当前位置: 仪器信息网 > 行业主题 > >

气溶胶颗粒质量分析仪

仪器信息网气溶胶颗粒质量分析仪专题为您提供2024年最新气溶胶颗粒质量分析仪价格报价、厂家品牌的相关信息, 包括气溶胶颗粒质量分析仪参数、型号等,不管是国产,还是进口品牌的气溶胶颗粒质量分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气溶胶颗粒质量分析仪相关的耗材配件、试剂标物,还有气溶胶颗粒质量分析仪相关的最新资讯、资料,以及气溶胶颗粒质量分析仪相关的解决方案。

气溶胶颗粒质量分析仪相关的资讯

  • 广州禾信推出实时在线单颗粒气溶胶飞行时间质谱仪
    仪器信息网讯 7月30日,2010年全国质谱大会暨第三届华人质谱大会在长春国际会展中心盛大开幕,广州禾信分析仪器有限公司在会议期间向与会者介绍了最新推出的“移动式实时在线单颗粒气溶胶飞行时间质谱仪(Single Partical Aerosol Mass Spectrometer)SPAMS 05-- 系列”。其中SPAMS0515可实现单颗粒气溶胶粒径和化学成分同时检测;升级的SPAM0516除具有SPAMS0515功能外还可实现颗粒光学特性同步测定。 SPAMS 05-- 系列   SPAMS05 系列,采用空气动力学透镜、双光束粒径测量系统、激光电离系统及双极有网反射飞行时间质量分析器,融合国际上气溶胶真空采集、质谱分析检测的最新技术以及气溶胶光学特性和密度测量技术,是当前国内最复杂的商品化质谱仪器,国外同类进口产品售价在400万元左右。   SPAMS05--系列的实时在线检测技术克服传统离线分析采样时间长、样品在采集、贮存和运输过程中可能发生如挥发、结晶、气-粒转化等反应的缺点,还原气溶胶单颗粒的真实状况,可灵活转场满足跨地区实验要求,为研究人员提供真实可靠的实时颗粒信息。广泛应用于大气环境监测、工业过程监测以及全球气候变化、大气化学、气溶胶药物-释放、吸入毒理学等研究领域,是功能强大而精准的新型分析测试工具。   SPAMS05--系列移动式实时在线单颗粒气溶胶飞行时间质谱仪,可根据用户的工作环境和研究要求定制或改制仪器、达到最优的检测效果。领先的质谱原创团队为用户量身定做最优的检测方案以及提供强大的技术支持。   关于广州禾信分析仪器有限公司     广州禾信分析仪器有限公司——坚持“做中国人自己的质谱仪”,是一家专门从事质谱类仪器研发、生产、销售及服务的高新技术企业。拥有自主知识产权的飞行时间、四级杆质谱及多种离子源核心技术。产品包括:工业在线气体检测系列、大气气溶胶在线分析SPAMS05--系列、500-10000分辨率飞行时间质谱检测器系列、四级杆检测器系列、离子源、高速数据采集卡、高精密电源等,同时为用户提供个性化服务,提供各种高端专用质谱仪器的定制服务。   公司地址:广州科学城开源大道11号A3栋第三层   电话:020-82071906(直线) 82071911、82071902(总机)—8017   传真:020-82071902   邮编:510530   网址:www.tofms.net   邮箱:hexintofms@163.com
  • 新标准:颗粒 微生物气溶胶采样和分析(GB/T38517-2020)
    由我司(青岛众瑞智能仪器有限公司)参与起草的《颗粒 微生物气溶胶采样和分析通则(GB/T38517-2020)》已于2020年3月6日正式发布,并将于6月1日正式实施。 本标准为环境空气中细菌、病毒、真菌和毒素等不同特性的生物气溶胶(也称之为空气微生物)的采样提供了采样方法和生物气溶胶的分析,其中,采样方法包括采样原理、采样器的选择和采样过程中应关注的问题;分析方法包括分析方法的类型、方法的适用性、分析结果的表达方式。 一 生物气溶胶采样方法及采样器 众瑞仪器相关产品 ZR-2000型智能空气微生物采样器是经精心研制的新型智能空气微生物采样器,主机配备不同的采样终端可以实现安德森采样、冲击式采样、过滤式采样等功能,做到一机多用,具有极高的性价比。该仪器可广泛应用于环保、医疗卫生、食品工业、发酵工业、制药工业、农牧业、工矿企业、劳动卫生以及其它相关研究部门。 1 撞击式采样原理:利用惯性作用,通过喷嘴、喷口或裂隙的加速作用把生物气溶胶粒子采集到固体介质表面的气溶胶采集方式。 众瑞仪器相关配件 ZR-A01型二级安德森采样头是微生物采样专用器皿,采用惯性撞击原理,既能测定空气中微生物的总数,又能区分可吸入微粒和不可吸入微粒的数量。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:标准撞击法筛孔式工作方式。标准二级分层生物气溶胶采样。 ZR-A02型六级安德森采样头是符合国际标准的多级采样装置,用于监测细菌和真菌的浓度和粒径分布,它可以真实模拟人类肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度,都具有较高的准确度和可靠性。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:标准撞击法筛孔式工作方式;标准六级分层生物气溶胶采样; ZR-A05型八级安德森采样头是一个多孔、层叠碰撞(空气)取样器,通常用于环境中的需氧细菌和真菌浓度和颗粒大小分布的测量。该采样器可以根据人体肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度。采样器的每级中可放置一个装有琼脂培养基的培养皿,用于收集采样空气中的微生物粒子,微生物粒子会随气流的撞 击留在培养基上。随后培养皿可以取出,进行培养后,用菌落计算公式计算。技术特点:标准撞击法筛孔式工作方式;标准八级分层生物气溶胶采样; 2 冲击式采样能够使具有足够大惯性的生物气溶胶粒子撞击液体并进入液体介质中的气溶胶采集方式。 众瑞仪器相关配件 ZR-A03型冲击式采样头是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B01型空气微生物吸收瓶(AGI-30)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子就冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B02型空气微生物吸收瓶(AGI)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 二生物气溶胶采样方法的选择 新标准中,生物气溶胶细分为细菌、真菌、病毒及毒素四钟,采样方法主要分为定量、定性两种,以细菌为例(其他种类可点击“阅读原文”下载原文件查看):
  • 普仁船载大气气溶胶在线定量分析仪搭载“雪龙号”赴南极科考
    2015年11月7日,由277名队员组成的中国第32次南极科学考察队乘“雪龙号”破冰船从上海出发,赴南极进行科考任务。总航程3万海里,预计历时159天。 在此次科考中,搭载了由青岛普仁仪器有限公司研发的国内首台AOMZ-3000型船载大气气溶胶在线定量分析仪。此款仪器将PIC-online型在线离子色谱仪与PAGM 大气气溶胶在线分析仪完美结合,对各种气候条件下的大气中无机阴阳离子进行不间断检测。 此款仪器的优势在于:1、大气样品的自动采集、自动过滤、自动稀释;2、淋洗液自动生成,全程无需再重新配制;3、工作曲线自行配制、自行校准、无需人工;4、分析一次样品仅需15分钟、全天96次分析、做到全程监测;5、由于全程自动化,所以避免了人工分析的误差、数据准确度高;6、阴阳离子同时检测;7、完善的自动保护装置、当泵压异常时,程序将自动关闭并发出警示信号;8、程序可下载到手机上,随时查看分析数据。 此次南极科考,青岛普仁仪器有限公司派出技术工程师于10月下旬登上雪龙号,根据船舱内的结构,对仪器进行了特殊的改造和加固,仪器安装完成后,进行了两周的全方位测试,各项性能指标完全符合设计和使用要求。普仁船载大气气溶胶在线定量分析仪优越的性能和精干的技术服务团队,得到科考专家的一致好评。 此次普仁与国家海洋局、中国极地研究中心在南极科考的深度合作,充分证明了我公司在高端在线离子色谱仪及气溶胶在线分析仪研发方面的能力和优势。 普仁船载大气气溶胶在线定量分析仪的成功研制及应用,进一步提升了我国在线分析类仪器的整体技术等级和核心竞争力,对于促进在线分析仪器向自主创新方向发展,逐步打破进口垄断的不利局面,以满足我国日益增长的检测市场需求,保障数据信息安全,具有重要的现实意义。
  • 在线气溶胶有机碳元素(OCEC)分析仪
    成果名称 在线气溶胶有机碳元素(OCEC)分析仪 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 &radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产 成果简介: 碳质组分在气溶胶中含量很高,尤其是在对人类健康影响较大的细颗粒部分比例更大,约占40%-60%。气溶胶中的碳质组分通常包括有机碳(OC)和元素碳(EC)两部分,这些组分能够造成区域和城市烟霾,影响大气的能见度、破坏地球辐射平衡,从而影响全球气候。目前,对气溶胶中OC和EC的研究已经成为国内外大气化学研究和环境监测的热点。气溶胶中OC、EC的含量以及时间变化规律成为各大监测站点、气象部门极为关注的数据。 2009年,北京大学环境学院曾立民教授申请的&ldquo 在线气溶胶有机碳元素(OCEC)分析仪创制&rdquo 项目获得首届&ldquo 仪器创制与关键技术研发&rdquo 基金支持。作为该项目的启动基金,该笔经费为曾立民教授课题组提供了强有力的支持,通过关键部件的购置、机械配件的加工和控制电路的自主创制,使得曾立民教授这一填补国内空白的先进技术的前期研究得以及时启动和顺利开展。在该基金的资助下,曾立民教授课题组已开展了多项富有成效的研制工作,包括:(1)在线气溶胶有机碳元素碳(OCEC)分析仪的硬件搭建;(2)在线气溶胶有机碳元素碳(OCEC)分析仪的软件开发和调试;(3)在线气溶胶有机碳元素碳(OCEC)分析方法的创新。 这方面的测量目前仅能依靠国外的仪器,国内在该方面的仪器研发仍处于初步阶段,没有自主的产品。因此,填补该空白、自主创新开发国内自己的在线气溶胶有机碳元素碳(OCEC)分析仪成为一个必然的趋势。 应用前景: 上述关键技术的研究,为进一步开展具有自主知识产权的在线气溶胶有机碳元素(OCEC)分析仪的研制奠定了良好的基础。
  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用
    大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。1. 已有吸湿性测量技术的局限性现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。2. 蒸汽吸附分析仪虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。图1. 蒸汽吸附分析仪的装置示意图(Gu et al., 2017a)该仪器对颗粒物的形貌没有要求,且具有卓越的灵敏度,能够准确测定小于千分之一的质量变化;在温湿度控制方面性能突出,所能研究的相对湿度最高可达98%。由于上述卓越性能,这项测量技术非常适用于研究形貌不规则或吸湿性较弱的大气颗粒物(比如矿质颗粒物、烟炱和生物气溶胶等),目前已被成功用于研究花粉颗粒物(Chen et al., 2019 Tang et al., 2019b)、矿质颗粒物(Guo et al., 2019 Tang et al., 2019c Chen et al., 2020)、高氯酸盐(Gu et al., 2017b Jia et al., 2018)等的吸湿性,大幅度提高了我们对上述几类物质吸湿性的科学认识水平。下文将介绍蒸汽吸附分析仪的几个典型应用。2.1 花粉颗粒物花粉颗粒物是最重要的生物气溶胶之一,其年排放量为 47-84 Tg,对大气环境、人体健康和气候变化具有重要影响,同时也在植物繁衍和和生态系统演化中起着关键作用。吸湿性是花粉颗粒物最重要的理化性质之一,其会影响花粉颗粒物的质量与形貌,从而影响花粉在大气环境和呼吸道中的迁移和传输。由于花粉颗粒物的形貌不规则,且吸湿性较弱,因此先前已有的吸湿性测量技术较难准确测定花粉颗粒物的吸湿性,而我们的方法对颗粒物的形貌无要求且非常灵敏,所以非常适合用于研究花粉颗粒物的吸湿性。图2. 花粉颗粒物的产生、传输及其环境、气候及生态效应在我们已经发表的两项工作中(Chen et al., 2019 Tang et al., 2019b),我们研究了25和37摄氏度下共17种国内外代表性花粉(12种风媒、5种虫媒)的吸湿性。我们发现这些花粉颗粒具有相对较强的吸湿性。例如,当相对湿度从0%升高至90%时,花粉颗粒物的质量增加了30%-50%,当相对湿度达到95%时,花粉颗粒物的质量基本接近于干燥条件下的2倍,如图3所示。另外就目前已有的数据(包括本研究和前人的研究)来看,风媒花粉和虫媒花粉的吸湿性似乎没有系统差异,而中国常见花粉与欧洲/北美常见花粉的吸湿性也非常相似。此外,两个温度下(25和37摄氏度)花粉颗粒物吸湿性的差异比较小。本研究对于深入认识花粉颗粒物的环境行为具有重要意义,尤其是37摄氏度下的实验结果,为模拟花粉颗粒物在呼吸系统内的传输和沉降以及评估其对人体健康的影响提供了关键基础数据。图3. (a)松树花粉与(b)梨树花粉分别在25和37摄氏度下的吸湿性2.2 矿质颗粒物由干旱和半干旱地区地表排放进入大气的矿质气溶胶是一种非常常见的大气颗粒物,其年排放量居于全球第二位,大气含量则居于全球第一位。图4展示了一次典型的沙尘暴事件。矿质气溶胶作为对流层中最重要的气溶胶之一,显著影响全球大气污染、气候变化以及生物地球化学循环。吸湿性在很大程度上决定了矿质气溶胶对大气化学和气候的影响。我们使用蒸汽吸附分析仪测量了21种矿质气溶胶的质量随相对湿度(0-90%)的变化,从而定量阐明矿质气溶胶的吸湿性(Chen et al., 2020)。这21种矿质气溶胶包括14种常见矿物(如石英、长石、石灰石和伊利石等)以及7种来自全球不同地区的实际沙尘。图4. 一次典型的沙尘暴事件我们发现矿质气溶胶的吸湿性普遍较弱,如图5所示。除了蒙脱石以外,当相对湿度从0%增加至90%时,矿质气溶胶的质量增加了不到10%,表明绝大部分的矿质气溶胶的吸湿性较低。另外,我们发现矿质气溶胶的吸湿性与其比表面积密切相关,这表明矿质气溶胶的吸湿性可能是由水在颗粒物表面的吸附所决定的。例如对于蒙脱石,其比表面积较大,吸湿性也远远强于其他矿质气溶胶。上述研究结果可显著提高矿质气溶胶吸湿性的科学认识,从而有助于更好地阐明矿质气溶胶在大气化学和气候变化中的作用。图5. 矿物样品的吸湿性与(a)BET比表面积的关系以及(b)粒径的关系2.3 盐尘暴颗粒物最近几年的外场观测表明,矿质颗粒物,尤其是从干盐湖和盐碱地表面排放进入大气的矿质颗粒物,除了吸湿性很弱的矿物之外,往往还含有一定量的水溶性盐(如氯化钠和硫酸钠等)。这类矿质颗粒物常被俗称为盐尘暴颗粒物。然而,目前关于盐尘暴大气颗粒物吸湿性的科学认识还基本上处于空白阶段。在近几年发表的一项研究工作中(Tang et al., 2019c),我们在东起黄河三角洲,西至新疆罗布泊的干旱和半干旱盐碱地采集了13个地表土壤样品,采样点的地理分布如图6所示。我们使用X射线衍射仪测定了这些样品的矿物组分,使用离子色谱仪分析了它们的水溶性离子成分,并使用蒸汽吸附分析仪研究了这些样品的吸湿性。图6. 土壤样品采样点的地理分布研究发现,不同样品的吸湿性存在着很大的差异,如图7所示。对于某些盐尘暴样品,其吸湿性较弱,当相对湿度升高至90%时,其质量仅增加了10%左右,然而对于某些盐尘暴样品,当相对湿度升高至90%时,其质量已增加至干燥状态下的5倍,这基本接近于氯化钠或硫酸钠的吸湿性。随后我们又探讨了颗粒物的吸湿性与其水溶性离子含量的关系。我们发现当水溶性离子的含量越高,颗粒物的吸湿性越强。此外,我们还将颗粒物水溶性离子含量的数据输入至气溶胶热力学模型(ISORROPIA-II)中来计算颗粒物的吸湿性,结果表明该热力学模型并不能很好的模拟实际盐尘暴样品的吸湿性。以上研究结果将改变我们对于矿质颗粒物吸湿性的科学认识,进而帮助我们更好地了解矿质颗粒物在大气化学和气候系统中的作用。图7. (a)新疆自治区吐鲁番市艾丁湖表层盐土与(b)内蒙古杭锦后旗盐碱土样品的吸湿性2.4 蒸汽吸附分析仪与其他表征仪器的联用由于蒸汽吸附分析仪仅可得到颗粒物随相对湿度的质量变化,因此我们通常还会将蒸汽吸附分析仪与其他表征仪器进行联用,从而深入认识颗粒物的吸湿性。例如,在花粉颗粒物吸湿性的研究工作中(Tang et al., 2019b),除蒸汽吸附分析仪以外,我们还使用了透射傅立叶变换红外光谱仪测定样品的红外吸收,以获得花粉颗粒物的化学成分的信息。测量结果表明,花粉颗粒物的吸湿性在很大程度上决定于颗粒物中羟基的相对含量。这一研究结果揭示了花粉颗粒物的化学成分与吸湿性的关系,进一步增强了我们对花粉颗粒物的环境、健康和气候效应的认识。在代表性钙盐镁盐颗粒物吸湿性的研究工作中,我们使用蒸汽吸附分析仪与H-TDMA系统分析了八种钙盐镁盐的吸湿特性,直接得到了颗粒物在不同相对湿度(0-90%)下的液态水含量及粒径变化数据,并讨论了不同初始相态对颗粒物吸湿性的影响以及环境意义。以Ca(NO3)2为例,其在蒸汽吸附分析仪实验中观察到明显的潮解行为,表明初始相态下该颗粒物为结晶态;而在H-TDMA实验中,Ca(NO3)2气溶胶颗粒呈现连续吸湿行为,表明其初始相态为无定形态。但是,颗粒物潮解之后两种手段得到的吸湿性参数均与气溶胶热力学模型模拟值吻合,呈现出良好的一致性。结果表明,两种手段的联用能够互为补充地系统研究颗粒物在不同粒径、不同初始相态下的吸湿特性,并为气溶胶热力学模型的验证提供有效的基础物化数据。