当前位置: 仪器信息网 > 行业主题 > >

热电转换效率测量系统

仪器信息网热电转换效率测量系统专题为您提供2024年最新热电转换效率测量系统价格报价、厂家品牌的相关信息, 包括热电转换效率测量系统参数、型号等,不管是国产,还是进口品牌的热电转换效率测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电转换效率测量系统相关的耗材配件、试剂标物,还有热电转换效率测量系统相关的最新资讯、资料,以及热电转换效率测量系统相关的解决方案。

热电转换效率测量系统相关的资讯

  • 《Science》!热电转换效率测量系统PEM助力客户文章登上顶级期刊
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。 热电材料性能指标的关键在于能源转换效率,其由材料的无量纲热电性能优值(ZT值)决定。由ZT值的定义式(ZT = (Sσ/κ)T)可知,在给定温度T下,高性能热电材料应具有大的塞贝克系数S、高的电导率σ和低的热导率κ。然而,这些热电参数相互之间具有强烈的耦合关系,使得热电材料的性能优化具挑战性,调控这些强烈耦合的复杂热电参数是提高材料ZT值和热电转换效率的关键。随着热电材料领域的研究越来越受重视,不断涌现出了诸多提升ZT值的有效策略:优化载流子浓度以提高电导率;调整电子能带结构、晶体结构、相结构等优化电传输性能;通过引入点缺陷、位错、晶界、纳米沉淀物等进行多尺度分层架构设计以降低热导率;探索和开发具有本征低热导率特性的新材料体系;通过高通量及基于基因计算等预测潜在热电材料等。近日,北京航空航天大学材料科学与工程学院赵立东教授团队与南方科技大学、清华大学及武汉理工大学的科研团队合作,通过掺杂Pb,显著提高了p型SnSe晶体室温附近的电传输性能。该工作以《Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments》为题目发表在《Science》上。 以往研究中,多选用窄带隙或半金属材料作为热电制冷材料,赵立东教授课题组则主要开发宽带隙热电材料,利用各向异性调和电输运与热输运的矛盾。该研究通过在动量空间和能量空间同时作用的多价带协同传输策略,实现了p型SnSe晶体热电性能的显著提升;并制备了基于SnSe晶体材料的热电器件,测试其温差发电性能(大发电量及功率),还实现了大温差的电子制冷。这一研究表明SnSe基晶体材料在温差发电和电子制冷方面有巨大潜力,使用p型SnSe晶体制备的器件,其制冷性能达到了使用传统BiTe基材料商用器件的70%(210K温差下),但SnSe基热电材料具有成本低、重量轻且储量更加丰富等优势,具备十分巨大的应用价值。图1. 使用PEM-2测得的温差发电器件性能:电压(A)和输出功率(B)以上工作中,材料的电导率、塞贝克系数使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3测得,热电转换器件(TEG)的发电量、输出功率及热电转换效率使用日本Advance Riko公司生产的热电转换效率测量系统PEM-2测得。图2. 使用PEM-2测得的温差发电器件的转换效率 日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。参考文献:[1] Qin Bingchao et al., Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 30 Jul 2021: Vol. 373, Issue 6554, pp. 556-561[2] 《Science》刊发北航赵立东教授课题组在电子制冷材料研究上的新进展,北京航空航天大学新闻网[3] 南科大何佳清团队在Science发表SnSe热电材料和器件重要成果,南方科技大学新闻网 关注Quantum Design China微信公众号,在对话框中输入“热电”了解更多信息。
  • 【热电资讯】新一代小型热电转换效率测量系统Mini-PEM成功落户中国科学院物理研究所
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。近期,我们在中国科学院物理研究所成功交付使用了小型热电转换效率测量系统Mini-PEM。该设备可测量热电材料产生的电量及热电转换效率η(通过产生的电量和热流来获得)。为尽快满足用户的科研需求,Quantum Design中国子公司调集技术力量,在满足防疫要求的前提下与用户紧密合作,顺利完成了设备的安装工作,所有技术指标均符合要求,设备正式交付使用。热电材料能够实现热能与电能的直接转换,具有重要的实用价值,而热电转换效率是衡量热电材料这种转换能力的一个重要指标,对热电材料的产业化具有重要的指导意义,目前小型热电转换效率测量系统是能有效测量该指标的仪器。Quantum Design中国子公司工程师为客户介绍设备传统的热电转换效率测量方法是将所制得的样品(p型或n型)与标准(n型或p型)材料结合制备成器件,通过对器件进行测试得出转换效率。近年来,ADVANCED RIKO公司创新性地研发了全新的小型热电转换效率测量系统Mini-PEM,其能以单腿器件为样品,通过测试样品的热流及发电量再结合理论计算得到热电转换效率,并且对该类产品申请了。Mini-PEM的样品连接方式近期Mini-PEM用户,昆明理工大学材料学院教授葛振华、冯晶等通过将Ru纳米粉体掺杂至商业碲化铋中,实现了细晶强化。通过晶界对电子和声子的散射,有效提高了塞贝克系数,降低了热导率。材料在425K的ZT值达到0.93。使用Mini-PEM对单腿n型碲化铋的热电转换效率进行了表征,相比纯商业样品提升了91%。相关研究成果以Simultaneous Enhancement of Thermoelectric Performance and Mechanical Properties in Bi2Te3 via Ru compositing为题发表在化工领域期刊Chemical Engineering Journal上[1]。该工作中,材料的高温塞贝克系数和电阻率是采用日本ADVANCE RIKO公司生产的塞贝克系数/电阻测量系统ZEM-3测得的;单腿样品的热电转换效率是使用日本ADVANCE RIKO公司生产的小型热电转换效率测量系统Mini-PEM测得。另外,材料在室温(291K)的载流子浓度与载流子迁移率使用Quantum Design公司研发的综合物性测量系统PPMS测得。日本ADVANCE RIKO公司成立近60年来专业从事“热”相关技术和设备的研究开发,并一直走在相关领域前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国子公司将日本ADVANCE RIKO公司的先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design China与日本ADVANCE RIKO达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本ADVANCE RIKO先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本ADVANCE RIKO热电产品,均由Quantum Design中国子公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国子公司在日本ADVANCE RIKO公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:【1】Y-K. Zhu, J. Guo, L. Chen, S-W. Gu, Y-X. Zhang, Q. Shan, J. Feng, Z-H. Ge,Simultaneous Enhancement of Thermoelectric Performance and Mechanical Properties in Bi2Te3 via Ru compositing, Chemical Engineering Journal (2020)
  • 【热电资讯】QD中国北京实验室引进小型热电转换效率测量系统Mini-PEM样机并正式开放预约体验
    2019年3月22日,Quantum Design中国引进日本ADVANCE RIKO公司小型热电转换效率测量系统Mini-PEM在北京样机实验室成功完成安装并对外开放。Quantum Design中国此次建立的Mini-PEM样机实验室,可对相关领域感兴趣的科学工作者提供真机体验平台。欢迎广大学者预约真机体验。小型热电转换效率测量系统Mini-PEM可以通过自动测量热流量和发电量来获得热电转换效率,电量是通过四探针法获得;热流是通过热流计获得。Mini-PEM体积更为小巧,操作更为简单,集成化设计可实现对小型材料块体方形2-10mm x 1-20mmH测量。可广泛应用于:发电量和热流量测量、热电材料模块的热电转换效率计算、单一热电材料发电量及热流测量、热电材料性能和寿命评估等各个方向。 热电材料能够实现热能与电能的直接转换,具有重要的实用价值,而热电转换效率是衡量热电材料这种转换能力的一个重要指标,对热电材料的产业化具有重要的指导意义,目前小型热电转换效率测量系统是能有效测量该指标的仪器。传统的热电转换效率测量方法是将所制得的样品(p型或n型)与标准(n型或p型)材料结合制备成器件,通过对器件进行测试得出转换效率。而近年来,ADVANCED RIKO公司创新性生产出了小型热电转换效率测量系统Mini-PEM,其能以单臂材料为样品,通过测试样品的热流及发电量结合理论计算得到热电转换效率,并且对该类产品申请了。
  • 【热电资讯】热电转换效率测量系统PEM-2成功落户深圳市清洁能源研究院
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。 近日,我司在深圳市清洁能源研究院成功交付使用了热电转换效率测量系统PEM-2。该设备可测量热电材料产生的电量及热电转换效率η(通过产生的电量和热流来获得)。为尽快满足用户的科研需求,Quantum Design中国公司调集技术力量,在满足防疫要求的前提下与用户紧密合作,顺利完成了设备的安装工作,所有技术指标均符合要求,设备正式交付使用。热电材料能够实现热能与电能的直接转换,具有重要的实用价值,热电转换效率是衡量热电材料这种转换能力的一个重要指标,对热电材料的产业化具有重要的指导意义,热电转换效率测量系统PEM-2是能有效测量该指标的仪器。PEM-2主机外观Quantum Design中国公司工程师为客户介绍设备热电转换效率测量系统PEM-2通过高精度的红外线金面反射炉可快速完成性能评估和耐力测试,可以实现热穿透测量,加热过程中,通过气缸加载可以保持接触表面的热阻稳定。在测试过程中,仅通过设置软件即可自动完成温度稳定性的判断、自动调节热电发电模块的负载以及自动控制温度测量,操作十分便捷。PEM-2支持3种样品尺寸,分别为20 mm×20 mm、30 mm×30 mm、40 mm×40 mm,用户可以根据自己的研究需要选择样品单元的大小。40 mm×40 mm样品单元PEM-2自推出以来,广受热电领域科研工作者的关注,目前国内装机量已近10台。近期,南方科技大学物理系讲席教授何佳清团队在n型Bi2Te3材料中复合过量的Te单质,通过烧结使Te单质熔化流出,在基体中引入位错。此外,还复合掺杂了Sb元素,使材料中同时存在多种缺陷,从而达到了降低热导率的目的,显著提高ZT优值。使用此材料制备的热电转换器件,实现了3.7 W的大输出功率及6.6%的转换效率,相关成果以“Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials”为题在Energy & Environmental Science发表[1]。该工作中热电转换器件的大输出功率(Pmax)及转换效率(η)均使用PEM-2测得。热电转换效率测量系统PEM-2为日本Advance Riko, Inc.生产。日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新款先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1]. Bin Zhu, Xixi Liu, Qi Wang, Yang Qiu, Zhong Shu, Zuteng Guo, Yao Tong, Juan Cui, Meng Gu and Jiaqing He, Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials, Energy & Environmental Science 2020, 13, 2106-2114 关注Quantum Design China微信公众号,在对话框中输入“热电”了解更多信息。
  • 《EES》!热电转换效率测量设备助力客户铜基热电材料研究取得重要进展
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行精确测量是评价热电材料和器件性能的重要基础。 热电转换技术是一项基于半导体材料的新能源技术。基于材料的塞贝克效应和帕尔贴效应,该项技术能够实现温差发电和通电制冷的效果,其分别在工业废热回收利用和电子制冷领域有着重要的应用。相比于传统能源转换技术,热电转换技术具有器件尺寸高度可控、可靠性高、无运动部件、无污染和无噪音等优势。热电材料性能指标的关键在于能源转换效率,其由材料的无量纲热电性能优值(zT值)决定。随着热电材料领域的研究越来越受重视,不断涌现出了诸多提升zT值的有效策略:优化载流子浓度以提高电导率;调整电子能带结构、晶体结构、相结构等优化电传输性能;通过引入点缺陷、位错、晶界、纳米级沉淀物等进行多尺度分层架构设计以降低热导率;探索和开发具有本征低热导率特性的新材料体系;通过高通量及基于基因计算等预测潜在热电材料等。类金刚石化合物是从单质Si及闪锌矿半导体等金刚石结构物质衍生而来,具有金刚石结构的四面体结构。四元类金刚石材料Cu2CdSnSe4[1]和Cu2ZnSnSe4[2]等的热电性能逐渐受到重视,其zT值在700K及850K分别达到了0.65及0.95。此后,多种类金刚石结构化合物的性能得到研究,许多体系的ZT值超过了1。近期,重庆大学周小元团队与其合作者通过在Cu3SbSe4中加入CuAIS2(1&minus 6wt%)的方法提高了材料的电输运性能、降低了晶格热导率,同时材料的热稳定性和力学性能也得到了提升,给热电器件(TEG)的制作与应用带来了益处,该工作以《High Thermoelectric Performance and Compatibility in Cu3SbSe4-CuAlS2 Composites》为题,发表在能源与环境科学领域顶级期刊《Energy &Environmental Science》 (EES)上[3]。实验结果表明,Cu3SbSe4-CuAIS2复合材料在300 - 723 K的温度范围内平均zT值为0.77,峰值可以达到1.8,均为已公开报道的最高值。 图1. 300-723K温度区间内Cu3SbSe4 and Cu3SbSe4-5 wt% CuAlS2zT值与温度的关系(a)、本工作与其他公开报道的铜基-类金刚石热电材料的zT值比较(b)使用p型Cu3SbSe4-5% CuAlS2制成的单腿器件,其热电转换效率达到了3.3%(ΔT=367K)。图2. p-type Cu3SbSe4-5% CuAlS2单腿器件的转换效率(a)及发电量(b)与温度的关系值得注意的是,本文中单腿器件的转换效率及发电量测量是在Advance Riko公司的小型热电转换效率测量系统Mini-PEM上进行的,Quantum Design中国做为日本Advance Riko, Inc.公司的合作伙伴,很荣幸高性能的小型热电转换效率测量系统Mini-PEM可以助力本研究的发表。 日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司先进的热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1] M. Liu et al., A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S, Se), Appl. Phys. Lett. 94, 202103 (2009)[2] M. Liu et al., Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4, Advanced Materials, Volume21, Issue37[3] Y. Huang et al., High thermoelectric performance and compatibility in Cu3SbSe4–CuAlS2 composites, Energy Environ. Sci., 2023, Advance Article
