计量学大咖。  对近红外光谱技术了解得多一些之后,我明白了近红外光谱技术是为满足质量控制和过程监控的应用需求发展起来的。这些场合,有量大、无损、或者快速的需求,对检测精度的要求是其次的。是先有应用需求,再有提高模型预测能力的各种算法。龚伟教授也讲,搞近红外要有哲学的思想。我也暂时抛开了因果关系,来考虑数据之间的相关关系。  说到相关性,我们知道用相关性来进行模型拟合的前提是存在一个固定规律,我们用大量数据来拟合出这个规律。目前,我们听到的是大数据给各行各业带来的机遇,我想谈的是做近红外光谱大数据的隐忧。隐忧来自近红外光谱本身的不确定性,可能包含光源的波长与能量的稳定性、检测器对于光子的线性响应、背景光影响、待测物质的变化、温度的影响。温度对物质吸收光的影响可能要具体体系具体分析。  每一种检测方法,都有检测范围,近红外光谱也一样。我们要做的是对这个方法的使用进行规范,使这个方法满足我们的检测目的,输出检测结果。这个过程艰辛漫长,这也许是近红外光谱有别于其它方法的特点。所以也总听圈里人说,做近红外光谱要顶得住压力,耐得住寂寞。做光谱应用的人们,都在这条路上走着,也许走的人多了就不寂寞了。  在近红外光谱领域里,我是比较幸运的,也许是因为一开始就有高人指路,走的弯路就少。我没有做特别多的光谱,也没有用太多算法,我做的近红外光谱在甜高粱秆乙醇连续固体发酵过程监控中的探索性工作发表在JNIRS中国专辑上;这部分工作作为“甜高粱秆乙醇连续固体发酵工程化研究”成果的一部分通过了教育部组织的成果鉴定(国际领先水平)。我知道这个方法真用上还要做很多工作,搞清楚多元回归模型的置信度问题,解决自动控制问题等。也许我看到了门里的一点风景,这将激励我继续向前。对于近红外光谱,我想说的最后一句话是:“路漫漫其修远兮,吾将上下而求索”。

  • 【原创大赛】【我与近红外的故事】近红外,我的中国心

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!近红外,我的中国心北京邮电大学杨辉华1 结缘近红外2004年,我在华东理工大学读博士,听时任国家中医药管理局副局长任德权先生关于中医药现代化的学术报告,觉得自己所学的信息技术能为中药现代化作点事,特别是在中药质量控制方面。于是,由任局长介绍,认识清华大学罗国安教授,了解到近红外可用于中药原药材评价,以及生产过程质量的在线监测。2 初识近红外2005年7月,进入清华大学分析中心(化学系)做博士后,合作导师罗国安教授、王义明教授。在这里,加入中药组,不久被任命为组长。由于我本科、硕士是自动化仪表专业,学过光谱仪,博士是模式识别智能系统专业,对算法较熟悉,同时曾在高校计算机系工作五年,几方面的知识都可以用得上,十分高兴。博士后期间主要研究化学计量学算法及共应用,同时开发项目需要的有关软件。入门主要看陆先生的书,以及袁洪福教授、褚小立博士等人的论文。实验主要在布鲁克(学院南路)、北京英贤仪器(丰台IBI)做,亲自做实验,取样或配样,测光谱,组内研究生做HPLC或HPLC-MS分析。在实验上,得到了姚建垣、周学秋两位老师的倾心指导和大力帮助。和写代码风格完全不同,做实验也充满乐趣。3 集成近红外在清华期间,罗老师、王老师让我在技术上负责上海绿谷、承德颈复康、吉林敖东、神威药业等企业的中药生产过程近红外光谱在线质量监测项目,涉及到中药水提、醇提、柱层析、混合等多种关键工艺过程。为解决药液引流、消除汽泡、滤除杂质、恒定温度、样品平流通过流通池,以及多通道样品轮流测量,和设备供应商一起,设计了样品预处理系统,开展硬软件集成。以前觉得大学里学的流体力学、传热学一直没有用,到此方恨少。近红外分析系统需要与药厂的工业自动化系统集成,甚至办公自动化系统集成,例如,在神威,我们一台工控机上安装了三块网卡,分别连接工控PLC、办公自动化系统和视频监控系统,实现按需互通,现在看来,也可算是早期的工业4.0呢。实验室有众多的化学专业博士后、博士生、硕士生,以及我在桂林电子科技大学指导的计算机专业硕士生(在此特别致谢罗老师、王老师),前后大概有20多位同学参与近红外科研项目,其中以肖雪、李灵巧为杰出代表。在清华的日子里,尽管工作量大,经常出差,熬夜取样(车间小睡),走夜路回宾馆(路上没车),但大家享受劳动的快乐,相处融洽,合作愉快,这些企业合作项目都很顺利。由于软硬件集成是我们自己做,所以系统的自动化程度很高,特别是在生产线自动取样十分方便。经过大家共同努力,项目都取得了理想的应用效果,如承德颈复康在国内最早在生产线上实现药粉混合过程均匀度在线监测,吉林敖东、神威药业则对提取、柱层析等生产过程进行实时在线质量监测,包括异常监测、定性或定量分析、柱层析样品收集起点终点判断等。项目也得到了国家和科研团体的关注,如全国人大常委会副委员长桑国卫院士、国家中医药管理局王国强局长,以及中国仪器仪表学会领导专家等,曾多次到有关项目现场考察指导。2009年,颈复康项目成果获承德市科技进步一等奖、河北省科技进步三等奖。2012年,神威药业项目成果获河北省科技进步一等奖,2014年进一步获得国家科技进步二等奖。4 开拓近红外团队提出了Isomap-PLS、LLE-PLS等流形学习建模方法;发展了近红外光谱分析的并行计算系列方法,如基于MapReduce的PLS方法,基于CPU、GPU并行计算的PLS,以及交叉验证(Cross Valiation)的并行化方法。在2012年全国近红外光谱大会上,提出近红外光谱分析网络及化学计量学计算软件作为云服务(SaaS)的理念。在2016年全国近红外光谱大会上,提出近红外光谱的深度学习建模方法。团队开发的近红外光谱分析系列软件,成功应用于制药及其它领域,一些系统一直在用。2013年,团队有关成果荣获广西科技进步二等奖。5 服务近红外作为分会的一员义工,本人有幸参与了前期的专委会和现在的分会从筹备、成立直到现今的许多重要活动,并为之尽心服务。参加了全国历届近红外光谱大会,以及第一届ANS 2008,泰国ICNIRS 2009,参与第446次香山会议筹备并担任会议秘书,并于2012年在桂林成功举办了全国第四届近红外光谱大会。参与创办了学会会刊,刚开始为季刊。参与了多次院士专家慰问活动。另说一红一黑两件轶事。专委会正式成立于2009年6月6日,这个日子由我建议,并得到采纳,感觉开门很红火,一直到现在都红火。我及团队负责了学会网站域名www.ccnirs.org设计及申请,网站开发、运营及维护,网站早期还真是被黑过几次。因此,近红外人不仅要玩得转模型,还得要斗得过黑客。在互联网、云计算和大数据的时代,这可能真不是一个笑话。6 标识近红外特别有意义的是,在学会成立之初,我和袁洪福、刘慧颖、韩东海、褚小立等老师共同创意了学会Logo,即我们现在所用的CCNIRS标识,并请清华美院的杨志博士后设计实现。Logo含义臆解如下,欢迎拍砖,共同完善,形成官方终版。从颜色看,红色中国心,来自故宫红墙,世称中国红;外围之大C,来自青花瓷,人谓国宝,内外满满的中国情。从形状看,Logo由CCNIRS字母组成,主体是一个大小同心圆,圆代表圆满、和谐,小圆是中国,大圆是世界,两圆同心,世界同德。满招损,谦受益,故圆中有缺。这个缺口就我们通过近红外光谱分析技术来感知中国和(物质)世界的窗口。Logo中央的两个C巧妙地融合并镶嵌在一起,中央红色小圆恰如近红外光谱仪的光源;外面是字母NIRS,小液滴似样品,曲线像光纤、电线、分光及探测器;线条幻变呈现出光线波动之特性,颜色渐变表征了光谱之本质,浑然大圆如同仪器外壳,整个Logo宛如一幅近红外光谱仪之写意漫画。7 感恩近红外近红外分会是一个特别温馨、特别和谐,有作为、有担当的集体。在这里,得到了诸多贵人鼎力相助,感恩罗国安老师、王义明老师,尊敬的陆婉珍先生,袁洪福、褚小立、邵学广、梁逸增、胡昌勤、韩东海、刘慧颖、严衍禄、林金明、张新荣、张卓勇诸位大教授,燕泽程主任,姚建垣总,以及清华、华理、江中、桂电、神威、敖东、颈复康、绿谷、英贤、聚光和布鲁克那些共同奋斗、无私帮助的朋友们!感恩所有的先行者和同行们!8 寄语近红外攻克核心器件,创新专用整机,离线在线检测,定性定量分析,软件作为服务,数据蕴含价值,模型传递共享,应用功成可期。

  • 【原创大赛】【我与近红外的故事】近红外的“快、准、狠”

