当前位置: 仪器信息网 > 行业主题 > >

热学电学性能分析系统

仪器信息网热学电学性能分析系统专题为您提供2024年最新热学电学性能分析系统价格报价、厂家品牌的相关信息, 包括热学电学性能分析系统参数、型号等,不管是国产,还是进口品牌的热学电学性能分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热学电学性能分析系统相关的耗材配件、试剂标物,还有热学电学性能分析系统相关的最新资讯、资料,以及热学电学性能分析系统相关的解决方案。

热学电学性能分析系统相关的仪器

  • 布鲁克Hysitron PI 85L是SEM专用的多用途、高灵敏度热学、电学和力学的测试系统,利用SEM的高分辨率,可以直接观测整个材料动态变化的过程。传统纳米压痕仪通过光学显微镜或原位扫描只能观察到压痕前及压痕后的形貌变化,中间过程无法观察到,载荷位移曲线上的一些突变我们无法解释,甚至单从曲线分析会导致错误的解释。PI 85L安装于电镜,可以精确施加载荷,检测位移,在电镜下做压痕、拉伸、弯曲、压缩、加热、电学和划痕测试,可以借助电镜的高分辨率,观测并记录整个材料测试过程,观测材料在力下发生的动态变化,如金属蠕变、相变、断裂起始等。PI 85L采用Hysitron专利技术三板电容传感器,具备载荷和位移同时监测和驱动的独特功能。具备业界领先的精度,重复性和低背景噪音等优点。PI 85L拥有多种特色测试功能模块可供选择,如动态力学测试、MEMS加热、拉伸测试、电学测试、纳米划痕等功能模块。
    留言咨询
  • 布鲁克Hysitron PI 95是TEM专用的多用途、高灵敏度热学、电学和力学的测试系统,在TEM上检测时,直接观察检测过程,使用侧面进样支架,不仅可以实现纳米尺度材料的成像观察,还可以同时进行加热和通电测试,并同步得到材料的力学数据,通过视频接口可以将材料的力学数据(载荷位移曲线)与相应TEM视频之间实现时间同步。该系统为方便研究者瞬间得到特定参数,比如化学复合物的种类,或对材料已经造成的影响,除成像外,选择区域衍射可以检测样品的取向,原位力学检测可以实时观测和验证。适用JEOL、FEI、Hitachi、Zeiss(不适用于UHR极靴)的PI 95可在纳米尺度既可以轻松完成材料的电学测试,也可以同时进行拉伸、压缩、弯曲等力学实验。后续可升级模块有高温台、原位力电性能测试、纳米划痕等。
    留言咨询
  • 2015年Anasys发布了最新一代产品nanoIR2-s,在广受欢迎的第二代纳米红外光谱系统的基础上增加了散射近场光学成像和光谱功能(s-SNOM)。实现了同一平台兼具AFM-IR和s-SNOM两种技术。仪器的空间分辨率达到10nm,广泛用于各种聚合物、有机无机复合材料、生物样本、半导体、等离子体、纳米天线等。纳米红外&散射近场光学成像和光谱系统(nanoIR2-s)AFM-IR &s-SNOM l AFM-IR 消除分析化学研究人员的担忧--与FTIR光谱完全吻合,没有吸收峰的任何偏移l s-SNOM使用金属镀层AFM探针代替传统光纤探针来增强和散射样品纳米区域内的光辐射,空间分辨率由AFM针尖的曲率半径决定l 专利技术实现智能的光路优化调整,无需担心光路偏差拖延你的实验进度l 最准确的定性微区化学表征,得到美国国家标准局NIST, 橡树岭国家实验室等美国权威机构的认可l 简单易用的操作,被三十多位企业用户和近百位学术界所选择l 基于DI传承的多功能AFM实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)10纳米空间分辨率化学成像和光谱石墨烯等离子体 高分辨率成像 石墨烯表面等离子体的近场相位和振幅成像;优于10nm的光学成像PTFE的nano FTIR光谱显示相干分子振动时域图(上图),和相应的近场光谱(下左图)。pNTP分子层的近场光谱(图下右)。
    留言咨询
  • 美国Anasys公司的AFM+可以提供全面的原子力显微功能,具有强大的分析能力,使得AFM不仅仅是一个普通的成像工具,还可以进行材料纳米级尺度的成分分析,热性能和机械性能的分析。AFM+的主要特点:简洁的安装与操作 □ AFM+为最便利的使用而设计制造。探针预装在金属圆片上,确保探针位置的准确性和装针的便捷□ 仪器集几十年AFM设计大师的经验之大成,即使初次使用也能快速获取结果完整的AFM工作模式 □ 包含所有常规成像模式:接触、轻敲、相位、侧向力、力调制、力曲线□ 独有高分辨率低噪音的闭环成像□ 基于DI传承的多功能AFM,实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)独有的可升级功能□ 热学性能:独有的热探针技术,提供纳米级红外分析□ 机械性能:洛伦兹接触共振模式能够提供宽频纳米机械分析□ 化学性能:可升级具有纳米红外光谱技术,实现局部化学组分分析□ 近场成像:可升级具有散射式近场光学成像和光谱采集功能
    留言咨询
  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询
  • LED光学热学和电学性能分析系统 Illumia pro LED光学热学和电学性能分析系统方便用户对LED、LED模块及阵列的电特性准确测量并同时测量光学和热学特性。 LED制造商、集成商以及用户非常关注LED的热学和电学特性,因为结温的变化将影响LED的颜色、光通量、寿命、光效及线性特性。Labsphere的 Illumia pro系统积分球尺寸从0.5米到2米可选,每个系统都兼容2&pi 和4&pi 测量方法。基本系统包含光测量积分球、一个高分辨率CCD光谱仪、电控温控片及温度控制器、辅助灯和精密可变电流源以及 Illumia pro 测量软件。特性 完整的热学,光学和电学特性分析系统 自动数据采集和分析 待测物的TEC温度控制及监控 测量温度及操作电流情况下的光学特性 可选择多种尺寸积分球(0.5米、1米、1.65米及2米) 满足IESNA LM-79和LM-80标准的测量结构 可实现环境温度控制(可选) 测量参数电学:I,V,电功率 光学:光辐射功率、光通量、颜色、光效 热学:载体温度与电学及光学参数关系 应用领域 封装的LED LED模组及阵列 显示屏背光模块
    留言咨询
  • Illumia pro2 LED光学、热学、电学性能分析系统同时对LED进行热学、光学、电学性能分析illumiaPro3是一种积分球光谱辐射计,专门设计用于测试和表征高功率LED。测量参数总光谱通量 光通量 辐射通量颜色性能波长性能LIVTillumiaPro3是一款0.5米积分球光谱辐射计,设计用于高功率LED的LIVT和满足LM-85标准测试和表征的研发和生产应用 功能齐全、功能强大0.5米积分球光谱仪,积分球内部喷涂有Labsphere Spectralect漫反射白色涂料,标配2π测量几何结构,并配有热技术控制器、行业领先的光源仪表和Labsphere的杂散光校正光谱仪,用于LIVT、脉冲模式和高功率LED的直流测试。LM-85 测试方法:LM-85 单脉冲模式LM-85 连续脉冲模式LM-85 直流模式自动表征热学、光学和电学性能illumiaPro3系统中附带Integral软件,Integral软件功能强大且提供易于使用的菜单式操作环境,用户可在指定范围内控制LED温度、工作电流和电压。该控制可使软件实现对待测样品在较宽温度范围内进行测量和性能分析。该软件同时收集的电学、光学、热学和总光谱通量数据显示在屏幕上或者输出到表格中做深入分析。主要规格参数illumiaPro3 LED性能测试系统积分球尺寸50cm光谱范围(已校准) 350-1000nm波长精度=/-0.3nm积分时间40μs-5
