当前位置: 仪器信息网 > 行业主题 > >

润滑脂润滑油评定台架

仪器信息网润滑脂润滑油评定台架专题为您提供2024年最新润滑脂润滑油评定台架价格报价、厂家品牌的相关信息, 包括润滑脂润滑油评定台架参数、型号等,不管是国产,还是进口品牌的润滑脂润滑油评定台架您都可以在这里找到。 除此之外,仪器信息网还免费为您整合润滑脂润滑油评定台架相关的耗材配件、试剂标物,还有润滑脂润滑油评定台架相关的最新资讯、资料,以及润滑脂润滑油评定台架相关的解决方案。

润滑脂润滑油评定台架相关的论坛

  • 国标GB/T7325《润滑油和润滑脂蒸发损失测定法》

    用途概述:SY7325润滑油和润滑脂蒸发损失测定仪是根据GB/T7325《润滑油和润滑脂蒸发损失测定法》设计、制造的。适用于测定在99~150℃的任一温度下润滑油或润滑脂的蒸发损失。产品特点:由浴槽、温控表、空气泵、流量计、温度控制电路等部分组成。使用空气泵、流量计以定量的流速向恒温浴内蒸发试验装置中的试样通入空气,经过规定的时间后,测定试样的蒸发损失量。SY7325润滑油和润滑脂蒸发损失测定仪技术指标:1.输入电压:AC220V±10% 50Hz2.输入功率:2KW3.控温精度:±0.5℃4.控温范围:室温~260℃5.计时装置:0~100小时6.搅拌电机:25W装箱清单[table][tr][td]序号[/td][td]名称[/td][td]数量[/td][td]备注[/td][/tr][tr][td]1[/td][td]主机[/td][td]1台[/td][td] [/td][/tr][tr][td]2[/td][td]电源线[/td][td]1根[/td][td] [/td][/tr][tr][td]3[/td][td]蒸发皿[/td][td]2组[/td][td] [/td][/tr][tr][td]4[/td][td]试验皿[/td][td]2组[/td][td] [/td][/tr][tr][td]5[/td][td]空气过滤器[/td][td]1个[/td][td] [/td][/tr][tr][td]6[/td][td]空气泵[/td][td]1个[/td][td] [/td][/tr][tr][td]7[/td][td]保险丝[/td][td]1个[/td][td]5A或20A[/td][/tr][tr][td]8[/td][td]说明书[/td][td]1份[/td][td] [/td][/tr][/table]

  • 润滑油的选择方法

    润滑油对发动机油、液压油,齿轮油、汽轮机油(透平油)、压缩机油、冷冻机油、车辆齿轮油等各种工业润滑油品进行性能指标检测,根据产品的国家或国际标准进行质量评定,根据油品检测结果,发现设备的润滑和磨损故障根源,指导设备的视情维护,润滑油的选择也有很多原则:A. 在充分保证机器摩擦件安全运转的条件下,为减少能量消耗应优先选用粘度小的润滑油。B 在高速负荷条件下工作的摩擦零件应选用粘度小的润滑油,而在低速重负荷条件下工作的摩擦件应选用粘度大的润滑油。C. 环境温度低时应选用粘度小的润滑油,反之则应选用粘度大的润滑油 高温条件下应选用闪点高的润滑油 低温条件下应选用凝固点低的润滑油。D 冲击、振动以及往复运动、间歇运动等对于形成油膜不利,故应选用粘度较大的润滑油或选用润滑脂或固体润滑剂以保证可靠润滑。E. 摩擦副配合间隙小的应选用粘度小的润滑油,表面加工精度高的工作面应选用粘度小的润滑油。F 机械循环条件下选用粘度较小的润滑油,间歇加油时应选用粘度略大的润滑油 垂直润滑面,外露齿轮、链条、钢丝绳等应选粘度较大的润滑油。G 若无合适牌号的润滑油时,可选用相近牌号的润滑油代用或掺合使用,代用时只能选略大于规定粘度的润滑油,掺合时则尽量不选用两种不同性质、不同厂牌和有添加剂的油掺合。

  • 浅谈润滑检测标准及润滑油检测项目有哪些

    润滑油常指石油润滑油。主要用于减少运动部件表面间的摩擦力,同时对机器设备具有冷却、密封、防腐、防锈、绝缘、功率传送、清洗杂质等作用。主要以来自原油蒸馏装置的润滑油馏分和渣油馏分为原料。 润滑油最主要的性能是粘度、氧化安定性和润滑性,它们与润滑油馏分的组成密切相关。粘度是反映润滑油流动性的重要质量指标。不同的使用条件具有不同的粘度要求。重负荷和低速度的机械要选用高粘度润滑油。 润滑油、润滑脂统而言之,为「润滑剂」之一种。而所谓润滑剂,简单地说,就是介於两个相对运动的物体之间,具有减少两个物体因接触而产生摩擦的功能者。如何控制润滑油品质也成为机械重工行业持续发展决定因素。 润滑油是一种技术密集型产品,润滑油检测其是复杂的碳氢化合物的混合物,而其真正使用性能又是复杂的物理或化学变化过程的综合效应。润滑油的基本性能包括一般理化性能、特殊理化性能和模拟台架试验。润滑检测标准及润滑油检测项目有哪些润油国标( GB/T)、能源标准(NB/SH/T)及石化标准 (SH/T)检测标准 检测项目 GB/T 391-1977 发动机润滑油腐蚀度测定法 GB/T 7325-1987 润滑脂和润滑油蒸发损失测定法 GB 8022-1987 润滑油抗乳化性能测定法 GB/T 8926-2012 在用的润滑油不溶物测定法 GB 9170-1988 润滑油及燃料油中总氮含量测定法(改进的克氏法) NB/SH/T 0059-2010 润滑油蒸发损失的测定 诺亚克法 NB/SH/T 0306-2013 润滑油承载能力的评定FZG目测法 NB/SH/T 0822-2010 润滑油中磷、硫、钙和锌含量的测定 能量色散X射线荧光光谱法 NB/SH/T 0824-2010 润滑油中添加剂元素含量的测定 电感耦合等离子体原子发射光谱法 NB/SH/T 0832-2010 润滑油热表面氧化的测定 压力差示扫描量热法 SH/T 0024-1990 润滑油沉淀值测定法 SH/T 0028-1990 润滑油清净剂浊度测定法 SH/T 0061-1991 润滑油中镁含量测定法([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法) SH/T 0076-1991 润滑油中糠醛试验法 SH/T 0077-1991 润滑油中铁含量测定法([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法) SH/T 0102-1992 润滑油和液体燃料中铜含量测定法([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法) SH/T 0120-1992 酚精制润滑油酚含量测定法 SH/T 0123-1993 极压润滑油氧化性能测定法 SH/T 0187-1992 润滑油极压性能测定法(法莱克斯法) SH/T 0188-1992 润滑油磨损性能测定法(法莱克斯轴和V形块法) SH/T 0189-1992 润滑油抗磨损性能测定法(四球机法) SH/T 0191-1992(2000) 润滑油破乳化值测定法 SH/T 0193-2008 润滑油氧化安定性的测定 旋转氧弹法 SH/T 0196-1992 润滑油抗氧化安定性测定法 SH/T 0197-1992 润滑油中铁含量测定法 SH/T 0200-1992 含聚合物润滑油剪切安定性测定法(齿轮机法) SH/T 0225-1992 添加剂和含添加剂润滑油中钡含量测定法 SH/T 0226-1992 添加剂和含添加剂润滑油中锌含量测定法 SH/T 0228-1992 润滑油中钡、钙、锌含量测定法([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法) SH/T 0255-1992 添加剂和含添加剂润滑油水分测定法(电量法) SH/T 0256-1992 润滑油破乳化时间测定法 SH/T 0257-1992 润滑油水分定性试验法 SH/T 0258-1992 润滑油的颜色测定法 SH/T 0259-1992 润滑油热氧化安定性测定法 SH/T 0267-1992 润滑油氢氧化钠抽出物的酸化试验法 SH/T 0270-1992 添加剂和含添加剂润滑油的钙含量测定法 SH/T 0296-1992 添加剂和含添加剂润滑油的磷含量测定法(比色法) SH/T 0298-1992 含防锈剂润滑油水溶性酸测定法(pH值法) SH/T 0308-1992 润滑油空气释放值测定法 SH/T 0309-1992 含添加剂润滑油的钙、钡、锌含量测定法(络合滴定法) SH/T 0436-1992 航空用合成润滑油与橡胶相容性测定法 SH/T 0472-1992 合成航空润滑油中微量金属含量测定法([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法) SH/T 0473-1992 使用过的润滑油沉淀物含量测定法(离心分离法) SH/T 0532-1992 润滑油抗擦伤能力测定法(梯姆肯法) SH/T 0560-1993 润滑油热安定性试验法 SH/T 0566-1993 润滑油粘度指数改进剂增稠能力测定法 SH/T 0573-1993 在用润滑油磨损颗粒试验法(分析式铁谱法) SH/T 0582-1994 润滑油和添加剂中钠含量测定法([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法) SH/T 0605-2008 润滑油及添加剂中钼含量的测定 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 SH/T 0617-1995 润滑油中铅含量测定法([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法) SH/T 0618-1995 高剪切条件下的润滑油动力粘度测定法(雷范费尔特法) SH/T 0631-1996 润滑油和添加剂中钡、钙、磷、硫和锌测定法(X射线荧光光谱法) SH/T 0649-1997 船用润滑油腐蚀试验法 SH/T 0719-2002 润滑油氧化诱导期测定法(压力差示扫描量热法) SH/T 0722-2002 润滑油高温泡沫特性测定法 SH/T 0731-2004 润滑油蒸发损失测定法(热重诺亚克法) SH/T 0732-2004 润滑油低温低剪切速率下粘度与温度关系测定法(温度扫描法) SH/T 0749-2004 润滑油及添加剂中添加素含量测定法(电感耦合等离子体发射光谱法) SH/T 0753-2005 润滑油基础油化学族组成测定法 SH/T 0762-2005 润滑油摩擦系数测定法(四球法) SH/T 0805-2008 润滑油过滤性测定法

  • 润滑油检测

    [url=https://www.woyaoce.cn/service/info-4710.html][font=微软雅黑][size=16px]点击链接查看更多:https://www.woyaoce.cn/service/info-4710.html[/size][/font][font=微软雅黑, &]润滑油机油类:[/font][font=微软雅黑, &]汽油机油、柴油机油、空气压缩机油、涡轮机油、冷冻机油、内燃机车柴油机油、农用柴油机油、电厂运 行中汽轮机油质量、负荷喷油回转式空气压缩机油、机油检测[/font][font=微软雅黑, &]润滑油齿轮油类:[/font][font=微软雅黑, &]重负荷车辆齿轮油、工业闭式齿轮油、合成工业齿轮油、齿轮油检测[/font][font=微软雅黑, &]润滑油液压油类:[/font][font=微软雅黑, &]10号航空液压油、液压油、液压油检测[/font][font=微软雅黑, &]润滑脂类: [/font][font=微软雅黑, &]食品机械润滑脂、钙基润滑脂、钠基润滑脂、汽车通用锂基润滑脂、极压锂基润滑脂、通用锂基润滑脂、光学仪器用润滑脂、耐油密封润滑脂、压延机用润滑脂、钙钠基润滑脂、石墨钙基润滑脂、铝基润滑脂、铁道润滑脂、航空润滑脂、(4号、50号高温润滑脂)、复合铝基润滑脂、钡基润滑脂[/font][font=微软雅黑, &]润滑油其他油类:[/font][font=微软雅黑, &]食品机械专用白油、[/font][font=微软雅黑, &]航空喷气机润滑油、20号航空润滑油[/font][font=微软雅黑, &]、L-AN 全损耗系统用油、热[/font][font=微软雅黑, &]定型机润滑油、4839号抗化学润滑油、4802号抗化学润滑油、007,7008号通用航空润滑油[/font][/url]