  • 热电领域,多篇Science:热电转换测量系统持续助力客户获取关键数据!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电器件可以实现热能和电能的直接转换,在航空航天、低品位热回收和固态制冷领域具有重要的研究价值。 随着航空航天、物联网及低品位热回收等领域的发展,热电发电器件的性能越来越受到人们关注,除了用于制备器件的热电材料本身的zT值这一重要因素外,器件的结构(形状、尺寸、连接方式)以及界面材料等都对器件性能有重要影响,因此,对于发电器件性能的准确测量从而改善器件的设计及制造工艺成为科研工作者的迫切需求。 日本Advance Riko公司新推出的小型热电转换测量系统Mini-PEM(图1)是一款既可以测量单腿器件,也可以测量多对器件的商用热电转换效率测量系统。该系统热端温度可高达500℃,可以测量器件在不同温差条件下的发电量、热流量及最大转换效率。图1、小型热电转换效率测量系统Mini-PEM 赵立东教授课题组Science碲化铋基热电材料(BiTe)在室温附近具有优异的热电性能,被广泛应用于低温区的制冷及发电,是目前极具前瞻性的热电材料体系,但Te元素的稀缺性(地壳内含量:0.005ppm)使其广泛应用受到限制,因此寻找新的材料体系对于热电材料的广泛应用非常重要。来自北京航空航天大学的赵立东教授课题组对于SnSe体系进行了深入的研究,在2021年的工作中【Science 373 (2021) 556-561】通过掺杂Pb,显著提高了p型SnSe晶体室温附近的电传输性能,并制备了基于SnSe晶体材料的热电器件,测试了其温差发电性能(最大发电量及功率),还实现了大温差的电子制冷。这一研究表明了SnSe基晶体材料作为温差发电和电子制冷材料的巨大潜力,使用p型SnSe晶体制备的器件,其制冷性能达到了使用传统BiTe基材料商用器件的70%(210K温差下),且SnSe基热电材料具有成本低、重量轻且储量更加丰富的优势,具备巨大的应用潜力[1]。2023年,该课题组通过在SnSe中引入Cu填充Sn空位,有效地提高了载流子迁移率,基于获得的高性能SnSe晶体搭建的热电器件在发电和制冷都表现出优异的性能。发电器件(TEG)在300K温差下能够实现最高12.2%的发电效率,制冷器件(TEC)在室温及高温下也均实现了优异的制冷性能[2]。近期,该课题组通过物理气相沉积的方法制备了PbSe晶体,以及在PbSe晶体中额外引入微量的Pb,观察到了PbSe晶格中的本征Pb空位被填补,其对应的点缺陷散射被削弱,从而显著增加了载流子迁移率。基于获得的高性能N型PbSe晶体在发电与制冷都表现出优异的性能。如图2A所示,单腿器件在420K温差下能够实现 ~ 11.2%的发电效率;如图2B所示,与该课题组2023年开发的高性能P型SnSe晶体(Science 380(2023)841-846)搭配制备的Se基热电制冷器件在热端温度(Th)为室温下能够实现 ~ 73.3 K的制冷温差,其制冷性能优于Bi2Te3基等材料制成的制冷器件[3]。图2、热电转换效率对比图(A);制冷器件温差对比图(B)该工作以《Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3》为题,发表在《Science》上,其中单腿发电器件的发电量及转换效率均使用Mini-PEM测得。与上述工作不同,如果样品为多对p-n结构,ADVANCE RIKO公司则提供热电转换测量系统PEM-2用于发电量及转换效率的测量。热电转换测量系统PEM-2支持多种器件尺寸(最大40mm×40mm),热端最高温度可达800℃,测量在惰性气体(Ar2)中进行。图3、热电转换效率测量系统PEM-2 何佳清教授课题组Science近期,来自南方科技大学何佳清教授课题组的科研工作者,首次发现并验证了空穴载流子捕获和释放机制和其对材料电性能的调控作用,以及调控材料本证铅空位形态的赝纳米结构对材料热输运的抑制作用。课题组在碲化铅材料中构造了大量的纳米级空位团簇,这些团簇在材料中产生了大量的应力和应变,使材料的晶格热导率显著降低了,并且更加有利于热电材料的高服役。同时,热电器件结构设计和转换效率的提升,也有助于推动热电发电器件的发展和应用[4]。该工作以《Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe》为题,发表在《Science》上,其中热电发电器件的转换效率使用PEM-2测得。图4、使用PbTe制备的热电发电器件的热电性能延伸阅读日本ADVANCE RIKO公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前沿,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本ADVANCE RIKO公司先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及薄膜厚度方向热电性能评价系统ZEM-d引进中国。2018年7月,Quantum Design中国与日本ADVANCE RIKO达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本ADVANCE RIKO先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本ADVANCE RIKO热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本ADVANCE RIKO公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献[1] Qin Bingchao et al., Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 30 Jul 2021: Vol. 373, Issue 6554, pp. 556-561[2] Liu Dongrui et al., Lattice plainification advances highly effective SnSe crystalline thermoelectrics, Science 380, 841–846 (2023)[3] Qin Yongxin et al., Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3, Science 383, 1204–1209 (2024)[4] Jia Baohai et al., Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe, Science 384, 81–86 (2024)相关产品1、小型热电转换效率测量系统-Mini-PEMhttps://www.instrument.com.cn/netshow/SH100980/C283294.htm2、热电转换效率测量系统-PEMhttps://www.instrument.com.cn/netshow/SH100980/C283291.htm
  • 林赛斯发布热电转换效率测量系统 TEG-Tester 新品
    p style=" text-align:center " img src=" https://img1.17img.cn/17img/images/201908/pic/ff28225e-9884-436e-b6cd-9b90124f60ab.jpg!w400x400.jpg" alt=" 德国林赛斯 热电转换效率测量系统 TEG-Tester " / /p p style=" box-sizing: border-box margin: 0px 0px 0px 8px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0px white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 近年来,对可再生能源 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 技术的需求越来越大,可替代化石资源的优化也达到了上限。热电技术提供了将热能直接转化为电能的途径,是一种利用工业过程、车辆排气系统甚至来自人体热量中尚未消耗的废热的发电方法。 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 8px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0px white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" LINSEIS TEG-Tester 是一种用于热电器件(TEGs)温度相关转换效率评估的测量系统。该模块位于 /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 热板 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 和冷 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 板 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 之间,其中 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 热板 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 连接到可调节加热器,冷 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 板 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 连接到恒温控制的液冷散热器。通过集成的电机自动调节接触压力(根据温度调整压力稳定性)。 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 8px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0px white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 通过设置不同的温度来对热电装置施加温度梯度,并测量通过参考试块计量棒而进入 /span TEG的热流。在不同的点对产生的电压和电流进行扫描,得到I-V曲线,或可观测到在动态负载下运行的TEG。利用扰动和观测法来计算效率和跟踪最大功率点。 /span /p p style=" box-sizing: border-box color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" strong style=" box-sizing: border-box font-weight: bold" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 32px color: rgb(89, 89, 89) font-weight: bold font-size: 16px" span style=" box-sizing: border-box" 应用方向: img src=" http://www.linseis.com.cn/static/kindeditor/attached/image/20190804/20190804112433_91135.jpg" alt=" " title=" " style=" box-sizing: border-box border: none vertical-align: middle max-width: 100% height: auto" width=" 325" height=" 217" / /span /span /strong strong style=" box-sizing: border-box font-weight: bold" /strong /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 热电模块的性能测试 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 评估热电材料的最大热电转换效率 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 在负载及热循环条件下测试 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 热电 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 模块的预期 /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 寿命 /span /span /p p style=" box-sizing: border-box color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 text-indent: 0px white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" strong style=" box-sizing: border-box font-weight: bold" span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 32px color: rgb(89, 89, 89) font-weight: bold font-size: 16px" span style=" box-sizing: border-box" 特点: /span /span /strong strong style=" box-sizing: border-box font-weight: bold" /strong /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 自动机械负载压力补偿 /span /span /p p style=" box-sizing: border-box margin: 0px 0px 0px 28px color: rgb(102, 102, 102) font-family: & #39 Microsoft YaHei& #39 , sans-serif font-size: 14px font-style: normal font-variant-ligatures: normal font-variant-caps: normal font-weight: 400 letter-spacing: normal orphans: 2 white-space: normal widows: 2 word-spacing: 0px -webkit-text-stroke-width: 0px background-color: rgb(255, 255, 255) text-align: justify" span style=" box-sizing: border-box font-family: Wingdings color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" l span style=" box-sizing: border-box" & nbsp /span /span /span span style=" box-sizing: border-box font-family: 微软雅黑 line-height: 28px color: rgb(89, 89, 89) font-size: 14px" span style=" box-sizing: border-box" 不同的操作模式( /span CC、CV、FOC、MPPT、P& amp O) /span /p p br/ /p table width=" 549" cellspacing=" 0" border=" 1" tbody style=" box-sizing: border-box" tr style=" box-sizing: border-box" class=" firstRow" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" center" p style=" box-sizing: border-box text-align: left vertical-align: middle" strong style=" box-sizing: border-box font-weight: bold" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(69, 150, 197) font-weight: bold font-style: normal font-size: 22px" 型号 /span /strong strong style=" box-sizing: border-box font-weight: bold" /strong /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" center" p style=" box-sizing: border-box text-align: left vertical-align: middle" strong style=" box-sizing: border-box font-weight: bold" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(69, 150, 197) font-weight: bold font-style: normal font-size: 22px" TEG TESTER /span /strong strong style=" box-sizing: border-box font-weight: bold" /strong /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 样品尺寸 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 40 mm x 40 mm (其他需求可定制) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 样品厚度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 最大 30 mm /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 测厚 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 精度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" ± 0.1% (50% 量程) / ± 0.25%(100% 量程) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 温度 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 范围 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" RT span & nbsp /span /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 至 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" & nbsp 300° C (热端) / –20 span & nbsp /span /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 至 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" & nbsp 300° C /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 温度 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 准确度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0.1° C /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电压 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 范围 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0-60 V (DC) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电压 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 