当前位置: 仪器信息网 > 行业主题 > >

气体自动定标校准系统

仪器信息网气体自动定标校准系统专题为您提供2024年最新气体自动定标校准系统价格报价、厂家品牌的相关信息, 包括气体自动定标校准系统参数、型号等,不管是国产,还是进口品牌的气体自动定标校准系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气体自动定标校准系统相关的耗材配件、试剂标物,还有气体自动定标校准系统相关的最新资讯、资料,以及气体自动定标校准系统相关的解决方案。

气体自动定标校准系统相关的方案

  • 根据美国EPA200.7方法利用Optima8300型ICP-OES和快速自动稀释校准系统分析水和废水中污染物
    水污染的预防和控制对保护人类和环境健康是至关重要的。水和废水的监测是一种有效的防止污染引入和避免花费巨资治理饮用水和重要水域的方法。美国环境保护署(US.EPA)以及当地的监管机构根据“ 清洁水法”和“安全应用水法案”负责水和废水的监管。根据分析物的种类和数量,样品的数量和分析通量,多种分析技术用于水和废水中微量元素的测量。美国EPA 200.7 4.4版本包括了采用电感耦合等离子体发射光谱(ICP-OES)轴向和/或径向观测测定水和废水中的金属和非金属的合规方法,Method 200.7还包括有样品采集、保存和制备过程的完整描述。本工作使用PerkinElmer® Optima® 8300 型ICP-OES,结合快速自动在线稀释/校准系统可以满足Method 200.7 的测定要求。FAST™ 进样系统相对传统ICP-OES进样系统具有许多优势,其中最显著的优点是提高了样品通量,降低了记忆效应。FAST™ 进样系统可以准确的自动稀释样品和标准,消除了手动稀释的误差,增加了定量范围,减少了昂贵高纯试剂和样品的消耗。该自动稀释/校准系统是提高实验室分析效率的最佳方式之一
  • Thermo Scientific 146i-GO 便携式气体校准仪
    146i-GO是一款高精度的便携动态气体校准仪。灵活配置1:1 到1:2000倍的稀释比,提供浓度精确的二氧化硫,一氧化氮,二氧化氮,一氧化碳,甲烷和非甲烷碳氢化合物或其它气体,用于气体分析仪的零点校准、跨点校准、泄漏检测,线性验证,性能审核等。同时,它是一款可以用于CEMS全程标定的便携式气体校准仪器,直接对CEMS (固定污染源烟气监测系统) 高压环境下进行标定。三防式的设计可以适应最严酷的工况。2分钟的热机时间远超过同类产品,做到开机就能工作;8磅重、牛奶箱大小方便携带至现场,“一屏全控”的操作界面让您的现场操作更轻松。
  • Thermo Scientific 146i-GO 便携式气体校准仪
    146i-GO是一款高精度的便携动态气体校准仪。灵活配置1:1 到1:2000倍的稀释比,提供浓度精确的二氧化硫,一氧化氮,二氧化氮,一氧化碳,甲烷和非甲烷碳氢化合物或其它气体,用于气体分析仪的零点校准、跨点校准、泄漏检测,线性验证,性能审核等。同时,它是一款可以用于CEMS全程标定的便携式气体校准仪器,直接对CEMS (固定污染源烟气监测系统) 高压环境下进行标定。三防式的设计可以适应最严酷的工况。2分钟的热机时间远超过同类产品,做到开机就能工作;8磅重、牛奶箱大小方便携带至现场,“一屏全控”的操作界面让您的现场操作更轻松。
  • 用于高光谱校准的定制化积分球均匀光源