  • 润滑油常用检测指标及测定意义

    粘度  液体受外力作用移动时,液体分子间产生内摩擦力的性质,称为粘度。粘度随温度的升高而较低。它是润滑油的主要技术指标,粘度是各种润滑油分类分级的依据,对质量鉴别和确定用途等有决定性的意义。  我国常用运动粘度、动力粘度和条件粘度来表示油品的粘度。测定运动粘度的标准方法为GB/T 265、GB/T 11137,即在某一恒定的温度下,一定体积的液体在重力下流过一个标定好的玻璃毛细管的时间。粘度计的毛细管常数与流动时间的乘积就是该温度下液体的运动粘度。运动粘度的单位为m2/s,通常实际使用单位是mm2/s。国外相应测定油品运动粘度的标准方法主要有美国的ASTM D445、德国的DIN 51562和ISO 3105等。  某些油品,如液力传动液、车用齿轮油等低温粘度通常用布氏粘度计法来测定。我国的GB/T 11145、美国的ASTM D2983和德国的DIN 51398等标准方法。  粘度是评定润滑油质量的一项重要的理化性能指标,对于生产,运输和使用都具有重要意义。在实际应用中,绝大多数润滑油是根据其40℃时中间点运动粘度的正数值来表示牌号的,粘度是各种设备选油的主要依据;选择合适粘度的润滑油品,可以保证机械设备正常、可靠地工作。通常,低速高负荷的应用场合;选用粘度较大的油品,以保证足够的油膜厚度和正常润滑;高速低负荷的应用场合,选用粘度较小的油品,以保证机械设备正常的起动和运转力矩,运行中温升小。测定不同温度下粘度,可计算出该油品的粘度指数,了解该油品在温度变化下的粘度变化情况,另外,粘度还是工艺计算的重要参数之一。  粘度的度量方法分为粘度和相对粘度两大类。粘度分为动力粘度、运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。  粘度指数  粘度指数是一个表示润滑油粘度随温度变化的性质的参数。润滑油的粘度随温度的变化而变化:温度升高,粘度减小;温度降低,粘度增大。这种粘度随温度变化的性质,叫做粘温性能。通过将润滑油试样与一种粘温性较好(粘度指数定为100)及另一种粘温性较差(粘度指数定为0)的标准油进行比较,得出表示润滑油粘度受温度影响而变化程度的相对值。粘度指数(VI)是表示油品粘温性能的一个约定量值。粘度指数高,表示油品的粘度随温度变化小,油的粘温性能好。反之亦然。  石油产品的粘度指数可通过计算得到。计算方法在我国的GB/T 1995或美国的ASTM D2270、德国的DIN 51564、ISO2902、日本的JIS K2284等标准中有详细的说明。粘度指数还可以用查表法得到,我国的GB/T 2541。  粘温性能对润滑油的使用有重要意义,如发动机润滑油的粘温性能不好,当温度低时粘度过大,就会启动困难,造成能源浪费,而且启动后润滑油不易流到摩擦表面上,加快机械零件的磨损。如果温度过高,粘度变小,则不易在摩擦表面上产生适当的油膜,失去润滑作用,使机械零件的摩擦面产生擦伤和胶合等故障,另外,粘温性能好的润滑油可以在冬夏季节和我国的南方、北方地区通用。2.极压性能(PB、PD、ZMZ)  润滑油极压抗磨性能是齿轮油、液压油、润滑脂、工艺用油等润滑剂的重要性能指标。具有极压抗磨性能的油品,都必须进行极压抗磨性能的模拟评定。常用的模拟评定试验机有四球机、梯姆肯环块试验机、Falxe试验机、FZG齿轮试验机、Almen试验机、SAE试验机等等。应用比较普遍的有四球机、梯姆肯环块试验机、FZG齿轮试验机。  四球试验机模拟试验:测定润滑油脂的减摩性、抗磨性和极压性。减摩性用摩擦系数“f”表示和抗磨性能用磨痕直径“d”表示;极压性用无卡咬负荷“PB”、烧结负荷“PD”和综合磨损值“ZMZ”表示。国内标准试验方法有GB/T 3142润滑剂承载能力测定法、GB/T 12583润滑剂承载能力测定法、SH/T 0189润滑油磨损性能测定法、SH/T 0202润滑脂四球机极压性测定法、SH/T 0204润滑脂抗磨性能测定法。国外标准试验方法有ASTM D 2783润滑油极压性测定法、ASTM D4172润滑油抗磨性测定法、ASTM D2596润滑脂极压性测定法、ASTM D2266润滑脂抗磨性测定法。  无卡咬负荷PB(N),在试验条件下,使试验钢球不发生卡咬的无卡咬负荷,它代表油膜强度。  烧结负荷PD(N),在试验条件下,使试验钢球发生烧结的负荷为烧结负荷,它代表润滑剂的极限工作能力。  综合磨损值ZMZ(N),综合磨损值ZMZ是润滑剂在所加负荷下使磨损减少到小的抗极压能力的一个指数,它等于若干次校正负荷的平均值。3.氧化安定性  石油产品抵抗由于空气(或氧气)的作用而引起其性质发生性改变的能力,叫做油品的氧化安定性。润滑油的抗氧化安定性是反映润滑油在实际使用、贮存和运输中氧化变质或老化倾向的重要特性。  油品在贮存和使用过程中,经常与空气接触而起氧化作用,温度的升高和金属的催化会加深油品的氧化。润滑油品氧化的结果,使油品颜色变深,粘度增大,酸性物质增多,并产生沉淀。这些无疑对润滑油的使用会带来一系列不良影响,如腐蚀金属,堵塞油路等。对内燃机油来说,还会在活塞表面生成漆膜,粘结活塞环,导致汽缸的磨损或活塞的损坏。因此,这个项目是润滑油品必控质量指标之一,对长期循环使用的汽轮机油、变压器油、内燃机油以及与 压缩空气接触的空气压缩机油等,更具重要意义。通常油品中均加有一定数量的抗氧剂,以增加其抗氧化能力,延长使用寿命。  润滑油氧化安定性测定方法有多种,其原理基本相同,一般都是向试样中直接通入氧气或净化干燥的空气。在金属等催化剂的作用下,在规定温度下经历规定的时间观察试样的沉淀或测定沉淀值、测定试样的酸值、粘度等指标的变化。试验条件因油品而异,尽量模拟油品使用的状况。我国对内燃机油的氧化测定方法有SH/T0299-92和SH/T0192-92标准进行;汽轮机油SH/T 0193-92旋转氧弹法来测定其抗氧化性能;变压器油的氧化特性按SH/T 0206-92即电工委员会标准IEC74标准方法进行;中润滑油氧化安定性测定主要有GB/T 12581加抑制剂矿物油氧化特性测定法、GB/T 12709润滑油老化特性测定法(康氏残炭法)、SH/T 0123极压润滑油氧化安定性测定法进行。4.破乳化性  乳化是一种液体在另一种液体中紧密分散形成乳状液的现象,它是两种液体的混合而并非相互溶解。  抗乳化则是从乳状物质中把两种液体分离开的过程。润滑油的抗乳化性是指油品遇水不乳化,或虽是乳化但经过静置,油-水能迅速分离的性能。  两种液体能否形成稳定的乳状液取决于两种液体之间的界面张力。由于界面张力的存在,分散相总是倾向于缩小两种液体之间的接触面积以降低系统的表面能,即分散相总是倾向于由小液滴合并大液滴以减少液滴的总面积,乳化状态也就是随之而被破坏。界面张力越大,这一倾向就越强烈,也就越不易形成稳定的乳状液。  润滑油与水之间的界面张力随润滑油的组成不同而不同。深度精制的基础油以及某些成品油与水之间的界面张力相当大,因此,不会生成稳定的乳状液。但是如果润滑油基础油的精制深度不够,其抗乳化性也就较差,尤其是当润滑油中含有一些表面活性物质时,如清净分散剂、油性剂、极压剂、胶质、沥青质及尘土粒等,它们都是一些亲油剂和亲水基物质,它们吸附在油水表面上,使油品与水之间的界面张力降低,形成稳定的乳状液。因此在选用这些添加剂时必须对其性能作用作全面的考虑,以取得的综合平衡。  对于用于循环系统中的工业润滑油,如液压油、齿轮油、汽轮机油、,油膜轴承油等,在使用中不可避免地和冷却水或蒸汽甚至乳化液等接触,这就是要求这些油品在油箱中能迅速油-水分离(按油箱容量,一般要求6-30min分离),从油箱底部排出混入的水分,便于油品的循环使用,并保持良好的润滑。通常润滑油在60℃左右有空气存在并与水混合搅拌的情况下,不仅易发生氧化和乳化而降低润滑性能,而且还会生成可溶性油泥,受热作用则生成不溶性油泥,并剧烈增加流体粘度,造成堵塞润滑系统、发生机械故障。因此,一定要处理好基础油的精制深度和所用添加剂与其抗乳化剂的关系,在调合、使用、保管和贮运过程中亦要避免杂质的混入和污染,否则若形成了乳化液,则不仅会降低润滑性能,损坏机件,而且易形成油泥。另外,随着时间的增长,油品的氧化、酸性的增加、杂质的混入都会使抗乳化性的变差,用户必须及时处理或者更换。  乳化性是内燃机油、汽轮机油、油膜轴承油等油品不需要的,但又是饱和汽缸油、乳化液压油、切削油等油品极需要的。从节约能源的角度,金属加工用的乳化油本身就需要加入乳化剂,使乳化油具有良好的乳化安定性。  润滑油抗乳化性能测定法:目前被广泛采用的抗乳化性测定方法有两个方法。GB/T 7305是石油和合成液抗乳化性能测定法,本方法与ASTMD1401等效。本方法适用于测定油、合成液与水分离的能力。它适用于测定40℃时运动粘度为30-100mm2/s的油品,试验温度为(54±1)℃。它可用于粘度大于100mm2/s油品,但试验温度为(82±1)℃。其他试验温度也可以采用,例如25℃。当所测试的合成液的密度大于水时,试验步骤不变,但这时水可能浮在乳化层或合成液上面。GB/T 8022是润滑油抗乳性能测定法,本方法与ASTMD2711方法等同采用。本方法是用于测定中、高粘度润滑油与水互相分离的能力。本方法对易受水污染和可能遇到泵送及循环湍流而产生油包水型乳化液的润滑油抗乳化性能的测定具有指导意义。5.水分  润滑油中含水的质量称为水分,水分测定按GB/T 260-88石油产品水分测定法确定。  润滑油中的水分一般呈三种状态存在:游离水、乳化水和溶解水。一般来说,游离水比较容易脱去,而乳化水和溶解水就不易脱去。  润滑油中水分的存在,会促使油品氧化变质,破坏润滑油形成的油膜,使润滑油效果变差,加速有机酸对金属的腐蚀作用,锈蚀设备,使油品容易产生沉渣,而且会使添加剂(尤其是金属盐类)发生水解反应而失效,产生沉淀,堵塞油路,妨碍润滑油的循环和供应。不仅如此,润滑油的水分,在使用温度低时,由于接近冰点使润滑油流动性变差,粘温性变坏;而使用温度高时,水会汽化,不但破坏油膜而且产生气阻,影响润滑油的循环。另外,在个别油品例如变压器油中,水分的存在会使介电损失角急剧增大,而耐电压性能急剧下降,以至引起事故。总之,润滑油中水分越少越好,因此,用户必须在使用、储存中应精心保管油品,注意使用前及使用中的油料脱水。  检查润滑油中是否有水,有几个简单方法:(1)用试管取一定量的润滑油,如发现油变浑浊甚至乳化,由透明变为不透明,可认为油中有水分,将试管加热,如出现气雾或在管壁上出现气泡、水珠或有“劈啪”的响声,可认为油中有水分;(2)取一条细铜线,绕成线圈,在火上烧红,然后放入装有试油的试管中,如有“劈啪”响声,认为油中有水分;(3)用试管取一定量的润滑油,将少量硫酸铜(无水,白色粉沫)放入油中,如硫酸铜变为蓝色,也表示润滑油中有水分。  GB/T 260-77石油产品水分测定法的测定原理是利用蒸馏的原理,将一定量的试样和无水溶剂混合,在规定的仪器中进行蒸馏,溶剂和水一起蒸发出并冷凝在一个接受器中不断分离,由于水的密度比溶剂大,水便沉淀在接受器的下部,溶剂返回蒸馏瓶进行回流。根据试样的用量和蒸发出水分的体积,计算出测定结果。当水的质量数少于0.03%时,认为是痕迹;如果接受器中没有水,则认为试样无水。6.泡沫性  泡沫特性指油品生成泡沫的倾向及泡沫的稳定性。润滑油在实际使用中,由于受到振荡、搅动等作用,使空气进入润滑油中,以至形成气泡。因此要求评定油品生成泡沫的倾向性(ml)和泡沫稳定性(ml)。  这个项目主要用于评定内燃机油和循环用油(如液压油、压缩机油、齿轮油等)的起泡性。润滑油产生泡沫具有以下危害:1. 而稳定的泡沫,会使体积增大,易使油品从油箱中溢出;2.增大润滑油的压缩性,使油压降低。如液压油是靠静压力传递功的,油中一旦产生泡沫,就会使系统中的油压降低,从而破坏系统中传递功的作用。3.增大润滑油与空气接触面积,加速油品的老化。这个问题对空压机油来说,尤为严重。4.带有气泡的润滑油被压缩时,气泡一旦在高压下破裂,产生的能量会对金属表面产生冲击,使金属表面产生穴蚀。有些内燃机油的轴瓦就出现这种穴蚀现象。5.气泡的产生使循环系统的油箱的润滑油易溢出。  润滑油容易受到配方中的活性物质如清净剂、极压添加剂和腐蚀抑制剂的影响,这些添加剂大大地增加了油的起泡倾向。润滑油的泡沫稳定性随粘度和表面张力而变化,泡沫的稳定性与油的粘度成反比,同时随着温度的上升,泡沫的稳定性下降,粘度较小的油形成大而容易消失的气泡,高粘度油中产生分散的和稳定的小气泡。为了消除润滑油中的泡沫,通常在润滑油中加入表面张力小的消泡剂如甲基硅油和非硅消泡剂等。  在我国,润滑油的泡沫特性可按GB/T12579润滑油泡沫特性测定标准方法、SH/T 0722-2002润滑油高温泡沫特性测定法进行试验,先恒温至规定温度,再向装有试油的量筒中通过一定流量和压力的空气,记下通气5分钟后产生的泡沫体积(ml)和停气静止10分钟后泡沫的体积(ml)。泡沫越少,润滑油的抗(消)泡性越好。美国和日本分别用ASTM D892、JIS K2518标准方法评定。  航空润滑油可按GJB498-88航空涡轮发动机油泡沫特性测定法(静态泡沫试验),其方法概要是:向在24±0.5℃和93±0.5℃下恒温的两个泡沫试验量筒中的润滑油通入规定量的净化空气,通气5分钟后记下泡沫的体积,静置10分钟后再记录泡沫体积,93℃通气试验完毕后的试样在室温下冷却至43℃,再放入24±0.5℃恒温浴中,测其在该温度下的泡沫倾向和泡沫稳定性,整个试验必须在3小时内完成。7.润滑油的低温性能(CCS、BPT)  低温粘度测定法:用来测定发动机油在高剪切速率下、-50~-30℃时的低温粘度。所得结果与发动机的启动性有关。我国标准试验方法有GB/T 6538-86发动机油表观粘度测定法(冷启动模拟机法)。本试验方法是试验内燃机油的低温表观粘度。在保持规定温度的仪器转子和定子间充满试油,由直流电机驱动,测定转子的转数,通过转数与粘度的函数关系,由此求得油品在该温度时的表观粘度。国外标准试验方法有美国ASTM D 2602发动机润滑油低温下表观粘度测定法(CCS)。  低温泵送性测定法(BPT):用来预测发动机油在低剪切速率下、-40~0℃0范围内的边界泵送温度。我国标准试验方法有GB/T 9171-88发动机油边界泵送温度测定法。本法规定将试油由80℃用10h冷却到试验温度,恒温冷却共16h,然后在旋转粘度计上,逐渐施加规定的扭矩,并测出转动速度,再计算该温度的屈服应力和表观粘度。从三个以上的温度点的结果算出临界泵送温度。国外标准试验方法有美国ASTM D3830发动机润滑油边界泵送温度测定法(MRV)。8.抗剪切安定性  剪切安定性测定法:以油品的粘度下降率来评定其剪切安定性。主要用以评价含高分子聚合物润滑油(稠化油)的聚合物抗剪切能力,也是评定稠化油的性粘度下降的指标。我国的标准试验方法有SH/T 0505-92含聚合物油剪切安定性测定法(超声波剪切法)、SH/T 0200-92含聚合物润滑油剪切安定性测定法(齿轮机法)。国外标准试验方法有美国ASTM D 2603含聚合物润滑油超声剪切稳定性试验法。9.防锈性能  所谓防锈性,是指润滑油品阻止与其接触的金属部件生锈的能力。评定防锈性的方法很多,在工业润滑油规格中常见的方法是GB/T 11143加抑制剂矿物油在水存在下防锈性能试验法,该方法与ASTM D665方法等效。  GB/T1143方法概要是:将一支一端呈圆锥形的标准钢棒浸入300ml试油与30ml(A)蒸馏水或(B)合成海水混合液中,在60℃和以100r/min搅拌的条件下,经过24h后将钢棒取出,用石油醚冲洗,晾干,并立即在正常光线下用目测评定试棒的锈蚀程度。  锈蚀程度分如下几级:  无锈:钢棒上没有锈斑。  轻微锈蚀:钢棒上锈点不多于6个点,每个点的直径等于或小于1mm。  中等锈蚀:锈蚀点超过6点,但小于试验钢棒表面积的5%。  严重锈蚀:生锈面积大于5%。  水和氧的存在是生锈不可缺少的条件。汽车齿轮中,由于空气中湿气在齿轮箱中冷凝而有水存在,工业润滑装置如齿轮装置、液压系统和涡轮装置等由于使用环境的关系,也不可避免的有水浸入。其次,油中酸性物质的存在也会促进锈蚀,为提高油品的防锈性能,常常加入一些极性有机物,即防锈剂。10.机械杂质  机械杂质就是指存在于润滑油中不溶于汽油、乙醇和苯等溶剂的沉淀物或胶状悬浮物。机械杂质来源于润滑油的生产、贮存和使用中的外界污染或机械本身磨损,大部分是砂石和积碳类,以及由添加剂带来的一些难溶于溶剂的有机金属盐。  机械杂质的测定按GB/T 511-83石油产品和添加剂机械杂质测定法(重量法)进行。其过程是:称取100g的试油加热到70℃到80℃,加入2-4倍的溶剂,在已衡重的空瓶中的纸上过滤,用热溶剂洗净滤纸瓶再称重,定量滤纸的前后重量之差就是机械杂质的重量,由此求出机械杂质的质量分数。  机械杂质和水分、灰分、残炭都是反映油品纯洁性的质量指标,反映油品精制的程度。一般来讲润滑油基础油的机械杂质的质量分数都应该控制在0.005%以下(机械杂质在此以下认为是无),加剂后成品油的机械杂质一般都是增大,这是正常的。对用户来讲,测定机械杂质也是必要的,因为润滑油在使用、存储、运输中混入灰尘、泥沙、金属碎屑、铁锈及金属氧化物等,这些杂质的存在,将加速机械设备的磨损,严重时堵塞油路、油嘴和滤油器,破坏正常润滑。另外金属碎屑在一定的温度下,对油起催化作用,应该进行必要的过滤。但是,对于一些加有 添加剂油品的用户来讲,机械杂质的指标表面上看是大了一些(如一些的内燃机油),但其杂质主要是加入了多种添加剂后所引入的溶剂不溶物,这些胶状的金属有机物,并不影响使用效果,用户不应简单地用“机械杂质”的大小去判断油品的好坏,而是应分析“机械杂质”的内容,否则,就会带来不必要的损失和浪费。11.蒸发损失  油品的蒸发损失,即油品在一定条件下通过蒸发而损失的量,用质量分数表示。蒸发损失与油品的挥发度成正比。