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!近红外的“快、准、狠”上海烟草集团马雁军近红外技术正如古龙武侠小说中描写的武林高手,三个字“快、准、狠”。我的理解和诠释:“快”是快速,“准”是准确,“狠”是捕集相关官能团信息狠。从事近红外技术工作,我是半路出家,第一次与其亲密接触是在2004年。当时,上级领导发现其能同时多组分快速分析,既节能降耗又能提升工作效率,就订购了两台布鲁克公司的MPA型号近红外光谱仪。按采购周期,年底才能到货,恰逢布鲁克公司5月在成都办培训班,我去天府之地受训。周学秋老师五天的苦口婆心讲解,终于明白了一点。拷贝了一套OPUS软件,回北京后就开始了“桌面推演”的模拟学习。没有仪器实体,收效甚微。仪器12月到货,周学秋老师亲临现场安装调试讲解,对近红外仪器和技术研究又有进一步了解。近红外入门容易,研发一个实际应用确实很难。烟叶是农产品,季节性收购,且烟叶由4千多种化学成分组成,属于复杂的化学体系;烟叶品种和等级较多,烟叶质量每年受自然气候影响较大,收集齐有代表性样品需要2至3年时间,而研发一个稳健准确的定量模型,需要足够量的代表性烟叶样品和准确的理化检测数据支撑才可以完成,两者缺一不可。牵涉具体应用,还要考虑实验条件的标准化和规范化问题。为了能将近红外技术应用研究尽快开展起来,领导联系了上海烟草集团公司技术中心副主任张建平博士,他欣然同意。于是我带上两位同事在春节前坐火车去了上海,开始第一次拜师学艺。张建平博士是烟草行业最早研究和成功应用近红外技术的知名学者,他是我近红外应用技术研究的启蒙老师。那次在上海的培训,我记忆犹新。张建平博士推掉了其他事务,花了一天时间客观辩证讲解了他从1997年以来从事烟草行业近红外技术的研究心得,我从中知晓了“近红外技术不是万能的”道理,研发一个稳健准确适用烟草的近红外快速分析模型需要对谱图采集和实验操作进行规范化,如样品的形态、颗粒度大小、采集样品量、实验条件(如温湿度要求)、化学分析操作等都要一致,分析结果准确前提下才能采用多种化学计量学方法开展模型优化研究。为了保证培训效果,特地安排葛炯和杨凯两人对我们进行三天实验操作规范性严格培训和具体建模优化方法的培训,达标后才让回北京。一年以后的一天,他又抽出时间专门听我汇报建模研究进展情况,指出研究工作中的不足和改进的地方。通过2年多化学分析实验积累和建模优化,我将本企业用到的烟叶原料,按烤烟、马里兰烟(含白肋烟)、晒红烟、香料烟(含晒黄烟)四个类别分别建立烟叶中水分、总糖、还原糖、总烟碱、挥发碱、总氮、氨、氯、钾、蛋白质等多个化学指标中离线近红外快速分析模型,成功应用到本企业的原料化学质量检测工作中,并将晾晒烟(含马里兰烟、白肋烟、晒红烟、香料烟晒黄烟)离线近红外模型推广应用到集团公司下属几个复烤厂的质量检测工作中。在2009年卷烟产品降害研究工作中,我发现同事在采用GC-TEA仪器分析白肋烟中四种微量级烟草中N-特有亚硝胺,每天从早上上班开始忙到下班,一天只能平行测定四个烟草样品,耗时长效率低,我看在眼里,想在心里,既然是含N化合物,近红外能不能作?我找同事要来测试样品和分析数据,扫描近红外谱图后进行近红外建模探索,四种亚硝胺单量建模R2在80%左右,TSNAs(四种亚硝胺总量)建模R2能达到90%,但用布鲁克公司的OPUS软件试了很多次,R2很难再提高。我找到南开大学邵学广教授,把我的猜想告诉他。邵学广教授认为我的想法很好,但亚硝胺含量低,从目前近红外应用研究看希望不大,只能试一试。两周以后的某天晚上九点多,他打电话给我,激动地告诉我,这是一个发现,近红外建模测定亚硝胺是可行的,R2能达到97%,交叉验证均方差也可接受。那天晚上我激动的一晚上没睡好觉,随后我和邵学广教授合作两年,扩充样本集到700个,采用邵老师的波长变量筛选和小波变换等联用方法完善了白肋烟中四种亚硝胺近红外模型,现已用于白肋烟和马里兰烟的原烟现场收购质量把关环节有五年了。这件事鼓舞了我,后续在邵老师指导下又开展了烟叶中重金属和白肋烟中氨基酸近红外建模探索工作,经过两年半的能力,建立了四种重金属(镍、铅、砷、铬)和三种氨基酸(天冬氨酸、天冬酰胺、脯氨酸)近红外模型,现已应用于实际生产工作中。“书到用时方恨少”,参加工作后才发现自己学的远远不够,一直想再进学校深造,2008年通过全国GCT统考和专业课考试,我考入北京化工大学化工学院读工程硕士,专业是化学工程。北京化工大学对在职读工程硕士要求比较严,只集中组织上5门公共课,其它课都要跟着在校学生一起上,我挤时间花了两年半时间去学习学位必修课和我想学的专业课,多数是有关数学建模的课,跟着在校生一起听课、交作业及参加闭卷考试,我坚持了下来。共修了46学分,后来学位办通知我学分已够可以找导师做毕业论文了。我一直想拜袁洪福教授为导师,想让他指导我结合企业生产线做在线近红外应用方面的毕业论文,但苦于不认识他。通过邵老师帮助引见,我终于拜袁洪福教授为导师。拜师那天,袁老师语重心长对我讲:“你要有心理准备,咱按北京化工大学研究生要求,对你进行必要训练,完成训练才能毕业”。我当即表示没问题,我能承受,越严格越好。在袁老师指导下,采用在线近红外分析技术以解决在卷烟生产线重点工序在制品过程中理化质量监测问题为课题,从应用原理入手,到采用在线近红外技术监测的具体质量指标实现,花了两年多时间,终于基本完成了设立目标。由于我半路出家学近红外,功底较差,在理论总结和条理说清楚方面可费老鼻子劲了。每次将修改完的论文发给袁老师,他无论多忙都挤时间,争取第一时间审阅,指出要修改之处让我改,他对我的硕士论文先后审阅修改了十稿,我能想象出他戴着老花镜审阅论文认真程度,我每当想起此事,满怀感恩之情外都挺不好意思的,后悔本科毕业时没能努把力上研究生多学点,现在这么费力。随着毕业论文提交的截止日子临近,我越来越着急,在临近最后一天时,我请示袁老师我的硕士论文能不能提交,明天是本年度提交论文的最后期限。袁老师说:“交不交,是你的事!改不改,是我的事!你的论文还得改!”我当时都崩溃了,又从头至尾认真修改了一遍,没有得到袁老师肯定情况就着急上传提交了,后来袁老师说对我没训练够,我也因为此事内疚好久。答辩是在化工学院进行的,按在校生要求我顺利通过答辩,领到工程硕士学位证书。一年后我的同事去答辩他的毕业论文,评审的陈院长还记得起我当时答辩过的论文。我非常感激袁老师对我的培养!目前我在袁老师指导完成在线近红外对生产线的检测研究一直在生产线应用。我作为烟草生产企业一名工匠,近红外技术在企业应用研究已伴随我工作12年有余,正如我开头讲的那样,近红外技术如古龙武侠小说中的武林高手,三个字“快、准、狠”。“快”为快速,“准”为准确,“狠”为捕集相关官能团信息狠,即使是微量亚硝胺,也能抓到关键相关信息。近红外技术在烟草行业属于发展阶段,虽然近年来离线近红外技术在烟草行业中又不断研发出真假烟鉴别、三醋酸甘油酯、卷烟烟气中七项有害成分等快速检测方法,但在线近红外应用价值潜力还没有挖掘出来,如在线烟叶挑选分级和原料过程控制等还在沉睡中,如何将其潜能开发出来?是靠袁洪福老师、邵学广老师及更多其他老师技术帮助,才能把近红外技术的“快、准、狠”在烟草行业实际生产中的应用价值开发出来,发挥其更大作用。谈了一点生产企业人的亲身感受,没有那么高的理论层次和深度,不当之处,请多多海涵!

