当前位置: 仪器信息网 > 行业主题 > >

热电偶探针线临床探针

仪器信息网热电偶探针线临床探针专题为您提供2024年最新热电偶探针线临床探针价格报价、厂家品牌的相关信息, 包括热电偶探针线临床探针参数、型号等,不管是国产,还是进口品牌的热电偶探针线临床探针您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电偶探针线临床探针相关的耗材配件、试剂标物,还有热电偶探针线临床探针相关的最新资讯、资料,以及热电偶探针线临床探针相关的解决方案。

热电偶探针线临床探针相关的资讯

  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 安捷伦扩展用于临床检测的原位杂交探针产品组合
    p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong 用于淋巴瘤的全自动 CISH 和 IQFISH 基因组合集多项创新于一体 /strong /span /p p   2018年5月4日,北京——安捷伦科技公司(NYSE: A)日前宣布推出用于 Dako Omnis 的 EBER RNA CISH、κ 和 λ mRNA CISH 探针,以此扩展其原位杂交探针产品组合。此外还推出了用于淋巴瘤的手动 IQFISH 基因组合,该组合在欧洲拥有代表体外诊断的 CE 标志。 /p p   EBER RNA CISH、κ 和 λ mRNA CISH 产品的推出进一步提高了 Dako Omnis 仪器的诊断能力,这款仪器现可同时进行显色原位杂交 (CISH)、荧光原位杂交 (FISH) 和免疫组织化学 (IHC) 的检测。通过最优化的和经过验证的实验方案,Dako Omnis可以加快病例分析周期,并帮助实验室拥有始终如一的质量并获得最佳结果。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/191f31ea-fe48-4929-9f60-2fd6561e909f.jpg" title=" dako-omnis-advanced-staining.jpg" / /p p   丹麦奈斯特韦兹西兰大学医院病理学部医学实验室技术人员 Dorthe Strue-Nielsen 表示:“对我们的实验室来说,同时在 Dako Omnis 上进行 CISH 和 IHC 是一项完美的解决方案,可以节约很多手动操作时间。” /p p   用于淋巴瘤的 IQFISH 基因组合是一系列基于寡核苷酸的 FISH 探针,可用于检测涉及 MYC、BCL2、BCL6、MALT1、CCND1 和 IGH 基因的重排。这些探针既用于福尔马林固定石蜡包埋的组织切片,也可用于分裂和双融合方法。 /p p   这些探针使用合成的寡核苷酸制成,而非更常见的细菌人工染色体。这项创新技术消除了探针中的重复序列,可以降低背景信号。 /p p   安捷伦基因组学事业部营销主管 Jeff Heimburger 谈道:“CISH 探针生产采用的是安捷伦独特的工艺。将它们作为FISH 和 IHC工作流程的一部分,同时在 Dako Omnis 上运行,可提高实验室分析效率,为患者提供更快速地诊断。” /p p   安捷伦是第一家将快速杂交技术带入病理学实验室的商业供应商。安捷伦的 IQFISH 缓冲液可以改进杂交效率,使通常需要花费两天的检测在 5 小时内完成。对大多数实验室来说,这项创新的推出使病理学家在有需求时即可进行 FISH 检测,让患者更快获得检测结果。 /p p   关于安捷伦科技公司 /p p   安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为14200人。 /p
  • 赛默飞推出电镜、探针等新品 增强亚洲半导体领域业务
    p   上海2018年3月14日电, SEMICON China 2018 -- 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)宣布推出新产品,增强半导体制造的质量控制和产量。这些新产品将于2018年3月14日至16日在SEMICON China (N5馆5619号展位)展出。 /p p   赛默飞半导体副总裁兼总经理Rob Krueger表示:“赛默飞深耕用于控制生产工艺和诊断半导体和显示器制造过程和产品故障根本原因的先进分析技术。 strong 本周,我们将推出新产品,帮助推动亚洲,特别是中国的半导体制造业快速创新和持续拓展 /strong 。” /p p   strong  Verios G4极高分辨率扫描电子显微镜 /strong /p p   Thermo Scientific Verios G4极高分辨率(XHR)扫描电子显微镜(SEM)提供确定根本原因缺陷、产量损失以及过程和产品故障所需的能力和灵活性。 /p p   Krueger表示:“Verios G4是源于我们大获成功的Helios DualBeam系列 (聚焦离子束/扫描电子显微镜)仪器的扫描电子显微镜解决方案。它提供各种环境下行业领先的性能,尤其是用于先进工艺的光束敏感材料所需的低电压环境。” /p p    strong Hyperion II快速高效的纳米探针 /strong /p p   纳米探测器直接对单个晶体管进行电测量。新的Thermo Scientific Hyperion II是基于原子力显微镜的唯一商用纳米探针,无需真空要求和基于扫描电子显微镜纳米探测器的电子束/样品相互作用。Hyperion II的自动操作和成像模式专为提高速度和易用性而设计。此外,其精确定位电气故障的能力可以提高DualBeam或者TEM后续分析的速度和效率。 /p p    strong iCAP TQs电感耦合等离子体质谱仪推动快速可靠的化学监测 /strong /p p   Thermo Scientific iCAP TQs电感耦合等离子体质谱仪(ICP-MS)是信誉卓著的iCAP TQ ICP-MS的专用半导体版本。它提供了超高纯度化学品中快速、可靠和可重复的低水平污染物测量,以支持先进半导体生产过程的自动化在线监测和统计过程控制。iCAP TQs ICP-MS 在一个高性能解决方案中提供了新的超低检测水平和简单性。有了这个新系统,如今将化学分析从实验室移到工厂成为可能,并支持对化学浴进行在线控制,从而优化响应时间。 /p p    strong 赛默飞世尔科技简介 /strong /p p   赛默飞世尔科技是科学服务领域的世界领导者,根据赛默飞发布的2017年财报显示,公司2017年全年营收达到了209. 2亿美元。在全球拥有超过70,000名员工。其使命是携手客户,让世界更健康、更清洁、更安全。公司帮助客户加速生命科学领域的研究、解决在分析领域遇到的复杂挑战,促进医疗诊断发展、提高实验室生产力。借助于其主要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,赛默飞提供结合创新技术、便捷采购和全方位支持的无与伦比的解决方案。 /p
  • 《自然—通讯》:中国团队开发出新型荧光探针
    论文截图9月12日,中国科学院深圳先进技术研究院医工所生物医学光学与分子影像研究中心储军课题组的最新成果发表于《自然—通讯》。研究人员研发了在活细胞内具有12倍荧光变化的高性能基因编码的cAMP绿色荧光探针(命名为G-Flamp1)。该研究结合显微成像和光纤记录等技术,实时高灵敏监测了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号时空动力学变化,探索了cAMP动力学与动物行为之间的内在关联。Nature Methods的审稿人在审稿过程中对该成果给予了高度评价,认为G-Flamp1探针具有非常棒的性质,在荧光探针的性能上具有很大的提升,该探针打开了很多有趣的cAMP信号研究的大门,是非常及时和高质量的研究成果。深圳先进院储军研究员为该论文的通讯作者,深圳先进院助理研究员王亮博士及北京大学邬春灵博士为该论文的共同第一作者。细胞是包括人类在内的绝大部分生命体结构和功能的基本单位。细胞不断地接受周围环境的信号,并将其转变为细胞内相应分子(如蛋白质、有机小分子、离子、DNA和RNA等)的数量、分布和活性状态的变化,从而改变细胞的形态和生物学功能等。该过程的异常则与疾病的发生发展相关。因此,科学家们往往通过检测上述关键分子的时空变化来理解细胞的功能,并阐明相关疾病的发生机制。在该研究中,研究人员选取细胞内重要的第二信使分子环磷酸腺苷(cAMP)作为研究目标。cAMP可传递细胞表面多种G蛋白偶联受体(GPCR)的信息,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。“活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。”论文通讯作者储军研究员表示。与非基因编码探针(染料和材料类)相比,基因编码探针像正常蛋白质一样,可以定位到生物体特定细胞或特定细胞亚结构,具有低毒性、低背景、可遗传等优点,在生命科学基础研究中具有无可比拟的优势。然而,现有的50多个基因编码的cAMP荧光探针要么灵敏度低(荧光变化最大只有1.5倍),要么荧光亮度较暗,很难监测活体中微弱的内源性cAMP变化,极大地限制了生理和病理状态下cAMP分子调控机理和功能的研究。为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道蛋白的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针G-Flamp1。特别的,该探针在活细胞中的荧光变化可达12倍,是目前少数几个在10倍以上的荧光探针之一。随后,研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究人员首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,然后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化,暗示不同子区域可能在联想性学习中起着相对独立的作用。为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。最后,研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明,随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高;该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。因此,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。综上所述,该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步理解cAMP信号的调控和功能奠定了基础。“与广泛使用的钙离子探针GCaMP相比,G-Flamp1才仅仅只是开始,目前已有几十家国内外实验室在使用G-Flamp1,未来将会有更多实验室利用G-Flamp1来研究复杂的生物学问题。”论文通讯作者储军研究员表示。在未来研究中,研究团队将进一步提高探针性能,开发适用于不同应用场景的下一代高灵敏cAMP探针,并利用其揭示活细胞和活体中cAMP信号的规律、调控机制及生物学功能。与此同时,结合高内涵药物筛选平台,研究团队开发的新型探针也将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。
  • 新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。  cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。  为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。  在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。  研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。  为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。  研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。  该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。  研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 我国科学家首创细胞代谢荧光探针-SoNar
    华东理工大学生物反应器工程国家重点实验室、上海生物制造技术协同创新中心杨弋团队首创了一种可监测单细胞和活体动物代谢状态的新型荧光探针,并筛选到一个高效的抗癌化合物,揭示了其机制。5月5日,相关研究成果发表于《细胞&mdash 代谢》杂志。   癌细胞代谢的改变是肿瘤发生与生长的根本原因 通过控制癌细胞的异常代谢来杀伤、抑制癌细胞,或使之回到正常细胞,可有效抑制癌症发生的进程。然而利用传统生化分析方法研究细胞代谢活动并搜寻抗癌药物,存在着效率低、成本高的技术瓶颈。NAD/NADH是一对核心代谢物,是表征细胞代谢失衡的最佳参数。   杨弋团队研发的新细胞代谢荧光探针SoNar,基于合成生物学方法构建,具有高灵敏度、高亮度和巨大动态范围,可察觉癌细胞与正常细胞的微细代谢差异,真正实现在单细胞和活体动物水平对细胞代谢状态的高时空分辨检测和成像。利用SoNar,该团队进行了基于细胞代谢的首次活细胞水平高通量化合物筛选,发现化合物KP372-1可在低浓度下广泛杀伤不同人体组织来源的癌细胞。   利用代谢组学、化学生物学和遗传学筛选等技术,研究人员最终鉴定了KP372-1是一种结构新颖的氧化还原循环底物,能在癌细胞中特异高表达的NQO1酶催化下产生极度氧化应激,进而杀灭癌细胞。据悉,该化合物比目前已进入临床II期的依赖NQO1的经典抗癌化合物&beta -拉帕醌具有更高的口服利用度、更长的药物作用半衰期和更低的药效浓度。   据悉,该项研究工作在杨弋的指导下,由赵玉政和呼庆勋等研究生耗时5年完成。同时,SoNar探针还可以广泛应用于细胞代谢相关的活细胞与活体实时监测,为人们更好地了解物质与能量代谢的调节机制提供重要的创新工具与手段。
  • 无形“探针”,“洞见”人体
    更精准地实现人体器官和病灶部位无损害可视化,一直是人们追求的目标。  5月10日,在复旦大学庆祝建校118周年系列学术报告中,复旦大学化学系教授、上海市生物医学检测试剂工程中心主任张凡以《透视人体健康的新技术——近红外光化学探针用于生物医学诊断》为题,分享了自己深耕多年的近红外荧光分子“探针”研究,结合近红外光学成像仪器,该技术可隔着皮肤和肌肉监测体内活动,有望为疾病诊断提供新路径。  发光“探针”为手术精准导航  人们很早就有“洞见”自己的需求,梦想能发明一种无创技术,实现对人体健康的可视化监控。  1895年,德国物理学家伦琴发现X射线,开创医学影像技术的先河,目前我们常用的医学影像检查技术,如CT(电子计算机断层扫描)就与此有关。然而,如何实现无辐射、实时动态的活体成像技术一直存在巨大挑战。  研究人员逐渐发现,活体荧光成像技术,相较于已有的CT、MRI(磁共振成像)、PET(正电子发射型计算机断层显像)等,具有无辐射、高时间和空间分辨率、高特异性等检测优势,能够为精准手术导航技术领域提供较好的应用前景。  在对医学检测方法的优化探索中,张凡团队开发了一种新技术,就像打开一扇观察人体内部的窗口——只需静脉注射会发光的近红外荧光分子“探针”,即可自动定位到某个器官、肿瘤或是血管,再通过对人体没有伤害的光学成像仪器,就能隔着皮肤和肌肉组织直观清晰观察到肠道的蠕动、肿瘤的边缘、细胞的游走等  “而且,我们看到的不是静态‘照片’,是动态的‘视频’。”张凡说。  从自然中寻找答案  “活体荧光成像技术也还有许多问题亟待解决。”张凡说,“荧光虽然没有辐射,可以很快实施动态监测,但是其组织穿透深度较浅一直以来都是限制其应用的关键科学问题。”  此前,光学成像多使用可见光区(400纳米至700纳米)和近红外一区(700纳米至900 纳米)的荧光,但由于这一波段在生物组织中具有较高的吸收和散射,其在活体深组织检测中的应用大大受限。张凡团队专注于在近红外二区窗口(1000纳米至1700 纳米)内探索活体深组织成像窗口,并且根据获得的最优窗口开发对应的长波荧光探针和成像仪器。  到目前为止,张凡团队累计开发了30余种系列近红外二区有机小分子探针,相关荧光成像设备和探针试剂已实现应用转化,在多家科研机构和医院用于基础研究和临床前研究。已经成功获取了生物体内部多个待测物的动态监测。  随着研究进一步深入,研究人员发现,荧光成像往往是利用外部激发光源实时激发荧光探针来获取信号,这就不可避免地会产生生物组织背景荧光,从而影响成像的分辨率和信噪比。  如何寻找优化之法?在张凡看来,最好的答案就在自然里。自然界能自主发光的生物很多,比如鱿鱼、水母、萤火虫等。  “与其受背景荧光干扰,不如尝试将其本身的荧光运用起来。前面提到的‘探针’对人体来说都是‘外来的’,注射到体内后容易被代谢,而如果可以实现近红外生物发光成像就可以更好的实现无激发的高信噪比原位成像追踪。”张凡说。  创新在学科交叉处  思路的转变拓展了张凡的研究视野。他发现除生物医学,近红外荧光分子“探针”还能做很多事儿,比如监测微塑料污染。  微塑料是指直径小于5微米的塑料。张凡认为,长期以来由于分析方法的限制,人类大大低估了微塑料暴露的影响,并且对于微塑料在人体内体液和组织的影响的研究仍然非常粗浅。事实上,直径小于2微米的小尺寸微塑料,就可以穿越细胞膜,并在脏器和脑部富集,极有可能引起氧化应激、炎症以及DNA损伤,是人类健康的严重威胁。  人们认为微塑料的影响只是通过由海洋到人类的食物链传播,其实不然。根据最新研究成果,微塑料会随着大气远程传播,并在淡水环境及陆地上沉积,比如美国西部地区每年就会有120吨微塑料会由大气沉积到陆地。  “微塑料比人们想象中更广泛地存在于生活中,甚至存在于婴儿的奶瓶里。”张凡希望,未来能运用好近红外荧光分子“探针”技术,对微塑料进行活体实时动态追踪,为保卫人类健康贡献更多力量。  张凡一直鼓励学生勇于跨界、主动交叉、全面发展。经过多年积累,他带领的团队已成长为一个典型的学科交叉团队,一批批优秀学子毕业后继续从事相关科研工作。  “创新的机会,就在学科交叉之处。”谈及科研的心得,张凡总结说。
  • 光谱探针在指导手术方面潜力无限!
