当前位置: 仪器信息网 > 行业主题 > >

全新生物流体培养系统

仪器信息网全新生物流体培养系统专题为您提供2024年最新全新生物流体培养系统价格报价、厂家品牌的相关信息, 包括全新生物流体培养系统参数、型号等,不管是国产,还是进口品牌的全新生物流体培养系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全新生物流体培养系统相关的耗材配件、试剂标物,还有全新生物流体培养系统相关的最新资讯、资料,以及全新生物流体培养系统相关的解决方案。

全新生物流体培养系统相关的仪器

  • Thermo Scientific™ Heracell™ VIOS 160i 全新蜂巢式CO2培养箱,把精湛的箱体设计和细胞培养室创新专利设计相结合:既方便移动样品,又提供更好的保护,利于提高敏感细胞的培养效率,例如在尖端应用中的干细胞和原代细胞的培养。对于经常打开箱体操作或者共用培养箱的研究者而言,细胞培养室大有帮助,它有效地凸显 Heracell VIOS 160i CO2 培养箱的先进设计理念。蜂巢式CO2 培养箱:把精湛的箱体设计和 Cell Locker™ 细胞培养室创新专利设计相结合的 CO 2 培养箱防止交叉污染:通过 Cell Locker™ 细胞培养室,将培养箱分割成留个独立的空间保持环境稳定:通过气密性小门和 CellLocker™ 细胞培养室减少环境波动便于实验室管理:通过 Cell Locker™ 细胞培养室,做到个体化管理亮点THRIVE气流系统,所有参数10分钟内的快速回复,保证细胞更长时间处于需要的培养条件可验证:温度稳定性,采用27点,每点多次重复的检测更大的HEPA,可达ISO-5级气流循环系统180℃ 干热灭 菌,独立第三方验证可选铜内胆箱 体、三气模块专利集成冷点捕捉多余的冷凝水到水库中,最大湿度同时无冷凝水升级IR180探头技术,在线灭菌,使用寿命长iCAN 智能记录操作系统,中文显示
    留言咨询
  • 品牌:IBIDI货号:10902 10903 10904 10905保修期:一年现货状态:现货供应供应商:广州科适特科学仪器有限公司规格:详询020-38102730 在生物体内,许多类型的粘附细胞都暴露于由生物流体系统(如血管)流动摩擦所产生的剪应力(shear stress)中。这些机械力对细胞的生理反应和粘附性能有很大的影响。因此,在体外如果能给细胞一个持续的剪应力,就可以模拟生物体内的流体环境,使得体外的细胞生物学研究更加接近体内的生理情况。使用ibidi独创的数控灌流细胞培养泵系统可以完美模拟血管内流体环境下细胞真实的生物学行为。该系统在最近的[第15届中国微循环科学大会]上得到与会专家的一致好评。 ibidi泵系统是德国ibidi公司专为流体条件下的活细胞培养设计的泵系统,配合ibidi的通道载玻片可以模拟体内血液流动条件下的细胞显微成像,可模拟连续定向流动,振荡流动,脉冲式流动的物理条件。可以和培养箱一起使用,也可以单独使用。适合倒置显微镜实时观察,操作界面简单直观。 ibidi产品概况图: 模拟血管流动状态下的生物流体培养系统o很好的模拟各种生理情况,包括连续单向流,振荡流和脉冲流o与各种显微镜和所有的细胞培养箱兼容o完全无菌的密闭循环装置o最小的机械压力和最少的细胞培养液用量o附带泵控制软件精确控制流体参数 多种细胞生物学应用o恒定或可变剪应力下的长时间细胞培养 (例如血管内皮细胞,肾细胞,或生物膜)o剪应力环境下活细胞成像和免疫荧光染色o模拟动脉,静脉,毛细管中的剪应力环o还可用于悬浮细胞的滚动和粘附实验o截流试验o间质流中的3D细胞培养o电子细胞基质阻抗判断(ECIS)流体试验o研究在灌注实验条件下内皮细胞和悬浮细胞的相互作用 技术特征o每个ibidi泵可同时驱动四个并行的流体装置o流体特性:所有的流体类型都是层流式o适用于所有具鲁尔接口的u-Slides系列o同样适用于自制的流式小室o与所有主流细胞培养箱兼容o通过软件控制流速和剪向压力 应用参数o模拟静脉和小动脉的单向流动o模拟血管紊流条件下的来回摆动o模拟动脉条件下的脉冲流o流速:0.03-35ml/mino剪应力:0.3 – 150 dyn/cm^2o工作体积:2.5 ~ 12 ml 产品优势o流体装置可以被放进培养箱,而ibidi泵在培养箱外o流体装置和ibidi泵分开离后均处于无菌状态,便于实验准备和活细胞显微镜成像观察o和所有的培养箱兼容o减少对对悬浮细胞例如单核细胞的机械力o单向流模式使用试剂量小o流体组件和鲁尔接头易操作 泵控制软件用电脑系统来完全控制ibidi泵系统,直观的界面简化了流体试验的自动流体控制设置,并可自动计算流速,剪切率和剪应力。 ibidi流体剪切力系统组成部件:1. ibidi泵2.流体单元(单联) (四联)3.灌流管4.泵控制软件(安装在配套电脑里)
    留言咨询
  • 货号产品名称规格10902-Sibidi流体剪切力系统1套10902-TIbidi二联流体剪切力系统1套10906-Qibidi四联流体剪切力系统1套10903流体单元1台10904四联流体单元 1台10905ibidi泵1台10964灌流管:黄绿色,50cm管长,1.6mm内径,10ml储液管(另有多种规格,欢迎详询)3组/包另配笔记本1台 在生物体内,许多类型的粘附细胞都暴露于由生物流体系统(如血管)流动摩擦所产生的剪应力(shear stress)中。这些机械力对细胞的生理反应和粘附性能有很大的影响。因此,在体外如果能给细胞一个持续的剪应力,就可以模拟生物体内的流体环境,使得体外的细胞生物学研究更加接近体内的生理情况。 使用ibidi创新的全新生物流体培养系统可以模拟血管内流体环境下细胞真实的生物学行为。该系统在[第15届中国微循环科学大会]上得到好评。 ibidi泵系统是德国ibidi公司为流体条件下的活细胞培养设计的泵系统,配合ibidi的通道载玻片可以模拟体内血液流动条件下的细胞显微成像,可模拟连续定向流动,振荡流动,脉冲式流动的物理条件。可以和培养箱一起使用,也可以单独使用。适合倒置显微镜实时观察,操作界面简单直观。 ibidi生物流体培养系统概况图: 模拟血管流动状态下的生物流体培养系统 o很好的模拟各种生理情况,包括连续单向流,振荡流和脉冲流o与各种显微镜和所有的细胞培养箱兼容o完全无菌的密闭循环装置o较小的机械压力和较少的细胞培养液用量o附带泵控制软件控制流体参数多种细胞生物学应用o恒定或可变剪应力下的长时间细胞培养 (例如血管内皮细胞,肾细胞,或生物膜)o剪应力环境下活细胞成像和免疫荧光染色o模拟动脉,静脉,毛细管中的剪应力环o还可用于悬浮细胞的滚动和粘附实验o截流试验o间质流中的3D细胞培养o电子细胞基质阻抗判断(ECIS)流体试验o研究在灌注实验条件下内皮细胞和悬浮细胞的相互作用 技术特征o每个ibidi泵可同时驱动四个并行的流体装置o流体特性:所有的流体类型都是层流式o适用于所有具鲁尔接口的u-Slides系列o同样适用于自制的流式小室o与所有主流细胞培养箱兼容o通过软件控制流速和剪向压力应用参数 o模拟静脉和小动脉的单向流动o模拟血管紊流条件下的来回摆动o模拟动脉条件下的脉冲流o流速:0.03-35ml/mino剪应力:0.3 – 150 dyn/cm^2o工作体积:2.5 ~ 12 ml 产品优势o流体装置可以被放进培养箱,而ibidi泵在培养箱外o流体装置和ibidi泵分开离后均处于无菌状态,便于实验准备和活细胞显微镜成像观察o和所有的培养箱兼容o减少对对悬浮细胞例如单核细胞的机械力o单向流模式使用试剂量小o流体组件和鲁尔接头易操作泵控制软件 用电脑系统来完全控制ibidi泵系统,直观的界面简化了流体试验的自动流体控制设置,并可自动计算流速,剪切率和剪应力。ibidi流体剪切力系统组成部件:1. ibidi泵 2.流体单元 (单联) (四联)3.灌流管4.泵控制软件(安装在配套电脑里)
    留言咨询
  • 生物流体灌流系统是用来体外检测胰岛细胞对糖分的响应能力。其可以多通道同时检测一组胰岛细胞在一定的温度条件下对不同浓度的葡萄糖的响应。其原理是 将灌注液通过蠕动泵流经存有胰岛细胞的小室中,流出液会自动收集在96孔板内,用于进一步的检测。整个过程都是全自动的。生物流体灌流系统可以用于体外检测胰岛细胞。胰岛细胞在胰腺中是天然的葡萄糖感应器。我们所开发的灌流系统使得胰岛细胞群在一个温度可控的环境下,孵育在不同溶液中(如各种浓度葡萄糖溶液或者促分泌素)。灌流液在蠕动泵压力下流过存储有胰岛的小室,收集在96孔板里,用于进一步分析。96孔板会根据所使用的灌流小室的数量和当前的采样速率自动替换。96孔板在采样过程中通过外部的水或者酒精循环来保持在一个理想的温度。生物流体灌流系统一次性可以容纳1-12个灌流小室,它可以作为评估胰岛活力的一个有力工具。目前,该生物流体灌流系统已经广泛的应用于研究细胞对于灌注液体的刺激而表现的分泌能力。其已经广泛用于药物开发,细胞功能研究等各个领域。 特色: ? 触屏交互界面 ? 兼容96孔板(常规或者深孔) ? 12通道精确蠕动泵 ? 精确的气体温控箱体 ? 96孔板冷却系统 ? 自动化液体处理系统 ? 个性化操作方式运行 ? 具有全自动或者半自动版本
    留言咨询
  • 流体剪切力刺激内皮细胞与平滑肌细胞共培养系统 型号:NK110G流体剪切力刺激内皮细胞与平滑肌细胞共培养系统流体剪切力刺激内皮细胞与平滑肌细胞共培养系统产品简介:这是一款比较综合性的产品,可以满足用户在一定范围内的长久使用。这款产品最初主要用于实现内皮细胞流体剪切力刺激培养,随着使用的不断深入,产品已经被不同的实验需求所使用。比方内皮细胞与平滑肌细胞的动态共培养、比方成骨细胞在流体剪切力刺激下的作用,各类实验客户参考用途举例,同时用户也可以根据自身需求来进行各种实验设计,模拟真实的在体环境,我们知道血管遍布周身对于各种细胞所处的微环境中由于血管血液的输送从而发生改变,这样的改变是脱离不开血管及毛细血管的参与,所以脱离血管及内皮细胞去研究其它细胞、组织、器官都是不完整的。共培养自然不是简单的实现了2种或者多种细胞的混合培养,而是对内皮细胞加载流体剪切力,实现模拟内皮细胞承受血流状态下的力学刺激,同时内皮细胞及其分泌物对与其共同培养的细胞产生相互作用,从而实现多细胞模拟人体环境下的共培养。细胞共培养系统也可以根据不同的实验需求,用于多种细胞在仿生环境下相互影响的研究实验,可以实现在不同比例的细胞数量下两种细胞相互影响的结果,更多的实验可以根据用户自身需求进行相应的调整。流体剪切力刺激内皮细胞与平滑肌细胞共培养系统参数说明1. 流体恒剪切力范围:0-20dyne/cm2 2. 流体剪切力换向周期:1s 3. 细胞培养面积:3*4平方厘米;4. 实验部分可高温灭菌:120摄氏度,60分钟,可重复使用;5. 培养小室规格:400平方毫米;6. 培养液用量:30-100ml 7. 加载时间以分钟为最小单位设定;8. 可输出报表、截图.Naturethink是国内较早从事仿生细胞培养仪器研发与销售的企业,多年的技术沉淀,使得我们在人体仿生环境培养领域拥有独立自主的研发能力,并拥有核心技术,同时我们为用户提供仪器设备的改进、设计及研发服务。如果您对此感兴趣,请联系我们了解更多详情。
    留言咨询
  • ibidi流体剪切力系统 400-860-5168转3825
    在生物体内,许多类型的粘附细胞都暴露于由生物流体系统(如血管)流动摩擦所产生的剪应力(shear stress)中。这些机械力对细胞的生理反应和粘附性能有很大的影响。因此,在体外如果能给细胞一个持续的剪应力,就可以模拟生物体内的流体环境,使得体外的细胞生物学研究更加接近体内的生理情况。 使用ibidi独创的数控灌流细胞培养泵系统可以完美模拟血管内流体环境下细胞真实的生物学行为。该系统在最近的[第15届中国微循环科学大会]上得到与会专家的一致好评。 ibidi泵系统是德国ibidi公司专为流体条件下的活细胞培养设计的泵系统,配合ibidi的通道载玻片可以模拟体内血液流动条件下的细胞显微成像,可模拟连续定向流动,振荡流动,脉冲式流动的物理条件。可以和培养箱一起使用,也可以单独使用。适合倒置显微镜实时观察,操作界面简单直观。 ibidi产品概况图: 模拟血管流动状态下的细胞培养系统o很好的模拟各种生理情况,包括连续单向流,振荡流和脉冲流o与各种显微镜和所有的细胞培养箱兼容o完全无菌的密闭循环装置o最小的机械压力和最少的细胞培养液用量o附带泵控制软件精确控制流体参数多种细胞生物学应用o恒定或可变剪应力下的长时间细胞培养 (例如血管内皮细胞,肾细胞,或生物膜)o剪应力环境下活细胞成像和免疫荧光染色o模拟动脉,静脉,毛细管中的剪应力环o还可用于悬浮细胞的滚动和粘附实验o截流试验o间质流中的3D细胞培养o电子细胞基质阻抗判断(ECIS)流体试验o研究在灌注实验条件下内皮细胞和悬浮细胞的相互作用 技术特征o每个ibidi泵可同时驱动四个并行的流体装置o流体特性:所有的流体类型都是层流式o适用于所有具鲁尔接口的u-Slides系列o同样适用于自制的流式小室o与所有主流细胞培养箱兼容o通过软件控制流速和剪向压力应用参数 o模拟静脉和小动脉的单向流动o模拟血管紊流条件下的来回摆动o模拟动脉条件下的脉冲流o流速:0.03-35ml/mino剪应力:0.3 – 150 dyn/cm^2o工作体积:2.5 ~ 12 ml产品优势o流体装置可以被放进培养箱,而ibidi泵在培养箱外o流体装置和ibidi泵分开离后均处于无菌状态,便于实验准备和活细胞显微镜成像观察o和所有的培养箱兼容o减少对对悬浮细胞例如单核细胞的机械力o单向流模式使用试剂量小o流体组件和鲁尔接头易操作泵控制软件 用电脑系统来完全控制ibidi泵系统,直观的界面简化了流体试验的自动流体控制设置,并可自动计算流速,剪切率和剪应力。ibidi流体剪切力系统组成部件:1. ibidi泵2.流体单元 (单联) (四联)3.灌流管4.泵控制软件(安装在配套电脑里)货号产品名称规格10902-Nibidi流体剪切力系统1套10906-Nibidi四联流体剪切力系统1套10903流体单元1台10904四联流体单元1台10905ibidi泵1台10964灌流管:黄绿色,50cm管长,1.6mm内径,10ml储液管(另有多种规格,欢迎详询)3组/包另配笔记本1台
