当前位置: 仪器信息网 > 行业主题 > >

锐比手动热释光读数器

仪器信息网锐比手动热释光读数器专题为您提供2024年最新锐比手动热释光读数器价格报价、厂家品牌的相关信息, 包括锐比手动热释光读数器参数、型号等,不管是国产,还是进口品牌的锐比手动热释光读数器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锐比手动热释光读数器相关的耗材配件、试剂标物,还有锐比手动热释光读数器相关的最新资讯、资料,以及锐比手动热释光读数器相关的解决方案。

锐比手动热释光读数器相关的论坛

  • 【讨论】湿度会影响分光光读计读数?

    最近抽湿机坏了,分光光度计异常不稳定有时候无法调0有时候读数一直在跳开了抽湿后一切又正常了湿度对分光光度计影响真有那么大?还是我们仪器有问题?

  • 【讨论】安捷伦自动进样和手动进样问题

    大家有没有遇到过这种情况呀?安捷伦7890A-5975C 气质联用仪 手动进样和自动进样响应不一样,自动进样比手动进样的响应高很多,大概有几十倍。这是什么原因呢?是否进样垫要换了呢?

  • 原子荧光读数时间

    请问大家有没有遇见这种情况:原子荧光读数时间设置超过20s,不显示峰型,但是样品有强度,有结果。用的是海光AFS-2100。

  • 石墨炉手动进样的故事

    借着有网友讨论自动进样器的事情,我来讲一讲手动进样器的故事:石墨炉离不开自动进样器,性能再好的石墨炉,没有自动进样器配合很难保证精度,也使分析变得十分乏味。只有一种情况除外:我的好友在做地质化探样品时,嫌自动进样器太慢,熟悉的操作足以满足分析的需要,而用手动进样快得多。现在的自动进样器已经令那些早年从事[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析者感慨不已:自动浓缩,自动稀释,灵活加入多种基体改进剂,标准加入法和标准回收测定,还能自动进行质量控制,用一个溶液制作校正曲线等等。各种功能,应有尽有,令人眼花缭乱。我们称其为:已经满足了现代石墨炉分析的需求。据了解国内也有几个厂家做出了很好的自动进样器,除了瑞利的用于石墨炉外,吉天的还用到了氢化物发生上,不知以后能不能于石墨炉联用做在线富集。想想在早年,一个eppendoff的手动进样器还要1000多元,那时候真是太奢侈了。许多单位还拿医用的进样针来进样,玻璃的外壳,一根不锈钢推杆,靠刻度控制进样量,那个细细的针尖插到石墨管里可不是每个人都能干的。我曾经看到许多小女孩(现在也快变“老太婆“了)用那玩意儿做出极高重复精度的分析结果来,除了赞叹之外,还只能战战兢兢,绝不敢贸然与他们比试!记得“西北狼”有一次也在网上和大家讨论手动进样,我插了一句,说:学会手动进样还是很需要的。我已经查不到发在哪里了,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]板块人气较旺,几天前的帖子就可能很难找到,幸喜大水牛现在做了个相同主题的链接,虽然还很不完善。不过,说还需要手动进样,这话一点也不夸张。下面讲的就是我的真实故事:1.氯化镁对铅原子化的干扰:还是在80年代,我和一位同仁用石墨炉做滑石粉里的铅,那时候还没有多少基体改进剂的概念,只知道可以用标准加入法,所用的自动进样器也还不能自动做标准加入法。曲线做得很好,做样品几乎没有信号。翻来覆去作结果信号越来越没有规律,连标准曲线也做不出来了。不知怎的,重配标准又能作出曲线来了。闹了整整一天,没结果也没头绪。再稀释一次标准溶液,样品杯等也清洗的干干净净!再来一次。我说:也不要做标准曲线了,我们直接拿一个标准和样品比较比较看。那就拿来个手动进样器直接进样得了。吸了一个标准,嗯,测得很好。吸一个样品,没什么信号。再吸原来那个标准,呀,见鬼了,没信号了,再吸标准,怎么也做不出信号了。只有一种可能!我想起来了,那时候,研究铅原子化[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]干扰最重要的例子就是氯化镁对铅的干扰!滑石主要成分有碳酸镁,经过处理还有很多氯化镁残存。一定是它,难道有那么严重?那就再来一次,再配标准,好!标准又做出来了!