    帕金森式症又称震颤麻痹,是一种常见的神经退行性疾病,已成为继心脑血管病、肿瘤之后老年人的第三大“杀手”,严重影响患者的生活能力和质量。据统计,我国65岁以上的老年人中约有1.7%患有该症状。而大脑深部刺激(DBS)逐渐成为晚期帕金森患者常见的治疗方法,但是仍具有重大风险。该治疗方式是通过在大脑中放置电极、以破坏导致与晚期帕金森病相关的衰弱性震颤和僵硬的错误信号。对于不再受益于药物治疗的患者来说,这可能是非常有效的治疗方法,但是将电极放在错误位置会降低有效性并导致心理障碍。来自拉瓦尔大学魁北克CERVO脑研究中心的研究小组提出使用两种光谱分析的新探针可以帮助医生更准确地在大脑中导航仪器,从而使手术更安全,并提高成功率。小组成员Mireille Quémener表示:“改善DBS电极插入的神经外科指导将简化手术过程,减少手术时间,降低整体健康治疗成本并防止不良的心理后果。”光谱探针提供实时位置导航DBS手术过程由两部分组成,一部分是将电极放置在大脑特定部位,另一部分是植入电池组,便于将电流输送到电极。传统插入电极的方式是依靠磁共振成像(MRI)扫描来确定位置。然而,在颅骨钻孔的过程中,大脑可能会移动2毫米,导致电极放置位置不准确。基于上述问题,研究人员创建了一个装有光学探针的DBS电极,该电极通过光学探针增强,在插入过程中对脑组织进行相干反斯托克斯拉曼散射光谱(CARS)和漫反射光谱(DRS)。光学探针包含两根用于CARS和DRS照明的光纤和第三根用于收集信号的光纤。然后从组织学切片(HISTO)中目视识别组织类型,以生成由黑色(灰质)和白色(白质)区域组成的条形码。将该条形码与使用光学探针采集的数据进行比较,并使用PCA agorithm(探针条形码)进行分析。一旦电极到达目标位置,光学探针就可以在电极保持在原位的同时进行工作。图1 左半球和右半球的组织切片显示两个电极插入(a)大脑右半球的脱靶部分(使用CARS)和(b)大脑左半球的丘脑下核(STN)(使用DRS)光谱探针在指导手术方面潜力无限为了测试这种新探针,神经外科医生用它来在人类尸体大脑的六个区域植入电极,并沿着大脑两个半球各50mm的总长度收集了CARS和DRS测量值。手术后,研究人员提取大脑并目视识别了探针通过的白质和灰质。将CARS和DRS测量的读数与大脑结构的视觉记录进行比较,研究人员发现CARS和DRS方法非常准确地识别脑组织。这些发现证实,光谱学可能是帮助神经外科医生导航大脑的有用工具。Quémener 表示:“我们的团队目前正在研究调整光学探针,使其用于将接受DBS手术的患者的临床试验。我们相信光学方法在手术指导方面具有巨大的潜力,并希望我们的技术将在临床中出现,以协助外科医生进行各种脑部手术。”
  • “荧光探针”点亮细胞世界
    p style=" text-indent: 2em text-align: justify " 走进山东师范大学化学化工与材料科学学院实验室,在激光显微镜下,“荧光探针”使细胞呈现出色彩斑斓的效果,形态各异的图案仿佛将人带入鲜花与极光交融的海洋。然而,你能想象这不起眼的“荧光探针”通过成像监测,便能实现尽早地发现和预防重大疾病吗? /p p style=" text-indent: 2em text-align: justify " 山东师范大学化学化工与材料科学学院唐波、董育斌、李平、王鹏、李娜等领衔的科研团队,经过近二十年的刻苦攻关,有效地解决了细胞成像这一难题,极大地推动了该领域的国际研究步伐,他们完成的“细胞稳态调控活性分子的荧光成像研究”项目于近日获得2018年度国家自然科学二等奖,成为首个以第一完成单位获得国家自然科学奖的山东省省属高校。 /p p style=" text-indent: 2em text-align: justify " 早在2000年前后,当时国内的生命科学和光学成像等研究领域刚刚兴起,团队领头人唐波教授便敏锐地意识到分析化学和生命科学的紧密结合,必将推动一个新型交叉研究领域的兴起。从此,一个以化学、生物学、医学等多学科为支撑,以揭示重大疾病的发现和治疗为使命的团队应运而生。 /p p style=" text-indent: 2em text-align: justify " 2013年初,以山东师范大学为项目牵头单位、唐波为首席科学家的国家重大科学研究计划(973)项目“重大疾病相关的若干重要难检活性小分子细胞内纳米传感研究”正式启动。“一定要把目光瞄准国际科研领域的最前沿,只有站位高、视野宽、反应快,才能把握住科研领域的时代脉搏,产出高质量的研究成果。”唐波不仅自己以此为标杆,还将这一理念植入了全体科研团队的“基因”之中。 /p p style=" text-indent: 2em text-align: justify " 自然科学奖评审的核心指标就是原创性,而这正是“细胞稳态调控活性分子的荧光成像研究”项目的“撒手锏”。该项目在国际上率先构建成多种新型发光材料,解决了材料量子产率低与波长不可调的关键问题,为研制具有高灵敏度与光谱空间可分辨探针的筛选、设计、构建奠定了重要的理论基础。 /p p style=" text-indent: 2em text-align: justify " “在原有的检测方法中,荧光信号灵敏度差、转换效率较低,会直接影响成像质量,从而会导致医生对病人的病情错判。我们的成果创新性地运用特异性识别活性分子的机理与能量转移、电子转移等光信号转换机制,成功实现了对糖蛋白、葡萄糖、microRNA等活性分子的高选择性识别,检测速度和准确性都得到了极大提高。”长江学者董育斌教授说。 /p p style=" text-indent: 2em text-align: justify " “在疾病发生之前,我们可以通过细胞内特定指标的变化来作出预警,从而尽早地预防和治疗。而这种指标变化,需要找到特殊的化合物即‘探针’,注入活体细胞后,用高能荧光显微镜来检测‘探针’光学信号的改变来确定。”为团队作出重要贡献的徐克花教授介绍说,他们的工作就是寻找化合物、研发新材料“探针”,实现高准确度和超高灵敏检测的突破。 /p p style=" text-indent: 2em text-align: justify " “这与现阶段医学临床上采用的肿瘤检测方式不同。传统的血液检测,可能因样本离开人体而导致准确性下降,假阳性比例很高,比如前列腺癌的假阳性比例最高达60%。而使用CT检查,当发现病灶时,病情一般已进入中晚期。”青年长江学者李娜教授说,“因此,使用荧光成像方法,通过新材料‘探针’在活细胞里面检测活性物质,且是在体外保真环境进行,无创伤,无伤害。” /p p style=" text-indent: 2em text-align: justify " 目前,团队师生所在的化学学科近十年来稳居ESI全球前1%,团队成员均有稳定的国家级课题作为依托,堪称精兵强将。“我们研究团队,不仅有化学专家,还引进了生物、医学、物理等方面的人才。大家学术背景非常多元,团队在开拓新的研究领域和方向时也非常方便。”泰山学者青年专家高雯说。 /p
  • 宁波材料所SERS探针肿瘤体外诊断研究进展
    恶性肿瘤严重威胁人类生命健康,“早诊、早治”是根治肿瘤的最佳途径。目前临床肿瘤诊断方法主要依赖手术和穿刺活检,是侵入性检查手段,给患者带来了生理痛苦和心理负担。因此开发一种非入侵式、高检测灵敏度的谱学/图像分析引导技术应用于实体肿瘤的前期诊断和术后评估是实现肿瘤精准诊断的关键,也已成为材料科学和生物学科等多学科交叉领域共同关注的重要科学问题。纳米材料表面增强拉曼散射(SERS)光谱/图像具有高检测灵敏度、选择性增强特性、稳定性高、可提供组分指纹信息等检测优势,可高效应用于肿瘤的液体活检,实现外周血样中肿瘤细胞的精准诊断。中国科学院宁波材料技术与工程研究所纳米生物材料团队在SERS生物探针材料设计及应用研究方面取得了系列进展。纳米生物材料团队开发了基于表面增强拉曼散射(SERS)光谱和磁共振造影(MRI)增强的Fe3O4双模态成像生物探针,研究发现超小粒径Fe3O4纳米粒子具有显著的SERS活性(5×10-9 M检测极限)。Fe3O4纳米粒子具有高效的光诱导电荷转移(PICT)效应归因于Fe元素的多个价态能级促进电子跃迁。密度泛函理论计算进一步揭示了超小粒径Fe3O4纳米粒子的窄带隙和高电子态密度能够明显提高SERS-目标分子体系中的振动耦合共振效应。通过构建具有高灵敏度和肿瘤靶向特异性的Fe3O4生物探针,可以实现不同亚型三阴乳腺癌肿瘤细胞的体外SERS信号/成像区分鉴定。同时,Fe3O4的生物探针也展现出对荷瘤小鼠体内肿瘤的主动靶向MRI造影特性,实现了半导体生物探针的SERS-MRI双模态成像分别用于体外和体内肿瘤成像,不仅在肿瘤早期诊断中具有优势,而且在影像引导肿瘤治疗方面具有巨大潜力(图1)。相关成果以“Multiple Valence States of Fe Boosting SERS Activity of Fe3O4 Nanoparticles and Enabling Effective SERS-MRI Bimodal Cancer Imaging”为题发表在国家自然科学基金委主办的综合性英文学术期刊Fundamental Research上。进一步,为了高效提取外周血样中的肿瘤细胞,提高SERS纳米生物探针对肿瘤细胞的靶向检测能力。纳米生物材料团队联合宁波诺丁汉大学任勇副教授团队,合作开发了微流控富集分离与拉曼光谱快速检测肿瘤细胞技术,开发出一种新型的基于微筛分离手段和肿瘤靶向特性的黑色氧化钛(B-TiO2)SERS生物探针用于循环肿瘤细胞(CTC)原位检测。该研究先利用微筛芯片对人体血液中目标细胞进行纯化分离,以排除大部分血液细胞的干扰,再利用叶酸修饰的SERS生物探针识别芯片上捕获的肿瘤细胞,从而实现外周血样中单个肿瘤细胞筛选和原位检测,实验结果具有高检测灵敏度、特异性和准确性。更重要的是,该研究工作设计的微流控-SERS生物探针能够有效应用于临床肿瘤样本的有效检测,有望为循环肿瘤细胞的检测提供新的策略(图2)。相关成果以“TiO2-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter“为题发表在Biosensors and Bioelectronics,2022,210:114305(https://doi.org/10.1016/j.bios.2022.114305)。此外,纳米生物材料团队开发了生物相容性较好、具有选择性增强特性、光谱稳定性强的半导体氧化银SERS纳米生物探针,应用于外周血样的循环肿瘤细胞检测。该研究先利用淋巴细胞分离液对外周血样中的血细胞进行分离,排除红细胞和白细胞对SERS检测的干扰,再通过叶酸修饰的SERS生物探针靶向识别血样中的肿瘤细胞,从而实现外周血样中单个循环肿瘤细胞的原位精准检测。肺癌患者外周血样的有效准确检测也证明了Ag2O基SERS生物探针具有优异的临床应用前景(图3)。相关成果以”Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells”为题发表在Science China life science,2022,65: 561-571(https://doi.org/10.1007/s11427-020-1931-9)。图3 Ag2O基SERS生物探针用于肿瘤细胞检测为了进一步研发高SERS活性的半导体纳米材料,纳米生物材料团队联合北京航空航天大学郭林教授团队,通过制备多孔ZnO纳米片,在材料表面引入大量缺陷态,提高了ZnO材料的SERS增强因子,并发现一种低温增强半导体SERS活性的方法,低温可以有效削弱晶格的热振动,从而减少声子相关的非辐射跃迁复合,能够有效促进表面缺陷态能级相关的电子跃迁,展现出了低温SERS生物传感的应用潜力(图4)。相关成果以”Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets”为题发表在Chemical Science,2020, 11, 9414(https://doi.org/10.1039/d0sc02712j)。图4 半导体材料低温SERS效应基于上述开发的系列SERS纳米生物探针,通过与浙江省肿瘤医院邵国良主任医师团队合作,SERS探针能够有效用于临床病人外周血样中的乳腺癌、肝癌和肺癌循环肿瘤细胞的准确检测,已完成180例不同癌种临床样本有效检测,检测灵敏度可以达到单细胞水平,检测准确度可达90%以上。进一步的研究发现,SERS生物探针可有效区分不同亚型的乳腺癌肿瘤细胞,实现乳腺癌分子分型鉴定检测(专利申请号:202110745849.1、202210148829.0、202210425260.8)。
  • 双靶向近红外荧光探针,为食管癌精准手术提供新型可视化手段