  • 【原创大赛】【我与近红外的故事】从可见到近红外的光明之路

    【原创大赛】【我与近红外的故事】从可见到近红外的光明之路

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!从可见到近红外的光明之路华东理工大学 杜一平可见光,可见之光,赠与人类一个绚丽多彩的世界。牛顿老先生,用手中之魔镜,照耀出一个七彩斑斓之谱,从此,人们认识到未知世界的真谛。后来又出了个什么近红外光,看不见、摸不着,神秘兮兮。牛老先生之魔镜一照,呈现的不是色彩世界,而是绵延起伏的群山,群山之中雨雾缭绕,隐藏着不可告人的秘密,人们垂涎欲滴,却无能为力,探秘之路异常艰辛。听说人们又找到了一个神眼,叫做化学计量学。相传该神眼太神眼了,居然能拨云见日从群山之中嗅到真金白银的味道。于是无数中华好儿女踏上了近红外之路… …1990年我硕士毕业,回到老家齐齐哈尔,任教于齐齐哈尔轻工学院。怀揣着年轻人不甘寂寞之心,又得益于罗国安老师的新作《可见紫外定量分析及微机应用》(1988年出版)的启发,我开始做科研了。然而从何下手呢?教研室只有72型分光光度计,于是我的科研就从可见光谱开始了,而做的是卡尔曼滤波、因子分析,后来知道这就是化学计量学。1999年认识了梁逸曾教授,成了他的学生,这是我一生中最幸运的事情之一。从这时候开始,我才真正开始从事化学计量学了。2001年,当时就职于布鲁克公司的周学秋先生到访梁老师的实验室,我第一次接触到了近红外光谱,没想到从此后我的人生与近红外就分不开了。真正做近红外光谱研究工作应该是2002年底,我在日本关西学院大学尾崎幸洋(Yukihiro Ozaki)教授课题组做博士后开始的。近红外光谱分析和化学计量学是尾崎老师重要的研究方向,我的博士后课题就是用化学计量学解决近红外光谱分析方面的问题。尾崎教授是国际物理化学和光谱领域的知名教授,担任很多国际杂志的主编、副主编和编委职务。在国际近红外光谱界他的知名度很高,2009-2013年间还担任亚洲近红外光谱学会主席之职。值得一提的是,尾崎先生对中国非常友好,他担任包括吉林大学、中科院长春应用化学研究所、北京大学、上海交大等很多国内著名学府和科研单位的客座教授或荣誉教授。在尾崎小组工作和学习过的中国科技人员不下60人(不完全统计),访问过该小组的中国人就更多了。尾崎教授也经常受邀来中国访问和参加学术会议。当时,尾崎小组与一家日本著名的国际公司合作开发无损检测人体血糖的近红外光谱仪器,我的主要工作就是为该仪器采集的数据做数据分析。每个月都有大量的实际病人的近红外光谱数据和血糖检测数据发给我,我研究数据处理算法,期望提高模型的预测精度。该项目的研究人员对很多病人进行长期的监测,每次测量前让病人喝下一杯葡萄糖水,用仪器探头在手臂内侧无出血检测近红外光谱。送到我手上的有三年连续的监测数据,每年都有数千,甚至是上万条光谱,日本科研人员的严谨工作态度令人深刻印象。我在尾崎小组经历的一件难忘之事就是有机会见到了具有近红外光谱之父之称的Karl N. Norris教授,他是最早开展近红外光谱研究,并应用于农产品检测的人。2003年11月份,我参加了在日本筑波召开的日本全国近红外光谱会议,大会邀请了Norris教授参加,并为其颁发了日本近红外国际奖。会上终于见到了近红外的开山鼻祖。而且在这次会议上,尾崎先生邀请Norris教授访问我们的小组,这让我有了进一步接触他的机会。Norris教授结束了在筑波的行程后,由河野澄夫(Sumio Kawano,他是现任亚洲近红外光谱学会主席)教授亲自送到大阪,而尾崎老师让我到大阪去接Norris教授来实验室。我在大阪的梅田火车站接到了他们,河野教授请我们吃了中午饭后,我陪同Karl乘火车赶往实验室。在一个小时的路程中,我们聊了很多,有关于中国的,关于近红外的,关于他的早期工作的。很多事情现在都忘了,只记得他没有来过中国,我当时还对他说今后有机会一定邀请他来中国访问,但可惜到目前也没有实现这个承诺。另一个记得他说过的是他早期用光谱来检测鸡蛋内部是否有血丝,还有用近红外光谱进行大米的分拣等工作。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291522_612603_2648817_3.jpgNorris在Ozaki实验室:左起杜一平、Norris、Ozaki、SumapornKasemsumran 除了做合作公司近红外光谱数据分析外,我另外一个工作就是化学计量学算法研究,在尾崎小组工作的一年时间开发了四个新算法,以第一作者发表了五篇论文,与他人合作发表论文13篇。当时,SumapornKasemsumran(上面照片右侧的女士)是在读博士生,研究方向就是化学计量学。Sumaporn是泰国人,但其祖先也是中国人。尾崎老师指派我来指导她,我以第二作者的身份与她合作发表了8篇论文,这些论文使得她获得了博士学位。我们后来还合作申请并获得了BUCHI公司设立的2006年的NIR Young Scientist奖BUCHI NIR AWARD 2006。当时实验室中只有我一个人是专职做化学计量学的,每当有人需要化学计量学,我都要为他们讲解化学计量学,提出工作建议,我成了推广化学计量学的一名老师。在我即将离开实验室回国时,尾崎教授评价道:一平不仅在化学计量学研究上,更为重要的是在小组的化学计量学教育上做出了重要贡献。尾崎老师带我进入了近红外光谱之门,也使我认识了很多近红外光谱领域的知名人士。除了Norris以外,还有日本的河野澄夫、在美工作的日本人Noda(二维相关光谱的提出者)、韩国汉阳大学的郑会一、挪威的Alfred A. Christy等。甚至清华大学的孙素琴教授,我也是在尾崎小组认识的。尾崎老师支持我参加了第九届国际化学计量学会议CAC2004(2004年,葡萄牙里斯本)、第13届国际近红外光谱会议NIR2007(2007年,瑞典UMEA)和第14届国际近红外光谱会议NIR2009(2009年,泰国曼谷),会上认识了一些国际上知名的近红外光谱人。到2010年的时候,受中国近红外光谱组织(当时称为近红外光谱专业委员会)的委托,我承办了第二届亚洲近红外光谱会议ANS2010,我成功地邀请了时任国际近红外光谱学会主席的Pierre Dardenne博士, 国际近红外光谱学会秘书长Marena Manley教授, 国际近红外光谱学会下任主席Ana Garrido-Varo教授,亚洲近红外光谱学会主席Yukihiro Ozaki教授,他们的出席为会议增色不少。会上仪器信息网还专门采访了Pierre Dardenne、YukihiroOzaki、和袁洪福,并以《三大近红外光谱学会领军人共话未来发展趋势——访国际、亚洲、中国近红外光谱学会负责人》为题目发表了人物专访文章。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291522_612604_2648817_3.jpg出席ANS2010的NIR人:做起杜一平、Marena Manley、Dardenne夫人、Pierre Dardenne、Yukihiro Ozaki、Ana Garrido-Varo、梁逸曾、倪立军 回顾这些年走过的近红外之路,很有感慨,有很多故事都想跟朋友们分享,而最值得回味的就是在尾崎幸洋教授课题组的经历,那是我初登近红外之路的地方。今天我所做的,还有广大中国近红外人所做的就是为了实现中国人在近红外之路上的梦想。

  • 【原创大赛】温度效应与近红外光谱的完美产物—温控近红外光谱技术

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的温度效应被认为是科学实验的干扰因素,之前科学家们一直在努力消除温度效应带来的影响或研究校正温度的方法。但是我们可以换一个角度看待温度效应,充分利用温度这个扰动因素,结合[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,利用温度扰动引起的光谱变化实现了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的定量分析和结构分析新方法—温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,并在混合物体系、生物体系及实际复杂体系分析中得到应用[sup][/sup]。 温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中包含了温度和浓度变动引起的光谱变化,利用这些扰动,我们可以溶液体系进行定量和结构分析。我们课题组利用多级同时成分分析(MSCA),建立了两级模型,分别描述了光谱与温度之间的定量关系(QSTR)和光谱与浓度之间的定量关系(QSCR),实现了对水溶液和血清样品中葡萄糖的定量分析。进一步,根据样品中包含相同成分的特点,提出了互因子分析(MFA)的新方法[sup][/sup]。通过提取不同温度或不同浓度光谱中相互包含的光谱特征,并通过光谱特征的相对含量对温度或浓度进行了定量分析。通过分析葡萄糖水溶液温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]得到了光谱变化与温度和浓度之间良好的线性关系,验证了该方法的可行性。并将MFA应用于血清样品中葡萄糖的定量检测中,也得到了满意的定量模型,为水溶液体系和生物体系的定量分析提供了一种新的途径和方法。 除了定量分析,我们还将温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]应用于结构分析。我们发展了一种基于主成分分析(PCA)载荷旋转的光谱解析方法。对简单二元水-乙醇混合体系的温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行了分析,计算得到了在混合溶液中水和乙醇的光谱信息,通过分析计算光谱和纯物质光谱的差异,可以得到水和乙醇在溶液中的结构信息以及二者之间的相互作用信息。继而通过温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术研究了生物大分子,如蛋白,与水的相互作用。通过二维相关光谱和高斯拟合分析了不同温度下卵清蛋白水溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],提取出了五种不同结构水团簇的特征光谱,得到了其强度随温度的变化趋势和随温度变化的先后顺序。结果表明,含有两个氢键的水结构变化能够很好的反映蛋白质的结构转变,并且在蛋白形成凝胶的过程中促进了凝胶结构的形成。进一步,通过温控及红外光谱技术结合化学计量学算法对更复杂的人血清样品进行了分析。将水作为探针,采用PCA和二维相关光谱分析的方法分析了血清样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],获得了与血清样品差异相关的水结构特征光谱,并实现了疾病诊断目的。除此之外,我们还建立了温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中温度相关变量识别的方法。通过连续小波变换结合蒙特卡洛无信息变量消除的方法,筛选出了与温度相关的变量信息,通过所选变量实现了不同溶液的识别。 因此,温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术结合化学计量学方法可以成为一种对水溶液和生物体系中溶质含量、结构变化以及与溶剂相互作用进行分析的有效手段。

  • 【求助】究竟如何才算是近红外定量?

    我看了很多文献 但文献里的所谓定量分析 都只是在建立模型之后 再用一个表样继续用化学和建立的模型进行对比看该模型的准确度 并没有对待测样品进行什么定量分析啊??我需要对烟草里面的各类物质如蛋白质 还原糖惊醒定量 求的他们的含量 然后和感官评定系数进行相关分析 是不是根本就没有必要这么复杂用近红外定量 如果要用近红外 具体又该如何进行定量 难道不是在建立模型之后 对待测样品进行红外扫描 然后就可以通过模型得到各种物质的含量的嘛? 为什么还要去用常规分析方法测他们的各个指标? 我现在被这个东西搞得很混乱 希望高手能给我一个解答 谢谢 不胜感激