蒸发损失越大,实际应用中的油耗就越大,故对油品在一定条件下的蒸发损失的量要有限制。润滑油在使用过程中蒸发,造成润滑系统中润滑油量逐渐减少,需要补充,粘度增大,影响供油。液压液体在使用中蒸发,还会产生气穴现象和效率下降,可能给液压泵造成损害。蒸馏方法得到的数据只是粗略的结果,润滑油品的蒸发损失需专门方法测定。我国测定润滑油蒸发损失的方法为GB/T 7325润滑油和润滑脂蒸发损失测定法和SH/T 0055润滑油蒸发损失测定法(诺亚克法)。GB/T 7325方法是把放在蒸发器中的润滑油试样,置于规定温度的恒温浴中,热空气通过试样表面22h。然后根据试样的质量损失计算蒸发损失。根据该方法,润滑油品的蒸发损失可以在99-150℃内的任一温度下测定。目前,该方法在我国主要用于润滑脂和合成润滑油的蒸发损失评定。SH/T 0055方法是试样在规定的仪器中,在规定的温度和压力下加热1h,蒸发出的油蒸气由空气流携带出去。根据加热前后试样量之差测定润滑油的蒸发损失。国外主要的测定方法有:美国的ASTM D972、德国的DIN 51581和日本的JIS K2220 (5.6)等。12.清净分散性  发动机润滑油在发动机工作条件下,会产生多种污染物(包括氧化物、水分、金属颗粒、碳黑粒、酸、末完全燃烧物),这些污染物会使活塞表面覆盖一层漆膜。加有清净分散剂的润滑油可以阻止污染物粘结成团或粘结在金属表面上,抑制氧化反应,且能中和酸性氧化物,使污染物以溶胶状态分散地悬浮于油中,防止不溶物的沉积。这种性能的总和叫作发动机润滑油的清净分散性。  SH/T0645《柴油机油清浮性测定法(热管氧化法)》作为评定发动机润滑油清净性的手段之一。热管氧化试验是一种内燃机油高温氧化模拟台架试验设备,专门针对发动机活塞环等部件在工作过程中形成漆膜和积碳的机理而设计的试验方法。主要用于内燃机油高温清净性的实验室评定,考察油品中各类添加剂组分对油品的热氧化安定性、清净分散性等综合性能的影响。利用此类模拟试验技术可在进行IH2、IG2、IK等发动机台架试验之前,预先 筛选油品配方及评选各类添加剂的表现。试验测定的数据显示与台架试验结果有良好的相关性。SH/T 0300曲轴箱模拟试验法用于评定添加剂和含添加剂内燃机油的热氧化安定性,是科研工作中评选清净剂、抗氧抗腐剂和油品复合配方的一种模拟试验方法。该方法是使含添加剂内燃机油飞溅到高温金属表面形成漆膜,以此模拟曲轴箱油在活塞工作时的成漆情况,并用在试验机油箱内挂铅片的发放模拟曲轴箱油在气[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]氧化状态下对发动机零部件的腐蚀。通过测定金属板上的漆膜评级和胶重,考察油的热氧化安定性。将250ml试样在规定条件下,在模拟试验机内运行6h后,考察形成漆膜和成胶的情况。13.酸值  中和1克油品中的酸性物质所需要的氢氧化钾毫克数称为酸值,用mgKOH/g表示。  酸值表示润滑油品中酸性物质的总量。油品中所含有的有机酸主要为环烷酸、环烷烃的羟基衍生物。这些酸性物质对机械都有一定程度的腐蚀性。特别是在有水分存在的条件下,其腐蚀性更大,尤其是对铝和锌,腐蚀的结果是生成金属皂类,这样的皂类会引起润滑油加速氧化,同时,皂类渐渐积累,会在油中成为沉淀物。另外,润滑油在贮存和使用过程中被氧化变质,酸值也会逐渐变大,因此常用酸值变化大小来衡量润滑油的氧化安定性。故酸值是油品质量中应严格控制的指标之一。对于在用油品,当酸值增大到一定数值时,就必须换油。  测定酸值的方法分为两大类,一类是颜色指示剂法,即根据指示剂的颜色来确定滴定的终点,如我国的GB/T 264或SH/T 0163、美国的ASTM D974和德国的DIN51558等。另一类为电位滴定法,即根据电位变化来确定滴定终点,主要用于深色油品的酸值测定。这类方法有我国的GB/T 7304和美国的ASTM D664等。14.水分  润滑油中的水分一般呈三种状态存在:游离水、乳化水和溶解水。一般来说,游离水比较容易脱去,而乳化水和溶解水就不易脱去。润滑油中含水量的质量分数称为水分,水分测定按GB/T 260-88石油产品水分测定法确定。  润滑油中水分的存在,会促使油品氧化变质,破坏润滑油形成的油膜,使润滑油效果变差,加速有机酸对金属的腐蚀作用,锈蚀设备,使油品容易产生沉渣,而且会使添加剂(尤其是金属盐类)发生水解反应而失效,产生沉淀,堵塞油路,妨碍润滑油的循环和供应。不仅如此,润滑油的水分,在使用温度低时,由于接近冰点使润滑油流动性变差,粘温性变坏;而使用温度高时,水会汽化,不但破坏油膜而且产生气阻,影响润滑油的循环。另外,在个别油品例如变压器油中,水分的存在会使介电损失角急剧增大,而耐电压性能急剧下降,以至引起事故。总之,润滑油中水分越少越好,因此,用户必须在使用、储存中精心保管油品,注意使用前及使用中的油料脱水。  检查润滑油中是否有水,有几个简单方法:(1)用试管取一定量的润滑油,如发现油变浑浊甚至乳化,由透明变为不透明,可认为油中有水分,将试管加热,如出现气雾或在管壁上出现气泡、水珠或有“劈啪”的响声,可认为油中有水分;(2)取一条细铜线,绕成线圈,在火上烧红,然后放入装有试油的试管中,如有“劈啪”响声,认为油中有水分;(3)用试管取一定量的润滑油,将少量硫酸铜(无水,白色粉沫)放入油中,如硫酸铜变为蓝色,也表示润滑油中有水分。  GB/T 260-77石油产品水分测定法的测定原理是利用蒸馏的原理,将一定量的试样和无水溶剂混合,在规定的仪器中进行蒸馏,溶剂和水一起蒸发出并冷凝在一个接受器中不断分离,由于水的密度比溶剂大,水便沉淀在接受器的下部,溶剂返回蒸馏瓶进行回流。根据试样的用量和蒸发出水分的体积,计算出测定结果。当水的质量数少于0.03%时,认为是痕迹;如果接受器中没有水,则认为试样无水。15.铜片腐蚀  金属表面受周围介质的作用或电化学的作用而被损坏的现象,称为腐蚀。石油产品的腐蚀试验是用以衡量油品的防腐蚀性能的一种方法。腐蚀试验是一种定性的试验方法,它主要是检查油品中是否含有对金属产生腐蚀作用的有害杂质,大多采用对铜片的腐蚀试验。  铜片腐蚀试验对硫化氢或元素硫的存在是一个非常灵敏的试验。通过铜片腐蚀试验,可以判断油品是否有活性硫化物,可以预知油品在储运和使用时对金属腐蚀的可能性。  GB/T 5096石油产品铜片腐蚀试验,这是目前工业润滑油主要的腐蚀性测定法,本方法与ASTM D130-83方法等效。试验方法概要是:把一块已磨光好的铜片浸没在一定量的试样中,并按产品标准要求加热到指定的温度,保持一定的时间。待试验周期结束时,取出铜片,在洗涤后与标准色板进行比较,确定腐蚀级别。工业润滑油常用的试验条件为100℃(或120℃),3h。  SH/T 1095润滑油腐蚀试验方法,本方法用于试验润滑油对金属片的腐蚀性。除非另行规定,金属片材料为铜或钢。其试验原理与GB/T 5096方法基本相同,其主要的差别在于:一、试验结果只根据试片的颜色变化,判断合格或不合格;二、试验金属片不限于铜片。  GB/T 391-88发动机润滑油腐蚀度测定法,测定内燃机油对轴瓦(铅铜合金等)的腐蚀度。该方法是模拟粘附在金属片表面上的热润滑油薄膜与周围空气中氧定期接触时,所引起的金属腐蚀现象。铅片在热到140℃的试油中,经50小时的试验后,依金属片的重量变化确定油的腐蚀程度,以g/m2表示。  汽车制动液对金属的腐蚀性,除了应按GB/T 5096进行100℃、3h的铜腐蚀试验外,还须进行叠片腐蚀试验。根据GB 12981标准的附录C,用马口铁、10号钢、LY12铝、HT200铸铁、H62黄铜、T2紫铜等六种金属试片按一定顺序联接在一起,在100℃下试验120小时,试验结束后测定试片的重量的变化。16.闪点(开口、闭口);  在规定条件下,加热油品所逸出的蒸汽和空气组成的混合物与火焰接触发生瞬间闪火时的温度称为闪点,以℃表示。  润滑油闪点的高低,取决于润滑油的馏分组成,润滑油中是混入轻质组分和轻质组分的含量多少,轻质润滑油或含轻质组分多的润滑油,其闪点就较低。相反,重质润滑油的闪点或含轻质组分少的润滑油,其闪点就较高。  润滑油的闪点是润滑油的贮存、运输和使用的一个安全指标,同时也是润滑油的挥发性指标。闪点低的润滑油,挥发性高,容易着火,安全性差,润滑油挥发性高,在工作过程中容易蒸发损失,严重时甚至引起润滑油粘度增大,影响润滑油的使用。重质润滑油的闪点如突然降低,可能发生轻油混入事故。  从安全角度考虑,石油产品的安全性是根据其闪点的高低而分类的:闪点在45℃以下的为易燃品,闪点在45℃以上的产品为可燃品。  闪点的测定方法分为开口杯法和闭口杯法。开口杯法用以测定重质润滑油和深色润滑油的闪点,方法是GB/T 267和GB/T3536。闭口杯法用以测定闪点在150℃以下的轻质润滑油的闪点,方法为GB/T 261。同一种润滑油,开口闪点总比闭口闪点高,因为开口闪点测定器所产生的油蒸汽能自由地扩散到空气中,相对不易达到可闪火的温度。通常开口闪点要比闭口闪点高20-30℃。  国外测定润滑油闪点(开口)的标准有美国的ASTM D92,闭口闪点有ASTM D93、ISO2719等。17.总碱值  总碱值表示在规定条件下,中和存在于1g油品中全部碱性组分所需的酸量,以相当的氢氧化钾毫克数表示。总碱值是测定润滑油中有效添加剂成分的一个指标,表示内燃机油的清净性与中和能力。总碱值表示试样中含有有机和无机碱、胺基化合物、弱酸盐如皂类、多元酸的碱性盐和重金属的盐类。内燃机油的总碱值则可间接表示其所含清净分散剂的多少。因而总碱值为内燃机油的重要质量指标。在内燃机油的使用过程中,分析其总碱值的变化,可以反映出润滑油中添加剂的消耗情况。  石油产品总碱值测定可按SH/T 0251石油产品碱值测定(高氯酸电位滴点法)和SH/T 0688石油产品和润滑剂碱值测定法(电位滴点法)方法进行。前一个方法是以石油醚-冰乙酸为溶剂,用0.1N高氯酸标准溶液进行非水滴定来测定石油产品和添加剂中碱性组分的含量。后一个方法是将试样溶于甲苯、异丙醇、三氯甲烷组成的混合溶剂中,用0.1mol/L盐酸异丙醇标准溶液进行电位滴定,从滴定曲线上确定滴定终点。18.凝点和倾点  润滑油试样在规定的试验条件下冷却至液面停止流动时的温度称为凝点。而试样在规定的试验条件下,被冷却的试样能够流动的温度称为倾点。凝点和倾点都是表示油品低温流动性的指标,二者无原则差别,只是测定方法有所不同。同一试样测得的凝点和倾点并不是完全相等,一般倾点都高于凝点1-3℃,但也有两者相等或倾点低于凝点的情况。国外常用倾点(流动点),我国也一般采用倾点这个标准。  温度很低时,粘度变大,甚至变成无定型的玻璃状物质,失去流动性。因此在生产、运输和使用润滑油时因根据环境条件和工况选用相适应的倾点(或凝点)。  润滑油凝点测定法(GB/T 510)测定的基本过程是:将试样装入试管中,按规定的预处理步骤和冷却速度进行试验。当试样温度冷却到预期的凝点时,将浸在冷剂中的仪器倾斜45度保持1min后,取出观察试管里面的液面是否有过移动的迹象。如有移动时,从套管中取出试管,并将试管重新预热,然后用比上次试验温度低4℃或其它更低的温度重新进行测定,直至某试验温度时液面位置停止移动为止。如没有移动,从套管中取出试管,并将试管重新预热,然后用比上次试验温度高4℃或其它更高的温度重新进行测定,直至某试验温度时液面位置有了移动为止。找出凝点的温度范围(即液面位置从移动到不移动或从不移动到移动的温度范围)之后,采用比移动的温度低2℃或采用比不移动的温度高2℃,重新进行试验,直至确定某试验温度能使试样的液面停留不动而提高2℃又能使液面移动时,就取使液面不动的温度作为试样的凝点。润滑油倾点测定法(GB/T 3535)试验的基本过程是:将清洁的试样注入试管中,按方法所规定的步骤进行试验。对倾点高于33℃的试样,试验从高于预期的倾点9℃开始,对其它的倾点试样则从高于其倾点12℃开始。每当温度计读数为3℃的倍数时,要小心地把试管从套管中取出,倾斜试管到刚好能观察到试管内试样是否流动,取出试管到放回试管的全部操作要求不超过3s。当倾斜试管,发现试样不流动时,就立即将试管放在水平位置上,仔细观察试样的表面,如果在5s内还有流动,则立即将试管放回套管,待温度降低3℃时,重复进行流动试验,直到试管保持水平位置5s而试样无流动时,纪录观察到的试验温度计读数,再加3℃作为试样的倾点。19.灰分  在规定条件下,油品完全燃烧后剩下的残留物(不燃物)叫做灰分,以质量分数表示。灰分主要是润滑油完全燃烧后生成的金属盐类和金属氧化物所组成。通常基础油的灰分含量都很小。在润滑油中加入某些高灰分添加剂后,油品的灰分含量就会增大。  发动机燃料中灰分增加,会增加汽缸体的磨损。润滑油灰分过大,容易在机件上发生坚硬的积炭,造成机械零件的磨损。  我国使用GB/T 508-85石油产品灰分测定法和GB/T 2433-88添加剂和含添加剂润滑油硫酸盐灰分测定法标准测定润滑油等石油产品的灰分。同GB/T 508-85方法相当的国外标准方法主要有美国的ASTM D482等。  对添加剂、含添加剂的润滑油的灰分一般采用GB/T 2433-88标准方法测定,其测定结果称之为硫酸盐灰分。国外相应的标准有美国的ASTM 874和德国的DIN 51575等。20.残炭  在规定条件下,油品在进行蒸发和热解,排出燃烧的气体后,所剩余的残留物叫残炭,以质量分数表示。残炭是表明润滑油中胶状物质、沥青质和多环芳烃叠合物的间接指标,也是矿物型润滑油基础油的精制深浅程度的标志,润滑油中含硫、氧和氮化合物较多时,残炭就高。一般精制深的油品残炭小。对于一般的润滑油来说,残炭没有单独的使用意义,但对内燃机油和压缩机油,残炭值是影响积炭倾向的主要因素之一,油品的残炭值越高,其积炭倾向越大,在压缩机汽缸、胀圈和排气阀座上的积炭就多,在高温下容易发生爆炸。  对于添加剂含量高的油品主要控制其基础油的残炭,而不控制成品油的残炭。  残炭测定法有电炉法和康氏法两种。通常多采用后者。我国标准是GB/T268-87石油产品残炭测定法,此方法是将准确称出一定量的油品放入康氏残炭测定器中,加热至高温,使里层坩埚中的试样温度达到600℃左右,在隔绝空气的条件下,严格控制预热期、燃烧期、强热期3个阶段的加热时间及加热强度,使试样全部蒸发及分解。将排出的气体点燃,待气体燃烧完后,进行强热,使之形成残炭。后按称出物的重量,计算出被测物的残炭值。国外测定石油产品残炭的标准主要有:美国ASTM D189和德国DIN 51551等。21.锥入度  在规定的负荷、时间和温度条件下,标准园锥体以垂直方向在5秒钟内刺入润滑脂样品的深度,称为润滑脂的锥入度,单位以1/10mm表示。  润滑脂是由一种(或几种)稠化剂和一种(或几种)润滑液体所组成的具有可塑性的润滑剂。锥入度是各种润滑脂常用的控制稠度的指标,是选用润滑脂的依据之一。各国润滑脂一般用锥入度对润滑脂进行分号,润滑脂的号数越小,其锥入度数值就越大,表示它的稠度越小。我国将润滑脂的稠度按锥入度范围分为9个等级。22.滴点  将润滑脂装入滴点计的脂杯中,在规定的试验条件下加热,当从脂杯中分出并滴下滴液体(或流出油柱25mm)时的温度,称为润滑脂的滴点。  滴点是润滑脂的耐热性指标。通过测定滴点,就可测定润滑脂从不流动状态转变为流动状态的温度,因此可以用滴点大体上决定润滑脂可以有效使用的温度(一般使用温度要低于滴点10~30℃)。测定滴点可以大致判断润滑脂的类型和所用的稠化剂。  润滑脂滴点测定法有:GB/T4929《润滑脂滴点测定法》;GB/T3498《润滑脂宽温度范围滴点测定法》23.抗腐蚀性和防锈性(铜片腐蚀、轴承防绣性)  润滑脂的抗腐蚀性和防锈性主要是控制与金属接触时不致发生锈蚀作用,反映润滑脂的保护性能。润滑脂的腐蚀性取决于游离有机酸和碱的含量,润滑脂使用中的腐蚀性,主要是在使用过程中,由于受氧化作用而生成低分子的有机酸。防锈性主要是表面活性物质防锈剂,如磺酸盐、环烷酸盐、羧酸盐及一些酯类化合物。  测定润滑脂的抗腐蚀性对润滑脂的使用具有重要意义,特别对“防护”润滑脂更为重要,因为它的主要用途是防止金属配件不受腐蚀。对于“抗磨”润滑脂也必须首先考虑其是否对轴承金属具有腐蚀作用。  润滑脂防锈性能测定通常用GB/T 5018润滑脂防腐蚀性测定,该方法适用于测定在潮湿状态下涂有润滑脂的锥形滚子轴承的防腐蚀性能。试验时将涂有试样的新轴承,在轻负荷推力下运转60秒钟,使润滑脂向使用情况那样分布。轴承在52±1℃, 相对湿度下存放48小时。然后清洗并检查轴承外圈滚道的腐蚀迹象。该方法中腐蚀是指轴承外圈滚道的任何表面损坏(包括麻点、刻蚀、锈蚀等)或黑色污渍,国外测定方法ASTM D1743。  润滑脂腐蚀试验测定使用GB/T 7326润滑脂铜片腐蚀试验法,试验在规定的温度、时间条件下,试验铜片全部浸入润滑脂试样中,试验分甲法、乙法,试验结束后,甲法是将试验铜片与铜片腐蚀标准色板进行比较,确定腐蚀等级。乙法是检查试验铜片有无变色。甲法等效ASTM D4048,乙法等效JIS K2220。24.胶体安定性(钢网分油)  润滑脂在贮存中能避免胶体分解、防止液体润滑油从润滑脂中析出的能力,通常称为润滑脂的胶体安定性。但是,分油是润滑脂的一种特性,任何一种润滑脂都有分油现象。胶体安定性差的润滑脂容易析出润滑油,即皂油容易分离。润滑脂的胶体安定性取决于很多因数,诸如皂—油之间的溶解度、皂的再结晶速度、体系内部的化学变化、外界压力、环境温度和胶溶剂的发挥等等。  皂-油分离直接导致润滑脂稠度的改变和它的流失。润滑脂的胶体安定性与其组成和加工工艺有关,润滑脂的稠化剂含量较多或润滑脂基础油粘度较大时,析出的油就较少;而润滑脂的稠化剂含量较少或润滑脂基础油粘度较小时,析出的油就较多。  测定润滑脂胶体安定性有好几个方法,其中SH/T 0324润滑脂钢网分油测定法是其中之一。润滑脂在规定的试验条件下,试样装在60目的金属丝钢网中,在规定温度和静止的状态下,经30h后,测定经过钢网流出油的质量分数。