    校准高光谱相机需要精确读取相机工作范围内多个波段的光谱辐射强度值。某国家研究中心需要为其正在研制的焦距为330毫米、光圈为f/1.4的高光谱照相机提供校准光源。该相机的设计目的是探测从可见光到红外光,其测试几何要求出光口直径为0.4米。优势• 电动滤光片允许用户快速自动地收集光谱数据并校准系统。• 使用Labsphere的HELIOSense软件可以实现宽广光谱控制和可用性查询,微调光谱辐亮度、色温和波长分布。• 提供完整的校准报告,包含均匀性、连续可调性、辐亮度稳定性,并通过每个带通滤光片单独测试结果。• 该系统具有98.5%的空间均匀性和99.2%的角度均匀性,保证了每次测试结果的准确性。
  • IDS3010激光干涉仪在快速机床校准的应用
    德国亚琛工业大学(Rwth Aachen University,长久以来被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时、需要中断生产过程、安装和卸载校准设备的手动校准变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪,其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较:六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性,值得指出的是:使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而通过保持相同的精度水平提高了生产率。
  • 液压传动 液体自动颗粒计数器的校准
    在液压系统中,功率是借助于密闭回路中的受压液体来传递和控制的。该液体既是润滑剂又是功率传递介质。可靠的系统工作性能,需要对液体中的污染物加以控制。为了定量、定性地测定液体中的颗粒污染物,需要准确地取样并精确测定污染物的尺寸分布和浓度。液体自动颗粒计数器是一种令人满意的设备,可用来测定污染颗粒的尺寸分布和浓度。仪器的准确度通过校准来确定。
  • 虹科医药灭菌验证与校准解决方案&冷链物流与温湿度监测方案
    自1949年以来,虹科Ellab一直提供行业领先的精度和品质的热验证解决方案。硬件和软件由丹麦的总部设计、制造和分销,提供验证系统,校准系统,验证和确认以及租赁服务和校准服务,服务于大型、中型、小型的制药、医疗和食品行业的客户。我们在灭菌,冷冻干燥,隧道式烘箱,巴氏杀菌等多种应用提供解决方案。
  • 用CRDS气体分析仪测量空气中13C富集的二氧化碳:评价和校准
    使用光腔衰荡光谱法(CRDS)对空气中的δ 13C CO2分析越来越普遍。然而,对于高13C丰度对CRDS测量性能的影响知之甚少。12CO2和13CO2谱线之间的重叠可能对13C富集样品CO2同位素使用CRDS方法测量,产生不利影响。CO2中13C富集可以导致进行x12CO2测量的CRDS仪器(如G2131-i)出现微小误差,文章提出了一个经验修正的测量二氧化碳在空气中13C富集的简单方法。 文章使用Picarro G2131-I CRDS同位素- CO2气体分析仪,在合成空气中测试了具有广泛变化的13C丰度(从天然原子到20.1原子)和CO2摩尔分数(x CO2:0.1到2116ppm)的特殊重量标准。通过分析标准的测量误差,评估了12CO2和13CO2谱线之间光谱干扰的存在。采用多组分校准策略,结合同位素比值和摩尔分数数据,确保了 δ 13C CO2、x12CO2和x13CO2校正值的准确性与一致性。 在整个测试范围(0.005至100 ppm)内,CRDS技术对x13CO2的测量均准确无误。另一方面,对x12CO2测量中的光谱串扰导致x12CO2、总x CO2(x12CO2+x13CO2)和δ 13C CO2数据不准确。x12CO2测量的经验关系将13C /12C同位素比值(即13CO2/12CO2,RCO2)作为一个二次(非线性)变量来补偿干扰,并使我们的标准气体能够准确校准进行所有CO2成分测量的仪器。
