扩展版石英晶体微天平

仪器信息网扩展版石英晶体微天平专题为您提供2024年最新扩展版石英晶体微天平价格报价、厂家品牌的相关信息, 包括扩展版石英晶体微天平参数、型号等,不管是国产,还是进口品牌的扩展版石英晶体微天平您都可以在这里找到。 除此之外,仪器信息网还免费为您整合扩展版石英晶体微天平相关的耗材配件、试剂标物,还有扩展版石英晶体微天平相关的最新资讯、资料,以及扩展版石英晶体微天平相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

扩展版石英晶体微天平相关的厂商

  • 400-659-9826
    梅特勒托利多是历史悠久的精密仪器及衡器制造商与服务提供商,产品应用于实验室、制造商和零售服务业。我们提供贯穿客户价值链的称重、分析和产品检测解决方案,帮助客户简化流程、提高生产率、确保产品符合法律法规要求以及优化成本。我们在全球范围内拥有40家分公司和销售机构,并在瑞士、德国、美国和中国等国家拥有生产基地。我们在中国的上海、常州和成都都设有运营中心、制造基地及研发中心,并拥有遍布全国的销售及服务网络。
    留言咨询
  • 泰兴市和宸晶体科技公司位于长江之滨泰兴市,距无锡常州苏州扬州泰州距离均在150公里以内,交通方便,公司主要产品有:蓝宝石精密光学窗口片保护片、蓝宝石精密部件、蓝宝石光学透镜棱镜等,其中高面型蓝宝石产品享誉市场。拥有技术研发团队和多年浸染光电加工行业的高素质技工团队,并采购了国内和国际顶尖水平的加工和检测设备。和宸晶体的蓝宝石产品已广泛应用于:深海探测、高铁监控监测、油田监测、航空航天等领域。热忱欢迎国内外客商莅临我公司参观指导!
    留言咨询
  • 1. 提供氟化物晶体材料,CAF2, BAF2, MGF2, LIF2. 提供光学元件:透镜,柱面,棱镜,楔角,平面3. 质量稳定,信誉可靠
    留言咨询