  • 车用润滑脂的七大误区

    [color=#666666]1[/color][color=#666666]、润滑油粘度越高越好[/color][color=#666666]为了防止运动零件间接触面磨损,润滑油必须有足够的粘度,以便在各种运转温度下,都能在运动零件间形成油膜。但润滑油的粘度不得高于影响发动机启动的程度,并要求在持续运转条件下产生的摩擦最小。使用粘度过大的润滑油会增加机件的磨损,这是因为:[/color][color=#666666]⑴[/color][color=#666666]发动机润滑油粘度过大,流动缓慢、上流慢、油压虽高,但润滑油通过量不多,不能及时补充到摩擦表面。[/color][color=#666666]⑵[/color][color=#666666]由于润滑油粘度大,机件摩擦表面间的摩擦力增大,为克服增大的摩擦力,要多消耗燃料,同时也降低了发动机的输出功率。[/color][color=#666666]⑶[/color][color=#666666]润滑油粘度大,油的循环速度也就慢,其冷却与散热效果就差,易使发动机过热。[/color][color=#666666]⑷[/color][color=#666666]由于润滑油循环速度慢,通过润滑油滤清器的次数就少,难以及时将磨损下来的金属末屑、炭粒、尘埃从摩擦表面中清洗出去。[/color][color=#666666]因此,不要使用粘度过大的发动机润滑油,更不能认为粘度越大越好。在保证润滑的条件下,根据使用时的气温范围,尽可能选用粘度小的润滑油。但对磨损已比较严重、间隙已比较大的发动机,可适当选用粘度稍大的润滑油。[/color][color=#666666]2[/color][color=#666666]、用加入润滑油的方法使润滑脂变稀[/color][color=#666666]冬季使用润滑脂时,喜欢在原润滑脂中加入润滑油调稀。这种做法是错误的。因为润滑脂的结构是由稠化剂和基础油组成的胶体结构体系,稠化剂形成结构网络,将基础油(一般为普通润滑油)吸附在网络中形成稳定的结构体系,会使稠化剂和基础油不会分离。若成脂以后再加入润滑油,虽然经过搅拌,但不能均匀地分散包含在网络中,使用时很容易分离出来流失,不利于润滑。如在冬季需用稠度小的润滑脂,可选用号数小的[/color][color=#666666]1[/color][color=#666666]号或[/color][color=#666666]2[/color][color=#666666]号钙基润滑脂。[/color][color=#666666]3[/color][color=#666666]、新旧润滑脂混合使用[/color][color=#666666]新润滑脂与旧润滑脂即使是同一类型的也不能混合使用。因为,旧润滑脂内含有大量的有机酸和杂质,若与新润滑脂混合将加速其氧化变质。所以在换润滑脂时,一定要在将零部件上的旧润滑脂清洗干净后,才可重新加入新的润滑脂。[/color][color=#666666]4[/color][color=#666666]、高档车一定用进口润滑油[/color][color=#666666]有些车主和车管人员认为,高档车造价高,而进口润滑油质量好,使用进口润滑油更安全、更保险。其实不然,评价润滑油质量好坏不是看其广告宣传的力度,而是要看其质量指标以及实际使用效果。目前国内市场销售的进口润滑油大多数是国外公司同我国合资生产,因此高档车应根据其工作条件和技术指标、技术性能选用相应质量的国产润滑油或进口润滑油,而国产和进口润滑油的价差是不言而喻的。[/color][color=#666666]5[/color][color=#666666]、启动机轴承加注黄油[/color][color=#666666]启动机轴承一般采用自润滑轴承或称多孔含油轴承合金,是采用金属粉末(铁或铜粉)经混匀、压制,烧结成型后,浸入有一定温度的润滑油中制成的含油减磨合金材料。它主要用于加油困难、轻载高速或低速负荷较大以及需经常换向的场合,按物质的组成分为铁石墨和青铜[/color][color=#666666]——[/color][color=#666666]石墨两大类。启动机保养时,不要用汽油清洗轴承,以免冲淡润滑油,应该用清洁的布或棉纱,更不应该加润滑脂,因为轴承配合间隙比较小,润滑脂在轴承中存留不住,甩出后落在电刷与换向器上会引起启动机无力,严重时会导致换向器烧蚀。但可对轴承滴几滴[/color][color=#666666]GL-385[/color][color=#666666]/[/color][color=#666666]90[/color][color=#666666]齿轮油。在行驶[/color][color=#666666]5[/color][color=#666666]万[/color][color=#666666]km[/color][color=#666666]后,应用汽油清洗轴承,然后放入[/color][color=#666666]120[/color][color=#666666]℃[/color][color=#666666]左右的[/color][color=#666666]GL-3[/color][color=#666666]齿轮油中浸[/color][color=#666666]1h[/color][color=#666666],则使用效果更好。[/color][color=#666666]6[/color][color=#666666]、在轮胎螺栓螺母上涂油[/color][color=#666666]为了容易拧紧螺母和防止锈蚀,不少车主和修理工在轮胎的螺栓螺母上涂油。实际上这是一种错误做法。因为,根据机械原理知识,轮胎螺母拧紧后,螺纹间就具有自锁的特征。这是由螺纹螺旋角小于螺纹间的当量摩擦角的缘故。给定的螺栓联接中,螺旋升角是一定值,而当量摩擦角则随螺纹间的摩擦状态而变。显然,涂油后螺纹间的当量摩擦角减少,螺栓联接的自锁性能变差。因此在轮胎的螺栓和螺母上绝对不要涂润滑脂或浸润滑油。这样做,反而会使螺母松动,车胎跑掉,造成严重事故。[/color][color=#666666]7[/color][color=#666666]、轮毂轴承润滑脂越多越好[/color][color=#666666]有些车主在维护轮毂轴承时,将轮毂轴承及空腔装满润滑脂,并认为越多越好,其实不然。轮毂腔中装满润滑脂会使大部分的润滑脂甩到轮毂空腔里,不但不能补充到轴承里去,反而会流到制动鼓中的制动蹄片上,使制动失灵,同时因滚动阻力增大,会使轮毂产生过热,并且造成不必要的浪费。因此,只要在轮毂空腔内涂一层薄薄的润滑脂即可。既保证了关键部位的润滑,又易于轮毂的散热降温,同时又可以节约大量的润滑脂。[/color]

  • 润滑油检测种类

    润滑油机油检测:汽油发动机机油、柴油发动机机油、空气压缩机油、涡轮机油、冷冻机油、内燃机车柴油机油、农用柴油机油等。  润滑油齿轮油检测:重负荷车辆齿轮油(GL-5)、工业闭式齿轮油(GL-5)、中负荷车辆齿轮油、合成工业齿轮油等。  润滑油液压油检测:HL液压油、抗磨液压油(HM液压油)、HR液压油、HV液压油、HS低温液压油等。  润滑油润滑脂检测:导热硅脂、钙钠基润滑脂、铁道润滑脂、钢丝绳表面脂、制动缸脂、钠基润滑脂、钙基润滑脂、钡基润滑脂、铝基润滑脂、极压锂基润滑脂、复合钙基润滑脂、复合铝基润滑脂、通用锂基润滑脂、石墨钙基润滑脂、7163号专用阻尼脂等。  润滑油其他润滑油检测:航空喷气机润滑油、20号航空润滑油、L-AN 全损耗系统用油、热定型机润滑油、4839号抗化学润滑油、4802号抗化学润滑油等。  润滑油工业润滑油检测:液压油、齿轮油、汽轮机油、压缩机油、冷冻机油、变压器油、真空泵油、轴承油、金属加工油(液)、防锈油脂、气缸油、热处理油和导热油等。  润滑油汽车润滑油检测:发动机油、车辆齿轮油、汽车自动传动液、汽车刹车油、汽车防冻液、汽车润滑脂、汽车空调器油、液压油