  • 垃圾气体自动监测系统
    垃圾堆体上监测井气体导排汇总管上 垃圾气体自动监测系统CH4、CO2、H2S,O2,四组分气体分析仪表 甲烷量程0—15%vol,氧气0—30%vol,二氧化碳0—30%vol,硫化氢0—500ppm。  三台分别为两台检测5个点,一台检测6个点,自带气路切换系统,可在远程plc机柜实现气路控制和检测数据显示,传出信号4—20ma。  能满足检测点离检测仪最远管线150米距离,要求注明采样泵流量大小。  带压缩空气反吹清洗,给出压缩空气源所需压力。  室外机柜防爆,注明防爆等级。
  • 数字针阀在便携式真空计校准装置中的应用
    针对便携式真空计校准装置以实现真空计的现场校准,基于静态比对法校准技术,本文提出了一种采用微型数字针阀和上下游双向气体流量调控模式的技术方案,结合双通道高精度的真空度PID控制器,可在真空度精密控制的前提下解决现场校准和便携性问题。
  • HONO亚硝酸分析仪
    大气中HONO浓度的测量采用湿化学法。基本原理是使用吸收液,利用气液之间的扩散,将采样气体中的HONO转变为亚硝酸根(NO2-),后续利用双通道长光程吸收光谱法(LOPAP)进行测量。长光程吸收光谱法(LOPAP)是现今无论是实验室研究还是外场观测中应用最广泛的测量气态亚硝酸浓度的湿化学方法。整个分析系统分为四个部分:采样单元、染色单元、检测单元和自动校准系统。在采样单元中使用双通道螺旋管对大气进行采样,所使用的吸收液为超纯水,吸收液在双通道螺旋管中吸收大气中的气态亚硝酸,然后与染色单元中的磺胺形成重氮盐溶液,而后再与染色液盐酸萘乙二胺溶液进行混合,形成偶氮染料,形成的偶氮染料进入液芯进行检测。自动校准系统利用HCl气体在一定的温湿度条件下与亚硝酸盐反应可以得到特定浓度的气态亚硝酸,用于HONO分析仪标定。
  • 真空计的校准——普发真空超高精度校准解决方案
    如今,真空在我们日常生活中被广泛应用于高端产品的生产及制造,并且扮演着重要角色。例如:在科研,工业流程,手机芯片,硬盘,太阳能电池,塑料干燥或者食品真空包装等领域。在当今的生产活动中,我们对真空度测量的精确性、标准化、可靠性和重复性的要求是至关重要的。当我们在进行测量的时候,高精度又是关键中的关键:精度的高低会直接影响产品的生产质量,科学实验的准确性和设备使用的可靠性。要确保真空计使用时的高可靠性,就必须经常对它进行校准或标定。而根据每个不同应用的具体要求,这些校准工作必须符合国内或相关的国际标准。经济、高效、精准、国际化的机构校准及标定替代解决方案生产活动中,真空计往往需要对外专业机构进行校准和标定。然而在对量大或校准间隔要求短的条件下,使用经济的测量仪器进行现场校准能大大节约时间和费用。普发真空紧凑型的校准泵组就能够组建起这样一个系统。这个易于使用的便携式系统是专为同时在线进行多个仪器检测而量身定做的。其系统具有使用便捷、快速及符合人体工学标准的特点。
  • 格雷沃夫TVOC检测仪校准及常见问题解决方案
    一般来说 ,格雷沃夫气体检测仪、传感器的校准,建议每个一段时间要进行次。检查您的特定应用程序漂移与户校准或测试 。
  • 微电子超纯水应用中总有机碳TOC监测的操作、校准和自动归零的指导