扩展版石英晶体微天平相关的仪器

  • **********仪器简介**********QCM-D技术的核心是石英晶体传感器,它由石英晶体夹在两片电极中间形成三明治结构。在电极两端加入一个交流电压,在传感器的共振频率处引发一个小的剪切振动,当交流电压关闭后,振动呈指数衰减,这个衰减被记录下来,得到共振频率(f)和耗散因子(D)两个参数。 对于薄层硬质薄膜,可以使用Sauerbrey关系和公式,根据传感器振动计算吸附层的质量。当沉积的薄膜松散和粘性时,能量通过薄膜上的摩擦被消耗,传感器的振动发生衰减,耗散因子提供了传感器上吸附的薄膜的结构信息。通过使用多个频率和耗散因子数据,使用粘弹性模型而非Sauerbrey关系,我们可以计算得到质量(mass)、厚度(thickness)、粘度(viscosity)和弹性(elasticity)。越来越多发表的科学文献证明了QCM-D系统的技术可靠性。该技术的核心是石英晶体在负载电压下以一个特定频率振荡。当晶体上的质量改变时,振荡的共振频率也会随之变化。通过这种方法,可以在纳克级灵敏度上测定质量变化。这种独特的QSense专利设计可以同时测量耗散因子,从而提供薄膜的结构和粘弹性信息。它可以提供诸如吸附膜的分子结构、厚度、水含量的信息。此外还可以检测反应前、进行中和结束后的表面吸附层的变化。耗散因子是指当电路断开后震荡的晶体频率降低到0的时间快慢。任何可在芯片上形成薄膜的物质都可以进行免标记测试,这些物质包括聚合物、金属和化学改性表面。实时测试系统每秒可提供高达200个数据点。 **********产品优势**********● 追踪表/界面变化凭借着纳克级的灵敏度,石英晶体微天平QSense Explorer可以精确测量吸附层的质量变化,结构和粘弹性质。石英晶体微天平QSense Explorer可以区分两个相似吸附层,或者观测相转变或吸附层的结构变化。不仅如此,两种类型相似层的吸附,吸附层相转变或者结构变化,都可以通过石英晶体微天平(QCM-D)检测出来。 ● 实时分析每秒记录高达200个数据点,QSense系统可以让您实时、完整地跟踪分子的相互作用。 ● 自由的表面选择金属,聚合物,化学改性表面,只要是能在芯片表面上铺展成薄膜的材料,都可以成为我们的定制芯片涂层。 ● 整体解决方案QSense提供易于上手的整体解决方案。 QSense Explorer系统包括仪器、软件、电脑和安装教程。QSense也提供技术培训和应用支持。 ● 单通道传感器系统紧凑、易用、免标记的单通道传感器设计保证您进行可靠稳定的QCM-D测试,同时具有极佳的可重复性。● 可选模块可提供如电化学和窗口模块等附件模块。**********仪器原理**********石英晶体微天平QSense Explorer是一种检测吸附在表面上的分子反应机制的实时分析仪器。当分子层在传感器表面质量发生变化或者结构发生改变时,石英晶体微天平QSense Explorer可以测量分子层的变化。在材料、蛋白质和表面活性剂等领域的研究中,石英晶体微天平QSense Explorer设备起到了关键作用。 从快速仪器入门使用,到高质量数据分析,石英晶体微天平QSense Explorer提供了一套完整的解决方案。仪器为单通道测试模块,并且该系统提供可选的窗口模块,可以进行芯片表面即时光学观测。石英晶体微天平QSense Explorer系统的紧凑设计同样可以对芯片上的反应进行光谱研究,如光催化反应(紫外修复)和即时显微研究(细胞在表面吸附)。我们的产品提供包括硬件、软件、技术支持和让您可以快速开始研究所需的介绍、培训以及实验结果解析。石英晶体微天平QSense Explorer设备基于极其灵敏和快捷的技术,带耗散因子检测的石英晶体微天平(QCM-D)。