2.5 火星上的液态水我们开发的大气颗粒物吸湿性的新方法还可以用来帮助我们认识火星中的液态水。2018年,来自意大利宇航局的团队通过雷达在火星南极附近冰层的地下发现了一个液态水湖。一般来说,由于火星环境条件极度寒冷和干燥,纯净液态水很难在火星环境中稳定存在。而土壤中存在的高氯酸盐可以降低水的冰点,并可在亚饱和条件下通过吸收水蒸气形成水溶液,这可以解释为什么火星这种极度干旱的条件下可能存在液态水。目前一些研究认为,火星土壤中所含的高氯酸盐能够在相对湿度远低于100%时通过吸收大气中的水蒸气发生潮解从而形成稳定的溶液,但关于不同温度和相对湿度下高氯酸盐液态水含量的实验数据仍十分匮乏。图8. 火星液态水湖(来源于网络)我们使用蒸汽吸附分析仪测定了几种常见的高氯酸盐(无水高氯酸镁、六水合高氯酸镁、无水高氯酸钠、一水合高氯酸钠等)在不同温度下的相变和吸湿性 (Gu et al., 2017b Jia et al., 2018)。我们发现,高氯酸盐可在较低的相对湿度下吸水形成稳定的水溶液。如图9所示,对于高氯酸钠盐,在相对湿度低于20%时,其主要以无水高氯酸钠颗粒物稳定存在;当相对湿度升高至30%时,则主要以结晶态的一水合高氯酸钠稳定存在;当相对湿度进一步升高时,结晶态的一水合高氯酸钠将吸收大量水形成稳定的高氯酸钠溶液。另外,我们还发现高氯酸盐的潮解点会随着温度的升高而降低。例如一水合高氯酸钠的潮解点从5摄氏度时的∼51.5%降至30摄氏度时的∼43.5%。这项研究工作大大加深了我们对不同条件下高氯酸盐在土壤中的吸湿性的认识,并在一定程度上揭示了为什么火星上可能存在液态水背后的物理化学机制。图9 (a)高氯酸镁盐与(b)高氯酸纳盐随温度和相对湿度变化的相态图参考文献【1】Chen, L. X. D., Chen, Y. Z., Chen, L. L., Gu, W. J., Peng, C., Luo, S. X., Song, W., Wang, Z., and Tang, M. J.: Hygroscopic properties of eleven pollen species in China, ACS Earth Space Chem., 3, 2678-2683, 2019.【2】Chen, L. X. D., Peng, C., Gu, W. J., Fu, H. J., Jian, X., Zhang, H. H., Zhang, G. H., Zhu, J. X., Wang, X. M., and Tang, M. J.: On mineral dust aerosol hygroscopicity, Atmos. Chem. Phys., 20, 13611-13626, 2020.【3】Gu, W. J., Li, Y. J., Zhu, J. X., Jia, X. H., Lin, Q. H., Zhang, G. H., Ding, X., Song, W., Bi, X. H., Wang, X. M., and Tang, M. J.: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer, Atmos. Meas. Tech., 10, 3821-3832, 2017a.【4】Gu, W. J., Li, Y. J., Tang, M. J., Jia, X. H., Ding, X., Bi, X. H., and Wang, X. M.: Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments, RSC Adv., 7, 46866-46873, 2017b.【5】Guo, L. Y., Gu, W. J., Peng, C., Wang, W. G., Li, Y. J., Zong, T. M., Tang, Y. J., Wu, Z. J., Lin, Q. H., Ge, M. F., Zhang, G. H., Hu, M., Bi, X. H., Wang, X. M., and Tang, M. J.: A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols, Atmos. Chem. Phys., 19, 2115-2133, 2019.【6】Jia, X. H., Gu, W. J., Li, Y. J., Cheng, P., Tang, Y. J., Guo, L. Y., Wang, X. M., and Tang, M. J.: Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4∙H2O: implications for the stability of aqueous water in hyperarid environments on Mars and on Earth, ACS Earth Space Chem., 2, 159-167, 2018.【7】Tang, M. J., Chan, C. K., Li, Y. J., Su, H., Ma, Q. X., Wu, Z. J., Zhang, G. H., Wang, Z., Ge, M. F., Hu, M., He, H., and Wang, X. M.: A review of experimental techniques for aerosol hygroscopicity studies, Atmos. Chem. Phys., 19, 12631-12686, 2019a.【8】Tang, M. J., Gu, W. J., Ma, Q. X., Li, Y. J., Zhong, C., Li, S., Yin, X., Huang, R. J., He, H., and Wang, X. M.: Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature, Atmos. Chem. Phys., 19, 2247-2258, 2019b.【9】Tang, M. J., Zhang, H. H., Gu, W. J., Gao, J., Jian, X., Shi, G. L., Zhu, B. Q., Xie, L. H., Guo, L. Y., Gao, X. Y., Wang, Z., Zhang, G. H., and Wang, X. M.: Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications, J. Geophys. Res.-Atmos, 124, 10844-10857, 2019c.作者简介:唐明金,中国科学院广州地球化学研究所研究员,博士生导师。本科和硕士毕业于北京大学,博士毕业于马普化学研究所,并先后在英国剑桥大学和美国爱荷华大学从事博士后研究。主要研究方向为气溶胶化学及地球化学,已在Chemical Reviews、Atmospheric Chemistry and Physics和Journal of Geophysical Research-Atmospheres等国际知名期刊上发表SCI论文60余篇,并自2017年起担任国际SCI期刊Atmospheric Measurement Techniques副主编。曾获第18届侯德封矿物岩石地球化学青年科学家奖、第8届中国颗粒学会气溶胶青年科学家奖。
  • 一种可同时检测单个颗粒中的多环芳烃和无机成分的新型气溶胶质谱仪研制成功
    据Analytical Chemistry报道,美国罗斯托克大学(University of Rostock)的Johannes Passig, Julian Schade, Markus Oster and Ralf Zimmermann研制成功一种可同时检测单个颗粒中的多环芳烃和无机成分的新型气溶胶质谱仪。  单个气载微粒的在线研究对气溶胶化学具有重要作用,将有助于揭示环境气溶胶在地球气候中的作用,以及评估空气污染对当地和特定健康的风险。特别相关的是,燃烧过程产生的多环芳烃(PAH)与急性和长期健康影响相关。通常,在线单粒子分析是在双极质谱仪中应用激光解吸/电离(LDI),通过检测正离子和负离子来揭示元素成分和有限的分子信息。已经开发了从单个颗粒中检测多环芳烃的方法,但是在这种情况下, LDI产生的颗粒分类和来源分配的元素信息均被丢失。为此,作者提出了一种新型的激光解吸和电离方法,从相同的单个粒子中提供PAH分布和无机组分。试验测量表明,该技术能够以新的直接方式揭示气溶胶中的单颗粒PAH分布(混合状态)及其对特定污染源的分配。  据称,结合气相色谱(GC),该方法可用于复杂环境样品的综合痕量分析。  引自:A new aerosol mass spectrometer for simultaneous detection of polyaromatic hydrocarbons and inorganic components from individual particles. Analytical Chemistry. 89. 10.1021/acs.analchem.7b01207  原文可参阅下列网址:      https://www.researchgate.net/publication/317291558_A_new_aerosol_mass_spectrometer_for_simultaneous_detection_of_polyaromatic_hydrocarbons_and_inorganic_components_from_individual_particles  符斌供稿
  • GRIMM EDM系列气溶胶粒径谱仪/在线环境颗粒物监测仪
    2012年5月新推出GRIMM EDM系列气溶胶粒径谱仪/在线环境颗粒物监测仪(德国GRIMM气溶胶技术公司研制生产)。该系列监测仪采用激光散射原理,可同时获得环境大气中PM10、PM2.5、PM1的质量浓度值,并可下载0.25 ~ 32 um范围的31个粒径通道数浓度值。EDM180型在线环境颗粒物/气溶胶粒径谱仪,符合欧洲标准EN 12341 (PM10) 和EN 14907 (PM2.5),并获得美国EPA认证(PM2.5,认证号:EQPM-0311-195)。EDM180型粒径谱仪是目前唯一通过按重量参考认证的光学系统的环境颗粒物监测仪(PM10和PM2.5)。并成为仅有的一款通过认证的能够同时在线监测PM10和PM2.5的分析仪。
  • 李卫军:大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究
    p style=" text-align: justify text-indent: 2em " 传统全样分析方法包括离子色谱(IC)、气相色谱(GC)、高效液相色谱(HPLC)和电感耦合等离子质谱(ICP-MS)是气溶胶性质研究的最常用方法。然而,全样分析方法的局限性在于无法获得气溶胶颗粒的混合状态和表面等性质。气溶胶颗粒的混合状态对于理解颗粒的吸湿性、光学特性以及在大气中的老化过程等方面具有重要意义。为了弥补全样分析的这些局限性,以电子显微镜为代表的单颗粒分析方法在气溶胶性质研究中的应用越来越广泛。 /p p style=" text-align: justify text-indent: 2em " 扫描电子显微镜(SEM)和透射电子显微镜(TEM)以及它们配备的X射线能谱仪(EDS)是单颗粒分析方法的主要仪器。SEM/TEM-EDS可用于获得颗粒的形貌、成分、粒径、混合状态和表面特征。基于这些信息我们可以分析颗粒的来源和老化过程,进而讨论颗粒对人体健康和气候变化的影响。 /p p style=" text-align: justify text-indent: 2em " 颗粒物的大量排放是造成空气污染的直接因素之一。了解颗粒物的来源、组成及老化过程,对有效改善空气质量具有重要意义。本文主要介绍各类排放源(工业源、汽车尾气、生物质燃烧、家用燃煤和矿物颗粒等)排放的气溶胶颗粒在电子显微镜方面的研究进展。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 364px " src=" https://img1.17img.cn/17img/images/202006/uepic/eb3f9ff3-cbb9-4bee-87d2-abd84618bba9.jpg" title=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 5.jpg" alt=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 5.jpg" width=" 500" height=" 364" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 1.工业源 span style=" color: rgb(0, 0, 0) " /span /strong span style=" color: rgb(0, 0, 0) " 。 /span /span 工业排放源主要包括燃煤电厂、钢铁厂、金属冶炼和炼油厂。飞灰(flyash,图1a)和金属颗粒(metal,图1b和c)是工业源排放的两种典型颗粒。飞灰颗粒由硅、铝及少量铁和锰等元素组成的球形颗粒,粒径小于200& nbsp nm。已有研究利用透射电镜在华北灰霾中发现大量飞灰颗粒。金属颗粒主要包括富铁、富锌、富铅和富锰颗粒,灰霾事件中观测到的金属颗粒的粒径小于500& nbsp nm。透射电镜观测发现污染大气中的飞灰和金属颗粒大多与二次气溶胶(例如硫酸盐、硝酸盐和有机物)内混。这些在传输过程中形成的酸性二次气溶胶促进飞灰和金属颗粒释放可溶性金属离子,危害人体健康和生态环境。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 298px " src=" https://img1.17img.cn/17img/images/202006/uepic/27bed8be-d6c7-4599-93b0-61109d072cf6.jpg" title=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (21).jpg" alt=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (21).jpg" width=" 500" height=" 298" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 2.汽车尾气 span style=" color: rgb(0, 0, 0) " /span /span /strong span style=" color: rgb(0, 176, 240) " span style=" color: rgb(0, 0, 0) " 。 /span /span 汽车尾气是造成空气污染的重要来源,汽车尾气中近一半的一次颗粒中含有黑碳颗粒(soot或black carbon,图1d)。黑碳颗粒为含碳小球的链状聚合物。黑碳颗粒的混合状态可显著影响其光学吸收,进而影响地球辐射强迫。透射电镜可根据黑碳颗粒的特殊形貌区分黑碳颗粒的混合状态,对评估其对气候变化的影响有重要意义。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202006/uepic/66123eed-c584-4937-a4dd-07b36d48f876.jpg" title=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究8.jpg" alt=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究8.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 3.生物质燃烧 /strong /span 。生物质燃烧是对流层气态和颗粒态污染物的重要来源。木柴和秸秆是世界各地取暖和烹饪的重要能源。同时,露天焚烧是处理农作物残留秸秆的普遍方式。自然的生物质燃烧(比如森林大火和草原大火)也会导致大量污染物排放。生物质燃烧的主要污染物包括:钾盐、一次有机物和黑碳。透射电镜研究发现,生物质明火燃烧排放的富钾颗粒主要成分为KCl,且与有机物和黑碳内混(图1e);在闷烧阶段,产生胶状有机物与富钾颗粒混合的内混颗粒(图1f)。在大气传输过程中,KCl可逐渐转化为K2SO4和KNO3,透射电镜可根据形貌、结构和成分确定其老化过程,进而反映其来源和吸湿性。焦油球(tar& nbsp balls)是生物质燃烧排放的一类特殊有机物,具有较强的吸光能力。透射电镜表明焦油球是粒径为30至500& nbsp nm的无定形碳质球形颗粒。X射线能谱显示焦油球的主要成分为碳,并含有少量氧。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 270px " src=" https://img1.17img.cn/17img/images/202006/uepic/80fb205b-b987-4d0a-8b69-7afe6f65f24e.jpg" title=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究7.jpg" alt=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究7.jpg" width=" 500" height=" 270" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 4.