    留言咨询
  • Fusion Ax是针对材料科学、纳米电子学和半导体器件原位热学和电学TEM分析的突破性解决方案,能够支持和推动更可靠、更具成本效益和效率的材料开发。 Fusion AX能够让用户自由进行不同条件下原位电学及热学实验,该原位系统由AXON基于机器学习科技实现智能控制,使用各种基于MEMS的电子芯片和配件,以最满足您的研究需求,并且所有这些系统都得到了主要显微镜制造商的全面支持和授权,能够满足该原位系统在安全、兼容性和可靠性方面都严格满足电镜要求标准。独特样品杆Tip设计,兼容原位EDS分析,提供原位成分变化信息无摩擦双倾设计,可以保证转带轴倾转时依旧保证绝佳的电学灵敏度 产品应用 燃料电池研究 左图是利用Fusion Ax原位热学解决方案对碳包覆的纳米Pt颗粒原位退火过程进行结构变化及定量动力学分析,该Pt纳米颗粒主要用于低温燃料电池。数据来源:HODNIK, N. ET AL. (2020) ACS APP. NANO MATER., 3, 9880–9888固态电池 研究 锂基固态电池由于其高能量密度、长循环寿命和高工作电压的特点,而成为最具潜力的下一代储能电池。左图为利用Fusion AX原位电学系统研究不同容量的固态电池锂化和脱锂过程研究。数据来源:HOU, A. ET AL. (2023), ADV. SCIENCE, 10, 2205012二维材料研究原子层级的二维材料由于其独特的半导体、金属和超导体等不同电学特性,目前越来越多的科学家正在开发基于二维材料的多种应用。利用Fusion AX原位热学系统可以研究这种材料原位形成和重组过程中结构变化情况,左图为对石墨烯涂覆的芯片上原位将单层二维MoS2进行加热将其转化为3D纳米晶体结构的原位变化过程。 数据来源:INANI, H. ET AL. (2021), ADV. FUNCT. MATER., 2008395, 1–9基础材料科学研究Fusion AX原位加热系统可用于对各种纳米颗粒合成、合金化、形态变化和其它基础问题研究。左图为原位加热二元金属纳米晶体以观察Au和Ag之间的升华行为。 数据来源:HE, L.-B. ET AL. (2023), NANOSCALE ADV., 5, 685– 692 气体传感器研究Fusion AX原位加热系统可以在环境透射环境中使用,测试用于气体传感应用的材料。并且针对环境透射电镜应用专门开发了原位加热芯片。 数据来源:STEINHAUER, S. ET AL. (2017), NANOSCALE, 9, 7380–7384半导体研究为了开发更好的半导体芯片,所使用的材料需要具有低电阻率和低的形成温度,诸如金属硅化物材料就具备这些性质,因此该材料被广泛研究。左图为利用Fusion Ax原位加热系统对NiSi2材料进行原位退火下的动态行为研究。 数据来源:HOU, A.-Y. ET AL. (2021), APPL. SURF. SCIENCE, 538, 148129太阳能电池研究太阳能电池是有助于清洁能源发电以取代化石燃料的技术方案之一。有机-无机杂化钙钛矿太阳能电池因其高能量转换效率而受到关注。左图为利用Fusion Ax原位电学系统在透射电镜中进行原位连续偏压下研究太阳能电池材料的非晶化过程。 数据来源:KIM, M. ET AL. (2021), ACS ENERGY LETT., 6, 3530–3537
    留言咨询
  • 透射电镜原位电学分析系统——纳米尺度原位电学成像分析解决方案透射电镜原位电学分析系统在先进材料科学、纳米技术开发、半导体器件开发及失效分析中发挥着至关重要的作用,能够为研究纳米尺度材料及器件提供电学性能分析支撑。该系统能够适配所有具备外部扫描控制接口的透射电镜,通过深度集成的硬件及软件协同,能够实现对所有电学信号的放大、获取及分析,每个信号均能够实现自动量化,覆盖µ A/nA/pA等电流范围。该系统主要技术优势・ 采集系统兼容所有带有外部扫描接口的透射电镜(与EDS或EELS类似)・ 所有放大和采集设置均由软件控制・ 信号自动量化并以电流值(µ A, nA, pA)显示硬件设备特点・ 快速放大优化成像・ 宽增益范围,以适应所有技术・ 小型化的固定式电子设备・ 自动信号路由为透射电镜原位电学样品杆设计的低噪声前置电流放大器 主要技术优势:・ 最靠近原始信号的初级放大,能大幅降低信号噪音・ 内置电压偏压和电流补偿・ 自动信号路由,避免放电为透射电镜配备的电学分析放大器 主要技术优势:・ 第二级放大以达到最大范围・ 出厂精确校准的增益和偏移・ 可选锁定配置电学分析成像仪(DISS6) 主要技术优势:・ 集成扫描发生器和图像采集・ 像素分辨率高,扫描速度快 ・ 高位深电学分析模数转换・ 同时输入明场, 高角环形暗场和电学分析信号软件设备特点:DISS6 -控制和采集应用程序 主要技术优势:・ 电学分析放大器控制・ 电学分析, 高角环形暗场和明场图像采集・ 自动定量到µ A…fA・ 电流-电压扫描工具・ 实时图像颜色混合工具・ 标准文件格式DIPS6 -数据处理程序 主要技术参数:・ 完整的图像和元数据查看器・ 自动定量到µ A…fA・ 基于梯度的变色效果・ 用于可视化的信号颜色混合・ 导出定量像素值 应用案例图一. STEM-EBIC技术:・ 非弹性损失诱导了片层中的电子-空穴对・ 内部电场将电子-空穴对分开・ 电流被数字化以获得电子束诱生电流(EBIC) STEM图像图二. 揭示内部电场:・ 分析器件中的接点和触点・ 根据设计验证掺杂分布 ・ 与设备模型和参数相关联图三. 研究每一层结构中的电学性能:・ 定位重组活性增加的位点・ 区分有/没有电学活动的缺陷・ 使用高分辨率技术图四. 基本物理参数测定:・ 少数载流子的扩散长度・ 位错的复合强度图五. FIB/SEM薄片制备:・ 应用标准FIB工作流程进行原位偏压・ 利用扫描电镜中的电学分析视场选择目标・ 在扫描电镜中筛选薄片以观察制备过程中的损伤
    留言咨询