准确度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0.3 % /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电压分辨率 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 2.4 μV /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电流 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 范围 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0-25 A (DC) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电流 /span span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 准确度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0.3 % /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电流分辨率 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 1 μA /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 损耗功率 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 最高至 250 W /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 评估参数 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 热流 /span /p p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 赛贝克系数平均值 /span /p p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 热导率平均值 /span /p p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 模块电阻平均值 /span /p p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 输出功率 /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 接触压力范围 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 0 至 8 MPa (根据样品尺寸) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 接触压力准确度 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" +/- 1% /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 尺寸 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 675 mm H x 550mm W x 680 mm D /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 冷却装置 /span /p /td td style=" box-sizing: border-box padding: 0px border: none background: rgb(235, 235, 235)" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 外部冷却器(与附加加热装置结合使用) /span /p /td /tr tr style=" box-sizing: border-box" td style=" box-sizing: border-box padding: 0px border: none" width=" 166" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 加热装置 /span /p /td td style=" box-sizing: border-box padding: 0px border: none" width=" 382" valign=" top" p style=" box-sizing: border-box text-align: left vertical-align: top" span style=" box-sizing: border-box font-family: 微软雅黑 color: rgb(89, 89, 89) font-size: 14px" 电阻加热器 /span /p /td /tr /tbody /table p br/ /p p span style=" font-family: 微软雅黑 font-size: 13px line-height: 19px widows: auto background-color: rgb(255, 255, 255) " span style=" color: rgb(59, 69, 73) font-family: 微软雅黑 font-size: 13px line-height: 19px background-color: rgb(255, 255, 255) " span style=" color: rgb(59, 69, 73) font-family: 微软雅黑 font-size: 13px line-height: 19px background-color: rgb(255, 255, 255) " *价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询,我们定会将竭尽全力为您制定完善的解决方案。 /span /span /span /p p 创新点: /p p 电机全自动压力控制(最高8 MPa)LVDT高分辨率自动测厚符合标准ASTM D5470全集成软件控制装置(可变负载MPP跟踪) /p p a href=" https://www.instrument.com.cn/netshow/C335674.htm" style=" font-size:22px text-decoration: underline " target=" _blank" strong 德国林赛斯 & nbsp 热电转换效率测量系统 & nbsp TEG-Tester /strong /a /p
  • 塞贝克系数/电阻测量系统助力Fe-Al-Si系热电模块研究,为物联网硬件供电提供新材料!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行测量是评价热电材料和器件性能的重要基础。 物联网( IoT ,Internet of Things )即“万物相连的互联网”,是互联网基础上延伸和扩展的网络,通过将射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。目前常用纽扣电池(coin cell)为物联网硬件供电,但由于高昂的更换费用及低可回收性,纽扣电池并不是一种理想电源。其他能量收集技术中,太阳能(solar cell)是一个可行方案且已经在某些领域中得到应用;另一种被广泛看好的技术为热电转换。如何将周围环境中的低温废热(473K)有效回收并转换为电能是热电转换技术能否大规模应用的关键。目前商用的热电转换模块(TEG)多使用Bi-Te基热电材料,但Bi及Te均为稀有元素且Te元素的毒性限制了其大规模应用,据测算,地壳中的全部Te元素无法满足百万兆别物联网硬件的供电,因此亟需寻找一种环境友好且可以大量生产的热电材料。与Bi-Te基热电材料相比,在473K以下有着良好热电转换表现的热电材料选择并不多,曾有报道指出,Mg-Sb基热电材料可部分应用于低温废热回收。近日,来自日本国立材料研究所(NIMS)及茨城大学(Ibaraki University)的研究人员使用低成本的Fe-Al-Si基热电材料(FAST)制备了热电转换模块,并对其热电转换特性进行了研究。分别使用两种方法制备的Fe-Al-Si基热电材料,并使用多种检测手段对其电学特性及热电转换性能分别进行了表征。图1 电导率(a, b);塞贝克系数(c, d);功率因子(e, f)与温度的关系(a, c, e: n-type b, d, f: p-type) 在进行了材料电输运特性的测试后科研人员随后采用了下图中的步骤制备了热电转换模块(TEG),并对其热电转换性能进行了测试。 图2 热电转换模块(TEG)制备流程经测试,使用Fe-Al-Si基热电材料制备的热电转换模块,其在室温及小温差条件(~5K)下的开路电压及输出功率数值均符合预期,并使用其为蓝牙通讯模块供电以验证其可靠性,更多测试结果请参考原文[1]。图3 热电转换模块(TEG)的开路电压及输出功率 以上工作中,材料的电导率、塞贝克系数使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3测得,热电转换模块(TEG)的开路电压及输出功率使用日本Advance Riko公司生产的小型热电转换效率测量系统Mini-PEM测得。日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1]. Yoshiki Takagiwa, Teruyuki Ikeda, and Hiroyasu Kojima, Earth-Abundant Fe−Al−Si Thermoelectric (FAST) Materials: from Fundamental Materials Research to Module Development, ACS Appl. Mater. Interfaces 2020, 12, 43, 48804–48810
  • 【热电资讯】新一代塞贝克系数/电阻测量系统-ZEM-3连续成功落户西湖大学、上海交通大学
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。近期,我司在西湖大学理化公共实验平台及上海交通大学材料学院连续成功交付使用了新一代塞贝克系数电阻测量系统-ZEM-3。该设备可实现金属或半导体材料的热电性能评估以及塞贝克系数和电阻的测量。其特的红外金面加热炉(高1000℃)和控制温差的微型加热器可实现温度的控制;整个测量过程由计算机全自动控制,能够在指定的温度下执行测量,允许自动测量消除背底电动势;并且ZEM-3还可实现欧姆接触自动检测功能(V-I曲线),不仅可以用创的适配器来测量薄膜,也可定制高阻型。Quantum Design中国子公司 工程师在为客户介绍设备 这两台设备于疫情期间运抵国内,为保证用户的科研使用需求,Quantum Design中国子公司调集技术力量,在满足学校防疫要求的前提下与用户紧密合作,于近日顺利完成了设备的安装培训工作,所有技术指标均符合要求,设备正式交付使用。西湖大学的设备已进入校设备共享平台,对校内外用户开放共享。目前,所有中国用户购买的ZEM系列产品,均由Quantum Design中国子公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国子公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 西湖大学理化公共实验平台网站截图 该设备为日本Advance Riko, Inc.生产。日本Advance Riko公司成立近60年来专业从事“热”相关技术和设备的研究开发,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国子公司引进日本Advance Riko公司的:小型热电转换效率测量系统Mini-PEM、热电转换效率测量系统PEM、塞贝克系数/电阻测量系统ZEM及大气环境下热电材料性能评估系统F-PEM等一系列先进热电材料测试设备。2018年7月,Quantum Design 中国子公司与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。延伸阅读:为更好服务国内热电材料研究领域的客户,满足客户体验需求, Quantum Design中国子公司与日本Advance Riko公司携手推出厚度方向热电性能评价系统ZEM-d 免费样品测试活动。活动时间自即日至2020年9月30日止,如您有样品测试需求,欢迎通过留言、官方微信平台、电话010-85120280或邮箱info@qd-china.com联系我们,公司将有专人对接,与您协调具体的样品测试工作。
  • 1160万!北京理工大学量子材料全温区热电性能测量系统采购项目
    一、项目基本情况项目编号:BMCC-ZC23-0843项目名称:北京理工大学量子材料全温区热电性能测量系统采购预算金额:1160.000000 万元(人民币)采购需求:名称数量简要项目描述备注量子材料全温区热电性能测量系统1套用于量子功能材料在2K-300K温度区间的热电性能研究。主要包括量子材料在无外加磁场以及外加磁场条件下的电导率、热导率、塞贝克系数、Hall效应、热电转换效率等热电相关研究;用于测量量子材料在300K-1000K温度区间的热电性能研究。具体内容详见招标文件本项目接受进口产品投标。其他:投标人应对招标文件中“第七章 采购需求及服务需求”中所有内容进行投标,不得将其中的内容拆开投标,否则其投标将被拒绝。合同履行期限:自合同生效之日起至本项目服务内容全部结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月04日 至 2023年12月11日,每天上午9:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外)地点:线上报名(具体方式详见“六、其他补充事宜”)。方式:本项目只接受电汇或网银购买招标文件(具体方式详见“六、其他补充事宜”)。售价:¥200.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:海淀区中关村南大街5号        联系方式:林老师,010-68917981      2.采购代理机构信息名 称:北京明德致信咨询有限公司            地 址:北京市海淀区学院路30号科大天工大厦B座17层1709室            联系方式:张昕昕、朱思菲 010-82370045、18519514673(开机时间:工作日北京时间上午9:00-11:30,下午1:00-17:30) bjmdzx@vip.163.com            3.项目联系方式项目联系人:张昕昕、朱思菲电 话:  010-82370045、18519514673(开机时间:工作日北京时间上午9:00-11:30,下午1:00-17:30)
  • 蓄能2020药典系列|快速方法转换,助力制药QC实验室提升效率
    蓄能2020药典系列|快速方法转换,助力制药QC实验室提升效率关注我们,更多干货和惊喜好礼经过多年的发展,超高效液相色谱UHPLC技术,因其能获更高的柱效和更快的分析速度,且在多数情况下可替代常规HPLC方法,目前已经得到一定范围内的普及。但是,由于缺乏公认方法转换规则,制药行业的质控QC,大多数还在使用HPLC 方法。2020年版《中国药典》的液相色谱通则,终于给出了色谱参数调整的具体规定。参照新版药典的准则,实验室分析人员可以将常规HPLC方法转换为UHPLC 方法。 新版药典0512通则《高效液相色谱法》中规定:“若需使用小粒径(约2μm)填充剂和小内径(约2.1mm)色谱柱或表面多孔填充剂以提高分离度或缩短分析时间,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配,必要时,色谱条件(参数)可适当调整。” 对于新版的准则,品种正文项下规定的色谱条件(参数), 除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变调整。对于分析人员来说,如何能快速且高效地进行方法转换,就显得尤为关键了。专用方法转换工具,轻松生成目标方法 赛默飞可提供色谱方法专用方法转换工具,可以帮您做药典相关的快速的转换梯度方法,对于方法转换后色谱柱的规格,流速,进样体积,在方法转换软件左侧输入原有色谱柱规格及梯度条件,在软件右侧输入新的色谱柱规格,其他的条件系统都会自动为您生成,非常方便。(点击查看大图) 有了上面的小工具,方法转换不再难,下面让我们用实际案例来看看吧! 示例一Vanquish Core和核壳型Accucore色谱柱联用,支持HPLC方法转换成UHPLC方法(点击查看大图) 色谱柱是作为液相分离的核心,是方法转换的关键。核壳型填料Accucore 系列色谱柱最大的特点是低反压、高柱效,从上面的示例看,运行时间从75min变为23.7min,大大提高了分析速度,同时反压是常规高效液相色谱仪可以接受的范围内。使实验室的HPLC仪器实现UHPLC仪器的效率。 示例二Vanquish Flex UHPLC 和Acclaim色谱柱联用——强强联手,提高效率(点击查看大图) Acclaim系列超高效液相色谱柱,高碳载量,有效提高化合物的保留,改善分离的同时,2.2μm粒径在同类型色谱柱中反压较低,满足更多仪器需求。结合Vanquish Flex超高效液相,可以在优化条件下,帮您实现更快的分析速度。 示例三Vanquish Core液相支持梯度、速度和温度都改变的UHPLC药典方法转换——超级灵活(点击查看大图) 最新Vanquish Core液相系统耐压700bar,采用了核壳型填料(Accucore系列)色谱柱,依药典原则转换后的乌苯美司UHPLC方法最高压力不过400bar,Vanquish Core可以轻松应对。(点击查看大图) 分析时间缩短近70%,溶剂消耗减少74%,企业节约增效显著!!! 示例四Vanquish Core液相支持等度的UHPLC药典方法转换——极致提升效率(点击查看大图) 最新Vanquish Core液相系统耐压700bar,采用了Acclaim系列超高效液相色谱柱,依药典原则转换后的多索茶碱UHPLC方法最高压力不过500bar,Vanquish Core可以轻松应对。 示例五Vanquish Core双梯度分析赤芍配方颗粒——左右开弓,HPLC与UHPLC同时进行(点击查看大图) 如流路图所示,Vanquish Core液相配有双针双阀双流路的自动进样器,可以同时做两套不同的应用实验,没有任何流路的交叉污染,完全各自独立,也可以共用一个柱温箱。是高效低成本的不二之选。(点击查看大图) 依药典原则转换为UHPLC方法后,压力不过500bar,同时各参数指标均符合公示稿要求,而且分析效率提升300%,溶剂成本降低了87.5%。原来做一针进样的时间,相当于方法转换后的4针进样,增效显著。 快速方法转换,可以帮助制药QC实验室客户优化分析方法、全面提升仪器效率。赛默飞可以提供“全面、高效、合规”的解决方案,开创了合规数据管理为核心,创新科技支撑为动力的制药行业整体解决方案,引导更为高效的制药行业发展流程。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台https://www.instrument.com.cn/netshow/sh100244/