家用燃煤 /span /strong 。燃煤取暖和烹饪是发展中国家空气污染的又一重要来源。由于燃烧效率较低且缺乏排放控制措施,家用炉灶的排放因子是工业锅炉的一百倍。家用燃煤可排放大量气态污染物(二氧化硫和挥发性有机物)和一次颗粒物(有机物和黑碳)。家用燃煤排放是造成华北严重灰霾事件的重要原因。利用透射电镜可获得不同成熟度煤炭排放的一次颗粒的形貌、成分和混合状态。低成熟度煤明烧状态下主要排放有机物和黑碳内混颗粒(图1g),中等成熟度煤排放大量有机物颗粒(图1h),高成熟度煤排放有机物和硫酸盐混合颗粒(图1i)。另外,透射电镜还发现煤炭燃烧也可排放大量与焦油球相似的球形有机物。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202006/uepic/e178791a-ff3c-4d6b-b90d-f48a9054eee4.jpg" title=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究9.jpg" alt=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究9.jpg" width=" 500" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 5.矿物颗粒 /span /strong 。矿物颗粒主要来自沙漠、建筑和路边扬尘。扫描电镜和透射电镜均可直观观测到矿物颗粒的不规则形貌(图1j),且大多矿物颗粒的粒径大于2 μm。矿物颗粒的吸湿性对气候和大气环境有重要影响。大气传输过程中,矿物颗粒表面发生非均相反应,改变颗粒成分和形貌,进而改变混合状态和影响云凝结核活性。透射电镜研究发现,矿物颗粒内的碱性成分(例如方解石和白云石)可与污染大气中的酸性气体(例如二氧化硫和氮氧化物)反应,在表面生成CaSO4以及Ca(NO3)2和Mg(NO3)2的亲水包裹层,增强矿物颗粒的吸湿性。长距离传输过程中的老化作用还会降低颗粒pH增加铁的可溶性和生物可利用性。可溶性铁沉降到海洋表面可促进海洋浮游生物的生长,进而影响海洋对碳的吸收,间接影响气候。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 282px " src=" https://img1.17img.cn/17img/images/202006/uepic/6e145833-188d-45d4-af38-3ffdcd288d57.jpg" title=" timg.jpg" alt=" timg.jpg" width=" 500" height=" 282" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 6.生物气溶胶 /span /strong 。自然源的生物气溶胶(图1k)普遍存在于地球大气中,其在森林、农村及海洋环境中所占比例较高。扫描电镜和透射电镜可获得各类生物气溶胶的形貌和粒径。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/202006/uepic/9ce845fb-6a49-4565-bb45-0426f24adecf.jpg" title=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 6.jpg" alt=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 6.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 7.海盐气溶胶 /span /strong 。海盐气溶胶来自于海浪中的气泡破裂。利用透射电镜可发现海盐的主要成分为镁盐和钙盐包裹的NaCl(图1l)。SEM-EDS发现海盐颗粒是由NaCl核与C、O和Mg元素包裹层构成。 /p p style=" text-align: justify text-indent: 2em " 目前,扫描电镜和透射电镜现已被广泛应用于各类大气环境中的气溶胶单颗粒研究,例如:城区-北京、济南、吉林、香港、仁川、墨西哥等,背景点-长岛、青藏高原、日本冲绳,高山站点-庐山、泰山,海洋大气-北大西洋、黄海、北冰洋。未来,单颗粒分析方法将应用于更多区域。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/02700f9c-eaba-4981-8ab9-12e040344aff.jpg" title=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (3).jpg" alt=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (3).jpg" / /p p style=" text-align: justify text-indent: 2em " 图1. 不同来源颗粒的TEM图。工业生产排放的飞灰(a)、富铁(b)和富锌(c)颗粒;(d)柴油机尾气中的黑碳-有机物内混颗粒;(e)玉米秸秆明烧产生的黑碳-有机物-KCl内混颗粒;(f)玉米秸秆闷烧产生的胶状有机物和KCl的内混颗粒;(g)低成熟度煤明烧产生的有机物-黑碳内混颗粒;(h)中等成熟度煤明烧产生的球状有机物颗粒;(i)高成熟度煤明烧产生的有机物-硫酸盐内混颗粒;(j)不规则矿物颗粒;(k)森林区域采集的生物颗粒;(l)海盐颗粒。图表结果来自于参考文献。 /p p style=" text-align: justify text-indent: 2em " strong 参考文献: /strong /p p style=" text-align: justify text-indent: 2em " 1.& nbsp Zhang, J., Liu, L., Xu, L., Lin, Q., Zhao, H., Wang, Z., Guo, S., Hu, M., Liu, D., Shi, Z., Huang, D., and Li, W.: Exploring wintertime regional haze in northeast China: role of coal and biomass burning, Atmos. Chem. Phys., 20, 5355-5372, 10.5194/acp-20-5355-2020, 2020. /p p style=" text-align: justify text-indent: 2em " 2.& nbsp Li, W., Liu, L., Xu, L., Zhang, J., Yuan, Q., Ding, X., Hu, W., Fu, P., and Zhang, D.: Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale, Science of The Total Environment, 719, 137520, https://doi.org/10.1016/j.scitotenv.2020.137520, 2020. /p p style=" text-align: justify text-indent: 2em " 3.& nbsp Yuan, Q., Xu, J., Wang, Y., Zhang, X., Pang, Y., Liu, L., Bi, L., Kang, S., and Li, W.: Mixing State and Fractal Dimension of Soot Particles at a Remote Site in the Southeastern Tibetan Plateau, Environmental Science & amp Technology, 53, 8227-8234, 10.1021/acs.est.9b01917, 2019. /p p style=" text-align: justify text-indent: 2em " 4.& nbsp Zhang, Y., Yuan, Q., Huang, D., Kong, S., Zhang, J., Wang, X., Lu, C., Shi, Z., Zhang, X., Sun, Y., Wang, Z., Shao, L., Zhu, J., and Li, W.: Direct Observations of Fine Primary Particles From Residential Coal Burning: Insights Into Their Morphology, Composition, and Hygroscopicity, Journal of Geophysical Research: Atmospheres, 123, 12,964-912,979, doi:10.1029/2018JD028988, 2018. /p p style=" text-align: justify text-indent: 2em " 5.& nbsp Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A. P., Shi, Z., Lv, S., Niu, H., Shao, L., Hu, M., Zhang, D., Chen, J., Zhang, X., and Li, W.: Morphology, composition, and mixing state of primary particles from combustion sources — crop residue, wood, and solid waste, Scientific Reports, 7, 5047, 10.1038/s41598-017-05357-2, 2017. /p p style=" text-align: justify text-indent: 2em " 6.& nbsp Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A., and Shi, Z.: Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems, Sci. Adv., 3, e1601749, 2017. /p p style=" text-align: justify text-indent: 2em " 7.& nbsp Li, W., Shao, L., Zhang, D., Ro, C.-U., Hu, M., Bi, X., Geng, H., Matsuki, A., Niu, H., and Chen, J.: A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions, J. Clean. Prod., 112, Part 2, 1330-1349, 2016. /p p style=" text-align: justify text-indent: 2em " 8.& nbsp Chi, J. W., Li, W. J., Zhang, D. Z., Zhang, J. C., Lin, Y. T., Shen, X. J., Sun, J. Y., Chen, J. M., Zhang, X. Y., Zhang, Y. M., and Wang, W. X.: Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere, Atmos. Chem. Phys., 15, 11341-11353, 2015. /p p style=" text-align: justify text-indent: 2em " strong 作者简介: /strong /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left " src=" https://img1.17img.cn/17img/images/202006/uepic/5ef00299-b5e7-46ff-ab5f-212e9a8e68f6.jpg" title=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究.jpg" alt=" 大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究.jpg" / 李卫军,浙江大学地球科学学院大气科学系研究员,国家优秀青年基金、中国化学学会环境化学青年科学奖和山东省杰青获得者。他主要应用透射电镜、扫描电镜和纳米二次离子质谱等手段研究我国大气雾-霾及沙尘暴期间大气气溶胶颗粒物,从微观角度揭示颗粒物表面及内部的物理化学特性。近年来促进了大气环境化学和地球科学的研究融合,已获仪器发明专利共5项,其中1项产业化。以第一作者或通讯发表成果在Science Advances, ES& amp T, JGR, ACP等大气相关领域的杂志上共40余篇,出版专著1部。 /p
  • 中国首次北极业务化观测 禾信单颗粒气溶胶质谱仪参与
    p   “为你我用了半年的积蓄,漂洋过海的来看你,为了这次相聚,我连见面时的呼吸都曾反复练习”,全体禾信人开怀高唱,因为这首描述爱情的歌曲吐露出了埋藏在禾信人心底多年的情愫,禾信人自主研发的质谱仪叩开了冰冷神秘的北极冰川。 /p p   2017年7月20日,清晨的一缕阳光温柔的撒在上海极地考察国内基地码头。雪龙号极地考察船将从这里鸣笛启航,前往北极执行为期83天的科学考察任务,这是我国首次执行北极业务化观测任务。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" 1.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201708/insimg/5200d22e-2a8b-452a-8b5d-c42c6b51099c.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong SPAMS吊装及现场安装图 /strong /p p   此次北极科考活动,中国海洋局第三海洋研究所联合广州禾信仪器股份有限公司、暨南大学、中科院大气物理研究所等五家单位,利用禾信公司自主研发的单颗粒气溶胶质谱仪(SPAMS)开展气溶胶与生源气体走航联合观测,重点针对极区黑碳气溶胶、同位素、单颗粒气溶胶混合状态、二次有机气溶胶的时空分布、组成和来源等开展科学研究。 /p p   雪龙号极地考察船简称& quot 雪龙& quot 号,是中国第三代极地破冰船和科学考察船,是中国最大的极地考察船,也是中国唯一能在极地破冰前行的船只,已先后31次赴南极、6次赴北极执行科学考察与补给运输任务,足迹遍布五大洋,创下了中国航海史上多项新纪录。 /p p   为了此次单颗粒气溶胶质谱仪能够飘洋过海到北极,禾信人倾注了多年的心血。面对高湿度、高盐度、大角度颠簸等恶劣工作环境的挑战,如何保证单颗粒气溶胶质谱仪(SPAMS)能稳定工作 面对北极地区极低的颗粒物浓度,如何保证SPAMS能采集到有效的数据,这些都是摆在禾信人面前的难题。基于SPAMS在东方红2号、向阳红3号科考船上的经验积累,禾信的技术团队又进行了多次的技术改革、模拟测试,保证SPAMS此次北极科考的顺利进行。 /p p   让我们共同期待雪龙号10月10日的凯旋,期待SPAMS又将完成一次里程碑式的监测。 /p p & nbsp /p
  • 用于分析细小气溶胶和超细气溶胶的气溶胶采样器
    捷克科学院分析化学研究所(Institute of Analytical Chemistry of the Czech Academy of Sciences)的Mikuska P、Capka L和Vecera Z研制了用于分析细小气溶胶和超细气溶胶的气溶胶采样器,撰文发表在于Analytica Chimica Acta上。  该文描述了基于原始版本的气溶胶逆流双喷嘴单元(ACTJU)的新型气雾剂采样器。ACTJU收集器与位于ACTJU上游的水基冷凝成长装置(CGU)连接,实现了直径达数纳米的精细和超细气溶胶颗粒的定量收集。 CGU中水蒸汽的凝结使纳米尺寸的颗粒在超微米范围内扩大到更大的尺寸,然后将形成的液滴收集到ACTJU收集器中的水中。  使用CGU-ACTJU采样器连续采集气溶胶,可以对颗粒成分浓度变化进行时间分辨测量。 CGU-ACTJU采样器与在线检测设备的耦合允许以1s的高时间分辨率(例如,亚硝酸盐或硝酸盐的FIA检测)或1小时(例如,用于无机阴离子的预富集步骤的IC检测)。在最佳条件下(空气流速10L/min,水流速1.5mL/min),氟化物,氯化物,亚硝酸盐,硝酸盐,硫酸盐和磷酸盐的检测限(包括预浓缩)分别为2.53,6.64,24.2,16.8,0.12和5.03ng/m3,  引自:Aerosol sampler for analysis of fine and ultrafine aerosols.. Article?in?Analytica Chimica Acta 1020 March 2018  原文可参阅:  https://www.researchgate.net/publication/323690546_Aerosol_sampler_for_analysis_of_fine_and_ultrafine_aerosols [accessed Apr 19 2018]  符斌供稿