  • 塞贝克系数/电阻分析系统 CTA-Cryo(超低温版)测试参数:电导率/电阻率、热电势率/塞贝克系数温度范围:4K-300K(-269℃—室温)低温技术:低温制冷机作冷源,无需消耗液氮/液氦概 述:本系统采用低温制冷机作冷源,无需使用液氮/液氦,实现固体材料低温区(4K-300K -269℃—室温)的电学性能(电导率/电阻率,热电势率/塞贝克Seebeck系数)和可选热学性能(热导率、热膨胀系数、比热等)测量单元。系统设计思想 在一个以单台或多台制冷机为冷源的低温平台上,集成全自动的电学和热学物性测量手段。使得整个系统的低温环境得到充分利用、极大减少了客户购买仪器的成本、避免实验的繁琐和误差。低温平台与测量平台分离设计,测试样品更换过程变得快捷、方便。基本系统硬件结构包括:样品架组件、插入管组件、真空绝热系统、制冷机、减震传热部件、控温部件、干式泵、氦气罐、测控仪表和数据采集处理系统等。基本系统平台提供低温环境,以及测量相关的软硬件控制中心。样品室样品室连接在样品架组件上,通过可拆卸方式安装不同物性测量样品台。测量时样品室处于密封的真空状态,样品冷却过程是通过减震传热部件把制冷机冷量传递给样品架组件,再通过测试平台把冷量传递给样品,使样品降温。样品测量采用样品托的方式。温度控制采用制冷机直接冷却样品的方式,通过减震传热部件既减少制冷机的轻微震动可能带来的影响,又保证了样品能够快速冷却。通过独特的设计能够实现连续快速精准温度控制。温控范围:4.0K-300K连续控温;温度稳定性:±0.1K(4.0-20K)/ ±0.3K(20-300K)。全球甄选一流供货商,保证系统品质达到最高!CTA系统硬件组成:美国吉时利 Keithley(数据采集系统)德国 W.HALDENWANGER (高温陶瓷系统)英国摩根Morgan(高温特种材料)美国通用电气GE(光波加热元件)瑞典康泰尔 Kanthal (加热元件)美国精量电子 MEAS(传感器)日本IKO (精密轴承)日本住友Sumitomo (低温制冷机系统)塞贝克系数测量单元电阻率测量单元技术参数电阻率测量单元测量范围:10 μS/m~10 S/m测量精度:优于1%样品尺寸:长:4~20mm;宽:1~3mm;高:1~3mm塞贝克系数测量单元测量范围:1μV/K~1V/K测量精度:优于6%样品尺寸:长:5~20 mm;宽:2~3 mm;高:2~3 mm
    留言咨询
  • 石墨烯/二维材料电学性质非接触快速测量系统西班牙Das Nano公司成立于2012年,是一家提供高安全别打印设备,太赫兹无损检测设备以及个人身份安全验证设备的高科技公司。ONYX是其在全球范围内推出的一款针对石墨烯、半导体薄膜和其他二维材料大面积太赫兹无损表征的测量设备。ONYX采用先进的脉冲太赫兹时域光谱技术,实现了从科研及到工业的大面积石墨烯及二维材料的无损和高分辨,快速的电学性质测量,为石墨烯和二维材料科研和产业化研究提供了强大的支持。与传统四探针测量法相比,ONYX无损测量样品质量空间分布与拉曼,AFM,SEM相比,ONYX能够快速表征超大面积样品背景介绍太赫兹辐射( T射线)通常指的是频率在0. 1~10THz、波长在30μm-3mm之间的电磁波,其波段在微波和红外之间,属于远红外和亚毫米波范畴。该频段是宏观经典理论向微观量子理论的过度区,也是电子学向光子学的过渡区。在20世纪80年代中期以前,由于缺乏有效的产生方法和探测手段,科学家对于该波段电磁辐射性质的了解和研究非常有限,在相当长的一段时期,很少有人问津。电磁波谱中的这一波段(如下图) ,以至于形成远红外和亚毫米波空白区,也就是太赫兹空白区(THz gap)。太赫兹波段显著的特点是能够穿透大多数介电材料(如塑料、陶瓷、药品、缘体、纺织品或木材),这为无损检测(NDT)开辟了一个可能的新。同时,许多材料在太赫兹频率上呈现出可识别的频率指纹特性,使得太赫兹波段能够实现对许多材料的定性和定量研究。太赫兹波的这两个特性结合在一起,使其成为一种全新的材料研究手段。而且其光子能量低,不会引起电离,可以做到真正的无损检测。 ONYX工作原理 ONYX是一套实现石墨烯、半导体薄膜和其他二维材料全面积无损表征的测量系统,能够满足测试面积从科研(mm2)到晶元(cm2)以及工业(m2)的不同要求。与其他大面积样品的测量方法(如四探针法)相比,ONYX能够直观得到样品导电性能的空间分布。与拉曼、扫描电镜和透射电镜等微观方法相比,微米的空间分辨率能够实现对大面积样品的快速表征。ONYX采用先进的脉冲太赫兹时域光谱THz-TDS技术,产生皮秒量的短脉太赫兹冲辐射。穿透性强的太赫兹辐射穿透进样品达到各个界面,均会产生一个小反射波可以被探测器捕获,获得太赫兹脉冲的电场强度的时域波形。对太赫兹时域波形进行傅里叶变换,就可以得到太赫兹脉冲的频谱。分别测量通过试样前后(或直接从试样激发的)太赫兹脉冲波形,并对其频谱进行分析和处理,就可获得被测样品介电常数,吸收吸收以及载流子浓度等物理信息。再利用步进电机完成其扫描成像,得到其二维的电学测量结果。ONYX主要参数及特点样品大小: 10x10mm-200x200mm 全面的电导率和电阻率分析样品100%全覆盖测量高分辨率:50μm完全非接触无损无需样品制备载流子迁移率, 散射时间, 浓度分析 可定制样品测量面积(m2量)超快测量速度: 12cm2/min软件功能丰富,界面友好全自动操作图1 太赫兹光谱范围及信噪比ONYX主要功能→ 直流电导率(σDC)→ 载流子迁移率, μdrift→ 直流电阻率, RDC→ 载流子浓度, Ns→ 载流子散射时间,τsc→ 表面均匀性ONYX应用方向石墨烯材料:→ 单层/多层石墨烯 → 石墨烯溶液→ 掺杂石墨烯→ 石墨烯粉末→ 氧化石墨烯→ SiC外延石墨烯其他二维材料: → PEDOT→ Carbon Nanotubes→ ITO→ NbC→ IZO→ ALD-ZnO石墨烯光伏薄膜材料半导体薄膜电子器件PEDOT钨纳米线GaN颗粒Ag 纳米线ONYX测试数据1. 10x10mm CVD制备的石墨烯在不同分辨率下的电导率结果 2.10 x10mm CVD制备的石墨烯不同电学参数测量结果 3.利用ONYX测量ALD沉积在硅基底上的TiN电导率测量结果 应用案例■ 全球《石墨烯电学测量方法标准化指导手册》近期,欧洲计量创新与研究计划(EMPIR)的项目 “GRACE-石墨烯电学特性测量的新方法”发布了全球关于石墨烯电学特性测量方法的标准化指导手册。“GRACE-石墨烯电学特性测量新方法”项目是由英国实验室(NPL)主导,与意大利计量研究所、西班牙Das-nano 公司等合作,旨在开发石墨烯电学特性的新型测量方法,以及未来石墨烯电学测量的标准化制定。 图一 石墨烯电学测量方法标准化指导手册(发送邮件至info@qd-china.com获取完整版资料) 石墨烯由于其特优异的电学特性,在未来有望成为大规模应用于电子工业及能源领域的新材料。但是,目前受限于:1)如何制备大面积高质量石墨烯,且具有均匀和可重复的电气和电子性能;2)无论是作为科研用的实验样品还是在生产线中的批量化生产,对其电学性质的准确且可重复的表征方法目前尚不完善,缺乏正确实施此类测量方法的指导手册及测量标准。针对目前面临的问题和挑战,EMPIR 的“石墨烯电学特性测量新方法”项目对现有测量方法进行了总结和规范指导,更重要的是开发了石墨烯电学特性的快速高通量,非接触测量的新方法,并用现有技术对其进行了验证,取得了很好的一致性。 西班牙Das-Nano公司参与了“GRACE-石墨烯电学特性测量新方法”项目中基于THz-TDS的全新非接触测量方法的开发及测量标准的制定。基于该技术,Das-Nano推出了一款可以实现大面积(8英寸wafer)石墨烯和其他二维材料的100%全区域无损非接触快速电学测量系统-ONYX。