  • 【原创大赛】【我与近红外的故事】我的近红外情结

    【原创大赛】【我与近红外的故事】我的近红外情结

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!我的近红外情结中国食品药品检定研究院 胡昌勤我是从2001年开始从事近红外(NIR)应用研究的,在近红外领域还应当算是一个新人。今年能够获得“第一届陆婉珍近红外光谱科技奖”,是我完全没有想到的,我感到非常高兴与荣幸,感谢近红外光谱学会的同仁对我的厚爱和我们工作的认可。我于1982年毕业于兰州大学生物学,毕业后一直从事药品质量控制工作。在我三十余年的职业生涯中可以说有二次大的转折:第一次是从我熟悉的生物学专业转行进入化学分析领域;第二次就是从事近红外分析。大家都知道,假劣药品严重危害人民群众的健康,并且制约着社会经济的发展,是世界各国特别是发展中国家共同面临的难题之一。上世纪末,伴随着改革开放的大潮,假劣药品对我国社会经济发展的影响日显突出。当时制售假劣药品的违法行为80%发生在广大农村;农村医疗机构数量多且分散、药品进货渠道多,而药品监督检验资源相对匮乏、打假手段落后,这些都增加了打击制假售假的难度。针对这一状况,2003年初,在国家食品药品监督管理局的统一部署下,中国药品生物制品检定所(中国食品药品检定研究院的前身)牵头成立了农村基层用药快速检查与打假工作协调组,决定研发“药品检测车”,利用其快速流动的特点解决农村监管力量不足的矛盾,并将我们的研究项目,“近红外假药识别系统”作为药品检测车中的主要组成部分。我们课题组是从2001年开始从事近红外研究的。当时对近红外的认识只限于“近红外是红外的倍频与合频光谱,近红外可以实现无损检测”等简单概念,可想而知,当时课题组的压力是非常大的。针对当时假劣药品的特点,我们提出“建立不针对具体企业产品、以制剂活性成分(API)为检测对象、能够在多台近红外光谱仪使用的药品NIR通用性模型”的设想。当时的想法非常朴素,并没有充分考虑到这一命题的难度,认为“既然近红外光谱是红外光谱的倍频与合频,红外光谱对化合物可实现专属性的鉴别,利用近红外光谱也一定能实现专属性的鉴别”。但真正开始建模时各种问题不断出现,建模过程也经历了许多反复,可以说是在“不断发现问题,不断解决问题”。我们的研究工作得到了陆婉珍院士、严衍禄教授、科大的苏庆德教授、南药的相秉仁教授等老一辈学者的指导与帮助,陆院士还亲临我们实验室观看我们采集的近红外光谱图,并给出了非常具体的指导意见。当时,由于近红外光谱的应用在药检领域还是一个全新的技术,尤其是“通用性模型”这个概念,在国内外都是一个比较新的理念,因此也引起了一些专家的争议。当时的中国食品药品检定所所长桑国卫院士在全所组织了一次论证会,不同领域的专家各抒己见;在财政部组织的项目论证会上,专家组组长由中国科学技术大学的苏庆德教授担任,苏教授对我们的课题非常支持,给我们的项目签了字,但直到2004年我们的课题顺利通过以陆婉珍院士为组长的专家组的鉴定,苏教授才真正放下心,由衷地为我们高兴。此次专家鉴定会上,鉴定专家们评价“如此大规模、系统化、多品种药物的研究成果,具有国际创新水平,至今在国内外未见披露”。自2006年药品检测车正式向全国装备以来,我们研制的“NIR药品快速检测体系”已经装备于全国400多辆流动的药品检测车上,用于广大基层地区药品的现场快速筛查,并在2008年四川汶川地震、2010年广州亚运会等多个国内重大事件的现场发挥了作用,第一时间保证了用药安全。可以说药品检测车这一项目,凝集了我一生的近红外情结。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669757_2648817_3.png谈一下我们的研究团队。当时为保证检测车项目的顺利实施,我们从全国10个药检所抽调“精兵强将”成立了近红外建模和检测车试运行两个协作组,并与当时布鲁克光谱仪器公司的药检项目团队紧密配合开展工作。中检所的尹立辉主任药师(当时是一个朴实肯钻研的小伙儿)对车载型近红外光谱仪及通用性模型传递中的误差控制问题进行了系统的探讨;姜红主任药师(如今已经是湖北省院的院长了)、殷飞主任药师(一位即能干又能说,走到哪儿就把欢快带到哪儿的“帅哥”)、谢子立主任药师(一位沉稳有责任感的年轻人)在湖北、河南和安徽省建立的大规模应用经验,直接推动了药品近红外快检技术的推广。中检院的冯艳春博士首先证明了建立药品近红外通用性定性和定量模型的可行性;广东所的雷毅博士(一位才华横溢的贵州小伙儿)提出定性与定量模型联合应用可以提高对假劣药品筛查的检出率;崇小萌、逄涣欢、张学博、贾艳华、侯少瑞、刘续平、尼珍、柳艳云、王学良、雷德卿、邹文博等一批有才华的年轻研究生,逐一解决了项目中的诸多科学与应用问题,推动着项目的不断完善,使得我们的药品近红外快速分析系统目前已成为中国最大的药品NIR应用平台。如今,这些年轻人也都已经成为各自单位的骨干,在各自的工作岗位上发挥带头作用,我感到无限的欣慰和自豪。http://ng1.17img.cn/bbsfiles/images/2017/10/2016092910274875_01_2648817_3.png我的近红外故事讲到这儿是想告诉大家,明确的课题目标,良好的团队合作和不懈的努力工作,是任何项目成功的基础。我国已经渡过了缺医少药的年代,假劣药品的猖獗势头也已经得到了较好的控制。近年来,“QbD(质量源于设计)”理念在制药行业日益凸显,如何从生产源头保障产品质量、如何保证现有工艺能够生产出“质量一致”的仿制药是我们当前必须面对的另一挑战。利用过程控制技术,将药品质量风险在生产过程中得以解决与控制是我们课题组目前的努力方向。也希望越来越多的年轻人投入到这项事业中。

  • 近红外定量

    现公司有一台 Thermo polychromix phairTM 1600-2400nm 手持式近红外分析仪。领导让用这个仪器做定量,不知道有没有高人用过这个,能否定量哦。准确度是不是很差呢?以前做过近红外定量都是台式,搞这么个手持的,可行吗万分感谢

  • 【原创大赛】【我与近红外的故事】我的近红外历程

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!我的近红外历程--我与近红外的故事贵州中烟彭黔荣2004年5月,我正在全力以赴地准备我的博士论文答辩。我的博士论文题目是《烟叶化学成分与烟叶质量的人工神经网络预测》,这个题目,一方面要做大量的烟叶化学成分检测、烟叶感官质量检测,另一方面是要做数据与感官质量的关联处理,化学成分与烟叶的感官质量关系太复杂,我的导师石炎福教授建议我采用人工神经网络来做。突然一天,电话响了,原来是我在贵阳卷烟厂作客座人员时的领导,刘总打电话给我,让我和贵阳卷烟厂理化室的赖东辉主任参加Brucker在成都召开的一次用户交流会,这是我第一次接触到近红外。让我发现了近红外神奇的力量,它能快速获得物质的光谱信息,不但可以进行定量、定性分析,而且可以在工业领域获得实际的应用,我被近红外迷上了,也是在这次会上,我认识了王茜、李胜、周学秋……2004年9月我到贵阳卷烟厂工作后,立即进一步调研、了解近红外技术,我们组建了考察小组,去了云南红塔集团、红河卷烟厂、昆明卷烟厂、曲靖卷烟厂,认识了马翔、温亚东、王家骏、段焰青……2004年12月9日我与遵义卷烟厂质监站的王晓娟站长一起,参加了Brucker公司在海南三亚的培训会,结识了更多的烟草同仁:王东丹、吴玉萍、刘海云……我们很快就采购了三台尼高力的Antaris仪器,踏上了近红外的旅程,2005年6月13日,热电集团近红外用户培训暨学术交流会在贵阳召开,王家骏老师作了《近红外光谱分析技术在烟草领域中的应用》大会报告;2005年11月,我们采购了Brucker的Maitrix-E在线仪器,安装在贵阳卷烟厂一车间加香加料后的成品烟丝传输线上,经过七个月的时间,完成了取样、光谱采集、样品的化学成分分析工作,2006年6月27日建立了7个指标(总糖、还原糖、总氮、尼古丁、氯、钾、水分)的数学模型,并通过企业局域网,连接到公司领导和技术中心部门的电脑桌面上。在总结会上,大家认为:“模型建立有一定的实用价值,完全可以应用于卷烟厂制丝线在线分析中”,我们实时看见了卷烟成品烟丝化学成分的波动,像脑电图一样,一会儿上一会儿下,那心情实在是太复杂了;我们又喜又忧,喜的是我们的确可以实时监控卷烟产品的化学成分了,忧是的这产品质量咋会这样呢?2006年10月,参加全国第一届近红外光谱学术会议2006年11月16日,布鲁克公司在贵阳举办了烟草用户近红外与化学计量学技术交流会,邀请邵学广教授讲授《小波变换的计算方法与应用举例》,历时三天啊,手把手的教;2008年,我们开展了打叶复烤生产线的在线烟叶化学成分检测和标识,2010年开始对模型进行优化、更新、验证、标准化,到2014年,我们积累了几十万张光谱,也为我们的近红外事业积累了很多失败的经验教训; 2014年底,我们参加了四川维斯派克公司承担的科技部国家科学仪器重大专项的一点点工作,去年我们联合四川维斯派克、南开大学、贵州烟叶复烤有限责任公司、上海烟草集团北京卷烟厂联合组建了近红外光谱技术网络化开放联合实验室,在公司博士后工作站设立了近红外研究方向,成立了实验室学术委员会,申报了烟草行业重点室,公司批准设立了机构,给定了编制,开发了近红外分析云平台,目前正在筹划设立近红外开放课题基金。我热爱近红外,因为近红外能够为企业的质量控制、降本增效、优化资源,提供手段,做近红外需要“工匠精神”,我愿做一名合格的工匠。