    食管癌是我国的高发癌症之一,数据显示,我国食管癌的发病率和死亡率均占全球的一半以上。根治性手术切除是首选,而无法精准识别微小转移病灶是影响手术预后的重要原因,近红外荧光(NIRF)探针虽然能辅助识别肿瘤边界、检测转移病灶,但单一的靶向探针却难以覆盖大部分食管癌病灶。近日,中山大学附属第五医院(中大五院)单鸿教授团队研发了一种双靶向近红外荧光探针,可有效提高肿瘤靶向性,为食管癌精准手术提供新型可视化手段。相关研究成果Preclinical evaluation of a novel EGFR&c-Met bispecific near infrared probe for visualization of esophageal cancer and metastatic lymph nodes,发表在核医学与分子影像期刊《European Journal of Nuclear Medicine and Molecular Imaging》上。其中单鸿教授、李丹研究员为共同通讯作者,梁明柱副主任医师为第一作者。图1:EGFR与c-Met对食管癌转移淋巴结的联合检测率显著高于EGFR或c-Met单独检测率图2:EGFR&c&Met双靶向NIRF探针既能识别EGFR阳性食管癌又能识别c-Met阳性食管癌该研究针对食管癌特异性表达的表皮生长因子受体(EGFR)和细胞间充质上皮转化因子(c-Met),聚焦食管癌发生发展过程中肿瘤靶点蛋白表达特征,发现EGFR和c-Met在食管癌和转移淋巴结互补表达,EGFR或c-Met单独检测率仅为50%-60%,而联合检测率提高至80%以上(图1),基于临床验证安全性的EGFR&c-Met双特异抗体构建NIRF探针,在动物肿瘤模型中证实该探针能提高食管癌的识别能力(图2),并准确鉴别良恶性淋巴结(图3),对食管癌精准手术导航具有良好的临床转化潜力和应用前景。图3:EGFR&c&Met双靶向NIRF探针准确鉴别食管癌转移淋巴洁和炎性淋巴结单鸿教授研究团队长期致力于分子影像技术的研究,在国家重点研发计划等重大项目的资助下,开发针对食管癌的系列新型探针并牵头开展多项临床试验,制定了食管癌分子影像专家共识,有力推动了我国食管癌精准诊疗技术的发展。据介绍,单鸿系中大五院院长、介入医学中心主任、影像医学部学科带头人,医学博士、博士研究生导师、教授、主任医师,享受“国务院政府特殊津贴”专家、国家重点研发计划首席科学家、南粤百杰(广东特支计划杰出人才)、广东省医学领军人才、中山大学名医,全国先进工作者、广东省五一劳动奖章获得者、珠海市荣誉市民。现任中国医院协会介入医学中心分会主任委员、中国医师协会介入医师分会副会长、《中华介入放射学电子杂志》总编辑。长期从事肿瘤、血管及肝脏疾病的多组学融合与创新研究,致力于实现疾病的独创性可视化探索,并将相关研究成果进行临床转化。以通讯或第一作者发表高水平论文100余篇,其中包括:N Engl J Med、National Science Review、Gastroenterology、Gut、Hepatology、Lancet Gastroenterol Hepatol、Radiology、Cancer Res、J Nucl Med等高水平论文。主编《临床介入诊疗学》、《临床血管解剖学—介入放射学动脉图谱》、《肝脏移植影像学》等专著。主持国家重点研发计划项目、国家自然科学基金重点项目、国际(地区)合作研究项目、国家自然科学基金面上项目等多个国家级、省部级项目。授权国家发明专利13项。牵头申报的《不同性质门脉高压症综合介入治疗的临床系列研究》获2005年教育部提名国家科技进步奖一等奖;《肝移植围手术期影像学及介入诊疗技术的系列研究》获2010年广东省科技进步奖一等奖;《分子影像学在肿瘤诊疗中的基础与应用研究》获2020年华夏医学科技奖二等奖;《新型冠状病毒肺炎临床救治的“珠海实践”》获2021年珠海市科技进步奖特等奖。李丹系中大五院核医学科副主任、科研处处长,研究员、医学博士、博士研究生导师,中华医学会放射学分会分子影像学组委员、广东省医学会放射医学分会第十一届委员会分子影像学组副组长。研究方向为分子影像技术在重大疾病诊疗中的应用,主持国家自然科学基金面上项目、青年科学基金项目、国家重点研发计划分课题等项目,在相关领域以第一或通讯作者发表高水平论文30余篇,其中包括:J Nucl Med、Eur J Nucl Med Mol Imaging、Acta Pharm Sin B、J Control Release、Pharmacol Res、ACS Appl Mater Interfaces等国际学术期刊,获得授权发明专利10余项。梁明柱系中大五院放射科副主任医师、医学博士、硕士研究生导师,广东省医学会放射学分会心胸学组委员、珠海市医学会放射学分会委员、珠海市医师学会放射学分会常委。长期从事胸部肿瘤影像诊断及分子探针研究,主持国家、省市级科研项目4项,参加国家重点研发计划等科研项目3项,近五年以第一作者及共同第一作者在相关领域发表包括Eur J Nucl Med Mol Imaging、J Control Release等高水平论文多篇。
  • 上海交大开发新型探针:小至70nm 依然可实现超强拉曼信号 | 前沿用户报道
    供稿:张雨晴编辑:Chen导读:近日,上海交通大学叶坚教授团队开发了一种新型拉曼探针(P-GERTs),尺寸仅为70nm左右,依然可实现拉曼信号的整体增强和成像速度的大幅提高,为突破SERS生物成像发展瓶颈,实现快速超灵敏生物成像开辟新机。SERS生物成像技术的发展前景与瓶颈得益于表面增强拉曼散射(SERS)技术灵敏度高、分辨率高、稳定性好等优点及其“探针”所特有的指纹图谱(高特异性)和超窄线宽(多指标检测)优势,SERS技术在生物体内成像方面表现出广阔的前景,目前临床肿瘤的治疗手术中,利用拉曼成像检测肿瘤边缘和残留微小肿瘤就是重要应用之一。然而,现有的SERS成像速度远远落后于临床需要,通常需要几十分钟甚至几小时才能获得一个大范围的拉曼活体图像。其中影响SERS成像速度的重要因素之一便是SERS探针的整体拉曼信号不够强。Tips: SERS探针的信号强度和成像速度很大程度上取决于探针电磁场热点区域(hot spots)的信号分子数量。常用增强信号强度的策略是通过控制探针的形貌,使其具有一些尖端或者粗糙表面来形成电磁场热点区域;或者通过在金属纳米结构表面或内部引入纳米缝隙来有效地构建电磁场热点。但大多数都不能产生均匀且稳定的SERS信号增强。研究人员一般通过改变探针形貌来提高SERS探针信号强度,但大多数都不能产生均匀且稳定的SERS信号增强。而且这类探针尺寸相对较大,通常在100-200 nm之间,应用于生物成像领域,会降低探针在体内的血液循环时间,影响探针的体内分布情况和代谢动力学,不利于体内的靶向识别、成像和检测等应用的实现。因此,如何获得尺寸较小、且可实现信号强度和成像速度大幅提高的探针,成为研究人员面临的重要课题。 新型探针突破SERS生物成像发展瓶颈近日,上海交通大学叶坚教授团队便开发出了这样一款强大探针——新型的、外壳为花瓣状结构的“多热点”缝隙增强拉曼探针(P-GERTs),尺寸仅为70 nm左右,且同时实现了拉曼信号的整体增强和成像速度的大幅提高,为突破目前SERS生物成像发展瓶颈,实现快速超灵敏生物成像开辟了新机。叶坚教授团队采用将拉曼信号分子同时嵌入核壳颗粒内部和外部花瓣状结构之间的亚纳米缝隙这一方法制得探针,表征发现该探针能够大程度地提高单颗粒上报告分子的吸附量,实现超强的拉曼信号。此外,研究人员还可以通过调节内嵌的拉曼信号分子数量,来调节探针的形貌和SERS性能;或通过改变外部拉曼信号分子的种类,获得多种信号探针以实现多重检测和成像。实验结果验证为了进一步验证P-GERTs探针的信号强度和成像速度,研究人员对实验结果进行了进一步表征。研究人员使用HORIBAXploRA INV拉曼成像光谱仪和NanoRaman系统对P-GERTs探针的拉曼增强效果进行表征,发现:P-GERTs拉曼信号增强因子高达5 × 109,相较于常见的拉曼探针提高了1-3个数量级,实现了超强的拉曼信号。结合HORIBA拉曼成像技术(Duoscan成像模式和Swift数据处理方式),研究人员进一步发现成像单点采集时间仅为0.7 ms /像素,成像速度大幅提升。在低至370 uW功率时6秒内就获得高分辨单细胞拉曼成像(2500个像素),52秒内获得高对比度大范围(3.2 × 2.8 cm2)的小鼠活体前哨淋巴结拉曼成像,表现出良好的信号均一性和光稳定性。 “多热点”缝隙增强拉曼探针结果图a) 示意图;b) 单细胞透射电镜图;c) 明场图d) 高分辨快速拉曼成像图 (50×50像素)e) 高对比度大范围 (3.2×2.8cm2) 的小鼠活体前哨淋巴结拉曼成像上海交通大学叶坚教授团队的这项研究结果表明:P-GERTs作为超亮和超稳定的SERS探针,为克服目前SERS生物成像发展瓶颈,实现高速、高对比度超灵敏的细胞和生物组织成像提供了新机会。文章作者&论文直达文章作者:Yuqing Zhang, Yuqing Gu, Jing He, Benjamin D. Thackray, Jian Ye*题目&杂志:Ultrabright gap-enhanced Raman tagsfor high-speed bioimaging. Nature Communications, 2019, 10, 3509.DOI:https://doi.org/10.1038/s41467-019-11829-y课题组网页:http://www.yelab.sjtu.edu.cn/致谢:叶坚课题组提供论文注:如果您对本报道的研究方法感兴趣,希望联系作者,或者想对本研究拉曼光谱测试方法一探究竟,欢迎点击“阅读原文”留言,我们的拉曼应用专家将乐于为您提供解答服务。今日话题表面增强拉曼散射(SERS)技术应用广泛,那么具体应用有哪些呢?欢迎您分享科研过程中与SERS技术相关的内容。我们会在下次前沿应用专栏中分享给大家,本文发出后3个工作日内留言获赞多的读者我们还将送出星巴克咖啡券一份哦。? 点击查看更多往期精彩文章 拉曼与统计分析神助攻,复旦破译PM2.5重要成分 | 前沿用户报道清华大学魏飞团队实现一步法制备纯度99.9999%半导体碳纳米管阵列严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】发现生命的轨迹——化石中的碳元素分析 | 前沿应用地底深处的生命探索——矿物中的化学反应分析 | 前沿应用【下篇】瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移新型荧光探针——细胞膜脂变化无所遁形!复旦巧用增强拉曼“识”雾霾 | 前沿用户报道1+1≥3,AFM-Raman 材料表征新技术!——附新相关论文 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载,文章版权、数据及所述观点归原作者原出处所有。HORIBA Scientific 发布及转载目的在于传递更多信息,以供读者阅读、自行参考及评述,并不代表本网赞同其观点和对其真实性负责。如果您认为本文存在侵权之处,请与我们取得联系,我们会及时进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 专家呼吁新一代分子探针迫在眉睫
    近日,香山科学会议第554次学术讨论会在北京召开。此次会议以“医学分子探针关键技术”为主题。与会专家认为,目前,我国对进口医学分子探针尚存依赖,为打破这一局面,应加速研制高特异性、高靶向性、智能化、高灵敏度的新一代分子探针。  为了更全面、更完整地获取生物体解剖结构水平、功能代谢水平和细胞分子水平的生理病理信息,临床上需要依赖于高精度的生物医学检测技术,这种检测技术常常离不开分子探针。而随着集成像(诊断)与治疗于一体的分子探针逐步进入临床应用,许多疾病有望在分子水平得到治疗,做到真正的“有的放矢”,为精准诊疗提供强有力的支撑。  本次会议执行主席、北京大学工学院教授戴志飞表示,研制具备高亲和性、高特异性、高灵敏度和安全高效等特征的新一代分子探针正成为当前生物医药领域的制高点之一,一些发达国家纷纷投入巨额资金从事分子探针的研发。然而,在我国,已有多种分子探针投放市场,但大多由国外大公司研制。与会专家呼吁,开发具有我国自主知识产权的分子探针迫在眉睫。  与会专家建议,当前,应整合我国在分子探针方面的优势力量,建立一批具有专业特点的国家级诊疗用分子探针研发中心,组建理工医结合、产学研一体化研发团队,形成完善的分子探针的研发体系,实现自主知识产权分子探针开发的新突破,逐渐改变我国对进口医学分子探针依赖的局面。