石英晶体微天平的核心是传感器在加载电压的作用下以特定频率下振荡。当传感器上的质量发生变化时,其振荡频率会随之变化(1)。断开电路会导致振荡衰减。衰减速率或者耗散因子与传感器上的分子层粘弹性有关(2)。通过测定频率和耗散,耗散型石英晶体微天平QCM-D可以分析吸附在传感器表面的分子层状态,包括质量、厚度和结构性质(粘弹性)。**********使用方法********************技术参数**********传感器数量1个传感器上方体积~40 μL最小样品体积~300 μL工作温度15-65 °C,由软件控制,精确度±0.02 °C,可提供高温模块,量程4~150°C常规流速0-1 mL/min清洗所有与液体接触元件均可拆卸,并可在超声波浴中清洗传感器晶体5 MHz,直径14 mm,抛光,AT切割,金电极频率范围1-70 MHz (对于5 MHz晶片,从7个频率到13个泛频,最高至65 MHz)最大时间分辨率,1个频率最高达每秒200个数据点液相中常规质量精度与最大质量精度~ 1.8 ng/cm2(18 pg/mm),~ 0.5 ng/cm2(5 pg/mm)液相中常规耗散因子精度与最大耗散因子精度~0.1*10-6,~0.04*10-6液相典型峰间噪音(RMS)~ 0.16 Hz (0.04 Hz)**********具体应用领域如下********** ● 生物材料表面分析 ● 生物传感器的研究 ● 蛋白质的相互作用 ● 膜表面的吸附/解析 ● 生物膜表面DNA的杂交 ● 酶的降解 ● 聚电解质单/多层膜的研究 ● 细胞在不同表面的吸附 ● 靶向药物的研究 ● 催化、腐蚀等研究 ● 高分子溶涨、结构改变、等特性的研究 ● 高分子材料的生物相容性等
    留言咨询
  • **********仪器简介**********耗散型石英晶体微天平(QCM-D)技术的核心是石英晶体传感器,它由石英晶体夹在两片电极中间形成三明治结构。在电极两端加入一个交流电压,在传感器的共振频率处引发一个小的剪切振动,当交流电压关闭后,耗散型石英晶体微天平(QCM-D)振动呈指数衰减,这个衰减被记录下来,得到共振频率(f)和耗散因子(D)两个参数。 耗散型石英晶体微天平(QCM-D)对于薄层硬质薄膜,可以使用Sauerbrey关系和公式,根据耗散型石英晶体微天平(QCM-D)传感器振动计算吸附层的质量。当沉积的薄膜松散和粘性时,能量通过薄膜上的摩擦被消耗,耗散型石英晶体微天平(QCM-D)传感器的振动发生衰减,耗散因子提供了传感器上吸附的薄膜的结构信息。通过使用耗散型石英晶体微天平(QCM-D)多个频率和耗散因子数据,使用粘弹性模型而非Sauerbrey关系,我们可以计算得到质量(mass)、厚度(thickness)、粘度(viscosity)和弹性(elasticity)。耗散型石英晶体微天平(QCM-D)QSense Analyzer作为具有耗散因子检测功能的第二代石英晶体微量天平,可以对多种不同类型表面的分子相互作用和分子吸附进行研究,耗散型石英晶体微天平(QCM-D)应用范围包括蛋白质、脂质、聚电解质、高分子和细胞/细菌等与表面或与已吸附分子层之间的相互作用。 耗散型石英晶体微天平(QCM-D)QSense Analyzer可以测定非常薄的吸附层的质量,并同步提供如粘弹性等吸附层结构信息。它基于耗散型石英晶体微天平(QCM-D)专利技术,非常灵敏和快速,可提供多个频率和耗散因子数据,用于充分了解在传感器表面吸附的分子的状态。 **********耗散型石英晶体微天平(QCM-D)的产品优势**********●实时追踪分子运动QSense Analyzer可以实时追踪在芯片表面上发生的分子运动。