  • 润滑脂的选择

    [color=#333333]选择[/color]润滑脂[color=#333333]时,主要应考虑摩擦副的工况(负荷、速度、温度)、工作状态(连续运转、断续运转、有无振动和冲击等)和工作环境(湿度、气温、空气污染程度等)。[/color][color=#333333]润滑脂有皂基润滑脂、无基润滑脂以及有机润滑脂三类。[/color][b][color=#333333]1[/color][color=#333333])皂基润滑脂[/color][/b][color=#333333]皂基润滑脂占润滑脂的产量[/color][color=#333333]90%[/color][color=#333333]左右.使用最广泛。最常使用的有钙基、钠基、锂基钙钠基、复合钙基等润滑脂。复合铝基、复合锂基润滑脂也占有一定的比例,这两种脂是有发展前景的品种。[/color][color=#333333](1)[/color][color=#333333]钙基润滑脂。是由天然脂肪或合成脂肪酸用氢氧化钙反应生成的钙皂稠化中等粘度石油润滑油制成。[/color][color=#333333]滴点在[/color][color=#333333]75[/color][color=#333333]~[/color][color=#333333]100[/color][color=#333333]℃[/color][color=#333333]之间,其使用温度不能超过[/color][color=#333333]60[/color][color=#333333]℃[/color][color=#333333],如超过这一温度,润滑脂会变软甚至结构破坏不能保证润滑。[/color][color=#333333]具有良好的抗水性,遇水不易乳化变质,适于潮湿环境或与水接触的各种机械部件的润滑。[/color][color=#333333]具有较短的纤维结构,有良好的剪断安定性和触变安定性,因此具有良好的润滑性能和防护性能。[/color][color=#333333](2)[/color][color=#333333]钠基润滑脂,是由天然或合成脂肪酸钠皂稠化中等粘度石油润滑油制成。[/color][color=#333333]具有较长纤维结构和良好的拉丝性,可以使用在振动较大、温度较高的滚动或滑动轴承上。尤其是适用于低速、高负荷机械的润滑。因其滴点较高,可在[/color][color=#333333]80%[/color][color=#333333]或高于此温度下较长时间内工作。[/color][color=#333333]钠基润滑脂可以吸收水蒸气,延缓了水蒸气向金属表面的渗透。因此它有一定的防护性。[/color][color=#333333](3)[/color][color=#333333]钙钠基润滑脂。具有钙基和钠基润滑脂的特点。[/color][color=#333333]有钙基脂的抗水性,又有钠基脂的耐温性,滴点在[/color][color=#333333]120[/color][color=#333333]℃[/color][color=#333333]左右,使用温度范围为[/color][color=#333333]90[/color][color=#333333]~[/color][color=#333333]100[/color][color=#333333]℃[/color][color=#333333]。[/color][color=#333333][/color][color=#333333]  具有良好的机械安全性和泵输送性,可用于不太潮湿条件下的滚动轴承上。[/color][color=#333333][/color][color=#333333]  最常应用的是轴承脂和压延机润滑脂,可用于润滑中等负荷的电机,鼓风机、汽车底盘、轮毂等部位滚动轴承。[/color][color=#333333](4)[/color][color=#333333]锂基润滑脂。是由天然脂肪酸[/color][color=#333333]([/color][color=#333333]硬脂酸或[/color][color=#333333]12-[/color][color=#333333]羟基硬脂酸[/color][color=#333333])[/color][color=#333333]锂皂稠化石油润滑油或合成润滑油制成。由合成脂肪酸锂皂稠化石油润滑油制成的,称为合成锂基润滑脂。[/color][color=#333333]因锂基润滑脂具有多种优良性能,被广泛地用于飞机、汽车、机床和各种机械设备的轴承润滑。滴点高于[/color][color=#333333]180[/color][color=#333333]℃[/color][color=#333333],能长期在[/color][color=#333333]120[/color][color=#333333]℃[/color][color=#333333]左右环境下使用。具有良好的机械安定性,化学安定性和低温性,可用在高转速的机械轴承上。具有优良的抗水性,可使用在潮湿和与水接触的机械部件上。锂皂稠化能力较强,在润滑脂中添加极压、防锈等添加剂后,制成多效长寿命润滑脂,具有广泛用途。[/color][color=#333333](5)[/color][color=#333333]复合钙基润滑脂。用脂肪酸钙皂和低分子酸钙盐制成的复合钙皂稠化中等粘度石油润滑油或合成润滑油制成。耐温性好,润滑脂滴点高于[/color][color=#333333]180[/color][color=#333333]℃[/color][color=#333333],使用温度可在[/color][color=#333333]150[/color][color=#333333]℃[/color][color=#333333]左右。[/color][color=#333333]具有良好的抗水性,机械安定性和胶体安定性。具有较好的极压性,适用于较高温度和负荷较大的机械轴承润滑。复合钙基润滑脂表面易吸水硬化,影响它的使用性能。[/color][color=#333333](6)[/color][color=#333333]复合铝基润滑脂。是山硬脂酸和低分子有机酸[/color][color=#333333]([/color][color=#333333]如苯甲酸[/color][color=#333333])[/color][color=#333333]的复合铝皂稠化不同粘度石油润滑油制成。固有良好的各种特性,适用于各种电机、交通运输、钢铁企业及其他各种工业机械设备的润滑。只有短的纤维结构,良好的机械安定性和泵送性.因其流动性好.适用于集中润滑系统。具有良好的抗水性,可以用于较潮湿或有水存在下的机械润滑。[/color][color=#333333](7)[/color][color=#333333]复合锂基润滑脂。是由脂肪酸锂皂和低分子酸锂盐[/color][color=#333333]([/color][color=#333333]如壬二酸,癸二酸,水杨酸和硼酸盐等[/color][color=#333333])[/color][color=#333333]两种或多种化合物共结晶.稠化不同粘度石油润滑油制成,广泛应用于轧钢厂炉前辊道轴承,汽车轮轴承、重型机械、各种高沮抗磨轴承以及齿轮、涡轮、蜗杆等润滑。具有高的滴点,具有耐高温性;复合皂的纤维结构强度高,在高温条件下具有良好的机械安定性,有长的使用寿命;有良好的抗水淋特性,适于潮湿环境工作机械的润滑,如轧钢机械等。[/color][b][color=#333333]2[/color][color=#333333])无机润滑脂[/color][/b][color=#333333]主要有膨润土润滑脂及硅胶润滑脂两类。表面改质的硅胶稠化甲基硅油制成的润滑脂,可用于电气绝缘及真空密封。膨润土润滑脂是由表面活性剂[/color][color=#333333]([/color][color=#333333]如二甲基十八烷基苄基氯化铵或氨基酰胺[/color][color=#333333])[/color][color=#333333]处理后的有机膨润土稠化不同粘度的石油润滑油或合成润滑油制成,适用于汽车底盘、轮轴承及高温部位轴承的润滑,它具有以下特点。[/color][color=#333333]膨润土润滑脂没有滴点,它的耐温性能决定于表面活性剂和基础油的高温性能,它的低温性能决定于选用的基础油类型。稠化剂的用量对脂的低温性能也有影响。[/color][color=#333333]具有较好的胶体安定性,润滑脂的机械安定性随表而活性剂的类型而异。[/color][color=#333333]对金属表面的防腐蚀性稍差。因此,润滑脂中要添加防锈剂以改善这个性能。[/color][b][color=#333333]3[/color][color=#333333])有机润滑脂[/color][/b][color=#333333]各种有机化合物稠化石油润滑油或合成润滑油,各具有不同的特性,这些润滑脂大都作特殊用途。如阴丹士林、酞菁恫稠化合成润滑油制成高温润滑脂可用于[/color][color=#333333]200[/color][color=#333333]~[/color][color=#333333]250[/color][color=#333333]℃[/color][color=#333333]工况;含氟稠化刑如聚四氟乙烯稠化氟碳化合物或全氟醚制成的润滑脂,可耐强氧化刑,作为特殊部件的润滑。又如聚脲润滑脂可用于抗辐射条件下的轴承润滑等。[/color][color=#333333]聚脲润滑脂是由聚脲稠化剂稠化石油润滑油或合成润滑油制成,耐高温性能好,在[/color][color=#333333]25[/color][color=#333333]~[/color][color=#333333]225[/color][color=#333333]℃[/color][color=#333333]宽温范围内脂的稠度变化不大,又由于稠化剂分子中不含金属离子,消除了高温下金属对润附油的催化作用,所以氧化安定性好;脲基脂在[/color][color=#333333]149[/color][color=#333333]℃[/color][color=#333333],[/color][color=#333333]10.000r/min[/color][color=#333333]条件下,轴承运转寿命超过[/color][color=#333333]4000[/color][color=#333333]小时。聚脲脂是近十年来迅速发展的[/color][color=#333333]—[/color][color=#333333]种广泛用途的产品,用于钢铁工业高洗部位的润滑,用于食品工业和电力、电子工业,以及长寿命的密封轴承的润滑。[/color]

  • 润滑油常用检测指标及测定意义-清净分散性

    发动机润滑油在发动机工作条件下,会产生多种污染物(包括氧化物、水分、金属颗粒、碳黑粒、酸、末完全燃烧物),这些污染物会使活塞表面覆盖一层漆膜。加有清净分散剂的润滑油可以阻止污染物粘结成团或粘结在金属表面上,抑制氧化反应,且能中和酸性氧化物,使污染物以溶胶状态分散地悬浮于油中,防止不溶物的沉积。这种性能的总和叫作发动机润滑油的清净分散性。  SH/T0645《柴油机油清浮性测定法(热管氧化法)》作为评定发动机润滑油清净性的手段之一。热管氧化试验是一种内燃机油高温氧化模拟台架试验设备,专门针对发动机活塞环等部件在工作过程中形成漆膜和积碳的机理而设计的试验方法。主要用于内燃机油高温清净性的实验室评定,考察油品中各类添加剂组分对油品的热氧化安定性、清净分散性等综合性能的影响。利用此类模拟试验技术可在进行IH2、IG2、IK等发动机台架试验之前,预先 筛选油品配方及评选各类添加剂的表现。试验测定的数据显示与台架试验结果有良好的相关性。SH/T 0300曲轴箱模拟试验法用于评定添加剂和含添加剂内燃机油的热氧化安定性,是科研工作中评选清净剂、抗氧抗腐剂和油品复合配方的一种模拟试验方法。该方法是使含添加剂内燃机油飞溅到高温金属表面形成漆膜,以此模拟曲轴箱油在活塞工作时的成漆情况,并用在试验机油箱内挂铅片的发放模拟曲轴箱油在气[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]氧化状态下对发动机零部件的腐蚀。通过测定金属板上的漆膜评级和胶重,考察油的热氧化安定性。将250ml试样在规定条件下,在模拟试验机内运行6h后,考察形成漆膜和成胶的情况

  • 润滑油形象地比喻为机械设备的血液

    润滑油是设备的血液,润滑油起着润滑机械设备运动部件、清洁脏物、冷却降温、密封防漏及降噪减振等作用。在集中润滑系统中,润滑油的运行过程犹如人体的血液循环,因此,也将润滑油形象地比喻为机械设备的血液,机械设备的"健康状况"和"寿命长段"都取决于润滑油。润滑油一般由基础油和添加剂两部分组成,不同组成部分具有不同的作用。基础油是润滑油的主要成分,决定着润滑油的基础性质;添加剂泽则可弥补和改善基础油性能方面的不足,赋予基础油某些新的性能,如抗氧化性、极压抗磨性、防锈性等,是润滑油的重要组成部分,决定着润滑油的基本性质;添加剂则可弥补和改善基础油性能方面的不足,赋予基础油某些新的性能,如抗氧化性、极压抗磨性、防锈性等,是润滑油的重要组成部分。? 润滑油在设备润滑系统中不间断循环是设备安全可靠运行的保障,一旦润滑油循环终止或油品发生氧化污染等,设备摩擦副将在很短的时间里发生擦伤、胶合,严重时将导致整机损毁。然而,在现实中,有的企业往往忽略油品作为设备血液的重要性,设备在用油出现乳化、油水混合、油品氧化发黑、固体颗粒污染等仍"带病"工作,导致设备时常发生异常,维修成本居高不下。?润滑油形象地比喻为机械设备的血液 润滑油作为机器润滑系统的"血液",受光、热、污染及金属催化等作用,将通过不同的表现形式告诉人们油品本身理化性能的变化,系统摩擦副、密封件、过滤器等的工作状态以及进入系统的外界污染情况,即润滑油能说话。 事实上,除油润滑设备外,滚动轴承使用的润滑脂也同样反映自身理化性能和轴承状态的特征。当润滑脂在使用过程中,短期出现"滴油""分油"现象时,通常表明润滑脂的胶体安定性不好。润滑脂的胶体安定性评价的是润滑脂在长期储存中与实际应用时的分油趋势,如果润滑脂的胶体安定性差,则在受热、压力、离心力等作用下易发生严重分油,导致其寿命迅速降低,并使润滑脂变稠变干,失去润滑作用。

  • 润滑油的种类有那些

    [color=#333333]一、[/color][color=#333333]机械润滑油(机油)[/color][color=#333333][/color][color=#333333]车用机油、船舶用机油、空气压缩机油、气体压缩机油、冷冻压缩机油、涡轮机油、柴油发电机润滑油、真空泵油、针织机油、机床导轨油等;[/color][color=#333333][/color][color=#333333]二、机械传动润滑油(脂)[/color][color=#333333][/color][color=#333333]铁路运输用润滑脂、船舶运输用润滑脂、液压及循环系统润滑油、工业齿轮润滑剂、钢铁厂油膜轴承脂、工业润滑脂、岩石风钻机润滑油等;[/color][color=#333333][/color][color=#333333]三、其它特种润滑油(脂)[/color][color=#333333][/color][color=#333333]金属切削液、防火液压液、电气绝缘油、白矿油及医药用油、火花电蚀机液、热传导油、冲洗油、防锈液、工艺油等。业务范围已覆盖运输设备制造业、机器设备制造业、制冷设备制造业、船舶运输业、金属零部件加工制造业、发电行业、造纸业、石油化工业、纺织印染业、水泥、建筑材料生产、矿山开采等行业。[/color]

  • 润滑脂变硬能加油调稀吗?

    [color=#666666]有客户问润滑脂一段时间储存后会变硬怎么办?大多数的润滑脂在储存了一段时间之后,稠度可能会出现增大的情况,也就是俗说的变[/color][color=#666666]“[/color][color=#666666]硬[/color][color=#666666]”[/color][color=#666666]了。其实,即便按润滑脂出现变硬的情况,在稠度增大不多的前提下,正常的使用是没有问题的。如果稠度的变化很大,就表明基础油分离出来的太多了,使用过程中会增加机械部件润滑时的摩擦阻力、增加机械动力的消耗,所以不能直接使用。[/color][color=#666666]有的用户在已经变硬的润滑脂中加入基础油调稀,有些修理工冬季使用润滑脂时,也喜欢在润滑脂中加入润滑油调稀。这种做法是错误的。因为润滑脂的结构由稠化剂和基础油构成的胶体结构体系,稠化剂形成结构网络,将基础油吸附在网络中形成稳定的结构体系,是稠化剂和基础油不会分离。若成脂以后再加入基础油的话吗,虽然经过搅拌,但因缺少必要的均化处理工序,润滑油不能均匀的分散到网络之中,润滑脂的胶体安定性变差,分油增大,会影响使用效果。[/color][color=#666666]已经变稠的润滑脂,其他理化性质变化不大时,在生产厂可以加入相同的基础油,再经过均化工序处理后并分析检测合格后,是可以正常使用的。[/color]

  • 润滑油的专业术语

    [color=#333333] 磨粒磨损 两个接触表面相对滑动过程中引起的机械磨损[/color][color=#333333][/color][color=#333333]  添加剂 为改进润滑性能而添加的少量物质[/color][color=#333333][/color][color=#333333]  粘附性改进剂 在油和脂中加入添加剂以改进粘附效果(如聚异丁烯)[/color][color=#333333][/color][color=#333333]  粘附润滑剂 加入粘附改进剂,防止润滑剂因离心力作用而甩落[/color][color=#333333][/color][color=#333333]AF涂层 减摩涂层,目前最为广泛使用的干膜固体润滑剂,包括室温固化型和热固化型。配方含固体润滑材料(称为“生料”)和粘结材料,见“粘结剂”[/color][color=#333333][/color][color=#333333]  抗老化 因氧化、过热、或因含某些金属(如铜,铅,银等)而引起的材料老化,通过加入某些添加剂(如抗氧化剂)可提高材料的抗老化能力[/color][color=#333333][/color][color=#333333]ASTM 美国材料试验协会[/color][color=#333333][/color][color=#333333]  基础油 润滑油、脂的基本成份[/color][color=#333333][/color][color=#333333]  粘结剂 非挥发性的介质或赋形剂,用以增强固体润滑材料颗粒间的结合牢度或增强固体润滑膜与摩擦表面间的粘连程度[/color][color=#333333][/color][color=#333333]  粘结润滑剂 见AF涂层[/color][color=#333333][/color][color=#333333]  旋松扭矩 旋松一个螺栓联接所需的扭矩[/color][color=#333333][/color][color=#333333]  化学惰性 (润滑剂)和某些物质不起化学反应[/color][color=#333333][/color][color=#333333]  摩擦系数 两个接触表面间摩擦力与法向力之比[/color][color=#333333][/color][color=#333333]  低温性能 润滑油用云点、倾点和凝固点作指示值,对润滑脂可用Kesternich流动压及低温力矩试验来衡量[/color][color=#333333][/color][color=#333333]  胶体 稳定液体中的微粒(粒径10-5~10-7cm)作为一种溶体(不出现颗粒沉降)[/color][color=#333333][/color][color=#333333]  复合脂 以金属皂和各种酸制成的增稠剂的润滑脂,特别适合高温和长期使用[/color][color=#333333][/color][color=#333333]  稠度 润滑脂的一项指标,分未工作锥入度和工作锥入度,并按NLGI(美国润滑脂学会)标准测定。简单地将稠度分为九个等级,例如:[/color][color=#333333][/color][color=#333333]  稠度等级 工作锥人度(1/10mm)[/color][color=#333333][/color][color=#333333]00 400—430[/color][color=#333333][/color][color=#333333]0 350—385[/color][color=#333333][/color][color=#333333]1 310—340[/color][color=#333333][/color][color=#333333]2 265—295[/color][color=#333333][/color][color=#333333]  密度 20℃时单位体积的润滑剂的质量(g/cm3)[/color][color=#333333][/color][color=#333333]  清净剂 清除表面残留物及沉淀物的表面活性剂[/color][color=#333333][/color][color=#333333]  分散性 提高液体中不溶物质的分散性能[/color][color=#333333][/color][color=#333333]DN值 转速对滚动轴承脂的参照值,用轴承中径(mm)乘每分钟转数来表示[/color][color=#333333][/color][color=#333333]  滴点 指润滑脂从半固体状态转变为液态的温度,是润滑脂耐热性的指标,随着温度的升高,以从容器中滴落第一滴液滴的温度定为滴点温度[/color][color=#333333][/color][color=#333333]  动力粘度 即绝对粘度,反映了润滑油流动时,流体分子间的内部阻力的大小。以润滑油流经管孔或间隙来测定[/color][color=#333333][/color][color=#333333]EP添加剂 一种化学物质,用以改进承受重载、高温的能力,从而增强油、脂的耐磨性[/color][color=#333333][/color][color=#333333] 水中滚动轴承润滑脂的耐腐蚀试验,至少以两只用脂润滑的轴承在水中运行约一周来进行测试,耐腐蚀数值为0~5(0指无腐蚀,5指严重腐蚀)[/color][color=#333333][/color][color=#333333]  酯油 酸和醇类的化合物,用作润滑材料及润滑脂的生产[/color][color=#333333][/color][color=#333333]  闪点 将火焰接触油蒸气和空气的混合气而发生闪火的最低温度[/color][color=#333333][/color][color=#333333]  氟硅油 分子中含氟原子的硅油[/color][color=#333333][/color][color=#333333]  凝点 油品凝固而丧失流动性时的温度[/color][color=#333333][/color][color=#333333]  微动腐蚀磨损 由于两接触体作微幅相对滑动而引起的一种机械化学磨损,在摩擦面上出现点蚀小坑和在摩擦面间堆积有氧化屑[/color][color=#333333][/color][color=#333333]  摩擦 两个物体作相对运动时,其接触界面上存在的切向阻抗现象[/color][color=#333333][/color][color=#333333]  油脂 由基础油与增稠剂组成的润滑介质[/color][color=#333333][/color][color=#333333]  抑制剂 用于润滑剂中延缓老化和腐蚀的添加剂[/color]