    留言咨询
  • 在生物体内,许多类型的粘附细胞都暴露于由生物流体系统(如血管)流动摩擦所产生的剪应力(shear stress)中。这些机械力对细胞的生理反应和粘附性能有很大的影响。因此,在体外如果能给细胞一个持续的剪应力,就可以模拟生物体内的流体环境,使得体外的细胞生物学研究接近体内的生理情况。使用ibidi独创的数控灌流细胞培养泵系统可以完美模拟血管内流体环境下细胞真实的生物学行为。该系统在[第15届中国微循环科学大会]上得到与会专家的一致好评。 ibidi泵系统是德国ibidi公司专为流体条件下的活细胞培养设计的泵系统,配合ibidi的通道载玻片可以模拟体内血液流动条件下的细胞显微成像,可模拟连续定向流动,振荡流动,脉冲式流动的物理条件。可以和培养箱一起使用,也可以单独使用。适合倒置显微镜实时观察,操作界面简单直观。 模拟血管流动状态下的细胞培养系统o很好的模拟各种生理情况,包括连续单向流,振荡流和脉冲流o与各种显微镜和所有的细胞培养箱兼容o完全无菌的密闭循环装置o较小的机械压力和较少的细胞培养液用量o附带泵控制软件精确控制流体参数 多种细胞生物学应用o恒定或可变剪应力下的长时间细胞培养 (例如血管内皮细胞,肾细胞,或生物膜)o剪应力环境下活细胞成像和免疫荧光染色o模拟动脉,静脉,毛细管中的剪应力环o还可用于悬浮细胞的滚动和粘附实验o截流试验o间质流中的3D细胞培养o电子细胞基质阻抗判断(ECIS)流体试验 o研究在灌注实验条件下内皮细胞和悬浮细胞的相互作用技术特征o每个ibidi泵可同时驱动四个并行的流体装置o流体特性:所有的流体类型都是层流式o适用于所有具鲁尔接口的u-Slides系列o同样适用于自制的流式小室o与所有主流细胞培养箱兼容o通过软件控制流速和剪向压力应用参数 o模拟静脉和小动脉的单向流动o模拟血管紊流条件下的来回摆动o模拟动脉条件下的脉冲流o流速:0.03-35ml/mino剪应力:0.3 – 150 dyn/cm^2o工作体积:2.5 ~ 12 ml产品优势 o流体装置可以被放进培养箱,而ibidi泵在培养箱外o流体装置和ibidi泵分开离后均处于无菌状态,便于实验准备和活细胞显微镜成像观察o和所有的培养箱兼容o减少对对悬浮细胞例如单核细胞的机械力o单向流模式使用试剂量小o流体组件和鲁尔接头易操作泵控制软件 用电脑系统来完全控制ibidi泵系统,直观的界面简化了流体试验的自动流体控制设置,并可自动计算流速,剪切率和剪应力。产品实拍:
    留言咨询
  • VenaFluxTM 微流体细胞工作站目前非常受客户欢迎的一套系统,提供在活细胞水平上微流体活性筛选的完整解决方案。操作简单,分析效率高,可大大提高药品的开发和筛选效率。VenaFlux系统是能进行连续流体细胞分析的半自动化微流体分析系统。配合使用Cellix生物芯片和细胞分析软件,可检测粘附到微毛细管上的细胞,微毛细管中覆盖抗体或者培养有内皮细胞,模拟生理流动产生一定的剪切力。VenaFlux系统操作简单,可减少耗时耗钱的动物模型实验,获得特异性强,准确性高,重复性好的结果。VenaFlux微流体细胞分析仪产品特点广泛使用于各种细胞悬浮液;生物芯片可选择用光学显微镜做细节研究;微流体泵可方便的控制流体剪切力在0.05-200 Dyne/cm2范围内;在分析中可调整剪切力;流体速度可控制在pL/min到mL/min;可做nL到mL 的样品分析;使用DucoCell 分析软件(DucoCell Analysis Software),可简单快速的调节好显微镜的各项参数;统计分析生成的图表(如:细胞粘附性VS.剪切力)可方便的导入Excel文档;电子机械臂移动生物芯片,清洗细微组件和稀释细胞样品;VenaFluxTM 系统的软件同步调节泵,翻译阶段筛选,图像采集,样品移动和流体控制,各项操作界面均是用户友好型,系统先进又易于操作;主要配置方案:一、Partial Platform -STARTER-1.0: 1、Mirus Nanopump 1.0 2、1 pack VenaEC biochips 3、1 pack Vena8 biochips 4、Frame for VenaEC biochips 5、DucoCell Software ver 1.1 二、Microfluidic SP1.0 (Basic full Package)-MICROSP-1.0: 1、arl Zeiss Axiovert 40 microscope, CCD Deltapix DP200 camera, Dell PC, Microscope cage incubator 2、Mirus Nanopump 1.0 inc. VenaFluxAssay software 3、1 pack Vena8 biochips 4、 1 pack VenaEC biochips 5、DucoCell Software ver 1.1 三、CMicrofluidic SP1.1-MICROSP-1.1: 1、 Carl Zeiss Axiovert 40 CFL microscope, CCD Deltapix DP450 camera, Dell PC, Microscope cage incubator, Fluorescent and brightfield shutters , 2、Mirus Nanopump 1.0 inc. VenaFluxAssay software 3、1 pack Vena8 biochips 4、1 pack VenaEC biochips 5、DucoCell Software ver 1.1 四、Microfluidic SP1.2-MICROSP-1.2: 1、 Carl Zeiss Axiovert 40 CFL microscope, CCD Deltapix DP450 camera, Dell PC, Microscope cage incubator, Fluorescent and brightfield shutters,motorisedstage 2、Mirus Nanopump 1.0 inc. VenaFluxAssay software 3、1 pack VenaEC biochips 4、1 pack Vena8 biochips 5、DucoCell Software ver 1.1 五、VenaFlux-VENAFLUX-1.0: 1、Carl Zeiss Axiovert 40 CFL microscope, CCD Deltapix DP450 camera, Dell PC, Microscope cage incubator, Fluorescent and brightfield shutters 2、VenaFluxAssay software plus automatic image capture 3、Robotic sample handler 4、Mirus Nanopump 1.1 inc. 8-way Manifold 5、1 pack VenaEC biochips 6、1 pack Vena8 biochips 7、Frame for VenaEC biochips 8、DucoCell Software ver 1.1主要技术参数:Microscope Axiovert 40:Contrast option: Brightfield, Phase, Varel.Objectives: 10x LD A-Plan, 20x LD A-Plan, 32x CP-Achromat, 40x LD A-PlanEyepieces: E-PL 10x/20 Br., 10x/20 Br. foc.Stage: Vena8 biochip compatible stage holder, Eppendorf tubes holder.Mirus 1.0 NanopumpSpecifications: Shear Stress Range of 0.05–20 dyne/cm2, Volumetric Flow Rates 100nL–20μL/minute (100μL syringe), Sample Volume Increments Freely adjustable Linear Velocity Range of 10 μm/s to 10 cm/s Flow Direction Reversible Sample Volume Aspiration Accuracy ±1% Shear Stress Accuracy ±0.5% Sample Volume Aspiration Precision 1%.Multichannel: 16-Way manifold allowing individual addressing microchannels of Vena8 biochip.Microscope Cage incubator:Capabilities: Temperature control ± 0.10C, CO2 and humidity module.Options: Temperature monitoring software module, black panels for use in fluorescent microscopy.Deltapix DP 200 USB 2.0 cameraSpecifications: 1.3 Mega Pixels (1,280 x 1,024), Color CDD, 1/2" format, Pixel 5.2 μm x 5.2 μm, Resolution: 15 FPS @ 1,280 x 1,024 pixels 24 FPS @ 1,204 x 768 pixels 37 FPS @ 800 x 600 pixels 60 FPS @ 640 x 480 pixels. Dynamic Range 60 dB.Dell Optiplex 745 PC computerConfiguration: Intel Core2 processor 1.86 GHz 2GB RAM ATI Radeon X1300PRO Objective Imaging stage control hardware 19” LCD monitor. Windows XP Professional SP2 DeltaPix Viewer Software FlowAssay and DucoCell software preinstalled.FlowAssay Software.Capabilities: Execution of preset protocols. Intuitive stepwise protocol interface with steps hierarchy and status control.DucoCell softwareSpecifications: Automatic Counting and Detection Morphological parameters analyzed automatically(Area, diameter, form-factor, ellipticity, eccentricity, orientation, perimeter, asymmetry, cell centroid coordinates, elliptical axis) Cell sorting and filtering Ability to analyze sub-populations based on inclusion/exclusion of morphological parameters. Data may be exported to Excel spreadsheet incorporating automatic graph generation (e.g. % cell adhesion vs. shear stress). File Formats analyzed*.jpg, *.jpeg, *.tif, *.tiff, *.bmp, *.gif, *.png.Vena8 biochips pack of 10Specifications: Minimum Sample Volume 3 μL Maximum Sample Volume 100 μL Shear Stress Range of 0.05– 20 dyne/cm2, steps of 0.05dyne/cm2. Number of channels per biochip is 8 Volume of each channel is 0.8μL. Dead volume at input port is 0.1 μL. Vena8 biochip dimensions are 400 μm (W) x 100 μm (D) x 20 mm(L).欢迎来电咨询: 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • BC100物流体积测量仪BoxCubic体积重量测量仪-上海茂宏电子科技有限公司 可以智能测量长宽高外形尺寸的仪器我们俗称为体积重量测量仪,在国外该类仪器已经有40年之久的使用经验。因为其售价非常高昂,所以早些年国内的用户基本上就是跨国企业或者国内行业里的大佬企业,但这些年该设备国内的认识度也是越发的提高,国内行业需求也逐步提升。 国外设备原理一般采用的都是超声波、红外光栅、激光等传统传感器,其主要优点不但测量准确,而且数值稳定误差小,经过40年的不断升级完善,现如今已经属于非常成熟的产品了。这些年国内也涌现出一大批供应商,但是在测量误差精度和性能稳定性方面以及受环境色彩的局限性和进口同类仪器相比还是存在一定的差距。 我司现推荐一款同样采用超声波传感技术的国产体积测量设备,其可以快速准确的测量出纸箱等规则物体的外形尺寸,并且能将误差控制在1-2mm内,精度及性能参照进口同类仪器,但售价却是非常的国产化。 我司产品经理自2008年从事体积重量测量仪领域已有10年多的从业经验,有6年进口体积测量仪的销售经验,经历了当进口设备首次登入国内参加行业内展会上的冷清无人问津,再到这两年一步步走到现如今的认知程度,对不同行业不同市场及不同客户使用案例还是比较了解。如有兴趣笔者也很乐意分享经典客户案例及使用场景介绍供大家学习参考。 传统企业往往使用普通台秤或者平台秤对货物的重量进行计量,而需要测量体积的场合则一般使用皮尺等工具手工测量。在传统的方式下,货物的计量过程由手工完成,效率比较低下 计量结果也很容易引起贸易双方的争议 在将手工所测得的数据人工输入系统的过程中,也难免会发生因人为因素而产生的数据偏差.从而对之后一系列的货物配载,运费结算等等多个环节引起不必要的麻烦。  自20世纪90年代以来,在世界范围内,以UPS,FEDEX,DHL,TNT为代表的国际快递公司率先开始采用先进的体积测量系统来对托运货物进行快速准确的计量,并实时传送至其物流数据库中。售前:1.、按照客户要求真实为客户报价,客户有特殊要求的及时记录反馈2、签订规范的产品订购合同,明确责任等相关事宜;3、提供3天包换,一年保修,终身维修服务,发货前经过严格的检验,保证您签收的产品无质量问题;售后:1. 维护人员告知客户如何进行产品保养的常识。 2.所有货物安装调试完毕后,由客户查看、验收后方可离开现场。为了您的使用,我们不懈努力 上海茂宏电子科技有限公司,欢迎选购!BC100物流体积测量仪