  • 2012年第三期“在线单颗粒气溶胶质谱仪的使用及数据处理”培训班圆满结业
    2012年第三期&ldquo 在线单颗粒气溶胶质谱仪使用及数据处理&rdquo 培训班于11月26日至12月4日在广州禾信分析仪器有限公司顺利举办,并圆满结业。参加此次培训的学员有来自北京环境监测中心站的研究人员、香港生億国际有限公司的负责人和上海大学的研究生。通过此次培训,达到了让学员掌握仪器的特点及应用、仪器基本操作、仪器的使用注意事项及日常维护、简单故障处理和数据处理软件的使用与初步的数据分析方法等目的。 学员均顺利取得结业证书 禾信公司对本次培训准备充分,时间安排紧凑,内容形式多样全面,培训过程气氛活跃,学员反应热烈,培训过程中还安排学员观看番禺长隆国际大马戏,到广州著名的上下九步行街及陈家祠景点游玩,感受广州的风土人情,这体现了禾信在培训业务上的重视与专业和在待人接物上的热情与周到。 讲师为学员们授课 培训结束后,学员们纷纷表示:此次培训对他们了解单颗粒气溶胶质谱仪的硬件设计以及掌握仪器操作和数据分析方法具有很大的帮助,并将促进他们的科研工作更好地进行。
  • 蔡小舒教授:颗粒粒度及气溶胶在线测量的图像魔法
    p style=" text-align: justify text-indent: 2em " 说起图像法,大家很自然会联想到相机。对,图像法就是用相机作为传感器测量颗粒粒度。其实,图像法并不是一种新的测量方法,这是一种已有很多年历史的测量方法。早期的相机采用胶片作为传感器,记录被测物体的影像,然后将影像投影到工具投影仪上,在投影仪上用标尺或后期发展的坐标传感器量出被测物体的大小。下图是一种显微投影仪的照片,显微物镜把胶片上的图像投影到屏幕上,在屏幕上量出物体图像的尺寸。对于颗粒样品,则可以直接在显微镜下进行观测测量。很显然,在用胶片作为传感器的时期,图像法是不可能用于在线测量的。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/21f18409-d7be-4568-a7cb-255a0d29561b.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: center text-indent: 0em " strong 显微投影仪 /strong /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(255, 0, 0) " (友情提示:移动端用户下方点击阅读全文, /span /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(255, 0, 0) " 再点击取消即可阅读全文,也欢迎下载APP体验阅读新感受) /span /p p style=" text-align: justify text-indent: 2em " 图像法作为颗粒粒度测量,尤其是颗粒粒度在线测量的新方法再次出现并得到日益广泛的应用,得益于CCD和CMOS的发明,数码相机的飞速发展,以及光学镜头、光源、计算机技术以及图像处理算法的飞速发展。数码相机的核心是CCD/CMOS传感器,尤其是近年来CMOS技术的发展使其性能得到很大提高,几乎占据了绝大部分的数字传感器。下图是CMOS传感器的照片。在CCD/CMOS传感器中,代替胶片中感光粒子的是按矩阵排列的像素。如果在每个像素前按规律设置红(R),绿(G)和蓝(B)三色滤色片,则可以得到彩色图像。这样CCD/CMOS就将图像自然分解成了成可以用计算机处理的离散信号。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/fc747ae3-b89b-426c-8014-114e41854faa.jpg" title=" 图像2.png" alt=" 图像2.png" / /p p style=" text-align: justify text-indent: 2em " 图像法在线测量装置主要包括:相机、镜头、光源、取样装置等。其中相机是最关键的设备。为得到清晰的被测颗粒的影像边缘,一般在在线测量中采用逆光(背光)照明方式,相机在测量区一侧,光源在测量区另一侧,如图所示。 span style=" color: rgb(0, 176, 240) " strong 由于光的穿透能力不强,因此图像法不能用于高浓度颗粒的直接在线测量(in-line)。对于高浓度颗粒,必须采用取样方式测量(on-line) /strong /span 。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/fc188c81-6aa1-4737-96b1-bf330735261e.jpg" title=" 图片3.jpg" alt=" 图片3.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图像法在线测量原理示意图 /strong /p p style=" text-align: justify text-indent: 2em " 与图像法静态测量要求不同,在图像法在线测量中,被测颗粒不是静止不动的,而是在运动的,甚至运动速度很高。为得到清晰的颗粒图像,就要“冻结”运动颗粒的影像,这就要求图像的曝光时间要与被测颗粒的运动速度相匹配。对于高速运动的颗粒,要求的曝光时间要短,低速的可以稍长。 曝光时间还与拍摄图像时所用镜头的放大倍率有关,放大倍率大,要求的曝光时间就短,放大倍率小,曝光时间就可以长一些。& nbsp 曝光时间可以由相机的快门控制,也可以由光源的脉冲宽度控制。目前工业相机的电子快门时间最短可以到1微秒,而作为照明光源的脉冲激光的脉冲宽度可以达到几个纳秒。曝光时间越短,需要的光源强度就越大,这就给光源提出了高的要求。工业相机的电子快门分成滚动快门(rolling& nbsp shutter)和全局快门(global& nbsp shutter)2类。 span style=" color: rgb(0, 176, 240) " 为保证曝光时运动颗粒图像不发生畸变,在图像法在线测量中必须采用全局快门 /span 。 /p p style=" text-align: justify text-indent: 2em " 作为在线测量,图像法装置不能像显微镜那样通过更换不同放大倍率的显微物镜来适应不同大小颗粒的测量,这就希望像素尺寸尽量小,以得到高的图像分辨率。通常,滚动快门的CMOS的像素小于全局快门,目前滚动快门的CMOS的最小像素已达到1.5微米,而全局快门的最小的像素是3.8微米。 /p p style=" text-align: justify text-indent: 2em " 在图像法测量中,相机镜头是关键的设备。图像法能进行在线颗粒测量,很大程度上是依赖于 strong span style=" color: rgb(0, 176, 240) " 远心镜头 /span /strong 的发明和发展。用相机拍摄物体,通常图像存在远小近大的现象。而在线测量不能控制被测颗粒一定会处于镜头的焦平面位置,这就会造成颗粒的影像大小与颗粒的真实尺寸不同。远心镜头的出现,很好解决了这个问题。被测颗粒处于不同位置时,远心镜头获得的颗粒图像大小并不会随位置变化而变化。这就使得图像法可以用于颗粒的在线测量。远心镜头有定倍率和工作距离,以及可变放大倍率和工作距离2类,可以根据需要采用其中一种。 /p p style=" text-align: justify text-indent: 2em " 在图像法在线测量中最大问题是被测颗粒不仅存在于测量区中,有些还处于离焦位置,颗粒图像是不清晰的。下图中就同时存在清晰颗粒、离焦程度不大和离焦尺度大的模糊颗粒影像。 strong span style=" color: rgb(0, 176, 240) " 对于离焦颗粒图像,可以有2种处理方法 /span /strong ,对于离焦程度大的模糊影像,直接剔除,不予处理。对于离焦程度不大的模糊图像,可以采用图像处理算法来恢复,得到颗粒的粒度。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 在图像法在线测量中,一般都需要用取样装置将被测粉体样品从生产工业管路中去出,在取样时,必须采取措施防止颗粒样品发生团聚,如用无油无水的压缩空气分散样品颗粒。下面3个图给出了在在线测量取样中没有对颗粒采取分散措施,分散不足和充分分散后的颗粒图像。可以明显看出充分分散的重要性。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/59590f06-6860-4880-955a-367e24cc5746.jpg" title=" 图像4.png" alt=" 图像4.png" / /p p style=" text-align: justify text-indent: 2em " 图像法在线测量不仅可以给出被测颗粒的粒度,还可以得到被测颗粒的形貌参数,这是其它颗粒测量方法不能做到的。 /p p style=" text-align: justify text-indent: 2em " strong 图像法与RGB三波段消光法融合在线测量 /strong /p p style=" text-align: justify text-indent: 2em " 受光学原理和硬件的限制, strong span style=" color: rgb(0, 176, 240) " 图像法在线测量下限一般在2-3微米 /span /strong 。但在工业过程中存在着大量亚微米颗粒中同时存在有少量较大颗粒,并都需要测量其粒度的情况。这时可以 strong span style=" color: rgb(0, 176, 240) " 将图像法与多波长消光法相结合,用图像法测量较大颗粒的粒度,而用多波长消光法测量亚微米颗粒的粒度 /span /strong 。 /p p style=" text-align: justify text-indent: 2em " 彩色相机中的CMOS传感器可以认为是RGB三个波段光探测器件,当采用白光作为光源,对获得的图像可以分别用图像处理算法处理其中的大颗粒影像,用多波长消光法处理背景图像中的RGB信息来分别获得大颗粒和亚微米颗粒的粒度。如下图是用彩色相机获得的高速流动中的湿蒸汽两相流图像,其中高速流动的较大水滴的轨迹宽度对应其粒度,而长度对应其速度,背景是较高浓度的小水滴,无法用图像识别。此时,可以分别对如圆圈中的大水滴影像用图像处理算法处理,得到其粒度和速度,而对矩形框内的亚微米颗粒用RGB三波段消光法进行数据处理,得到小水滴的粒度及分布。 /p p style=" text-align: justify text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/009bf84a-9554-447d-945d-c6bdbe8cb4f2.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 同时存在大小颗粒的图像 /strong /p p style=" text-align: center text-indent: 0em " strong 图像法与后向光散射融合测量大气颗粒和排放烟尘浓度 /strong /p p style=" text-align: justify text-indent: 2em " 图像法不仅可以测量成像的颗粒的粒度,还可以 strong span style=" color: rgb(0, 176, 240) " 与光散射结合测量无法成像的大气中气溶胶颗粒的浓度和排放烟尘的浓度 /span /strong 。气溶胶是空气中悬浮颗粒与大气构成的体系,悬浮颗粒包括固体颗粒,液体颗粒,生物颗粒等。由于气溶胶颗粒粒度很小,受气流和布朗运动的作用,会在大气中长时间扩散传播,PM2.5就属于气溶胶范畴。下图分别是室内和大空间悬浮的气溶胶颗粒在激光照射下的散射光。 strong span style=" color: rgb(0, 176, 240) " 该散射光强与悬浮颗粒的粒度、浓度和测量散射角度有关 /span /strong 。用相机作为传感器,将相机聚焦于激光照射的要测量区域,得到气溶胶后向散射强度后,用米散射理论和相关数学模型进行数据处理,可以得到空间的气溶胶浓度。该方法可以用于烟囱排放烟尘浓度的远距离遥测。如果同时用多个波长的激光进行测量,还可能可以得到悬浮颗粒的平均粒度和分布。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/2f6469fd-9884-41c8-9b57-af11b16bc8b0.jpg" title=" 图像6.png" alt=" 图像6.png" / /p p style=" text-align: justify text-indent: 2em " strong img style=" max-width: 100% max-height: 100% float: left width: 125px height: 125px " src=" https://img1.17img.cn/17img/images/202002/uepic/01e065bd-c5ef-4e1a-9570-1808f883e70a.jpg" title=" 蔡小舒_.jpg" alt=" 蔡小舒_.jpg" width=" 125" height=" 125" border=" 0" vspace=" 0" / span style=" color: rgb(0, 176, 240) " 作 /span span style=" color: rgb(0, 176, 240) " 者简介: /span /strong 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。 /p
  • 气溶胶质谱在线分析北京雾霾成分
    16日夜间开始,北京经历今年来持续时间最长、程度最重的雾和霾天气过程。北京南部部分站点空气质量指数爆表,天地间一片昏暗。此时,网络上、朋友圈里各类关于空气质量的言论开始流传,其中人们最为关注的是“这次雾霾里主要是含硫酸铵,̷̷原来伦敦有次硫酸铵超标,有好多人没有防护而死亡”。  网络流传硫酸铵会致命。  此次重污染天气过程中,我们呼吸的空气里这到底包含什么物质?和之前的重污染天气相比有何不同?硫酸铵会直接导致死亡吗?为此,中国天气网记者采访了中国气象科学研究院大气成分所副研究员张养梅。  北京的霾里到底有哪些成分?  中国气象科学研究院位于北京市海淀区中国气象局大院内,在气科院大楼的楼顶,气溶胶质谱仪一直默默值守,在线采集、分析北京亚微米气溶胶的成分。张养梅介绍道,所谓亚微米气溶胶是指直径在1微米以下的粒子。大家熟悉的PM2.5其实是一个总称,包括空气中直径小于或等于2.5微米的固体颗粒或液滴。研究显示,直径1微米及以下的粒子占PM2.5的60%左右,因此质谱仪采集的数据对于分析大气成分是具有代表性的。  各类颗粒在采样颗粒中所占比重。绿色代表有机气溶胶,橙色为硫酸盐、蓝色为硝酸盐,粉色为氯化物,浅橙色为铵盐。有机气溶胶所占比重最大,硝酸盐次之。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过仪器采集数据及分析,12月5日至20日采集到的1微米及以下的粒子,主要包括有机气溶胶、硝酸盐、硫酸盐等构成。有机气溶胶是一个总称概念,具体的组成目前还没有完全研究清楚,大家经常听说的多环芳烃就是有机气溶胶的一种。硫酸盐主要来自燃煤,燃煤排放的二氧化硫发生一系列氧化反应,成为硫酸铵。硝酸盐主要来自燃煤和机动车排放,氯化物的主要来源包括垃圾焚烧、燃煤以及燃放烟花爆竹等。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过对12月16日至20日对北京的采样颗粒进行分析后,结果显示有机气溶胶是其中占比最大的颗粒,高达45% 硝酸盐颗粒占比24%排第二,主要来自燃煤和机动车排放等 硫酸盐占比15%,主要来自燃煤等 铵盐占比12%,氯化物占比4%。  北京霾和伦敦烟雾一样吗?有致命成分?  就在北京空气质量持续恶化之时,网络谣言也开始流传。针对网上流传的硫酸铵会致命,张养梅表示这是不可能的。空气质量好时,空气中也存在有机气溶胶、硫酸盐等颗粒,只是浓度较低、颗粒物较小。霾天气时,仪器不会观测到硫酸铵,观测到的是硫酸、铵两个离子,他们结合成硫酸铵的可能性很大,空气重污染时浓度更高一些。空气中含有硫酸铵并不是政府发布红色预警的必要条件。  硫酸铵是颗粒物,和二氧化硫气体有明显区别,颗粒物对人体健康的影响程度没有气体迅速。如果空气中二氧化硫气体浓度很高的话,相当于人在“吸毒气”,对人体有致命影响。当年的伦敦烟雾在短短几天内造成数千人死亡,就是因为空气中酸性气体浓度太高。监测显示,12月5日以来,北京硫酸盐的浓度峰值出现在20日,达40-50微克/立方米,远远低于伦敦烟雾事件时的浓度。  当然,硫酸铵等颗粒物也会影响人体健康。它们会随着呼吸进入人体肺部,引发心脑血管和呼吸道的疾病。另外,北京的空气污染物中,含有一定比例的铵,会和硫酸、硝酸发生中和形成颗粒,和酸性气体相比,颗粒的危害性相对轻一些。  污染物浓度日间变化明显 夜间高白天低  分析还表明,空气中各种污染物的浓度整体呈现白天低、夜间高的变化规律。分析时,将12月5日至20日每天同一时次颗粒浓度做分类平均统计,显示颗粒物夜间浓度明显偏高,白天下降明显。  各类颗粒的浓度白天下降明显,夜间明显上升。  张养梅表示,浓度变化主要受排放量和气象条件两个因素影响。在排放量相同的情况下,从气象条件来说,夜间湿度增大,可以吸附更多污染物。同时,冬季夜间气温较低,大气边界层下压。在气体容量不变的情况下,体积变小,空气污染物浓度升高。白天,大气边界层抬升,体积增大,污染物浓度降低。  和2008年相比硫酸盐浓度下降  总体来说,和之前相比,北京空气中的颗粒种类的浓度分布排位没有太大变化,有机气溶胶的浓度一直是最大。但是分析显示,今年12月和2008年1月相比,硫酸盐在不同颗粒物比重的排位下降。  从图中可见,今年12月5日至20日,硝酸盐(蓝色)在颗粒物组成中浓度上升,基本都排在第二位,硫酸盐下降排在第三位 而2008年1月5日至2月2日,硫酸盐浓度排第二位,硝酸盐排第三位。张养梅表示,这一数据的变化也可以说明,政府对二氧化硫排放的监管和控制,比如煤改气措施、工厂加装脱硫设备等发挥了作用。硝酸盐浓度的上升,则与燃煤、机动车排放增加有一定关系。  北京的雾霾将在明天减弱消散,但在近几年中,霾仍将在秋冬季反复出现。张养梅提醒大家,虽然霾天气对人体的危害没有那么“激烈”,但仍需防护,尽量减少在户外活动的时间,外出时戴口罩。在室内时,也可启动空气净化器等设备,营造相对安全的空气环境。