  • 【原创大赛】【我与近红外的故事】埋头近红外技术25年

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!埋头近红外技术25年天津大学徐可欣近红外光谱分会汇集了众多来自不同学科,具有不同应用诉求的会员,对近红外技术有着各自的理解和期待。大家就一些共同关注的问题从不同角度进行交流是很好的事情。搞理论研究的一些朋友认为它是应用技术,原创少、难写出高水平论文、不适合大学做。一些搞技术的朋友则认为近红外技术的成功应用并不容易,有硬件问题、不受重视导致的缺乏资源、行业壁垒等。对这些问题我也有一些思考。 科学是发现,要认识世界,技术是发明,要改造世界。我认为近红外技术是多学科融合的领域,以物理学为基础,略偏于技术开发。而我们的近红外光谱分会应自成一学派,和而不同,有独创也要有包容。特别是在近红外技术应用领域,需要不同学科的协同合作。但是作为科技工作者首先要自己有一定的学识基础,概念清楚。近红外技术的内涵是什么?它的理论基础与应用开发的难点在哪里?这些话题应该是我们聚首讨论的重点。我非常支持学会发起的这次回顾和交流活动,愿将我个人的片面体会与大家分享。 一、我的近红外经历 我搞近红外不是科班出身,与近红外一脉相承的学科,理科有分子物理、工科有分析仪器,很多专家从博士课题就开始研究、接触近红外的问题了。我的硕士、博士研究方向属于几何量计量专业,1988年8月从天津大学精密仪器工程系博士毕业,课题是用光学方法测量热轧生产线上的棒钢直径,内容包括圆柱体周围高温温度场的干涉测量,光线在该温度场中传播路径的研究等,用的是可见光。毕业后除了1990年开始在日本搞了一年半温度控制的工作,近几年又做了些药械结合的发光免疫测量工作以外,其余25年间的主要工作是围绕近红外光谱测量方法及仪器展开的。从1992年4月起,我在日本开始了应用近红外光进行人体血糖浓度测量的研究工作。当初选择近红外作为手段,一是它有明显的不可或缺的优势,二是当时我们的研究合作伙伴持有近红外无创血糖测量方法的原始专利。当初感觉到光谱测量比起工件的几何量测量要复杂得多,要考虑到被测对象本身,测量人体性状的实时指标靠近前沿。但光谱信息有分子振动的理论支持,近红外光谱测量及化学计量学的方法都便于数学描述。我对于物理依据坚实且数学上可描述的工作有兴趣,同时感到开创性的研发正是我们搞测量及仪器的人施展的时候。也许我们那个年代读大学的人不太计较功利,更看重专业理想与使命感,就这么干下来,至今还持续着这方面的努力,属于屡败屡战吧。当时日本的科研条件很好,比起国内来不可同日而语。我一头扎进项目 8年没动地儿、有些乐此不疲地沉浸在近红外技术研发的世界中。我的课题组先后购置了PerkinElmar公司傅立叶变换原理的高性能研究型中近红外光谱仪(我认为目前也是科研级最好的),Brimrose公司的声光可调谐滤波器(AOTF)原理的近红外光谱仪(销售到日本的第一台)、BRAN-UEBBE的光栅型可见-近红外光谱仪(配有全自动进样设备)等。通过对各种分光原理的仪器的性能评价、适合各种测量方式(透射、扩散反射、ATR、积分球、光纤等)的系统构筑,对于光谱测量系统及其适应于各种测量需求的硬件准备上积累了多方面的经验。我在近红外领域从糖的单一成分水溶液到多成分混合样品在不同温度、浓度、光程下的基础光谱特性的研究,从脂肪乳、牛奶等模拟样品到血液样品,从动物到人体的光谱实际测量的一系列的实验研究,对于利用近红外光谱进行浓度测量、特别是测量在日常生活状态下的人体时,探索到了测量条件对于测量结果的影响和单一光谱技术的能力极限。从1996年开始,为了达到更高的光谱测量精度,我们开始自行开发出高精度AOTF光谱测量系统,达到了可以满足人体微量成分测量分辨率的水平。2000年我回到天津大学,至今的主要工作还是持续上述科研内容。由于我对于傅立叶分光方式相当肯定,也觉得一款精度高成本合理的傅立叶光谱仪具有广大的市场,而国内也具备开发这款仪器的条件了,两年前又启动了这个仪器的开发工作。这些年我从仪器用户到仪器产品开发、测量方法研发到高校的科研教学等几个不同角度实践了近红外技术的种种过程,体会了近红外技术的甜酸苦辣。在本领域搞研发这么长时间是因为至今在我要完成的任务中近红外光仍是不可或缺的手段。我2000年回国后才接触到国内近红外科技圈的许多前辈,比如较早接触到了周学秋博士,后来在展览会见到了德高望重的陆婉珍院士和严衍录教授并得到了他们的鼓励,参与学会工作结识了袁洪福、梁逸曾等教授,还有一心扑在学会工作上的刘慧颖老师和现在为我们群主的年轻的褚小立博士等,他们的专家意识和一心为公的工作热情让我非常敬佩。近红外这一不可见的光线将学会和近红外群中的几百名成员连在了一起,说明了这一领域研发的广阔前景与日臻成熟的研发条件和经验得到了越来越广泛的认同。二、一些体会体会1:近红外光谱是关键技术,但也仅是必要条件之一。 近红外技术的开发优越性在哪里?大家知道光的最主要作用之一是作为信息的载体,首先近红外光携带了物质分子振动的信息,但最关键的是它能进入被测物质的内部并将信息携带出来,而其他波段的光或者因信息不足(如分子振动在可见),或者因被测物中多种物质(如水)的存在使得光无法进入其内部(如中红外光子没走几步就都被吸收了)。近红外光能进入样品内部并能携带够用的信息出来,在这一点是独具魅力的,这使得实现样品内部多成分浓度等信息的无损及快速检测成为可能。 为什么说近红外只是实现物质测量的有效手段之一,掌握它还不能满足实现目标的充分条件呢?我认为完成光谱应用至少还有以下几个必要条件:第一个是测量条件。光谱测量物质的浓度为间接测量的方法,需将测得的光谱值依照物理法则通过公式计算得到浓度,但物理法则的成立都是有条件的,如温度、光程、表面反射状态等。测量条件变化了公式成立的前提就得不到满足,它的保证往往不比近红外光谱测量本身容易。第二个是相关基础知识的把握。合理的光谱测量方法的设计和测量条件的保证往往建立在是否全面把握被测样品本身的物理性质,光与物质相互作用的实际行为之上。即包括吸收、散射、折射率变化等的规律。从简单的样品沉淀、分布不均、需均质等措施,到散射样品中光路的分布、散射的影响、及合理的测量光路的选择,往往需要振动光谱以外的综合知识与手段,也会涉及到深入的基础研究。第三是要具有充足可靠的建模用样品。光谱测量需要建立模型,通用可靠的模型往往需要大量有代表性、浓度经更高精度方法标定了的样品,这样的样品积累成本高,行业专门检测机构以外的人不易拿到。体会2:近红外核心技术需要学问,其应用更具创新空间 我认为近红外自身的核心技术有三项。第一是可对近红外光谱的归属及性质进行解释的分子振动理论,第二是以化学计量学为基础的建模方法,第三是近红外光谱仪器。各领域的应用研究都是以此为基础展开的。即便分子振动理论比较成熟,但被测物质种类繁多,其振动光谱特性如何?除了基本振动外、近红外光谱常常观测的其倍频及合频振动如何?谱线被展宽、随温度等条件变化、其他共存物质间的影响等研究还有空间。光谱仪朝着小微型的方向发展更需要基础研究的支撑,即便成熟的傅立叶变换的光谱获得方式,其扫描干涉方法也不断创新。举一个例子,1996年我们在评价声光可调谐滤波器(AOTF)分光特性时发现+1级和-1级具有正交偏振的衍射光波长并不相同,其偏差随波长变化。经理论分析我们发现只有在入射光与晶体光轴成56度角时可使两者一致,进而提出了AOTF的等值点设计理论,很快就在创刊不久的OE杂志上发表了两篇文章。虽然我们并不知道在宽广的波段中能抽出两个波长相同但正交的光今后有什么实际需求,但这一情节说明做仪器时也能发现新知识。 应用中更需要创新。我们在用近红外光做人体血糖浓度测量研究时,希望在人体上找到没有糖浓度变化的部位来实现参考测量,当然不存在这样的部位。但是我们通过研究光在散射介质中的传播特性时先是发现了相距光源一特定出射距离的光不随被测部位介质中糖浓度变化的现象,进而认为这是由于吸收和散射的综合作用的结果,也就自然地提出了利用其作为参考测量的浮动基准的概念。组内其他老师又发现了存在不受样品散射系数变化的散射不敏感点,这有可能在散射样品上实现满足Lambert-Beer法则的测量,有可能使得透射测量的模型容易向散射样品测量中转换。这些测量方法的创新都是从应用近红外解决实际问题中挖掘出来的。近红外技术开发不但大有可为,也可以收获新发现。 三、入门近红外需要留意的留意点1:首先要搞清光谱变化的物理原因 被测物质中的目标信息通过近红外技术是否足以被检测出来?有时光谱虽然随着被测物质的不同会有变化,但这个光谱上的变化并不一定是你感兴趣的物质成分的变化所引起的,也有可能来自其他成分或温度等测量条件的变化。有的痕量物质对近红外光线虽有吸收但引起的变化因光谱仪测量能力不够不足以被检测出,有的物质在这个领域就没有吸收,即便光谱表观随着不同的样品有了变化那也是一种伪相关,要特别注意。留意点2:尽量尝试用定量的方法研究问题 最简单地,根据被测物质的吸收强弱和光谱仪的能力,可以估算出有可能实现的测量精度,反之根据目标可以提出对于仪器能力的要求。为了实现测量精度,往往需要根据掌握