    留言咨询
  • 智能微生物培养系统(厌氧、微需氧培养专用)DQ1000型产品简介:Petrisphere系统是智能的微生物厌氧培养系统,可随具体培养需求制造所需的气体环境。仪器适用于厌氧菌培养、微好氧菌培养、细胞培养及用户自定义环境条件(不同O2浓度)的微生物培养,是实验室开展以上类型工作的最佳设备! Petrisphere型智能微生物厌氧培养系统: 一台Petrisphere系统能满足实验室开展不同温度/不同浓度的微需氧/厌氧微生物培养,耗气量仅为传统工作站的10% 。DQ1000型:不同温度微需氧/厌氧微生物培养;氧气浓度可定制。技术简介:1. 系统功能:1.1 用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%)和特殊氧气浓度(0.2%-16%)比例的厌氧和微需氧环境,适用于厌氧菌、微需氧菌和细胞培养等。1.2 用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。2. 技术参数:2.1 开机自检:开机检测当地大气压,获得仪器初始值;方便后续软件计算;2.2 仪器原理:通过真空抽排置换原理,精确控制气体压力大小,从而达到控制培养罐氧气浓度的目的;2.3 大屏幕操作:10寸彩色显示屏,不同的功能显示不同的颜色,实时显示当地气压,触摸屏操作,无需物理按键;2.4 达成环境时间:最快达到微需氧条件小于100秒,最快达到厌氧条件小于180秒;2.5 傻瓜式操作:仪器可一键生成厌氧、微需氧和弯曲菌培养浓度,无需另外设置参数;2.6 多罐模式:仪器配置多通道,仪器最大可扩展至4个通道,可同时对多个培养罐进行控制,提高仪器使用效率;2.7 过程控制:仪器每次生成所需的气体环境都会对培养罐做五项检测:气源压力、管路连接、罐体密封性、罐盖密封性和催化剂活性检测,保证培养罐的密封性;2.8 仪器分辨率:氧浓度设置范围0%-16%,最小可设置0.2%氧浓度,精确控制培养所需浓度;2.9 气源压力调节:调节减压阀时仪器实时显示气源压力,无需观察减压阀上的指针;2.10 气体消耗:达到微需氧气体消耗≤ 2 L/12平皿;达到厌氧气体消耗≤ 7L /12平皿;2.11 厌氧催化剂:配套厌氧催化剂,辅助仪器达到0%氧浓度;可重复使用,不产生化学废弃物;2.12 催化剂活性检测分级:催化剂活性检测可关闭和开启,开启时可对效果检测分为5级;2.13 培养罐体:系统配套多种培养罐,培养罐清澈透明方便观察,每只培养罐均可支持不同的培养应用。2.14 罐体规格:7种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、双罐培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌专用培养罐(单罐放置10块弯曲菌培养双孔培养皿及8支增菌管)、微生物鉴定专用培养罐(单罐放置6块酶标板/细胞培养板/鉴定条培养板)、志贺氏菌专用培养罐(单罐放置10只培养袋)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等2.15 内置打印机:仪器内置打印模块,可选择需要的打印信息,无需连接电脑打印;2.16 无线氧浓度监测:配置无线氧浓度监测装置,可实时监测培养过程中的氧浓度变化,还可监测温度、湿度等信息,信息可存储导出;传感器厚度:19mm,可放入超小型培养容器;(现场提供演示:测量传感器厚度,演示时必须同时具有:氧浓度、温度、湿度监测信息)2.17 仪器统升级:可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级;2.18废气处理:内置废气处理装置,可自动处理排出的有害气体,避免废气对实验室造成污染。 2.19质控程序:系统每次生成所需的气体环境都会对培养罐做气源压力、管路连接、罐体密封、罐盖密封和催化剂活性五项检测,保证培养时培养罐的密封性。2.20调节精度:氧浓度设置范围0%-16%,设置数值≤0.2%递进,精确控制培养所需浓度。3. 工作环境:3.1 环境温度:0~40℃;3.2 相对湿度:≤85%;3.3 功率:420W;3.4 电源:交流 220V±22V,50-60HZ;3.5 重量:20kg3.6 外形尺寸:L*W*H:360*315*410mm系统配件: 培养罐 无线氧浓度监测系统
    留言咨询
  • 全新贴壁细胞培养系统CellScrew® 低碳,可持续的可规模化的全新贴壁细胞培养系统产品特点:1、特殊结构提供超大细胞培养表面积;2、广阔的规模化培养扩展空间;3、设计紧凑,操作方便;4、巨大的自动化潜力;5、通过阿基米德螺旋实现出色的混合和气体交换效果;6、相比传统多层培养瓶更低碳,可持续;产品优势:大生长空间,低剪切力混合。CellScrew® 是一种用于贴壁细胞大规模扩增细胞培养系统。 通过旋转CellScrew® 培养瓶,培养基和气体通过阿基米德螺旋传输,为细胞提供舒适的生长环境。CellScrew® 特殊同心圆柱结构带来了极大的细胞生长空间。 通过TC处理,CellScrew® 的内表面非常适合细胞附着和生长。CellScrew® 紧凑的外形设计便于操作,并大量节省培养箱空间。低碳,可持续的细胞培养系统由植物基PLA(聚乳酸)制成。特殊的制造工艺使得我们的CellScrew® 培养瓶用更少的原材料提供更多的贴壁细 胞培养表面积。减少90%的低碳,可持续的细胞培养系统由植物基PLA(聚乳酸)制成塑料浪费!降低细胞生产成本。CellScrew® 超大的贴壁细胞培养表面积,培养工艺过程强化,以及易于操作的特点可以降低人力成 本及生产空间需求。缩短产品上市时间。CellScrew® 可以覆盖从实验室到生产的各种细胞培养规模,工艺放大时无需额外工作。减少环境影响。与传统的多层培养瓶相比,使用CellScrew® 培养瓶 ,您的CO2 排放量将减少90%以上。使用方法:
    留言咨询
  • 3D微流体人体器官模拟系统体外干细胞诱导分化培养系统产品特点:1.SEED种植 任何细胞都能轻松的种植在开放式的培养板上。 广泛的培养形式选择,包括商业植入物,器官切片,3D基质和凝胶,组 织特异性支架,无支架培养 容易定制或验证细胞/组织模型的加载系统包括MucilAir™ ,EpiSkin™ 和更 多其他系统2.CULTURE培养 可编程应用流体学。器官内流量可调,优化氧气,营养和机械力 可方便地优化各器官间的流速,以实现精确的平台药动学 ?媒介变化迅速 且容易实现 3.DOSE给药 介入生物制剂(肽、蛋白质)、小分子、激素等 ?基因编辑(CRISPR, Talen, ZFN) 引入免疫细胞(如细胞毒性T细胞、CAR-T细胞、NK细胞等)进行免疫分析和观察 无PDMS组件,很大限度减少非特定绑定干扰4.ANALYZE 分析 简单的(重复的)介质取样用于生物标志物分析(LC-MS, ELISA, multiplex) 可移动支架允许对微组织进行全方位的分析组学方法 组织模拟可用于成像,以可视化细胞形态、细胞迁移和蛋白标记物定位 应用领域生物工程学与3D细胞培养动物实验替代方案神经,代谢系统靶向药物研发个人化药物研发在培养皿中临床试验药物,烟草,化妆品,化学行业监管测试免疫
    留言咨询
  • 控制系统l 高配置控制系统,利于数据储存、分析l 具有通信接口(LIS系统衔接端口)支持多种实验室信息管理系统需要l 内置分析管理软件主机l A/B两个箱体。每个箱体60瓶位。合计120瓶位l 支持多台并机。满足各级医院选用l 信息显示屏,实时显示温度,阳性数量、阴性数量等信息l 高精度温控系统,使培养瓶温度恒定,利于细菌稳定生长l 每10分钟连续检测,连续震荡,报阳时间最短3小时分析管理软件l 系统采用比色原理,非侵入式检测,减少污染,保障结果准确l 三步骤操作:点击一扫描一放瓶l 三种科学判断结果换算模式,支持匿名瓶及延迟上机瓶检测l 三种报警方式:声、光、电l 中文界面,图型化,细菌生长曲线,试验结果报告清晰l 满足血培养状态及工作量数据统计分析BC120 自动化血培养系统信息由郑州安图生物工程股份有限公司为您提供,如您想了解更多关于BC120 自动化血培养系统报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • 三维细胞培养系统 400-860-5168转4543
    TissUse三维细胞培养系统TissUse三维细胞培养系统-人体器官培养-体外类器官-器官芯片-体外干细胞诱导分化三维细胞培养系统主要用途:三维细胞微循环控制类器官培养模拟,细胞组织毒理学测试,生物标记发现、神经,免疫,代谢系统靶向药物研发、癌症个人化药物开发、早期临床药代动力学数据提供,体外活体组织培养等。原理:流动泵体积脉冲流:多器官芯片泵腔内柔性薄膜与照连接管接入的压力或真空环境产生作用。通过微流控循环系统软件设定产生脉动体积流,模拟人体血液循环的真实情况。三维细胞培养系统参数:脉冲频率设置:+/-0.5H增量可调。温度-35°C至42°C范围可控。每次实验设置均可保留参数为下一次实验直接导入,不需要额外再进行设置。循环时间可调:真空可调,测试压力可调,温度可控。微循环方向可控,芯片内流体循环方向可设定为顺时针,逆时针反,方向调节。2-Organ-Chip:可同时培养模拟两种不同的器官模型。细胞或组织可以应用于标准Transwell插入物的两个培养空间中以模拟生物屏障,例如肠上皮,或基质支持物,以模拟实质器官(例如肝脏)的三维环境。4-Organ-Chip:可同时培养模拟多种不同的器官模型,例如肝脏,肠道,肾脏等,以确定受试药物的ADMET谱。不同微流体循环回路能够相互连接,实现多器官作用模拟培养,如可模拟肾脏近端小管的特殊空间情况和流动条件;膜生长的近端小管细胞的顶端和基底外侧灌注以及物质能够再吸收和分泌。细胞培养液开放,支持现行市面主流通用配方,用户可自行配置,支持无菌培养。
    留言咨询
  • 微流控活细胞灌注培养系统是在法国elveflow 设计的用于细胞实验中液体处理的系统,可实现多种培养基的灌注,可以在几种溶液之间进行稳定的培养基灌注和更换,在大流量范围内控制剪切应力,实现了细胞培养微流控流程的自动化,该系统包含过程中所需的所有组件和软件,简单易操作。Elveflo提供的该细胞培养灌注系统用于芯片实验室、流动细胞和灌注室的细胞培养,用以创建细胞培养过程中的连续流动并检测流量。适合需要不同细胞培养基更换的实验。计算机控制的阀门允许顺序注射(10种或者更多的不同培养基或试剂)。直观的ESI控制软件允许快速自动化复杂的实验工作流程。标准的细胞生物学装置使用一个通道泵将多个溶液注入微流控芯片。OB1流量控制器与流量传感器(MFS或BFS系列)结合使用,可实现非常稳定的培养基灌注。此外,使用可以在12种溶液之间切换的MUX distribution旋转阀可以轻松完成培养基的更换。ESI软件允许您微调流量参数,并使用直观的调度器自动化您的实验。微流控下动态细胞培养涉及的应用有:w 如何对微流控芯片中培养细胞进行染色以进行动态细胞培养?w 用于动态细胞培养的微流控芯片中的细胞自动接种w 用于动态细胞培养中微流控灌注w 微流控细胞培养中单方向培养基循环w 使用微流控阀的培养基再循环微流控细胞培养系统具有以下优势:w 控制压力和流速:适合剪切应力测定w 在培养基或药物之间进行快速切换:用于成像细胞对各种培养基或药物的反应w 稳定无脉冲流速:无更多的膨胀和细胞应力w 流量范围大:从10nL/min到5ml/minw 设计流动注射序列:创建复杂模式,如振荡流动以模拟生理条件w 循环回路:尤其适合长期分析w 瞬时停止流动:用于受控溶液暴露实验,如钙成像。我们的微流控灌注系统可适用于更复杂和先进的细胞和生物学实验,如使用20种溶液、选择正确的微流控芯片、去除气泡或具有多个芯片/入口等。更多信息请联系大连力迪流体控制技术有限公司1、计算机:使用软件控制全部参数,并通过创建注入序列自动化您的实验。2、压力和流量控制器:施加给定压力,以产生稳定无脉冲的流量。3、分流器:从控制器输出的单个压力分流成多个储液管的压力入口4、储液管:包含培养基或样品。有各种尺寸可供选择。5、旋转阀 Mux distribution:选择注入的液体。6、流量传感器:实时监控流量。7、灌注室或微流控芯片:Elveflow提供了一种用于细胞培养的微流控芯片。微流体的优势可以应用于许多细胞和生物灌注实验中。细胞生物学应用包的组件可以根据您的具体需要进行调整。标准的产品包括:w 压力和流量控制器(OB1)w 旋转阀(多路分配器)w 微流体流量传感器(MFS)w 储液管w 分压岐管w 管线和连接器w 软件和SDK库(C++、Python、MATLAB、LabVIEW)可选项包括:额外泵通道额外流量传感微流控芯片电脑显微镜和照相机活细胞灌注系统在生物相关应用领域:w 细胞限制试验w 动态单细胞筛选w 药物筛选w 细胞对培养基变化的反应w 活细胞成像w 细胞芯片培养w 毒性试验w 3D细胞培养w 生物反应器研究w 干细胞分析w 细胞诱捕