  • 润滑油损失的主要原因

    油品的蒸发损失,即油品在一定条件下通过蒸发而损失的量,用质量百分比表示。蒸发损失与油品的挥发度成正比。蒸发损失越大,实际应用中的油耗就越大,故对油品在一定条件下的蒸发损失量要有限制。润滑油在使用过程中蒸发,造成润滑系统中润滑油量逐渐减少,需要补充,粘度增大,影响供油。液压液体在使用中蒸发,还会产生气穴现象和效率下降,可能给液压泵造成损害。蒸馏方法得到的数据只是粗略的结果,润滑油品的蒸发损失需专门方法测定。目前,我国测定润滑油蒸发损失的方法为GB/T 7325润滑油和润滑脂蒸发损失测定法。该方法是把放在蒸发器中的润滑油试样,置于规定温度的恒温浴中,热空气通过试样表面22h。然后根据试样的质量损失计算蒸发损失。根据该方法,润滑油品的蒸发损失可以在99-150℃内的任一温度下测定。目前,该方法在我国主要用于合成润滑油的蒸发损失评定。国外主要的测定方法有:美国的ASTM D972、德国的DIN 51581和日本的JIS K2220 (5.6)等。抗乳化性分析2009-08-27 12:39(1)概述2.乳化乳化是一种液体在另一种液体中紧密分散形成乳状液的现象,它是两种液体的混合而并非相互溶解。抗乳化则是从乳状物质中把两种液体分离开的过程。润滑油的抗乳化性是指油品遇水不乳化,或虽是乳化但经过静置,油-水能迅速分离的性能。两种液体能否形成稳定的乳状液取决于两种液体之间的界面张力。由于界面张力的存在,分散相总是倾向于缩小两种液体之间的接触面积以降低系统的表面能,即分散相总是倾向于由小液滴合并大液滴以减少液滴的总面积,乳化状态也就是随之而被破坏。界面张力越大,这一倾向就越强烈,也就越不易形成稳定的乳状液。润滑油与水之间的界面张力随润滑油的组成不同而不同。深度精制的基础油以及某些成品油与水之间的界面张力相当大,因此,不会生成稳定的乳状液。但是如果润滑油基础油的精制深度不够,其抗乳化性也就较差,尤其是当润滑油中含有一些表面活性物质时,如清净分散剂、油性剂、极压剂、胶质、沥青质及尘土粒等,它们都是一些亲油剂和亲水基物质,它们吸附在油水表面上,使油品与水之间的界面张力降低,形成稳定的乳状液。因此在选用这些添加剂时必须对其性能作用作全面的考虑,以取得佳的综合平衡。对于用于循环系统中的工业润滑油,如液压油、齿轮油、汽轮机油、,油膜轴承油等,在使用中不可避免地和冷却水或蒸汽甚至乳化液等接触,这就是要求这些油品在油箱中能迅速油-水分离,(按油箱容量,一般要求6-30min分离),从油箱底部排出混入的水分,便于油品的循环使用,并保持良好的润滑。通常润滑油在60℃左右有空气存在并与水混合搅拌的情况下,不仅易发生氧化和乳化而降低润滑性能,而且还会生成可溶性油泥,受热作用则生成不溶性油泥,并剧烈增加流体粘度,造成堵塞润滑系统、发生机械故障。因此,一定要处理好基础油的精制深度和所用添加剂与其抗乳化剂的关系,在调合、使用、保管和贮运过程中亦要避免杂质的混入和污染,否则若形成了乳化液,则不仅会降低润滑性能,损坏机件,而且易形成油泥。另外,随着时间的增长,油品的氧化、酸性的增加、杂质的混入都会使抗乳化性的变差,用户必须及时处理或者更换

  • 润滑脂的选择范围及综合指标

    [color=#666666]润滑脂和润滑油统称为润滑剂,润滑脂的成分中含有稠化剂,其性质特点与润滑油均不同,所以选择起来不可根据润滑油的特点来选用。[/color][color=#666666]选择润滑脂应考虑的范围:[/color][color=#666666]减摩润滑脂,应考虑耐高低温的范围,负荷与转速等;[/color][color=#666666]消音润滑脂,应考虑附着力、温度范围、负荷与转速等等;[/color][color=#666666]密封润滑脂,应考虑与密封件材质的相容性。[/color][color=#666666]防护润滑脂,应考虑对金属、非金属的防护性与相容性;[/color][color=#666666]还应根据产品润滑部位的结构和环境工况的不同来选用润滑脂,综合起来主要有以下几项指标:[/color][color=#666666]1. [/color][color=#666666]工作温度:一般润滑脂的温度最高适用温度应低于其滴点[/color][color=#666666]20~30℃[/color][color=#666666],工作温度应低于润滑脂的高温界限,否则运转阻力会加大,逐渐失去润滑作用。[/color][color=#666666]2. [/color][color=#666666]运转速度:润滑部件的运转速度越高,润滑脂所受的剪切应力就越大,且高速动转的机件温升快,易使润滑脂变稀而流失,因此应选用稠度较大的润滑脂。[/color][color=#666666]3. [/color][color=#666666]承载负荷:根据负荷选用润滑脂是保证润滑的关键之一,对于重负荷润滑点应选用基础油粘度高、稠化剂含量高的润滑脂;如果既承受重负荷又承受冲击负荷,则应选用具有较高极压性和抗磨性的润滑脂,如含有二硫化钼的润滑脂。[/color][color=#666666]4. [/color][color=#666666]使用工况:在不同使用环境中,润滑脂的选择也不同。比如:[/color][color=#666666]在潮湿环境或水接触的情况下,可选用抗水性好的的润滑脂。如钙基、锂基;[/color][color=#666666]条件苛刻时,应选用加有防锈的润滑脂,而不宜选用抗水性差的钠基脂;[/color][color=#666666]在有强烈化学物质的环境中,应选用抗化学物质的氟素润滑脂;[/color][color=#666666]在尘土较多的环境下,可选用浓稠的含有石墨的润滑脂;[/color][color=#666666]其要求密封性能良好的环境下,应选用钠基润滑脂。[/color][color=#666666]5. [/color][color=#666666]成本因素:在选用润滑脂时,还要考虑使用时的经济性,综合分析使用此润滑脂以后是否延长了润滑周期、加注次数、脂消耗量、轴承的失效率和维修费用等。[/color][color=#666666]使用润滑脂的好处是在常温下能维持逐渐的状态,在垂直状态下不流失,并能在敞开或密封性不好的状态下工作,完全解决了润滑油难以做到的问题。[/color]

  • 润滑油常用检测指标及测定意义-蒸发损失

    油品的蒸发损失,即油品在一定条件下通过蒸发而损失的量,用质量分数表示。蒸发损失与油品的挥发度成正比。蒸发损失越大,实际应用中的油耗就越大,故对油品在一定条件下的蒸发损失的量要有限制。润滑油在使用过程中蒸发,造成润滑系统中润滑油量逐渐减少,需要补充,粘度增大,影响供油。液压液体在使用中蒸发,还会产生气穴现象和效率下降,可能给液压泵造成损害。蒸馏方法得到的数据只是粗略的结果,润滑油品的蒸发损失需专门方法测定。我国测定润滑油蒸发损失的方法为GB/T 7325润滑油和润滑脂蒸发损失测定法和SH/T 0055润滑油蒸发损失测定法(诺亚克法)。GB/T 7325方法是把放在蒸发器中的润滑油试样,置于规定温度的恒温浴中,热空气通过试样表面22h。然后根据试样的质量损失计算蒸发损失。根据该方法,润滑油品的蒸发损失可以在99-150℃内的任一温度下测定。目前,该方法在我国主要用于润滑脂和合成润滑油的蒸发损失评定。SH/T 0055方法是试样在规定的仪器中,在规定的温度和压力下加热1h,蒸发出的油蒸气由空气流携带出去。根据加热前后试样量之差测定润滑油的蒸发损失。国外主要的测定方法有:美国的ASTM D972、德国的DIN 51581和日本的JIS K2220 (5.6)等。

  • 润滑油损失的主要原因

    油品的蒸发损失,即油品在一定条件下通过蒸发而损失的量,用质量百分比表示。蒸发损失与油品的挥发度成正比。蒸发损失越大,实际应用中的油耗就越大,故对油品在一定条件下的蒸发损失量要有限制。润滑油在使用过程中蒸发,造成润滑系统中润滑油量逐渐减少,需要补充,粘度增大,影响供油。液压液体在使用中蒸发,还会产生气穴现象和效率下降,可能给液压泵造成损害。蒸馏方法得到的数据只是粗略的结果,润滑油品的蒸发损失需专门方法测定。目前,我国测定润滑油蒸发损失的方法为GB/T 7325润滑油和润滑脂蒸发损失测定法。该方法是把放在蒸发器中的润滑油试样,置于规定温度的恒温浴中,热空气通过试样表面22h。然后根据试样的质量损失计算蒸发损失。根据该方法,润滑油品的蒸发损失可以在99-150℃内的任一温度下测定。目前,该方法在我国主要用于合成润滑油的蒸发损失评定。国外主要的测定方法有:美国的ASTM D972、德国的DIN 51581和日本的JIS K2220 (5.6)等。抗乳化性分析2009-08-27 12:39(1)概述2.乳化乳化是一种液体在另一种液体中紧密分散形成乳状液的现象,它是两种液体的混合而并非相互溶解。抗乳化则是从乳状物质中把两种液体分离开的过程。润滑油的抗乳化性是指油品遇水不乳化,或虽是乳化但经过静置,油-水能迅速分离的性能。两种液体能否形成稳定的乳状液取决于两种液体之间的界面张力。由于界面张力的存在,分散相总是倾向于缩小两种液体之间的接触面积以降低系统的表面能,即分散相总是倾向于由小液滴合并大液滴以减少液滴的总面积,乳化状态也就是随之而被破坏。界面张力越大,这一倾向就越强烈,也就越不易形成稳定的乳状液。润滑油与水之间的界面张力随润滑油的组成不同而不同。深度精制的基础油以及某些成品油与水之间的界面张力相当大,因此,不会生成稳定的乳状液。但是如果润滑油基础油的精制深度不够,其抗乳化性也就较差,尤其是当润滑油中含有一些表面活性物质时,如清净分散剂、油性剂、极压剂、胶质、沥青质及尘土粒等,它们都是一些亲油剂和亲水基物质,它们吸附在油水表面上,使油品与水之间的界面张力降低,形成稳定的乳状液。因此在选用这些添加剂时必须对其性能作用作全面的考虑,以取得佳的综合平衡。对于用于循环系统中的工业润滑油,如液压油、齿轮油、汽轮机油、,油膜轴承油等,在使用中不可避免地和冷却水或蒸汽甚至乳化液等接触,这就是要求这些油品在油箱中能迅速油-水分离,(按油箱容量,一般要求6-30min分离),从油箱底部排出混入的水分,便于油品的循环使用,并保持良好的润滑。通常润滑油在60℃左右有空气存在并与水混合搅拌的情况下,不仅易发生氧化和乳化而降低润滑性能,而且还会生成可溶性油泥,受热作用则生成不溶性油泥,并剧烈增加流体粘度,造成堵塞润滑系统、发生机械故障。因此,一定要处理好基础油的精制深度和所用添加剂与其抗乳化剂的关系,在调合、使用、保管和贮运过程中亦要避免杂质的混入和污染,否则若形成了乳化液,则不仅会降低润滑性能,损坏机件,而且易形成油泥。另外,随着时间的增长,油品的氧化、酸性的增加、杂质的混入都会使抗乳化性的变差,用户必须及时处理或者更换。

  • 润滑油的保质期时间是多久

    [color=#666666]润滑油的储存时间到底有多长?超过保质期一两个月,与超过保质期一两年差别肯定很大。其次是润滑油用在什么地方?用油的机器是否重要?如果发生故障,是否会造成较大损失?[/color][color=#666666][/color][color=#666666] 一般来说,工业润滑油的储存时间建议在1年以内,润滑脂半年以内。为了保证良好的设备润滑,润滑油在储存中应遵循“先入先出”,避免润滑油长期保存,以上方法只是定性的评估润滑油在储存后的油质情况。如果润滑油的油量较大,不想浪费,那么超过保质期的润滑油在使用前较好做一下油液检测(油品分析)。油液检测通过专业的检测设备,可以定量、准确的测定润滑油的油质。[/color][color=#666666][/color]