  • 中国颗粒学会常务理事曹军骥研究员当选国际气溶胶学会副主席
    中国科学院大气物理研究所曹军骥研究员近日在希腊雅典市召开的第十一届国际气溶胶会议(IAC2022)上当选国际气溶胶学会副主席,这是我国大陆学者首次出任该职位。国际气溶胶学会(International Aerosol Research Assembly,IARA)成立于1984年(http://www.iara.org),是气溶胶领域的国际性学会,其主要目的是促进世界范围内各国气溶胶学者的科学交流与国际合作。 曹军骥,现任中科院大气物理研究所所长,曾任亚洲气溶胶学会主席。担任中国颗粒学会常务理事兼青年工作委员会副主任、气溶胶专业委员会副主任等职务,长期从事大气气溶胶与大气环境研究,发表SCI论文700余篇,包括Nature、Science、PNAS等顶级刊物论文20余篇。全部论文被SCI总引用4.5万次、高被引指数H-index为93。2015年起连续入选中国环境领域高被引学者名录,2018年起连续4年入选全球高被引科学家名录(Highly Cited Researchers),位居“World’s Top Environmental Scientists”中国内地第一名,位居“全球顶尖科学家”地学领域中国内地前十名。曾获国际空气污染领域最高奖Haagen-Smit国际清洁空气奖、Frank Chamber国际空气污染控制杰出成就奖、第三世界科学院(TWAS)地球天文及空间科学奖等国际奖励。
  • 115万!上海市环境科学研究院碳质气溶胶滤膜样品自动进样分析仪采购
    项目编号:MT-22-06057项目名称:上海市环境科学研究院碳质气溶胶滤膜样品自动进样分析仪采购预算金额:115.0000000 万元(人民币)最高限价(如有):115.0000000 万元(人民币)采购需求:1、项目名称:上海市环境科学研究院碳质气溶胶滤膜样品自动进样分析仪采购2、项目编号:MT-22-060573、预算金额(元):1150000元(人民币)4、最高限价(元):1150000元(人民币)5、项目主要内容、数量及简要规格描述:采购碳质气溶胶滤膜样品自动进样分析仪一套,可测量颗粒物样品中的有机碳(OC)、元素碳(EC)、碳酸盐(CC)的含量,数据可用于含碳颗粒物来源分析研究。(详见招标文件第三章-项目概况及服务需求)6、交付地点:上海市环境科学研究院(上海市徐汇区钦州路508号)7、交付日期:合同签订之日起3个月内交货合同履行期限:合同履行至合同期结束。本项目( 不接受 )联合体投标。
  • 广州市萝岗区气象局领导考察禾信“在线单颗粒气溶胶质谱仪”
    2013年3月12日上午,广州市萝岗区气象局局长常越、防雷减灾管理办公室主任林蟒一行莅临禾信公司参观、交流,重点考察禾信&ldquo 在线单颗粒气溶胶质谱仪&rdquo 及&ldquo 激光光腔衰荡气溶胶消光仪&rdquo 在气象领域的应用。 在线单颗粒气溶胶质谱仪 SPAMS 0515   禾信公司负责人周振博士及技术团队热情接待了常越局长一行,双方就大气环境监测、预报和警报机制,区气象局配备的仪器现状,以及禾信公司核心技术,&ldquo 在线单颗粒气溶胶质谱仪&rdquo 和&ldquo 激光光腔衰荡气溶胶消光仪&rdquo 在气象领域的应用前景等方面进行了深入交流。   禾信公司的上述两款仪器都具有高时间分辨率,可捕捉大气气溶胶的瞬时变化,其中&ldquo 在线单颗粒气溶胶质谱仪&rdquo 可实现颗粒物粒径、成分及混合状态同步检测,两种仪器配合使用在气溶胶污染源解析、大气污染过程研究、不同污染天气的形成机理等方面将发挥巨大的作用。 参观交流现场
  • 禾信质谱成功举办2016年在线单颗粒气溶胶质谱仪高端用户培训会
    2016年9月1日~9月2日,由广州禾信仪器股份有限公司主办的2016年在线单颗粒气溶胶质谱仪(spams)高端用户培训会在成都顺利举办,吸引了来自全国各地环境监测中心、科研院所等单位的100多名专家和用户参会。 本次会议特邀中国环科院高健研究员、四川省环境监测总站罗彬副站长、成都市环科院田红副院长、广东省环境监测中心陈多宏主任、暨南大学李梅副研究员等多位专家作会议报告,分享spams在pm2.5动态源解析及其它领域的最新研究进展和成果,探讨spams在重大活动/赛事空气质量保障中、重污染天气及常态化源解析工作等热点问题中的应用。 会议现场 会议伊始,禾信董事长、暨南大学质谱仪器与大气环境研究所所长周振教授作大会致辞,周教授首先向长期以来支持和关心禾信公司发展的专家和用户表示衷心的感谢,同时介绍了近年来禾信公司和暨南大学质谱与大气所的发展,并承诺禾信团队会继续努力在环境监测领域不断开发新技术和新方法,为我国的环境监测事业做出新的贡献。 禾信董事长、暨南大学大气所所长周振教授致辞 中国环科院高健研究员作了题为“颗粒物动态源解析研究、应用与展望”的精彩报告,分别从颗粒物动态源解析进展、应急管理应用实例及存在问题与展望等三个方面进行了阐述,提出发挥不同源解析技术方法的优势,融合多种源解析方法分析颗粒物污染源类贡献。 四川省环境监测总站罗彬副站长分享了四川省在细颗粒物在线源解析与快速源识别方面的研究进展,提到四川省将spams运用到浮尘天气影响、秸秆燃烧、烟花爆竹、机动车尾气、冬季重污染天气等污染事件的快速识别中,均取得了较好效果,颗粒物快速源识别技术能够对主要污染事件进行快速源识别,提高了颗粒物污染防治工作的及时性、针对性和科学性。 中国环科院 高健研究员报告题目:颗粒物动态源解析研究、应用与展望 四川省环境监测总站 罗彬副站长报告题目:四川省细颗粒物在线源解析与快速源识别研究应用 成都市环科院田红副院长介绍了在线源解析技术在成都市g20峰会期间大气环境保障中所起到的积极作用,并提到利用在线源解析技术可以快速获得会议期间污染天气成因,及时对管控措施进行快速高效评估。 陈多宏主任针对广东省鹤山超级站基于spams、颗粒物在线监测仪等仪器建立规范监测方法、开展区域大气细颗粒物污染成因快速分析方法等一系列研究成果进行了详细阐述,对其它单位spams规范监测分析方法的建立起到了积极的示范作用。 成都市环科院 田红副院长报告题目:成都市g20会议大气pm2.5实时在线源解析监测报告 广东省环境监测中心 陈多宏主任报告题目:区域大气细粒子污染特征快速诊断研究与应用 西安市环境监测站刘焕武高工用幽默风趣的语言详细介绍了spams在常态化颗粒物来源解析工作中的应用及颗粒物来源解析基本程序,刘工首次尝试利用spams的数据结合pmf模型进行西安市颗粒物来源解析,不仅取得了新颖的研究成果,同时为接下来spams动态源解析的发展提供了新的思路和建设性意见,引起了现场与会人员的热烈反响。 暨南大学李梅副研究员做了题为“基于spams的动态源解析技术体系及其应用进展”的报告,全面介绍基于spams动态源解析技术进展及系统构建思路,分享了其在重污染天气应急监测、突发性污染事件应急监测、重大赛事/活动的保障、管控措施/治理成效评估等方面的成功案例,并提出动态源解析未来的发展思路及趋势。 西安市环境监测站 刘焕武高工报告题目:单颗粒气溶胶质谱在常态化颗粒物来源解析工作中的应用 暨南大学 李梅副研究员报告题目:基于spams的在线源解析技术体系及其应用进展 除此之外,还有众多行业专家分享了精彩的报告,全面展示了spams在不同城市、不同领域的研究成果。 此次研讨会全面展示了spams在不同领域和不同城市的最新应用进展,并探讨了基于spams的动态源解析技术未来的发展方向和面临的挑战,能够帮助用户更好地了解动态源解析技术和方法,高效开展动态源解析工作,为各地进一步推动动态源解析工作起到良好的促进作用,从而为各地的大气污染防治提供技术支撑。此次会议得到了与会专家和用户的积极评价,禾信公司承诺以后会定期组织此类研讨会,为专家、用户和禾信之间的沟通交流建立有效的平台。参会人员合影留念
  • 两位气溶胶研究专家获得第三届麦克-《颗粒学报》优秀论文奖
    仪器信息网讯 2016年8月13日,“中国颗粒学会第九届学术年会暨海峡两岸颗粒技术研讨会”在四川省成都市召开,第三届“麦克-《颗粒学报》优秀论文奖”也借此盛会颁发,600余位专家学者、企业代表齐聚一堂,见证了这一时刻。  “麦克-《颗粒学报》优秀论文奖”自2012年由美国麦克仪器公司和《颗粒学报》共同设立,每次评出优秀论文2篇,并通过通讯作者给予获奖论文的研究团队5000美元的奖励;颁奖仪式则与每两年一届的中国颗粒学会学术年会同期举办。麦克仪器中国区总经理许人良博士登台发言  据了解,参与该奖项评选的论文只需满足3个条件:1、发表在《颗粒学报》上的文章;2、文章的研究团队中有一名华人;3、四年内文章的年均被引用次数最高,评选依据为SCI数据库。对此,许人良博士特别强调说:“这是一个‘忠于学术’的奖项,麦克仪器完全不参与、不涉及该奖项评选的整个过程。” 颁奖典礼现场  在颁奖典礼上,中国颗粒学会理事长陈运法研究员揭晓第三届“麦克-《颗粒学报》优秀论文奖”评选结果,许人良博士则为获奖者颁发奖励。陈运法研究员(左二)、许人良博士(左一)与获奖者合影  此次获奖的两篇文章及获奖团队:  1. pm2.5 in china: measurements, sources, visibility and health effects, and mitigation (vol. 13, 2014)  david y.h. pui*, sheng-chieh chen, zhilizuo  david y.h. pui教授是国际著名气溶胶学者及过滤技术领域专家,目前是明尼苏达大学颗粒技术实验室和过滤技术研究中心主任,曾担任美国气溶胶学会主席、国际气溶学会 主席,并获得过多项重要的奖励,包括国际气溶胶学届最高奖fuchs memorial award。  裴教授于2013年被中科院聘为“爱因斯坦讲席教授”,2016年当选美国国家工程院院士。  2. evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations (vol. 11, no. 1, 2013)  jiannongquan, yang gao, qiang zhang, xuexi tie*, junji cao,suqin han, junwangmeng, pengfei chen, delong zhao  铁学煕教授现任中科院地球环境研究所研究员(国家千人计划特聘专家),同时也是美国大气科学研究中心终身科学家,是国际上从事全球气溶胶数值模拟的著名科学家之一。他开发了数个全球及区域三维化学动力模式,在全球温室气体、臭氧、气溶胶分布规律及对全球环境及 气候的影响方面起着先驱者的作用。  作为联合国气候变化政府间专家委员会(ipcc)小组成员,铁学煕教授共享了2007年诺贝尔和平奖。
  • 北京兴东达泰公司中标UST实验室气溶胶碳分析仪
    在UST(香港科技大学) TN304(08/09)实验室气溶胶碳分析仪气溶胶碳分析仪招标采购中,北京兴东达泰公司一举中标,我们公司提供的产品已在世界范围有200台以上的应用,其优异的测试精度和统一的NIOSH5040 方法,保证了实验室间数据的一致性。
  • 北京赛克玛预祝亚太气溶胶年会在西安举办成功
    2011年第七届亚太气溶胶年会将在中国西安举行,亚太气溶胶年会是整个亚洲地区气溶胶学界的盛会,在中国气溶胶学会的努力下,首次在中国举行. 2011年度亚洲气溶胶年会将于明年8月在中国西安召开,主办方为中国科学院地球环境研究所。 亚洲气溶胶年会每两年召开一次,旨在进行高端交流,为促进研究和交流提供更广泛、更专业的平台。 北京赛克玛环保仪器有限公司届时将参加亚洲气溶胶年会,并协助中国科学院地球环境研究所进行先期准备事宜。 如需更多信息请浏览官方网站: http://aac2011.uconferences.com 会议小册子和注册表格: bmet.cn/show.asp 详见 亚太气溶胶年会通知img1.17img.cn/17img/old/NewsImags/File/2010/9/2010091919352679342.pdf 北京赛克玛环保仪器有限公司简介 北京赛克玛环保仪器有限公司是世界前沿的分析技术研发和制造商的中国代理公司,前身是北京莫尼特尔环境技术开发有限公司。专业从事环境大气监测的系统集成,拥有一流的专业技术和应用服务团队。致力于环境大气行业界最前沿的各种分析检测技术研究与应用开发,在全球范围内引进满足环境、气象、海洋和科研市场需求的高端分析、观测仪器,并为上述领域的大气环境观测的科研和业务化应用提供整体解决方案和全程售后服务。 北京赛克玛环保仪器有限公司结合中国的具体国情,引进世界一流的技术和设备,自行设计生产的AQMS9000环境大气质量监测系统、灰霾监测系统、大气复合型污染监测系统、空气质量(应急)监测车和各种环境大气的在线监测综合设备,为全国各地的环境监测部门,气象部门,海洋环境观测部门、高等院校、科学研究机构,和农业、交通、航空等领域,以及电力、石化等工业企业建立了多个环境大气自动监测站、流动应急监测站、沙尘暴观测站网、气溶胶观测站网等,并提供了相当数量的环境大气观测和分析仪器设备和专业技术服务。公司是ISO9001质量管理体系认证企业,是国家环保部推荐的优秀环保企业。 经过10多年的发展,公司拥有各类先进分析技术的丰富应用经验,目前是美国Magee科技公司(美国加州大学技术)、美国BGI公司(美国哈佛大学的技术)、美国Atmoslytic公司(美国沙漠研究所技术)、德国AMA(德国特里尔大学技术)、美国Belfort公司(美国FAA认证)在中国的总代理,同时也是美国Sabio公司、澳大利亚Ecotech公司和美国Thermo-Fisher公司、在中国的指定经销商, 我们主要的引进产品包括:  美国Magee科技公司的黑碳仪,是世界唯一可以在7个光波段同时测量大气中黑碳气溶胶的仪器,同时也是全球唯一获得美国EPA-ETV认证的仪器,目前已经通过中国国家质量监督检验检疫总局的计量器具型式批准证书;  美国Atmoslytic公司(美国沙漠研究所技术)的OC/EC分析仪,是美国灰霾监测站网IMPROVE中指定的分析方法,也是目前全世界对环境大气中有机碳/元素碳分析的主流方法,2003年由中国科学院地球环境研究所首次引进;  美国BGI公司的各种气溶胶采样器,是最早通过美国EPA认证的采样器,也是全球公认的质量最好的标准采样器;  德国AMA公司的在线色谱分析仪,按照PAMS标准设计,针对臭氧前提物中C2-C12的VOCs在线监测系统,整套系统2010年已经通过中国国家质量监督检验检疫总局的计量器具型式批准证书;  美国BELFORT公司生产的能见度仪器,该仪器现在服务于全球最大的中国环保部的沙尘暴站网;  澳大利亚Ecotech公司推出的新一代Aurora1000型和3000型浊度仪,是广泛使用的大气气溶胶散射的监测仪器;  美国Thermo-Fisher公司最新的i系列在线气体分析仪器,可监测O3、CO、CO2、SO2、H2S、TS、TRS、NO/NO2/NOX、NH3、NOy等气体;  还提供TISCH公司的大流量颗粒物采样器、美国SABIO公司的质量控制标校和标准传递设备等。 近年来,公司凭借一支高效的专业技术团队,在环保、气象、海洋、中科院、高等院校等领域取得了很大的发展。参与了国家环保部和国家气象局沙尘暴监测网点、国家气溶胶监测网、广东省灰霾监测网点、海洋局近海空气质量监测点等国家级重点项目的建设,提供了大批量国际一流的系统和设备。我们非常荣幸地参加了我国2007-2008年首次在南极中山站建立的大气监测系统建设配套;同时参与大型室内大气环境监测,在西安兵马俑博物馆、国家博物馆和首都博物馆等重量级的室内环境空气质量监测系统中提供我们的设备和服务。 公司拥有多年从事分析仪器和环境大气监测方面的专家,系统工程师,有一批赴美国、德国、等仪器制造商接受原厂技术培训并取得合格授权证书的专业技术人员;公司现有职工25人,其中高工、工程师和技术人员18人。除北京总部的售后服务技术中心,还在广州市、江阴市和贵阳市建立了三个技术服务中心。 北京售后服务技术中心 地址:北京市海淀区北清路160号65栋二层 邮编:100095 联系人:杨玉姝 电话:010-6246 1672 传真:010-6246 6355 手机:139 1006 2672 Email:Service@bmet.cn 江苏省维护站 地址:江苏省江阴市芙蓉新村9栋305室 邮编:214431 联系人:何京伟 电话:0510-8684 1250 手机:139 2122 1394 E-mail:bmetjw@bmet.cn 贵州省维护站 地址:贵州省贵阳市青云路304号702室 邮编:550002 联系人:陈微波 电话:0851-595 1249 手机:135 1195 9023 E-mail:bobo@bmet.cn 广东省维护站 地址:广州市环市东路371-375号世贸大厦南塔1803# 邮编:510095 联系人:冀奇龙 电话:020-8762 8103 手机:135 6030 4490 E-mail: gztchnlk@vip.163.com 深圳市维护站 地址:深圳市福田区竹子林越众小区6栋602室 邮编: 联系人:陈彪 138 2430 5612 E-mail:chenpiao@bmet.cn 陈兴 134 2877 4094 E-mail:chenxin@bmet.cn 电话:0755-2383 2730 北京赛克玛环保仪器有限公司致力于为大气环境的监测和研究提供更高性能、更智能化的监测设备和系统。为我们周边环境的改善和提高尽我们的微薄之力。