作样品,没信号,换个进样嘴再做标准,又能出峰了。再做样品,不换进样嘴,做标准,没信号了!哈哈,这下现象重现了!就那么一点样品的接触,那个进样嘴也是eppendoff的,厌水性很好的!太夸张了,可又那么现实!样品中加一点抗坏血酸,好多了。虽然还没有更本解决,总算是找到问题了。我现在回想起来:如果我们就是使用自动进样器,一定很难发现这个现象的,就是发现这个现象,要去重复它,恐怕用自动进样器比手动进样更烦。我猜想。2.铅的容器污染:某研究所做中药中的铅的石墨炉测定,他们也是刚开始做,经验不是很多。一天打电话告诉我:标准曲线做不出来,没有相关关系,有时标准空白吸光度很高,比后面的标准还高。好吧,我说,我去看看。到了那里我一看:配标准使用的都是玻璃的。我说,你看你怎能用玻璃容器配标准呢?玻璃容器还不一样,那个带青色的瓶子是铅玻璃,那个带点黄色的是钠玻璃,这样怎么能做出标准曲线来呢?那怎么办?他问。我说:我们试试,拿了一支手动进样器,取一个样品杯里的溶液,第二针进样的体积等于第一针的两倍。结果测得的吸光度很明显与体积呈正比关系。我说:你看,肯定能做好的,只要你把容器换成聚四氟乙烯的。你不要老守着你的自动进样器,做一些实验的时候,手动进样是很方便的。第二天,他打电话来说:没问题了,其他条件再摸一下就可以了。我还是在想:会用手动进样还是能更灵活的试验条件观察各种现象的。现在石墨炉分析时,很多仪器一接上自动进样器,就是没有你什么更改条件的余地了,一切按照它的死板的程序继续。实际上是一件很不愉快的事,特别是在摸方法条件时。打个比方,在分析前想看看石墨管里有没有残留物,它就不允许,好像每一个测定都是必然成功的似的,所有数据也都被记录下来。我要是编写石墨炉自动进样程序的话,一定要设一个可以不进样(用自动进样器)就执行加热并可以观察的程序。3.饱和食盐水中钙的测定:离子膜制碱对于进入池中的氯化钠溶液又很高的要求,记得好像钙镁的合量不能超过20ppb。这样低的浓度通常还使用石墨炉测定,(不过现在有用ICP-OES成功测定的典范了)。做这样的分析石墨管必须用高纯的,那是用氟利昂净化过的非热解涂层石墨管。另外,水,环境(空气中的粉尘)太重要了。用亚沸水,从这个实验室走到另一个实验室就不行了。实际上,氯化钠对钙信号的抑制很强,我们制做的亚沸水在石墨炉里测钙条件下都能得到0。3吸光度(条件不太好),加了样品就几乎低十倍。但是钙镁石墨炉灵敏度是太高了,足以弥补。这样的话只能做标准加入法,说实话,要配2ng/ml的钙标准,我还没见谁有那么好的条件把它配出来过。只有在饱和食盐水中直接加入小体积高浓度的标准溶液,例如:对100毫升的饱和食盐水加入20微升10ug/ml的钙标准,就等于溶液中加了2ng/ml的浓度。这下手动微量进样器又有用武之地了。你信不信:但我们用手动进样时,得到的测定精度还比用自动进样器好(那时的自动进样器确实不如现在的好),原因是,自动进样器加了几个样,食盐水就粘在进样毛细管上了!讲了几个故事,都是用手动进样作石墨炉分析的。一来让我们的年轻人了解一下“老人“们在那时是怎样干活的,二来还想说明,掌握手动进样技巧可能还是有用的,特别是在摸索条件,观察干扰等场合;也可能在污染严重需要减少使用的器皿,或者一些物理性质特殊的样品时,它也会有用的。Sorry!现在说这些,可能不合时宜了吧!只算一个故事......

  • 【原创】荧光读数的平行性

    [size=4]我最近刚刚接触荧光分光光度法,遇到一个问题想请教大家。我是用荧光减少法测定海水中H2O2的浓度,方法原理是这样的:在海水中加入定量的发荧光的scopoletin,测定荧光其荧光强度,再加入HRP(过氧化物酶)使海水中的H2O2与scopoletin反应生成非荧光物质,再次测定荧光强度,根据荧光强度的减少来定量H2O2的浓度。我现在用的仪器是瓦里安公司的Cary Eclipse,现在觉得该仪器的荧光测定读数平行性较差,一般有正负3的偏差,而这对我定量海水中nM级的H2O2会造成很大的偏差,请问其他那种仪器的平行性更好?[/size]

  • 关于吸光度数据记录的问题

    用分光光度仪测量溶液的吸光度时, 吸光度在0.6以下,应记录至0.001的读数,大于0.6时,则要求记录至0.01读数 ,为什么可以解释下么?