  • 五十年热技术研发历史,ADVANCE RIKO全自动热电测量走进中国
    引言 热电材料是通过其内部载流子的移动及其相互作用,来完成电能和热能之间相互转换的一种功能材料。由于采用热电材料的制冷和发电系统具有体积小重量轻、工作中无噪音、无污染、使用寿命长、易于控制等优点,因此,热电材料是一种有广泛应用前景的能源替代材料,进行新型热电材料的研究具有其重要的意义。 日本ADVANCE RIKO公司50多年来专业从事“热”相关技术和设备的研究开发,并一直走在相关领域的前端。2018年初,Quantum Design中国子公司将日本ADVANCE RIKO公司的新先进热电材料测试设备大气环境下热电材料性能评估系统F-PEM、小型热电转换效率测量系统Mini-PEM、热电转换效率测量系统PEM及塞贝克系数/电阻测量系统ZEM 引进中国。 1、 大气环境下热电材料性能评估系统F-PEM F-PEM系统可以在大气环境下,实现对负荷温差的热电材料产生的发电量和热流量进行测量,热电转换效率可以通过大发电量和热流量计算出。同时,该系统还可以长时间运行热循环测试,运用于热电新材料的开发,以及商用组件在负载和温度下的耐久性测试。图1 大气环境下热电材料性能评估系统2、 小型热电转换效率测量系统Mini-PEM Mini-PEM可以通过自动测量热流量和发电量来获得热电转换效率,电量是通过四探针法获得;热流是通过热流计获得。Mini-PEM体积更为小巧,操作更为简单,集成化设计可实现对小型材料块体2-10mm2 x 1-20mmH测量。可广泛应用于:发电量和热流量测量、热电材料模块的热电转换效率计算、单一热电材料发电量及热流测量、热电材料性能和寿命评估等各个方向。图2 小型热电转换效率测量系统Mini-PEM 3、 热电转换效率测量系统PEM 热电转换效率是指热能和电能之间相互转换的程度,通常采用提高热电组件两端的有效温度梯度来提高热电组件的转换效率。热电转换效率测量系统PEM通过对热电材料模块提供大温差500℃,可以得到一维热流量Q和大发电功率P,从而有效测定热电转换效率η。图3 热电转换效率测量系统PEM 热电转换效率测量系统PEM通过高精度的红外线金面反射炉可完成快速性能评估和耐力测试,可以实现热穿透测量,加热过程中,通过气缸机制可以保持接触表面的热阻稳定。同时在测试过程中,温度稳定性的判断、自动调节热电发电模块的负载以及自动控制温度测量,这些功能仅通过设置软件即可自动完成,操作十分便捷。 4、 塞贝克系数/电阻测量系统ZEM 热电转换技术利用热电材料的塞贝克(Seebeck)效应和帕尔贴(Peltier)效应实现热能与电能直接相互转化,热电技术的能量转换效率主要取决于材料的本征物理特性,通常可由无量纲的综合指数—热电优值来衡量,而热电优值取决于材料的塞贝克系数、电导率、热导率和温度。图4 塞贝克系数/电阻测量系统ZEM 塞贝克系数/电阻测量系统ZEM可实现对金属或半导体材料的热电性能的评估,材料的塞贝克系数和电阻都可以用ZEM直接测量。该设备采用温度控制的红外金面加热炉和控制温差的微型加热器,因此能实现实验过程中的无污染控温。同时,设备全自动电脑控制,允许自动测量消除背底电动势,拥有欧姆接触自动检测功能。除ZEM标准配置外,还可根据用户不同需求定制高阻型,增加薄膜测量选件、低温选件等。 热电材料塞贝克效应和帕尔帖效应发现距今已有100余年的历史,多年来科学家已对其进行了深入而富有成效的研究,并为如何实现热电材料更大的热电优值不断探索。随着热电领域研究的不断深入,希望ZEM、PEM、Mini-PEM的引入,能够助力更多优异热电材料性能的评估与研究,坚信我国热电材料领域将会进一步发展提高!相关产品链接1、塞贝克系数/电阻测量系统ZEM:http://www.instrument.com.cn/netshow/C283284.htm2、热电转换效率测量系统PEM:http://www.instrument.com.cn/netshow/C283291.htm3、小型热电转换效率测量系统Mini-PEM:http://www.instrument.com.cn/netshow/C283294.htm
  • 全能!单腿器件能测,多偶也能测!助您实现热电发电器件的精准测量!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电器件可以实现热能和电能的直接转换,在航空航天、低品位热回收和固态制冷领域具有重要的研究价值。 热电转换技术是利用材料的塞贝克(Seebeck)效应与帕尔贴(Peltier)效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。随着研究的深入,特别是对热电半导体输运机制的深入理解及新的调控机理及制备手段的应用,热电材料的性能得到了长足的进步,研究重点也逐渐从侧重基础的材料研究向侧重应用的器件研究转移。热电器件可按用途简单分为热电发电器件(TEG)及热电制冷器件(TEC),一般由n型和p型的热电材料通过热并联和电串联的形式构成,其工作原理见图1。随着航空航天、物联网及低品位热回收等领域的发展,热电发电器件的性能越来越受到人们关注,除了用于制备器件的热电材料本身的zT值这一重要因素外,器件的结构(形状、尺寸、连接方式)以及界面材料等都对器件性能有重要影响,因此,对于发电器件性能的准确测量从而改善器件的设计及制造工艺成为科研工作者的迫切需求。图1、热电发电器件与制冷器件的工作原理日本Advance Riko公司推出的小型热电转换测量系统Mini-PEM(图2)可以测量单腿器件的热电转换效率,该设备为目前商用的可以测量单腿器件热电转换效率的测量系统,热端温度高达500℃,可以测量器件在不同温差条件下的发电量、热流量及大转换效率。在近期的工作中,科研工作者使用小型热电转换测量系统Mini-PEM测量了碲化铋基热电材料制备的单腿发电器件。图2、小型热电转换效率测量系统Mini-PEM碲化铋基热电材料是目前应用广的热电材料,其具有优异的热电性能,且能在近室温附近表现出佳性能,国内外大量的科研团队对于提升其性能进行了大量深入的研究。近日,来自清华大学的研究团队使用放电等离子体烧结法,对碲化铋合金的制备工艺的改良进行了研究。该团队在原料中加入过量碲单质,随后控制放电等离子体烧结温度在共晶点上循环升降。采用此工艺能有效降低晶粒的界面自由能,促进晶粒的快速长大,从而减弱了块体内部晶界对载流子的散射作用,显著改善了电学性能提升了功率因子(PF);在伴随共晶液相的挤出过程中引入大量位错。同时还可形成大量二相,进一步增加了位错密度。这些结构能有效增强声子散射,从而降低晶格热导率(κL)。终,优化工艺参数和组分的p型(Bi,Sb)2Te3材料的ZT值达到1.46,较常规放电等离子体烧结得到的商用(Bi,Sb)2Te3材料提升了50%,采用该材料制备的单腿器件的热电转换效率提升超过80%[1]。图3、单腿器件结构图及实物照片(a),热电转换效率(η)与电流(I)的关系:经过4次SPS循环的Bi0.4Sb1.6Te3.2(b),1C样品:1次循环(c),商用(Bi,Sb)2Te3:标准球磨-烧结制备(d),经过4次SPS循环的Bi0.4Sb1.6Te3.2的理论值(e)作为发电热电材料,p型Bi2Te3基热电材料性能高,但高性能的n型材料相对缺乏,为解决这一问题,科研工作者进行了多种尝试。来自南方科技大学的科研团队在n型Bi2Te3材料中复合过量的碲(Te)单质,通过烧结使碲单质熔化流出,在基体中引入位错。此外,还复合掺杂了锑(Sb)元素,使材料中同时存在多种缺陷,从而达到了降低热导率的目的,显著提高zT值。使用Bi1.8Sb0.2Te2.7Se0.3 + 15 wt% Te 的n型热电腿和Bi0.5Sb1.5Te3的p型热电腿制备的热电转换器件,实现了3.7W的大输出功率及6.6%的转换效率[2]。与上述研究不同,此工作中科研工作者制备了由70对π形结构组成的器件(图4),器件尺寸30 mm×30 mm×3.8 mm,值得注意的是,本工作的发电量及热电转换效率是由日本ADVANCE RIKO公司生产的热电转换测量系统PEM-2测得的。图4、载流子局域化示意图(a),n型Bi2(TeSe)3的zT值与温度的关系曲线(b),热电器件的输出功率(c),热电转换效率(d)热电转换测量系统PEM-2支持多种器件尺寸,热端高温度可达800℃,测量在惰性气体(Ar)中进行。为了模拟热电发电器件在真实工况中的使用,Advance Riko公司新近推出了大气环境下热电材料性能评估系统F-PEM,该系统可在大气环境下,对负荷温差的器件的发电量及热流量进行测量,计算热电转换效率。该系统还可以长时间运行热循环测试,从而测试商用组件在负载和温度下的耐久性。图5、热电转换效率测量系统PEM-2(a),大气环境下热电材料性能评估系统F-PEM(b)此外,上述两篇文章中材料的电输运性能(电导率σ、塞贝克系数S)均使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3(图6)测得。图6、塞贝克系数/电阻测量系统ZEM-3延伸阅读日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及薄膜厚度方向热电性能评价系统ZEM-d引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。 目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1] H. Zhuang et al. / Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase. Adv. Funct. Mater. 2021, 2009681[2] B. Zhu et al. / Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials. Energy Environ. Sci., 2020, 13, 2106-2114
  • 滨松推出新的量子效率测量系统?参加ACCC5就知道了!
    第五届亚洲配位化学会议(ACCC5)将于7月12日至16日在香港大学举办。ACCC是亚洲最大,也是最权威的配位化学会议,会议内容涵盖金属有机化学、生物无机化学、超分子化学等多方面配位化学相关的新兴研究领域。该会议旨在为全世界从事无机化学和配位化学研究的学者们提供一个学术交流的平台。最前端的配位化学学术研发动向和成果,都会在本会议中呈现。 滨松中国将携绝对量子效率测量系统Quantaurus-QY、紧凑型荧光寿命测量仪Quantaurus-Tau等产品出席参加本次会议,除了设有展位供专家学者咨询参观,还邀请了滨松公司技术工程师到会进行一场题为&ldquo Determination of absolute PL quantum yield in VIS and NIR spectral range&rdquo 的演讲。 本次会议,滨松中国将放送2015年第四季度新品预览,新型近红外部分和上转换量子效率测量设备将初步地和学界专家们&ldquo 见面&rdquo 。新品被赋予了什么全新的功能?仪器拥有怎样的高性能表现?一切尽在第五届亚洲配位化学会议滨松展台和同期讲座,届时期待您的莅临。 欢迎关注滨松中国官方微信号
  • 【热电资讯】厚度方向热电性能评价系统ZEM-d正式开放免费样品测试预约
    日本ADVANCE RIKO公司50多年来专业从事“热”相关技术和设备的研究开发,一直处于相关领域的技术前沿。2018年初,Quantum Design中国子公司与日本ADVANCE RIKO公司就新先进热电材料测试技术开展合作,将小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。 2018年中下旬,Quantum Design中国子公司与日本ADVANCE RIKO正式达成合作协议,作为其热电材料测试设备在中国的代理商继续深度合作,并将日本ADVANCE RIKO的相关设备引入到中国大陆、香港和澳门地区进行进一步推广。2019年,在日本ADVANCE RIKO公司的通力支持下,Quantum Design中国子公司在北京建立了部分热电设备示范实验室和用户服务中心,更好地为中国热电技术的发展提供设备支持和技术服务。 日本ADVANCE RIKO公司塞贝克系数与电阻测量系统ZEM系列在全球销售量超过300台,广获全球科研及工业用户的赞誉,成为热电材料领域应用广泛的测试设备。2019年,在此前的成功基础上,ADVANCE RIKO公司推出了专门用于评价聚合物厚度方向上热电性能的全新设备ZEM-d。 与之前ZEM系列产品(ZEM-3/ZEM-5)不同,新型号ZEM-d主要测量聚合物薄膜厚度方向上的塞贝克系数和电阻率,可以测量的样品薄为10 μm。此外,ZEM-d与采用激光闪光法测量薄膜的热扩散率/导热系数测量方向一致,其测量结果可广泛应用于薄膜热电材料的性能评价。 为更好服务国内热电材料研究领域的客户,满足客户体验需求, Quantum Design中国子公司与日本ADVANCE RIKO公司携手推出 厚度方向热电性能评价系统ZEM-d免费样品测试活动。活动时间自即日至2020年5月15日止,如您有样品测试需求,欢迎通过官方微信平台(QuantumDesignChina、电话010-85120280或邮箱info@qd-china.com联系我们,公司将有专人对接,与您协调具体的样品测试工作。
  • 光电二极管的量子效率:如何测量量子效率?
    为了测量光电二极管或太阳能电池等设备的量子效率,通常需要测量响应不同波长的入射光子而产生的电子或载流子的数量。此过程涉及将设备的输出(如光电流)与撞击设备的已知光子数量进行比较。使用专用设备和受控照明条件来确保在不同波长的光下进行准确测量。然后将量子效率计算为比率或百分比,以量化设备将光转换为电信号的效率。量子效率(QE)测量系统的PD-QE光路设计。以下是该系统如何工作的分步说明:灯系统:这是系统的光源。它发出的光直接射向单色仪。斩波器:斩波器周期性地中断光束。这种调制可以区分光源信号和环境光信号,从而提高测量精度。单色器:单色器将光分散成其组成波长,类似于棱镜,并选择窄带波长通过。滤光轮:位于单色仪之后,可用于进一步细化到达样品的光的波长或强度。光圈:光圈调整光束直径,控制穿过样品的光量。镜头:镜头将选定的光聚焦到样品或光电探测器上。参考电池:用于通过提供可比较样品 QE 的已知标准来校准系统。样品:这是正在测试 QE 的光电探测器或太阳能电池。它吸收光线并产生光电流,其大小用于计算其 QE。在 QE 测量系统中,光源的准确度和精度、单色仪选择正确波长的能力以及检测器的稳定性至关重要。光路设计对于确保光有效、精确地传递到样品以进行准确测量至关重要。光伏检测请搜寻光焱科技
  • 中国科大利用磁光力混合系统实现可调谐微波-光波转换
    中国科学技术大学郭光灿院士团队在磁光力混合系统研究方面取得新进展。该团队的董春华教授研究组将光力微腔与磁振子微腔直接接触,证明该混合系统支持磁子-声子-光子的相干耦合,进而实现了可调谐的微波-光波转换。该研究成果于2022年12月9日发表在国际学术期刊《Physics Review Letters》。   不同的量子系统适合不同的量子操作,包括原子和固态系统,如稀土掺杂晶体、超导电路、钇铁石榴石(YIG)或金刚石中的自旋。通过将声子作为中间媒介,可以实现对不同量子系统的耦合调控,最终构建能发挥不同量子系统优势的混合量子网络。目前,光辐射压力、静电力、磁致伸缩效应、压电效应已被广发用于机械振子与光学光子、微波光子或磁子的耦合。这些相互作用机制促进了光机械领域和磁机械领域的快速发展。在前期工作中,研究组利用YIG微腔中的磁振子具有良好的可调谐特性,结合磁光效应实现了可调谐的单边带微波-光波转换(Photonics Research 10, 820 (2022))。但是由于目前磁光晶体微腔的模式体积大、品质因子难以进一步突破,从而限制了磁光相互作用强度,导致微波-光波转换效率较低。相比之下,腔光力系统虽已实现高效的微波-光波转换,但由于缺乏可调谐性,在实际应用中会受到限制。 图注:a-b.磁光力混合系统示意图,支持磁子-声子-光子相干耦合;c.微波-光波转换。   该工作中,研究组开发了一种由光力微腔和磁振子微腔组成的混合系统。系统中可以通过磁致伸缩效应对声子进行电学操控,也可以通过光辐射压力对声子进行光学操控,而且不同微腔内的声子可以通过微腔的直接接触实现相干耦合。基于高品质光学模式对机械状态的灵敏测量,课题组实现了调谐范围高达3GHz的微波-光学转换,转换效率远高于以往的磁光单一系统。此外,研究组观测了机械运动的干涉效应,其中光学驱动的机械运动可以被微波驱动的相干机械运动抵消。总体而言,该磁光力系统提供了一种有效进行操控光、声、电、磁的混合实验平台,有望在构建混合量子网络中发挥重要作用。   沈镇、徐冠庭、张劢为该论文的共同第一作者,董春华为该论文的通讯作者。上述研究得到了科技部重点研发计划、中国科学院、国家自然科学基金委、量子信息与量子科技前沿协同创新中心等单位的支持。
  • 华东师大科研团队实现高帧频中红外单光子上转换光谱仪