  • 深圳先进院开发出新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。图1.G-Flamp1探针在体外和培养细胞内的表征图2.不同刺激下果蝇Kenyon细胞中cAMP信号的变化图3.运动过程中小鼠皮质神经元内cAMP信号的变化图4.巴甫洛夫条件反射任务中小鼠NAc脑区cAMP信号的变化该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。 研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 在读博士首创“纳米探针” 打破国外技术封锁
    外观如同一支铅笔,能够探入癌细胞、H7N9等病毒内提取细胞质,还能作为手表齿轮等高精密加工的工具&mdash 凭借&ldquo 纳米探针&rdquo 的发明,不久前,江苏&ldquo 星辰纳米&rdquo 团队以机械能源小组第一名的成绩捧起了全国&ldquo 创青春· 优胜杯&rdquo 的金奖奖杯,并获得多家创投机构的青睐,开始踏上高科技创新创业之路。   这支团队的带头人,就是师从中科院朱荻院士的南京航空航天大学在读博士生孟岭超。   传奇&ldquo 学霸&rdquo &mdash 本科三转专业,包揽第一   传说中,孟岭超是一位叱咤南航的&ldquo 学霸&rdquo :从大二开始三转专业,南航机电学院的工业设计、飞行器制造、航空维修工程和机械制造及其自动化共4个专业被他学了个遍,并且每个专业的综合测评都是No.1,多次获得国家奖学金以及校长通令嘉奖等。保送研究生后,他顺利成为江苏省精密与微细制造技术重点实验室的成员,师从中科院院士朱荻教授,从事精密、微细特种加工技术的研究。三年中已发表论文四篇、公开专利四项,并连续两年获得优秀研究生团队等称号。   &ldquo 我这个人从小比较要强,什么事一旦认准就要做到最好。所以在别人&lsquo 喝咖啡&rsquo 的时间,我边&lsquo 喝咖啡&rsquo 边学习,就连坐校车往返于两个校区之间时,我也会看书温习。&rdquo 孟岭超说,本科期间涉猎多个专业,为后来的研究打下了比较扎实的基础。   科创&ldquo 狂人&rdquo &mdash 每天做试验,一站14个小时   当&ldquo 学霸&rdquo 并不是孟岭超的目标。他真正想做的,是开发自身&ldquo 小宇宙&rdquo 搞科创。   &ldquo 从大一开始,我就加入了学校的一个科创基金团队,跟着研究生一起装机床、接线路、做实验、建模型、画图纸、查文献、拟仿真、改软件、修设备&hellip &hellip 就这样从一名科创&lsquo 小白&rsquo 成长为了一枚科创&lsquo 狂人&rsquo 。&rdquo 他自嘲。   2010年,就读大三的孟岭超组建了自己的科创团队,开始了全新的科创之路。团队成员来自南航各个专业,在大家的共同努力下,他们的&ldquo AGV视觉导航小车&rdquo 等科创作品获得了多项荣誉。   就读研究生后,孟岭超的科创课题转为微细特种加工技术。&ldquo 我刚开始提出把碳纳米管制成加工电极的想法时,几乎没人相信我能成功,因为国内根本没有先例。&rdquo 孟岭超说,从理论上论证可行后,他每天从早上8点就到实验室,常常一直干到晚上10点,试验平均每三分钟一次,每天要试验上百次,而且只能站着做。&ldquo 就这样持续试验半年多、失败上万次后,我终于成功地把纳米和微米&lsquo 焊接&rsquo 到了一起。&rdquo   2013 年&ldquo 挑战杯&rdquo 全国大学生课外学术科技作品竞赛上,他的作品《碳纳米管工具电极的制备与应用》由于突破了国内纳米探针制备技术的空白,打破了国外技术的垄断,得到专家评委的高度评价,获得了江苏省一等奖、全国二等奖。   创业&ldquo 新兵&rdquo &mdash 要用&ldquo 纳米铅笔&rdquo 绘出星辰梦想   此后,孟岭超在导师的指导下,潜心研究、不断改进纳米探针制备技术。今年,由南航创业孵化中心为其团队提供工作场地,江苏星辰纳米科技有限公司宣告成立。目前,赵淳生院士团队以及南航的部分科研团队都在使用他们研制的纳米探针,公司还与国内8家高科技企业建立起合作关系。   &ldquo 纳米探针运用于原子粒显微镜,可以实现对癌细胞、H7N9病毒等的探温乃至于提取的一系列过程。而在高精密加工方面,有了纳米探针这样的工具,我们才能生产出更多纳米级的产品。比如手表齿轮,未来如果使用这样的纳米探针制造,精度就会有明显的提高。再比如微型机器人的制造也离不开这样的工具。而一旦这样的微型医疗机器人问世,对于医疗界来说,将具有划时代的意义。&rdquo 孟岭超告诉记者,过去,国内的研究存在空缺,而国外也常有技术封锁,我国高精密制造业存在&ldquo 微米利用不足,纳米几乎为零&rdquo 的发展困境。多年来,朱荻院士的研究就是为了改变这样的现状。   &ldquo 星辰公司的目标就是成为国内首创、国际领先的纳米探针生产企业,实现国内微细制造技术从精密到超精密的突破性跨越。&rdquo 孟岭超说,不久前有一家跨国企业希望购买他们的技术和整个团队,但被他婉言谢绝,&ldquo 我们更想做一颗独立的星星,在群星闪耀的夜空中,绽放出属于自己的热量与光芒。&rdquo   说这话的时候,这个1989年出生的小伙子满脸绽放自信的光彩。
  • 中科院在SERS光纤探针研究方面取得进展
    近期,中国科学院合肥物质科学研究院固体物理研究所四室研究员孟国文课题组与安徽光学精密机械研究所研究员毛庆和课题组合作,在具有表面增强拉曼散射(SERS)活性的光纤探针研究方面取得新进展。基于静电吸附原理,研究团队发展了一种普适的组装方法,将多种具有等离激元特性的带电金属纳米结构组装到锥形光纤探针表面。该结构可用作SERS光纤探针,对污染物的远程、便携式在线检测具有重要意义。相关结果发表在ACS Appl. Mater. Interfaces 2015, 7, 17247?17254上。  光纤通信技术的发展,为污染物的高通量、远程实时SERS检测开辟了新途径,其核心思想是将高SERS活性纳米结构耦合到光纤探针表面,并集成到便携式光纤拉曼光谱仪上,通过采集并检测污染物的SERS信号,实现污染物便携快速检测。为了实现此目的,研究人员发展了涂拉法、光化学沉积或物理气相沉积等方法,将贵金属纳米结构沉积到光纤探针上。然而,这些研究方法制备的SERS光纤探针在功能上具有一定的局限性。例如,对于涂拉法,SERS活性纳米结构在光纤表面的附着力较弱,在液体样品中容易扩散,进而影响到检测信号的稳定性 对于物理气相沉积和激光诱导的光化学沉积法,由于受限于制备过程,难以精确调控纳米结构的形貌和尺寸,无法优化其局域电磁场增强及表面等离子体共振特性,不能保证SERS检测污染物的灵敏度。  针对上述问题,孟国文课题组和毛庆和课题组合作,采用静电组装法(如下图),将带有正/负电性的贵金属纳米结构组装到硅烷偶联剂修饰的锥形光纤表面,构筑了一种高效的SERS光纤探针。首先,在基于液相法构筑形貌可控的纳米结构的过程中,使用的表面活性剂可以使纳米结构呈现出可控的表面物理化学特性,如带有正/负电、亲/疏水性等。其次,光纤主要成分是氧化硅、表面有大量羟基,易于与硅烷偶联剂通过形成Si-O-Si键耦合 同时硅烷偶联剂末端具有一个官能团,使光纤整体富有特定的功能性。因此,对于带负电的纳米结构(如柠檬酸根保护的金纳米球),选取带氨基的硅烷偶联剂修饰光纤 反之,对于带正电的纳米结构(如CTAB保护的金纳米棒),采用带羧基的硅烷偶联剂修饰光纤,可实现贵金属纳米结构在光纤表面的有效组装。比如,可将多种不同形貌及光学特性的SERS活性纳米结构(金纳米球、金纳米棒、金@银核壳纳米棒和立方银)可控组装到光纤表面。这种SERS光纤探针具有稳定性高(相对信号偏差低于3%)、面向光纤种类多(适用于单模、多模、D型和微纳光纤等)及灵敏度高等优势,对农残甲基对硫磷的敏感度达到10纳摩尔。相关成果已申请国家发明专利并发表在ACS Appl. Mater. Interfaces杂志上。  上述研究得到国家科技部“973”计划和国家自然科学基金等项目的资助。  左:带电纳米结构组装到锥形光纤探针上的示意图。中:纳米立方银组装到光纤前后的光学照片及扫描电镜照片。右:SERS光纤探针在分析物溶液中及空气中的SERS信号。
  • 重点专项巡礼:这枚“木马”探针能“摸底”肺癌细胞
    p    strong 重点专项巡礼 /strong /p p   “幸福的家庭都是相似的,不幸的家庭各有各的不幸。”列夫· 托尔斯泰的这句话用来类比正常细胞和癌细胞再合适不过,不同人的正常细胞是相似的,而癌细胞的异常蛋白却各有姿态。 /p p   “肺癌患者中可能的细胞异常有很多种,单就EGFR这一种跨膜蛋白质的异常就有好多。”近日,哈尔滨医科大学附属第四医院医学影像中心主任申宝忠教授就不久前发表在《科学》子刊《转化医学》上的论文接受科技日报记者专访,他表示,肿瘤的这种表达基因上的差别学术上称为“异质性”,除了患者个体的异质,空间异质(不同病灶、同一病灶的不同部位EGFR突变分型也不相同)、时间异质(不同时间EGFR突变分型存在动态变化)都使得实施靶向治疗前必须对肺癌细胞进行“摸底”。 /p p   靠什么来“摸底”呢?之前的检测方法有取样检测等,有创、可重复性差,还难以实时跟踪。在国家973计划项目“肺癌在体分子分型的新型纳米分子成像探针基础研究”专项的支持下,申宝忠团队成功构建了一种PET(正电子发射计算机断层显像)成像的分子探针——18F-MPG。这种探针能够像“木马”一样潜入癌变细胞中,寻找到位于胞内段的EGFR蛋白突变的酪氨酸激活域,并和它特异性结合。探针中18F衰变所形成的影像就能像进入“敌区”的情报员一样时刻报告癌细胞的“底细”。 /p p   “利用PET分子成像技术,研究者们可以在活体状态下捕捉到该分子成像探针的结合位置、数量。”申宝忠教授说,有了探针,癌症的EGFR突变分型检测就此实现“无创、实时、动态、精准识别”。 /p p strong    /strong 团队开展了75例肺癌临床受试者研究,可以从定量结果中明显看到,EGFR突变型肿瘤对探针的摄取明显高于EGFR野生型和二次突变耐药型肿瘤对探针的摄取程度。数据显示,用新发明的“木马”探针鉴别法,对肺癌细胞的鉴别准确率高达84.29%。 /p p   此外,新探针还能抵达此前的鉴别方法无法抵达的“死角”。“肺癌最易颅内转移,依靠以前的旧探针难以进行颅内转移的诊断,而18F-MPG在正常脑组织内无摄取,在EGFR突变的转移瘤内高摄取。”申宝忠教授说,这一优势有助于对非小细胞肺癌进行精准分期。 /p p   经过了探针的全方位摸底标记之后,EGFR突变的肺癌患者中哪些适合分子靶向药物,并可以被有效治疗,哪些不适合,治疗可能会无效,这个患者最关心的问题,就可以给出初步的预判。申宝忠教授解释:“在肺癌EGFR分型中,我们甄别出EGFR突变型患者是药物敏感型,这些患者使用对应的靶向治疗会更有可能治疗有效。而EGFR野生型和二次突变耐药型这两种患者是不建议使用易瑞沙、特罗凯等分子靶向药物治疗的。” /p p   临床治疗结果也验证了他们的预期:经过筛选的患者的症状客观缓解率为81.58%,而未经过筛选的患者仅有46.48%治疗有效果。前者的平均肿瘤无进展生存时间为348天,后者的平均时间为183天。 /p p   “癌细胞还是一个动态变化的细胞,可能产生二次突变,治疗方法有效果一段时间之后,可能会使得癌症细胞进行自身的调整,从而产生耐药性,治疗效果将大打折扣。”哈尔滨医科大学教授孙夕林说,这个时候了解癌细胞的动态,才能做到“知己知彼、百战不殆”。 /p p   18F-MPG探针可以用来指示患者是否产生耐药性。如果之前的探针吸收值很高,后来减低了,低于一定程度以下,那就意味着患者产生耐药,如果延续老方法,有效率仅为6.06%。“探针吸收的拐点是在提示我们需要及时调整治疗方案了。”申宝忠教授说。 /p p   “我们的基于分子成像的分子分型是一种非常有效的新方法和新技术。”申宝忠教授说,它将帮助肺癌的临床治疗实现精准的“诊”和“疗”。其中“诊”不仅仅告知患者患了肺癌,还告知患者患了何种肺癌,而对应的“疗”也可以具体各自开展不同的治疗方法,进而获得最高效的治疗。 /p p   “亚裔、女性、不吸烟者、腺癌(肺癌中的一种)患者中,肺癌细胞中存在EGFR突变的比率非常高。”申宝忠教授提醒,EGFR突变型肺癌并不是肺癌的全部,但在亚洲人中EGFR突变导致的肺癌占主导位置,其他的分型还在进一步摸索研究中,以期能够使“先诊后疗”的精准临床策略获得更广泛的应用。 /p
  • 普瑞纯证获超亿元B轮融资,探针资本担任独家财务顾问