  • 【原创大赛】近红外光谱技术中的水探针

    【原创大赛】近红外光谱技术中的水探针

    水是生命的源泉,是生命体系中的重要组成部分。在化学体系中,水是最简单的小分子之一,是水溶液的基本组成。因此,关于水分子的结构与功能研究一直是非常活跃的课题之一。但是,水分子在100 nm到100 μm的光谱区间都有吸收,在大部分光谱区域有很强的吸收,导致很多光谱技术难以用于水溶液体系或含水量较多的分析体系,如生物样品。在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区间,水的吸收相对较弱,在水分子的组合频(5150 cm[sup]-1[/sup])和一级倍频(6950 cm[sup]-1[/sup])有两个较宽的吸收峰。因此,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可以测量水溶液体系或含水量较多的生物样品,并且可以无侵入、实时、动态地进行分析。同时,由于水的结构特点,使其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]很容易受到“扰动”因素的影响。当水分子的环境改变时,其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]将发生变化。在水溶液中,水的光谱包含着溶质的大量信息。 1984年,Inoue等研究了不同化合物溶液在高压条件下的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],发现水的结构随溶质及压力的变化而改变。2000年,Ozaki课题组采用近红外二维相关谱技术研究了人血清蛋白(HSA)随温度的变化,同时研究了温度对水化作用的影响。2005年,Czarnecki等同样采用近红外二维相关谱技术研究了水对N-甲基乙酰胺结构的影响。近年来,关于水分子在蛋白质稳定性、蛋白质内部的质子转移以及蛋白质构象变化中的作用也开展了大量研究工作。2006年,Tsenkova 教授在研究了不同质量牛奶制品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]特征的基础上首次提出了“水光谱组学(Aquaphotomics)”并开展了一系列研究工作。水光谱组学通过研究体系中“水”的光谱信息在温度和溶质(种类和含量)等的“扰动(perturbation)”下产生的变化,了解不同物质及含量对水结构产生的影响,然后再通过水的结构推断溶质的结构与功能。研究结果表明,水的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]吸收模式的不同不仅可以作为生物标记物对疾病或异常状态进行无损诊断,而且可以作为“镜子”反映溶质的动力学过程。例如,利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合水光谱组学对大豆类植物叶片进行快速无损检测,利用水化层中水结构的不同实现了对大豆花叶病潜伏期的诊断。近期的研究工作表明,利用水光谱组学可以有效地提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术用于稀溶液定量分析的准确度和灵敏度,并应用于糖类旋光异构体的定量分析。 在我们的研究工作中,曾利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]建立了温度和浓度的定量模型。2015 年以来,利用多级同时成分分析(MSCA)方法对水-乙醇-异丙醇混合液的温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行了分析,利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅可以建立温度的定量模型(QSTR),还可以建立混合体系中各组分含量的定量模型。利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术研究了葡萄糖对水结构的影响,通过水在一级倍频区吸收带的变化,讨论了葡萄糖对水的氢键结构的影响,并发现葡萄糖使水的有序结构增强,为解释糖类化合物在生物体系中的“保护作用”提供了新的依据。在近期的研究工作中,分别利用水的吸收谱带和葡萄糖的吸收谱带建立了溶液和血清样品中葡萄糖含量的定量模型,说明了水可以作为葡萄糖含量的传感探针。在化学计量学方法研究方面,对高阶解析算法进行了研究,如高维主成份分析(NPCA),平行因子分析(PARAFAC)和交替三线性分解(ATLD)等。发展了共因子分析(MFA)方法用于温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分析,可以准确地对溶质进行定量分析。将该方法应用于实际样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分析中,实现了人血清样品中血糖的定量分析。我们还对蛋白质的结构变化开展了温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析。采用连续小波变换提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的分辨率,通过分析人血清白蛋白(HSA)和水的光谱信息随温度的变化,研究了HSA二级结构的热变性过程,并发现水结构变化可以反映HSA的展开过程。进一步将该方法应用于复杂血清样本中,并结合蒙特卡罗-无信息变量消除法(MC-UVE)排除由于血清复杂性带来的干扰,筛选出与蛋白质特征吸收相关的变量研究了不同水结构在蛋白质的热稳定性过程中的变化。应用二维相关光谱研究了卵清蛋白受热形成凝胶的过程中水结构的变化,分析了不同水结构在凝胶形成过程中的变化顺序及功能。[align=center][img=MFA提取[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的水信息,690,589]https://ng1.17img.cn/bbsfiles/images/2018/10/201810081747522818_9206_2695586_3.png!w690x589.jpg[/img][/align] 今后,我们将利用更多[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的信息拓展水光谱组学的概念,开展光谱解析、特征提取等化学计量学方法研究,获取水溶液体系中水的结构及其随“扰动因素”(温度、溶质等)的变化,通过水的光谱信息及其随“扰动因素”的变化建立溶液体系(包括实际体系及生物体系等)的定量、定性分析方法,利用水的光谱信息探测和理解水在化学和生物过程中作用与功能。

  • 【近红外光谱专家系列讲座】:12月10日 第三讲:近红外定量分析模型

    【近红外光谱专家系列讲座】:12月10日 第三讲:近红外定量分析模型

    【专家讲座】:第三讲:近红外定量分析模型【讲座时间】:2015年12月10日 14:00【主讲人】:闵顺耕 (中国农业大学理学院应用化学系教授,博士生导师,主要研究领域:红外/近红外光谱、化学计量学、农产品品质与营养分析、农产品安全。)【会议简介】内容提要:第三讲 近红外定量分析模型3.1 定量分析流程3.2 常见建模算法3.3 模型性能评价3.4 建立定量模型中的问题问题1. 样本集(样品分布?)①代表性②样本集数量③离群样本判断及取舍④检验集样品选择和数量⑤配制样品的共线性问题⑥化学值的准确度与精密度问题2.光谱测定(仪器性能、参比选择与光谱质量、测量方式、 不均匀性样品测定及颗粒度影响、在线光谱测定)-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年12月10日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/17405、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 近红外定量分析

    近红外光谱定量分析中,定量模型的评价有两个指标RMSEP、RMSEC,为什么一般RMSEP的值大于RMSEC

  • 【原创大赛】【我与近红外的故事】近红外光谱之路:从零基础、认识、到热爱--要不,试试近红外?

    【原创大赛】【我与近红外的故事】近红外光谱之路:从零基础、认识、到热爱--要不,试试近红外?

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!近红外光谱之路:从零基础、认识、到热爱--要不,试试近红外?广东药科大学肖雪十年前,从来没有想过,自己会从事与近红外光谱或者化学计量学相关的研究。十年后,我会依然能够保持着对近红外的热爱,回忆这美好年华中近红外的点点滴滴。进入研究生阶段,从传统的药物分析逐渐转入到近红外光谱技术的研究与应用中,特别是参与了几个中药在线质量控制系统的建设,深深地体会到近红外光谱,是一种“多快好省”的技术。自己也从此定下了时刻学习、探讨、研究近红外光谱的目标。2008年7月8日,我很荣幸地进入了罗国安教授和王义明教授的研究团队。刚进入实验室,跟随博士后高荣、刘清飞等开展清开灵注射剂的二次开发研究,由师兄齐小城、师姐邓瑞琴等亲自指导,主要负责板蓝根部分的研究。由于自己才疏学浅,一切从零开始,系统的学习各种色谱仪、质谱仪等仪器操作,还跟随师兄师姐学习各种分析技术,其中就包括近红外光谱(NIR)技术--这是我第一次接触NIR。对我来说,打开了一扇全新的窗户,看到了一片全新的世界。刚刚开始,所以一无所知:啥玩意是近红外啊?近红外到底是干什么的呀?!特别感谢我的导师清华大学罗国安教授、王义明教授,他们拥有一个非常优秀的研究团队(图1),给我们提供了一个理想的研究平台,指引了一个崭新的研究方向。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291158_612587_2648817_3.jpg图1 罗国安教授研究团队刚刚接触NIR,罗老师安排最紧要的,就是跟杨辉华教授系统学习NIR、自动化、化学计量学等相关知识。杨老师对NIR光谱的认识与理解及其见解,使我受益颇深,也使我逐渐认识到NIR的优势与特点。经过大约2个多月的强化补课,我算是摸到了NIR的门框。紧接着开展了一些有意义的实验室研究,比如国内外仪器的性能测试对比,实验室虚拟在线研究等。这些探索,开启了我对NIR的认识之门,使我慢慢地走向NIR研究之路。接下来的两项工作,使我真正意识到NIR这项技术的便利性。项目初期,尽管团队进行了极为详尽的设计与周密安排,但在实施过程中仍然出现了各种各样的情况,经过向多位专家请教,联合自动化、光谱仪公司等单位共同攻关,最终实现了整套在线系统的顺利运行。开展的项目之一,是吉林敖东延边药业股份有限公司与清华大学联合开展的,关于安神补脑液、血府逐瘀口服液两个品种的提取过程在线质量控制。其提取具有多个特点,如提取同时在两个车间进行,工艺分为水提与水蒸气蒸馏提取,两个品种均为大复方混提且两个车间投料处方有区别,工艺较复杂,色素沉积严重,等等。研究团队针对不同品种的特点,进行细致分析,筛查原因,确定解决思路,落实解决方案,协同敖东、申宜、英贤(聚光)等多家单位,最终完善了预处理设备、工艺现场改造、流通池清洁等多个环节的细节处理,并制定了相应的SOP,实现了提取过程的在线检测应用,并提供了生产状态、含量预判等多种功能。团队投入了大量的人力、时间扑倒这个项目上,记得有师兄说,“我一年300多天,至少有100天在敦化度过的,要是项目第一年就结婚,估计孩子现在都准备上幼儿园了”。冬季是我们常去敖东的时节,每天早上5点前起床,赶在5:30之前到达现场,开展一天的现场工作,往往一忙就到了下午5、6点以后了。车间内、露天温度一般在-20~40oC游荡,剧烈的温度变化的确是真的酸爽,颇值得回味。夏季也是常去的,我们一般当成避暑,正好远离北京的热燥。图们江畔、六顶山腰的尼众道场-正觉寺,是个很好的休闲去处。同门们在北京习惯了晚睡,反而有些不适应略有时差的敦化生活。该项目于2011年7月顺利通过专家组验收,感谢陆婉珍院士、褚小立博士等各位近红外专家给与的大力支持!另外一个完整参与的项目,是神威药业有限公司的“中药注射剂全面质量控制及在清开灵、舒血宁和参麦注射液中的应用”项目。整个项目涉及到3个品种,6味药材,多个工艺环节。开展了中药注射剂先进制剂工艺单元信息化集成研究,构建了中药注射剂全过程近红外在线监控系统,解决了仪器分析和指纹图谱质量控制滞后于生产的难题。本项目以产品中间体NIR、指纹图谱数据库为基础,以光谱-色谱软件关联性技术为依托,实施中药注射剂生产工艺实时监测与网络控制技术,实现了网络集成化的中药注射剂工艺过程控制与现场管理。本项目于2010年12月顺利通过国家发改委组织的专家验收,被国家发改委认定为“中药制剂先进工艺集成及生产过程自动控制高技术产业化示范工程”,并获得了2014年度国家科学技术进步奖二等奖。鉴于此,学会邀请罗教授在2014年全国第五届近红外光谱学术会议做大会报告。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291159_612588_2648817_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609291159_612589_2648817_3.jpg图2为罗教授、王教授参加2014年全国第五届近红外光谱学术会议两个项目的成功实施,再加上之前团队的一个案例:“腰痛宁胶囊全过程多途径质量控制新技术及应用-近红外在线检测控制混合过程的均匀度研究”,显示出NIR技术作为一项快速检测技术的极大优势。慢慢地,我热爱上了这门技术,也逐渐主动深入地分析NIR技术的优势与劣势,思考如何使之更有效地服务于我们这个行业。或许可能,通过NIR技术的应用,我们可以使“传统的质量控制模式”转变为“在线质量分析与智能控制模式”,实现“传统中药工程基于工艺操作参数控制”转变为“现代中药生产基于产品质量控制”。博士毕业后,加入到中山大学南沙研究院南药集成制造与过程控制技术研究中心,与团队同仁搭建了一条具有中试规模的中药生产线,并搭配了在线近红外检测系统,主要针对中药提取物、柱层析、浓缩等多个环节开展过程分析,取得了较为理想的应用效果。2015年11月,调入广东药科大学中医药研究院(广东省代谢病中西医结合研究中心),专门从事与光学/光谱学相关的研究,特别是继续开展基于近红外光谱技术的中药生产过程智能控制系统研究。同时接触了很多基于近红外光谱技术的生物医药设备,激发了我更浓厚的研究兴趣,团队也已开展了基于光谱技术的医学临床检验等方面的研究。欢迎各位专家莅临指导!自接触NIR以来,对这门技术,从零基础,到逐渐认识,再到现在的热爱。作为年轻后生,自己深感知识的匮乏,也迫切希望通过各种机会培训自己,不断向业内的各位专家学习,广泛的阅览与近红外光谱相关的各种书籍。特别推荐的是陆老师的《现代近红外光谱分析技术》,这是我近红外启蒙书!(当然,还有很多重要书刊,就不一一列举了。)求学期间直到现在,一直得到清华大学、南开大学、近红外光谱分会等单位和各位专家的指导,谢谢!也得到诸多分析仪器公司特别是近红外光谱仪公司的大力支持,使我在近红外这条路上走的越来越踏实。在做项目的过程中,认识了许许多多热衷于近红外的狂热分子们,与你们同行,真的是一件大大的幸事!希望与各位同道在学会领导的指领下,大踏步地走在近红外的阳光大道上。特别感谢褚老师建立的微信群,在微信群认识了N多高手,学到了很多知识。另外还有鲁杰群主的QQ群(328264040),算是官方群吧,人员激增,大佬云集;还有“果品-西农”建立的QQ群(246287439),后果品兄将群主资格转让给了本人,希望本群继续壮大。在日常的生活中,也一直在思考关于近红外的点点滴滴,总在思考,我们能够做些什么?!现在也正在承担着几个近红外光谱在线检测的应用研究,包括了制药行业的多个关键工艺节点。在近几年的摸索中,总是不自觉的把近红外技术纳入到各项研究过程中,总要试一下才安心。成则欣喜,不成则思。在研究过程中,也发现了许多好玩有趣的现象,在此就不一一介绍了。在这儿有个小小的建议,能不能把内部通讯《近红外光谱通讯》,逐渐做成学术期刊,做成国内“科普+学术”型的《近红外光谱杂志》?可能,自己把近红外当成了一项大杀器。有些时候,可能由于练功太猛,走火入魔了,面对别人其他技术上的咨询,我总是不经意间回应:“要不,试试近红外?”