●测量分子层的质量和厚度凭借着纳克级的精度,检测芯片表面分子层的形成过程变成了可能。 ●分析分子层的结构性质检测分子层的刚性和柔性变化。量化表面吸附薄层的粘弹性,剪切模量,粘度和密度。 ●自由的表面选择金属,聚合物,化学改性表面,只要是能在表面铺展成薄膜的材料,都可以成为我们的定制表面。 ●QCM-D联用测试QCM-D仪器提供标准流动池来进行液相实验。此外电化学样品池、光学样品池、湿度样品池、开放样品池、椭偏样品池、高温样品池、ALD样品架等用来进行不同的实验。这些不同的样品池同样可以和其他分析仪器联用,用以提供更丰富、有效的数据。 ●四通道传感器系统专为液相流动实验设计!四通道联装平行试验模块并配有精确温控单元作为辅助。 ●整体的解决方案, 更易使用完整的系统包括硬件,软件,动手培训和技术支持。我们还提供数据分析指导的网络讲座、研讨会。 ●无须标记,原位测试从生物医药科学探索,到工业级环境监测,再到清洁用品研发, QCM-D都提供了广泛有效的应用空间。**********耗散型石英晶体微天平(QCM-D)的仪器原理**********耗散型石英晶体微天平(QCM-D)QSense Analyzer是一种检测吸附在表面上的分子反应机制的实时分析仪器。当分子层在传感器表面质量发生变化或者结构发生改变时, Analyzer可以测量分子层的变化。在材料、蛋白质和表面活性剂等领域的研究中,QSense Analyzer设备起到了关键作用。 从快速仪器入门使用,到高质量数据分析,QSense Analyzer提供了一套完整的解决方案。仪器有四个流动模块,每一个模块都配备一个传感器,可以进行四个平行测试。多种可选模块,例如电化学QCM-D,可以进行联用测试。我们的产品提供包括硬件、软件、技术支持和让您可以快速开始研究所需的介绍、培训以及实验结果解析。 耗散型石英晶体微天平(QCM-D)QSense Analyzer设备基于极其灵敏和快捷的技术,带耗散因子检测的石英晶体微天平(QCM-D)。该设备的核心是传感器在加载电压的作用下以特定频率下振荡。当传感器上的质量发生变化时,其振荡频率会随之变化(1)。断开电路会导致振荡衰减。衰减速率或者耗散因子与传感器上的分子层粘弹性有关(2)。通过测定频率和耗散,QCM-D可以分析吸附在传感器表面的分子层状态,包括质量、厚度和结构性质(粘弹性)。**********耗散型石英晶体微天平(QCM-D)的使用方法********************耗散型石英晶体微天平(QCM-D)QSense Analyzer的技术参数**********传感器数量4个传感器上方体积~40 μL最小样品体积~300 μL工作温度15-65 °C,由软件控制,精确度±0.02 °C,可提供高温模块,量程4~150°C常规流速50-200 μL/min (Analyzer);清洗所有与液体接触元件均可拆卸,并可在超声波浴中清洗传感器晶体5 MHz,直径14 mm,抛光,AT切割,金电极频率范围1-70 MHz (对于5 MHz晶片,从7个频率到13个泛频,最高至65 MHz)最大时间分辨率,1个频率最高达每秒200个数据点液相中常规质量精度与最大质量精度~ 1.8 ng/cm2(18 pg/mm),~ 0.5 ng/cm2(5 pg/mm)液相中常规耗散因子精度与最大耗散因子精度~0.1*10-6,~0.04*10-6液相典型峰间噪音(RMS)~ 0.16 Hz (0.04 Hz)**********耗散型石英晶体微天平(QCM-D)具体应用领域如下********** ● 生物材料表面分析 ● 生物传感器的研究 ● 蛋白质的相互作用 ● 膜表面的吸附/解析 ● 生物膜表面DNA的杂交 ● 酶的降解 ● 聚电解质单/多层膜的研究 ● 细胞在不同表面的吸附 ● 靶向药物的研究 ● 催化、腐蚀等研究 ● 高分子溶涨、结构改变、等特性的研究 ● 高分子材料的生物相容性等