    普瑞纯证医疗科技(广州)有限公司(以下简称“普瑞纯证”)近日宣布完成由君联资本领投,老股东康君资本跟投的超亿元人民币B轮融资。探针资本担任独家财务顾问。据悉,本轮资金将主要用于海外医疗器械资源的布局、专业人才团队扩充、医疗器械领域的战略拓展,以及大数据信息化平台的升级迭代。普瑞纯证成立于2020年6月,作为一家行业领先的全球化SaaS+Data生命科学服务商,立足于打通全球市场的医疗器械出海全流程信息化,帮助医疗器械、体外诊断、医疗软件AI等产品提供全球市场合规准入的全流程咨询服务,涵盖器械法规咨询,当地授权代表,产品认证注册,海外临床试验,技术文档与体系辅导,产品检测等全流程服务。普瑞纯证发展路程秉持着“助力国产医疗器械出口,让中国产品走向世界”的初心,潜心耕耘数年的普瑞纯证在最近这两年的各个重要时刻大放光彩——- 2021年11月,普瑞纯证创始人孟竹女士入选“2021年度吴中区东吴创新创业领军人才计划”;- 2021年11月,普瑞纯证荣获中国创新创业大赛(广州赛区)新一代信息技术行业初创组的优胜奖;- 2022年1月,普瑞纯证获得康君资本领投,探针新医疗基金跟投的数千万元A轮融资;- 2022年2月,欧美实验室的搭建,丰富了普瑞的海外临床资源;- 2022年3月,大数据信息化平台的AI Builder、Scheduler功能模块正式上线;- 2022年3月,大数据信息化平台的临床数据库正式上线;- 2022年5月,截止至IVDD时代的落幕, 普瑞协助获得近百张CE证书,数千个欧盟产品注册,成为全球斩获List A最多的CRO;- 2022年6月,普瑞纯证获得第六届未来医疗100强大会“蔚澜奖2022年度创业新锐”奖;- 2022年7月,普瑞纯证创始人孟竹女士入选“2022年度姑苏创新创业领军人才计划”;- 2022年7月,普瑞纯证上榜“2022年《财富》中国最具社会影响力创业公司”;- 2022年8月,普瑞纯证荣获“2022年数字中国创新大赛数字医疗赛道创业大赛全国二等奖”;- 2022年8月,普瑞纯证广州总部乔迁至广州国际生物岛;- 2022年9月,大数据信息化平台的生物样本库正式上线;- 2022年9月,普瑞纯证在2022中国医疗器械出海大会上正式推出【国内医疗器械企业出海指数TOP100主榜单】以及【国内医疗器械细分领域出海指数榜单】;……自2020年建立以来,普瑞纯证起于毫末,渐成合抱之木,成长为现如今首家互联网+全球医疗器械合规资质一站式服务商、行业领先的全球化SaaS+Data生命科学服务商。In China For Global依托法规认证与临床经验丰富的全球顶尖专家服务团队,普瑞纯证为医疗器械、体外诊断、医疗软件 AI 等产品提供全球市场合规准入的全流程咨询服务和海外临床试验等一站式解决方案。国际化的团队让普瑞纯证深切地了解欧美各国的法规政策,能够以专业的知识和一流的反应速度帮助客户寻求方案的最优解,以最快的速度打入海外市场。公司服务网络已遍布美国、德国、意大利、西班牙、瑞士、波兰等全球10个国家和地区,拥有8大分公司13所分部。已与超过100家国内外医疗和生物科技企业开展业务合作,并得到了业内的广泛认可。普瑞拥有业内稀缺的临床资源,其位于欧洲和美国的海外临床中心具备CLIA, CAP,ISO 17025等资质。此外,通过多年耕耘,普瑞已拥有1000+ 海外注册/认证成功案例,其中包括上百个英国药监机构(MHRA)认证,沙特、泰国、哥伦比亚等多个国家医疗注册认证。在这1000多个案例中,有超半百例为海外临床获证案例,包括美国EUA应急成功案例、海外临床医疗器械认证成功案例及欧盟通用白名单获证案例。普瑞自主研发了以大数据、人工智能技术等新一代信息技术加持的大数据信息化平台,这一平台可为广大用户提供100+国家准入,60万+ 全球经销商大数据,100万+ 全球临床试验数据,300万+ 全球医械注册数据库。从产品研发、市场战略数据到法规咨询,助力中国医械企业破浪前行,全方位顺利合规走向全球市场。对于本次融资,普瑞纯证创始人孟竹表示:“普瑞纯证的初心是助力中国医械企业出海,扩展海外临床资源,普瑞纯证目前已拥有10大临床中心,打造⼀站式、全链服务生态。我们通过在计算机技术和大数据领域的经验积累,运用新一代信息技术赋能医疗创新,致力于建立标准化、数字化的医械出海系统。普瑞纯证专业的多国医疗器械市场准入咨询服务和优质的海外临床资源,可以满足国内医械企业对多国、多品类的跨境注册CRO需求。普瑞纯证的发展离不开新老股东和客户伙伴的大力支持,普瑞纯证的全球法规智能平台将在本轮融资后继续完成迭代升级,给予企业产品贸易分析、海外经销商网络、临床趋势研究等数据服务,助力医疗器械企业产品出海。”君联资本董事总经理周瑔表示:“出海已成为中国医疗器械企业的发展共识,但也面临着一系列的困难和挑战,痛点主要集中在海外准入和营销两个环节。随着全球器械法规不断趋严,企业独立自主完成海外准入的难度大、费用高、周期长、效率低、成功率低,非常需要专注于出海的CRO协助。而传统的专家式的CRO服务难以满足高度分散的下游器械企业对产品出海的多元化需求,CRO企业自身的规模效应和盈利能力也遭遇瓶颈。普瑞纯证凭借丰富的海外临床资源,以及数据和算法驱动的新型数字化CRO服务,成功实现了跨国家地区、跨科室、跨品类的CRO能力,同时具有显著的降本增效优势,有望打破传统器械CRO的瓶颈,在器械CRO行业带来颠覆性变革。”康君资本合伙人戴奕人表示:“普瑞纯证通过数据技术提高医疗器械注册、临床服务的效率和标准化水平,致力于打造面向多国、多品类的注册需求,涵盖研发注册策略、注册申报、海外临床、商业数据等系列业务的商业闭环,在医疗器械跨境注册领域具备了一定的影响力。康君资本作为普瑞纯证的A轮投资方,已经见证了普瑞纯证在业务规模、海外资源、人才梯队等方面的快速成长,未来希望继续与普瑞纯证共同努力,为医疗器械产品跨境注册并实现商业化提供优质服务。”探针资本合伙人严晶晶表示:“普瑞纯证具有数据技术和全球法规的双重基因,通过自研SaaS平台整合全球法规大数据极大简化了法规注册流程,并通过全球化组织能力为国内医疗器械提供出海全流程服务。在当下全球医疗卫生需求增长的情况下,普瑞纯证迅速的响应能力已帮助国内数百家医疗器械厂家完成海外布局,率先抢占全球市场。2021年探针资本利用自有的产业数据分析系统“神农一号”挖掘到普瑞纯证所处的赛道正在快速变化和增长。其后12个月内,探针资本先后帮助公司顺利完成了两轮融资,并由探针新医疗基金对普瑞纯证进行了投资。我们希望在普瑞全面的服务下,将有更多优秀的中国医疗器械产品进入国际化市场。”关于君联资本君联资本成立于2001年4月,是联想控股旗下专注于早期风险投资及成长期私募股权投资的基金管理公司。在二十年的发展历程中,君联资本遵循国际通行标准,创造基金运营及管理的最佳实践,已具备完整的基金运营及管理经验,在投资全链条构建生态化合作网络。君联资本通过积极主动的增值服务体系,推动企业创新成长,在多个投资领域持续创造良好投资回报的同时,推动中国的产业进步和社会发展。君联资本以“成为一家具有国际影响力的投资公司”为愿景,秉承“富而有道”的核心价值观,积极践行社会责任。关于康君资本康君资本成立于2019年,依托康龙化成(股票代码:300759.SZ/3759.HK)的产业背景,专注于生物医药领域的股权投资。康君资本团队通过独特的产业视角,利用丰富的产业、科研、管理及资本市场经验进行全球化投资,重点关注全球领先的生物医药研发服务及技术创新平台、生物科技公司、医疗器械公司等。康君资本致力于成为生命科学、健康产业和资本的纽带及可信赖的长期合作伙伴。关于探针资本探针资本成立于2017年,是一家专注医疗健康与生命科技的精品投行,旗下业务包括财务顾问、直接投资、产业咨询和创新孵化。创始团队来自业内一线私募股权投资机构、财务顾问机构、管理咨询公司和医疗垂直媒体。自成立以来,探针资本每年均完成两位数的私募融资与并购交易,累计交易金额超百亿元人民币。在企业增值服务方面,探针资本团队也拥有成熟的产业经验。2020年探针新医疗基金成立,目前已投资十余家业内头部公司。
  • 哈医大发明成像分子诊断探针 癌症靶向治疗效果可视化
    p   日前,《科学》子刊《科学· 转化医学》杂志刊载论文,报道我国哈尔滨医科大学申宝忠团队成功构建了一种PET(正电子发射计算机断层显像)成像的分子探针——18F-MPG。通过该探针能够实时、动态、精准识别肺癌EGFR(表皮生长因子受体)分型,指导临床靶向药物治疗的决策,预测并评价癌症靶向治疗效果。 /p p   研究团队发明了能与肺癌细胞内的特定蛋白结合的分子成像探针18F-MPG,利用探针,研究者们可以通过PET成像手段,在活体状态下捕捉到探针结合位置、数量,从而判断肺癌的EGFR分型状态以及动态变化,无创地筛选出能够接受EGFR分子靶向治疗的患者群。 /p p   “分子探针筛选出的靶向治疗敏感患者群治疗后平均肿瘤无进展生存时间是348天,而未筛选的患者群平均肿瘤无进展生存期是183天。”申宝忠教授介绍,数据表明,探针敏感的肺癌患者群有更好的治疗效果,更长的肿瘤无进展生存期及更佳预后,探针可用于靶向癌症治疗效果的预测。 /p p   “如果肺癌患者发生了颅内转移,目前常规的PET成像判断是不敏感的,而新探针18F-MPG在正常脑组织内无摄取,在EGFR 突变的转移瘤内高摄取,可以实现颅内转移的精确诊断。”申宝忠教授表示,安全性方面,受试者中无一例发生副反应。 /p
  • 中科院兰化所“双锁”近红外荧光探针为肿瘤诊断添“利器”
    手术治疗(外科治疗)是癌症常见和有效的治疗手段之一。癌症部位的精准成像能够保障肿瘤组织的完全切除和健康组织的不必要切除,不仅是癌症临床诊断的重要手段,也是肿瘤手术治疗的“导航”。然而,如何实现肿瘤病变组织和正常组织的精准成像辨识是分析科学的难点和核心问题。双锁定近红外荧光探针在肿瘤微环境下激活示意图中国科学院兰州化学物理研究所中科院西北特色植物资源化学重点实验室药物化学成分与分析技术团队围绕抗肿瘤药物分子的定位递送与成像分析开展了系列工作。该团队设计合成了抗肿瘤药物的前药分子,利用荧光成像和质谱成像结合的多模式成像技术,实现了抗肿瘤药物分子在肿瘤部位的定位递送、释放和分布过程的精准示踪,相关成果发表在Analytical Chemistry期刊上,获中国发明专利授权1项。近日,该团队利用肿瘤缺氧和高浓度谷胱甘肽的微环境特征,采用非共价的构筑理念,创新性地设计制备了一种“双锁”近红外荧光探针CF3C4A-CySS。该CF3C4A-CySS探针仅仅在肿瘤微环境中缺氧和高浓度谷胱甘肽的共同作用下被激活,开启近红外荧光信号。研究人员在细胞和荷瘤小鼠等体内外实验中验证了“双锁”探针CF3C4A-CySS的特异性成像性能。此外,研究人员还利用质谱成像技术,在分子水平上进一步确证CF3C4A-CySS探针在肿瘤部位定位激活的特性。结果表明,设计制备的“双锁”近红外荧光探针CF3C4A-CySS能同时响应肿瘤缺氧和谷胱甘肽两种刺激,高选择性地探针肿瘤细胞和肿瘤组织,为精准的肿瘤成像和肿瘤诊断提供了技术手段。
  • 安捷伦科技现已拥有市场上最全面的SureFISH探针系列产品
    安捷伦科技现已拥有市场上最全面的SureFISH探针系列产品 2012 年5月29日,加利福尼亚州圣克拉拉市 &mdash 安捷伦科技公司(纽约证交所:A)推出了更多种类的 Agilent SureFISH 探针,拥有市场上最全面的寡核苷酸基荧光原位杂交 (FISH) 分析产品。如今,安捷伦可提供超过 425 种探针,包括用于全部 24 对染色体的着丝点探针和 35 种端粒探针。 Agilent SureFISH 探针专为基因组的特定非重复区域而设计,能够提供比其他现有技术更加卓越的分辨率。标准的 BAC 探针,不能有效地检测微小变异,或是不能特异性地检测含重复序列的染色体区域。寡核苷酸 FISH 探针能够帮助用户更加快捷地特异性检测染色体目标区域 &ndash 只需四个小时就能完成杂交。作为寡核苷酸合成技术应用的成功典范之一,安捷伦的 SureFISH 产品线能够提供一些在 BAC 形式中不常见的着丝点探针。这包括针对染色体 5、13、14、19、21 和 22 的着丝点探针。 &ldquo Agilent SureFISH 探针能够提供高质量的结果,使我们能够缩短检测周期并降低成本,&rdquo 威斯康星大学医学院儿科系助理教授兼临床遗传学实验室公共健康组主任、美国医学遗传学院专家委员 (FACMG) Jennifer Laffin 博士这样说道。 寡核苷酸 FISH 探针能够在多种先天性疾病和癌症应用中检测相关区域。 &ldquo 在短短两个多月内,我们所提供的探针数量便有了大幅的增加,这兑现了我们致力于为客户快速完善这一产品套装的承诺,&rdquo 安捷伦副总裁基因组学总经理 Robert Schueren 谈到,&ldquo 安捷伦很荣幸成为唯一一家提供寡核苷酸 FISH 平台和其他分子分析产品(包括 SurePrint CGH+SNP 芯片以及 HaloPlex 和 SureSelect 新一代测序产品)的公司,我们已针对细胞遗传学研究的需求提供了全方位的解决方案。&rdquo 安捷伦的 SureFISH 产品线包括: &bull 以BAC 形式不能提供的独特探针。 &bull 比 BAC 探针具有更高的分辨率,并且可检测更小的区域。 &bull 杂交时间更短(只需四个小时)。 &bull 每个探针均经过新一代测序验证(确保对目标区域的特异性)。 客户可从 SureFISH 网站 上轻松查找和购买 SureFISH 探针,并且还能根据染色体位置以及感兴趣的染色体区段或基因来搜索探针。染色体浏览器还列出了所有探针杂交 4 小时和 14 小时的图片,帮助用户在购买前了解探针性能。 有关 Agilent SureFISH 探针的更多信息,请访问:www.agilent.com/genomics/SureFISH。 关于安捷伦科技 安捷伦科技公司(纽约证交所: A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 化学所在新型细胞原位荧光探针研究中取得进展