ONYX采用一体化的反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接触测量方法(如四探针法- Four-probe Method,范德堡法-Van Der Pauw和电阻层析成像法-Electrical Resistance Tomography)及显微方法(原子力显微镜-AFM, 共聚焦拉曼-Raman,扫描电子显微镜-SEM以及透射电子显微镜-TEM)之间的不足和空白。ONYX可以快速测量从0.5 mm2到~m2的石墨烯及其他二维材料的电学特性,为科研和工业化提供了一种颠覆性的检测手段[1,2]。更多详细信息请点击:欧洲计量创新与研究计划(EMPIR)发布全球《石墨烯电学测量方法标准化指导手册》参考文献:[1] Cultrera, A., Serazio, D., Zurutuza, A. et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci Rep 9, 10655 (2019).[2] Melios, C., Huang, N., Callegaro, L. et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale. Sci Rep 10, 3223 (2020). ONYX发表文章1. P Bogild et al. Mapping the electrical properties of large-area graphene. 2D Mater. 4 (2017) 042003.2. S Fernández et al. Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines 2019, 10, 402.3. David M. A. Mackenzie et al. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. OPTICS EXPRESS 9220, Vol. 26, No. 7, 2 Apr 2018. 4. A Cultrera et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Scientific Reports , (2019) 9:10655.ONYX用户单位重要客户合作伙伴参与项目
    留言咨询
  • Illumia pro LED光学热学和电学性能分析系统方便用户对LED、LED模块及阵列的电特性准确测量并同时测量光学和热学特性。LED制造商、集成商以及用户非常关注LED的热学和电学特性,因为结温的变化将影响LED的颜色、光通量、寿命、光效及线性特性。Labsphere的 Illumia pro系统积分球尺寸从0.5米到2米可选,每个系统都兼容2π和4π测量方法。基本系统包含光测量积分球、一个高分辨率CCD光谱仪、电控温控片及温度控制器、辅助灯和精密可变电流源以及 Illumia pro 测量软件。特性完整的热学,光学和电学特性分析系统自动数据采集和分析待测物的TEC温度控制及监控测量温度及操作电流情况下的光学特性 可选择多种尺寸积分球(0.5米、1米、1.65米及2米)满足IESNA LM-79和LM-80标准的测量结构可实现环境温度控制(可选)测量参数电学:I,V,电功率光学:光辐射功率、光通量、颜色、光效热学:载体温度与电学及光学参数关系应用领域封装的LEDLED模组及阵列显示屏背光模块
    留言咨询
  • 特性:_ 完整的热学,光学和电学特性分析系统_ 自动数据采集和分析_ TEC温度控制及监控_ 测量温度及操作电流情况下的光学特性_ 可用尺寸,20,40,65,76英寸(0.5米、1米、1.65米及2米)_ 满足IESNA LM-79和LM-80标准的测量结构_ 可实现环境温度控制 测量参数:_ 电学:I,V,电功率_ 光学:通量、颜色、光效_ 热学:载体温度与电学及光学参数关系 应用领域:_ 封装的LED_ LED模组及阵列_ 显示屏背光模块_ 半导体照明TOCS软件的主数据显示界面 TOCS软件可以实现以下功能测试_ ILV @ constant T: step & control I, stabilize T, measure L & V_ VLI @ constant T: step & control V, stabilize T, measure L & I_ TLV @ constant I: step & control T, stabilize I, measure L & V_ TLI @ constant V: step & control T, stabilize V, measure L & I_ ILV/T: perform ILV@constant T, step T and repeat at each T_ VLI/T: perform VLI @ constant T, step T and repeat at each TKey: L = Lumens光通量 ,V = Voltage电压 ,I = Current电流 ,T = Temperature温度 光谱辐射通量与温度的关系流明输出电流和温度的变化 LED光度色度电性热参数综合测试系统型号:TOCS-20TOCS-40TOCS-65TOCS-76
    留言咨询
  • 产品简介通过纳米探针对样品施加电场控制,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随电场变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势纳米探针操纵系统1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.可对单个纳米结构进行操纵和电学测量。优异的电学性能特殊设计保证电学测量的低噪音和精确性,电流测量精度可达皮安级。智能化软件1.人机分离,软件远程调节电学条件,程序自动化控制倾转角度。2.全程自动记录实验细节数据,便于总结与回顾。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,β≥±20°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持
    留言咨询