    留言咨询
  • 智能厌氧微需氧培养系统型号HD-AN400技术参数:1. 系统功能:1.1 用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%)和特殊氧气浓度(0.2%-18%)比例的厌氧和微需氧环境,适用于厌氧菌、微需氧菌和细胞培养等。1.2 用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。2. 技术参数:2.1 自检功能:开机检测当地气压,获得初始值;便于生成任意氧浓度时获得准确数值;2.2 系统原理:通过真空置换抽排原理,精确控制气体压力的变化,从而达到控制培养罐气体环境的目的;2.3 触屏操作:大尺寸显示屏,彩色显示,不同的功能显示不同的颜色,实时显示当地气压,触摸操作,无需按键;2.4 快速生成培养环境:快速达到厌氧和微需氧环境,任意大小培养罐达到环境时间不超过10分钟;2.5 一键生成:系统可一键生成厌氧、微需氧和弯曲菌培养浓度,无需设置参数;2.6 多罐模式:系统配置3通道,可同时对多个培养罐进行控制,避免生成过程中的等待和人工更换;2.7 多气源:可同时连接2个气源,同时调节氧气、二氧化碳和氮气浓度;2.8 废气处理:内置废气处理装置,可自动处理排出的有害气体,避免废气对实验室造成污染;2.9 质控程序:系统每次生成所需的气体环境都会对培养罐做气源压力、管路连接、罐体密封、罐盖密封和催化剂活性五项检测,保证培养时培养罐的密封性;2.10 调节精度:氧浓度设置范围0%-18%,设置数值0.2%递进,精确控制培养所需浓度;2.11 气源压力调节:调节减压阀时仪器实时显示气源压力,无需观察减压阀上的指针;2.12 气体消耗:达到微需氧气体消耗≤ 2L/12平皿;达到厌氧气体消耗≤ 7L /12平皿;2.13 厌氧催化剂:配套厌氧催化剂,辅助仪器达到0%氧浓度;可重复使用,不产生化学废弃物;2.14 催化剂活性检测分级:催化剂活性检测可按需求关闭和开启,开启时可对效果检测分5级;2.15 培养罐体:系统配套多种培养罐,培养罐清澈透明方便观察,每只培养罐均可支持不同的培养应用。2.16 罐体规格:≥7种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、双罐培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌专用培养罐(单罐放置8块弯曲菌培养双孔培养皿及8支增菌管)、微生物鉴定专用培养罐(单罐放置4块酶标板/细胞培养板/鉴定条培养板)、志贺氏菌专用培养罐(单罐放置10只培养袋)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等2.17 信息打印:系统内置打印模块,可选择需要的打印信息,机器直接输出打印结果;2.18 氧浓度监测:配置无线氧浓度监测装置,可实时监测培养过程中的氧浓度变化,还可监测温度、湿度等信息,信息可存储导出;传感器尺寸小巧,方便放入培养容器;2.19 系统升级:可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级;3.仪器配置:配置含:系统主机、培养罐、减压阀、催化剂、打印机、无线氧浓度监测装置、厌氧混合气。产品应用于智能厌氧微生物培养系统、多功能微生物培养系统、厌氧培养箱、厌氧手套箱、厌氧工作站、三气培养箱、厌氧箱、厌氧培养、厌氧培养系统、厌氧培养装置、厌氧产气袋、微需氧培养、低氧培养、多功能厌氧环境生成系统。
    留言咨询
  • 生物反应器 血管反应器流体剪切应力系统控制器CSS09细胞流体剪切应力培养系统,流体剪切应力控制器,流体剪切力培养室,细胞体外流体剪切力加载装置,生物反应器 血管反应器流体剪切应力产品简要: 在静态培养下的细胞犹如“温室下的花朵”无法经受外界的刺激生命力不够顽强,而动态培养的目的就是给细胞一个动态的环境刺激,提供一个更适合细胞研究的状态。这是一个普及版。专门设计的平板流动腔,配合计算机的控制,实现流体切应力的加载,适合细胞群的培养与研究;系统标准配置大致由以下内容组成:1. 驱动源2. 流动腔 载玻培养片(耗材),可高温消毒3. 控制盒4. 管路及接头 适合一套系统量,一次性使用;(耗材)5. 计算机及软件光盘等系统主要参数:1. 波形发生器可以实现:恒切应力液流,间歇式切应力流等;2. 显示当前切应力,流量值;数据EXCEL格式导出,图形截图保存,图形打印;3. 系统流量0-1000ml/min 已知可进行各类实验:1. 细胞流体切应力刺激实验;2. 细胞药物刺激实验;3. 细胞组织培养实验;4. 细胞吞噬实验;5. 内皮细胞培养实验;6. 增加药物浓度,进行细胞药物代谢实验;同时我司还提供多种规格细胞流体切应力系统、平板流动腔、细胞张应力(应变)刺激实验系统、细胞正压力刺激实验室系统、细胞综合应力实验系统、血液循环模拟培养系统、细胞组织构建培养系统、生物材料三维立体成型机,详情请咨询我司工作人员,谢谢。联系方式:上海泉众机电科技有限公司
    留言咨询
  • 仪器简介: WIKIPIDIA细胞为干细胞的原始细胞,能够在很多多细胞生物体内发现,并且他具有通过分化更新自己.并且能分化为很广泛的各种特殊类型细胞. 一般来说干细胞可以无限制的分裂和复制自己,在适当的条件和信号下可以组织功能分化. 干细胞分化为各种细胞是通过胚胎干细胞的囊胚,成年人干细胞在成年人的组织里,脐带血干细胞在脐带血内.基于分化潜能我们可把他们分为: Totipotent, Pluripotent, and Multipotent. 胚胎干细胞是全能的.他们给我们下游带来三个胚层:内胚层,中胚层,外胚层.另一方面,成人未分化的干细胞可发现于全身,他们分为多能型和全能型.可以在骨髓和脐带血中分离用于细胞治疗. 但是,准确知道他们的功能还是要克服众多的因素.主要的困难之一就是对他的研究和利用,必须培养大量的干细胞和保证他们的活力. 干细胞培养环境非常的重要,主要因素包括:培养基,生长因子,细胞因子,生物反应器.当我们培养干细胞用于干细胞治疗,在培养过程中模仿体内条件对于增加字报活力和应变能力是很重要的. 虽然我们培养的同是干细胞,可他们还是有悬浮培养和贴壁培养.此外培养模式和生物反应器也应根据客户的研究需求做相应的调整.因此百特伦的策略是不仅提供生物反应器,控制器,软件,和不同客户根据不同需求的培养容器.而且提供基本的支持为他们提供有效的干细胞研究. 这种反应器可以培养各种细胞用于细胞治疗,在体外的各种干细胞如:成人干细胞与胚胎干细胞,分化的胰岛细胞,软骨细胞,肌细胞,神经和神经质细胞,免疫细胞中的树突状细胞,淋巴细胞,巨噬细胞,和肿瘤细胞.同时他也可以用于细胞构建和分化.例如: 在所需要的安全环境下进行培养基的选择,细胞播种,细胞增殖. 另外,可以给反应器安装显微镜观察生物活细胞的图像,同时蠕动泵均在安全箱内,可以给罐体输送培养基,维生素,生长因子,细胞因子,营养素及其他各种必须的添加剂和控制,供气设备可以提供多种微环境必须的多种气体如:氧气,二氧化碳,氮气等. 另外他还配有四个蠕动泵在设备的左边,是用于接配合罐体内PH,DO,TEMP,FOAM的电极的检测.通过他科学家就可以做微生物发酵和动物细胞的发酵,在生物反应器外的箱体内. 活细胞成像系统被安装在安全箱内,这样就便于观察活细胞的图像,同时不会造成污染.他可以提供三种类型的图像,如光学图像,共焦图像,全息图像.用户可以根据价格和自己的要求来配制.如果用户需要还可以将图像传到电脑,用分析软件来进行细胞的计数和特殊计数.此外他还提供适时活细胞图像,及时跟踪活细胞的数量和其他方面的变化.从而达到控制细胞培养的目的.技术参数: 胚胎干细胞培养基和常规动物细胞培养一样,要加入适量FBS(或者无血清)一些抗生素到基础培养基中(如:DMEM,IMDM,MEMa和RPMI1640)例如:造血干细胞培养.白细胞介素-3,白细胞介素-6,干细胞因子,血小板生成素,FL3,EPO,GM-CSF可被单独使用或混合使用完全依据于培养类型不同分化水平.因此研究者可以通过我们的混合罐来完成培养基的优化.因此达到细胞培养和分化研究的目的. 混合培养基可以先在一个独立的生物安全室中大的混合容器中完成,这样就可以在里面的生物安全室.给小体积的罐子添加不同数量的培养基中小体积的混合罐体被安置在相同温度的细胞培养盒内. 在二级混合罐中研究者可以通过蠕动泵做连续或定期的添加少量的细胞因子,生长因子,和营养给培养盒,以达到培养和分化研究的目的.由于初级混合罐比较大,而且蠕动泵连接次级混合罐,添加数量可以调节,所以一些研究者宁愿在次级培养盒中混合培养基而非分开俩次.百特伦的反应器就可以做到这一点.而且还不会有污染发生.这样可以减少时间和成本而提供最优化的不受污染的培养基.另外他对培养基进行优化不仅只用一个培养盒而且还可采用多个细胞培养盒,提供多种类型的培养基. 干细胞培养最基本的条件是要考虑到是贴壁培养还是悬浮培养.初始接种密度.和另外一些常规细胞培养必须的要素如:培养基,营养素,PH一般7.4,温度37度,融氧,二氧化碳或氧气压力,抗生素,生长因子,荷尔蒙.另外,对于干细胞分化保证一致性非常的重要.通常有培养基的影响和细胞与细胞间的影响.物理刺激对于最终分化和适应性也是非常重要的.尽量作到最优化以适应移植. 考虑到目前规模培养干细胞一般小于10ML,这对于现有的生物反应器是做不到的.但是我们百特伦的生物反应器不仅可以适合做10ML的培养,而且可以做小于1ML规模的培养.其他的各种培养方法也可以完全被百特伦适应.即使是非常小的规模培养,百特伦的ALL-IN-ONE电极通过ISFET都可检测TEMP,PH ,DO,而且可以作到适时检测,所以他完全可以检测到必须的每个参数. 这种生物反应器可以培养绝大多数细胞在适宜的条件下用于细胞治疗, 例如:大多数成人干细胞,胚胎干细胞,分化的细胞,免疫细胞和肿瘤细胞. 同时他还可以用于培养基的配制,细胞接种,细胞增殖,细胞分化,细胞构建等在生物安全柜内. 在安全柜内还可以配备显微镜用于细胞观察.也可加入蠕动泵,以用于注入培养基,维生素,生长因子,细胞因子,营养素和其他必须物质.来进行大规模培养和细胞构建.同时配备的供气系统可满足微环境内气体如:氧气,二氧化碳,氮气等的需求. 所有的配制都一样,只是TOTICELL配备了一个外围培养基混合装置.没有电极和蠕动泵.然而,小的混合罐也可以被放入到生物安全柜内.混合仓内不仅可以配备极谱型DO电极和凝胶型PH电极,而且可以放入ISFET微型传感电极. 另外,多个小生物反应器还可以被安装在生物安全柜内,通过磁力或摇摆来搅拌.同时可以最多接32个传感器检测PH,DO,TEMP来控制生物反应器.可以连接16个变速泵和24个定速泵.而且一个气体混合个连接24个分支.都能提供氧气,二氧化碳,氮气和空气.生物安全柜还可以作为二氧化碳培养箱.常规的用培养皿培养细胞我们同样可以用ISFET传感器检测PH,DO,和温度. 在细胞治疗方面MultiCell生物反应器可以进行细胞构建,分化例如:培养基的配制,细胞接种,细胞增殖,总之可以给各种细胞提供最适合的环境生长. 特别是,在组织工程方面我们的生物反应器可以提升人造血管的的生成.另外百特伦的生物反应器的设计可以完全按照客户的要求来量身定做.目的就是为了给客户以最佳的状态去研究干细胞治疗.基本上TotiCell and PluriCell生物反应器具有相同的主要功能.,有生物安全柜,及相关配件.这个设计完美的循环结构准确的显示了细胞动力学过程.这归功于我们长期不懈的努力.在循环设计里我们可以提供象心跳一样的脉冲形成物理刺激.从而更有利于干细胞的培养.此外除了这种模式还可以添加其他的生物刺激象超声和物理应激等. 多细胞盒在生物安全柜中培养时有俩个概念,一个是完全独立的系统,在每个细胞培养盒建立独立的细胞培养环境,用蠕动泵将培养基注入培养盒.第二种方法是并行系统注入相同数量的培养基到每个培养盒,没有同步蠕动泵. 气体混合机连用结构复杂,费用高.我们可以根据客户需求给每个细胞培养盒单独提供混合气体. 我们可以帮助研究者得到更好质量的产品和高效的生产力.所以百特伦可以提供研究者定制的细胞培养系统. 如有什么问题,请您及时的联系我们, 党先生 Email: 主要特点: 培养罐我们可以提供悬浮和贴壁俩种,可根据客户的特殊需求来设计不同的罐体来适应各种细胞培养.我们的口号是向客户提供个性化的设计,以达到最优化的培养.也有研究者通过设置一个透气膜来使安全培养盒中的氧气和二氧化碳进入罐体.因此,生物安全盒内有能力提供氧气和二氧化碳,并保持一个适当的水平. 细胞培养罐和培养箱均带有独立的温度控制装置,可进行精确的温度控制.同时生物安全室内也可精确控制,协助细胞培养罐和细胞培养箱内的温度控制.从而提供最好的环境下维持精确的温度控制.由于在安全箱内有四种气体可提供,氧气,二氧化碳,氮气,空气.可以直接设置注入气体的数量例如:0.01~21%氧气或0~10%二氧化碳.可以让他们间隔开来单独注入,也可以将他们混合后注入. 小的先进的安全盒完全可以防止污染.从外面可以根据用户调整不同洁净度,从100级~10万级的无菌工作区.同时我们也作好有各种过滤和空气流通.为了优化培养的细胞用于干细胞治疗和细胞治疗,我们设计了适合多种类型细胞培养盒.细胞培养盒主要为贴壁细胞设计,而悬浮细胞主要还是用玻璃容器. 我们为客户提供最佳类型的细胞培养卡匡,适合各种细胞的培养,如细胞培养容积方面,细胞因子和营养,膜型及结构布局,另外细胞种类,最佳的供气设计等. 虽然为同一细胞,但设计还是依据于不同研究目的.是普通培养还是分化培养.例如: 即使是同一细胞可能还要分悬浮培养和贴壁培养.由于有多种类型为承载结构材料或支架,培养的结果也可以不同.此外由于给细胞的刺激不同结果也会不同.因此反应器的设计应该适合每个人的研究. 但是一直没有反应器能满足各种条件的科研需求,因此细胞治疗研究一直停滞不前.通过各种生物反应器的比较研究可以产生重大的成果在学术和商业界.我们的发展策略是我们提供的发酵罐完全按照研究者的要求设计.