    华东师大曾和平教授与黄坤研究员课题组在中红外高速光谱探测方面取得重要进展,发展了宽波段、超灵敏、高帧频的中红外上转换光谱测量技术,其具有逼近量子极限的单光子探测灵敏度和近百万帧每秒的光谱刷新率,可为燃烧场分析、高通量分选和化学反应跟踪等应用所需的高速灵敏红外光谱测量提供支撑。相关成果以《High-Speed Mid-Infrared Single-Photon Upconversion Spectrometer》为题于2023年5月9日在 Laser & Photonics Reviews 在线发表。中红外波段包含众多分子振转能级跃迁的特征谱线,是分子的“指纹”光谱区。高灵敏、高速率的中红外光谱技术在天文观测、药物合成和环境监测等诸多应用中具有重要应用。然而,传统中红外光谱仪的性能往往受到探测器灵敏度及宽带光源亮度的限制。长期以来,实现高信噪比的中红外高速光谱测量,一直都是红外光谱领域的研究热点。近年来,频率上转换技术为红外灵敏探测提供了一种有效方案。该技术通过非线性过程将中红外波段转换到可见光或近红外波段,进而利用高性能硅基探测器实现信号的灵敏捕获。当前,实现宽带光谱范围内的高转换效率与低背景噪声仍颇具挑战。迄今,单光子水平的超灵敏中红外光谱测量仍局限在较窄的光谱范围内,单次测量谱带一般仅为数十纳米。此外,基于热辐射或参量荧光作为照明源的上转换光谱仪,其较低的光谱亮度使得光谱探测速率受限。因此,实现宽波段、超灵敏、高帧频的中红外上转换光谱探测仍具挑战,亟需发展高亮度中红外光源、高效率频率转换和低噪声光子探测等关键技术。图2:宽波段中红外单光子上转换光谱仪示意图为此,研究团队构建了具有单光子探测灵敏度和亚兆赫兹刷新率的宽带中红外上转换光谱仪(图2)。在中红外光源制备方面,利用氮化硅(Si3N4)光子波导制备出覆盖1.5-4.2 μm的宽光谱中红外超连续谱光源,相对传统热辐射光源具有更好方向性、更优光束质量以及更高光谱亮度,且通过波导结构色散调控与泵浦光场时频控制,可以实现光谱覆盖范围以及光谱平坦度等参数的定制与优化(图3)。此外,相对于基于固态光学参量振荡器的中红外制备方式,基于光学波导集成的超连续谱源可以直接兼容光纤激光,为发展高集成、高稳定的中红外宽带相干光源获取提供了有效途径,有助于提升后续光谱测量的信噪比与刷新率。图3:基于氮化硅光子波导的中红外超连续谱产生,光谱覆盖范围1.5-4.2 μm在中红外光谱探测方面,研究人员发展了同步脉冲泵浦的非线性频率上转换探测技术,通过制备与红外信号光子时域高精度同步的泵浦脉冲,在啁啾性极化铌酸锂非线性晶体中实现了1700 nm超宽带的中红外高效转换,然后借助高性能可见光/近红外分光与探测器件,实现了高分辨、高灵敏的中红外光谱测量(图4)。为了进一步压制参量荧光噪声与环境背景噪声,研究人员结合高效空间滤波与光谱滤波技术,获得了高达210 dB的噪声抑制比,利用硅基EMCCD最终获得了0.2光子/纳米/脉冲的超灵敏度中红外光谱,光谱分辨率为5 cm−1。进一步地,得益于高亮度的宽带中红外源、高效率的频率转换以及高抑制比的噪声滤波性能,研究者利用高性能硅基CMOS相机实现了高达212,500帧的光谱采集速率,比此前相关报道在相同信噪比下提高了至少一个数量级。图4:宽波段中红外上转换光谱,探测灵敏度达0.2光子/纳米/脉冲值得一提的是,所发展的中红外光谱仪利用硅基探测阵列,能够在室温条件下工作,有助于其在实际应用中的稳定运行。在未来工作中,可将直波导换成双芯氮化硅波导,从而产生更加平坦的中红外超连续谱;通过优化频率转换泵浦脉冲的光谱宽度,利用啁啾脉冲非线性上转换技术,可以进一步提升系统的光谱分辨率;同时,将面阵列COMS相机换成线阵列,有望将光谱采集速率提高到MHz以上。该光谱仪具备的宽带光谱覆盖、单光子灵敏度和 兆赫兹刷新率等性能可为燃烧场分析、高通量分选和反应跟踪等领域的红外瞬态光谱测量提供有力支撑。本项成果得到了上海大学郭海润教授团队的支持,论文第一作者为博士研究生郑婷婷,通讯作者为黄坤研究员与郭海润教授。近年来,曾和平教授与黄坤研究员课题组在红外光子非线性测控方面开展了系列创新研究,先后发展了中红外单光子上转换成像技术、中红外非线性广角成像技术、中红外单光子单像素成像等。相关工作得到了科技部、基金委、上海市科委、重庆市科技局与华东师大的资助。
  • 赛默飞世尔科技推出用于测量挤出机系统的新型实验室级牵引模块
    &mdash &mdash 面向混合测试的高分子聚合物工作流程解决方案 德国卡尔斯鲁厄市(2008年10月14日)-今天,全球科学服务领域的领导者赛默飞世尔科技公司推出了用于测量挤出机系统Thermo Scientific HAAKE PolyLab OS和HAAKE PolyLab QC的实验室规模的新型牵引模块-Thermo Scientific Sample Sizer。该模块能根据客户要求,自动快速生成用于化学、机械或光学测试的各种形状和大小的试样。 Sample Sizer由Bernhard IDE GmbH & Co. KG公司开发,它是一家行业领先的制造公司,专业从事挤出机、挤出模具以及定型系统和用于型材挤出的下游机械的生产制造。通过与HAAKE PolyLab挤出机系统组合使用,混合后的高分子混合物可以直接生成固态、规定形状的测试型材试样。&ldquo 对于客户来说,它意味着只需一种综合解决方案即能完成从成型、定型、输送到切割的所有工作&rdquo ,赛默飞世尔科技公司材料物性表征部副总裁兼总经理Markus Schreyer表示。&ldquo 这有助于客户更快开发产品,在市场上取得显著的竞争优势。&rdquo Sample Sizer为即插即用型模块,配有可换真空定型装置,采用水冷系统,牵引速度可以调节。由于高分子聚合物熔体体积流量取决于喂料速率和挤出机速度等参数,因此通过测量分析软件Thermo Scientific HAAKE PolySoft即可轻松进行管理,而不必中断实验。Sample Sizer操作方便,能迅速更换材料。挤出口模和定型单元均可以安装在水平开启式机筒上。通过快速释放夹具,能对流道和加工接触面轻松进行清洁或更换组合(如产品更换)。 赛默飞世尔科技公司借助其全面的Thermo Scientific材料物性表征解决方案,成功地为各个行业提供了帮助和支持。这些产品能对塑料、食品、化妆品、药品和涂料以及各种液体和固体的粘度、弹性、加工性能及与温度有关的机械变化等特性进行分析和测量。欲获取更多信息,请访问公司网站:www.thermo.com/mc。 Thermo Scientific是全球服务科学领域的领导者赛默飞世尔公司旗下的子公司。 关于赛默飞世尔科技 赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,为350,000多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司网站:www.thermo.com (英文),www.thermo.com.cn (中文)。 关于Bernhard Ide GmbH & Co. KGBernhard Ide GmbH & Co. KG是一家国际型企业,以挤出机、挤出模具、定型系统和型材挤出下游机械制造方面具备的专业知识而著称。凭借其50年来积累的机械工程和挤出技术方面的丰富经验,该公司能为广大客户提供用于分级生产程序中的关键产品和服务;这些产品和服务包括由资深过程处理工程师提供咨询服务、模具制造、用于各类型材的挤出模具和定型系统、单螺杆挤出机和双螺杆挤出机(水平、垂直和轴向)。另外还提供模块化机械系统,它包括45种以上不同标准的下游单元,适用于客户的各种特殊挤出生产线。售后服务是公司客户技术支持中不可分割的一部分。为此公司为客户提供了挤出模具和机械操作与维护方面的培训、维修、备件供应及综合咨询等服务。欲获取更多信息,请浏览公司网站:www.ide-extrusion.de。
  • 赛默飞发布三款用于半导体领域新品 提升实验室分析效率
    p    strong 2017年7月4日,成都 /strong ——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)亮相成都第 24 届国际集成电路物理与失效分析研讨会 (IPFA 2017),并发布三款用于半导体失效分析工作流程的全新产品,旨在帮助半导体故障分析实验室提升处理样品和获取数据的效率,为寻求快速、高质量的电性和物理失效分析的半导体制造商提供创新解决方案。 /p p   新型 Helios G4 等离子聚焦离子束 (FIB) 系统可对各类半导体器件进行逆向剥层处理,并提供超高分辨率扫描电子显微镜 (SEM) 分析。新型 flexProber 纳米探针量测系统可用于快速电性失效分析的应用。它能对半导体晶片在互连导线和晶体管级别上的故障位置,做出准确的定位。新型 Themis S 透射电子显微镜 (TEM)用在最具挑战性的半导体器件上,可提供原子级分辨率的成像和高产率的元素分析。 /p p   “作为科学服务领域的世界领导者,赛默飞始终立于世界科学发展的前沿,以强大的技术创新领导力,为全球用户提供先进科学服务产品。”赛默飞中国区总裁江志成(Gianluca Pettiti)先生表示:“目前中国的半导体市场充满机遇与挑战,提升产品性能与效率是产业的发展重点。赛默飞始终聚焦中国的科研需求、与本地客户密切协作,致力于帮助客户提高实验室效率,践行我们的本地化承诺。” /p p   “半导体市场不断地快速发展,内存、代工、物联网 (IoT)、先进封装和显示屏市场领域都呈现出强劲的增长”,赛默飞材料与结构分析部亚洲区副总裁荆亦仁阐述道:“这一发展带动了人们对快速、高质量电性和物理失效分析需求的提升。这些新的产品将为我们现有的失效分析解决方案增添新的功能,并提高了机动性”。 /p p   Helios G4 等离子聚焦离子束系统是赛默飞最新一代的双束显微镜。它具有从快速剥层、扫描电子显微镜截面成像到透射电子显微镜样品制备在内的多种功能。半导体剥层技术在 14 nm 以下技术节点器件上的缺陷定位应用变得越来越重要。等离子聚焦离子束搭配Dx 化学气体可用于均匀展露金属层,使赛默飞的纳米探针测量系统能够进行电性故障的定位与分析。 /p p style=" text-align: center " img title=" 赛默飞新型 Helios G4 等离子聚焦离子束 (FIB) 系统.png" src=" http://img1.17img.cn/17img/images/201707/insimg/309a0d7f-1c24-47fd-b0bc-832df82b37cf.jpg" / /p p style=" text-align: center "   赛默飞新型 Helios G4 等离子聚焦离子束 (FIB) 系统 /p p   Helios G4 等离子聚焦离子束系统可支持 7 nm 技术节点以下器件的逆向剥层处理并提供自动终点检测,以在指定的金属层或通过层显露时自动停止蚀刻。它提供比传统 (Ga+) 聚焦离子束系统快 10 到 20 倍的蚀刻速率,使客户能够为纳米探针测量系统、透射电子显微镜以及扫描电子显微镜制备更大面积的样品,并可广泛地应用于先进 (2.5D) 封装、发光二极管 (LED)、显示屏以及微电子机械系统 (MEMS) 。 /p p   新型 flexProber 系统旨在帮助客户对电性失效做出快速定位,并利用低电压扫描电子显微镜来引导精密机械探针到故障电路元件上。准确定位有助于提高后续分析的效率和成本的效益,确保由此定位而制取的透射电镜样品包含了故障区域。专为探针设计的flexProber 系统的扫描电镜,与其前代产品 nProber II 相比分辨率提升了 2 倍。它融入了赛默飞高端纳米探针量测系统的许多功能,适用于广泛的半导体器件类型和不同的制程技术。它提供了入门级配置,同时保留了未来升级到完整纳米探针测量系统的可能性。 /p p style=" text-align: center " img title=" 赛默飞新型 flexProber 纳米探针量测系统.png" src=" http://img1.17img.cn/17img/images/201707/insimg/136972db-c7e7-4224-bdab-7cc10bba0ef1.jpg" / /p p style=" text-align: center "   赛默飞新型 flexProber 纳米探针量测系统 /p p   Themis S 系统是赛默飞行业标准 Themis 系列透射电镜的最新成员。以为20 nm 技术节点以下的半导体器件失效分析为目的,Themis S 系统旨在提供大规模的半导体图像和分析数据,同时Themis S还包括了集成的隔振护罩和完整的远程操作功能。球差矫正器、80-200kV 镜筒、自动对中、XFEG 电子枪和 DualX X 射线能谱仪提供了强大的亚埃级成像能力和快速、准确的元素和应力分析功能。 /p p style=" text-align: center " img title=" 赛默飞新型 Themis S 透射电子显微镜 (TEM).png" src=" http://img1.17img.cn/17img/images/201707/insimg/f73b2fc6-0338-45ed-b133-2065a9429bc7.jpg" / /p p style=" text-align: center "   赛默飞新型 Themis S 透射电子显微镜 (TEM) /p p   “我们客户的半导体器件多种多样,从最先进的 7 到20 nm节点的内存和逻辑器件,到在智能手机和物联网等产品中仍占据重要地位的成熟技术的器件”,荆亦仁表示:“我们的失效分析工具系列可满足不同半导体客户的各种需求。我们期待在中国 IPFA 会议上,与我们的客户面对面探讨我们将如何满足半导体领域不断增长的需求。” /p p    strong 关于赛默飞世尔科技 /strong /p p   赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额180亿美元,在50个国家拥有约55,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。赛默飞的重要应用领域包括食品安全、生物制药、环境及医疗保健等垂直市场。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。 /p p    strong 赛默飞世尔科技中国 /strong /p p   赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约4000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京和苏州运营。我们在全国共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务 位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品 我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。 /p p    strong 媒体垂询: /strong /p p strong   赛默飞世尔科技 /strong /p p   高赫 /p p   公共关系经理 /p p   电子邮件:sura.gao@thermofisher.com /p p   电话:(86-21) 6865 4588-2695 /p p    strong 公关公司 /strong /p p strong   爱德曼国际公关 /strong /p p   秦雯 /p p   电子邮件:Cherry.Qin@edelman.com /p p   电话: (86-21) 6193 7411 /p p & nbsp /p
  • QUANTUM DESIGN CHINA独家代理日本ADVANCE RIKO公司热电材料测试设备ZEM和PEM系列产品
    引言热电转换物理效应、热电材料及其应用技术的研究历史悠长。近20 年来,热电材料科学得到快速发展,同时,器件设计方法与集成技术也不断完善。在此背景下,quantum design公司ppms和mpms用户——中科院上海硅酸盐所陈立东研究员等撰写了《热电材料与器件》一书,不仅梳理了热电材料领域的基础知识,而且还涵盖了作者本人在内的研究者们多年来在热电材料设计理论与制备科学、器件设计与集成技术等方面取得的诸多原创性重大成果,形成了有关热电材料与器件较为全面、丰富的知识体系。该书的出版为从事热电材料研究与器件研发的科研人员和工程技术人员以及在相关专业学习的高等院校师生提供了很好的参考价值。正文日本advance riko公司50多年来专业从事“热电材料”相关技术和设备的研究开发,并一直走在相关领域的前端。2018年初,quantum design china代理了日本advance riko公司的新先进热电材料测试设备,将小型热电转换效率测量系统mini-pem、泽贝克系数/电阻测量系统zem、热电转换效率测量系统pem及大气环境下热电材料性能评估系统f-pem引进中国。经过一段时间的愉快合作后,2018年7月,quantum design china与日本advance riko公司正式达成协议,作为其热电材料测试设备在中国的代理商继续合作,并将日本advance riko公司的相关设备在中国大陆、香港和澳门进行进一步推广。同时,quantum design china将在日本advance riko公司的协助下,在北京建立热电材料测试设备演示中心和技术服务中心,更好地为中国热电材料的发展提供产品展示、技术支持和售后服务。1. 泽贝克系数/电阻测量系统zem热电转换技术利用热电材料的泽贝克(seebeck)效应和佩尔捷(peltier)效应实现热能与电能直接相互转化,热电技术的能量转换效率主要取决于材料的本征物理特性,通常可由热电优值来衡量,而热电优值取决于材料的泽贝克系数、电导率、热导率和温度。图1 泽贝克系数/电阻测量系统zem图2 康铜泽贝克系数测试结果泽贝克系数/电阻测量系统zem可实现对金属或半导体材料的热电性能的评估,材料的泽贝克系数和电阻都可以用zem直接测量。该设备采用温度控制的红外金面加热炉和控制温差的微型加热器,因此能实现实验过程中的无污染控温。同时,设备全自动电脑控制,允许自动测量消除背底电动势,拥有欧姆接触自动检测功能。除zem标准配置外,还可根据用户不同需求定制高阻型,增加薄膜测量选件、低温选件等。2. 小型热电转换效率测量系统mini-pem小型热电转换效率测量系统mini-pem可以通过自动测量热流量和发电量来获得热电转换效率,电量是通过四探针法获得;热流是通过热流计获得。mini-pem体积更为小巧,操作更为简单,集成化设计可实现对小型材料块体2-10mm2 x 1-20mmh测量。可广泛应用于:发电量和热流量测量、热电材料模块的热电转换效率计算、单一热电材料发电量及热流测量、热电材料性能和寿命评估等各个方向。图3 小型热电转换效率测量系统mini-pem图4 碲化铋样品热电转换效率测试结果3. 热电转换效率测量系统pem热电转换效率是指热能和电能之间相互转换的程度,通常采用提高热电组件两端的有效温度梯度来提高热电组件的转换效率。热电转换效率测量系统pem通过对热电材料模块提供大温差500℃,可以得到一维热流量q和大发电功率p,从而有效测定热电转换效率η。图5 热电转换效率测量系统pem热电转换效率测量系统pem通过高精度的红外线金面反射炉可完成快速性能评估和耐力测试,可以实现热穿透测量,加热过程中,通过气缸机制可以保持接触表面的热阻稳定。同时在测试过程中,温度稳定性的判断、自动调节热电发电模块的负载以及自动控制温度测量,这些功能仅通过设置软件即可自动完成,操作十分便捷。4. 大气环境下热电材料性能评估系统f-pem该系统可以在大气环境下,实现对负荷温差的热电材料产生的发电量和热流量进行测量,热电转换效率可以通过大发电量和热流量计算出。同时,该系统还可以长时间运行热循环测试,运用于热电新材料的开发,以及商用组件在负载和温度下的耐久性测试。图6 大气环境下热电材料性能评估系统f-pem热电材料泽贝克效应和佩尔捷效应发现距今已有100余年的历史,多年来科学家已对其进行了深入而富有成效的研究,并为如何实现热电材料更大的热电优值不断探索。随着热电领域研究的不断深入,希望zem、pem、mini-pem、f-pem的引入,能够助力更多优异热电材料性能的评估与研究,坚信我国热电材料领域将会进一步发展提高!相关产品及链接:1、 泽贝克系数/电阻测量系统zem:http://www.instrument.com.cn/netshow/c283284.htm2、 热电转换效率测量系统pem:http://www.instrument.com.cn/netshow/c283291.htm3、 小型热电转换效率测量系统mini-pem:http://www.instrument.com.cn/netshow/c283294.htm
  • 南方科技大学何佳清团队再发Science,高熵热电材料研究取得重要进展!