  • 低温综合物性测量系统 CPMS-4电学性能:电导率/电阻率、热电势率/塞贝克系数热学性能:热导率、热膨胀系数、比热等温度范围:4K-300K(-269℃—室温)低温技术:低温制冷机作冷源,无需消耗液氮/液氦应用领域:低温热电材料、超导材料、低温负热膨胀/零膨胀等功能材料及其它固体材料低温物性研究概 述:本系统采用低温制冷机作冷源,无需使用液氮/液氦,实现固体材料低温区(4K-300K -269℃—室温)的电学性能(电导率/电阻率,热电势率/塞贝克Seebeck系数)和热学性能(热导率、热膨胀系数、比热等)测量。系统设计思想 在一个以单台或多台制冷机为冷源的低温平台上,集成全自动的电学和热学物性测量手段。使得整个系统的低温环境得到充分利用、极大减少了客户购买仪器的成本、避免实验的繁琐和误差。低温平台与测量平台分离设计,测试样品更换过程变得快捷、方便。基本系统硬件结构包括:样品架组件、插入管组件、真空绝热系统、制冷机、减震传热部件、控温部件、干式泵、氦气罐、测控仪表和数据采集处理系统等。基本系统平台提供低温环境,以及测量相关的软硬件控制中心。样品室样品室连接在样品架组件上,通过可拆卸方式安装不同物性测量样品台。测量时样品室处于密封的真空状态,样品冷却过程是通过减震传热部件把制冷机冷量传递给样品架组件,再通过测试平台把冷量传递给样品,使样品降温。样品测量采用样品托的方式。温度控制采用制冷机直接冷却样品的方式,通过减震传热部件既减少制冷机的轻微震动可能带来的影响,又保证了样品能够快速冷却。通过独特的设计能够实现连续快速精准温度控制。温控范围:4.0K-300K连续控温;温度稳定性:±0.1K(4.0-20K)/ ±0.3K(20-300K)。技术参数 热导率测量单元测量范围:0.1 W/ mK~600 W/mK测量精度:优于5%样品尺寸:正方体:4×4、6×6、8×8、10×10 mm×2~15mm圆柱体:Φ4~10 mm×2~15mm电导率 (电阻率)测量单元测量范围:10 μS/m~10 S/m测量精度:优于1%样品尺寸:长:4~20mm;宽:1~3mm;高:1~3mm热电势率(Seebeck系数)测量单元测量范围:1μV/K~1V/K测量精度:优于6%样品尺寸:长:5~20 mm;宽:2~3 mm;高:2~3 mm热膨胀系数测量单元测量范围:-100~100 E-6/K测量精度:优于5%样品尺寸:长:8~15 mm;宽:5~15mm;高:1~5 mm圆柱体:Φ8~15 mm×2~15mm比热测量单元测量精度:优于5%样品尺寸:0.3g-10g
    留言咨询
  • 透射电镜原位MEMS低温电学测量系统,关于价格请咨询(微信同号) 透射电镜原位MEMS低温电学测量系统是在标配MEMS芯片样品杆上集成低温控制模块,实现低温电学测量或全温区测量功能。性能指标 透射电子显微镜指标:● 兼容指定型号电镜及极靴; ● 单倾可选高倾角版本;● 可选双倾版本,β角倾转±25°(同时受限于极靴);● 测量电极数可选。 电学测量指标:● 包含一个电流电压测试单元;● 电压输出最大±200 V,最小±100 nV;● 电流测量最大±1.5 A,最小100 fA;● 恒压或者恒流模式;● 自动电流-电压(I-V)测量、电流-时间(I-t)测量,自动保存。 低温指标:● 兼容MEMS加热及电学芯片; ● 全温区测量,温度范围:85 K- 380 K;● 控温稳定性:优于±0.1 K;● 温度连续可控。 以上就是泽攸科技对PicoFemto透射电镜原位MEMS低温电学测量系统的介绍,关于整套系统价格请咨询(微信同号)原文: 安徽泽攸科技有限公司,是一家具有完全自主知识产权的先进装备制造公司。公司集研发、生产和销售业务于一体,向客户提供原位电镜解决方案、扫描电子显微镜等设备,立志成为具有国际先进水平的电子显微镜及附件制造商。    公司有精通机械、光学、超高真空、电子技术、微纳加工技术、软件技术的团队,我们为纳米科学的研究提供的设备。公司团队于20世纪90年代投入电镜及相关附件研发中,现有两个系列核心产品:     (1)PicoFemto系列原位TEM/SEM测量系统;     (2)ZEM15台式扫描电子显微镜。     PicoFemto系列原位TEM/SEM测量系统自问世以来,获得了国内外研究者的高度关注,并且已外销至澳洲、美国、欧洲等地。我们协助用户做出大量研究成果,相关成果发表在Nature及其子刊/JACS/AM/Nano. Lett./Joule/Nano. Energy/APL/Angewandte/Inorg. Chem.等高水平刊物上。 目前在国内使用我公司产品的课题组/实验平台多达八十余个,遍布五十余所大学/研究机构,包括中科院过程所、北京大学、清华大学、浙江大学、中科院硅酸盐研究所、厦门大学、电子科大、苏州大学、西安交通大学、武汉理工大学、上海大学、中科院大连化物所等等。国外用户包括澳洲昆士兰科技大学、英国利物浦大学、美国休斯顿大学、美国莱斯大学等。
    留言咨询
  • 透射电子显微镜原位STM-TEM测量系统是在标准外形的透射电镜样品杆内加装扫描探针控制单元,通过探针对单个纳米结构进行操纵和电学测量,并可在电学测量的同时,动态、高分辨地对样品的晶体结构、化学组分、元素价态进行综合表征,大大地扩展了透射电子显微镜的功能与应用领域。性能指标透射电镜指标:● 兼容指定电镜型号及极靴;● 可选双倾版本,双倾电学测量样品杆Y轴倾角±25°(同时受限于极靴间距);● 保证透射电镜原有分辨率。 电学测量指标:● 包含一个电流电压测试单元;● 电流测量范围:1 nA-30 mA,9个量程;● 电流分辨率:优于100 fA;● 电压输出范围:普通模式±10 V,高压模式±150 V;● 自动电流-电压(I-V)测量、电流-时间(I-t)测量,自动保存。 扫描探针操纵指标:● 粗调范围:XY方向2.5 mm,Z方向1.5 mm;● 细调范围:XY方向18 um,Z方向1.5 um;● 细调分辨率:XY方向0.4 nm,Z方向0.04 nm。以上就是PicoFemto透射电镜原位STM-TEM电学测量系统,详细咨询:
    留言咨询
  • DriveAFM原子力显微镜 全面高效的性能瑞士 Nanosurf 公司的 DriveAFM 型旗舰版原子力显微镜,采用最新超低噪音的 28 位 DAC 控制器与最新直驱型柔性扫描器,可在大气和与液相环境下稳定地对各种样品进行高 精度粗糙度、台阶高度及微纳米级别三维轮廓形貌等测量,也可以测量相位、电学、磁学、 热学等其他各种高级物理量,可广泛应用于材料科学、生命科学、医学、物理学、化学、机 械、电子等多个综合或交叉学科的科研以及工业级测量。 DriveAFM 应用了先进的光热激发技术,可以在液相环境下得到与大气环境下类似稳定 的悬臂梁频谱曲线,实现稳定的液相环境成像与力谱测量,在大气环境下测量也更稳定。 DriveAFM 配备全自动激光调整和自动样品逼近,非常方便用户常规操作以及大气与液 相环境下的原子力显微镜测量。 DriveAFM 可以配置单机版样品台方便不透明材料的测量,也可以选配数字倒置显微镜 方便生物细胞等透明样品的测量,或者选配倒置显微镜适配样品台实现与各种主流品牌的倒 置显微镜的联用功能,可以实现一机两用。 DriveAFM 除原子力显微镜基本功能以外,可以选配多种原子力显微镜功能选件,还可 以配置流体力学探针选件、高精度微粒质量测量等高级功能。
    留言咨询