    留言咨询
  • 类器官串联芯片培养系统--- HUMIMIC 类器官技术平台是一种微流控微生理系统平台,能够维持和培养微缩的等效器官,模拟其各自的全尺寸对应器官的生物学功能和生物的主要特征,如生物流体流动,机械和电耦合,生理组织与流体、组织与组织的比率。 类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精JIN准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 类器官是指在结构和功能上都类似来源器官或组织的模拟物,通过取特定器官的干细胞(iPS/ES),或者利用人的多能干细胞定向诱导分化,能获得微型的器官样的三维培养物,在体外模拟人体器官发育过程。 类器官,具有某一器官多种功能性细胞和组织形态结构的三维(3D)培养物,主要来源于人具有多项分化潜能的多能干细胞(包括人胚胎干细胞和人诱导多能干细胞iPSCs)或成体干细胞。人多能干细胞能分化为个体所有类型的细胞,在体外,经过诱导分化,模拟人体器官发育过程,能使人多能干细胞直接分化形成各种类器官;不同组织器官都存在内源组织干细胞,在维持各器官的功能形态发挥着重要作用。这些干细胞在体外一定的诱导条件下,可以自组织形成一个直径仅为几毫米的具有组织结构和多种功能细胞的三维培养物。器官芯片是获取两个或两个以上不同的类器官,并且放置在特定的培养芯片上进行共培养,能模拟人体的多个器官参与的生理学过程。 与传统2D细胞培养模式相比,3D培养的类器官包含多种细胞类型,能够形成具有功能的“微器官”,能更好地用于模拟器官组织的发生过程及生理病理状态,因而在基础研究以及临床诊疗方面具有广阔的应用前景。 基于这一定义,可以发现类器官具备这样几个特征: * 必须包含一种以上与来源器官相同的细胞类型; * 应该表现出来源器官所特有的一些功能; * 细胞的组织方式应当与来源器官相似。 类器官作为一个新兴的技术,在科学研究领域潜力巨大,包括发育生物学、疾病病理学、细胞生物学、再生机制、精 准医疗以及药物毒性和药效试验。类器官培养使研究人体发育提供了不受伦理限制的平台,为药物筛选提供了新的平台,也是对现有2D培养方法和动物模型系统的高信息量的互补 。此外,类器官为获取更接近自然人体发育细胞用于细胞ZL成为可能。通过类器官繁殖的干细胞群取代受损或者患病的组织,类器官提供自体和同种异体细胞疗法的可行性,未来这一技术在再生医学领域也拥有巨大的潜力 。使用这项技术,采用CRISPR/Cas9能够纠正体外遗传异常并能够将健康的转基因细胞再次回输入患者体内,并在后期整合入组织内。在精 准医学应用中,患者衍生的类器官也被证明为有价值的诊断工具。在进行ZL之前,采用从患者样本来源的类器官筛查患者体外药物反应,旨在为癌症和囊胞性纤维症患者的护理提供指导并预测ZL结果。随着类器官培养系统以及其实验开发技术的不断发展,类器官应用到了各大研究领域。 类器官可以模拟人体的内外环境和人体器官,帮助研究人员观测用药会对人体器官功能产生什么样的影响。在提倡精 准医学和个体化ZL的时代,类器官研究比传统的二维细胞培养更具有针对性,并且可以区别不同癌症对于相同药物的反应。不仅如此,研究者还希望通过诱导多功能干细胞强大的再生潜能,体外生成新的器官或组织,然后移植入体内以替代损坏的组织器官。 类器官培养系统--- HUMIMIC的技术方案:在没有病人的情况下测试病人基于这一定义,可以发现类器官具备这样几个特征: 必须包含一种以上与来源器官相同的细胞类型; 应该表现出来源器官所特有的一些功能; 细胞的组织方式应当与来源器官相似。 类器官可以模拟人体的内外环境和人体器官,帮助研究人员观测用药会对人体器官功能产生什么样的影响。在提倡精JIN准医学和个体化治ZHI疗的时代,类器官研究比传统的二维细胞培养更具有针对性,并且可以区别不同癌症对于相同药物的反应。不仅如此,研究者还希望通过诱导多功能干细胞强大的再生潜能,体外生成新的器官或组织,然后移植入体内以替代损坏的组织器官。此外,类器官为获取更接近自然人体发育细胞用于细胞治ZHI疗成为可能。通过类器官繁殖的干细胞群取代受损或者患病的组织,类器官提供自体和同种异体细胞疗法的可行性,未来这一技术在再生医学领域也拥有巨大的潜力 。在精JIN准医学应用中,患者衍生的类器官也被证明为有价值的诊断工具。在进行治ZHI疗之前,采用从患者样本来源的类器官筛查患者体外药物反应,旨在为癌症和囊胞性纤维症患者的护理提供指导并预测治ZHI疗结果。随着类器官培养系统以及其实验开发技术的不断发展,类器官应用到了各大研究领域。 类器官培养的应用案例类器官的应用举例---疾病模型 类器官的研究还可用于于疾病模型,如发育相关问题,遗传疾病,肿瘤癌症等。通过使用患者的iPSCs可建立有价值的疾病模型,并能在体外模拟重现病人疾病模型;同时,类器官的建立可以实现对药物药效和毒性进行更有效、更真实的检测。由于类器官可以直接由人类iPSCs直接培养生成,相比于动物模型很大程度上避免了因动物和人类细胞间的差异而导致的检测结果不一致。 类器官的应用举例---药效和毒理测试可以从患者来源的健康和肿瘤组织样品中建立类器官。与此同时类器官培养物可用于药物筛选,这可将肿瘤的遗传背景与药物反应相关联。来自同一患者健康组织的类器官的建立提供了通过筛选选择性杀死肿瘤细胞而又不损害健康细胞的化合物来开发毒性较小的药物的机会。自我更新的肝细胞类器官培养物可用于测试潜在新药的肝毒性(临床试验中药物失败的原因之一)。在该实施例中,药物B似乎最适合于治ZHI疗患者,因为它特异性杀死肿瘤类器官并且不引起肝毒性。 类器官的应用举例---重演肿瘤形成类器官的培养和建立,可用于研究肿瘤生成过程中的突变过程,比如说,通过从同一肿瘤的不同区域培养无性繁殖的类细胞器,可以用来研究肿瘤内部的异质性。来自不同健康器官的类器官的生长,然后对培养物进行全基因组测序,可以分析器官特异性突变谱。通过生长来自同一肿瘤不同区域的类器官,可以用于研究肿瘤内异质性。区域特异性突变谱可以通过类器官的全基因组测序来揭示。使用与上述相似的方法,可以利用类器官来研究特定化合物对健康细胞和肿瘤细胞突变谱的影响。 类器官的应用举例---肿瘤患者个性化医疗有助于个性化治ZHI疗策略的设计,利用病变和正常的类器官来评估各种治ZHI疗方案。可以筛选多种活性药物和小化合物,设计更有效的用药方案。培养成熟的类器官还可以为器官再生和器官移植提供广泛的组织来源。对类器官进行基因操作来修复缺失的功能,并移植回到患者体内。 类器官的应用举例---类器官“生物Bank”根据目前的研究进展,建立了活体类器官“生物bank”。其中,肿瘤来源的类器官在表型和基因上都与肿瘤相似。另外,肿瘤类类器官生物库使生理学相关的药物筛选成为可能。活体类器官生物库可用于确定类器官是否对个体患者的药物反应,具有预测价值。 类器官串联培养系统--- HUMIMIC的技术方案:多器官串联培养,在没有病人的情况下测试病人类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精JIN准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 为获取更高相关与准确的测试结果,我们开发了人体器官模型的自动芯片测试: 配备具有指示相关性的器官模型的芯片,以能够在接触生物体之前检测其安全性和有效性; 最ZUI终为芯片配备患者自身相关病变器官的亚基,以评估整个个性化治ZHI疗的效果; 人体生理反应往往涉及更多介质循环和不同组织间相互作用,多器官芯片才能全面反映出机体器官功能的复杂性、完整性以及功能变化,一个相互作用的系统才能更好的模拟整个系统中器官和组织的不同功能。可提供不同类器官的串联培养解决方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。把多种不同器官和组织培养在芯片上,然后通过微通道连接起来,集成一个相互作用的系统,从而模拟人体中的不同功能器官的交流通讯和互相作用。 TissUse专有的商用MOC技术支持的器官培养物的数量范围从单个器官培养到支持复杂器官相互作用研究的器官数量,包括单器官、二器官、三器官和四器官培养的商业化的平台。成功的案例包括:肝脏、肠、皮肤、血管系统、神经组织、心脏组织、软骨、胰XIAN、肾脏、毛囊、肺组织、脂肪组织、肿瘤模型和骨SUI以及各自的多器官串联组合方案。 德国TissUse公司专注于类器官培养系统研究22年,推出的HUMIMIC类器官串联芯片培养系统,得到FDA的推荐,可提供不同类器官的串联培养解决方案,避免单一类器官培养无法模拟人体器官相互通讯关联的缺陷,同时也提供相关的技术方案和后续方法试剂支持,属于国际上少有的“Multi-Organ-Chip” 和“Human-on-a-chip”的方案提供者。相关方案已被广泛应用于药物开发、化妆品、食品与营养和消费产品等多个领域. 类器官串联培养系统---HUMIMIC系统 一、专业化的硬件(控制单元) 主机(控制单元)是一个紧凑的台式设备,能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数。芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精JIN准的培养和分化环境。7寸触摸显示器,控制面板可以在整个过程中对每个多器官芯片分别进行调节,无需外接电脑,软件操控友好;可以自主设置每个器官芯片的培养条件,包括温度、压力、真空度、微流道循环频率、时间等参数;可串联培养2个不同(或相同)、3个不同的、4个不同的类器官;3个连接拓展口,用于连接其他设备;同时操控高达8个Chip3 / Chip3 plus,4个Chip2 /Chip4或这些的组合; 二、类器官芯片芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精JIN准的培养和分化环境;芯片的泵腔内的柔性膜通过连接的管道,受到压力或真空的作用,在微流道之中产生脉动体流;二联类器官芯片可以在一个芯片上串联培养2个不同(或相同)的类器官;三联类器官芯片可以在一个芯片上串联培养3个不同的类器官;四联类器官芯片可以在一个芯片上串联培养4个不同的类器官; 三、服务方案(细胞、试剂,诱导方案) 四、器官模型和串联培养技术类器官串联培养系统---HUMIMIC的应用案例1、神经球和肝脏的串联共培养(柏林工业大学)-二联器官共培养的药物敏感性2015, Journal of Biotechnology, A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing目前用于药物开发的体外实验平台无法模拟人体器官的复杂性,而人类和实验室动物的系统差异巨大,因此现有的方案都不能准确预测药物的安全性和有效性。德国、葡萄牙和俄罗斯的研究团队通过TissUse GmbH公司的微流控多器官芯片(MOC)平台,测试毒物对多器官的作用,揭示了基于微流控的多器官串联共培养能够更好的模拟人体的生理学环境。在体外培养条件下,由于氧气和营养供应有限,类器官培养往往会随着时间的推移而去分化。然而微流控系统中通过持续灌注培养基,更好地控制环境条件,如清除分泌物和刺激因子,并且培养基以可控流速通过,以模拟血流产生的生物剪切应力,因此类器官培养物可以保持良好的生长状态。 双器官串联芯片(2-OC)能够串联共培养人的神经球(NT2细胞系)和肝脏类器官(肝HepaRG细胞和肝HHSteC细胞)。在持续两周的实验中,反复加入神经毒剂2,5-己二酮,引起神经球和肝脏的细胞凋亡。跟单器官培养相比,串联共培养对毒剂更敏感。因此,多器官串联共培养在临床研究中可以更准确地预测药物的安全性和有效性。推测这是因为一个类器官的凋亡信号导致了第二个类器官对药物反应的增强,这一推测得到了实验结果的支持,即串联共培养的敏感性增加主要发生在较低浓度药物中。 2、心脏肝脏骨骼皮肤的串联共培养(哥伦比亚大学)-四联器官共培养的复杂通讯模型哥伦比亚大学的科学家也开发了一种多器官串联芯片,建立了串联共培养心脏、肝脏、骨骼、皮肤的技术,发表于2022年的Nature Biomedical Engineering,中通过血液循环串联培养4个类器官,保持了各个类器官的表型,还研究了常见的抗ANTI癌药阿霉素对串联芯片中的类器官以及血管的影响。结果显示药物对串联共培养类器官的影响与临床研究结果非常相似,证明了多器官串联共培养能够成功的模拟人体中的药代动力学和药效学特征。“最值得注意的是,多器官串联芯片能够准确的预测出阿霉素的心脏毒性和心肌病,这意味着,临床医生可以减少阿霉素的治ZHI疗剂量,甚至让患者停止该治ZHI疗方案。“Gordana Vunjak-Novakovic, Department of Biomedical Engineering, Columbia University 3、胰岛和肝脏在芯片上的串联共培养(阿斯利康)-二联器官共培养的反馈通讯2017, Nature Scientific Reports, Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model人类系统性疾病的发生过程都是通过破坏两个或多个器官的自我平衡和相互交流。研究疾病和药疗就需要复杂的多器官平台作为体外生理模型的工具,以确定新的药物靶点和治ZHI疗方法。2型糖尿病(T2DM)的发病率正在不断上升,并与多器官并发症相关联。由于胰岛素抵抗,胰岛通过增加分泌和增大胰岛体积来满足胰岛素不断增加的需求量。当胰岛无法适应机体要求时,血糖水平就会升高,并出现明显的2型糖尿病。由于胰岛素是肝脏代谢的关键调节因子,可以将生产葡萄糖的平衡转变为有利于葡萄糖的储存,因此胰岛素抵抗会导致糖稳态受损,从而导致2型糖尿病。过去已经报道了多种表征T2DM特征的动物模型,但是,从动物实验进行的研究往临床上转化的效果不佳。更重要的是,目前使用的药物,虽然能缓解糖尿病症状,但对疾病进一步发展的治ZHI疗的效果有限。胰XIAN腺和肝脏是参与维持葡萄糖稳态的两个关键器官,为了模拟T2DM,阿斯利康(AstraZeneca)的科学家利用TissUse GmbH公司的微流控多器官芯片(MOC)平台,通过微流控通道相互连接,建立一个双器官串联芯片(2-OC)模型,实现芯片上胰XIAN腺和肝脏类器官的串联共培养,在体外模拟了胰XIAN腺和肝脏之间的交流通讯。 建立串联共培养类器官(胰岛+肝脏)和单独培养类器官(仅胰岛或肝脏),在培养基中连续培养15天,串联共培养显示出稳定、重复、循环的胰岛素水平。而胰岛单独培养的胰岛素水平不稳定,从第3天到第15天,降低了49%。胰岛与肝球体串联共培养中,胰岛可长期维持葡萄糖水平,刺激胰岛素分泌,而单独培养的胰岛,胰岛素分泌显著减少。胰岛分泌的胰岛素促进了肝球体对葡萄糖的利用,显示了串联共培养中类器官之间的功能性的交流。在单独培养中的肝球体中,15天内循环葡萄糖浓度稳定维持在~11 mM。