    在微电子超纯水(UPW)应用中,水系统中的总有机碳(TOC)浓度极低,通常为亚ppb级。本文介绍如何优化微电子超纯水应用中的在线总有机碳分析,包括操作步骤指导。苏伊士等厂商生产的分析仪,检测限均在0.02至0.03 ppb之间。典型的超纯水系统的TOC浓度在0.2至0.4 ppb之间,或者说仅比分析仪的检测限高一个数量级。当要测量的TOC浓度非常接近分析仪的检测限时,我们可以优化分析仪的性能以获得理想的测量结果,但此时的校准方法必需有别于测量高TOC时所采用的校准方法。
  • QCM-石英晶体微天平理论与校准
    本文旨在介绍石英晶体微天平QCM的原理与相关应用的校准,例如:气相测量、液相测量以及电化学测量,以便大家更好的了解与使用石英晶体微天平QCM。
  • 润滑油空气释放值测定仪校准方法的研究
    润滑油空气释放值测定仪是一种适用于检测润滑油(如气轮机油、液压油等石油产品)分离雾沫空气的能力的仪器。使用该仪器时,将试样加热到一定温度,通过对试样吹入过量的压缩空气,使试样剧烈搅动,空气在试样中形成小气泡,即雾沫空气。停气后记录试样中雾沫空气体积减到0.2%的时间。空气释放值对于液压油非常重要,因为液压油里含有空气有诸多危害,如:增加液压油的可压缩性,受到压缩会使油温升高,缩短液压油的使用寿命.使液压泵气蚀损坏。所以对润滑油空气释放值测定仪校准方法进行研究有着非常重要的意义。目前,我国并没有相关的计量校准规范,因此本文根据润滑油空气释放值测定仪的实际情况及长期校准积累经验,提供一种用于润滑油空气释放值测定仪P的方法。
  • 空气质量检测仪之颗粒物检测仪屏幕校准误操作的解决办法
    PC3016颗粒物检测仪作为格雷沃夫室内空气质量检测仪系统中的一部分,与VOC检测仪、有毒有害气体检测仪和FM801甲醛检测仪不同,PC3016颗粒物与AS主机虽然同是触摸屏操作,但是颗粒物检测仪的触摸屏有屏幕校准的功能。
  • 半导体生产中的气体流量测量
    电子元件的生产过程需要各种不同的气体,如氮气、氩气、氦气甚至是压缩空气。这些工业气体大多不是在现场生产的,而是从外部采购的,这意味着它们涉及相当大的成本。除此之外,生产压缩空气还需要消耗大量的能源,这也意味着巨大的成本。为了确定主要消费者并尝试优化生产过程的操作,首先必须测量各种体积流量。便携式 FLUXUS G601 超声波流量计成为一家半导体生产商的理想测量系统:由于采用了非侵入式的测量技术,不需要打开现有的管道来设置临时的流量测量点,因此不会中断生产。由于外夹式超声波传感器只需安装在管道外部,不与内部流动的气体接触,所以绝对没有污染高纯度介质的风险。因此,外夹式超声波系统也可以毫无顾虑地在洁净室环境中使用。此外,FLEXIM 的非侵入式测量技术也不存在泄漏的风险。FLUXUS G601 的用户特别欣赏其简单实用的可管理性、可靠性以及卓越的灵活性和多功能性。连接传感器后,测量主机会自动检测并读取存储的数据(传感器类型、序列号、校准数据)。这使得测量点的设置更加容易,并确保测量值的准确性和可追溯性。便携式 FLUXUS G601 以及永久性 FLUXUS G721 或 G704CA 超声波系统适用于各种气体以及压缩空气的非侵入式流量测量,几乎可用于所有管道材料。
  • 称量仪器的校准
    当称量仪器用于与质量控制相关的测量时,校准是必须定期执行的关键操作之一。国际上有许多标准规范都有这方面的要求,例如ISO9001、GMP法规以及与食品安全相关的一些标准。然而关于校准的定义、实施和校准的具体操作在全球范围内并没有一个完全统一的标准。在此,我们首先需要了解一下什么是校准,以及与调整和检定的区别。