  • ? PicoFemto透射电子显微镜原位STM-TEM测量系统是在标准外形的透射电镜样品杆内加装扫描探针控制单元,通过探针对单个纳米结构进行操纵和电学测量,并可在电学测量的同时,动态、高分辨地对样品的晶体结构、化学组分、元素价态进行综合表征,大大地扩展了透射电子显微镜的功能与应用领域。 透射电镜原位STM-TEM低温电学测量系统在标配的STM-TEM样品杆上集成低温环境控制单元,从而实现在透射电镜中进行原位低温电学测量的目的。性能指标 透射电镜指标:● 兼容指定电镜型号及极靴;● 可选双倾版本,双倾电学测量样品杆Y轴倾角±25°(同时受限于极靴间距);● 保证透射电镜原有分辨率。 电学测量指标:● 包含一个电流电压测试单元;● 电流测量范围:1 nA-30 mA,9个量程;● 电流分辨率:优于100 fA;● 电压输出范围:普通模式±10 V,高压模式±150 V;● 自动电流-电压(I-V)测量、电流-时间(I-t)测量,自动保存。 扫描探针操纵指标:● 粗调范围:XY方向2.5 mm,Z方向1.5 mm;● 细调范围:XY方向18 um,Z方向1.5 um;● 细调分辨率:XY方向0.4 nm,Z方向0.04 nm。 低温参数指标:● 兼容指定型号透射电镜及极靴;● 全温区结构分辨率优于0.2 nm;● 变温范围为85 K-380 K,温度稳定性优于±0.1 K。 产品特色 (1)温度连续可控,稳定性高;(2)低温下可实现对样品施加应力及电学研究。以上就是提供的PicoFemto透射电镜原位STM-TEM低温电学测量系统,详细咨询:
    留言咨询
  • 布鲁克Hysitron PI 95是TEM专用的多用途、高灵敏度热学、电学和力学的测试系统,在TEM上检测时,直接观察检测过程,使用侧面进样支架,不仅可以实现纳米尺度材料的成像观察,还可以同时进行加热和通电测试,并同步得到材料的力学数据,通过视频接口可以将材料的力学数据(载荷位移曲线)与相应TEM视频之间实现时间同步。该系统为方便研究者瞬间得到特定参数,比如化学复合物的种类,或对材料已经造成的影响,除成像外,选择区域衍射可以检测样品的取向,原位力学检测可以实时观测和验证。适用JEOL、FEI、Hitachi、Zeiss(不适用于UHR极靴)的PI 95可在纳米尺度既可以轻松完成材料的电学测试,也可以同时进行拉伸、压缩、弯曲等力学实验。后续可升级模块有高温台、原位力电性能测试、纳米划痕等。
    留言咨询
  • CryoComplete专为交钥匙解决方案而设计,是低温电学测量的一体化解决方案。系统具备先进的低电平直流测量和三个全通道锁相交流功能,集成了低噪声电学测试仪表及测试软件,用户只需要将系统抽真空,填充液氮,即可进行低温下的高精度电学测量实验。 主要特征 √ 温度范围:77 K~500 K √ 电阻测量范围100 µ Ω to 1 GΩ(标准) √ 交钥匙的低温电学测试解决方案 √ 配备高灵敏电学相关测试仪表及软件 √ 只需提供液氮,即可快速进行低温电学测试 标准系统参数 VPF-100低温恒温器+335控温仪+校准温度计 运行温度范围 77 K to 500 K 制冷剂 液氮 样品环境 真空 温度稳定性 ±50 mK 液氮容量 1.2 L 降温时间 15分钟至77 K 工作时间 8 h 光学窗口 4个石英光学窗口 电学测量样品安装 带8个插针的预接线安装板 电阻 / I-V测量(同步源M81-SSM-4+平衡电流源BCS-10+电压测量源VM-10) 测量范围 100 µ Ω to 1 GΩ 源模式 直流、正弦、三角形、方形 源电流范围 1 pA to 100 mA 源频率 100 µ Hz ~ 100 kHz (方波5 kHz) 最大测量电压 10 V 输入阻抗 10 GΩ(差分) 样品漏电流 50 pA @ 10 V(同轴线)或 50 fA @ 10 V (防护三同轴) 电压噪声 5 nV/√Hz @ 83 Hz 样品测试噪声(1/f) 100 nV
    留言咨询
  • 产品简介通过MEMS芯片对样品施加力学、电场、热场控制,在原位样品台内构建力、电、热复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随温度、电场、施加力变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势力学性能1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。3.nN级力学测量噪音。4.具备连续的载荷-位移-时间数据实时自动收集功能。5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。优异的电学性能1.芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,同时加载电场、热场、力学,相互独立控制。智能化软件1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持应用案例600°C高温下铜纳米柱力学压缩实验以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。
    留言咨询
  • 东上热学眼镜片用重合炉眼镜片检测设备眼镜片用烘箱眼鏡レンズ用重合炉(节能型)温度可达170℃温度常用10~150℃炉内寸法W800×H1200×D800mm 温度制御プログラムコントローラーペーパーレス記録計付きDAQステーションCX-1000ヒーター制御サイリスタレギュレター安全装置過熱防止調節器、他冷凍機水冷式インバーター搭載型 眼鏡レンズ用重合炉(节能型)温度可达170℃温度常用10~150℃炉内寸法W1300×H1200×D1100mm 温度制御プログラムコントローラーペーパーレス記録計付きDAQステーションCX-1000ヒーター制御サイリスタレギュレター安全装置過熱防止調節器、他冷凍機水冷式インバーター搭載型 眼鏡レンズ用重合炉温度可达170℃温度常用20~150℃機内寸法W2000×H1500×D1000mm 温度制御プログラムコントローラーペーパーレス記録計付きDAQステーションCX-1000ヒーター制御サイリスタレギュレター安全装置過熱防止調節器、他冷凍機水冷式インバーター搭載型 眼鏡レンズ用重合炉温度可达200℃温度常用10~150℃炉内寸法W1000×H1000×D1000mm 温度制御プログラム式調節器ヒーター制御サイリスタレギュレター温度記録計6打点安全装置過熱防止調節器、他冷凍機空冷式 0.75KW
    留言咨询
  • PicoFemto透射电镜原位STM-TEM低温电学测量系统,关于价格请咨询(微信同号) PicoFemto透射电子显微镜原位STM-TEM测量系统是在标准外形的透射电镜样品杆内加装扫描探针控制单元,通过探针对单个纳米结构进行操纵和电学测量,并可在电学测量的同时,动态、高分辨地对样品的晶体结构、化学组分、元素价态进行综合表征,大大地扩展了透射电子显微镜的功能与应用领域。 透射电镜原位STM-TEM低温电学测量系统在标配的STM-TEM样品杆上集成低温环境控制单元,从而实现在透射电镜中进行原位低温电学测量的目的。性能指标 透射电镜指标:● 兼容指定电镜型号及极靴;● 可选双倾版本,双倾电学测量样品杆Y轴倾角±25°(同时受限于极靴间距);● 保证透射电镜原有分辨率。 电学测量指标:● 包含一个电流电压测试单元;● 电流测量范围:1 nA-30 mA,9个量程;● 电流分辨率:优于100 fA;● 电压输出范围:普通模式±10 V,高压模式±150 V;● 自动电流-电压(I-V)测量、电流-时间(I-t)测量,自动保存。 