而与胰岛共培养时,肝球体的循环葡萄糖在48小时内降低到相当于人正常餐后的水平度,表明胰岛类器官分泌的胰岛素刺激了肝球体摄取葡萄糖。 4、肺肿瘤和皮肤在芯片上的串联共培养(拜耳)-抗体药物对肿瘤和正常器官的影响 针对EGFR抗体的药物在癌症治ZHI疗中被广泛应用。然而,抗ANTI癌药物的使用量与皮肤不良反应成正比相关,皮肤毒性是上皮生长因子受体(EGFR) 靶向治ZHI疗中最常见的副作用。但是对于后者的预测目前的方法均无法实现。双器官串联芯片(2-OC)模型,实现芯片上皮肤和肿瘤的共培养,用于模拟重复给药的剂量实验,同时还生成安全性和有效性的数据,可以在非常早的阶段检测到西妥昔单抗cetuximab对皮肤的几个关键副作用。这种体外分析能够在临床表现之前预评估毒性副作用,可以替代动物试验,有望成为评价EGFR抗体和其他肿瘤药物治ZHI疗指数的理想工具。 5、皮肤-肝脏在芯片上的串联共培养(拜尔斯道夫公司)—评估化妆品不同的给药途径一种独特的基于芯片的组织培养平台已经开发出来,使化妆品和药物对一套微型人体器官的影响测试成为可能。这种“人-片”平台旨在生成可复制的、高质量的人体物质安全性预测体外数据。被测物质进入表皮或在表皮内代谢,然后泵入肝脏并激活相应的CYPs。因此,在肝脏和皮肤的联合培养中,多器官芯片是一种有前途的体外方法,用于全身和局部剂量的化妆品和药物。 皮肤等效物的培养整合在一个系统中。芯片上的微泵使代谢运输和附加的生理剪切应力成为可能。肝脏和皮肤等效物存活10天,并显示紧密连接和特异性转运蛋白的表达。每天服用、维甲酸和倍他米松-21-戊酸,持续7天,以研究已知可被皮肤和肝脏代谢的化合物的作用。将表面敷于表皮的效果与直接敷于培养基的效果进行比较,分析对皮肤渗透和代谢的影响。对肝脏和皮肤等价物进行代谢酶、转运体、分化标记物的表达和活性分析。结果显示,在蛋白水平和mRNA水平上,根据不同物质处理,ⅰ、ⅱ期酶均有本构性和诱导性表达。因此,在肝脏和皮肤的联合培养中,多器官芯片是一种有前途的体外方法,用于全身和局部剂量的药物和化妆品。 6、肺类器官在芯片上的培养(菲莫国际)-空气环境对呼吸道的影响使用类人肺模型研究吸入气溶胶的沉积和吸附,从而使体外人体呼吸毒性的数据更加准确和可预测。目前的体外气溶胶暴露系统通常不能模拟这些特性,这可能导致在体外生物测试系统中交付非现实的、非人体相关的可吸入试验物质剂量。模拟和研究体外气溶胶暴露装置-吸入器可主动呼吸、操作医用吸入器,或吸吸烟草制品。此外,它可以填充从人类呼吸道不同区域分离的三维上皮细胞。包括口腔、支气管和肺泡细胞培养物的气溶胶传递和相容性的概念的研究,将其应用于测试系统,吸入产生的生理条件下,测试表现在人的呼吸道的方式。这种方法的优点是,它无需花费昂贵、耗时和具有科学挑战性的工作来确定体内提供的剂量,默认情况下,适用于任何测试烟草燃烧产生的气体和任何测试成分。
    留言咨询
  • (一)功能应用体内模型存在许多局限性:较高的实验成本、有限的吞吐量、伦理问题和遗传背景的差异。更重要的是,与人类相比,它们在药物效应和/或疾病表型方面表现出巨大的生理差异,这解释了临床试验经常失败的原因。 Kirkstall Ltd.专利技术的Quasi Vivo器官芯片微生理系统又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。 通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。 (二)性能特点Quasi Vivo 作为一种先进的器官芯片系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势: 功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式允许独立、可控的空气、气体或液体层流流向顶端和基底外侧 满足多器官共培养,细胞间的信号传递等实验要求 成像友好配备了光学窗口在顶部和底部表面,理想的实时高分辨率成像 易于获取样本直接收集样本和获取组织或液体样本 模拟生物力学和浓度梯度用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等 便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性占地面积小,节省空间,可兼容标准实验室的孵化器 (三)产品应用案例及发表文献1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.在本研究中,作者建立了一个在Kirkstall Quasi Vivo器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。 2) Ramachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wö lfl S, Simon-Keller K, Marx A, Ø ie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.在本研究中,作者使用upcyte人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。 3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)肿瘤微环境(TME)作为癌细胞行为调节剂的重要性已被公认,并导致了3D体外癌症模型的发展。癌症的3D实验室体外模型旨在概括肿瘤微环境的生化和生物物理特征,并旨在以生理相关的方式使研究癌症和新的治疗方式成为可能。本文作者研究了乳腺癌细胞在2D、3D和3D微流体条件下,并对比了不同培养条件下的乳腺癌细胞的凋亡、增殖和缺氧相关基因的细胞活力和表达水平。在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。 4)Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275. 医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo“芯片上的器官”流动培养系统,用于测试聚合物样品。 (四)产品用户概况全球使用Kirkstall Quasi Vivo器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建: (五)品牌制造商简介Kirkstall Ltd. 成立于2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。 北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
  • (一)功能应用体内模型存在许多局限性:较高的实验成本、有限的吞吐量、伦理问题和遗传背景的差异。更重要的是,与人类相比,它们在药物效应和/或疾病表型方面表现出巨大的生理差异,这解释了临床试验经常失败的原因。 Kirkstall Ltd.专利技术的Quasi Vivo器官芯片微生理系统又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。 通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。 (二)性能特点Quasi Vivo 作为一种先进的器官芯片系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势: 功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式允许独立、可控的空气、气体或液体层流流向顶端和基底外侧 满足多器官共培养,细胞间的信号传递等实验要求 成像友好配备了光学窗口在顶部和底部表面,理想的实时高分辨率成像 易于获取样本直接收集样本和获取组织或液体样本 模拟生物力学和浓度梯度用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等 便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性占地面积小,节省空间,可兼容标准实验室的孵化器 (三)产品应用案例及发表文献1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.在本研究中,作者建立了一个在Kirkstall Quasi Vivo器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。 2) Ramachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wö lfl S, Simon-Keller K, Marx A, Ø ie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.在本研究中,作者使用upcyte人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。 3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)肿瘤微环境(TME)作为癌细胞行为调节剂的重要性已被公认,并导致了3D体外癌症模型的发展。癌症的3D实验室体外模型旨在概括肿瘤微环境的生化和生物物理特征,并旨在以生理相关的方式使研究癌症和新的治疗方式成为可能。本文作者研究了乳腺癌细胞在2D、3D和3D微流体条件下,并对比了不同培养条件下的乳腺癌细胞的凋亡、增殖和缺氧相关基因的细胞活力和表达水平。在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。 4)Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275. 医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo“芯片上的器官”流动培养系统,用于测试聚合物样品。 (四)产品用户概况全球使用Kirkstall Quasi Vivo器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建: (五)品牌制造商简介Kirkstall Ltd. 成立于2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。 北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
  • 微流控器官模拟(细胞)培养系统(OOC)Eco-M细胞/器官培养平台(OOC),支持微流控细胞培养的恒温及变温实验,标配环境仓、高精度温度控制器及微量精密进样泵,选配气体混合器、湿度控制模块,以及多路试剂自动切换阀门,允许用户预设并监控温度、气氛及湿度,适配市面上大多数显微镜,可手动进行空气/CO2混合,支持标准1/16英寸进液管。此系统采用模块化设计,自锁式搭扣,连接件为快插式设计,操作简便。此外,我们也提供全自动细胞灌流仪Aria,可实现10种流体的全自动序列进样,同时,我们也支持器官培养平台的实验室定制。培养芯片我们提供的多种标准芯片,支持肾脏芯片、心脏芯片、肠道芯片、肝脏芯片、皮肤芯片等应用,并支持芯片定制。BE-Transflow芯片,是一款通用型细胞培养平台,内部通过多孔膜与微流道连接,支持2D/3D培养,适用于上皮细胞培养、毒性测试、吸收测试、气液界面 (ALI) 培养等研究。 BE-Gradient芯片,是一款用于3D细胞培养的电化学梯度芯片,兼容任何光学显微镜,其结构由一个细胞培养中央室和三个与中央室相连的长通道组成,通道内也可进行2D培养。荷兰Micronit的这款多层芯片,中间膜片层可以更换,可重复密封使用,膜片将芯片内分为两个大腔室(上下可通气体液体),已用于相关领域的皮肤芯片、肠道芯片论文发表。此外,此芯片还可并联、串联使用。配置概览试剂灌流装置,此部分为整个培养系统提供流体源动力,将培养液通过微流控压力泵泵至培养芯片,培养液流量可实时监控,流量精确度高达7.5nl/min(指定款流量传感器),并可集成切换阀控制,实现培养液的多路进样、循环进样和定量注入等自动化操作。如果你需要一台封装好的细胞培养灌流仪,那么ARIA将是一个不错的选择,ARIA支持暗室培养、长时间培养,并且可以实现10种试剂的自动进样,与显微镜系统完美结合,是细胞培养工具里的一大利器。环境控制装置,此部分给整个培养提供合适的温度、湿度、气体环境的控制,为了方便对培养芯片在显微镜下的观察,我们提供支持透射观察的环境培养仓,并且支持定制。应用领域生命科学研究制药业生物医学工程生物微机电微电子学片上神经或心血管网络片上肠、肝、肺、皮肤间充质干细胞(MSC)或单片骨髓片上ESC或iPSC衍生的干细胞(ESC / iPSC)More…系统可定制,具体参数需结合配件确定,可参阅附件。
    留言咨询
  • 智能厌氧微需氧培养系统型号HD-AN100技术参数:1. 系统功能:1.1 用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%),适用于厌氧菌、微需氧菌和细胞培养等。1.2 用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。2. 技术参数:2.1 自检功能:开机检测当地气压,获得初始值;便于生成任意氧浓度时获得准确数值;2.2 系统原理:通过真空置换抽排原理,精确控制气体压力的变化,从而达到控制培养罐气体环境的目的;2.3 快速生成培养环境:快速达到厌氧和微需氧环境,任意大小培养罐达到环境时间不超过10分钟;2.4 一键生成:系统可一键生成厌氧、微需氧培养浓度,无需设置参数;2.5 多罐模式:系统可扩展多通道,可同时对多个培养罐进行控制,避免生成过程中的等待和人工更换;2.6 质控程序:系统每次生成所需的气体环境都会对培养罐做气源压力、管路连接、罐体密封、罐盖密封和催化剂活性五项检测,保证培养时培养罐的密封性;2.7 气源压力调节:调节减压阀时仪器实时显示气源压力,无需观察减压阀上的指针;2.8 气体消耗:达到微需氧气体消耗≤ 2 L/12平皿;达到厌氧气体消耗≤ 7L /12平皿;2.9 厌氧催化剂:配套厌氧催化剂,辅助仪器达到0%氧浓度;可重复使用,不产生化学废弃物;2.10 培养罐体:系统配套多种培养罐,培养罐清澈透明方便观察,每只培养罐均可支持不同的培养应用。2.11 罐体规格:≥7种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、双罐培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌专用培养罐(单罐放置8块弯曲菌培养双孔培养皿及8支增菌管)、微生物鉴定专用培养罐(单罐放置4块酶标板/细胞培养板/鉴定条培养板)、志贺氏菌专用培养罐(单罐放置10只培养袋)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等2.12 系统升级:可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级;3.仪器配置:配置含:系统主机、培养罐、减压阀、催化剂、厌氧混合气。产品应用于智能厌氧微生物培养系统、多功能微生物培养系统、厌氧培养箱、厌氧手套箱、厌氧工作站、三气培养箱、厌氧箱、厌氧培养、厌氧培养系统、厌氧培养装置、厌氧产气袋、微需氧培养、低氧培养、多功能厌氧环境生成系统。