  • 【求助】原子荧光读数时间和延迟时间对荧光强度和酸及还原剂的影响

    原子荧光读数时间和延迟时间对荧光强度和酸及还原剂的影响 我看大家的用的仪器读数时间在7--10秒 延迟时间在1-3秒都可以 是不是在这个时间出的峰80-100%在这个时间都出来啊 我用的是AFS-9800 延迟时间需要在3-4秒 读数时间更是离谱啊 需要14秒 出峰才有80-90% [color=#DC143C]能帮忙分析一下 延迟时间和出峰时间怎么这么久[/color]

  • 【讨论】手动进样10ul时要如何避免误差?

    大家都知道,现在没有10ul的定量环!要进10的样,如果不是自动进样器,那就只有手动进样,而手动进样时的温度、速度、读数等因素都直接影响着样品的峰高!!大家是如何避免这些误差的?欢迎大家讨论!!

  • 手动积分和自动差了一个数量级

    岛津的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url],发现一个特别明显的峰,自动积分的积分值比手动积分的小了一个数量级。开了个标样先一看,自动积分值应该错了,请问各位大牛,这个要怎么解决?[img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304221728152105_4314_3523502_3.png[/img]

  • 【分享】用色彩表达容量-全新安捷伦手动注射器

    安捷伦手动注射器正在优惠,买三赠一!见安捷伦网站http://www.agilent.com/chem/brilliant:cn安捷伦全新的注射器外观全新安捷伦手动注射器便于快速区分容量。每支注射器都有独特的颜色永久标记在其玻璃针筒上,这样,您每次都能知道它的正确容量。不再需要到看似相同的注射器中费力寻找。 注射器容量0.5 μL~50 mL 新颖的折叠式台式支架 直观、易于读数的垂直刻度 可回收的环保包装 安捷伦手动注射器包括单支方便装和多支经济装。只需一眼,即可发现新型安捷伦手动注射器能使实验室色彩更明快、分析更准确、选择更方便。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=158264]安捷伦彩色编码注射器[/url]下面为匆匆译就的手动注射器部分,供参考。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=158271]安捷伦手动注射器[/url]