  • HD-30气体自动进样器在非甲烷总烃分析中的应用
    采用Labhands HD-30全自动气体进样器与GC联用系统分析非甲烷总烃与传统手工进样分析比较,可以达到实验过程自动化:即分析一批样品不需实验人员在仪器旁操作等待;可以达到实验结果自动化:即使用Labhands HD-30全自动气体进样器提供的Socre工作站可以直接计算出样品中非甲烷总烃含量,并且自动打印数据报告,免去人工依次计算一批样品结果的工作。在使用Labhands HD-30全自动气体进样器与GC联用系统分析非甲烷总烃提高实验效率的同时,甲烷与总烃的线性相关性、样品的重复性也较传统分析方法有很大提升。
  • 生物制药发酵液中pH检测方案(pH计)
    为了实现生物发酵过程中的pH监测,Knick提供了一种自动化测量、清洗及校准pH的解决方案,本方案采用Knick全新的Unical 9000(X)全自动清洗校准系统,摒弃了传统的在线pH监测,需要定期的人工维护的缺陷,很好的满足了在发酵过程中pH的无人值守在线监测,并满足上述监测条件。
  • 颗粒计数器计量校准方案
    颗粒计数器计量校准方案,取样体积、计数重复、计数准确性,综合性的维护服务:检测:主要指标的直接验证和测试;调整:接触不良接口处理、异物排除等简单故障排除;校准:仪器的重复性、分辨率和准确度的验证,用少量基础仪器恢复部分超差指标;出具检测和工作报告;可有偿提供第三方计量校准报告。保养:更换橡胶按键、外部刚性易损电缆等易老化、失效部件;防护:不常用端口盖帽保护、仪器外壳漏电检测等;清洁:(除尘、除垢)外壳、按键开关、内部关键部件、器件,散热风路等。订制:工厂内测试环境的检测和解决方案的制定。
  • 微量气体流量计用于笑气镇痛系统/麻醉机检漏测试
    微量气体流量计用于笑气镇痛系统/麻醉机检漏测试1、笑气是什么?笑气又称一氧化二氮N2O气体,是一种无色有甜味的气体,有轻微麻醉作用,在医学领域,常用于减轻患者的不适和焦虑。2、为什么要对笑气镇痛系统进行检漏?笑气镇痛系统的管路一般与医院的中心管路连接,除了笑气管路以外,医院的中心管路还与其它气体管路比如氧气管路连接。当笑气镇痛系统进行工作时,需要往系统内通入一定量的笑气与氧气,二者进行混合后再给患者使用。理想情况下,通入的笑气是不会进入氧气管路再进入医院中心管路的。但实际上,由于种种原因,笑气会少量进入医院的中心管路。当不需要笑气的患者进行吸氧时,这部分笑气会随着氧气供给患者,从而导致一些副作用比如头晕、恶心甚至更严重的情况发生。鉴于上述原因,有必要检测通入笑气时,单位时间内,进入氧气管道的笑气量。3、微量气体流量计如何检漏笑气?我们先将笑气进气口通入一定的气体,然后关闭阀门。将氧气口与微量气体流量计的进气口通过气体管连接。观察单位时间内比如1个小时,从氧气口泄露的气体量,如果超过一定的气体体积,则评判泄漏量超标,仪器存在风险。低于一定的气体体积,则评判泄漏量在允许范围内,仪器是安全的。RTK自主研发生产的微量气体流量计(SGMC)非常适合笑气镇痛系统检漏。具有如下特点:(1)仪器显示屏直接示数,选配软件自动实时记录、存储数据;(2)直接测量气体体积,无需换算;(3)测量精度0.03 mL或者0.1 mL可选,在常压下测试,无需启动压力;(4)操作简便,只需要气体管连接即可进行测试;(5)通道数可以串联拓展,特别适合多组平行试验,提高测试效率。洛克泰克仪器股份公司(RTK公司)是国家高新技术企业,基于自主知识产权研发生产了超微量气体流量计SGMC、化学催化产氢系统等产品,均已发表相关SCI研究论文,欢迎大家垂询!