  • “大气气溶胶实时源解析方案” 线上讲座圆满落幕
    2013年11月13日,广州禾信分析仪器有限公司创始人周振博士作客仪器信息网“2013质谱网络研讨会”,进行了“大气气溶胶实时源解析方案”的主题讲座。本次研讨会采取“论坛讲座提问解答”形式,受到来自仪器信息网论坛网友的热烈好评,广州禾信分析仪器有限公司也参与了讲座的交流和讨论。   本期线上讲座分为三个部分。第一部分引入在线源解析技术的重要性。中国大气污染是一个复合性的问题,“污染程度怎么样?PM2.5是怎么组成的?治什么?优先治理什么?治理手段效果评价?应急预警事件的发现与应对?”等这一系列的问题,需要先有“眼睛”来解答。   第二部分,周振博士从传统源解析方法的缺点入手,讲述了实时在线源解析方法的优越性。在线源解析方法能在短时间内(小时)得到源分配饼图 可以进一步做源判识(主要污染单位、方向) 对特征污染过程捕捉,得出不同源的时间相位差 为应急、预警提供最快和直接的数据 能够长时间连续监测,自动出具数据结果 运行费用低、易维护 由于快速,能最大程度节约治理费用等。   第三部分,周振博士介绍了“在线单颗粒气溶胶质谱仪(SPAMS)”的原理以及解释了为何SPAMS能做在线污染源解析。禾信质谱具有完全自主产权的硬件技术、全面的源特征谱库、自主软件与合作三大基础。禾信公司自主研发、生产的“在线单颗粒气溶胶质谱仪(SPAMS)”具有实时在线、高时间分辨、单颗粒、粒径测量、正负化学成分同时检测、机动性强:实验室、车载、船载等特点。该技术已应用到多个城市(如今年石家庄、武汉、广州、辽宁省中心城市、江苏省13城市等)进行推广示范。   禾信公司踏实掌握核心技术作为基础手段——原始创新 致力于发展中国自主产权技术、而且是高端技术 做国产品牌,不代理、不忽悠、不贴牌,不“达芬奇” 站在国家的高度,针对国家需求,从7年前起,在多位院士的指导和863的支持下开始以大气灰霾和VOCs问题专心开发核心技术。   讲座结束后,各位网友从数据来源、污染源类型划分、检测原理以及实际工作中遇到的技术难题等角度踊跃提问,周振博士针对各位网友在讲座过程中所感兴趣的和最关注的问题进行了耐心而细致的讲解。各位网友对本次线上讲座反响热烈,一致表示通过本次线上讲座受益匪浅,解决了很多实际问题,期待今后更多精彩的线上讲座。  关于广州禾信分析仪器有限公司   禾信公司成立于 2004 年,是集质谱仪器研发、制造、销售及技术服务为一体的国家级高新技术企业。注册资金4000 万元,研发场地6000 平方米。   通过八年努力,掌握高分辨垂直引入式飞行时间质谱分析器、电喷雾离子源、电子轰击离子源、真空紫外光电离源、大气压基质辅助激光解析离子源、大气压差分真空接口、膜进样以及质谱专用高速数据采集卡等具有自主知识产权的质谱核心技术和飞行时间质谱仪器全套装配工艺 通过 ISO9001:2008质量管理体系认证。产品研发得到国家“863”计划、国家重大科学仪器设备开发专项、国家火炬计划以及多项省市级科技攻关重点项目的支持。在国内率先实现质谱仪器产品自主正向开发。   禾信公司向环境科学、冶金工业、气象、科学研究等领域提供商品化质谱仪器以及技术服务,2012年实现首台质谱仪器出口美国。近年来,质谱仪器销售额连创新高实现数量级增长,入选 2012年中国优秀创业投资项目。
  • 禾信公司走进全国气溶胶会议 SPAMS产品备受青睐
    2013年5月17 - 18日,“第十一届全国气溶胶会议暨第十届海峡两岸气溶胶技术研讨会”在武汉珞珈山宾馆圆满落幕。来自海内外环境领域的知名专家、学者进行了深入研讨。广州禾信分析仪器有限公司带着自主研发生产的“在线单颗粒气溶胶质谱仪(SPAMS)”在会议现场亮相,受到参会人员的极大关注。第十一届全国气溶胶会议现场广州禾信分析仪器有限公司周振博士作大会报告报告题目:大气重金属在线监测及源解析新方法   禾信公司创始人周振在会议上作了《大气重金属在线监测及源解析新方法》的报告。周振博士首先介绍了传统测量大气重金属的测量方法,然后介绍测量大气重金属的在线测量方法之一的质谱法。详细讲解了粤北血铅事件和城市含铅颗粒物来源监测两个例子中的研究方法,介绍了SPAMS的原理、基本功能和特点。现在利用SPAMS已经实现污染过程的捕捉、污染程度的判断、污染源判断和解析。广州禾信分析仪器有限公司李梅博士作分会场报告报告题目:单颗粒气溶胶质谱仪在环境和香烟烟气分析中的应用实例   会议上,禾信公司项目主管李梅博士作了《单颗粒气溶胶质谱仪在环境和香烟烟气分析中的应用实例》的报告。报告上详细介绍了“在线单颗粒气溶胶质谱仪(SPAMS)”的三个应用实例——在雾霾天气研究中的应用、在沙尘暴研究中的应用以及在香烟烟气分析中的应用。单颗粒气溶胶质谱仪(SPAMS)可进行上述实例的研究,得益于SPAMS的测量原理和特点。SPAMS的进样系统通过空气动力学透镜引入颗粒物至真空系统,聚焦颗粒物至中轴线;在测径系统测定单颗粒粒径,精确触发266nm激光电离颗粒物;在电离系统中单颗粒中的各种正负离子成分同时电离;最后在质谱分析系统中同时检测正负离子。SPAMS具有实时在线、单颗粒、高时间分辨、粒径测量、正负化学成分同时检测、机动性强等特点。禾信公司展位禾信公司技术人员耐心解答观众问题   另外,昆山禾信质谱技术有限公司汪素萍副总经理亲临武汉拜会新老朋友,在交流会晚宴上为与会的用户朋友献上热情洋溢的致辞。昆山禾信质谱技术有限公司汪素萍副总经理汪素萍在晚宴上致辞   在本次交流会上,禾信公司技术人员与参会者之间进行了较长时间的深入交流,观众对禾信先进的分析技术与检测解决方案充满了期待。禾信公司获得“年会赞助商特别贡献奖”  关于广州禾信分析仪器有限公司   禾信公司成立于2004年,是集质谱仪器研发、制造、销售及技术服务为一体的国家级火炬计划重点高新技术企业。注册资金4000万元,场地6000平方米。   通过多年努力,掌握高分辨垂直引入式飞行时间质谱分析器、电喷雾离子源、电子轰击离子源、真空紫外光电离源、大气压基质辅助激光解析离子源、大气压差分真空接口、膜进样以及质谱专用高速数据采集卡等,具有自主知识产权的质谱核心技术和飞行时间质谱仪器全套装配工艺 通过ISO9001:2008质量管理体系认证。产品研发得到国家“863”计划、国家重大科学仪器设备开发专项、国家火炬计划以及多项省市级科技攻关重点项目的支持。在国内率先实现质谱仪器产品自主正向开发。   禾信公司向环境监测、气象、工业生产、医药等领域提供商品化质谱仪器以及技术服务。近年来,质谱仪器销售额连创新高实现数量级增长,入选2012年中国优秀创业投资项目。2012年实现首台质谱仪器出口美国。
  • TSI公司参加第九届全国大气细及超细粒子技术研讨会 及第十四届海峡两岸气溶胶技术研讨会
    美国TSI公司参加了于2016年7月25–29日在江苏省盐城市举办的“第九届全国大气细及超细粒子技术研讨会及第十四届海峡两岸气溶胶技术研讨会”, 大气细及超细粒子研究是当前国内外大气气溶胶、大气环境和气候变化研究的前沿发展方向,同时由大气细及超细粒子带来的环境污染问题及其污染控制是国家和全国人民都关注的焦点。为进一步交流大气细及超细粒子领域的最新研究成果,会议主题为“大气细粒子污染控制新技术”,分享了国际上最前沿的细粒子污染研究和控制技术。 美国TSI公司针对大气超细粒子领域的测试需要,于会上展示了多种检测技术和设备,可适用于大气气溶胶、大气环境研究的不同应用和监测需求。美国TSI公司于展会上展示了新推出的3938E77 型1nm 扫描电迁移粒径谱仪(SMPS)被广泛用于测量1 微米以下的气溶胶粒径分布。选配3777 型纳米增强仪以及3086 型差分电迁移分析仪(1nm-DMA)组件后,SMPS 粒径谱仪能够测量的粒径范围扩展至1nm。3321 空气动力学粒径谱仪(APS™ ) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。TSI 3330型光学颗粒物粒径谱仪简单轻便,能够对颗粒物浓度和粒径谱分布进行快速和准确的测量。基于TSI公司40年气溶胶仪器设计的经验,本款产品使用120度光散射角收集散射光强度和精密的电子处理系统,从而得到高质量和高精度的数据。同时,TSI工厂严格的标定标准也确保仪器的精确性。该产品是广大环境研究机构和环境监测部门进行颗粒物监测分析和源解析的最佳仪器。更多信息,请关注美国TSI公司官方网站: www.tsi.com/cn 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 检测空气中新冠气溶胶的“拭子” ——生物气溶胶采样器
    新冠病毒确认可通过气溶胶传播2019年末以来,新冠病毒的爆发性疫情对世界范围产生了巨大影响。该病毒也从最早的原始毒株不断变异,其主流毒株的传染性也逐渐增强。经过广泛的科学论证,普遍认为目前世界范围内流行的奥密克戎毒株既可以通过常见的飞沫、黏膜接触等传播,也可以通过气溶胶形式进行传播。2020年10月20日,世界卫生组织(WHO)认定气溶胶可以传播新冠病毒,在接下来的六个月里,通过官方文件确认了气溶胶可以携带病毒,并留在空气中。在我国2022年颁布的《新型冠状病毒肺炎诊疗方案(试行第九版)》中,也明确说明了传播途径包括“在相对封闭的环境中经气溶胶传播”。 01生物气溶胶什么是气溶胶?气溶胶是指悬浮在气体介质中的固态或液态颗粒所组成的气态分散系统。其中,包含生物性物质的气溶胶,例如病毒、细菌、真菌、花粉、过敏原、立克次体、衣原体、动植物源性蛋白、各种菌类毒素和它们的碎片和分泌物等,被称作生物气溶胶。生物气溶胶主要来源于土壤、植被、水体等源排放和动物(包含人类)、医院、养殖场、垃圾填埋场、污水处理厂等源排放。生物气溶胶在传染病、公共卫生、大气环境、食品安全、生态环境、气候变化、生物反恐、疾病检测以及环境与健康等方面均有重要影响。生物气溶胶颗粒形成后,便可在较长时间内悬浮于空气之中并且保持感染活性,因此可持续产生感染风险。 根据科学研究,新冠病毒的粒径约为0.1μm,而新冠病毒也可能附着于其他气溶胶颗粒上,常见的生物气溶胶颗粒的直径范围在0.01~10μm之间,因此粒径范围在0.1-10μm之间的生物气溶胶均可能含有新冠病毒。而对于生物气溶胶的检测也构成了对流行病学调查、风险评估等工作的重要组成部分。不同于污染区域的表面采样或者对人筛查使用的鼻咽拭子采样,要实现对漂浮在空气中看不到摸不着的生物气溶胶进行检测,必须首先经过特殊的生物气溶胶采样器对生物气溶胶进行富集。 新型冠状病毒(图源:新型冠状病毒国家科技资源服务系统) 02捕获生物气溶胶 生物气溶胶是传播病毒细菌的方式,要如何对它进行捕获并进一步检测它呢?生物气溶胶采样器可以实现。生物气溶胶在空气中看不到、摸不着、闻不到,几乎无影无踪,在空气中直接对生物气溶胶进行详细生化指标测试极为困难,因此在很长一段时间内,人们对于空气中的生物气溶胶的性质知之甚少。为了研究空气中的生物气溶胶,就需要开发气溶胶采集器,通过物理方法将空气中微生物富集到采样载体上,以便于我们对空气环境中浓度低、颗粒小的微生物进行充分的分析研究。对于生物病原体的采集,要求采样器具有高效的采样效率、合理的粒径采集区间、优秀的工作稳定性与可靠性,且需要能够充分保持被采样物质的生物学特征,例如活性、核酸片段等信息,以用于后续细胞生物学和分子生物学方法的进一步研究。 03新冠病毒的气溶胶采样 疫情以来,大家对于核酸PCR检测已经再熟悉不过了,通过核酸PCR检测,能够发现人体中是否存在新冠病毒。对于人体新冠病毒的检测,通过咽拭子采样,其有严格的标准采样动作要求。同样,对空气中新冠病毒检测采样也有着严格的要求。 ①便于核酸PCR检测。对于空气中的细菌和真菌分析多采用传统的营养基培养计数法,但由于新冠病毒必须在生物体细胞内进行繁殖,不能在营养基上直接培养,因此针对新冠病毒筛查的气溶胶富集采样方法不应使用传统方法。核酸PCR检测是针对病毒含有的核酸进行检测分析,不需要培养病毒,并且具有非常高的灵敏度,因此适用于新冠病毒的检测。②采样方法不破坏病毒核酸。由于PCR检测的是新冠病毒的RNA核酸,因此采样方法应不破坏生物的分子结构和生物活性。③采样后样品体积小。PCR检测方法对于样品量体积需求低,往往只有200μL,为了更灵敏地检出可能存在的新冠病毒,气溶胶采集器的采样载体应尽可能做到体积小、采集效率高,液体采样基的采样后体积或者用于在洗脱固体采样基后得到的洗脱液体积宜小于1mL。④对于小直径气溶胶颗粒采样效率高,采样颗粒直径覆盖范围广。根据前文论述,粒径范围在0.1-10μm之间的气溶胶均可能含有新冠病毒,因此针对新冠病毒的气溶胶采样器应有效采集以上粒径范围的生物气溶胶。⑤采样流量大、可连续采样时间长。新冠病毒在空气中处于气溶胶状态时浓度往往较低。为了进一步提高生物气溶胶检测的灵敏度与覆盖范围,提高采样的时效性与可靠性,具有大流量采样能力和长时间采样可靠性的采样器,更适合实际应用场景的使用。⑥具有生物安全性设计。新冠病毒具有非常强的感染能力,对环境的采样载体应具有良好的生物安全性设计,采样之后采样载体能够充分密封保存,采样设备便于灭活洗消和更换耗材与一次性部件,避免采样载体或者误操作等因素造成对操作人员的潜在危险。⑦环境适应性好。我国由于地跨多个地理纬度,各地大气、温度环境各不相同。作为环境采样装置,应具有较好的温度、湿度、气压适应能力,尤其可以在低于零度的环境中使用,使用固体采样基的采集器在这方面具有优势。⑧结构简单,使用方便,采样载体易于保存。对于实际应用场景的采样,往往需要由一线防疫人员经过简单的训练即可正确操作使用,因此可靠、简单的结构搭配易于保存的固体采样载体更有利于生物气溶胶检测的广泛使用。 04不同类型的采样器及特点自然界中含有大量微生物气溶胶,其中粒径为0.1~10.0μm的微生物气溶胶与人类健康关系密切。空气中针对不同应用场景、不同目标微生物的气溶胶的采样方法种类繁多。根据采样原理的不同,国标GB/T 38517-2020中罗列出了多种常见的生物气溶胶采样器类型,主要分为撞击式采样器、冲击式采样器、过滤式采样器、离心式采样器、静电吸附采样器、自然沉降采样器等,以及基于这些原理的大流量采样器。 撞击式采样器撞击式采样器是一种利用惯性作用,通过喷嘴、喷口或裂隙的加速作用把生物气溶胶粒子采集到固体介质表面的气溶胶采样装置。撞击式采样器通常分为筛孔式和狭缝式,主要区别为气溶胶通过的喷嘴、喷口或裂隙形状不同,不同形状对应的采样流量也不同。安德森采样器是最常见的筛孔式采样器,使用层叠的带有不同孔径的筛孔收集不同粒径范围的气溶胶颗粒,工作流量一般为28.3L/min。作为一种可靠的空气微生物采样器,国际微生物会议和美国政府工业卫生学家协会推荐为标准空气微生物采样器,也是应用最广泛的空气微生物采样器。其通过直接将空气浮游菌采集到营养琼脂平皿上,采样后可直接进行培养,对在培养基上形成的菌落数进行计数即可以反推出采样时的浮游菌数量。但是这种采样器不能长时间工作,否则气流的冲击会造成营养琼脂平皿的过度失水。安德森采样器适用于对于医院、超净间、公共场所、制药车间等场所的浮游菌检测和相关科学研究。由于病毒必须在细胞内繁殖,使用琼脂平皿的安德森采样器不能有效地培养出病毒斑迹,同时为了适配比浮游菌颗粒更小的病毒气溶胶颗粒,对于包括新冠病毒在内的病毒采样往往使用经过特殊空气动力学设计、具有更大流量、采集颗粒能力更强的狭缝式撞击式采样器。撞击式采样原理图冲击式采样器冲击式采样器是一种利用气流对液体的冲击、清洗或雾化等原理,能够使具有足够大惯性的生物气溶胶粒子撞击液体并进入液体介质中的气溶胶采样装置。通常可以分为全玻璃液体冲击式采样器、气旋冲击式采样器等。这类采样器的最大特点是可将空气中的微生物直接富集到液体中,方便后续的试验分析,经常用于野外环境的采样和现场快速检测。但其采样流量小,多适用于高浓度的生物气溶胶采样,且采样液体积有限,随着采样的进行,液体会挥发,不能用于长时间、大流量的冲击采样。 冲击式采样器原理图过滤式采样器过滤式采样器又叫滤膜式采样器,是一种当生物气溶胶粒子通过各种滤材时,由于滤材小孔对粒子的阻留或/和滤材对粒子的静电吸引阻留作用,将粒子捕获在滤材上的采样装置。过滤采样被认为是最简单且有效的采样方式,其结构相对简单,通常由采样滤膜载体和气泵组成,可根据使用的需求,灵活调整采样流量。此类采样器具有采样效率高、流量可调节范围广、操作简单等特点,但受滤膜材质的影响,过滤式采样器采样效率在长时间工作后可靠性会下降,不适宜用于超过30min的长时间采样。 离心式采样器离心式采样器是一种让气体以高速旋转所产生的离心力将生物气溶胶粒子与气流分开并撞击到固体介质表面上或富集到液体介质里的采样装置。此类采样器也称之为气旋式采样器,多采用液体为采样介质,因其结构的差异又有湿壁气旋式和干壁气旋式之分。湿壁气旋采样器采样过程中,生物气溶胶颗粒接触湿的采样管内壁,进而进入采样液中。此种采样器的特点是采样效率高,采完后的液体样品可以直接用于后续试验分析,但也受到采样液易挥发、采样过程不稳定及易污染等缺点的限制。干壁气旋采样器采用旋风分离的方法,将生物气溶胶样品撞击进入采样液中,其能在一定程度上减少采样液挥发等问题,但对于0.5μm 以下粒子(例如病毒) 的采样效率往往较低。