    留言咨询
  • EQCM-I Mini 电化学石英晶体微天平可以与Gamry电化学工作站同步运行EQCM-I Mini 电化学石英晶体微天平能够测量石英晶片或所吸附薄膜的频率变化及能量耗散,进而分析反应过程中微小的质量变化,吸附层厚度变化等;能够判断膜的刚性或柔性,并且分析膜的粘弹性方面的性质;以及实时追踪分子排列、结构变化等.阻抗型、耗散型石英晶体微天平判断薄膜的刚性与柔性测量耗散,分析膜的粘弹性吸附、成膜等过程中的微小质量变化,分析膜的厚度、质量等实时追踪反应过程中的分子排列、结构变化......控制软件 —— BiosenseBiosense软件可同时控制石英晶体微天平和Gamry恒电位仪的运行及数据获取。EQCM-I Mini 电化学石英晶体微天平是基于对石英晶片进行阻抗分析基础上的高度灵敏的质量传感器,测量共振频率及共振电导曲线的带宽或半峰宽(FWHM),它们与品质因子Q直接相关,品质因子Q是耗散因子D的倒数。 该产品能够测量石英晶片或所吸附薄膜的频率变化及能量耗散,进而分析反应过程中微小的质量变化,吸附层厚度变化等;能够判断膜的刚性或柔性,并且分析膜的粘弹性方面的性质;以及实时追踪分子排列、结构变化等过程。 同时测量共振频率和耗散因子快速测量多个谐波震动频率(对于5MHz晶片,可以测到第13次谐波)实现和Gamry电化学工作站一体化设计温控范围是15°C 到60°C (精度± 0,02 °C)电化学测量模块可供选择可以扩展到2通道和Windows 10等操作系统PC计算机兼容。直接通过USB实现数据通讯液相中标准耗散因子精度为 ~ 1 x 10-7EQCM-I Mini 电化学石英晶体微天平仪器参数: EQCM-I Mini 电化学石英晶体微天平适用领域:生物传感器、化学传感器、电池、腐蚀等领域,包括:聚合物膜、纳米粒子薄膜Li+ 嵌入(锂电或电容器)材料表面腐蚀研究电沉积自组装单层 抗原-抗体相互作用 表面活性剂吸附蛋白质吸附离子和溶剂运输测试曲线:测量共振频率及共振电导曲线的半峰宽(FWHM),最高频率可达80 MHz连续进行频率测试的同时,监控温度随时间的变化数据分析: 用户可以使用标准或自定义模型,计算相关QCM参数及吸附层参数EQCM-I Mini 电化学石英晶体微天平仪器包含:eQCM unit with two channels (one channel is temperature controlled)Microsoft Surface Pro Tablet with Windows 10 ProQSH-104 QCM Sensor Holder (flow through type)QSHE-104 QCM Sensor Holder (flow through type) with "leak free" Ag/AgCl reference electrodeBioSense EC 3.xx Software (one user license)产品优势可以与Gamry电化学工作站同步运行,能够测量石英晶片或所吸附薄膜的频率变化及能量耗散,进而分析反应过程中微小的质量变化,吸附层厚度变化等;能够判断膜的刚性或柔性,并且分析膜的粘弹性方面的性质;以及实时追踪分子排列、结构变化等。阻抗型、耗散型石英晶体微天平判断薄膜的刚性与柔性测量耗散,分析膜的粘弹性吸附、成膜等过程中的微小质量变化,分析膜的厚度、质量等实时追踪反应过程中的分子排列、结构变化......
    留言咨询