    荧光探针具有敏感性高、选择性好、响应时间短、易于直接观测、便于实时监测等优点,可以在一些特殊的应用体系和生物活性物质的检测等方面发挥重要作用,其基础研究和应用开发受到了广泛关注,特别是新原理的开发和新型探针材料的设计、合成,成为了近年来光功能材料的研究热点之一。   在科技部、国家自然科学基金委和中国科学院的支持下,中国科学院化学研究所光化学院重点实验室的课题组多年来致力于荧光传感材料的设计合成及其新型器件的研究,他们设计、合成了一系列高效的新型荧光探针分子,包括ESIPT类化合物、分子内电荷转移化合物和一类新型的三芳基硼类发光分子,并应用于纯水体系中氟离子和汞离子的检测(Angew. Chem. Int. Ed. 2010, 49 (29), 4915-4918, Anal. Chem. 2013, 85 (8), 4113-4119.)、宽范围温度的检测等领域(Angew. Chem. Int. Ed. 2011, 50 (35), 8072-8076 Adv. Funct. Mater. 2013, 23 (3), 340-345 Chem. Comm. 2014, 50, 2778-2780.)和细胞内的pH值检测等(Chem. Comm. 2014,50, 8787&mdash 8790)。   最近,在前期对三芳基硼化合物的特性研究基础上,研究人员通过分子设计,合成了一种含有咪唑盐和醚链的水溶性三芳基硼化合物。该化合物遇ATP后可发生有限的聚集,导致三芳基硼基团周围的环境极性发生显著降低,使三芳基硼的荧光大大增强。该化合物对ATP选择性好、细胞毒性小、渗透细胞膜能力强,并且在细胞内的分散性好,因此可作为活细胞内的ATP探针,对ATP的分布及示踪开展研究。通过荧光显微成像及荧光寿命显微成像等技术,研究人员利用该荧光探针研究了NIH/3T3细胞中ATP的分布及浓度。相关研究结果发表于近期的《德国应用化学》(Angew. Chem. Int. Ed. 2014, 53 (30), 7809-7813.)。   图1 利用荧光探针进行ATP 检测原理示意图   图2 共聚焦显微荧光成像,检测细胞内ATP的分布
  • MMPSense探针促销活动 — 活体炎症微环境监测利器
    您是否难以在肿瘤学、关节炎或体内炎症模型中获得与生理相关的监测时间点?在临床前研究中,监测和可视化分析生物系统中的生物学靶点,信号通路和疾病发生过程的能力至关重要。诸如MMPSense® 系列的近红外荧光探针正是帮助您推进针对炎症、关节炎和肿瘤学研究计划所需要的体内成像剂。什么是MMPs,它们的功能是什么?基质金属蛋白酶(MMP)是钙依赖性的含锌内肽酶,可促进多种组织的体内平衡,并通过降解细胞外基质参与多种生理过程,例如组织重塑,血管生成,免疫和伤口愈合。在健康的生物学模型中,其激活受到多种机制调节。而在疾病发病过程中,MMP激活失去调控,且可能对基础结构蛋白造成潜在地严重破坏。因此,我们不仅需要在病灶处检测常规MMP的表达水平,更须具备区分活性和非活性MMP的能力,使得我们能够揭示独特的局部生物学作用以及评估特定药物的治疗功效。正常以及异常激活MMP时检测和定量体内活性MMP的能力可以反映许多疾病相关过程的进展和严重程度,包括:1癌症,肿瘤转移,血管生成2心血管重塑,心脏代谢疾病,动脉粥样硬化3炎症4肺部疾病 5类风湿关节炎,自身免疫,骨关节炎 6寄生虫感染7缺血性脑损伤图1. 基质金属蛋白酶在组织重塑区域中具有活性,在这种情况下,在肿瘤生长、侵袭和血管形成部位处MMPs高度表达且具有活性。MMPSense近红外荧光探针的作用原理是什么?MMPSense近红外(NIR)荧光探针使用新型专利技术*实现体内蛋白酶活性的可视化成像。在完整的探针中,荧光团彼此靠近并发生淬灭,因此不发光(图2a)。在活性基质金属蛋白酶存在的情况下,会切割短的底物序列或支架,使得荧光团彼此分离并去猝灭,最终在被激发光激发后发射出荧光信号(图2b)。图2. MMPSense探针激活原理图。(a)与荧光团非常接近的信号淬灭探针,(b)蛋白酶切割将荧光团分开,从而能够去淬灭并被激活。如何使用MMPSense近红外荧光探针?我们在此介绍了两项应用案例以说明 MMPSense 荧光探针的应用方法。应用研究1 - 关节炎模型使用MMPSense 680监测关节炎的进展和体内治疗在用胶原蛋白免疫或全身注射抗胶原抗体的关节模型中,水肿、炎症和抗胶原的免疫反应会导致关节中组织和骨骼的破坏。这些通常都表现为爪子肿胀程度的变化。目前,最常通过爪子肿胀减轻、主观临床评分和组织病理学来追踪抗炎和抗关节炎疗法的功效。使用MMPSense,除了进行上述的标准评估方法外,您可以无创检测和监控潜在炎症过程中的早期细微变化,通过监测MMP活性这一手段所反映的疾病进展与药物疗效,与后期的组织学评估结果相吻合。在图3中,您可以在给予MMPSense 680后24小时(图3a)模拟健康爪子(对照)和(图3b)胶原处理的患有发展性关节炎的鼠爪中观察到MMP激活。图3. 使用MMPSense 680,在健康和胶原处理的鼠爪中MMP激活。在FMT® 4000小动物活体荧光断层成像系统上成像。应用研究 2 – 肿瘤模型通过植入的4T1肿瘤细胞在乳腺脂肪垫模型中监测肿瘤发展借助MMPSense荧光探针,可进行多时间点化疗药物治疗下的肿瘤进展观察。图4显示了未治疗的对照乳腺脂肪垫肿瘤(对照),用N-乙酰半胱氨酸和MMP抑制剂(NAC + pan-MMPI)治疗的动物以及用治疗剂多西环素治疗的动物。注射MMPSense 750 FAST探针后12小时,通过落射荧光成像观察肿瘤进展。图4. 注入小鼠乳腺脂肪垫模型中的植入Bioware® Brite 4T1-Red-Fluc肿瘤细胞的肿瘤发展和监测。使用MMPSense 750 FAST荧光探针和FMT® 4000小动物活体荧光断层成像系统对结果进行可视化。将 MMPSense 荧光探针检测融合到完整活体检测解决方案中珀金埃尔默提供了完整的体内成像解决方案,包括试剂、仪器和支持专业知识,这可以帮助您监测和设计实验,以了解疾病的进展及其相关过程,并评估针对疾病潜在机制的药物潜在治疗效果。MMPSense用于探测病灶中高表达的基质金属蛋白酶(MMP,metalloproteinase,包含MMP2、3、7、9、12、13)的活性,适用于肿瘤、关节炎、肺炎、心血管疾病动物模型的研究及相关药物研发。MMPSense提供三种波长:645、680和750nm。MMPSense FAST(Fluorescent Activatable Sensor Technology,荧光激活传感器技术)系列具有更出色的药代动力学特征,能够在更早的时间点提供更高的靶标特异性信号,降低了背景,同时还缩短注射后的等待成像时间。现针对MMPSense系列产品可享受一次性50%折扣优惠,促销活动至2020年3月31日截止。(*专利9574085-具有生物相容性的含N,N-二取代磺酰胺的荧光染料标签。)现针对MMPSense系列部分产品可享受一次性50%折扣优惠,促销活动至2020年3月31日截止。促销产品目录MMPSense 645 FAST货号:NEV10100MMPSense 645nm 近红外荧光探针 (FAST系列),具有更高特异性及更快动力学特性,用于探测病灶中高表达的基质金属蛋白酶(MMP, metalloproteinase)活性,包含MMP2/3/7/9/12/13,可用于癌症、关节炎、肺炎、心血管疾病研究。原价:¥5,750促销价:¥2,875识别二维码下单MMPSense 680货号:NEV10126用于探测病灶中高表达的基质金属蛋白酶(MMP, metalloproteinase)活性,包含MMP2/3/7/9/12/13,可用于癌症、关节炎、肺炎、心血管疾病研究。原价:¥5,750促销价:¥2,875识别二维码下单MMPSense 750 FAST货号:NEV10168MMPSense 750nm 近红外荧光探针 (FAST系列),用于探测病灶中高表达的基质金属蛋白酶(MMP, metalloproteinase)活性,包含MMP2/3/7/9/12/13,可用于癌症、关节炎、肺炎、心血管疾病研究。原价:¥5,750促销价:¥2,875识别二维码下单
  • 扫描力探针技术在能源纳米技术研究中大有可为
    p   能源纳米技术,泛指利用纳米材料和纳米尺度的特征效应构筑能源纳米器件,致力于解决可再生能源转化和存储过程中的瓶颈问题,目前已成为一个重要的学科交叉领域。能源纳米器件显著区别于电子器件和光电子器件,其工作机制决定于器件中电子、空穴和离子等载流子的长程传输过程,其传输过程常与化学转化相耦合,并且不同于传统化学反应中电子被局域在原子核附近。基于原子力显微镜(AFM)发展的扫描力探针显微术(SFM)从最初的形貌扫描工具,逐步发展成了可探测力学、电学、热学、磁学、光学和化学等性质的多模式功能成像技术,同时结合其高空间和时间分辨率,适应于复杂环境的原位工况成像能力等优势,被广泛用于能源纳米器件工作机理的研究。 /p p   中国科学院苏州纳米技术与纳米仿生研究所研究员陈立桅团队,长期致力于能源纳米器件界面形貌、化学结构和电子过程的扫描力探针研究,目前已在Acc. Chem. Res,Nat. Commun.,JACS,Adv. Mater.,Joule,Nano Lett.,Nano Energy 等期刊上发表了一系列原创性研究成果。近日,受邀在《先进材料》(Advanced Materials)上撰写题为Functional Scanning Force Microscopy for Energy Nanodevices 的综述文章(DOI: 10.1002/adma.201802490),聚焦近年来能源纳米器件的扫描力探针技术的研究进展。 /p p   该综述首先介绍了扫描探针各种功能成像技术的发展历程,从最基本的形貌成像模式开始(图1),依次介绍纳米力学模式、化学成像模式、载流子探测模式和时间分辨成像技术等。第二部分介绍了各种扫描力探针功能成像模式在能源转换器件,如有机光伏电池和有机-无机钙钛矿电池中的进展。该部分重点突出了原位工况研究器件内部界面动态演化的重要意义和面临的挑战(图2)。在第三部分中,该综述介绍了以锂离子电池为典型代表的能源储存器件中固态电解质中间相(SEI)的形貌、力学性质、化学组分在电池循环中的演变,及其与电池循环性能的关联(图3)。该类器件区别于能源转换器件的主要特点是器件行为决定于离子的传输,因此推动了一系列探测离子运动的功能成像模式的发展。最后,该综述总结了扫描力探针技术在能源纳米技术发展中起到的积极推动作用,同时指出进一步提高测量分辨率和测量精度对于推动能源纳米技术领域革新具有重要意义。 /p p style=" text-align: center "   此综述和相关研究工作得到国内外合作者的大力支持,受到国家自然科学基金、科技部重点研发计划、江苏省自然科学基金、中科院先导专项和科研装备研制项目、苏州纳米协同创新中心(教育部2011计划)以及苏州纳米所的经费资助与研发条件支持。 br/ img title=" 1.jpg" alt=" 1.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/3077aae7-37fa-4433-af33-770f84021604.jpg" / /p p style=" text-align: center "   图1.扫描力探针技术原理图,通过针尖扫描过程中是否振动将扫描力探针技术分为非振动模式(a)和振动模式(b)两大类 br/ img title=" 2.jpg" alt=" 2.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/611aebf3-4b8d-49b6-9176-fdacae6f7a8e.jpg" / /p p style=" text-align: center "   图2.原位工况研究有机光伏器件和有机-无机钙钛矿光伏器件能级结构的演变 br/ img title=" 3.jpg" alt=" 3.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/b1bdb1ed-c242-4cdc-952b-b2a6033070e1.jpg" / /p p style=" text-align: center "   图3.锂离子电池SEI形成原理示意图及其形貌变化的原位表征 /p p br/ /p