    当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多级利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。热电器件可以实现热能和电能的直接转换,在废热回收和固态制冷领域具有重要的研究价值,对热电发电器件的能量转换效率进行精确测量是评价热电材料和器件性能的重要基础。热电转换技术是一项基于半导体材料的新能源技术。基于材料的塞贝克效应和帕尔贴效应,该项技术能够实现温差发电和通电制冷的效果,其分别在工业废热回收利用和电子制冷领域有着重要的应用。相比于传统能源转换技术,热电转换技术具有器件尺寸高度可控、可靠性高、无运动部件、无污染和无噪音等优势。温差发电可应用于深空探测中的放射性同位素温差发电电源,如“好奇号”火星探测器,“旅行者1号”行星探测器都通过使用放射性同位素热电发生器来发电。电子制冷具有无噪声、无振动、不需制冷剂、体积小、重量轻等特点,且工作可靠,操作简便,易于进行冷量调节,常用于耗冷量小及空间狭窄的场合,如电子设备和无线电通信设备中重要元件的冷却,这对于未来通讯、物联网、5G芯片的微型电子器件等领域的精确温控具有重要意义。热电材料性能指标的关键在于能源转换效率,其由材料的无量纲热电性能优值(ZT值)决定。由ZT值的定义式(ZT = (Sσ/κ)T)可知,在给定温度T下,高性能热电材料应具有大的塞贝克系数S、高的电导率σ和低的热导率κ。然而,这些热电参数相互之间具有强烈的耦合关系,这使得热电材料的性能优化极具挑战性,调控这些强烈耦合的复杂热电参数是提高材料ZT值和热电转换效率的关键。随着热电材料领域的研究越来越受重视,不断涌现出了诸多提升ZT值的有效策略:优化载流子浓度以提高电导率;调整电子能带结构、晶体结构、相结构等优化电传输性能;通过引入点缺陷、位错、晶界、纳米级沉淀物等进行多尺度分层架构设计以降低热导率;探索和开发具有本征低热导率特性的新材料体系;通过高通量及基于基因计算等预测潜在热电材料等。南方科技大学何佳清团队将高熵稳定的策略用于协同调控材料的电、热传输性能,并成功应用于n型硒化铅基热电材料,通过解耦电热传输机制实现了热电性能的大幅提升,相关成果发表在《Science》上[1]。在近期的工作中,何佳清团队再进一步,将这一优化策略扩展应用到p型碲化锗基(GeTe)热电材料中。相关工作以《High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics》为题发表于《Science》上[2]。在由高熵稳定获得的极低晶格热导率基础上,通过调控电子局域化程度,避免了无序引入对电子传输的影响,从而使高熵碲化锗基材料的电性能得到了显著提升。这种电性能和热性能的协同优化,极大地提高了材料的热电优值,同时还实现了极高的器件转换效率,有利于高熵稳定概念在高性能热电材料开发中的应用。在碲化锗基材料中锗原子位置人为地引入多种原子,从而实现高熵策略。使用原位差分相衬扫描透射电子显微术(DPC-STEM)来表征材料中引入多种元素后带来的电子转移和重排,发现在纯的碲化锗材料中,锗和碲原子之间的电子存在很强的耦合效应,而通过多元素固溶的高熵碲化锗能够稳定晶体结构,锗原子会从菱形的偏离中心位置向几何中心位置移动,从而实现不同原子之间耦合电场的解耦效应,在极低晶格热导率的前提下优化了材料的电性能,从而提高了材料的热电优值(zT)[3]。图1. 碲化锗基热电材料(Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te)的电导率(A)、塞贝克系数(B)、功率因子PF(C)、热导率(D)、晶格热导率(E)、热电优值zT(F)与温度(T)的关系工作中分别使用Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te以及其他商用材料制作了单级及分段器件(TEG)并对其热电转换效率进行了测量,分别高达10.5%与13.3%。图2. (A) Ge0.61Ag0.11Sb0.13Pb0.12Bi0.01Te的zT值与温度(T)的关系(以及与其他工作的比较)(B) 本工作中制成的多个器件的热电转换效率与温差(ΔT)的关系(以及与其他工作的比较)本工作中材料的高温电输运性能(塞贝克系数S及电导率σ)使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3测得,发电器件的发电量及热电转换效率使用日本Advance Riko公司生产的热电转换效率测量系统PEM-2测得。日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的最前端,为世界各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的最新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的独家代理商继续合作,携手将日本Advance Riko最先进的热电相关设备介绍到中国。目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。参考文献:[1] B. Jiang et al., High-entropy-stabilized chalcogenides with high thermoelectric performance, Science 371, 830–834 (2021)[2] B. Jiang et al., High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics, Science 377, 208–213 (2022)[3] 南科大何佳清团队在Science发表高熵热电材料研究论文,南方科技大学新闻网
  • 日本ADVANCE-RIKO公司推出最新热电器件发电效率特性评价装置PEM/Mini-PEM
    日本ADVANCE-RIKO公司推出最新热电器件发电效率特性评价装置PEM/Mini-PEM 随着热电材料领域研究的深入,人们尤其是工业界对热电器件热电转换效率更为关注。为了适应这个重要的需求。日本advance-riko公司在推出著名的热电材料评价装置ZEM-3.ZEM=5等设备后适时推出最新热电器件发电效率特性评价装置PEM/Mini-PEM。该产品推出后在日本等国收到广泛好评。在此基础上近来通过我司开始在中国推出该类设备。希望大家来电垂询。详见我司网站上的技术资料。
  • 爱松特发布ISOTECH爱松特 电桥转换开关新品
    1、准确度:全量程优于0.07 ppm,比率测量准确度优于0.017ppm(比率:0~0.25&0.95~1.05)。2、支持的探头:铂电阻温度计、热敏电阻、热电偶。3、通道数:3通道(可任意设置显示通道类型,可扩展到90个通道)。4、分辨率:满量程0.001ppm,0.001mk。5、内部标准电阻:25Ω,100Ω,400Ω。6、内部电阻稳定度:TCR<0.05ppm/℃ Annual Stability<2ppm/year。 7、电流精度:0.1~1mA ±0.4% of Value,±0.7μA,resolution 280nA。8、电阻范围:0~100KΩ。9、保温电流功能:有。10、测量时间:电阻测量时间操作系统:内置Window CE操作系统,无需外配计算机。15、内部开关方式:新型的半导体开关16、探头连接端子:Cable Pod”连接器,允许4mm插头,扁形接头和裸线17、端子接触材料:镀金的碲-铜。18、低噪音技术:新型的σ-δ模数转换器和低噪音的前置放大器。19、运行环境:15-30℃/50-85, 10-90%RH(所有指标要求) , 0-50℃/32-12, 0-99%RH (运行的)20、电源:88-264V(RMS),47-63Hz (通用的),20W,1.5A (RMS)创新点:★准确度:全量程优于0.07ppm,比率测量准确度优于0.017ppm(0~0.25&0.95~1.05) ★支持的探头:铂电阻温度计、热敏电阻、热电偶 ★通道数:3通道(可任意设置显示通道类型,最多可扩展到90个通道) ★大屏触摸屏操作 ★内置Windows CE操作系统,无需外置电脑 ★具有USB插孔,可连接键盘和鼠标,所记录的数据以Excel表格的形式导出 ★具有保温电流功能,可消除因功率带来的不确定度 ISOTECH爱松特 电桥转换开关
  • Ameritox有限公司引入赛默飞世尔科技新型LC-MS/MS系统
    Ameritox有限公司是美国一家领先的处方止痛药尿检分析公司。今天,该公司宣告引入工业上最先进、最灵敏的处方止痛药的检测分析技术:液湘色谱-串联质谱联用系统。Ameritox 已经实现了使用连有Aria&trade TLX-4多路系统的Thermo Scientific TSQ Quantum Access三重四极杆质谱仪来分析芬太尼和鸦片类药品,不久它也将用于苯二氮类药物的检测分析。和标准的液湘色谱-串联质谱联用仪相比,Aria TLX-4中涡流技术大大缩短了样品制备的时间。通过安装Thermo Scientific TSQ Quantum Access三重四极杆质谱仪和 Aria&trade TLX-4 多路系统,Ameritox保持了分析行业的领先地位,继续能够为之提供最灵敏的分析和快速周转。 Ameritox公司的实验室主任James Bourland博士说:&ldquo 非常高兴,我们能成为数一数二的止痛药监测实验室,并购进先进的液湘色谱-串联质谱多路技术。从液湘色谱-质谱联用到液湘色谱-串联质谱多路技术实现了两个高通量确认的转换,在医师治疗过程中Ameritox在提供了最准确、最可靠的分析结果的同时,也大大加快了回转时间,这帮助医师可以更好的为患者提供治疗。 Ameritox的一位客户,辛辛那提大学Pointe Pain Management Center Hammam Akbik博士非常兴奋的说:&ldquo Ameritox购买了这项先进的、高灵敏度、快捷的分析技术,这给了我们客户更大的信心,让我们觉得选择Ameritox是正确的。Ameritox在帮助我们医师管理止痛药物患者方面将继续引领该领域的发展与未来。&rdquo Thermo Scientific Aria TLX-4 与 TSQ Quantum Access组合化的多元设计在止痛药物监测方面远远超过标准的液湘色谱-串联质谱联用仪。带有四个样品注射口和两个注射器的TLX-4 多路技术系统的样品分析通量是使用标准自动进样器的类似系统的四倍还要多。另外,涡流技术可以在线提取样品,它大大缩减了样品制备过程中的时间浪费,因此也减少了一次潜在的人为误差。 串联质谱是一项用来分析检测较低药物浓度的先进技术,即使在影响因素非常复杂的困难基质中,检测下线也可达到皮克水平。液湘色谱-串联质谱的联用消除了样品中添加样品衍生物的需要,进一步提高了分析的速度。对于大多数药物和代谢物,液湘色谱-串联质谱联用方法是最好的、最灵敏的、最特效的分析。而这个方法与多路技术和涡流技术的结合又使得Aria TLX-4设备变得相当的有价值。 赛默飞世尔科技有限公司液相色谱质谱联用临床毒理学方案部总监Jeff Zonderman认为:&ldquo 气相色谱-质谱联用和液相色谱-串联质谱联用都是在临床毒理学分析中可以完成不同任务的辅助技术。&rdquo 对Ameritox公司,我们非常高兴的推荐集合了多路技术和涡流技术Aria TLX-4的液相色谱-串联质谱联用设备作为解决方案,它不仅提高了分析的特异性和灵敏度,而且处理过程还具有较高的效率。Thermo Scientific提供了一系列高端的分析设备、实验室设备、软件、服务、耗材和试剂,整合了完整的实验室工作流程解决方案。Thermo Scientific是赛默飞世尔科技旗下首要品牌之一。 关于Ameritox: Ameritox是美国处方止痛药监测领域的领导者。它提供给受到Ameritox公司保护的止痛药处方医师最全面的人性化的可利用的实验室报告。使用规范化数值去界定期望的特效药处方范围,医师们可以通过判定其是否依从处方规范而保护他们的病人。同时,由于提供了规范化的数值,也使得医师能够放心的给病人开处方,并且也确保病人能够拿到规定的止痛药物。 Ameritox公司总部在巴尔的摩,MD和实验室设备在中部,TX Ameritox 每天接受成千上万个检测样品。想获得更多有关Ameritox的信息,请登陆网址:www.ameritox.com.。
  • 赛默飞将推出更加小巧和效率更高的双螺杆挤出机
    赛默飞 Process 11 挤出机缩小了台面面积,降低了样品材料耗费量,从而为高分子聚合物和食品工业研究节省了成本、时间和劳动力 中国上海,2012年4月18日 &ndash 服务科学领域的世界领导者赛默飞世尔科技有限公司(以下简称:赛默飞)今天推出了新产品赛默飞Process 11 平行同向旋转双螺杆挤出机,该设备用于高分子聚合物和食品工业研究。挤出机的规格为 11 mm,该产品的设计降低了材料成本,使产品易于操作,且优化了实验室空间。要实现这一目标,就必须减少台式 Process 11 挤出机的样品材料耗费量 (20 g),并给设备配备带集成送料机控制器的触摸屏,使设备便于用户操作。赛默飞于 2012 年 4 月 18 日 - 21 日在上海举行的中国国际橡塑展(Chinaplas 2012)上展出 Process 11 挤出机,赛默飞在德国展区的展位号为E1J45。 赛默飞材料物性表征副总裁兼总经理 Karl Gerhard Hoppmann 曾说:&ldquo 对我们的客户来说,实验室空间和成本控制是尤为重要的,为此我们设计推出了 Process 11 挤出机。我们的产品结构紧凑并具备独立设计,不仅适用于小型实验,而且其强大的功能足以提供与生产条件相关的数据结果。赛默飞独立式组合系统具备充足的可扩展性,因而可轻松获取数据结果。&rdquo 新型 Process 11 挤出机的产量为 20 g/h 至 2.5 kg/h,其螺杆为分段式设计,顶部配有可移动的料桶。设备采用紧凑型单体式结构设计。这一设计特色使设备的台面面积比同类竞争性双螺杆挤出机产品缩小了 4 到 5 倍,并且使设备易于运输和通风。整套赛默飞挤出机上的螺杆与料筒的设计比例均符合几何学原理,能够进行大规模处理。该设备现在即可供货。 作为流变学应用领域的领导者,赛默飞可成功支持多种行业的发展,为其提供全面的赛默飞材料物性表征解决方案。材料物性表征解决方案可对塑胶产品、食品、化妆品、药品、涂料、化学品或石油化工产品,以及各种液体或固体的粘度、弹性、加工性以及与温度相关的机械变化进行分析和测量。欲获取更多信息,请登录:www.thermoscientific.com/mc。 赛默飞 Process 11 双螺杆挤出机 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 赛默飞针对中国市场推出iSystem测量平台