扩展版石英晶体微天平相关的资讯

  • 《石英晶体微天平-原理与应用》 一书出版
    由华南理工大学 张广照教授和中国科学技术大学刘光明教授合著的“石英晶体微天平-原理与应用”一书,近日由科学出版社出版。该书从石英晶体微天平的原理入手,深入浅出,详细介绍了使用石英晶体微天平在界面接枝高分子构象行为、高分子表面接枝动力学、聚电解质多层膜、磷脂膜、抗蛋白吸附以及纳米气泡表面清洁技术中的应用。本书在介绍石英晶体微天平基本原理的基础上,重点向读者展示了如何利用石英晶体微天平作为一项表征技术去研究界面上的一些重要科学成果。为了便于回答有关疑问,本书的应用例子均选自作者实验室的研究成果。
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) JohnWiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28
  • 讲座预告 | 石英晶体微天平(QCM-D)技术在分离分析化学中的应用
    报告亮点阐述: 高纯度生物样品的获取是生物学功能研究的前提和基础,同时生物分离过程是生物技术产业化的必经之路。特别是“精准医疗”计划的提出为靶向富集和分离材料的开发,提出了更高的要求,迫切需要开发新一代对开发目标生物分子具有高亲和力,特异性识别的富集和分离材料。然而这类材料的开发非常具有挑战性,这是因为生物样品种类繁多,结构各异,高度复杂,同时有价值的生物样品在血液或组织液中的含量极低。蛋白等物质在细胞中分布还具有动态不均一性,在不同人种,年龄,性别,病理阶段具有非常显著的差异性。通过学习和模仿生物分子间特异性相互作用,结合智能聚合物构象转变,开发出的生物分子响应性聚合物很好地切合了这一需求,能够实现对目标生物分子的精准捕获,将在生物分离和分析领域,获得广泛的应用。这一方向融合了智能聚合物、主客体化学、微纳米器件构筑、精准测量和生物医学,是目前新兴涌现的一个学科方向,具有鲜明的开创性和广阔的应用前景。研究生物分子在材料表面的吸附动力学行为,对于揭示材料对目标分子的选择性吸附能力,以及材料吸附生物分子后,表面所发生的显著变化,是一项非常有趣的工作。报告将讲解石英晶体微天平(QCM-D)技术在分离分析化学中的应用,帮助研究人员更好地去理解生物界面行为,揭示吸附背后的精彩故事。 报告人简介:卿光焱,博士,中国科学院大连化学物理研究所研究员、博士生导师。长期从事生物分离材料与器件方面的基础研究,已在包括Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Chem. Sci.等化学和材料领域权威刊发表SCI论文100余篇,相关技术获得中国发明专利授权20项。主持国家自然科学基金优秀青年科学基金,面上项目4项等。目前担任《色谱》青年编委,Chin. Chem. Lett.编委,Chemical Synthesis青年编委等。 报告时间:2022年7月7日(周四) 上午10点报告地点:腾讯会议(会议号报名后另行通知)报名方式:复制下方报名链接至微信搜索框,点击“访问网页”在线填写https://doc.weixin.qq.com/forms/AHUAGgcQAAkACwA1AbmAHUKesSVrfzTHfQSense技术简介: 具有耗散因子检测功能的石英晶体微天平(QSense)是瑞典百欧林科技有限公司的专利技术,可提供多个频率和耗散因子数据,用于测定非常薄层的吸附层的质量,并同步提供粘弹性等结构信息。 该技术可对多种不同类型表面的分子相互作用和分子、纳米颗粒及细胞吸附进行研究,同时可以检测分子的结构变化以及吸附与解析的动态过程。 该仪器应用范围包括生物技术和医疗器械、蛋白质、核酸、多糖等生物分子和细胞/细菌、生物传感器、食品、高分子聚合物、环境膜处理、纳米颗粒、石墨烯、自组装材料、锂电池/超级电容器等,从纳米到微米尺度的物质与界面之间的相互作用及物质的环境响应。 既往相关讲座:Ÿ 马春风教授 华南理工大学报告题目:石英晶体微天平(QCM-D)技术如何解决海洋防污中面临的难题Ÿ 宋君龙教授 南京林业大学报告题目:石英晶体微天平(QCM-D)技术及其在木质纤维素利用中的应用Ÿ 郑靖研究员 西南交通大学报告题目:石英晶体微天平(QCM-D)技术在唾液润滑研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:QSense 耗散型石英晶体微天平技术(QCM-D)原理及应用Ÿ 申涛工程师 瑞典百欧林报告题目:QSense耗散型石英晶体微天平(QCM-D)在生物和食品领域的应用Ÿ 张洪斌教授 上海交通大学报告题目:石英晶体微天平(QCM-D)技术在乳状液界面膜粘弹性与物理稳定性研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:耗散型石英晶体微天平(QCM-D)在锂离子电池研究领域的新应用Ÿ 姜威教授 山东大学报告题目:石英晶体微天平技术探究颗粒污染物的环境界面过程Ÿ 杨晓泉教授 华南理工大学报告题目:Langmuir膜分析仪及石英晶体微天平(QCM-D)在食品科学研究的应用Ÿ 杨哲博士 香港大学报告题目:石英晶体微天平(QCM-D)技术及其在环境膜材料领域中的应用Ÿ 苗瑞副教授 西安建筑科技大学报告题目:QSense耗散型石英晶体微天平技术在超滤膜污染机理领域的应用研究Ÿ Netanel Shpigel博士 以色列巴伊兰大学/美国德雷塞尔大学报告题目:QSense耗散型电化学石英晶体微天平在电池及超级电容实时研究中的应用Ÿ 罗日方副研究员 四川大学报告题目:石英晶体微天平(QCM-D)技术在血液接触材料表面改性领域的应用 如需相关讲座视频请联系百欧林索要,联系电话: 400 860 5169 分机号1902