  • 海洋水下溶解气体监测系统
    海洋水下溶解气体监测系统海洋溶解气体是海洋生态系统中重要的能量来源,在海洋物质能量循环中占据着重要地位,溶解气体监测系统可以帮助研究人员测量海洋、江河、湖水中3000米深度的溶解气体和同位素。海洋是CH4和N2O重要的排放源,水体中溶解的CO2、CH4和N2O等气体传统方法很难实现线测量,WSD2000CO2/CH4水汽分离器,采用动态顶空平衡方法是基于以一定速度连续通过平衡器的海水喷淋不断循环的顶空气并与其达到平衡而测定CO2、CH4和N2O等气体含量的装置。该设备响应迅速,可实现走航模式快速、准确分离目标气体。采用动态顶空平衡原理,基于以一定速度连续通过平衡器的海水喷淋不断循环的顶空气并与其达到平衡而测定CO2、CH4和N2O等气体含量的装置。CO2数据是沿用国际海洋学调查过程中测定pCO2通常的做法-连续流动式水-气平衡法获得【1 Guide to Best Pratices for Ocean CO2 Measurements】。测量指标海洋中溶解的二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)、氨气(NH3)等浓度,CO2中δ 13C、δ 14C、CH4中δ 13C、N2O中δ 15N及δ 18O值。
  • 温室气体在线监测系统
    ZYGHG201型温室气体监测系统采用先进的光腔衰荡技术(CRDS),利用自主知识产权的光学测量结构及数据处理算法,测量光程可达30km,满足大气痕量气体的监测要求,可实现CO2,CH4,H20的连续在线监测。系统符合世界气象组织(WMO)和其他国际网络,助力“碳达峰碳中和”早日实现。
  • 校准建筑节能监测用热流计的参考装置
    本文摘自意大利国家计量院ISTITUTO NAZIONALE DI RICERCA METROLOGICA(INRiM)在2013年发布的年度报告。文中主要介绍了校准建筑节能监测用热流计的参考装置,以及装置的设计和热流计校准过程。通过此热流计校准的参考装置以实现热流计校准的规范性和标准化。
  • 温室气体观测中的数据合规验证
    随着“双碳”目标的确立,生态环境部出具的“碳监测评估试点工作方案”里明确规定了两次校准间漂移的最大容差度,与WMO的网络兼容性与拓展兼容性目标在数值上是一致的。无论全国性还是区域性温室气体监测组网,都涉及到高精度分析仪的数据合规验证。欧洲综合碳观测系统ICOS要求所有台站加入前必须进行数据合规验证(Labeling Process),Camille Yver-Kwok就职于LSCE-IPSL/ICOS ATC大气中心,于2020年发表的“Evaluation and optimization of ICOS atmosphere station data as part of the labeling process”,就ICOS 23个台站的数据合规验证进行了详细讨论,作为方法参考,希望对我国温室气体监测数据合规验证工作有所帮助。
  • 氦质谱检漏仪 CL 004 标准漏孔检漏仪校准应用
    CL 004 标准校准漏孔外形为长方体,可以方便放置在任意平面上,其功能用于校准或检测氦质谱检漏仪吸枪模式。
  • 【解决方案】非甲烷总烃分析—自动气体进样器
    本方法参考HJ 38-2017《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》、HJ 604-2017《环境空气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》、HJ 168-2020《环境监测分析方法标准制订技术导则》的测试方法,使用中仪宇盛AS-30G自动气体进样器、GA-6D动态稀释仪,检测结果符合相应的标准要求。
  • 土壤热流变送器(热流计)的校准
    从理论上来说,土壤热流变送器的校准,会受到变送器和校准介质之间导热系数和变送器几何形状的影响。本文对这些影响进行了研究,采用两种具有不同导热系数材质和几何形状的商品化土壤热流变送器,比较了这些参数对校准参数的影响。开发出一种理论校准公式并对此公式进行了评价。对两种类型共14个热流变送器采用稳态防护热板法在实验室内进行试验,所提供的热流密度变化范围为40~200W/m2,校准介质为导热系数变化范围为0.3~3W/mK的干燥饱和沙。其中一种热流变送器的平均校准因子要低于厂商数据12%,而理论预测值则更低于厂商数据26%~36%。其它类型热流变送器的平均校准因子则高于厂商数据7%,而理论预测值高于常数数据1%~11%。计算后的几何因子对圆形变送器为1.07,对正方形变送器为0.89,这些几何因子都小于理论值1.70,但与以往文献中报道的试验值范围1.02~1.31相近。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制