  • 台式电镜技术参数对比手册

    台式电镜技术参数对比手册

    台式电镜技术参数对比手册飞纳(FEI)、COXEM(库赛姆)、日立 随着科学技术飞速发展,电镜的创新也日新月异。很多朋友都听过台式电镜这种设备,那么你对台式电镜的了解又有多少呢?今天我们给大家介绍一下台式电镜。 首先我们来认识一下究竟什么是台式电镜?台式电镜是在2005年才出现在商业用途上的,它的发源地在韩国,您没看错确实是韩国——那个世界万物的创造者。虽然我不想承认“棒子”的思维,但是不得不佩服“棒子”的技术。韩国的国有机构纳米所拥有多项台式电镜的核心专利技术,世界上几乎全部的台式电镜厂家都要购买该机构的专利技术才能生产。日立台式电镜就是当年收购的韩国电镜厂家后搬回日本生产的,也可以说日立台式电镜跟日立大型电镜一毛钱关系都没有。背景介绍完了,我们该介绍什么是台式电镜了,(小编话唠,经常挨主编批,看官请见谅)台式扫描电镜具有体积小巧、操作简便、价格便宜,快速抽真空,制样简便等优势。此类新型仪器的出现填补了光学显微镜与传统大型扫描电子显微镜之间的间隙,可广泛应用于材料科学、纳米颗粒、生物医学、食品药品、纺织纤维、地质科学等诸多领域。那么接下来我要针对市场上主流的三个台式电镜品牌做一比较和介绍。飞纳(FEI)、COXEM(库赛姆)、日立。先看看这三款台式电镜的外观吧。http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544842_3004185_3.jpg外观PK: 这项对决有一些鸡肋,关于外观的PK属于仁者见仁智者见智,凭借小编的审美COXEM无疑更“像”一台电镜,飞纳和日立更像一台PC机的机箱。http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544843_3004185_3.jpg品牌知名度PK 此轮PK实为一场欧美品牌与日韩品牌的对决,飞纳(FEI)在市场上的推广活动比较频繁,从知名度讲无疑是排在第一名。日立凭借大型电镜的品牌知名度占据第二的位置,虽然日立电镜和日立台式电镜没有什么关系。此轮库赛姆排名第三。http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544844_3004185_3.jpg发射源PK COXEM(库赛姆)和日立台式电镜选择传统的钨灯丝作为发射源,而飞纳(FEI)则采用六硼化铈作为发射源。就发射源本身而言,飞纳(FEI)采用了亮度更高的六硼化铈作为发射源,这一点是值得肯定的。但是,从理论上来讲,原本采用亮度更高发射源的飞纳(FEI)台式电镜应该在分辨率上至少优于高分辨率的COXEM(库赛姆)一倍,但实际从三家的分辨率和用户的使用体验上来看,飞纳(FEI)台式电镜的分辨率优于日立却远不及COXEM(库赛姆),在这一点上,小编认为还是各家的光学系统设计不尽相同所造成,分辨率的高低代表了此台式电镜光学系统的优越程度,这点大家可以多进行拍照对比考察。 接下来谈谈电镜发射源PK中三个最重要的参数比较——束流稳定性、易用性和性价比。飞纳(FEI)采用较为昂贵的六硼化铈作为发射源,但其在束流稳定性方面表现不佳,不稳定的束流会影响能谱分析的准确度,且一旦电镜意外关机,抽真空就需要10小时之久,这样的表现也让使用者有点伤不起,换一次六硼化铈灯丝的费用大约是钨灯丝的10倍且必须专业电镜工程师操作更换的时间成本也是让很多使用者头疼的事情,而飞纳(FEI)在使用了这么昂贵麻烦但高亮度的灯丝后,分辨率却仅仅压过了日立台式电镜而已,可见FEI在光学系统做的实在是不行。http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544846_3004185_3.jpg分辨率PK 此轮PK也是台式电镜的核心数据PK,分辨率最高的是COXEM(库赛姆)(30kv下8nm),其次是飞纳(FEI)(30kv下17nm),而最令我们奇怪的是日立台式电镜没有公布他们的分辨率数据,据调查,日立台式电镜的验收分辨率大致在20nm—30nm之间。电镜的分辨率代表了电镜的制造水准,台式电镜是介于光学显微镜和大型电镜之间的分析设备,如果分辨率表现不佳,则不如购置一台分辨率较高的光学显微镜了。而COXEM(库赛姆)为什么能把分辨率做的那么高?经小编调研,COXEM(库赛姆)在光学系统设计方面确实有可圈可点之处。它打破了传统台式扫描电镜采用BSD探测器成像的局限性,利用创新的双聚光镜成像技术,采用大型扫描电镜成像方式,使用二次电子探测器作为基础成像单元,从而可以获得更高的分辨率(8nm),是真正意义上的高分辨率台式扫描电镜。这一轮的PK结果显而易见。http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544846_3004185_3.jpg探测器PK 在探测器方面,飞纳(FEI)和日立是使用背散射电子探测器来同时观察表面形貌和成分图像,没有二次电子探测器,由于背散射电子的深度不及二次电子,因此分辨率表现不佳,表面形貌像立体感不强。COXEM(库赛姆)采用了特定探头观察特定形貌的方式来设计,标配了二次电子探测器和背散射电子探测器,二次电子探测器专门用来观察样品表面形貌,图像立体感较强,而背散射电子探测器则专门用来观察成分图像。http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544847_3004185_3.jpg显示装置PK 在显示装置方面,飞纳(FEI)则是采用触摸屏作为显示器。这点要为飞纳(FEI)点个赞,但是电阻触摸屏灵敏度较差,不知道大家有没有用过老式电阻屏的手机,需要用非常大的力量去点击屏幕,如果触摸屏损坏整个电镜都将无法继续使用,这也是让人想骂娘的地方。日立和COXEM(库赛姆)都是采用独立的液晶显示器。http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544848_3004185_3.jpg 载物台及样品台PK COXEM(库赛姆)和飞纳(FEI)都是标配的自动载物台,而日立的标配则是手动载物台。在样品台方面COXEM(库赛姆)和日立都是标准样品台,而飞纳(FEI)则是采用样品杯来放置样品,在这一点上标准样品台优势较为明显。标准样品台能够一次性放入多个样品,观察起来更为方便,而样品杯一次只能放置一个样品且样品大小也有一定局限性,在观察多个样品的情况下还需要频繁进行更换。http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544849_3004185_3.jpg 性价比PK 性价比应该是大家最关心的,总体来说COXEM(库赛姆)价格比较合理,性价比也比较高!飞纳(FEI)的目前在市场上的价格卖到14、15美金左右,个人认为暴贵,飞纳(FEI)裸机的价格是6万美金左右,能谱3万美金,合起来价格也就在9美金左右,那些卖到14、15美金成交的企业不知道是否有什么内幕发生。日立的市场报价在16万美金到4万美金之间,跟低端的大型电镜的价格差不多,性价比不高!http://ng1.17img.cn/bbsfiles/images/2015/05/201505051154_544850_3004185_3.jpg 说了这么多,相信大家对于台式电镜也应该有所了解了。台式电镜比较适用于中小型企业以及科研、高校,对于预算不足的企业,可以考虑考虑台式电镜。以上言论纯属个人见解,仅供参考!