  • 【原创大赛】温控近红外光谱研究进展

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是分析水基生物样品的有力工具。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅包含独立的分子结构和官能团的信息,还涉及分子间或分子内相互作用。一些扰动(例如,温度或添加物)会影响分子结构和相互作用,从而导致[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]发生变化。基于温度对光谱的影响,开发温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]获得了随温度变化的光谱。由于水的强吸收和温度对水的氢键具有显着影响,该技术已被用于水溶液的结构和定量分析。 最早通过两种氢键模型观察水的温度依赖性光谱变化,用于研究光谱变化和氢键之间的关系,发现氢键和非氢键水物种的光谱特征随温度变化明显。近年来,提出了一种更为复杂的模型,根据扰动引起[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,提出了水可以采取形成零、一、二、三和四个氢键的结构(S[sub]0[/sub],S[sub]1[/sub],S[sub]2[/sub],S[sub]3[/sub]和S[sub]4[/sub])。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的宽峰和重叠峰,已采用化学计量学方法来提高分辨率并提取分析中的光谱特征。利用高斯拟合,得到了在不同温度下测量的水和葡萄糖溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的光谱成分。通过分析光谱成分的变化,发现葡萄糖与葡萄糖相互作用诱导的有序(四面体)水团簇。水随温度升高,为生物系统中碳水化合物的生物保护功能提供了可能的原因。此外,提出了多级同时成分分析(MSCA)和互因子分析(MFA)从温度依赖的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中提取定量信息,水溶液或血清样品中低浓度葡萄糖的定量测定得以实现。因此,在化学计量学的帮助下,温度依赖性[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以成为水溶液结构和定量分析的有用工具。

  • 【原创】亲情奉送:近红外光谱法在药物分析中的应用

    近红外(Near Infrared,NIR)光谱的波长范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100nm)和近红外长波区(1100~2526nm)。由于该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以虽然该谱区发现较早,但分析价值一直未能得到足够的重视。近年来,由于巨型计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使其成为发展最快、最引人注目的光谱技术[1]。而且由于该技术方便快速,无需对样品进行预处理,适用于在线分析等特点,在药物分析领域中正不断得到重视与应用。1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的测量 根据NIR光谱的获得方式,通常有透射(Transmittance)和漫反射(Diffuse Reflectance)两种[2]。 透射测定法的定量关系遵从Lambert-Beer定律,主要适用于液体样品,其正常的工作波长范围是850~1050nm[3]。浙江大学的史月华等人用该原理,在93%~97.4%的浓度范围内利用维生素E在6061~5246cm-1处的近红外吸收峰面积积分值和其浓度关系建立回归方程,对已知浓度的样品进行预测,误差及相对误差均在0.79%~0.9%内[4,5]。 漫反射测定法是对固体样品进行近红外测定常用的方法。当光源垂直于样品的表面,有一部分漫反射光会向各个方向散射,将检测器放在与垂直光成45o角的位置测定散射光强的方法称为漫反射法。国内已有人先后用漫反射技术测定了精氨酸阿司匹林[6] 、安乃近[7] 、芦丁和维生素E[8] 等的含量,并且用反射光谱法对磺胺噻唑[9]进行质量评价。 以透射和漫反射为测试基础,为适应不同物质在不同状态时直接测定其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],90年代以来光纤技术在NIR中得到了广泛应用。光纤不仅可方便的传输光谱信号,各式各样的光纤探头还极大地方便了NIR进行各类快速在线分析。2、[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药物分析中的应用2.1应用范围 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析领域中的应用范围相当广泛,它不仅适用于药物的多种不同状态如原料[10]、完整的片剂、胶囊与液体等制剂[11],还可用于不同类型的药品,如蛋白质[12]、中草药[13]、抗生素[14] 等药物的分析。NIR更适用于对原料药纯度、包装材料等的分析与检测以及生产工艺的监控[15,16] ;利用不同的光纤探头可实现生产工艺的在线连续分析监控[17,18,19,20,21] 。2.2定性、定量分析 现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术不是通过观察供试品谱图特征或测量供试品谱图参数直接进行定性或定量分析,而是首先通过测定样品校正集的光谱、组成或性质数据(组成或性质数据需通过其它认可的标准方法测定),采用合适的化学计量学方法建立校正模型,再通过建立的校正模型与未知样品进行比较,实现定性或定量分析。2.2.1定性分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]谱带较宽,特征性不强,因此很少像其它光谱(如紫外光谱和红外光谱)那样用于化合物基团的识别及结构的鉴定。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的定性分析一般是用于确定分析样品在已知样品集中的位置[22]。常用的方法包括:(1)判别分析法:判别分析是经典的定性识别方法,其基本思路是相同样品在不同波长下具有相近的光谱吸收,这种光谱间的比较可以是原始光谱,也可以是经过处理的光谱。(2)主成分分析(Principal Component Analysis PCA)法:利用PCA方法将多波长下的光谱数据压缩到有限的几个因子空间内,再通过样品在各因子空间的得分确定其归属类别,但PCA对样本与校正集间的确切位置缺乏定量的解释。任玉林等采用此方法研究了去痛片[23]的近红外漫反射光谱,总结出对标化后的数据进行主成分分析可减小颗粒大小的变化所产生的散射影响,并且用第二主成分得分对第一主成分作图可以将合格样品与不合格样品区分开来。其缺点是当真药与劣药的含量相当接近时此法容易分错[24]。(3)马氏距离(Mahalanobis Distance MD)法:该方法的核心是通过多波长下的光谱距离定量描述出测量样本离校正集样本的位置,因而在光谱匹配异常点检测和模型外推方面都很有用。但应用该方法时,波长位置的选择非常重要,波长点过少,光谱得不到合理的描述;波长点过多,计算量大,为此,徐广通提出将PCA与马氏距离相结合解决模型的适用性判断,可以充分利用PCA对大量光谱数据进行降维处理,也较好地解决了马氏距离计算时波长点的选择问题,避免了大量光谱数据直接进行马氏距离计算出现的共线性或计算量大等问题,且克服了采用PCA自身进行判断界限不易量化的问题[25]。2.2.2定量分析 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测量时一般不需对样品进行预处理,但测定的光谱可能受到各种干扰因素的影响。利用单一波长下获得的光谱数据很难获得准确的定量分析结果。NIR光谱结构复杂,谱图重叠较多,所以在进行定量分析时,一般采用多波长下获得的数据并进行一定的数据处理才能获得准确可靠的分析结果。常用方法如下:(1)主成分回归(Principal Component Regression,PCR):原理与PCA相同。吉林大学的任玉林等在此方面进行了深入研究[26]。PCR在解释光谱数据时起着重要作用,从主成分权重图中能够确定主成分与哪个组份有关,但确切而全面地解释每个主成分代表什么迄今仍是最难解决的问题。(2)偏最小二乘法(Partial Least Square PLS):该法是一种全光谱分析方法,充分利用多个波长下的有用信息,无需刻意的选择波长,并能滤去原始数据噪音,提高信噪比,解决交互影响的非线性问题,很合适在NIR中使用[27]。实验证明,PLS法同近红外漫反射光谱法结合,直接分析固态粉末药品磺胺甲基异唑[28]、安体舒通[29]、安乃近[30]、磺胺脒[31]是可行的,同其它方法相比具有速度快、简便、且不破坏样品的优点。(3)人工神经网络法(Artificial Neural Networks ANN):近年来兴起的ANN法研究,根据样品各组分的光谱数据建立人工神经网络模型,预测未知样品并讨论影响网络的各参数。采用ANN法对阿司匹林[32]、扑热息痛[33]、美的康[34]等药物定量分析的结果表明,ANN法的最大优点是其抗干扰、抗噪音及强大的非线性转换能力,对于某些特殊情况ANN会得到更小的校正误差和预测误差,并且它的预示结果要稍优于PLS(t检验无显著差异)。这可能是由于ANN法具有更强的非线性处理能力所致。 此外还有多元线性回归(Multiple Linear Regression MLR)、拓扑(Topology TP)等方法也在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中得到应用。3、问题与展望 尽管N I R在药物分析领域显现出勃勃生机,但目前它还存在一定的弱点。首先,它是一种间接的相对分析技术,通过收集大量具有代表性的标准样品,通过严格细致的化学分析测出必要的数据,再通过计算机建立数学模型,预测未知样品的结果。而模型的建立需耗用大量的人力、物力和财力;其次,由于NIR谱区为分子倍频与合频的振动光谱,信号弱,谱峰重叠严重,所以目前还仅能用于常量分析,被测定组分的量一般应大于样品重量的0.1%;此外,在进行[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析时,应考虑样品的特征、分析实验的设计及数据处理等多方面的问题,才能取得正确的分析结果,建立可靠的校正模型是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成功的关键,而合理的实验设计和恰当的分析模型则是建立校正模型的关键[35]。 NIR光谱分析的最大特点是操作简便、快速,可不破坏样品进行原位、在线测量;测量信号又可以远距离传输和分析;特别是与计算机技术和光导纤维技术相结合,采用NIR透射、散射、漫反射光谱学检测方法,可以不使用化学试剂,不必进行预处理,可直接对颗粒状、固体状、糊状、不透明的样品进行分析。这些特点正逐渐被制药界所认识,并显示出极大潜力,在制药工作和质量控制分析中具有广阔的应用前景。此外,NIR用于生产过程中的含量与水分分析也表现出独特的魅力[36]。目前NIR已成为AOAC(Association of Official Analytical Chemists)一种标准分析方法应用于药品检测中[37]。仪器生产商和药物分析专家的合作开发已使FDA、欧洲和加拿大药物管理局正式研究用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术取代繁琐费时的常规分析方法的可行性,部分测试项目已被FDA批准为标准方法。USP(United States Pharmacopia第25版)最近已在附录中增补近红外分析方法[38]。 国内,在SDA(State Drug Administration)的支持下,我所正在探索药品监督检验执法过程中采用NIR进行快速鉴别及定量分析的可行性。结合全国抽验工作, 对NIR模型的准确性及模型传递的误差进行系统评价,这项工作的开展对打击假劣药品具有重要意义。