扫描探针操纵指标: ● 粗调范围:XY方向2.5 mm,Z方向1.5 mm;● 细调范围:XY方向18 um,Z方向1.5 um;● 细调分辨率:XY方向0.4 nm,Z方向0.04 nm。 低温参数指标:● 兼容指定型号透射电镜及极靴; ● 全温区结构分辨率优于0.2 nm;● 变温范围为85 K-380 K,温度稳定性优于±0.1 K。 产品特色 (1)温度连续可控,稳定性高;(2)低温下可实现对样品施加应力及电学研究。 以上就是泽攸科技对PicoFemto透射电镜原位STM-TEM低温电学测量系统的介绍,关于整套系统价格请咨询(微信同号)原文: 安徽泽攸科技有限公司,是一家具有完全自主知识产权的先进装备制造公司。公司集研发、生产和销售业务于一体,向客户提供原位电镜解决方案、扫描电子显微镜等设备,立志成为具有国际先进水平的电子显微镜及附件制造商。   公司有精通机械、光学、超高真空、电子技术、微纳加工技术、软件技术的团队,我们为纳米科学的研究提供的设备。公司团队于20世纪90年代投入电镜及相关附件研发中,现有两个系列核心产品:     (1)PicoFemto系列原位TEM/SEM测量系统;     (2)ZEM15台式扫描电子显微镜。     PicoFemto系列原位TEM/SEM测量系统自问世以来,获得了国内外研究者的高度关注,并且已外销至澳洲、美国、欧洲等地。我们协助用户做出大量研究成果,相关成果发表在Nature及其子刊/JACS/AM/Nano. Lett./Joule/Nano. Energy/APL/Angewandte/Inorg. Chem.等高水平刊物上。 目前在国内使用我公司产品的课题组/实验平台多达八十余个,遍布五十余所大学/研究机构,包括中科院过程所、北京大学、清华大学、浙江大学、中科院硅酸盐研究所、厦门大学、电子科大、苏州大学、西安交通大学、武汉理工大学、上海大学、中科院大连化物所等等。国外用户包括澳洲昆士兰科技大学、英国利物浦大学、美国休斯顿大学、美国莱斯大学等。
    留言咨询
  • PicoFemto透射电镜原位STM-TEM电学测量系统,价格请咨询(微信同号)透射电子显微镜原位STM-TEM测量系统是在标准外形的透射电镜样品杆内加装扫描探针控制单元,通过探针对单个纳米结构进行操纵和电学测量,并可在电学测量的同时,动态、高分辨地对样品的晶体结构、化学组分、元素价态进行综合表征,大大地扩展了透射电子显微镜的功能与应用领域。性能指标透射电镜指标:● 兼容指定电镜型号及极靴;● 可选双倾版本,双倾电学测量样品杆Y轴倾角±25°(同时受限于极靴间距);● 保证透射电镜原有分辨率。 电学测量指标: ● 包含一个电流电压测试单元;● 电流测量范围:1 nA-30 mA,9个量程;● 电流分辨率:优于100 fA;● 电压输出范围:普通模式±10 V,高压模式±150 V;● 自动电流-电压(I-V)测量、电流-时间(I-t)测量,自动保存。 扫描探针操纵指标:● 粗调范围:XY方向2.5 mm,Z方向1.5 mm;● 细调范围:XY方向18 um,Z方向1.5 um;● 细调分辨率:XY方向0.4 nm,Z方向0.04 nm。 以上就是泽攸科技对PicoFemto透射电镜原位STM-TEM电学测量系统的介绍,关于整套系统价格请咨询(微信同号)原文: 安徽泽攸科技有限公司,是一家具有完全自主知识产权的先进装备制造公司。公司集研发、生产和销售业务于一体,向客户提供原位电镜解决方案、扫描电子显微镜等设备,立志成为具有国际先进水平的电子显微镜及附件制造商。    公司有精通机械、光学、超高真空、电子技术、微纳加工技术、软件技术的团队,我们为纳米科学的研究提供的设备。公司团队于20世纪90年代投入电镜及相关附件研发中,现有两个系列核心产品:     (1)PicoFemto系列原位TEM/SEM测量系统;     (2)ZEM15台式扫描电子显微镜。     PicoFemto系列原位TEM/SEM测量系统自问世以来,获得了国内外研究者的高度关注,并且已外销至澳洲、美国、欧洲等地。我们协助用户做出大量研究成果,相关成果发表在Nature及其子刊/JACS/AM/Nano. Lett./Joule/Nano. Energy/APL/Angewandte/Inorg. Chem.等高水平刊物上。 目前在国内使用我公司产品的课题组/实验平台多达八十余个,遍布五十余所大学/研究机构,包括中科院过程所、北京大学、清华大学、浙江大学、中科院硅酸盐研究所、厦门大学、电子科大、苏州大学、西安交通大学、武汉理工大学、上海大学、中科院大连化物所等等。国外用户包括澳洲昆士兰科技大学、英国利物浦大学、美国休斯顿大学、美国莱斯大学等。
    留言咨询
  • PicoFemto透射电镜原位MEMS加热/电学测量系统,关于价格请咨询(微信同号)透射电子显微镜是提供在较高时间分辨率下得到原子级空间分辨率的实验手段。透射电子显微镜原位加热/电学测量系统是在标准外形的透射电镜样品杆内安装MEMS工艺制成的微加热芯片和电学测量芯片。微加热芯片可对样品进行可控温度的加热,电学测量芯片可对样品进行电性质测量。并可在进行加热和电学测量的同时,动态、高分辨地对样品的晶体结构、化学组分、元素价态进行综合表征,大大地扩展了透射电子显微镜的功能与应用领域。 本系统硬件包括两部分,分别是加热/电学测量控制器、原位MEMS芯片样品杆。软件包括自动控温软件和自动电学测量软件。性能指标透射电子显微镜指标:● 兼容指定型号电镜及极靴;● 单倾可选高倾角版本;● 可选双倾版本,β角倾转±25°(同时受限于极靴); ● 测量电极数可选。 电学测量指标:● 包含一个电流电压测试单元;● 电压输出Z大±200 V,Z小±100 nV;● 电流测量Z大±1.5 A,Z小100 fA; ● 恒压或者恒流模式;● 自动电流-电压(I-V)测量、电流-时间(I-t)测量,自动保存。 加热与温控指标:● 温度控制范围:室温到1200 ℃;● 加热功率:Z大30 W;● 控温稳定性:优于±0.1 ℃;● Z大升温速率:1000 ℃/ms。 以上就是泽攸科技对PicoFemto透射电镜原位MEMS液体电化学测量系统的介绍,关于整套系统价格价格请咨询(微信同号) 原文 安徽泽攸科技有限公司,是一家具有完全自主知识产权的先进装备制造公司。公司集研发、生产和销售业务于一体,向客户提供原位电镜解决方案、扫描电子显微镜等设备,立志成为具有国际先进水平的电子显微镜及附件制造商。   公司有精通机械、光学、超高真空、电子技术、微纳加工技术、软件技术的团队,我们为纳米科学的研究提供的设备。公司团队于20世纪90年代投入电镜及相关附件研发中,现有两个系列核心产品:     (1)PicoFemto系列原位TEM/SEM测量系统;     (2)ZEM15台式扫描电子显微镜。     PicoFemto系列原位TEM/SEM测量系统自问世以来,获得了国内外研究者的高度关注,并且已外销至澳洲、美国、欧洲等地。我们协助用户做出大量研究成果,相关成果发表在Nature及其子刊/JACS/AM/Nano. Lett./Joule/Nano. Energy/APL/Angewandte/Inorg. Chem.等高水平刊物上。 目前在国内使用我公司产品的课题组/实验平台多达八十余个,遍布五十余所大学/研究机构,包括中科院过程所、北京大学、清华大学、浙江大学、中科院硅酸盐研究所、厦门大学、电子科大、苏州大学、西安交通大学、武汉理工大学、上海大学、中科院大连化物所等等。国外用户包括澳洲昆士兰科技大学、英国利物浦大学、美国休斯顿大学、美国莱斯大学等。