  • 润滑脂的分类feilei

    [color=#787878]润滑脂俗称黄油,是将稠化剂分散于液体润滑剂中所形成的一种稳定的半固体产品,往往需要加入改善其某些性能的添加。在产品结构中,国内润滑恶心男现已完成从技术、质量水平较低的钙基润滑脂占主导地位向技术和质量水平较高的锂基润滑脂占主导地位的转变,而复合锂基脂、复合铝基脂、高碱性复合磺酸钙基脂、脲基脂等高滴点润滑脂在总产量中所占比例呈现逐年上升的趋。同时,一些新型高档润滑脂如复合钛基脂、可生物降解脂、纳米润滑脂等产品的开发,也取得了重要进展。[/color][color=#787878]各种机械设备名目繁多,它们的运转条件和工作环境又错综复杂,对润滑脂的性能要求各不相同。随着润滑脂制造技术的不断发展,也促使润滑脂品种迅速增加。对润滑脂进行分类的依据,主要包括两个方面:一是具体确定润滑脂稠度等级,即区分牌号;二是对润滑脂品种进行详细划分。[/color][color=#787878](一)按润滑脂稠度等级分类[/color][color=#787878]1[/color][color=#787878].润滑脂锥入度[/color][color=#787878]稠度是指润滑脂的软硬程度,其大小是有工作锥入度来衡量。润滑脂锥入度值(也称针入度值)是规定时间、温度条件下,规定质量的标准锥体传入润滑脂试样的深度,以1/10mm为单位。一般试验温度为25℃,时间为5s,用钝角形的金属尖锥体。润滑脂的锥入度值越大稠度越小,外观状态较软,反之外观形态较硬。[/color][color=#787878]2[/color][color=#787878].稠度等级[/color][color=#787878]根据工作度范围,将润滑脂分为不同的稠度等级。现在国际通用的这个稠度等级是美国润滑脂协会(NLGI)首先提出的,也称NLGI稠度分类。尽管有些润滑脂的稠度也不完全限定于规定的范围内,但是这个稠度系列反应了大多数润滑脂的稠度牌号。[/color][color=#787878]NLGI[/color][color=#787878]稠度分类将润滑脂从000到6共分为9个等级,每个等级间锥入度差值为15个单位。其中,0#、00#、000#润滑脂称为半流体润滑脂,主要用于不宜使用润滑油润滑的轴承、齿轮以及各类摩擦部位的润滑。[/color][color=#787878](二)按稠化剂类型分类[/color][color=#787878]根据润滑脂的稠化剂不同,可分为皂基和非皂基润滑脂。其中,皂基润滑脂又可分为单皂基脂、混合皂基脂、复合皂基脂等,非皂基润滑脂有烃基润滑脂、有机稠化剂润滑脂和无机稠化剂润滑脂等。[/color][color=#787878](三)按润滑脂操作条件分类[/color][color=#787878]我国于1990年发布了GB7631.8-1990《润滑剂和有关产品(L类)的分类第八部分:X组(润滑脂)》。本标准等效采用了国际标准ISO6743/9:1987《润滑剂、工业润滑油和有关产品(L类)的分类第九部分:X组(润滑脂)》。在这个标准的分类中,一个润滑脂只有一个代号,此代号应与该润滑脂在应用中的最严格操作条件(温度、水污染和负荷等)相对应,由5个大写英文字母组成,每个字母都有其特定意义。其中,字母L表示润滑剂和有关产品的类别代号,字母X表示润滑脂组别,其余4个大写字母表示润滑脂的使用性能水平,依次为最低操作温度、最高操作温度、润滑脂在水污染的操作条件下的抗水性能和防锈水平、润滑脂在高负荷或低负荷场合下的润滑性,数字表示稠度等级。[/color][color=#787878]例如通用锂基润滑脂,根据其标准中规定可知:[/color][color=#787878]使用温度:-20~120℃。[/color][color=#787878]水污染:水淋流失量不大于10%,说明能经受水洗;防腐性为I级,即在淡水条件下能防锈。[/color][color=#787878]极压:指标中没有规定极压性能指标,即不具有极压性。[/color][color=#787878]从以上内容可知,字母1为润滑脂固定代号,代号为X;最低操作温度-20℃,字母2为B;最高操作温度120℃,字母3为C;环境条件中,经水洗条件下的防锈性,字母4为H;负荷条件为非极压型,字母5为A;稠度等级为1#、2#、3#。所以,通用锂基润滑脂的分类代号为L-XBCHA1,2,3。[/color][color=#787878]显然,按GB/T7631.8分类,使润滑脂的品种命名简化,较为科学、合理,因为按这种分类很容易根据实际需要选出合适的润滑脂,不同稠化剂制成的润滑脂只要符合操作条件均在可选之列。但习惯上,目前仍在使用按稠化剂类型分类的方法。[/color][color=#787878](四)按润滑脂用途分类[/color][color=#787878]按润滑脂的用途不同进行分类,可以分为减摩润滑脂、防护润滑脂、密封润滑脂和增摩润滑脂,其中每一个分类又可以根据是否是专用、使用温度等再进一步细分。[/color][color=#787878]其中,增摩润滑脂是一个较小的分支。如矿用摩擦轮提升机要靠轮、衬垫与绳子的传递动力,达到提升的目的,煤矿安全规程对此提出了强制要求。此外电梯用绳也有增摩效果。[/color][color=#787878](五)国内合成润滑脂分类[/color][color=#787878]国内合成润滑脂的分类,是一个4位数的阿拉伯数字表示一种产品,以“4”开头的是油类,以“7”开头的是脂类。第二位数字表示用途,后二位数字表示产品的序号。[/color][color=#787878](六)其他分类方法[/color][color=#787878]按行业分类:如军工用润滑脂、铁路润滑脂、船舶用润滑脂、汽车用润滑脂、纺织用润滑脂、矿山用润滑脂、化工用润滑脂等;[/color][color=#787878]按应用设备、部位分类:阀门润滑脂、轴承润滑脂、减速机润滑脂等;[/color][color=#787878]按使用温度分类:低温润滑脂、高温润滑脂等;[/color][color=#787878]按承载性能分类:普通润滑脂、极压润滑脂等。[/color]

  • 润滑油脂基础油加氢工艺原理

    [color=#666666]基础油是润滑脂中含量最多的组分[/color][color=#666666]([/color][color=#666666]一般为[/color][color=#666666]75%-90%)[/color][color=#666666],是起润滑作用的主要物质。基础油是润滑脂分散体系中分散稠化剂和添加剂的分散介质,被固定在结构骨架中而失去流动性。基础油具有润滑作用,其对润滑脂的各方面性能有较大影响。例如,润滑脂的蒸发性、对橡胶密封材料的相容性和低温性能在很大程度上取决于基础油。基础油的运动粘度影响润滑脂的运动粘度、泵送性、胶体安定性等。基础油运动粘度增大会减小润滑脂的分油和蒸发损失,并改善润滑脂的粘附性,但对润滑脂的低温性和泵送性有不利影响。对制备润滑脂来讲,基础油最重要的性质是运动粘度、机械安定性、蒸发性和润滑性。[/color][color=#666666]炼油厂利用[/color][color=#666666] [/color][color=#666666]减压馏分油和减压渣油生产润滑脂基础油。传统的基础油生产工艺为加氢脱酸、溶剂精制和白土处理,由于工艺复杂,收率损失大,污染大。随着炼油厂劣质原油掺炼比例的增大、工业发展对基础油性能要求的提高、环境保护要求的严格以及矿物油加氢工艺技术的进步,用加氢法生产润滑脂基础油受到重视。加氢精制工艺生产的润滑脂基础油具有低挥发性、对添加剂有良好的感受性、良好的机械安定性和高温稳定性等特点。[/color][color=#666666]加氢法生产基础油的基本原理[/color][color=#666666]脱除石油馏分中的杂质的方法有很多,有加氢法、磺化法、溶剂萃取法和吸附分离法等,其中加氢法因其流程简单、效果好、收率高而得到广泛应用润滑油基础油加氢工艺采用的是化学转化过程,即在催化剂及氢气的作用下,通过深度加氢反应,将基础油中的非理想组分转化为理想组分,使油品得到精制。加氢反应深度与催化剂的性能、反应条件的选择以及原料性质有密切关系。基础油加氢反应一般分为[/color][color=#666666]3[/color][color=#666666]段,不同阶段的反应条件、目的及机理也不同[/color][color=#666666]:[/color][color=#666666]第一段加氢[/color][color=#666666]:[/color][color=#666666]反应条件较苛刻,其目的是使大部分非理想组分经过加氢转变为环烷烃或烷烃等理想组分。例如,多环烃类加氢开环,形成少环长侧链的烃[/color][color=#666666] [/color][color=#666666]含硫、氮、氧的杂环化合物发生加氢分解反应,脱除杂质[/color][color=#666666] [/color][color=#666666]稠环芳烃加氢饱和生成稠环环烷烃等。[/color][color=#666666]第二段加氢[/color][color=#666666]:[/color][color=#666666]其目的是为了改善产品的低温性能。原料在催化剂的作用下发生加氢异构化和加氢裂化反应,使凝点较高的正构烷烃转化为凝点较低的异构烷烃或低分子烷烃,从而达到降低凝点的目的。[/color][color=#666666]第三段加氢[/color][color=#666666]:[/color][color=#666666]在前两段加氢过程中,由于加氢裂化反应产生少量的烯烃,以及由于芳烃转化反应的热平衡限制,一部分未能完全转化的芳烃尚存在于加氢生成油中。这部分烯烃和芳烃的存在会影响基础油的安定性。因此,为了提高产品的安定性,第三段加氢是在较低的温度下对原料进行精制,其主要反应为烯烃和芳烃的加氢饱和反应。[/color][color=#666666]用于润滑油馏分加氢的催化剂主要为[/color][color=#666666]VII[/color][color=#666666]族金属元素及其金属硫化物。金属硫化物催化剂在使用前需要预硫化。[/color]

  • 农业机械的润滑脂润滑分析

    [align=left]随着我国农机制造水平稳步的提升,机械化水平大大提高,本来购置农业机械和农机装备,指望它在农忙季节大显身手,却经常出现农业机械开动没几天就出现故障的情况,既延误了农时也令农机手很伤脑筋。农业机械为何会在短时间使用中出现故障?究其原因往往是因润滑不当或所加油脂品种牌号错误,可见润滑剂直接关系着各种农业机械和农机装备的正常运行和使用寿命。[/align][align=center][font='calibri'][size=13px]农业机械用润滑脂[/size][/font][/align]早在公元前1650年人类就将橄榄油作为润滑剂,我国古代就把动植物油脂作为车辆的润滑剂。公元前1400年,古埃及就有在战车的车轴上涂抹羊油和牛油的历史。农业机械用润滑脂品种较多,一般小型农业机械大都使用工业钙基润滑脂,大型农业联合机械除使用普通钙基润滑脂外,也用高档锂基润滑脂等。其常用的润滑脂品种主要有:1)2号或3号钙基润滑脂;2)2号或3号通用锂基润滑脂;3)0- 2号极压锂基润滑脂;4)中小型电机专用锂基润滑脂;5)各类含二硫化钼的润滑脂;6)石墨钙基润滑脂、钢丝绳脂及凡士林;7)工业脂及车用润滑脂等。 [align=center][font='calibri'][size=13px]农业机械润滑脂性能特点[/size][/font][/align]农业机械工作的主要对象是土壤和农作物,决定了农业机械工作条件和环境较为苛刻,工作时常处于震动、冲击以及砂土和作物强烈摩擦的环境条件中,同时又受肥料和腐蚀介质的影响,因而农业机械磨损严重,农业机械润滑脂性能特点主要有以下几个方面。1)农业机械大多在尘土或有害杂质飞扬的条件下工作,因而要求润滑脂有良好的密封性能,以防止杂质侵入和漏洞。2)农机大部分是移动式的,往往在高低不平的田地里作业,震动和颠簸严重,农机工作负荷变化大,运动方向变化多,时常有冲击性和振动性负荷,极易使农业机械发生严重磨损,甚至损坏机械,因而根据负荷情况,润滑脂应具有抗磨油性和抗磨极压性。3)由于农机作业时面对的土壤和农作物不同,冬夏、日夜、南北方作业温差大,甚至在风吹、雨淋、日晒环境里作业,因而要求润滑剂有防腐的性能。4)农机经常在泥土、有水的环境里作业,接触泥水较多,易生锈,易受雨水或湿气侵袭,要求润滑剂具有良好抗乳化性和水分离性能。5)为实现农机在田野移动方便的目的,一般农业机械结构简单、轻便、小型、高速,对使用润滑脂的要求也各不相同。6)农机作业时流动性大,农忙时可能在田地里加润滑脂,为农业机械检修和换脂油带来不便。 [align=center][font='calibri'][size=13px]农业机械润滑脂的选择 [/size][/font][/align]选择润滑脂时,必须根据机种、类型、工作条件,因地制宜,参考农业机械产品保养说明,按规定选用适合的润滑脂品种。具体选择的原则是:1)农业机械润滑应考虑不同地区、工作特点、环境条件、季节气候等因素,要选用适宜稠度的润滑脂,一般夏季可用3号润滑脂,冬季可用2号润滑脂。2)农机负荷大时,选用稠度大的润滑脂,反之,选用稠度小的润滑脂,以起到一定的缓冲作用。例如农田水利机械推土机,冬季平整土地经常在满负荷的苛刻条件下工作,进程推土时满负荷,退程时空负荷,负荷频繁交替变化,工作时又经常处于振动,冲击状态,容易破坏润滑油膜,因此,应选择粘稠性强,耐极压性、稠度较高的润滑脂。3)农业机械经常在泥土或有水的环境中工作,条件恶劣,同时,拖拉机手在清理农机时,又常用水冲洗。为了防止轴承进水使润滑脂乳化变质,尽可能避免泥水、砂石等进入润滑脂内。因此,要选用耐水和密封性好的润滑脂,如钙基润滑脂或通用锂基润滑脂。4)农村区域辽阔,南北温差大。在温度较高的条件下,应选用滴点较高的润滑脂;在较低温度条件下,应选用稠度软的润滑脂。对温度变化大的,应选用黏温性好的润滑脂。5)农业机械速度也是选择润滑脂的重要参数。农业机械速度高的,应选用稠度软的润滑脂,若农业机械速度低且负荷较大,则应选用稠度硬的润滑脂。6)根据农业机械摩擦表面的精度选用润滑脂。表面粗糙,要选用稠度硬的润滑脂;表面光洁,应选用稠度软的润滑脂。7)根据农业机械摩擦表面的位置选用润滑脂。一般在垂直的丝杠上应选用黏度大的润滑油。8)有的农业机械设有集中润滑系统,应选用泵送性好的润滑脂,便于输送,如0号或1号极压锂基润滑脂,或者选用有极压性的软性钙基润滑脂。润滑脂就像人的血液,是农机装备中最重要的“流动部件”,是农业机械和运动设备不可或缺的“血液”,对农用机械轴承起保护、润滑和密封作用,如果没有它,再好的农业机械装备也不能发挥作用,甚至出现严重后果,不只是农机维修费用提高和缩短农业机械的使用寿命,同时还会严重影响农业生产的进程,造成工时的延误。

  • 润滑油常用检测指标及测定意义-极压性能(PB、PD、ZMZ)

    极压性能(PB、PD、ZMZ)  润滑油极压抗磨性能是齿轮油、液压油、润滑脂、工艺用油等润滑剂的重要性能指标。具有极压抗磨性能的油品,都必须进行极压抗磨性能的模拟评定。常用的模拟评定试验机有四球机、梯姆肯环块试验机、Falxe试验机、FZG齿轮试验机、Almen试验机、SAE试验机等等。应用比较普遍的有四球机、梯姆肯环块试验机、FZG齿轮试验机。  四球试验机模拟试验:测定润滑油脂的减摩性、抗磨性和极压性。减摩性用摩擦系数“f”表示和抗磨性能用磨痕直径“d”表示;极压性用无卡咬负荷“PB”、烧结负荷“PD”和综合磨损值“ZMZ”表示。国内标准试验方法有GB/T 3142润滑剂承载能力测定法、GB/T 12583润滑剂承载能力测定法、SH/T 0189润滑油磨损性能测定法、SH/T 0202润滑脂四球机极压性测定法、SH/T 0204润滑脂抗磨性能测定法。国外标准试验方法有ASTM D 2783润滑油极压性测定法、ASTM D4172润滑油抗磨性测定法、ASTM D2596润滑脂极压性测定法、ASTM D2266润滑脂抗磨性测定法。  无卡咬负荷PB(N),在试验条件下,使试验钢球不发生卡咬的无卡咬负荷,它代表油膜强度。  烧结负荷PD(N),在试验条件下,使试验钢球发生烧结的负荷为烧结负荷,它代表润滑剂的极限工作能力。  综合磨损值ZMZ(N),综合磨损值ZMZ是润滑剂在所加负荷下使磨损减少到小的抗极压能力的一个指数,它等于若干次校正负荷的平均值

  • 工程机械如何选择润滑脂

    [color=#333333]1)[/color][color=#333333]所选的润滑脂应与被润滑摩擦副的使用速度相适应[/color][color=#333333]在高转速时,要选用低粘度基础油制成的锥入度较大的[/color]润滑脂[color=#333333];对于低速用的脂,应选择以高粘度基础油制成的高锥入度牌号的润滑脂。[/color][color=#333333]2[/color][color=#333333])根据设备工作温度选用润滑脂[/color][color=#333333]这主要是看润滑脂的滴点、蒸发量及高温水淋性能、基础油的粘度。润滑脂的使命用温度应至少低于其滴点[/color][color=#333333]20~30[/color][color=#333333]℃[/color][color=#333333]。在使用温度高时,应选择抗氧化性能好、蒸发损失小和滴点高的脂;在使用温度低时,应选择低启动矩、相似粘度小的脂,如以[/color]合成油[color=#333333]为基础油的脂。[/color][color=#333333]3)[/color][color=#333333]应与负荷大小相适应[/color][color=#333333]重负荷时,应选基础油粘度高、稠化剂含量高的润滑脂。负荷特别大时,应注意选择加有极压添加剂或填料[/color][color=#333333]([/color][color=#333333]二硫化钼、石墨[/color][color=#333333])[/color][color=#333333]的润滑脂;中低负荷时,一般选用[/color][color=#333333]2[/color][color=#333333]号稠度皂纤维结构短、中等粘度基础油的润滑脂。[/color][color=#333333]4)[/color][color=#333333]应与所使用的环境条件相适应[/color][color=#333333]在空气潮湿或与水接触的环境下,应选用钙基、锂基、复合锂基等抗水性好的脂;尘埃多时,应选择较稠硬[/color][color=#333333]([/color][color=#333333]即牌号高一些[/color][color=#333333])[/color][color=#333333]的脂,这样密封性较好,可防止杂质混入摩擦副中。在强化学介质环境下,应选用合成油润滑脂。[/color][color=#333333]5)[/color][color=#333333]应与摩擦副的工作状态相适应[/color][color=#333333]如在振动较大时,应用粘度高、粘附性和减振性好的脂,如高粘度环烷基或混合基润滑油稠化的复合皂基润滑脂[/color][color=#333333]6)[/color][color=#333333]应与其使用目的的相适应[/color][color=#333333]对于润滑用的脂须近摩擦副的类型、工况、工作状态、环境条件和供脂方式等的不同而作具体选择;对于保护用的脂,能有效地保护金属免受腐蚀,如保护与海水接触的机件,应选择粘附能力强、抗水能力大的铝基润滑脂;一般保护用脂可选用固体烃稠化高粘度基础油制成的脂。对于密封用脂,应注意其抵抗被密封介质溶剂的性能。[/color][color=#333333]7)[/color][color=#333333]满足要求的情况下,尽量选用锂基脂、复合皂基脂、聚脲脂等多效通用润滑脂[/color][color=#333333]这样,既减少脂的品种,简化脂的管理,且因多效脂使用寿命长而可降低用脂成本,减少维修费用。[/color][color=#333333]8)[/color][color=#333333]应与摩擦副的供脂方式相适应[/color][color=#333333]属集中供脂时,应选择[/color][color=#333333]00-1[/color][color=#333333]号润滑脂;对于定期用脂枪、脂杯等加注脂的部位,应选择[/color][color=#333333]1-3[/color][color=#333333]号润滑脂;对于长期使用而不换脂的部位,应选用[/color][color=#333333]2[/color][color=#333333]号或[/color][color=#333333]3[/color][color=#333333]号润滑脂。[/color]