离心式采样器常用于环境中细菌、真菌、孢子等生物颗粒的采集与后续分析工作。 旋风分离技术原理静电吸附采样器:静电吸附采样器是一种使用多种方法使生物气溶胶粒子带上电荷,在电场的作用下通过静电吸附收集生物气溶胶粒子的采样装置。目前常用的带电方式是电极高压放电,但是该方法有可能造成生物体活性降低和结构破坏。静电富集采样往往被集成于长期连续工作的纸带式收集与监测系统之中。 自然沉降采样器自然沉降采样器是一种利用生物气溶胶粒子在重力作用自然下沉降到采样面(即微生物营养琼脂平皿表面)的采样器。其特点是等待菌体自行沉降,所需采样时间较长,采样效率低,且不能采集到长期漂浮在环境中的浮游菌。但是这种方法所需仪器设备少,可在部分场景下替代安德森采样器,常用于洁净间、医院等场所的辅助例行检查。类似于安德森采样器,其采用的培养基也不能用于培养病毒。 自然沉降采样 针对不同种类采样器的工作原理和特点,结合对新冠病毒采样的要求,下表对各类采样器对新冠病毒气溶胶采样的适用性进行了比较。 狭缝式撞击采样器安德森采样器冲击式采样器过滤式采样器离心式采样器静电吸附采样器自然沉降采样器采样后便于核酸PCR检测√❌√√√√❌不破坏病毒核酸√√√❌√❌√采样样品体积小√❌❌❌❌√❌采样效率高,采集粒径覆盖广√√√√❌√❌采样流量大√❌❌√√√❌可长时间连续稳定采样√❌❌❌❌❌√生物安全性设计√❌❌√√√❌环境适应性好√√❌√❌√√结构简单,使用方便,采样载体易于保存√√❌√❌√√综合对含有新冠病毒气溶胶的采样需求,狭缝式撞击式采样原理的采样器具有最好的适应性。 本节相关技术原理图片部分来自文献《Methods for Sampling of Airborne Viruses》,MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Sept. 2008, p. 413–444 05 BC500生物气溶胶采样器 BC500生物气溶胶采样器是基于狭缝式撞击式采样原理进行设计开发的一款高效、便携、全天候的大流量生物气溶胶采样器。该设备配备生物性气溶胶采样载体及洗脱液,可以满足以上对生物气溶胶颗粒采样的多方面要求,适用于如细菌、病毒、真菌、芽孢等生物气溶胶颗粒的富集采样。该设备可以单独使用,也可与生物气溶胶报警器联合使用,实现监控、报警、采样一体化操作,满足多种生物气溶胶采样的要求。其特点包括: l参考最新国标设计:《GB/T 39990-2021 颗粒 生物气溶胶采样器 技术条件》;l设备联动采样:可以和生物气溶胶报警器联用,在生物气溶胶报警器报警同时,触发启动生物气溶胶采样器自动实施;l采样效率高:对于小粒径气溶胶颗粒采样效率高;l环境适应性好:采样性能不受环境温湿度变化影响;l生物安全性高:采集后可保持密封状态,设备整体便于洗消;l人机工程设计:生物气溶胶采样载体便于安装,设备可单手携带、一键操作、移动采样;l运输方便:标配携行箱,适应铁路、水运、公路、空运等运输方式。
  • 气溶胶液滴的精确测量仪器-气溶胶光镊技术及其应用
    气溶胶是悬浮在大气中的固态或者液态的颗粒物,极大地影响气候变化、人体健康和大气化学反应过程。不同于伦敦雾和洛杉矶光化学烟雾污染,我国雾霾污染是复合型霾化学机制,存在成分复杂、机制不清状况,需要建立精确的测量方法,获得气溶胶的重要物理化学参数。面对气溶胶对太阳能辐射平衡的不确定性、雾霾关键理化参数的缺失,在迫切期待获得气溶胶的浓度、折射率、吸湿性、挥发性、反应性的数据时,气溶胶光镊应运而生。经过二十多年的发展,气溶胶光镊测量技术,完成了从实验室萌生,到光学技术平台的构建、测量方法的建立等一系列过程,英国目前已经推出了第一代气溶胶光镊仪器(2016,AOT100)。光学镊子简称光镊,顾名思义,它是利用激光作为操作手段,能够像镊子一样对微观物体进行抓取、捕获、操纵。2018年,阿什金教授在光镊技术领域的开创性贡献获得诺贝尔物理学奖。图1 光镊-受激拉曼光谱装置示意图气溶胶光镊如图1所示,以532nm激光作为光源,激光经过100倍油镜(1.25数值孔径),形成光阱能够稳定捕获悬浮单液滴,球形液滴作为一个光学共振腔能够产生很强的受激拉曼信号,即耳语回音模式(WGM),水的OH伸缩振动自发拉曼峰出现在620-660 nm,在水的自发拉曼峰上,会出现4-8组尖锐的受激拉曼共振峰,采用米氏散射模型对受激拉曼信号进行拟合,就能够精确给出悬浮液滴的半径和折射率,具有极高的精度。可以说,气溶胶光镊技术是当前大气气溶胶的物理化学参数最精确的测量技术,它的独特性和精准性,体现在以下几个方面:(1)激光悬浮单个微米尺度的液滴,能稳定悬浮几天的时间,特别适合气溶胶各种老化过程和反应过程的长时间检测;(2)受激拉曼的测量可以提供悬浮液滴半径、折射率、浓度的精准信息,半径的精度可以超过1nm、折射率可达± 2×10-4、浓度的精度可以达到千分之一水平半径(5微米的液滴)。目前,本课题组采用自行搭建的光镊-受激拉曼光谱装置开展了以下几个方面的研究:(1)半挥发性有机物(SVOC)的饱和蒸气压测量,测量范围在10-2到10-7pa;(2)气溶胶液滴中的相分离过程分析;(3)高粘态气溶胶非平衡态动力学传质;(4)痕量气体与液滴反应动力学速率常数测量,能判断痕量气体与悬浮液滴之间的反应,是表面反应还是体相反应。(光镊技术在气溶胶物理化学表征中的应用,中国光学,doi: 10.3788 /CO.20171005.0641 )特别是,我国雾霾事件中二次硫酸盐生成速度严重被低估,不清楚低二氧化硫排放条件下,为什么还有大量硫酸铵形成。作为一个突出案例,我们通过光镊受激拉曼的测量发现,气溶胶的气液界面加快了过渡金属离子催化SO2氧化过程,痕量的Fe(III)和Mn(II)可以使转化速率提升1000倍。对各种条件如液滴的pH、反应场所、离子强度、氧化剂种类、温度、化学组成是如何影响转化速率的,光镊受激拉曼技术都可以给出明确的分析。(Directly measuring Fe(III)-catalyzed SO2 oxidation rate in single optically levitated droplets,RSC Environ. Sci: Atmos. 2023,https://doi.org/ 10.1039/d2ea00125j )。另外一个案例,我们利用受激拉曼光谱的高精度,确定了氧化过程到底是发生在表面,还是液滴内部。我们观测了SO2与悬浮硫酸铵单液滴的自氧化反应过程,实现了单液滴中反应引起的纳米级尺寸变化的精确测量,进而给出了反应的动力学参数。通过精确控制环境相对湿度(RH)、反应气体(SO2、NH3)浓度,我们考察了液滴pH(~3.5-~5.5)、离子强度(最高~40 mol/kg)对SO2自氧化过程的影响。在RH、反应物浓度恒定条件下,反应速率在不同的pH区域内表现出不同的变化趋势:pH 4.5时,速率随pH的增大而增大,即与[H+]-1成正比;pH 4.5是反应速率维持恒定,不受pH的影响。据此我们推断在两个pH范围内,SO2自氧化通过不同的机制进行,前者为体相反应过程,后者为表面反应过程。为进一步验证此推断,我们进一步考察了体相、表面条件下,液滴反应过程中半径变化率(dr/dt)与液滴半径(r)的依变关系。结果表明:对于体相条件(pH = 5.04),反应过程中液滴的dr/dt随着液滴半径的增大而增大;而对于界面条件(pH = 3.83),不同半径液滴的dr/dt为常数。由此证明了在这两种条件下,SO2的自氧化过程确实是存在着体相、界面两种反应机制。上述发现不仅为深入认识大气溶胶诸如硫酸盐生成之类的气粒转化问题提供了新的理论视角,也再次证明光镊-受激拉曼光谱技术是研究气溶胶物理化学过程的一个优异手段。(Rapid sulfate formation via uncatalyzed autoxidation of sulfur dioxide in aerosol microdroplets. Environ. Sci. Technol. 2022, 56, 7637-7646) 气溶胶光镊测量液滴的质量在纳克级,液滴的半径精度优于1nm,折射率精度在10-4量级,该仪器在气溶胶计量科学中前景无量。北京理工大学环境分子科学分子光谱实验室,自2008年开始搭建气溶胶光镊受激拉曼光谱仪器,经过十多年的积累,在仪器的测量精度、重现性、稳定性方面都取得很大进展,已经搭建3套光镊仪器,应用于科学研究,培养了一批高水平人才队伍,2022年获得国家自然科学基金重大仪器项目资助,在高端仪器国产化方面进行孵化,力图形成具有自主知识产权的光学仪器。(作者:北京理工大学化学与化工学院 陈哲 曹雪 刘雨昕 刘湃 黄启燊 张韫宏 )北京理工大学分子光谱实验室简介:北京理工大学分子光谱实验室成立于2003年,隶属于北京理工大学化学与化工学院化学物理研究所。实验室拥有Renishaw共聚焦拉曼光谱仪、Nicolet红外光谱仪、VERTEX 80V真空红外光谱仪、Nicolet iN10显微红外光谱仪、Tweez250si多光阱光镊系统、比表面仪、高速摄像仪等多种先进仪器设备,自主搭建了3台气溶胶光镊受激拉曼仪器。实验室在张韫宏教授带领下,科研队伍逐年壮大。现已经拥有博士生导师2名,副教授1名,预聘助理教授2名,博士后、在读博士、硕士研究生十余名。主要围绕大气物理化学,开展颗粒物形成机制研究。
  • 禾信气溶胶质谱仪入选“十一五”成就展
    仪器器信息网讯 2011年3月7日至14日,广州禾信分析仪器有限公司在国家863计划项目支持下完成的“气溶胶质谱仪”,入选在北京国家会议中心举办的国家“十一五”重大科技成就展。气溶胶质谱仪(右为广州禾信公司董事长周振博士) 该仪器可实现单颗粒气溶胶粒径大小、化学成分的同步检测,整体性能达到国际商品仪器先进水平,且相对体积小、重量轻、抗震性好,适宜野外现场检测,已成功通过广州市计量检测技术研究院测试,参与上海世博会、广州亚运会的大气联合监测,仪器运行稳定,展示了我国在复杂的高端气溶胶质谱仪方面已拥有完全的自主知识产权。   仪器在展馆现场对环境气溶胶进行实时在线检测,清晰的谱图、生动的影像资料介绍以及研发人员专业的现场讲解,吸引了不少观众驻足参观,特别是得到了军事医学科学院、中科院大气物理研究所、中国气象科学研究院等单位科学家的高度评介,在环保、大气研究、气象研究、医药、烟草等领域发挥着不可替代的重要应用。   关于广州禾信分析仪器有限公司:   广州禾信分析仪器有限公司、昆山禾信质谱技术有限公司专业从事质谱仪器的研发、生产、销售及服务,是一家具有质谱仪器产业化能力与经验的创业型企业,已通过ISO9001:2008质量管理体系认证。在产品研发过程中得到国家863计划、广东省各级科技攻关计划的大力支持。公司拥有多项完全自主知识产权的质谱核心技术,包括100-10000分辨率飞行时间质谱检测器技术、四极杆检测器技术、多种离子源技术、质谱专用高速数据采集卡技术等。
  • 研究揭示西安黑碳气溶胶来源第一为生物质燃烧源
    黑碳作为大气中一种典型的吸光性气溶胶,对全球和区域气候都有着深远影响。它可以改变太阳辐射平衡,抑制边界层发展,沉降到冰雪表面会降低其反照率,加速冰川融化。但是在计算其辐射强迫时仍存在很大不确定性,这种不确定性主要来源于老化过程对黑碳颗粒物光学性质的改变。而黑碳颗粒物主要来源于含碳燃料的不完全燃烧。已有研究表明,新鲜排放的黑碳在被释放到大气中后会通过碰并、凝结和非均相氧化等过程与多种来源的颗粒物、气态污染物之间发生老化作用,表面形成包裹层,导致其在混合态、形貌、粒径和化学组成上发生变化,从而影响黑碳的物理化学及光学性质。为了更好地了解城市大气中黑碳的性质差异及评估吸光性影响因素,中国科学院地球环境研究王启元研究员课题组使用单颗粒黑碳光度计(SP2)、光声气溶胶消光仪(PAX)以及在线重金属分析仪(Xact625)等高时间分辨率在线仪器对西安市高新站点2020年11月大气气溶胶进行连续在线监测,并采用PMF与线性回归结合的方法建立黑碳吸光增强倍数与源的关联。PMF模型是目前常用的污染物源解析方法,在给出污染源类别的同时,还能得出确切的污染源的贡献率,近年来被广泛应用于污染物源解析研究中。他们的结果表明:观测期间西安黑碳气溶胶平均浓度2.16 微克 /立方米;PMF源解析出4个主要来源,分别为生物质燃烧源(38%),燃煤源(29%)、交通运输源(29%)、扬尘源(4%);降水后厚包裹黑碳的浓度降幅高达83%,而薄包裹黑碳为39%。作为颗粒粒径更大的厚包裹黑碳其核的质量中值粒径却小于薄包裹黑碳颗粒,分别为141 纳米和176纳米。其次,黑碳核的吸光截面积变化范围较大,为3.79 - 5.95 平方米/克,且与整体颗粒的吸光截面积具有显著相关性,相关系数为0.58(p 0.01)。另外,他们还发现在观测期间黑碳的平均吸光增强倍数为1.37±0.11;经过源解析结果表明,二次老化、燃煤、扬尘、生物质燃烧和机动车排放对吸光增强倍数的贡献分别为37%、26%、15%、13% 和 9%。其中二次老化过程是主要贡献源。上述相关研究成果近日发表于《总环境科学》(Science of The Total Environment)期刊。  (a) 应用PMF进行黑碳质量浓度源解析谱图;(b) 各排放源对总黑碳质量浓度的相对贡献百分比。(a) 大气中含黑碳颗粒物和黑碳核的光吸收系数时间序列;(b) 大气中含黑碳颗粒物和黑碳核的吸光截面积(MAC)时间序列;(c) 大气中含黑碳颗粒物吸光截面积(MAC)相对频率分布;(d) 黑碳核吸光截面积(MAC)相对频率分布。图片均由论文作者提供论文相关信息:https://linkinghub.elsevier.com/retrieve/pii/S0048969723016157
  • 999.8万 禾信在线单颗粒气溶胶质谱等中标运城生态环境局采购项目
    p   日前,运城市大气挥发性有机物(VOCs)走航监测系统及颗粒物PM2.5在线源解析系统采购项目中标公告发布, 广州禾信的在线单颗粒气溶胶质谱仪等中标。 /p p   详细内容如下: /p p   一、项目编号:Z14080001592014070101 /p p   二、项目名称:运城市大气挥发性有机物(VOCs)走航监测系统及颗粒物PM2.5在线源解析系统采购项目 /p p   三、中标信息 /p p   供应商名称:建发(北京)有限公司 /p p   供应商地址:北京市东城区广渠门内大街43号12层43-(12)1201室 /p p   中标金额:9998000元 /p p   四、主要标的信息 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" align=" center" width=" 605" tbody tr class=" firstRow" td width=" 43" p style=" text-align:center " 序号 /p /td td width=" 99" p style=" text-align:center " 货物名称 /p /td td width=" 53" p style=" text-align:center " 品牌 /p /td td width=" 104" p style=" text-align:center " 型号 /p /td td width=" 53" p style=" text-align:center " 数量 /p /td td width=" 84" p style=" text-align:center " 单价 /p /td td width=" 92" p style=" text-align:center " 合价 /p /td /tr tr td width=" 43" p style=" text-align:center " 1 /p /td td width=" 99" p style=" text-align:center " 在线单颗粒气溶胶质谱仪 /p /td td width=" 53" p style=" text-align:center " 广州禾信 /p /td td width=" 104" p style=" text-align:center " SPAMS0525 /p /td td width=" 53" p style=" text-align:center " 1套 /p /td td width=" 84" p style=" text-align:center " 5295000 /p /td td width=" 92" p style=" text-align:center " 5295000 /p /td /tr tr td width=" 43" p style=" text-align:center " 2 /p /td td width=" 99" p style=" text-align:center " 本地化源谱建设 /p /td td width=" 53" p style=" text-align:center " 广州禾信 /p /td td width=" 104" p style=" text-align:center " / /p /td td width=" 53" p style=" text-align:center " 1次 /p /td td width=" 84" p style=" text-align:center " 105000 /p /td td width=" 92" p style=" text-align:center " 105000 /p /td /tr tr td width=" 43" p style=" text-align:center " 3 /p /td td width=" 99" p style=" text-align:center " 单颗粒质谱数据分析报告及驻地服务费 /p /td td width=" 53" p