    留言咨询
  • INSTEMS系列为用户提供了7种原位TEM实验平台。其中包含三种单外场施加平台,三种双外场耦合平台和一种三外场耦合平台。三种单外场产品为INSTEMS-M(力学加载)、INSTEMS-E(电学加载)和INSTEMS-T(热场加载);三种双外场耦合产品为INSTEMS-ME(力电耦合)、INSTEMS-TE(热电耦合)和INSTEMS-MT(力热耦合);一种三外场耦合产品为INSTEMS-MET(力热电耦合)。产品介绍:INSTEMS-TE可以实现多种模式的电学施加和高精度的电学测量。在此基础上,通过选择单一热源或相互独立的双热源模式,可实现均匀热场或梯度热场的施加。这一独特优势使该产品不仅满足传统热学和电学领域,也满足热电领域的研究需求。突出优势:1、多种力学加载模式拉伸/压缩/压痕/弯曲/冲击/蠕变/疲劳自动/手动/循环加载牛顿级驱动器( 100 mN) pm级驱动控制2、多种力学加载模式拉伸/压缩/压痕/弯曲/冲击/蠕变/疲劳自动/手动/循环加载牛顿级驱动器( 100 mN) pm级驱动控制3、双轴倾转α 轴倾转最高至±20° β 轴倾转最高至±10°4、稳定的原子尺度成像极限样品漂移<50 pm/s空间分辨率≤0.1 nm技术指标:加热范围 RT up to 800 ℃加热准确性≥98% 加热速率10000 °C/s最大电压± 30 V 电流测量范围1 pA-1 A空间分辨率≤0.1 nmEDS兼容性√应用领域:热电材料半导体相变存储电池可靠性失效分析介电材料… …
    留言咨询
  • 型号:LAOSS产地:瑞士软件界面:主要特点:简单上手,快速开始的有限元分析模拟直观的图像用户界面以及Workflow在一般计算机中也能快速计算具备可视化范围输出数据及结果的功能主要应用:应用于热&电模型的有限元分析法焦耳(电阻)加热的电热耦合具有3D射线追踪的光学模型 三大主功能:1.电学模块模拟大面积OLEDs和太阳能电池的特性(填充因子vs电导率,2D电位分布,电流密度,奥姆损耗,总输出功率等)优化OLEDs和光伏中的电极设计,以减少电力损失。研究非理想效应(例如电分流)自动化优化电极的几何形状了解RGB OLED像素数组中的电串扰2.热学模块模拟OLED或太阳能的热生成和电流(电热耦合)之间的双向相互作用在标准作业程序下计算OLED和太阳能电池中的温度分布解释由于电热耦合导致的OLED和太阳能电池中的非理想I-V特性曲线3.光学模块模拟具有复杂3D光学组件或表面纹理化的OLEDs和太阳能电池的耦合建模独立的3D光学组件及其对OLEDs和太阳能电池的贡献模拟OLED显示器中的光学串扰欢迎垂询!
    留言咨询
  • 产品简介通过MEMS芯片在原位样品台内构建热、电复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米甚至原子层面实时、动态监测样品在真空环境下随温度、电场变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的原子级结构和成分演化等关键信息。 我们的优势 优异的电学性能1.采用模拟校验unique设计的芯片电极,电场分布均匀、电位稳定,芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,在加热过程中可同时进行电学试验和表征,不影响温度稳定性。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.四电极的超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.01℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。6.加热丝外部由氮化硅包覆,不与样品发生反应,确保实验的准确性。智能化软件和自动化设备1.人机分离,软件远程控制实验条件,程序自动化控制倾转角度。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片的每次控温都能根据电阻阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。4.全流程配备精密自动化设备,协助人工操作,提高实验效率。技术参数类别项目参数基本参数杆体材质高强度钛合金电极数4视窗膜厚无膜或20nm漂移率<0.5 nm/min(稳定状态)倾转角α ≥ ±25°,β ≥ ±25°(实际范围取决于极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持升温过程及高温检测应用案例Ag2Te基热电材料随电压变化情况0.4v电压Ag2Te基热电材料高分辨Ag2Te 基热电材料由于能够通过内部载流子的运动实现电能和热能之间的相互转换 因此,在进行施加电压实验过程中会出现随着电压的增大,样品自身温度升高的现象 研究得知随着电压持续升高,样品表面结构变化明显,纹路由不规则块状演变成条状或消失。而且,通过降低电压的过程,我们发现该材料升高或降低电压时,表面结构发生变化的过程是可逆的,表明该材料具有优异的热电性能和重复使用性能。
    留言咨询
  • 2015年Anasys发布了最新一代产品nanoIR2-s,在广受欢迎的第二代纳米红外光谱系统的基础上增加了散射近场光学成像和光谱功能(s-SNOM)。实现了同一平台兼具AFM-IR和s-SNOM两种技术。仪器的空间分辨率达到10nm,广泛用于各种聚合物、有机无机复合材料、生物样本、半导体、等离子体、纳米天线等。纳米红外&散射近场光学成像和光谱系统(nanoIR2-s)AFM-IR &s-SNOM l AFM-IR 消除分析化学研究人员的担忧--与FTIR光谱完全吻合,没有吸收峰的任何偏移l s-SNOM使用金属镀层AFM探针代替传统光纤探针来增强和散射样品纳米区域内的光辐射,空间分辨率由AFM针尖的曲率半径决定l 专利技术实现智能的光路优化调整,无需担心光路偏差拖延你的实验进度l 最准确的定性微区化学表征,得到美国国家标准局NIST, 橡树岭国家实验室等美国权威机构的认可l 简单易用的操作,被三十多位企业用户和近百位学术界所选择l 基于DI传承的多功能AFM实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)10纳米空间分辨率化学成像和光谱石墨烯等离子体 高分辨率成像 石墨烯表面等离子体的近场相位和振幅成像;优于10nm的光学成像PTFE的nano FTIR光谱显示相干分子振动时域图(上图),和相应的近场光谱(下左图)。pNTP分子层的近场光谱(图下右)。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制