  • 【求助】光谱的读数时间:read time 是什么意思呢。

    在方法编辑的时候,有光谱的读数时间:read time 设置项目,而且有最小和最大值。请问该项是什么意思呢。光谱的积分时间在哪里设置或查看呢。积分时间和读数时间有和联系呢!使用的仪器是PE 的5300DV,好像是CCD成像。

  • 【国产好仪器讨论】之厦门锐思捷科学仪器有限公司的锐思捷紧凑型中央纯水系统—INSPIRE (INSPIRE)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C225403%2Ejpg&iwidth=200&iHeight=200 厦门锐思捷科学仪器有限公司 的 锐思捷紧凑型中央纯水系统—INSPIRE (INSPIRE)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 锐思捷RSJ新款紧凑型中央纯水系统——INSPIRE系列 产品介绍INSPIRE是锐思捷推出的最新一个系列的中等产量实验室中央纯水系统(70-200L/H),适合中小规模实验室集中供水的需求。它不但集当今最先进的水纯化工艺于一身,同时也凝聚了锐思捷多年的纯水系统应用和设计经验。产品特色高度紧凑的模块化设计INSPIRE系统具有灵活的模块组合方式以适合不同客户的应用需求,利于摆放、易于升级。整机采用防锈工艺/材料,外部风格一致,底部制动脚轮的设计简便了设备的放置和安装,同时具备同等产量、配置最小占地的特点,全系列主机 + 500L水箱 + 双泵供水(如上图),设备占地2bar情况下,其产水主机功率500W),只相当于传统工艺的1/4。极低运行成本INSPIRE系统的日常消耗品极少,通常情况下,系统可达到Ⅱ级纯水产出平均消耗品¥0.02/升的水平。先进的技术应用INSPIRE-S200E采用先进的RO+EDI直连技术,RO产水直接作为EDI的进水,无需中间水箱和加压泵,减少中间处理环节的同时避免了二次污染。系统具有特色恒产量控制功能,能够很大程度上克服水温变化导致的系统产量波动。全数字指标监测数字信号实时监测进水压力、进水温度、工作压力、工作温度、回水流速、浓水流速、产水流速、RO膜截留率、RO进水电导率、RO产水电导率、EDI产水电导率及分配管网电导率等多达十数项指标。可靠的安全性能严格执行水电分离设计原则,同时配备水质不合格排放/报警、高/低压保护、高/低液位保护、电器过载保护、紫外失效报警、系统运行参数异常报警和保护,以及全方位漏水保护等功能。高性能控制系统INSPIRE系统使用西门子可编程控制器(PLC)实现自动控制,并采用7”彩色中文触控屏执行多级界面人机互动,系统全面采用数字化传感器实时监测各项运行指标,运行数据使用大容量SD卡记录,支持USB接口打印。同时,还支持有线/无线远程控制升级。技术参数 1. 进水要求:市政自来水; 2. 产水级别:GB6682 III级/II级/I级(超纯水) 3 . 系统产量:RO+RO——70/150L/H(25℃) RO+EDI——200L/H(5-35....【了解更多此仪器设备的信息】

  • 分光光度法测甲萘威比色时读数一直跳怎么回事?

    用GB/T5750.9-2006 方法中的分光光度法测定甲萘威,显色后放入分光光度计比色读数低浓度一直往上跳,高浓度一直往下跳。不到5分钟颜色梯度就没了。是因为显色剂易分解的原因吗?但是从配置到显色不超过10分钟,做一个比色一个,实在不知道如何解决,请教各位大神!