  • 轴承防锈油遇到润滑脂会产生什么化学反应

    轴承防锈油遇到润滑脂会产生什么化学反应润滑油是由基础油和添加剂调和而成的,防锈油里除了有基础油之外一般添加防锈、抗氟等添加剂,有的溶剂型防锈油还会添加溶剂等,而添加剂有的会出现相互抵抗的情况导致效果互相低消。防锈油如果涂抺太多,会造成防锈油将轴承表面油脂化开的现象,量少则不会对轴承内部装填的油脂造成太大影响。如果是开式轴承(一般需要装机前装填润滑脂的那种),因生产出来到使用一般间隔很长时间,轴承的外表面和滚道中及其他附件,表面都是有防锈油存在的,防锈油的作用主要是防锈,不起润滑作用,所以这种轴承在使用前应该用汽油等溶剂洗净表面的防锈油并晾干,再装填油脂进去。另外装轴承以前在设备上涂抹润滑脂,主要作用是起到装配轴承时容易操作、长期防锈,两者不会产生化学反应。

  • 浅谈润滑油检测项目及标准

    包括外观、密度、粘度、粘度指数、闪点、凝点和倾点、酸值、碱值和中和值、氧化安定性、热安定性等。主要标准有:  GB/T12579-2002润滑油泡沫特性测定法  GB/T12709-1991润滑油老化特性测定法(康氏残炭法)  GB/T1995-1998石油产品粘度指数计算法  GB/T2433-2001添加剂和含添加剂润滑油硫酸盐灰分测定法  GB/T260-1977石油产品水分测定法  GB/T265-1988石油产品运动粘度测定法和动力粘度计算法  GB/T269-1991润滑脂和石油脂锥入度测定法  GB/T3535-2006石油倾点测定法  GB/T3536-2008石油产品闪点和燃点的测定克利夫兰开口杯法  GB/T4929-1985润滑脂滴点测定法  GB/T511-1988石油产品和添加剂机械杂质测定法(重量法)  GB/T6538-2000发动机油表观粘度测定法(冷启动模拟机法)  GB/T7305-2003石油和合成液水分离性测定法  GB/T7326-1987润滑脂铜片腐蚀试验法  GB/T9171-1988发动机油边界泵送温度测定法  ASTMD5133-05采用温度扫描技术的润滑油的低温、低剪切率、粘性温度关系的标准试验方法  ASTMD5293-09用冷启动模拟器测定-5~-30℃之间发动机油和基础原料表观粘度的标准试验方法  ASTMD5800-08用NOACK法测定润滑油蒸发损失的标准试验方法  ASTMD6082-06润滑油高温起泡特性的标准试验方法  ASTMD6335-09用热氧化机油模拟试验测定高温沉积物的标准试验方法  ASTMD6616-07在摄氏100度时用锥形承载模拟器粘度计测量高剪切速率时粘度的标准试验方法  ASTMD6821-02(2007)恒定剪切应力粘度计中传动线路润滑剂的低温粘度的标准试验方法  ASTMD7097-06a用热氧化机油模拟试验测定中高温沉积物的标准试验方法  ASTMD7098-08ε1用薄膜氧气吸收(TFOUT)催化剂B测定润滑剂氧化稳定性的标准试验方法  ASTMD7110-05a使用过和含油烟发动机油在低温下的粘度温度关系标准试验方法  ASTMD86-09ε1大气压下石油产品蒸馏的标准试验方法  DIN51352-1-1985润滑剂检验.润滑油老化性能的测定.残碳增加.用残碳测定法.根据通入空气后的老化情况测定  DIN51575-1984矿物油检验.硫酸盐灰分的测定  DINENISO2592-2002石油产品.闪点和燃点的测定.克利弗兰得(Cleveland)开杯法  SH/T0059-1996润滑油蒸发损失测定法(诺亚克法)  SH/T0251-1993石油产品碱值测定法(高氯酸电位滴定法)  SH/T0327-1992润滑脂灰分测定法  SH/T0562-2001低温下发动机油屈服应力和表观粘度测定法  SH/T0618-1995高剪切条件下的润滑油动力粘度测定法(雷范费尔特法)  SH/T0631-1996润滑油和添加剂中钡、钙、磷、硫和锌测定法(X射线荧光光谱法)  SH/T0704-2001石油及石油产品中氮含量测定法(舟进样化学发光法)  SH/T0722-2002润滑油高温泡沫特性测定法  SH/T0751-2005高温和高剪切速率下粘度测定法(锥形塞粘度计法)  ISO3016-1994石油.倾点的测定  ISO6614-1994石油产品矿物油和合成液水分离的测定?

  • 润滑油检测标准,检测项目有哪些

    包括外观、密度、粘度、粘度指数、闪点、凝点和倾点、酸值、碱值和中和值、氧化安定性、热安定性等。主要标准有:ASTMD5133-05采用温度扫描技术的润滑油的低温、低剪切率、粘性温度关系的标准试验方法ASTMD5293-09用冷启动模拟器测定-5~-30℃之间发动机油和基础原料表观粘度的标准试验方法ASTMD5800-08用NOACK法测定润滑油蒸发损失的标准试验方法ASTMD6082-06润滑油高温起泡特性的标准试验方法ASTMD6335-09用热氧化机油模拟试验测定高温沉积物的标准试验方法ASTMD6616-07在摄氏100度时用锥形承载模拟器粘度计测量高剪切速率时粘度的标准试验方法ASTMD6821-02(2007)恒定剪切应力粘度计中传动线路润滑剂的低温粘度的标准试验方法ASTMD7097-06a用热氧化机油模拟试验测定中高温沉积物的标准试验方法ASTMD7098-08ε1用薄膜氧气吸收(TFOUT)催化剂B测定润滑剂氧化稳定性的标准试验方法ASTMD7110-05a使用过和含油烟发动机油在低温下的粘度温度关系标准试验方法ASTMD86-09ε1大气压下石油产品蒸馏的标准试验方法DIN51352-1-1985润滑剂检验.润滑油老化性能的测定.残碳增加.用残碳测定法.根据通入空气后的老化情况测定DIN51575-1984矿物油检验.硫酸盐灰分的测定DINENISO2592-2002石油产品.闪点和燃点的测定.克利弗兰得(Cleveland)开杯法GB/T12579-2002润滑油泡沫特性测定法GB/T12709-1991润滑油老化特性测定法(康氏残炭法)GB/T1995-1998石油产品粘度指数计算法GB/T2433-2001添加剂和含添加剂润滑油硫酸盐灰分测定法GB/T260-1977石油产品水分测定法GB/T265-1988石油产品运动粘度测定法和动力粘度计算法GB/T269-1991润滑脂和石油脂锥入度测定法GB/T3535-2006石油倾点测定法GB/T3536-2008石油产品闪点和燃点的测定克利夫兰开口杯法GB/T4929-1985润滑脂滴点测定法GB/T511-1988石油产品和添加剂机械杂质测定法(重量法)GB/T6538-2000发动机油表观粘度测定法(冷启动模拟机法)GB/T7305-2003石油和合成液水分离性测定法GB/T7326-1987润滑脂铜片腐蚀试验法GB/T9171-1988发动机油边界泵送温度测定法ISO3016-1994石油.倾点的测定ISO6614-1994石油产品矿物油和合成液水分离的测定SH/T0059-1996润滑油蒸发损失测定法(诺亚克法)SH/T0251-1993石油产品碱值测定法(高氯酸电位滴定法)SH/T0327-1992润滑脂灰分测定法SH/T0562-2001低温下发动机油屈服应力和表观粘度测定法SH/T0618-1995高剪切条件下的润滑油动力粘度测定法(雷范费尔特法)SH/T0631-1996润滑油和添加剂中钡、钙、磷、硫和锌测定法(X射线荧光光谱法)SH/T0704-2001石油及石油产品中氮含量测定法(舟进样化学发光法)SH/T0722-2002润滑油高温泡沫特性测定法SH/T0751-2005高温和高剪切速率下粘度测定法(锥形塞粘度计法)

  • 【分享】我国四项润滑油新国标与国际接轨

    我国四项润滑油新国标与国际接轨 日前,新版国家标准《液压油》、《工业闭式齿轮油》、《涡轮机油》、《变压器油》顺利发布,并将于 2012 年 6 月 1 日实施。本次新发布的四项国家标准,均采用国际标准,结合我国国情编制完成,具备国际先进性。而以昆仑润滑油为代表的一批国内自主品牌,依托强大的科研能力,始终坚持应用为先的产品研发理念,以领先的技术水准来推动中国变压器油国家标准与国际接轨,助力我国工业水平的进步。 据了解,中国石油润滑油公司在变压器油研发领域有着先天的扎实基础和传承。自上个世纪六十年代起,中国石油便紧密配合国家电力事业的发展,组成了开发特种环烷基油产品的科研队伍。多年来,中国石油润滑油公司的科研人员不但提供了大量优质的 25 号、 45 号变压器油,还研制生产了超高压变压器油,供国产和进口 500 千伏变压器使用,成功地替代了进口油品,改变了我国之前高端特种油品被国外产品垄断的历史。 经过半个多世纪的发展,中国石油润滑油公司生产的高压直流输电变压器润滑脂的质量标准已达到国际著名变压器生产商瑞士尼纳斯公司的先进水平,通过了西门子、 ABB 等跨国变压器制造商的评定和认证,成为国内超高压输变电工程指定的独家产品,并占据全国 60% 以上的市场份额。尤为值得肯定的是,中国石油润滑油公司以环烷基稠油为基础油研制成功了高压直流输电换流变压器地缘油,填补了我国电气绝缘油产品的空白。 如今,昆仑防冻液以其优良的电气性和良好的抗老化性能,成为全国电力行业的首选产品,被誉为国内变压器油第一品牌,并成功进入输变电领域的高端市场。领先的技术标准不仅确保了昆仑润滑油变压器油国内领先、国际先进的地位,也助推了我国润滑油国家标准与国际接轨的进程。 作为一个具有强烈社会责任感的大型国有企业,中国石油润滑油公司一直以来始终走在行业发展前列,无论在科技研发还是产品应用方面。在提升企业标准水平的同时,更加注重对产品质量的要求,努力肩负起引领本土润滑油快速提升的历史使命。

  • 食品级机油与食品级润滑油有何区别?

    徐工:食品级机油,食品机械润滑油简称。狭义指的是食品级液压油 ISO VG32、46、68;广义指的是食品级液压油、齿轮油、链条油、压缩机油、导热油、白油。食品级润滑油按用途分为食品级液压油、齿轮油、链条油、压缩机油、导热油、白油。食品级润滑油和食品级润滑脂都是食品级润滑剂一种。

  • 润滑脂常见润滑故障及对策

    [align=left]正确地选用润滑脂,只是保证设备维持良好运行的第一步。而当润滑部件出现故障时,及时分析故障原因并解决也是很关键的。那么润滑过程会遇到哪些常见故障,这些问题又该如何解决呢?[/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/07/202207291607573646_4888_5650439_3.jpeg[/img][/align][font='calibri'][size=13px]设备温度超限[/size][/font][font='calibri'][size=13px]现象一[/size][/font]新设备或旧设备更换新轴承,开始运转温升快且高,运转磨合后温度仍超限[font='calibri'][size=13px]故障分析及对策[/size][/font]1. 润滑脂装填量过多,一般润滑脂只需要填充轴承空腔的1/2~2/3;2. 润滑脂基础油黏度过大或润滑脂稠度过高,需更换合适稠度的润滑脂;3. [font='times new roman']K[/font][font='times new roman'][sub][size=13px]a[/size][/sub][/font][font='times new roman'][size=13px]×[/size][/font][font='times new roman']n[/font][font='times new roman']×[/font][font='times new roman']d[/font][font='times new roman'][sub][size=13px]m[/size][/sub][/font]过大,需要选择润滑油润滑;4. 轴承内含有颗粒机械杂质,更换润滑脂即可。[font='calibri'][size=13px]现象二[/size][/font]正常运转轴承温升快且高[font='calibri'][size=13px]故障分析及对策[/size][/font]1. 全密封轴承内润滑脂失效,更换新脂;2. 非密封轴承内补充新脂周期过长,润滑脂不足;3. 集中润滑系统管路或分配器堵塞,供脂不足。[font='calibri'][size=13px]设备震动和异常响声[/size][/font][font='calibri'][size=13px]现象一[/size][/font]设备在正常运转中出现异常震动[font='calibri'][size=13px]故障分析及对策[/size][/font]1. 润滑脂不足,使接触面微突体相互碰撞,产生高频冲击脉冲震动,润滑状态恶化,轴承表面产生剥落;2. 润滑脂选用不当,需选择极压脂和稠度适合的脂;3. 润滑脂失效和供脂管路堵塞,供脂中断。[font='calibri'][size=13px]现象二[/size][/font]出现不规则异常响声[font='calibri'][size=13px]故障分析及对策[/size][/font]1. 若异常响声的周期及频率均无规律,可能是润滑脂失效或进入了杂质,应更换润滑脂;2. 若异常响声的周期和频率有一定的规律,可能是轴承局部损坏,应更换轴承。[font='calibri'][size=13px]轴承滚动表面损坏[/size][/font][font='calibri'][size=13px]现象一[/size][/font]磨损[font='calibri'][size=13px]故障分析及对策[/size][/font]设备运转负荷过大或润滑脂流失,摩擦表面处于边界摩擦状态导致磨损。可以选择极压脂或润滑脂稠度及基础油黏度较大的产品。[font='calibri'][size=13px]现象二[/size][/font]微动磨损[font='calibri'][size=13px]故障分析及对策[/size][/font]处于缓慢摆动和静置状态的轴承,当外界强烈震动和负荷很大时,轴承受力部位产生微小压痕和金属氧化粉末。应选用极压润滑脂。[font='calibri'][size=13px]现象三[/size][/font]早期疲劳点蚀和咬合[font='calibri'][size=13px]故障分析及对策[/size][/font]1. 油膜破损导致早期疲劳点蚀或咬合。中速运转轴承当油膜破损时,在高接触应力和摩擦力作用下,产生早期疲劳点蚀;高速运转轴承当油膜破损时,导致轴承工作面黏着和撕裂。应选用极压脂或稠度较大的脂;2. 供脂管路堵塞,润滑脂不足。[font='calibri'][size=13px]现象四[/size][/font]锈蚀[font='calibri'][size=13px]故障分析及对策[/size][/font]润滑脂中含有金属腐蚀成分,应更换新脂。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制