    中国制造的 iSystem 成本低但采用了赛默科技的尖端技术;结合新近优化的 Beta Plus 定量传感器提供完整的Web测量解决方案中国上海,2012年4月17日 –全球科学服务领域的领导者赛默飞世尔科技公司(以下简称:赛默飞)今天推出了新产品 iSystem,这是一款专为中国市场设计的直接总定量测量系统。中国制造的新型 iSystem 采用德国和美国设计的尖端技术,易于使用,适合广泛的应用范围,而且可以降低成本。赛默飞将于 2012 年 4 月 18-21 日在上海举行的中国国际橡塑展(Chinaplas 2012)上展出新型 iSystem 及其新一代 Beta Plus 传感器。赛默飞全球测量商业总监阮道阁 (Doug Wright) 说:“我们认识到中国Web测量客户对单独测量解决方案的需求,而且这种解决方案采用低成本的中国制造和高价值德国和美国设计。我们将在上海提供现有的 21Plus! 和 IPlus! 测量和控制系统,同时提供我们最新的中国制造的系统平台,彰显我们的能力。我们将秉承赛默飞一直以来的承诺,向中国市场提供更多更好的选择。”专为测量设计的新型 iSystem 不包含 IPlus 上所提供的自动横向控制。所有其他特性,包括提高的产品均匀性和质量、原材料节省以及改善的生产线利用率都保持不变。iSystem 适用于诸如流延薄膜和挤出片材、刮涂和辊涂以及无纺布的应用。赛默飞还将展示新一代 Beta Plus 系列定量传感器。基于 Beta Plus 同位素的传感器可以给市场上这种类型的传感器提供最佳的测量响应以及上乘的信噪比性能。仪器独特的放射源形状设计和数字信号处理技术能对被测材料进行“边到边”的检测,帮助用户生产更均匀的产品,同时帮助用户节省原材料。为了提供完整的Web测量解决方案,中国客户可在选用新型 iSystem 时,结合选用 Beta Plus 传感器。iSystem 和 Beta Plus 传感器已可即刻向中国客户提供。欲知更多信息,请在2012年中国国际橡塑展上参观德国展团的赛默飞展台E1J45,或登录 www.thermoscientific.com/webguaging. 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity™ Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 揭秘!热电材料研究实验室仪器配置清单
    热电材料能够实现热电转换,具有安全、节能、环保等优点,近年来备受关注,许多学者也围绕其开展了大量的研究工作。在本文,仪器信息网为大家盘点了热电材料研究实验室常用的制备与表征仪器清单。国内研究热电材料的课题组众多,在小编的雷达范围内,整理归纳了其中四个课题组的仪器展示表格:1.中国科学院上海硅酸盐研究所热电转换材料与器件研究课题组;2.中国科学院金属研究所热电材料与器件课题组;3.同济大学材料科学与工程学院热电课题组;4.哈尔滨工业大学(深圳)材料科学与工程学院热电材料课题组。一、中国科学院上海硅酸盐研究所热电转换材料与器件研究课题组(课题组长:史迅研究员;副组长:柏胜强高级工程师;科研队伍:陈立东研究员、姚琴副研究员、瞿三寅副研究员、仇鹏飞副研究员等)该课题组主要从事高性能热电材料的设计、制备与性能优化以及高性能热电器件的设计、制造与集成方面的研究,主要内容包括:1.声子液体电子晶体材料 (类液态材料);2.类金刚石结构;3.笼状化合物;4.有机热电材料和有机/无机复合热电材料;5.热电薄膜与微型热电薄膜器件;6.高性能热电器件设计与制造技术;7.热电空调/发电系统设计与集成技术;8.热电材料与器件测量技术。课题组仪器设备展示Seebeck系数和电阻测试系统(ZEM-3)布劳恩手套箱RS50/500型管式炉纳博热( Nabertherm)LH15/13型箱式炉 放电等离子体快速烧结设备激光导热仪 霍尔系数测试设备电导率及塞贝克系数测试设备 X射线广角/小角衍射设备MSP(Modified Small Punch)试验装置二、中国科学院金属研究所热电材料与器件课题组(课题组长:邰凯平研究员;小组成员:康斯清工程师)该课题组长期从事功能材料设计、制备和性能表征方面的研究工作,以界面性质对材料物理、化学性能调控作用的共性基础科学问题为研究主线,主要研究内容包括:低维热电材料;多物理外场耦合仿真环境原位透射电镜表征;纳米结构抗辐照损伤材料。在原位透射电镜技术领域的成果被Science(350,9886,2015)、Chem Rev(116,11061,2016)、Adv Mater(02519,2016)等期刊评述为近十年来纳米材料原位电镜表征技术领域的关键研究成果,并被编入电子显微学教科书“Transmission Electron Microscopy”(Page 48,Springer,Heidelberg,2016)。课题组仪器设备展示多靶磁控溅射沉积系统-1多靶磁控溅射沉积系统-2热电性能测试设备ALD原子层沉积系统等离子体处理/原位TEM样品杆预抽系统Hall测试系统AFM红外成像显微镜微束/飞秒激光微纳加工系统紫外光刻机电子束/热蒸发镀膜系统3Omega频域法热导率测试系统稳态法热导率测试系统球型焊线机高温管式炉红外快速退火炉自主研制的各种类型原位仿真环境(JEOL/FEI)TEM样品杆三、同济大学材料科学与工程学院热电课题组(课题组长:裴艳中教授;小组成员:李文副教授)该研究小组主要针对当前热电材料转换效率较低这一技术瓶颈,从热电材料所涉及的基本物理及化学问题出发,设计和开发出高转换效率热电材料和器件。立足于前期工作的基础之上,今后具体的研究对象主要集中在半导体材料,研究内容主要包括:1.先进的材料制备方法;2.电、热、光、磁及微观结构的表征方法;3.能源材料性能所隐含的基本物理及化学问题;4.理论指导下的新型能源材料设计和开发;5.其它应用背景的半导体新材料的研究与开发。课题组仪器设备展示自主研制设备霍尔系数/塞贝克系数/电阻率同步测试 2个样品同时测试,300~900K,磁场1.5T塞贝克系数/电阻率同步测试系统 2个样品同时测试,300~1100K室温塞贝克系数测试系统Oxford低温(1.5~400K)与强磁场(12T)综合物理性能(Nernst,Seebeck,Hall系数与电/热导率)测试系统电弧熔炼系统电弧熔炼系统高温热压系统(升温速率>1000C/min)封装系统材料生长炉商业设备台式扫描电镜&能谱XRDFTIR红外光谱仪声速测定仪激光导热仪惰性气氛手套箱高温熔融炉四、哈尔滨工业大学(深圳)材料科学与工程学院热电材料课题组(课题组长张倩教授,学术顾问刘兴军教授)该课题组正式成立于2016年秋。主要研究方向为:热电半导体能源材料的电声输运调控、热电器件的设计与效率提升,柔性可穿戴发电与制冷器件。采用与相图工程和机器学习相结合的手段,优化传统热电材料,开发新型热电材料,促进热电发电与制冷的大规模商业应用进程。课题组仪器设备展示材料制备系统电弧熔炼炉高频悬浮熔炼炉立式真空管式炉微型金属熔炼炉双工位真空手套箱真空封管系统热压烧结系统放电等离子烧结SPS3D打印机多靶磁控溅射镀膜仪电子束蒸发镀膜仪高温箱式炉高能球磨机井式炉金相研磨抛光机金刚石线切割机性能测试系统激光导热仪-LFA 457差示扫描量热仪-DSC 404同步热分析仪-STA 2500热机械分析仪-TMA 457电阻率/温差电动势测试仪-CTAUV-vis-NIR变温霍尔测试系统变温红外光谱仪发电效率特性测定装置接触电阻测试平台焊接平台需要说明的是,以上仪器设备展示仅根据各课题组网站信息整理,并非各课题组实验室仪器的全部配置。因此,小编特整理了热电材料研究实验室常用的制备与表征仪器清单,供君参考。热电材料研究实验室仪器配置清单热电材料制备常用仪器电子天平马弗炉/电阻炉/管式炉/实验炉鼓风/真空干燥箱材料生长炉磁力搅拌器球磨机超声波清洗机放电等离子烧结SPS离心机悬浮熔炼炉/电弧熔炼炉石墨磨具原子层沉积系统真空/惰性气氛手套箱电子束/热蒸发镀膜设备恒温油浴/水浴锅退火炉游标卡尺3D打印机切割机研磨抛光机热电材料表征常用仪器X射线衍射仪赛贝克系数/电阻率测试系统X射线光电子能谱仪霍尔系数测试设备热重分析仪介电性能测试系统扫描电子显微镜热电转换效率测量系统透射电子显微镜电/热导率测试系统电子探针分析仪声速测定仪热膨胀仪红外光谱仪显微硬度仪热机械分析仪激光热导仪焊接平台差热扫描热量仪综合物理性能测试系统【近期网络会议推荐】3月23日“热电材料表征与检测技术”主题网络研讨会免费报名听会链接:https://www.instrument.com.cn/webinar/meetings/2021RD/
  • QD中国:仪器需不断发展来适应热电材料的测试需求
    p style=" text-align: justify text-indent: 2em " 热电材料作为一种热能和电能相互转换的功能性材料,具有环境友好、重量轻、坚固、工作无噪音等一系列特点,成为材料科学的研究热点。随着相关从业者的研究深入,新型、先进的热电材料不断出现,热电材料测试技术的专业要求也变得越来越高。 /p p style=" text-align: justify text-indent: 2em " 为了帮助行业用户学习、了解热电材料测试最新技术及分析方案等内容,仪器信息网特别策划了 strong “ a href=" https://www.instrument.com.cn/zt/rdclcs" target=" _self" 热电材料测试技术 /a ” /strong 专题,并邀请到QUANTUM量子科学仪器贸易(北京)有限公司(暨QUANTUM DESIGN中国子公司)销售总监苗雁鸣博士就热电材料测试相关问题发表看法。& nbsp /p p style=" text-align: center " & nbsp img style=" max-width: 100% max-height: 100% width: 250px height: 263px " src=" https://img1.17img.cn/17img/images/202003/uepic/0a9e3fd7-1c0e-40d3-bf27-10f32a01fa43.jpg" title=" 苗雁鸣.png" alt=" 苗雁鸣.png" width=" 250" height=" 263" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 苗雁鸣 博士 /strong /p p style=" text-align: center " strong QUANTUM DESIGN中国子公司销售总监 /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网: /span /strong span style=" color: rgb(0, 112, 192) " 现行的热电材料相关测试技术是否满足国内市场日益提升的测试需求?有哪些方面需要进行改进或完善? /span /p p style=" text-align: justify text-indent: 2em " strong 苗雁鸣: /strong 热电材料作为一种新型能源转换材料,在航空航天、清洁能源、电子技术等众多领域有着广泛的应用。随着热电材料的研究热度逐渐提高,市场对热电材料性能表征仪器的需求也在不断增加。 /p p style=" text-align: justify text-indent: 2em " 虽然从原理上来说,热电材料的测试技术已经比较成熟,但是市场上的仪器还需要不断发展来适应日趋多样化的测试需求。例如,传统的塞贝克系数测量仪器结构较为复杂,且测试单个样品的时间较长,不利于样品的快速检测。 /p p style=" text-align: justify text-indent: 2em " 此外,目前针对块体材料性能测试的设备较多,而针对需要测量塞贝克系数分布材料(如薄膜材料和功能梯度材料等)的仪器较少,不能满足材料组分均匀性研究的需求;大部分测试薄膜热电性能的仪器主要测试的是薄膜内方向(即XY方向),而能够测试薄膜厚度方向的仪器还非常少见;热电材料研究的最终目标是为了实用,所以热电材料的热点转换效率非常重要,而能直接测量热电材料的热电转换效率的仪器却不多。 /p p style=" text-align: justify text-indent: 2em " 针对以上几点问题,现在市场上能满足这些测量需求,且比较有代表性的仪器有美国QUANTUM DESIGN公司用于低温高精度热电性质测量的 a href=" https://www.instrument.com.cn/netshow/C17086.htm" target=" _self" style=" color: rgb(0, 0, 0) text-decoration: underline " span style=" color: rgb(0, 0, 0) " PPMS综合物性测量系统热输运模块 /span /a 、日本ADVANCE RIKO公司用于室温及高温热电性能测量的 a href=" https://www.instrument.com.cn/netshow/C283284.htm" target=" _self" style=" color: rgb(0, 0, 0) text-decoration: underline " span style=" color: rgb(0, 0, 0) " ZEM /span /a 和 a href=" https://www.instrument.com.cn/netshow/C283291.htm" target=" _self" style=" color: rgb(0, 0, 0) text-decoration: underline " span style=" color: rgb(0, 0, 0) " PEM系列 /span /a ,以及德国PANCO公司用于测量塞贝克系数二维分布的 a href=" https://www.instrument.com.cn/netshow/C71734.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 0, 0) " span style=" color: rgb(0, 0, 0) " PSM II显微镜 /span /a 。