    留言咨询
  • 智能厌氧微需氧培养系统型号HD-AN400技术参数:1. 系统功能:1.1 用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%)和特殊氧气浓度(0.2%-18%)比例的厌氧和微需氧环境,适用于厌氧菌、微需氧菌和细胞培养等。1.2 用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。2. 技术参数:2.1 自检功能:开机检测当地气压,获得初始值;便于生成任意氧浓度时获得准确数值;2.2 系统原理:通过真空置换抽排原理,精确控制气体压力的变化,从而达到控制培养罐气体环境的目的;2.3 触屏操作:大尺寸显示屏,彩色显示,不同的功能显示不同的颜色,实时显示当地气压,触摸操作,无需按键;2.4 快速生成培养环境:快速达到厌氧和微需氧环境,任意大小培养罐达到环境时间不超过10分钟;2.5 一键生成:系统可一键生成厌氧、微需氧和弯曲菌培养浓度,无需设置参数;2.6 多罐模式:系统配置3通道,可同时对多个培养罐进行控制,避免生成过程中的等待和人工更换;2.7 多气源:可同时连接2个气源,同时调节氧气、二氧化碳和氮气浓度;2.8 废气处理:内置废气处理装置,可自动处理排出的有害气体,避免废气对实验室造成污染;2.9 质控程序:系统每次生成所需的气体环境都会对培养罐做气源压力、管路连接、罐体密封、罐盖密封和催化剂活性五项检测,保证培养时培养罐的密封性;2.10 调节精度:氧浓度设置范围0%-18%,设置数值0.2%递进,精确控制培养所需浓度;2.11 气源压力调节:调节减压阀时仪器实时显示气源压力,无需观察减压阀上的指针;2.12 气体消耗:达到微需氧气体消耗≤ 2L/12平皿;达到厌氧气体消耗≤ 7L /12平皿;2.13 厌氧催化剂:配套厌氧催化剂,辅助仪器达到0%氧浓度;可重复使用,不产生化学废弃物;2.14 催化剂活性检测分级:催化剂活性检测可按需求关闭和开启,开启时可对效果检测分5级;2.15 培养罐体:系统配套多种培养罐,培养罐清澈透明方便观察,每只培养罐均可支持不同的培养应用。2.16 罐体规格:≥7种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、双罐培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌专用培养罐(单罐放置8块弯曲菌培养双孔培养皿及8支增菌管)、微生物鉴定专用培养罐(单罐放置4块酶标板/细胞培养板/鉴定条培养板)、志贺氏菌专用培养罐(单罐放置10只培养袋)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等2.17 信息打印:系统内置打印模块,可选择需要的打印信息,机器直接输出打印结果;2.18 氧浓度监测:配置无线氧浓度监测装置,可实时监测培养过程中的氧浓度变化,还可监测温度、湿度等信息,信息可存储导出;传感器尺寸小巧,方便放入培养容器;2.19 系统升级:可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级;3.仪器配置:配置含:系统主机、培养罐、减压阀、催化剂、打印机、无线氧浓度监测装置、厌氧混合气。产品应用于智能厌氧微生物培养系统、多功能微生物培养系统、厌氧培养箱、厌氧手套箱、厌氧工作站、三气培养箱、厌氧箱、厌氧培养、厌氧培养系统、厌氧培养装置、厌氧产气袋、微需氧培养、低氧培养、多功能厌氧环境生成系统。
    留言咨询
  • 智能厌氧微需氧培养系统型号HD-AN200技术参数:1. 系统功能:1.1 用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%)和特殊氧气浓度(0.5%-18%)比例的厌氧和微需氧环境,适用于厌氧菌、微需氧菌和细胞培养等。1.2 用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。2. 技术参数:2.1 自检功能:开机检测当地气压,获得初始值;便于生成任意氧浓度时获得准确数值;2.2 系统原理:通过真空置换抽排原理,精确控制气体压力的变化,从而达到控制培养罐气体环境的目的;2.3 触屏操作:大尺寸显示屏,彩色显示,不同的功能显示不同的颜色,实时显示当地气压,触摸操作,无需按键;2.4 快速生成培养环境:快速达到厌氧和微需氧环境,任意大小培养罐达到环境时间不超过10分钟;2.5 一键生成:系统可一键生成厌氧、微需氧和弯曲菌培养浓度,无需设置参数;2.6 多罐模式:系统配置2通道,可继续扩展多个通道,可同时对多个培养罐进行控制,避免生成过程中的等待和人工更换;2.7 调节精度:氧浓度设置范围0%-18%,设置数值0.5%递进,精确控制培养所需浓度;2.8 废气处理:内置废气处理装置,可自动处理排出的有害气体,避免废气对实验室造成污染;2.9 质控程序:系统每次生成所需的气体环境都会对培养罐做气源压力、管路连接、罐体密封、罐盖密封和催化剂活性五项检测,保证培养时培养罐的密封性;2.10 气源压力调节:调节减压阀时仪器实时显示气源压力,无需观察减压阀上的指针;2.11 气体消耗:达到微需氧气体消耗≤ 2 L/12平皿;达到厌氧气体消耗≤7L /12平皿;2.12 厌氧催化剂:配套厌氧催化剂,辅助仪器达到0%氧浓度;可重复使用,不产生化学废弃物;2.13催化剂活性检测分级:催化剂活性检测可按需求关闭和开启;2.14 培养罐体:系统配套多种培养罐,培养罐清澈透明方便观察,每只培养罐均可支持不同的培养应用。2.15 罐体规格:≥7种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、双罐培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌专用培养罐(单罐放置8块弯曲菌培养双孔培养皿及8支增菌管)、微生物鉴定专用培养罐(单罐放置4块酶标板/细胞培养板/鉴定条培养板)、志贺氏菌专用培养罐(单罐放置10只培养袋)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等2.16 系统升级:可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级;3.仪器配置:配置含:系统主机、培养罐、减压阀、催化剂、厌氧混合气。产品应用于智能厌氧微生物培养系统、多功能微生物培养系统、厌氧培养箱、厌氧手套箱、厌氧工作站、三气培养箱、厌氧箱、厌氧培养、厌氧培养系统、厌氧培养装置、厌氧产气袋、微需氧培养、低氧培养、多功能厌氧环境生成系统。
    留言咨询
  • 智能厌氧微需氧培养系统型号HD-AN200技术参数:1. 系统功能:1.1 用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%)和特殊氧气浓度(0.5%-18%)比例的厌氧和微需氧环境,适用于厌氧菌、微需氧菌和细胞培养等。1.2 用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。2. 技术参数:2.1 自检功能:开机检测当地气压,获得初始值;便于生成任意氧浓度时获得准确数值;2.2 系统原理:通过真空置换抽排原理,精确控制气体压力的变化,从而达到控制培养罐气体环境的目的;2.3 触屏操作:大尺寸显示屏,彩色显示,不同的功能显示不同的颜色,实时显示当地气压,触摸操作,无需按键;2.4 快速生成培养环境:快速达到厌氧和微需氧环境,任意大小培养罐达到环境时间不超过10分钟;2.5 一键生成:系统可一键生成厌氧、微需氧和弯曲菌培养浓度,无需设置参数;2.6 多罐模式:系统配置2通道,可继续扩展多个通道,可同时对多个培养罐进行控制,避免生成过程中的等待和人工更换;2.7 调节精度:氧浓度设置范围0%-18%,设置数值0.5%递进,精确控制培养所需浓度;2.8 废气处理:内置废气处理装置,可自动处理排出的有害气体,避免废气对实验室造成污染;2.9 质控程序:系统每次生成所需的气体环境都会对培养罐做气源压力、管路连接、罐体密封、罐盖密封和催化剂活性五项检测,保证培养时培养罐的密封性;2.10 气源压力调节:调节减压阀时仪器实时显示气源压力,无需观察减压阀上的指针; 2.11 气体消耗:达到微需氧气体消耗≤ 2 L/12平皿;达到厌氧气体消耗≤7L /12平皿;2.12 厌氧催化剂:配套厌氧催化剂,辅助仪器达到0%氧浓度;可重复使用,不产生化学废弃物;2.13催化剂活性检测分级:催化剂活性检测可按需求关闭和开启;2.14 培养罐体:系统配套多种培养罐,培养罐清澈透明方便观察,每只培养罐均可支持不同的培养应用。2.15 罐体规格:≥7种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、双罐培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌专用培养罐(单罐放置8块弯曲菌培养双孔培养皿及8支增菌管)、微生物鉴定专用培养罐(单罐放置4块酶标板/细胞培养板/鉴定条培养板)、志贺氏菌专用培养罐(单罐放置10只培养袋)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等2.16 系统升级:可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级;3.仪器配置:配置含:系统主机、培养罐、减压阀、催化剂、厌氧混合气。产品应用于智能厌氧微生物培养系统、多功能微生物培养系统、厌氧培养箱、厌氧手套箱、厌氧工作站、三气培养箱、厌氧箱、厌氧培养、厌氧培养系统、厌氧培养装置、厌氧产气袋、微需氧培养、低氧培养、多功能厌氧环境生成系统。
    留言咨询
  • 智能厌氧微需氧培养系统型号HD-AN200技术参数:1. 系统功能:1.1 用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%)和特殊氧气浓度(0.5%-18%)比例的厌氧和微需氧环境,适用于厌氧菌、微需氧菌和细胞培养等。1.2 用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。2. 技术参数:2.1 自检功能:开机检测当地气压,获得初始值;便于生成任意氧浓度时获得准确数值;2.2 系统原理:通过真空置换抽排原理,精确控制气体压力的变化,从而达到控制培养罐气体环境的目的;2.3 触屏操作:大尺寸显示屏,彩色显示,不同的功能显示不同的颜色,实时显示当地气压,触摸操作,无需按键;2.4 快速生成培养环境:快速达到厌氧和微需氧环境,任意大小培养罐达到环境时间不超过10分钟;2.5 一键生成:系统可一键生成厌氧、微需氧和弯曲菌培养浓度,无需设置参数;2.6 多罐模式:系统配置2通道,可继续扩展多个通道,可同时对多个培养罐进行控制,避免生成过程中的等待和人工更换;2.7 调节精度:氧浓度设置范围0%-18%,设置数值0.5%递进,精确控制培养所需浓度;2.8 废气处理:内置废气处理装置,可自动处理排出的有害气体,避免废气对实验室造成污染;2.9 质控程序:系统每次生成所需的气体环境都会对培养罐做气源压力、管路连接、罐体密封、罐盖密封和催化剂活性五项检测,保证培养时培养罐的密封性;2.10 气源压力调节:调节减压阀时仪器实时显示气源压力,无需观察减压阀上的指针;2.11 气体消耗:达到微需氧气体消耗≤ 2 L/12平皿;达到厌氧气体消耗≤7L /12平皿;2.12 厌氧催化剂:配套厌氧催化剂,辅助仪器达到0%氧浓度;可重复使用,不产生化学废弃物;2.13催化剂活性检测分级:催化剂活性检测可按需求关闭和开启;2.14 培养罐体:系统配套多种培养罐,培养罐清澈透明方便观察,每只培养罐均可支持不同的培养应用。2.15 罐体规格:≥7种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、双罐培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌专用培养罐(单罐放置8块弯曲菌培养双孔培养皿及8支增菌管)、微生物鉴定专用培养罐(单罐放置4块酶标板/细胞培养板/鉴定条培养板)、志贺氏菌专用培养罐(单罐放置10只培养袋)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等2.16 系统升级:可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级;3.仪器配置:配置含:系统主机、培养罐、减压阀、催化剂、厌氧混合气。产品应用于智能厌氧微生物培养系统、多功能微生物培养系统、厌氧培养箱、厌氧手套箱、厌氧工作站、三气培养箱、厌氧箱、厌氧培养、厌氧培养系统、厌氧培养装置、厌氧产气袋、微需氧培养、低氧培养、多功能厌氧环境生成系统。
    留言咨询