  • 紫外分光光度计读数不稳定

    1. 先不放比色皿,看仪器是否漂移。如果不漂移,说明仪器正常。2. 放入蒸馏水比色皿调零,读数漂移到一定数值后,取出比色皿看一下,内壁是否有极细小的气泡,很可能是这一原因。我认为根本原因应该有两类:一类是能量降低,信噪比下降,这个可能性比较大;另一类是信号接收和处理故障。具体如下:1 能量降低1.1 比色皿:如果是在400nm以下波长测量,需使用石英比色皿,假如使用普通玻璃比色皿会吸收大部分的紫外能量。还有比色皿一般有光面和毛面之分,毛面是手捏的,光面是对正光路的。1.2 样品架:检查样品架是否在正确的槽位上,光是否全部照在比色皿上。方法是把波长设定到550nm左右,这时是比较明亮的黄绿色光,在样品室内用个小纸片挡下就能看到光斑。这个方法也能检测可见区的光源是否正常,滤光盘及波长驱动是否正常。1.3 空白样品:样品室不放任何东西对空气调零,看是否稳定。如果稳定的话,应该是空白样品本身吸光度太高了。方法是先对空气调零,然后把空白样品放入光路中看读数。如果读数很大,例如接近3A,则不可用。1.4 光源:先确认分析波长值,一般紫外可见有2个光源,紫外区用氘灯,可见区用钨灯,切换点一般在340nm。钨灯光较为明亮刺眼,氘灯光偏青紫色。如果仪器后面有透光窗口可以直接看,如果没有的话,需要打开外壳,打开灯室罩。光源都是用寿命的,能量变弱或干脆不亮了,要换灯。也有比较小的可能是光源供电电路故障,例如电源老化后可能导致无法正常点亮氘灯。1.5 光路:看光路是否偏了,可以把波长设定到550nm左右,观察样品室内有无黄绿色光线,光斑能否正确照在接收器窗口上。确认灯室内光源光斑是否正确照在单色器入狭缝上,确认光路中有无杂物挡住。确认单色器内反射镜、透镜、光栅、滤光片等是否发霉或积满灰尘,这个需要厂家才能处理。1.6 驱动电路故障:例如滤光盘驱动异常,导致滤光片用错或者干脆光路被遮挡。一般厂家或专业人员处理。2 信号接收和处理故障接收器(例如光电池或者光电倍增管)、放大电路、AD转换电路等都有可能。这类问题一般由厂家或专业人员处理,这里不详细说明了。

  • 【求助】总氮测定读数越来越大

    最近在用UV2450紫外分光光度计测总氮时,仪器已经预热半小时以上了,可读数都偏低,比氨氮读数都低很多。如果过几十分钟后重新用剩下的溶液测,发现读数会不断升高,而且275nm处的吸光度也大于0.010了。同样的平行样差别也很大。本人是加完盐酸后就立刻开始测,是否要等一段时间后再测?还是仪器方面的问题?最近都被这个问题快逼疯了,希望各位大大大人赐教。

  • 关于分光光度计测镍标波长读数不符合情况

    各位大神,我们实验室的光度计是753的,说明可以测最高波长是753的吧,然后我做了两次实验,用丁二酮污显色法配镍标分别是1微克每毫升,2微克每毫升,4微克每毫升,两次结果都是1微克的和2微克的成倍数增长,4微克的就是数值偏大,举例:我昨天做的1微克读数是153 2微克读数是306,4微克读数就是628,机器四个插孔位置标全部位置换过也没什么变化,机器预热时间十分钟,移液和稀释定容都按照标准来的,这个读数偏大是什么原因?

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 关于PE2100的数据采集时间模式的问题

    PE的ICP有两种数据采集时间设定,一种是自动一种是手动的,自动采集模式下就算是跟手动模式设定同样的采集时间在整体的测样过程中还是比手动采集数据模式时间长,测试结果相对标准偏差比手动采集模式要小。平时我们基本用的是手动采集时间设定,都是最近才发现一个问题是同样的1mg/L的锰标液测试257.610波长的发射强度,仪器校准观测位置时是300万左右的强度,但是在测样时方法设定为手动采集时间设定模式,仪器提示检测器饱和,无法检测锰在257.610波长的发射强度。将方法设定为自动采集时间设定后却又能测试锰在257.610波长的发射强度为300万左右,与仪器校准观测位置时所得的强度基本一致。现在让我困惑的就是两种数据采集时间设定的具体区别是什么,请各位老师答疑解惑,多多指点!谢谢!http://ng1.17img.cn/bbsfiles/images/2014/03/201403260913_494217_1967973_3.bmp

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制