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/202003/uepic/a984ffca-9a19-4512-bb04-c7698ebc1f98.jpg" title=" 新一代PPMS综合物性测量系统.png" alt=" 新一代PPMS综合物性测量系统.png" style=" text-align: center max-width: 100% max-height: 100% width: 450px height: 381px " width=" 450" height=" 381" border=" 0" vspace=" 0" / span style=" text-align: center " /span /p p style=" text-align: center " strong 新一代PPMS综合物性测量系统 /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网: /span /strong span style=" color: rgb(0, 112, 192) " 目前的热电材料测试项目中哪些值得特别关注?相关分析测试方法的技术难点主要在哪? /span /p p style=" text-align: justify text-indent: 2em " strong 苗雁鸣: /strong 块体热电材料仍是目前的应用主体,但在持续探索新型高性能热电化合物的同时,采用微结构调控等手段对传统热电材料性能进一步优化和提高是研究的重要方向。纳米线和薄膜等由于结构上显著的各向异性从而产生了独特电声输运特性,对于此类材料的热电特性测试值得特别关注。 /p p style=" text-align: justify text-indent: 2em " 以材料的塞贝克系数测量为例,传统的测量方法和设备都是针对块状材料测试需求开发设计的,即使有为薄膜材料专门设计的夹具,其测试方向也是平行于材料表面的。而随着各向异性材料越来越多,如超晶格薄膜等被应用于热电元件,对于厚度方向上塞贝克系数的测量需求也越来越迫切。 /p p style=" text-align: justify text-indent: 2em " 测试的技术难点主要在于试样的尺寸较小,测量时的相应信号较弱,必须采用高精度的数字电压表,同时还需保持微米厚度试样两侧的温差恒定以及两侧的温度测量精确。 /p p style=" text-align: justify text-indent: 2em " 热导率的测量由于热传输的多种方式(辐射、对流等)而更加困难,测量时应尽量减小被测物体内部途径之外的热输运。对于薄膜样品,由于其热损失严重,难以保持薄膜两边的热稳定,多采用测量速度快、准确度高的瞬态法进行测量,如激光闪光法等。 /p p style=" text-align: justify text-indent: 2em " 日本ADVANCE RIKO公司的塞贝克系数与电阻测量系统ZEM系列在全球销售量超过300台,广获全球科研及工业用户的赞誉,成为热电材料领域标杆性的测试设备。2019年, ADVANCE RIKO公司在此前的成功基础上推出了专门用于评价聚合物厚度方向上热电性能的全新设备ZEM-d。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/202003/uepic/12efbf07-2dfe-402c-bbfe-78ad510387fc.jpg" title=" 用于评价聚合物厚度方向上热电性能的全新设备ZEM-d系统.png" alt=" 用于评价聚合物厚度方向上热电性能的全新设备ZEM-d系统.png" style=" text-indent: 0em text-align: center max-width: 100% max-height: 100% width: 450px height: 475px " width=" 450" height=" 475" border=" 0" vspace=" 0" / span style=" text-indent: 0em text-align: center " /span /p p style=" text-align: center " strong 用于评价聚合物厚度方向上热电性能的全新设备ZEM-d系统 /strong /p p style=" text-align: justify text-indent: 2em " 与广获赞誉的ZEM系列( a href=" https://www.instrument.com.cn/netshow/C283284.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 0, 0) " span style=" color: rgb(0, 0, 0) " ZEM-3 /span /a span style=" color: rgb(0, 0, 0) " /ZEM-5 /span )不同,ZEM-d测量的是聚合物薄膜厚度方向上的塞贝克系数和电阻率,可以测量的样品最薄为10& nbsp μm。此外,由于与采用激光闪光法测量薄膜的热扩散率/导热系数测量方向一致,其测量结果可广泛应用于薄膜热电材料的性能评价。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网: /span /strong span style=" color: rgb(0, 112, 192) " 请介绍一下QUANTUM DESIGN中国在热电材料测试方面的核心仪器产品或产品组合?相比于同类产品,本公司的产品有哪些优势? /span /p p style=" text-align: justify text-indent: 2em " strong 苗雁鸣: /strong QUANTUM DESIGN中国针对热电材料测试,有多种测量仪器,涵盖了热电测试的各种需求。 /p p style=" text-align: justify text-indent: 2em " 现包括可以在1.9K-400K温度间、± 16T磁场下进行热导率、塞贝克系数以及电导率测量的 a href=" https://www.instrument.com.cn/netshow/C17086.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 0, 0) " span style=" color: rgb(0, 0, 0) " PPMS综合物性测量系统热输运模块 /span span style=" color: rgb(0, 0, 0) " /span /a ;可以在& nbsp 50-1000℃进行塞贝克系数和电阻测量的 a href=" https://www.instrument.com.cn/netshow/C283284.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 0, 0) " span style=" color: rgb(0, 0, 0) " 塞贝克系数/电阻测量系统-ZEM /span span style=" color: rgb(0, 0, 0) " /span /a ;可以在高温下测量薄膜厚度方向上的塞贝克系数和电阻率的ZEM-d;最高800℃下测量热电转换效率、发电量、热流量的 a href=" https://www.instrument.com.cn/netshow/C283291.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 0, 0) " span style=" color: rgb(0, 0, 0) " 热电转换效率测量系统-PEM /span span style=" color: rgb(0, 0, 0) " /span /a , a href=" https://www.instrument.com.cn/netshow/C283294.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 0, 0) " span style=" color: rgb(0, 0, 0) " 小型热电转换效率测量系统-Mini-PEM /span span style=" color: rgb(0, 0, 0) " /span /a 以及 a href=" https://www.instrument.com.cn/netshow/C302453.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 0, 0) " span style=" color: rgb(0, 0, 0) " 大气环境下热电材料性能评估系统-F-PEM /span span style=" color: rgb(0, 0, 0) " /span /a ;可以测量薄膜或块体表面塞贝克系数和电阻二维分布的 a href=" https://www.instrument.com.cn/netshow/C71734.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 0, 0) " span style=" color: rgb(0, 0, 0) " PSM II显微镜 /span span style=" color: rgb(0, 0, 0) " /span /a ;等等。 /p p style=" text-align: justify text-indent: 2em " 除了ZEM有一些仿制产品外,其他如PPMS综合物性测量系统热输运模块,ZEM-d,PEM,Mini-PEM,F-PEM和PSM II都是QUANTUM DESIGN中国独有的产品。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网: /span /strong span style=" color: rgb(0, 112, 192) " QUANTUM DESIGN中国在热电材料测试方面可以提供哪些分析评估方案?这些方案可以为用户解决什么研究难题? /span /p p style=" text-align: justify text-indent: 2em " strong 苗雁鸣: /strong QUANTUM DESIGN中国提供的仪器可对热电材料,以及超导材料、半导体材料、高分子材料、纳米材料、燃料电池、导电陶瓷、块材、薄膜、单晶等进行热导率、塞贝克系数、电导率、电阻、热电转换效率、发电量、热流量和塞贝克系数和电阻二维分布测量,最大程度来满足热电材料研究者方方面面的热电相关测试需求。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 仪器信息网: /span /strong span style=" color: rgb(0, 112, 192) " 针对热电材料领域,QUANTUM DESIGN中国接下来的有怎样的战略规划? /span /p p style=" text-align: justify text-indent: 2em " strong 苗雁鸣: /strong QUANTUM DESIGN中国作为美国QUANTUM DESIGN公司在全世界设立的诸多子公司之一,全权负责美国QUANTUM DESIGN公司本部产品在中国销售和售后服务的同时,还致力于发展与全球范围内先进科学仪器制造商的合作,帮助其产品引进中国市场,发展与中国本地科学家的合作,并将实验方法及设备商业化。 /p p style=" text-align: justify text-indent: 2em " 2018年7月,QUANTUM DESIGN中国与日本ADVANCE RIKO正式达成协议,作为其热电材料测试设备在中国的独家代理商继续合作,进一步将日本ADVANCE RIKO的相关设备在中国大陆、香港和澳门推广。并且在日本ADVANCE RIKO公司的协助下,QUANTUM DESIGN中国在北京建立了示范实验室和用户服务中心。 /p p style=" text-align: justify text-indent: 2em " 截止目前,QUANTUM DESIGN中国在北京设立样机实验室已有超过300万美元的投入,其中与热电材料相关的有PPMS DYNACOOL综合物性测量系统样机演示实验室以及小型热电转换效率测量系统Mini-PEM样机演示实验室,致力于为中国热电技术发展提供专业的支持和服务。 /p p style=" text-align: justify text-indent: 2em " 为了更好地服务国内热电材料科研领域的客户,QUANTUM DESIGN中国会不断推出更为全面的测试手段。此外,QUANTUM DESIGN中国将携手日本ADVANCE RIKO公司于近期推出厚度方向热电性能评价系统ZEM-d的免费样品测试活动。 /p
  • 硅基近红外光电转换取得突破
    p   近日,中国科学院苏州纳米技术与纳米仿生研究所陈沁课题组联合东南大学的王琦龙教授紧密合作,在低成本高效硅基热电子红外光电探测器方面取得了系列进展。他们首先提出了Au纳米颗粒修饰Si金字塔结构的方案,实验证明他们制备的这些器件的性能与那些精心设计、成本高昂的Si基近红外光电探测器性能相当,有望应用在大规模热光伏电池和低成本红外检测中。相关研究成果发表在近期的Nanotechnology期刊上。 /p p   据悉,科研团队所采用的工艺十分简单:通过使用标准的各向异性化学湿蚀刻法来实现Si基金字塔的构建 然后在其表面溅射一层Au薄膜 接着通过快速热退火法形成修饰的金纳米颗粒 随后在金字塔那面通过磁控溅射沉积ITO薄膜,在另一面通过热蒸发沉积铝膜作为背电极 最后,样品通过铟锡焊接到芯片载体上,就完成了探测器的制作。 /p p   他们发现金字塔表面增强了入射光子与Au纳米颗粒之间的耦合效应,因为这种金字塔表面减少了背反射光并使得光子在Au纳米颗粒内部多次反射,增加了入射光走的距离,而且Au纳米粒子的引入还使得器件的局部电磁场产生了增强,从而使光子可以被显著吸收,提高了光电转换量子效率。 /p p   科研团队进一步采用了Au纳米颗粒—介质—金反射镜的结构,利用无序金属纳米颗粒的宽带高光学吸收和Au/TiO2/Si组成的全向肖特基结,在光学与电学两个方面同时入手提高光电转换的内外量子效率。这种密集的随机热点分布大大提升了光吸收与热电子发射的效率,光电响应度是目前最高结果之一,硅光电响应截止波长扩展到近2um,展示了有效的近红外硅基光电应用。 /p p /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制