  • DW-100A-K系列智能厌氧微生物培养系统产品简介: DW-100A-K系列智能厌氧微生物培养系统,仪器广泛服务于食品安全标准检测所需的厌氧菌(如产气荚膜梭菌、乳酸杆菌、双歧杆菌)培养和微需氧菌(如空肠弯曲菌)培养;还可根据科研实验需要选择特定氧气浓度(1%-15%可选)、和 CO2浓度(5%-15%可选),开展厌氧菌最佳培养条件研究。可广泛应用于疾控、市场监督检验机构、科研实验室、食品企业等各类检验场所。 应用原理:系统采用了目前公认产生厌氧/微需氧条件最有效的“Flushing & Gassing”气体置换方法,来制造培养气体环境。系统内置精密无油真空泵、高精度的压力传感装置和软件控制处理系统,可自动控制气体的抽排与置换,使所连接的罐体内快速达到厌氧、微需氧或氧浓度设定及二氧化碳浓度设定的培养环境。然后再将设定好气体环境的培养罐置于恒温培养箱中进行培养。 新一代厌氧培养方式:操作流程:五级质控:产品优势:1、一机多用:厌氧、微需氧和嗜CO2培养。2、快速生成环境:微需氧最快约2 min,厌氧最快约4 min。3、罐体灵活配置:多种罐体可选,满足不同培养需求。4、QA质控软件:培养前5级质控检测(气体输入气压检测、罐体连接性检测、罐体泄露性检测、罐体密封性检测、催化剂活性检测),确保重现性100%,消除臆测。5、平行培养:多个罐体可同时实现不同样本类型、不同温度、不同氧气浓度环境培养。 灵活配置多种配套罐体:DW-100A-K型 技术参数:1. 功能:主要用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%)和 特殊氧气(1%-15%)比例的厌氧环境,适用于厌氧菌、微需氧菌和细胞培养等。2. 工作条件及尺寸: 2.1工作环境温度: 10-35℃;2.2工作环境湿度: 20- 80%;2.3电源: 220V ± 10% ,50 Hz± 1。2.4外形尺寸(L×W×H):≤335mm×250mm×330mm3. 同1套系统可同时满足厌氧菌项目和微需氧菌项目的气体环境制备,不同项目程序可实现一键自动切换;项目切换时间≤10秒,中间无需更换气瓶。4. 适用检测项目:用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。5. 可快速达到培养条件:“微需氧”条件 ,最快≤2分钟;“厌氧”条件,最快≤4分钟;6. 内置MCU实现每次开机时对软件系统和内置气阀硬件性能自检,自检时间≤5秒。7. 操作方式7.1采用彩色操作屏≥4吋,内置软件支持用户菜单式选择培养项目。7.2菜单包括弯曲菌培养、厌氧培养、微需氧培养及“特殊氧气比例气体培养环境生成”。7.3菜单式选择,一键启动,自动生成。8.控制器(主机)8.1含真空泵、培养罐接口和气瓶接口及编程控制组件。8.2编程控制组件:所有的程序参数,如真空压力,反应气体压力,抽气注气循环次数都可通过控制器编程控制;编程后整个微需氧/厌氧条件生成过程自动运行,一键启动,中间无需人为干预。9. 气体消耗量:可达到微需氧≤ 2 L/12平皿;厌氧≤ 7L /12平皿;10.多功能多规格培养罐可选:培养罐清澈透明方便观察,每只培养罐均可支持多种培养应用,包括厌氧、微需氧等;支持≥6种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、中型双孔培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌培养罐(单罐放置8块弯曲菌培养双孔培养皿)、微生物鉴定专用培养罐(单罐放置4块酶标板/细胞培养板/鉴定条培养板)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等。11. 培养罐配套多种支架:适用于培养皿、双孔培养皿、微生物鉴定板条及三角瓶等微生物实验载体。12. 可连接罐体:微生物培养系统可配套1-100个罐体,每个培养罐可提供不同培养环境,每1个罐体均可独立控制。罐体容量1.5L-7.5L范围内≥6种容量选择。13. 质控及质量检测:软件QA质控程序,≥5级质控:罐体连接、输入气体压力、罐体泄漏、罐盖密闭性及厌氧催化剂活性质控。14. 可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级。15、系统配置:15.1 系统主机:1台 15.2系统控制组件及质控软件:1套 15.3小型培养罐及不锈钢培养皿夹具(培养皿可放置6皿,ф9cm): 1套15.4中型双孔培养罐及不锈钢培养皿夹具(培养皿可放置24皿,ф9cm): 1套15.5微生物鉴定专用培养罐: 1个15.6不锈钢培养夹具(可放置4块酶标板/细胞培养板/鉴定条培养板):1个15.7 二级气体减压阀: 1个15.8钯颗粒催化剂:6袋15.9催化剂专用烘箱: 1台 15.10 赠送8L标准厌氧混合气: 1瓶
    留言咨询
  • (一)功能应用体内模型存在许多局限性:较高的实验成本、有限的吞吐量、伦理问题和遗传背景的差异。更重要的是,与人类相比,它们在药物效应和/或疾病表型方面表现出巨大的生理差异,这解释了临床试验经常失败的原因。Kirkstall Ltd.专利技术的Quasi Vivo® 器官芯片微生理系统又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。(二)性能特点Quasi Vivo® 作为一种先进的器官芯片系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势:1.功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式允许独立、可控的空气、气体或液体层流流向顶端和基底外侧满足多器官/多细胞共培养,细胞间的信号传递等实验要求。加速类器官细胞分化和成熟,提高细胞活力,适合长期培养2.成像友好配备了光学窗口在顶部或底部表面,便于理想的实时高分辨率成像3.易于获取样本直接收集样本和获取组织或液体样本4.模拟生物力学和浓度梯度严格控制多个变量,可以模拟生理特征,如血液循环,组织间液流动态等,为细胞提供生物力学信号;可以实现免疫细胞共培养以及血管化等复杂模型构建;用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等5.便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性占地面积小,节省空间,可兼容标准实验室的孵化器(三)产品应用案例及发表文献1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.在本研究中,作者建立了一个在Kirkstall Quasi Vivo® 器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。2) Ramachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wö lfl S, Simon-Keller K, Marx A, Ø ie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.在本研究中,作者使用upcyte® 人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo® 器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。 3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)肿瘤微环境(TME)作为癌细胞行为调节剂的重要性已被公认,并导致了3D体外癌症模型的发展。癌症的3D实验室体外模型旨在概括肿瘤微环境的生化和生物物理特征,并旨在以生理相关的方式使研究癌症和新的治疗方式成为可能。本文作者研究了乳腺癌细胞在2D、3D和3D微流体条件下,并对比了不同培养条件下的乳腺癌细胞的凋亡、增殖和缺氧相关基因的细胞活力和表达水平。在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo® 器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。4)Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275.医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo® “芯片上的器官”流动培养系统,用于测试聚合物样品。5)Susanne Reinhold, Christian Herr, Yiwen Yao , Mehdi Pourrostami, Felix Ritzmann. Modeling of lung-liver interaction during infection in a human microfluidic organ-on-a-chip, bioRxiv preprint posted June 5, 2023.肺炎或COVID-19等呼吸道感染在世界范围内造成高死亡率和发病率。器官芯片技术在过去几年中发展起来,以建立基于人类的疾病模型,研究基本的疾病机制,并为加速药物开发提供工具。本研究的目的是建立一个肺-肝微流控系统来研究感染过程中两个器官模块的相互作用。作者利用原代人支气管(HBECs)或肺泡上皮细胞和人肝癌Huh-7细胞,通过Kirkstall Quasi Vivo® 器官芯片建立了双器官(肺/肝)微流控系统,开展共培养/刺激试验。将不可分型流感嗜血杆菌(NTHi)和铜绿假单胞菌(PAO1)应用于肺模块。通过dot-blot分析筛选分泌的介质并进行定量。通过mRNA测序,分析肺上皮细菌刺激对肝细胞转录组的影响。 (四)产品用户概况全球使用Kirkstall Quasi Vivo® 器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建: (五)品牌制造商简介Kirkstall Ltd.成立于 2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo® 。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
  • (一)功能应用体内模型存在许多局限性:较高的实验成本、有限的吞吐量、伦理问题和遗传背景的差异。更重要的是,与人类相比,它们在药物效应和/或疾病表型方面表现出巨大的生理差异,这解释了临床试验经常失败的原因。Kirkstall Ltd.专利技术的Quasi Vivo® 器官芯片微生理系统又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。(二)性能特点Quasi Vivo® 作为一种先进的器官芯片系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势:1.功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式允许独立、可控的空气、气体或液体层流流向顶端和基底外侧满足多器官/多细胞共培养,细胞间的信号传递等实验要求。加速类器官细胞分化和成熟,提高细胞活力,适合长期培养2.成像友好配备了光学窗口在顶部或底部表面,便于理想的实时高分辨率成像3.易于获取样本直接收集样本和获取组织或液体样本4.模拟生物力学和浓度梯度严格控制多个变量,可以模拟生理特征,如血液循环,组织间液流动态等,为细胞提供生物力学信号;可以实现免疫细胞共培养以及血管化等复杂模型构建;用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等5.便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性占地面积小,节省空间,可兼容标准实验室的孵化器(三)产品应用案例及发表文献1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.在本研究中,作者建立了一个在Kirkstall Quasi Vivo® 器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。2) Ramachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wö lfl S, Simon-Keller K, Marx A, Ø ie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.在本研究中,作者使用upcyte® 人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo® 器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。 3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)肿瘤微环境(TME)作为癌细胞行为调节剂的重要性已被公认,并导致了3D体外癌症模型的发展。癌症的3D实验室体外模型旨在概括肿瘤微环境的生化和生物物理特征,并旨在以生理相关的方式使研究癌症和新的治疗方式成为可能。本文作者研究了乳腺癌细胞在2D、3D和3D微流体条件下,并对比了不同培养条件下的乳腺癌细胞的凋亡、增殖和缺氧相关基因的细胞活力和表达水平。在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo® 器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。4)Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275.医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo® “芯片上的器官”流动培养系统,用于测试聚合物样品。5)Susanne Reinhold, Christian Herr, Yiwen Yao , Mehdi Pourrostami, Felix Ritzmann. Modeling of lung-liver interaction during infection in a human microfluidic organ-on-a-chip, bioRxiv preprint posted June 5, 2023.肺炎或COVID-19等呼吸道感染在世界范围内造成高死亡率和发病率。器官芯片技术在过去几年中发展起来,以建立基于人类的疾病模型,研究基本的疾病机制,并为加速药物开发提供工具。本研究的目的是建立一个肺-肝微流控系统来研究感染过程中两个器官模块的相互作用。作者利用原代人支气管(HBECs)或肺泡上皮细胞和人肝癌Huh-7细胞,通过Kirkstall Quasi Vivo® 器官芯片建立了双器官(肺/肝)微流控系统,开展共培养/刺激试验。将不可分型流感嗜血杆菌(NTHi)和铜绿假单胞菌(PAO1)应用于肺模块。通过dot-blot分析筛选分泌的介质并进行定量。通过mRNA测序,分析肺上皮细菌刺激对肝细胞转录组的影响。 (四)产品用户概况全球使用Kirkstall Quasi Vivo® 器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建: (五)品牌制造商简介Kirkstall Ltd.成立于 2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo® 。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制