style=" text-align:center " 建发 /p /td td width=" 104" p style=" text-align:center " / /p /td td width=" 53" p style=" text-align:center " 1年 /p /td td width=" 84" p style=" text-align:center " 305000 /p /td td width=" 92" p style=" text-align:center " 305000 /p /td /tr tr td width=" 43" p style=" text-align:center " 4 /p /td td width=" 99" p style=" text-align:center " 单颗粒质谱及车辆运维服务 /p /td td width=" 53" p style=" text-align:center " 广州禾信 /p /td td width=" 104" p style=" text-align:center " / /p /td td width=" 53" p style=" text-align:center " 1年 /p /td td width=" 84" p style=" text-align:center " 305000 /p /td td width=" 92" p style=" text-align:center " 305000 /p /td /tr tr td width=" 43" p style=" text-align:center " 5 /p /td td width=" 99" p style=" text-align:center " 颗粒物监测车及改装 /p /td td width=" 53" p style=" text-align:center " 江陵全顺 /p /td td width=" 104" p style=" text-align:center " JX6581TA-M6 /p /td td width=" 53" p style=" text-align:center " 1批 /p /td td width=" 84" p style=" text-align:center " 720000 /p /td td width=" 92" p style=" text-align:center " 720000 /p /td /tr tr td width=" 43" p style=" text-align:center " 6 /p /td td width=" 99" p style=" text-align:center " 在线挥发性有机物质谱仪 /p /td td width=" 53" p style=" text-align:center " 广州禾信 /p /td td width=" 104" p style=" text-align:center " SPIMS2000 /p /td td width=" 53" p style=" text-align:center " 1套 /p /td td width=" 84" p style=" text-align:center " 2020000 /p /td td width=" 92" p style=" text-align:center " 2020000 /p /td /tr tr td width=" 43" p style=" text-align:center " 7 /p /td td width=" 99" p style=" text-align:center " 在线挥发性有机物质谱数据报告 /p /td td width=" 53" p style=" text-align:center " 广州禾信 /p /td td width=" 104" p style=" text-align:center " / /p /td td width=" 53" p style=" text-align:center " 1年 /p /td td width=" 84" p style=" text-align:center " 150000 /p /td td width=" 92" p style=" text-align:center " 150000 /p /td /tr tr td width=" 43" p style=" text-align:center " 8 /p /td td width=" 99" p style=" text-align:center " 本地化指纹及系统集成服务 /p /td td width=" 53" p style=" text-align:center " 广州禾信 /p /td td width=" 104" p style=" text-align:center " / /p /td td width=" 53" p style=" text-align:center " 1次 /p /td td width=" 84" p style=" text-align:center " 50000 /p /td td width=" 92" p style=" text-align:center " 50000 /p /td /tr tr td width=" 43" p style=" text-align:center " 9 /p /td td width=" 99" p style=" text-align:center " 挥发性有机物质谱监测车及改装 /p /td td width=" 53" p style=" text-align:center " 江陵全顺 /p /td td width=" 104" p style=" text-align:center " JX6581TA-M6 /p /td td width=" 53" p style=" text-align:center " 1批 /p /td td width=" 84" p style=" text-align:center " 560000 /p /td td width=" 92" p style=" text-align:center " 560000 /p /td /tr tr td width=" 43" p style=" text-align:center " 10 /p /td td width=" 99" p style=" text-align:center " 驻地化全托管运维服务 /p /td td width=" 53" p style=" text-align:center " 建发 /p /td td width=" 104" p style=" text-align:center " / /p /td td width=" 53" p style=" text-align:center " 1年 /p /td td width=" 84" p style=" text-align:center " 290000 /p /td td width=" 92" p style=" text-align:center " 290000 /p /td /tr tr td width=" 43" p style=" text-align:center " 11 /p /td td width=" 99" p style=" text-align:center " 软件及广谱数据库 /p /td td width=" 53" p style=" text-align:center " 广州禾信 /p /td td width=" 104" p style=" text-align:center " / /p /td td width=" 53" p style=" text-align:center " 1套 /p /td td width=" 84" p style=" text-align:center " 198000 /p /td td width=" 92" p style=" text-align:center " 198000 /p /td /tr /tbody /table p br/ /p p br/ /p
  • 广州禾信气溶胶质谱仪入选“十一五”成就展
    p    strong 仪器信息网讯 /strong 2011年3月7日至14日,广州禾信分析仪器有限公司在国家863计划项目支持下完成的“气溶胶质谱仪”,入选在北京国家会议中心举办的国家“十一五”重大科技成就展。 /p p style=" text-align:center " strong span style=" font-family:楷体_GB2312" img src=" https://img1.17img.cn/17img/old/UploadFile/20113/201131311613651.jpg" border=" 0" / /span /strong /p p style=" text-align:center " strong span style=" font-family:楷体_GB2312" 气溶胶质谱仪(右为广州禾信公司董事长周振博士) /span /strong /p p   该仪器可实现单颗粒气溶胶粒径大小、化学成分的同步检测,整体性能达到国际商品仪器先进水平,且相对体积小、重量轻、抗震性好,适宜野外现场检测,已成功通过广州市计量检测技术研究院测试,参与上海世博会、广州亚运会的大气联合监测,仪器运行稳定,展示了我国在复杂的高端气溶胶质谱仪方面已拥有完全的自主知识产权。 /p p   仪器在展馆现场对环境气溶胶进行实时在线检测,清晰的谱图、生动的影像资料介绍以及研发人员专业的现场讲解,吸引了不少观众驻足参观,特别是得到了军事医学科学院、中科院大气物理研究所、中国气象科学研究院等单位科学家的高度评介,在环保、大气研究、气象研究、医药、烟草等领域发挥着不可替代的重要应用。 /p p strong span style=" font-family:楷体_GB2312"   关于广州禾信分析仪器有限公司: /span /strong /p p span style=" font-family:楷体_GB2312"   广州禾信分析仪器有限公司、昆山禾信质谱技术有限公司专业从事质谱仪器的研发、生产、销售及服务,是一家具有质谱仪器产业化能力与经验的“千人计划”创业型企业,已通过 span style=" font-family:Arial" ISO9001:2008 /span 质量管理体系认证。在产品研发过程中得到国家 span style=" font-family:Arial" 863 /span 计划、广东省各级科技攻关计划的大力支持。 /span span style=" font-family:楷体_GB2312" 公司拥有多项完全自主知识产权的质谱核心技术,包括 span style=" font-family:Arial" 100-10000 /span 分辨率飞行时间质谱检测器技术、四极杆检测器技术、多种离子源技术、质谱专用高速数据采集卡技术等。 /span /p
  • 2011年第七届亚太气溶胶年会将在中国西安举行
    2011年第七届亚太气溶胶年会将在中国西安举行,亚太气溶胶年会是整个亚洲地区气溶胶学界的盛会,在中国气溶胶学会的努力下,首次在中国举行. 2011年度亚洲气溶胶年会将于明年8月在中国西安召开,主办方为中国科学院地球环境研究所。 亚洲气溶胶年会每两年召开一次,旨在进行高端交流,为促进研究和交流提供更广泛、更专业的平台。 北京赛克玛环保仪器有限公司届时将参加亚洲气溶胶年会,并协助中国科学院地球环境研究所进行先期准备事宜。 如需更多信息请浏览官方网站: http://aac2011.uconferences.com 会议小册子和注册表格: bmet.cn/show.asp 详见 亚太气溶胶年会通知img1.17img.cn/17img/old/NewsImags/File/2010/9/2010091919352679342.pdf 北京赛克玛环保仪器有限公司简介 北京赛克玛环保仪器有限公司是世界前沿的分析技术研发和制造商的中国代理公司,前身是北京莫尼特尔环境技术开发有限公司。专业从事环境大气监测的系统集成,拥有一流的专业技术和应用服务团队。致力于环境大气行业界最前沿的各种分析检测技术研究与应用开发,在全球范围内引进满足环境、气象、海洋和科研市场需求的高端分析、观测仪器,并为上述领域的大气环境观测的科研和业务化应用提供整体解决方案和全程售后服务。 北京赛克玛环保仪器有限公司结合中国的具体国情,引进世界一流的技术和设备,自行设计生产的AQMS9000环境大气质量监测系统、灰霾监测系统、大气复合型污染监测系统、空气质量(应急)监测车和各种环境大气的在线监测综合设备,为全国各地的环境监测部门,气象部门,海洋环境观测部门、高等院校、科学研究机构,和农业、交通、航空等领域,以及电力、石化等工业企业建立了多个环境大气自动监测站、流动应急监测站、沙尘暴观测站网、气溶胶观测站网等,并提供了相当数量的环境大气观测和分析仪器设备和专业技术服务。公司是ISO9001质量管理体系认证企业,是国家环保部推荐的优秀环保企业。 经过10多年的发展,公司拥有各类先进分析技术的丰富应用经验,目前是美国Magee科技公司(美国加州大学技术)、美国BGI公司(美国哈佛大学的技术)、美国Atmoslytic公司(美国沙漠研究所技术)、德国AMA(德国特里尔大学技术)、美国Belfort公司(美国FAA认证)在中国的总代理,同时也是美国Sabio公司、澳大利亚Ecotech公司和美国Thermo-Fisher公司、在中国的指定经销商, 我们主要的引进产品包括:  美国Magee科技公司的黑碳仪,是世界唯一可以在7个光波段同时测量大气中黑碳气溶胶的仪器,同时也是全球唯一获得美国EPA-ETV认证的仪器,目前已经通过中国国家质量监督检验检疫总局的计量器具型式批准证书;  美国Atmoslytic公司(美国沙漠研究所技术)的OC/EC分析仪,是美国灰霾监测站网IMPROVE中指定的分析方法,也是目前全世界对环境大气中有机碳/元素碳分析的主流方法,2003年由中国科学院地球环境研究所首次引进;  美国BGI公司的各种气溶胶采样器,是最早通过美国EPA认证的采样器,也是全球公认的质量最好的标准采样器;  德国AMA公司的在线色谱分析仪,按照PAMS标准设计,针对臭氧前提物中C2-C12的VOCs在线监测系统,整套系统2010年已经通过中国国家质量监督检验检疫总局的计量器具型式批准证书;  美国BELFORT公司生产的能见度仪器,该仪器现在服务于全球最大的中国环保部的沙尘暴站网;  澳大利亚Ecotech公司推出的新一代Aurora1000型和3000型浊度仪,是广泛使用的大气气溶胶散射的监测仪器;  美国Thermo-Fisher公司最新的i系列在线气体分析仪器,可监测O3、CO、CO2、SO2、H2S、TS、TRS、NO/NO2/NOX、NH3、NOy等气体;  还提供TISCH公司的大流量颗粒物采样器、美国SABIO公司的质量控制标校和标准传递设备等。 近年来,公司凭借一支高效的专业技术团队,在环保、气象、海洋、中科院、高等院校等领域取得了很大的发展。参与了国家环保部和国家气象局沙尘暴监测网点、国家气溶胶监测网、广东省灰霾监测网点、海洋局近海空气质量监测点等国家级重点项目的建设,提供了大批量国际一流的系统和设备。我们非常荣幸地参加了我国2007-2008年首次在南极中山站建立的大气监测系统建设配套;同时参与大型室内大气环境监测,在西安兵马俑博物馆、国家博物馆和首都博物馆等重量级的室内环境空气质量监测系统中提供我们的设备和服务。 公司拥有多年从事分析仪器和环境大气监测方面的专家,系统工程师,有一批赴美国、德国、等仪器制造商接受原厂技术培训并取得合格授权证书的专业技术人员;公司现有职工25人,其中高工、工程师和技术人员18人。除北京总部的售后服务技术中心,还在广州市、江阴市和贵阳市建立了三个技术服务中心。 北京售后服务技术中心 地址:北京市海淀区北清路160号65栋二层 邮编:100095 联系人:杨玉姝 电话:010-6246 1672 传真:010-6246 6355 手机:139 1006 2672 Email:Service@bmet.cn 江苏省维护站 地址:江苏省江阴市芙蓉新村9栋305室 邮编:214431 联系人:何京伟 电话:0510-8684 1250 手机:139 2122 1394 E-mail:bmetjw@bmet.cn 贵州省维护站 地址:贵州省贵阳市青云路304号702室 邮编:550002 联系人:陈微波 电话:0851-595 1249 手机:135 1195 9023 E-mail:bobo@bmet.cn 广东省维护站 地址:广州市环市东路371-375号世贸大厦南塔1803# 邮编:510095 联系人:冀奇龙 电话:020-8762 8103 手机:135 6030 4490 E-mail: gztchnlk@vip.163.com 深圳市维护站 地址:深圳市福田区竹子林越众小区6栋602室 邮编: 联系人:陈彪 138 2430 5612 E-mail:chenpiao@bmet.cn 陈兴 134 2877 4094 E-mail:chenxin@bmet.cn 电话:0755-2383 2730 北京赛克玛环保仪器有限公司致力于为大气环境的监测和研究提供更高性能、更智能化的监测设备和系统。为我们周边环境的改善和提高尽我们的微薄之力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制