  • 普林斯顿发布VersaSCAN微区电化学柔性探针新技术
    2016年6月14日,阿美特克集团科学仪器部在北京分公司召开“VersaSCAN微区电化学技术交流会”,并在此交流会上发布新技术——扫描电化学显微镜(SECM)柔性探针技术,仪器信息网作为特邀媒体参加了此次交流会。 John Harper 博士为与会者详细介绍了此次发布的新技术。此次发布的扫描电化学显微镜柔性探针技术专用于“普林斯顿应用研究VersaScan”产品的柔性接触和等距测试,是由瑞士洛桑联邦理工学院的物理和电分析化学实验室(LEPA-EPFL)Hubert Girault教授课题组经数十年的研究而实现的。阿美特克科学仪器部与该实验室签署了独家合作协议,集成并销售其柔性探针技术。柔性探针使得广大研究者可同时进行等距离和等高模式的SECM测试,可分离3D表面电化学活性响应图中表面物理形貌和电化学响应的贡献。 与市场上常用的硬性探针相比,柔性探针具有以下优势:1)柔性探针等距SECM无需额外增加昂贵的控制与测量硬件 2)测量时无需为达到控制距离而预先测试样品表面的地形地貌 3)探针设计为与样品进行柔性接触,当与样品表面接触时,探针会发生柔性弯曲,避免探针自身被划伤以及探针对样品表面的损害 4)常规技术中硬性探针和样品直接接触会导致表面易损样品被损坏,如人体组织等。而柔性探针技术接触样品的接触力仅为常规硬接触探针的千分之一。 未来,阿美特克集团科学仪器部与LEPA-EPFL还将共同致力于实现其它探针材料与技术的商业化,希望SECM柔性探针技术能帮助SECM成为标准电化学测试利器。 为鼓励更多的用户致力于微区电化学的研究,此次交流会特设“普林斯顿应用研究微区电化学优秀论文奖”。本次奖项颁发给了浙江大学刘艳华博士,以表彰其使用VersaScan微区电化学测试系统在涂装材料研究方面所作出的贡献,由阿美特克公司科学仪器部亚洲区经理杨琦女士为其颁奖。 随后的技术交流过程中,John Harper 博士、刘艳华博士和厦门大学林昌健教授针对微区电化学的技术和应用为大家进行了分享。VersaScan微区电化学测试系统是一个模块化配置的系统,可实现现今所有微区扫描探针电化学技术以及激光非接触式微区形貌测试,包括扫描电化学显微镜、扫描振动电极测试、扫描开尔文探针测试、微区电化学阻抗测试、扫描电解液微滴测试、非触式光学微区形貌测试等。此次发布的柔性探针技术主要针对扫描电化学显微镜,目前阿美特克可提供有效直径15um的柔性碳探针。John Harper 博士还重点介绍了柔性探针技术的应用案例,包括癌细胞成像和黑色素瘤的分期变化(如皮肤癌)、电子应用-电沉积和成像、电催化等。 刘艳华博士介绍了扫描振动电极测试技术在涂层金属腐蚀研究中的应用。刘博士主要介绍了两项工作:一是采用电沉积技术合成了负载缓蚀剂的超疏水二氧化硅薄膜 二是构建了基于硅烷修饰的E-Sio2薄膜和环氧树脂的新型防护体系。在此两项工作中均利用了扫描振动电极测试技术来表征其微区耐腐蚀性能,与其它表征手段结果均有较好的吻合度。 林昌健教授自1979年开始研究微区电化学技术,至今已有37年。林教授认为微区电化学之所以能发展到今天的水平,一是科研需求,越来越多的科研人员应用此技术使其成为热门研究领域 二是科技发展,科技水平的发展也使微区电化学技术有了显著的进步。未来,微区电化学技术发展很重要的一方面就是探针技术的发展。林教授重点介绍了其团队开发的新型探针。林教授发现,在空间分辨率足够高的情况下,除电流、电压信号外, pH值和氯离子浓度也可以很好的表征局部腐蚀程度,故其团队开发了可测量pH值和氯离子浓度的探针。未来此探针有望集成到VersaScan微区电化学测试系统上。
  • 北京离子探针中心离子探针质谱仪器研发进入攻坚阶段
    2010年1月16-17日,由北京离子探针中心主办的“2009北京SHRIMP成果报告会”在京隆重举行。中国科学院多位院士、政府相关部门负责人以及来自全国各地的地学界同仁等约100人出席了开幕式。自2002年起,一年一度的“北京SHRIMP成果交流会”已经成为中国地学界同仁们进行学术交流、展示成果的一个重要平台,其在学界的地位得到了业内人士越来越高的重视。   2010年1月16-17日的“2009北京SHRIMP成果报告会”开幕式上,“中心”主任刘敦一研究员向与会领导及来宾总结汇报了“中心”2009年度的主要工作进展 ,其中他也谈到了北京离子探针中心自主研发离子探针质谱类大型科学仪器的相关情况:   目前,在科技部和财政部的支持下,该项建议已在“十一五”国家科技支撑计划重大项目《科学仪器设备研制与开发》中立项,其中《二次离子质谱仪器核心技术及关键部件的研究与开发》子项目由北京离子探针中心牵头负责并开始实施。在各协作单位的共同努力下,课题的各项研究工作进展顺利,对主要关键技术的攻关有了突破进展;完成了TOF-SIMS和Trap-TOF的整机设计、气体离子源的整体设计,加工了部分关键部件;液体金属源创新研究顺利进行,样品台三维微聚焦系统完成了方案设计及关键部件选型;离子光学系统、二次离子源及质谱接口完成了理论模拟、方案设计及优化;TOF专用高速数字转换器(ADC)已完成方案设计,实现了部分电路子系统;实现了飞行时间质谱模块和模拟电路系统模块、数字测控模块及软件系统模块;搭建了离子阱离子反应器实验装置,完成了角反射式TOF系统的设计及关键器件的研制。   而据“中心”近期透露,仪器研发项目的最新进展是:已经进入攻坚阶段,并已显示出中心在技术创新方面具有雄厚的基础和发展前景。
  • 快速塞内卡谷病毒(SVV)检测 | 特定引物和探针在有助于RPA检测成为快速诊断SVV有效工具
    畜牧业是我国经济发展的重要组成部分,对于基层养猪户来说,由于受多种外在因素的影响,养猪场会出现多种猪类相关疾病。对于猪场养殖户来说,猪仔患病,如果诊断治疗不及时,有可能带来巨大的经济损失。常见猪类疫病如口蹄疫等多是由病毒引起,塞内卡谷病毒(SVV)也是其中一种。 山东师范大学生命科学学院硕士研究生导师陈蕾教授课题组在《Analytical Biochemistry》新发表了题为Recombinase polymerase amplification assay for rapid detection of Seneca Valley Virus 的研究论文,探讨研究了重组酶聚合酶扩增 (RPA)快速检测SVV的方法。 摘要内容塞内卡谷病毒(SVV)的快速准确检测对于确定致病因素和启动控制措施的实施至关重要。 开发可在样品采集点使用的快速、简单、方便和低成本的分子(核酸扩增)测试方法已被确定为控制塞内卡谷病毒(SVV)的关键要素。作者研究团队描述了针对 SVV 保守区域的重组酶聚合酶扩增 (RPA) 测试的开发,以用于检测 SVV。 研究人员设计的引物和探针在RPA检测中表现出良好的敏感性和特异性,有助于RPA成为快速诊断SVV的有效工具。 背景介绍2002年,美国研究人员偶然从PER.C6细胞(转化的胎儿成视网膜细胞)培养基中首次发现并分离到一种新的病毒——塞内卡谷病毒(Seneca Valley virus,SVV,又称Seneca virus A,SVA)。塞内卡谷病毒(Seneca Valley Virus,SVV)属于小RNA病毒科塞内卡谷病毒属中的一员,临床症状与其他水疱病临床症状如口蹄疫类似,引起新生仔猪大量死亡和成年猪口部和蹄部出现水泡。自2002年确定以来,SVV主要在美国和加拿大零星散发,但自2014年年底后,SVV先后在多个国家大范围流行。2015年传入中国以后,SVV先后在福建、广州、湖南、湖北、安徽、江苏、浙江、河南、河北、辽宁、黑龙江等12个省份引发疫病。塞内卡谷病毒(SVV)传播特性与口蹄疫病毒类似,且与口蹄疫病毒存在混合感染,严重干扰了口蹄疫的防控。 目前多种分子技术手段已被用于检测塞内卡谷病毒(SVV),包括聚合酶链式反应 (PCR)、滚环扩增 (RCA) 和环介导等温扩增 (LAMP) 等。 在现有的等温扩增技术中,重组酶聚合酶扩增 (RPA) 可能是最适用于现场和即时诊断(point-of-need diagnosis)的方法。RPA利用低温孵育(37–42℃)进行反应 ,只需最少的样品制备,且扩增时间短(约20分钟),灵敏度高(每个反应1-10 copies)。本研究介绍了SVV保守区引物和探针的设计,并评估了其在RPA实验中的表现。 实验方法:试验中用到的塞内卡谷病毒(SVV)cDNA、口蹄疫病毒 (FMDV) cDNA、猪呼吸与生殖综合征病毒 (PRRSV) cDNA、猪瘟病毒 (CSFV) cDNA、猪流行性腹泻病毒 (PEDV) cDNA、传染性胃肠炎冠状病毒 (TGEV) cDNA和阴性猪cDNA均由山东省疾病预防控制中心提供。本研究中使用的病毒样本均在阴性猪cDNA 中稀释到一定浓度。经基因工程技术把靶标基因克隆装载到特定载体中,得到重组质粒 pET-32a SVV,重组质粒浓度为300 ng/μL。类似实验操作的得到其它病毒质粒 (pET-32a-FDMV, pET-32a-PRRSV, pET- 32a-CSFV, pET-32a-PEDV, pET-32a-TGEV)。之后设计并合成特定引物及探针,进行重组酶聚合酶扩增 (RPA) 测试,实验反应在等温扩增荧光检测仪(H1600,柏恒科技)上进行,在 42°C 温度条件下开始扩增,反应约20分钟。产生高于阴性对照阈值的指数扩增曲线的样品被认为是阳性的。后续研究团队对RPA进行了特异性、敏感性及重复性的分析,结果均显示良好。 结论:该研究描述了RPA法检测SVV的特异性引物和探针,具有良好的灵敏度和特异性,快至8分钟即可产生阳性结果,一般不超过20分钟。 塞内卡谷病毒(SVV)RPA检测是在柏恒科技的等温扩增荧光检测仪H1600上进行的,仪器体积小,重量轻,方便携带。实验结果表明,特异性引物和探针有助于RPA技术成为SVV快速检测的良好候选技术。它可以检测患病动物,以便及时治疗和控制感染传播。 实验中用到的等温扩增荧光检测仪H1600为柏恒科技生产,仪器检测快速,体积小,可用于便携式操作,适用牧场、林场、动物疫病检测等多场景。 此外柏恒还提供动物疫病检测解决方案,我们提供包括离心机、金属浴、PCR仪等全流程实验仪器,更多内容,欢迎咨询联系。 参考文献:[1] A.J. Bracht, E. O’Hearn, A.W. Fabian, R.W. Barrette, S. Abu, K. Bernhard, Real-time reverse transcription PCR assay for detection of senecavirus A in swine vesicular diagnostic specimens, PLoS One 11 (1) (2016), e0146211.[2] M.E. A, Y.W. B, O.N. C, O.P. C, F.T.H. A, M.W. A, Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus, J. Clin. Virol. 54 (4) (2012) 308–312.[3] M. Euler, Y. Wang, P. Otto, H. Tomaso, M. Weidmann, Recombinase polymerase amplification assay for rapid detection of francisella tularensis, J. Clin. Microbiol. 50 (7) (2012) 2234–2238.[4] J. Wang, Y. Zhang, R. Zhang, Q. Han, J. Wang, L. Liu, R. Li, W. Yuan, Recombinase Polymerase Amplification Assay for Rapid Detection of Porcine Circovirus 3, Molecular & Cellular Probes, 2017, S0890850817300890.