  • 【原创大赛】我和近红外的故事

    【原创大赛】我和近红外的故事

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!我和近红外的故事浙江大学药学院李文龙近一个月来,看到群里各位专家讲述与近红外的各种情缘故事,或一见钟情厮守多年,或波澜起伏感慨万千,或硕果累累壮怀不已,或偶遇挫折衷情未改,可谓精彩纷呈,大大丰富了我的眼界,同时又觉得自己的近红外故事过于平淡,缺乏起承转合,所以迟迟未能落笔。但回忆起来,从自己初识近红外,已经十载寒暑,算得上一个老兵了,也是时候回顾展望一下了,所以也就不揣粗陋,草成这篇文字,重在掺和吧。此情可待成追忆,只是当时已惘然初识近红外,是我在国家海洋局第一海洋研究所攻读硕士期间,记得有一天深夜,导师王小如教授把我们紧急召集起来开会,说是发生胶州湾某地发生原油泄漏,附近有多个钻井平台,还有一些外籍油轮,北海分局要求我们协助判断污染源,王老师要求我们采用多种分析技术对污染现场的样品和可能的污染源样品进行比对,大家有做气质的,有做荧光的,有做近红外的,我当时被分在ICP-MS组,测定油样中的铬钒比,最终对所得数据进行综合分析,初步确定了污染源,并将相关分析结果提交给北海分局。这个紧急项目完成后,王老师开了一个小型的庆功会,特意指出,近红外这次发挥了很大的作用,我当时觉得很好奇,但由于当时主要做毛细管电泳方面的研究,也没有去深入了解,更没想到自己今后会长期从事近红外研究,但是,当我首次听到近红外这个词时,冥冥之中似曾相识。这也是我觉得自己和近红外最具传奇色彩的地方,虽然之后的剧情并不浪漫。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291611_612613_2648817_3.jpg图一、 2006年出海采集溢油样品 雄关漫道真似铁,而今迈步从头越2007年,我考入浙江大学药学院瞿海斌教授门下攻读药物分析专业博士学位,当时我信心满满,希望能够继续硕士期间的工作,从事CE-MS和LC-MS方面的研究。但初次面谒导师,他从身后的书橱中抽出一本打印的白皮书交给我,封面上赫然写着Chemometrics,说,今后做近红外离不开这个,看看英文的更好一些。我半天才回过味来,重点不是Chemometrics,而是今后做近红外这句话,连忙解释道,我一直学的是分析化学,对质谱感兴趣,到这里来是想继续做质谱的,瞿老师当时明确指出三点:一、近红外是一种分析技术,与你的背景不矛盾;二、近红外对于中药样品非常合适,对于中药制药过程分析非常重要;三、做什么事不能只从兴趣出发。退出导师办公室,我脑子里一团糟,近红外对中药如何重要不知道,只知道自己对化学计量学略通皮毛,而对近红外则是一窍不通,自己又要重新做小学生了。和大多数朋友一样,我以陆婉珍院士的《现代近红外光谱分析技术》和严衍禄教授的《近红外光谱分析技术的原理与应用》为蓝本,开始系统学习近红外的相关知识,俞翔师弟和罗晓芳师妹教我仪器的基本操作。学习的时候觉得近红外的确是个神奇的东西,貌似无所不能。越来越觉得有了近红外这个神器,中药研究中长期困扰我的很多问题应该能迎刃而解,我也非常迫切的想寻找一个机会小试牛刀。 纸上得来终觉浅,绝知此事要躬行终于,机会来了。当时,我们和正大青春宝合作,进行丹参注射液和黄芪注射液提取过程在线监控和中间体的快速分析,我采集了很多批的提取液终点样品进行近红外分析,利用HPLC测得的多种酚酸的含量,与近红外光谱建立定量分析模型。费了很大的功夫,完成了上百份样品参考值的测定,可是,建立的模型却令我无语了,模型的相关系数只有好的0.6上下,差的只有0.2左右,这样的结果,能用吗?试着预测几份样品,果然不行。而当时俞翔师弟建立的一些在线监测的模型倒是差强人意,我反复比较了我们之间的差别,似乎看出了一些门道:他的样品中化学成分的含量波动较大,我的则相对稳定;他根据一些规则剔除了部分异常样品而我没有;他对波段的选择和预处理方法进行了优化,而我做的则很随意,鉴于这些分析,我重新设计了试验,采集了丹参提取过程中的提取液样品进行分析,虽然采用的是仍是离线方式,但结果得到了很大的改善,我也初步尝到了近红外分析的甜头,并在PBA上发表了我的第一篇英文文章。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291611_612614_2648817_3.jpg图二、 2007年与俞翔师弟在正大青春宝提取车间的分析小屋做实验之后,我陆续参与了和凯宝药业、东阿阿胶、振东制药、梧州药业、雷允上等多个企业的应用项目,并从实际应用中提炼出了一些科学问题,申报了几个科研项目。有幸认识了圈内很多的专家学者,也建立了和近红外仪器厂家和中药制药企业之间的密切联系,大家工作上相互借鉴启发,生活中相互关心问候,尤其是褚老师所建的这个近红外群,更是让我感觉到了组织的温暖。在此,我也想感谢正大青春宝集团莫必琪主任、傅迎师姐;上海凯宝药业刘绍勇副总经理、薛东升总工、潘建超主任;东阿阿胶田守生院长,张淹工程师;感谢赛黙飞世尔公司的潘璐工程师,韩海帆师弟;布鲁克公司王颜萍师姐;步琪公司邹贤勇工程师;拜耳制药的刘全师兄,罗晓芳师妹,我所取得点滴成就,都离不开你们的支持和帮助。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291612_612615_2648817_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609291612_612616_2648817_3.jpg图三、 2008年在凯宝药业配液车间采集过程样品 秋日栖霞赏红枫,一样风景别样情近红外在很多领域得到了广泛应用,我们群里有食品领域的专家,也更有医学领域的教授,有石化行业的大咖,更有烟草行业的大牛,相信每个行业在应用近红外时,都会有自己的成败得失,喜怒哀乐。自从我踏上近红外之路以来,饱尝了科研的酸甜苦辣,既有近红外对特定样品的妙用,也有大量重复性的劳动;有一帆风顺的实验,也有迄今不得其解的难题;有论文发表的喜悦,也有基金被刷的苦恼。个人所做的工作与各位前辈相比不值一提,但从事近红外在中药领域的应用研究,也有自己的一点感悟。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291612_612617_2648817_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609291612_612618_2648817_3.jpg图四、 2013年在美国加州旧金山做近红外相关的研究报告我觉得近红外的确很适合中药分析,中药成分复杂含量悬殊,近红外只要有含氢基团都有响应;中药讲究多种物质协同作用,近红外可以全面反映综合信息;中药制药黑箱操作过程不透明,近红外可以为这些过程装上眼睛。虽然近红外也有很多的不足,比如检测限较高,建模过程复杂,模型需要维护更新,等等。但是,也应注意到色谱技术复杂耗时,紫外只对特定物质响应,中红外响应太强,拉曼荧光干扰太重,相对于这些分析仪器而言,近红外仍是过程监测和快速分析的不二之选,对于近红外在中药领域的应用,我个人充满信心。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291613_612619_2648817_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609291613_612620_2648817_3.jpg图五、 2013年在美国德州圣安东尼奥做近红外鉴别阿胶生产厂家的展板讲解不容讳言,相对于化学药和生物药,近红外在中药领域的应用仍处于初级阶段,而且也有些专家对此技术提出疑问,近红外在中药领域的推广应用的

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制