扩展版石英晶体微天平相关的方案

扩展版石英晶体微天平相关的资料

扩展版石英晶体微天平相关的试剂

扩展版石英晶体微天平相关的论坛

  • 石英晶体微天平的特征及应用

    石英晶体微天平最基本的原理是利用了石英晶体的压电效应,主要构造由石英晶体传感器、信号检测和数据处理等部分组成。石英晶体为天平在探头电极上修饰具有生物活性的特异选择功能膜,即作了压电晶体生物传感器。石英晶体为天平因其对质量变化的高敏感性,传感器具有特异性好、灵敏度高、成本低廉和操作简便等优点。 石英晶体微天平利用了石英晶体谐振器的压电特性,将石英晶振电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的数据。石英晶体微天平是一种非常灵敏的质量检测仪器,其测量精度可达纳克级,比灵敏度在微克级的电子微天平高100 倍。 石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用,一般附属结构还包括振荡线路、频率计数器、计算机系统等。石英晶体微天平广泛应用于分子生物学、病理学、医学诊断学、细菌学等研究领域,在研究和检测蛋白质、微生物、核酸、酶、细胞等方面都发挥了重要的作用。

  • 【讨论】谁说天平没有技术含量:我们有石英晶体微天平

    【讨论】谁说天平没有技术含量:我们有石英晶体微天平

    长期以来,很多人认为天平没有什么技术含量,今天让你们看看,我们也有高科技的一面:石英晶体微天平石英晶体微天平(Quartz Crystal Microbalance-QCM)的发展始于上世纪60年代初期,它是一种非常灵敏的质量检测仪器,其测量精度可达纳克级,比灵敏度在微克级的电子微天平高100 倍,理论上可以测到的质量变化相当于单分子层或原子层的几分之一。石英晶体微天平利用了石英晶体谐振器的压电特性,将石英晶振电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的数据。http://ng1.17img.cn/bbsfiles/images/2011/03/201103301559_286072_2197752_3.jpg

扩展版石英晶体微天平相关的耗材

  • 扩展光程未涂渍熔融石英毛细管
    扩展光程(鼓泡检测池)未涂渍熔融石英毛细管使用安捷伦科技的扩展光程毛细管(“鼓泡”池毛细管)可比标准毛细管的灵敏度提高3-5 倍。扩展光程毛细管的内径仅在检测窗口处才增大,检测窗口处内径大可以提高灵敏度,而内径小则产生低电流。如果与安捷伦科技的配套光学准直接口配合使用,不会降低分离度。通过计算机控制的专利工艺,毛细管直径增大了3 到5 倍,制造精度优于3%。利用这一工艺将25 μm 内径毛细管的检测光程扩展到125 μm,50 μm 的毛细管扩展到150 μm,75 μm 的毛细管扩展到200 μm。订货信息:扩展光程(鼓泡检测池)未涂渍熔融石英毛细管,2/包内径(μm)总长(cm)有效长度(cm)鼓泡因子光程长(μm)色标部件号2548.5405125黑色G1600-6013264.5565125黑色G1600-6113280.5725125黑色G1600-621325043.5353150红色G1600-6023348.5403150红色G1600-6023264.5563150红色G1600-6123280.5723150红色G1600-62232112.51043150红色G1600-642327548.5402.7200黄色G1600-6033264.5562.7200黄色G1600-6133280.5722.7200黄色G1600-62332112.51042.7200黄色G1600-64332
  • 净化扩展窗
    净化扩展窗轴向净化扩展观测窗是一个可替换的石英窗,能滑动安装在炬管和光学部件之间。径向净化扩展观测窗是一根可替换的石英管,能滑动安装在炬管和光学部件之间的支架上以进行径向观测。订货信息:所适用的ICP型号观测方向部件编号Optima 2x00/7000/8000DV轴向09992731Optima 2x00/7000/8000DV径向N0690672Optima 3x00/4x00/5x00/7100/7200/7300 DV/8300DV轴向N0771116Optima 5x00/7100/7200/7300 DV/8300DV径向N0770944Optima 3x00 DV(管)DV轴向N0691678Optima 3x00 DV(长管)(38 mm/1.5 in)DV径向N0691689Optima 3000 SCX/3x00 XL轴向09992731Optima 3000/3000 SCR/3x00 RL 4300V/5300V/7300V径向N0581497Optima 4x00 DV/5x00 DV**DV径向N0770322**2004年11月之前
  • 净化扩展窗 | 09992731
    产品特点:净化扩展窗轴向净化扩展观测窗是一个可替换的石英窗,能滑动安装在炬管和光学部件之间。径向净化扩展观测窗是一根可替换的石英管,能滑动安装在炬管和光学部件之间的支架上以进行径向观测。订货信息:所适用的ICP型号观测 方向部件编号2x00/7000/8000DV轴向099927312x00/7000/8000DV径向N06906722x00(长管)径向B08103773x00/4x00/5x00/7100/7200/7300DV/8300DV轴向N07711165x00/7100/7200/7300 DV/8300DV径向N07709443x00 DV(管)DV轴向N06916783x00 DV(长管)(38 mm/1.5 in)DV径向N06916893000 SCX/3x00 XL轴向099927313000/3000 SCR/3x00 RL 4300 V/5300V/7300 V径向N05814974x00 DV/5x00 DV**DV径向N0770322**2004年11月之前
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制