  • 我国科学家利用原子力探针成功实现活细胞转录组测序
    在婴儿呱呱坠地之前,受精卵是如何发育成复杂个体的?为什么正常的细胞会慢慢变成癌细胞?  细胞是生命的基本单位,了解它的过去、现在和未来不仅有助于人们了解正常发育的过程,也对理解疾病的产生和发展至关重要。然而,“看清”细胞的“前世今生”仍然存在显著的技术困难。  8月17日,中国科学院深圳先进技术研究院合成生物学研究所研究员陈万泽作为共同第一作者在《自然》发表长文,介绍了研究团队在国际首创的活细胞转录组测序技术(Live-seq)。该技术首次让单细胞进行转录测序后依然能保持细胞存活,实现了活细胞全基因表达的连续观测。  “该研究实现了使用Live-seq技术对同一个活细胞多次分离部分细胞质进行多次转录组测序的可行性,表明这一技术有望在将来用于构建单个活细胞的转录组系列变化动态。该研究为单细胞转录组测序提供了全新的研究策略,为我们理解生命过程的动态变化提供了强有力的手段,是这一领域的又一重大突破。”北京大学生命科学学院教授汤富酬评论道。  不杀死细胞就能测序  人体内的细胞拥有几乎一样的基因组,但是为什么能够产生多种多样的细胞?基因组中数万个基因的表达与否和表达量的高低,很大程度上决定了细胞的种类和功能,比如神经细胞、免疫细胞、各种肿瘤细胞等。  如果知道细胞不同时间的基因表达的变化,就能够了解细胞的过去、现在和未来。  当前,单细胞转录组测序技术是了解细胞状态的重要手段。就像看一张“高清照片”,通过单细胞测序能够看清细胞现在所有基因的表达状态。但是,这些技术在理解细胞状态“电影”般的动态变化上却面临很大的挑战。  “利用单细胞转录组测序技术观测细胞状态的前提是将细胞裂解,提取其中的RNA来测定每个基因表达量的高低,这样就不可避免地杀死了细胞。”陈万泽说,“此外,使用单细胞测序技术也只能了解到一个细胞当下的状态,却不能获得它的过去,也无法知晓它将来的功能。”  通过近7年的努力,陈万泽与合作者开发了活细胞转录组测序技术Live-seq,其核心是通过对活细胞中的部分细胞质进行微创提取,并对极其微量的细胞质RNA进行扩增,在单细胞转录组测序后依旧保持细胞的存活和功能,从而实现细胞动态变化的跟踪。  论文通讯作者、瑞士洛桑联邦理工学院教授Bart Deplancke表示,该技术兼具全基因表达分辨率和动态解析能力,是目前对单细胞转录组直接动态测量、偶联细胞现有状态及其后续表型的唯一解决方案。  两次碰壁,终于“钓”出RNA  如何在不杀死细胞的前提下看到细胞的动态变化?  “我们首先想到的是外泌体,它是细胞向外面吐出来的小泡,里面有蛋白、RNA等物质。如果我们把单个细胞的外泌体都收集起来,再对其中的RNA进行测量,或许就可以在一定程度上反映细胞状态而又不杀死细胞。”陈万泽说。  单个细胞中仅有10皮克RNA,相当于1克的一千亿分之一,而细胞外泌体中的RNA更是少之又少。研究团队设计了微流控芯片来完成单细胞捕获、外泌体收集等过程,发现由于外泌体中的RNA数量太少,根本无法实现单细胞分子水平的观测。  随后,陈万泽尝试利用在生命科学领域非常小众的原子力显微镜——它有一个很尖的硅探针,多用来检测物质表面性质。研究团队对探针进行表面活化、修饰、洗脱等改造后,让其能够把细胞中的RNA“钓”出来。  “这种探针很细,对细胞的损伤很小,就像‘鱼钩’一样,改造后可以把细胞中的RNA‘钓’出来,又能保证细胞继续存活。我们改造了数十个探针后,结果只在两个细胞上成功‘钓’到了基因。”陈万泽回忆道,当时购买一个原子力显微镜探针需要800美元,研究成本太高,成功率太低,让这项研究再次受阻。  瑞士洛桑联邦理工学院学科交叉氛围浓厚。在一次偶然的学术交流中,陈万泽与导师了解到,瑞士苏黎世联邦理工学院的Julia Vorholt实验室开发了一种特殊的原子力显微镜,能够吸出一部分细胞质。  一番交流后,两个课题组一拍即合,展开了联合攻关。联合团队对一系列实验过程进行了优化,解决了RNA降解、低温下的快速操作、超微量样品转移、采样通道清洗避免交叉污染、图像下追踪细胞等多种问题,以保证实验结果的可靠性。  联合团队利用重新改造后的Live-seq,对5种类型共295个细胞进行了测序,发现Live-seq能够有效区分不同类型的细胞,且平均每个细胞能检测到约4112个基因的表达信息。  仅对少量的细胞质进行测序,是否就能代表细胞的状态?“我们平行比较了单细胞测序结果,发现活细胞测序结果与普通的单细胞测序结果高度吻合,证明Live-seq能够很好地体现细胞的全转录组状态。”陈万泽说。  细胞的存活率又如何保证呢?  “原子力探针尖端只有几百个纳米大小,而且能和细胞膜密封,对细胞损伤极小。吸取约5%至50%的细胞质后,细胞体积可以快速恢复到正常水平,存活率在85%至89%之间,细胞能进行正常分裂。通过一系列的功能分析和分子表征,我们没有发现Live-seq对细胞状态有显著影响。”陈万泽表示。  对此,审稿人在评审意见中也写道:“由于细胞测序后仍旧存活,Live-seq首次实现对同一个细胞全基因表达的连续测量。”  细胞测序史从“高清图片”到“高清电影”的跨越  在细胞观测技术史上,显微成像和基因编辑介导的分子记录等技术不仅能观察细胞水平的生长、分裂、死亡等过程,还能观测细胞中的单个或几个基因指标。  2009年,单细胞转录组测序技术为更系统、全面地定义细胞类型和状态提供了变革性手段。但人们仍然只能观察到细胞的静态状态,无法连续观测细胞动态或者检查细胞后续的表型。  如果把利用单细胞转录组测序技术观测细胞比喻为看一张细胞在分子水平的高清图片,那么利用Live-seq观测细胞就好比看一部高清电影,能够看见细胞的“前世今生”。  “Live-seq可以回答细胞的过去怎样决定它的现在,不仅知道细胞中为何存在差异,还知道这些差异从何而来。”陈万泽介绍道。  在验证实验中,团队利用Live-seq直接测定了同一个巨噬细胞在不同时间的状态变化,发现细胞起始状态的少数基因的表达差异和噪声(如Nfkbia、Gsn等)是决定细胞后续反应差异的重要原因。相对而言,普通的单细胞转录组无法找到这些规律。  陈万泽表示,尽管Live-seq仍然存在诸多挑战,需要进一步完善,比如低通量、暂不能在体内应用、在高度极化且mRNA分布不均的细胞中无法实现全细胞转录组测序、对细胞更多次的采样还需进一步研究等,但该技术首次实现了活细胞连续观测,为单细胞测序技术发展带来了更多可能性。未来,团队将进一步提高Live-seq技术的实用性。
  • 质谱新技术丨原位探针离子化质谱仪DPiMS 第三期
    《质谱新技术丨原位探针离子化质谱仪DPiMS 第一期》为大家介绍了DPiMS的技术背景和工作流程;《质谱新技术丨原位探针离子化质谱仪DPiMS 第二期》介绍了DPiMS在食品安全、法医学、临床毒理学和生物学研究中的应用实例。 本期将隆重介绍DPiMS家族新成员——DPiMS QT,进一步拓展这一极具潜力的新型离子源的应用边界。 DPiMS QT 特点 1 前处理简单、操作简便、快速完成测定● 只需简单的前处理即可开始分析。● 与Q-TOF质谱仪联用,实现高分辨质谱分析。● 仅需微量样品即可完成分析,大大降低对于MS离子源的污染。 2 只需简单的前处理即可测定液体或固体样品● 使用传统方法分析血液、尿液和其他生物样品所需的时间减少约 50%。● 可以分析食物、组织切片和其他固体样品。● 样品前处理时间显着减少。3 快速定性分析●DPiMS QT定性筛查分析时,无需等待色谱分离的时间,效率更高。4 无残留的分析系统● 每次进样时,仅几十pL的样品粘附在探针上,无需担心质谱仪内部受到污染。也可以通过更换探针来防止样品残留,在测定浓缩样品和未知浓度的样品时无需担心交叉污染。5 在 DPiMS QT 和 Q-TOF LC/MS 之间轻松切换● 移除 DPiMS QT 装置约仅需15秒,即可重新配置为LC-QTOF系统。通过 DPiMS QT 实施初步筛查和定性分析,可以减少 LC-QTOF 分析所需的资源(溶剂和色谱柱),从而减少需要定量分析的样品数量,提高实验室工作效率。应用实例 对添加曲唑酮(500 ng/mL)的全血样品进行定性分析, MS和MS/MS分析在一个序列中同时进行。LabSolutions Insight Explore 支持组成推测、库搜索和结构解析。 1 MS分析检查色谱峰——通过在化合物表中输入分子式或对应的质量数来提取目标离子的质量色谱图。组成推测——从获得的质谱图中,选择任意 m/z 的质谱,并使用组成推测功能按匹配度分数顺序列出预测的分子式。 2 MS/MS分析碎片归属——使用 LabSolutions Insight Explore 中的结构分析归属功能,根据产物离子质谱图对碎片进行归属。通过谱库检索评分——通过使用 LC-QTOF 创建的质谱库,对使用 DPiMS QT 分析得到的质谱图进行评分。
  • 群贤毕至,继往开来|离子与原子探针专业委员会成立大会成功召开
    仪器信息网讯 2023年12月22日,由中山大学承办的中国计量测试学会离子与原子探针专业委员会成立大会在广州从化文轩苑会议中心成功召开。离子与原子探针专业委员会是根据离子与原子探针相关领域的生产、研究、应用及教学的发展需要,由中国计量测试学会(以下简称“学会”)批复设立的分支(代表)机构。来自离子与原子探针领域的近百位专家齐聚一堂,共同见证了专委会成立。大会现场会议开幕式由中山大学分析测试中心陈建研究员主持,中国计量测试学会副理事长兼秘书长马爱文教授、中山大学副校长邰忠智和中国计量测试学会副理事长李献华院士分别致辞。中山大学分析测试中心 陈建研究员 主持开幕式中国计量测试学会副理事长兼秘书长 马爱文教授 致辞中国计量测试学会副理事长兼秘书长马爱文教授在致辞中表示,自2019年5月20号开始,国际计量七个单位全部定义到基本物理常数上,代表着国际测量科学全面进入量子化时代,量子测量将成为未来测量的主要技术手段,也将成为引领新一轮科技革命的重要主题。量子测量就是利用量子基本特性进行的高精度高灵敏度的测量工作,离子和原子探针技术就是利用离子和原子特性进行测量,是一项前沿先进的测试技术。马爱文希望委员会能够紧紧围绕国内外离子与原子探针技术开展调查研究,为政府和产业发展提供政策建议。紧紧围绕离子与原子探针前沿技术发展方向,不断开展学术交流学术会议,推动量子测量技术的不断进步;要紧紧围绕量子化测量方法,评价体系的开展,团体标准的制定,推动相关科研成果的转化以及产业链的不断发展;同时也要加强科普创新宣传工作,让更多的人了解离子与原子测量技术,让更多的领域应用这些先进技术。中山大学副校长 邰忠智 致辞中山大学副校长邰忠智指出,计量是实现单位统一,保证量值准确可靠的活动,是科技创新、产业发展、国防建设、民生保障的重要基础,是构建一体化国家战略体系和能力的重要支撑。党的十八大以来,在以习近平同志为核心的党中央坚强领导下,我国的计量事业的得到了快速的发展。作为中国科协的一级学会,中国计量测试学会聚集了我国计量测试领域中一大批具有高科技学术水平的专家学者,充分发挥学会科研院所、高校等单位的优势和作用,集聚各方资源和力量,共同推动国家现代先进测量体系建设,对国家的经济建设和国防领域发展起到了积极的作用。中国计量测试学会副理事长 李献华院士 致辞李献华院士表示,从1993年开始,以清华大学查良镇教授为代表的老一辈科学家,就自发组织了二次离子质谱研讨会,而原子探针技术用户研讨会到目前也举办了十二届。离子与原子探针技术专业委员会的成立,将为提升中国离子与原子探针研究的国际地位和影响力提供了组织保障,同时也将为我国举办2026年的国际二次离子质谱大会提供了有力支撑。今天离子与原子探针专业委员会成立大会是我们大家多年的夙愿,也是我国离子与原子探针专业领域的新起点。我们要以此为契机,共享资源,协同创新,建立产学研用交流服务的大平台,促进科研和产业的高质量发展。开幕式致辞结束后,会议议程环节由天津工业大学科学技术研究院院长赵丽霞教授主持。天津工业大学科学技术研究院院长 赵丽霞教授 主持会议议程赵丽霞在会上回顾了专委会成立前的历史和前期工作,并宣读了《中国计量测试学会关于同意成立离子与原子探针专业委员会的批复》。之后,会议审议和表决通过了《中国计量测试学会离子与原子探针专业委员会工作条例》草案;选举产生了中国计量测试学会离子与原子探针专业委员会委员、主任委员、副主任委员,并宣读最终选举结果及颁发聘书;提名表决产生了专委会秘书长和副秘书长;研讨了《中国计量测试学会离子与原子探针专业委员会“十四五”工作计划》草案。颁发聘书会议总结发言会议选举中山大学分析测试中心陈建研究员任主任委员,中国科学院地质与地球物理研究所研究员李秋立、北京国家质谱中心主任汪福意研究员、沈阳材料科学国家实验室公共技术服务部负责人张磊研究员和南京工业大学胡蓉教授任副主任委员,天津工业大学赵丽霞教授任秘书长,上海大学分析测试中心副研究员李慧任副秘书长。会议最后,由新当选的主任委员、副主任委员及其他领导分别做会议总结发言。至此,中国计量测试学会离子与原子探针专业委员会正式成立。之后,大会进入特邀报告环节。报告人:中国科学院地质与地球物理研究所研究员 李秋立报告题目:《原子探针分析诠释锆石离子探针U-Pb体系年龄怪现象》锆石是大型离子探针U-Pb定年技术应用最早和最广的矿物,离子探针U-Pb定年可以有效获取粒径微小锆石或具有复杂环带结构的锆石中不同区域的年龄信息。但高U锆石的离子探针U-Pb分析中存在随U含量升高而表现更老的现象,称之为"高U效应"。对此,李秋立团队利用原子探针分析揭示出锆石微观尺度为锆石-磷钇矿-铀石等多项成分固溶体;高U锆石中U原子以铀石-锆石-磷钇矿的过渡成分赋存;高U锆石微观尺度下基体成分与锆石标准样品存在明显差别,造成离子探针分析校正结果出现偏差。报告人:中国科学院大连化学物理研究所首席研究员 李海洋报告题目:《高质量分辨连续离子束源二次离子飞行时间质谱装置研制》据介绍,质谱与快速检测研究中心面向国家安全、生态环境和生命健康领域对现场、原位和快速分析仪器的新需求,用创新的离子精准调控技术和集成化方案,做能解决问题而且用户体验好的新仪器。SIMS是高灵敏的微区化学成分分析的工具,TOF-SIMS(飞行时间二次离子质谱)具有独特优势及应用范围,是目前应用最广泛的表面分析技术之一,是一种具有高质量分辨本领(质量分辨率)和高空间分辨(空间分辨率)的表面分析技术。但用SIMS实现分子的定性更需要质谱的高分辨率。针对于此,李海洋在报告中介绍了团队在DC- TOF SIMS 设计和单元技术进展和DC- MTOF SIMS 研究进展。报告人:北京科技大学教授 吴渊报告题目:《Effects of local chemical orderings on properties of high-entropy alloys revealed by atom probe tomography》高熵合金,以其多主组元,高构型熵的设计理念以及独特的性能,成为近十多年来合金领域内的热点材料。在研究初期,高/中熵合金所形成的单相固溶体,其组成原子被认为是完全无序分布在晶体点阵中。由于多组元元素间的复杂相互作用,使得合金在凝固或者热处理后,呈现局部短程有序结构,成为了高熵合金的一个关键特征。局部化学有序性对高熵合金的性能有显著影响。吴渊在报告中指出,原子探针层析成像(APT)可以在表征LCOs和揭示其对HEAs力学行为的影响方面发挥强大作用。报告人:中国科学院广州地球化学研究所教授级工程师 夏小平报告题目:《矿物水中的SIMS测试及其地球与行星科学应用》水,即使是微量的,对岩浆性质影响很大,是成岩、成矿等地质过程的关键因素。地球内部藏着海洋。水含量是星体演化的重要因素,确定水的含量和同位素组成对理解行星体的形成和演化具有重要意义。夏小平团队利用二次离子质谱仪(SIMS)同时测试锆石中水含量和氧同位素组成的分析方法,研究了月球、火星、地球晚期大轰炸的地质事件,分享了来自月球陨石锆石同位素及水含量可能代表的“星际故事”,并表示早期陨石撞击曾经给月球带来大量的水。报告人:中国计量科学研究院研究员 任同祥报告题目:《计量+离子/原子探针=?》质谱法测全血中锌元素含量的方法有外标法、标准加入法、同位素稀释法等,其中同位素稀释质谱法 (IDMS) 被化学计量公认为5个绝对测量方法之一,是痕量、超痕量成分的权威性测量方法。报告中,任同祥介绍了如何用同位素稀释法测锌,以及中国计量科学研究院研制的浓缩同位素标准物质和相应的规范和标准。与会人员合影留念
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制