当前位置: 仪器信息网 > 行业主题 > >

湿法大量程激光粒度仪

仪器信息网湿法大量程激光粒度仪专题为您提供2024年最新湿法大量程激光粒度仪价格报价、厂家品牌的相关信息, 包括湿法大量程激光粒度仪参数、型号等,不管是国产,还是进口品牌的湿法大量程激光粒度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合湿法大量程激光粒度仪相关的耗材配件、试剂标物,还有湿法大量程激光粒度仪相关的最新资讯、资料,以及湿法大量程激光粒度仪相关的解决方案。

湿法大量程激光粒度仪相关的资讯

  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style=" text-indent: 2em " 涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。 /p p style=" text-indent: 2em " 激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。 /p p style=" text-indent: 2em " /p p style=" text-indent: 2em " 1 实验部分 /p p style=" text-indent: 2em " 1.1 主要原料及仪器 br/ /p p style=" text-indent: 2em " 钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。 /p p style=" text-indent: 2em " 1.2 试验方法 /p p style=" text-indent: 2em " (1) 干法测试 /p p style=" text-indent: 2em " 称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。 span style=" text-indent: 2em " (2) 湿法测试 /span /p p style=" text-indent: 2em " 湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。 span style=" text-indent: 2em " 1.3 粒径分布参数 /span /p p style=" text-indent: 2em " Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。 /p p style=" text-indent: 2em " 2 结果与讨论 /p p style=" text-indent: 2em " 2.1 钛白粉粒径分布的测试 /p p style=" text-indent: 2em " 2.1.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title=" 1.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。 /p p style=" text-indent: 2em " 2.1.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title=" 2.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。 /p p style=" text-indent: 2em " 2.1.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title=" 3.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。 /p p style=" text-indent: 2em " 2.1.4 钛白粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。 /p p style=" text-indent: 2em " 2.2 滑石粉粒径分布的测试 /p p style=" text-indent: 2em " 2.2.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title=" 4.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。 /p p style=" text-indent: 2em " 2.2.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.4 滑石粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。 /p p style=" text-indent: 2em " 2.3 石墨烯粒度分布的测试 /p p style=" text-indent: 2em " 2.3.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title=" 7.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。 /p p style=" text-indent: 2em " 2.3.2 湿法测试(不加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title=" 8.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。 /p p style=" text-indent: 2em " 2.3.3 湿法测试(加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title=" 9.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。 /p p style=" text-indent: 2em " 2.3.4 石墨烯2种测试方法之间的差异 /p p style=" text-indent: 2em " 从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。 /p p style=" text-indent: 2em " 2.4 涂料粒径分析干法和湿法之间的差异 /p p style=" text-indent: 2em " 干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。 /p p style=" text-indent: 2em " 2.5 干法和湿法测试的重复性比较 /p p style=" text-indent: 2em " 2.5.1 干法测试重复性 /p p style=" text-indent: 2em " 重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title=" 10.webp.jpg" / /p p /p p style=" text-indent: 2em " 2.5.2 湿法测试重复性 /p p style=" text-indent: 2em " 选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title=" 11.webp.jpg" / /p p /p p style=" text-indent: 2em " 目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。 /p p style=" text-indent: 2em " 影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。 /p p style=" text-indent: 2em " 3 结语 /p p style=" text-indent: 2em " 讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。 /p p style=" text-indent: 2em " 在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。 /p
  • Fritsch激光粒度仪免费测试公告
    各位尊敬的客户:   您好!   德国Fritsch GmbH是一家实验室样品处理以及粒度分析仪器设计和生产的专业性公司,凭借对客户认真负责的态度,已经在全球拥有了相当多的客户群。并且得到了客户的一致好评! 我司自2011年成为FRITSCH激光粒度仪在中国的独家代理商。 现代理的&ldquo analysette 22&rdquo 系列激光粒度仪有以下2种型号: 型号 量程 MicroTec plus 0.08-2000 um NanoTec 湿法:0.01-2000 um 干法:0.1-2000 um 以上产品均适用于干粉或悬浮液或乳剂中颗粒度分布测试。 其中Micro Tec plus是德国FRITSCH公司最具代表性的新型大量程激光粒度仪,它除了将主流的反傅里叶技术与它专利的移动样品池技术相结合,使测量范围达到0.08um~2000um,以及利用高品质的零件将光学平台垂直设计节省了很多的空间之外,还具有以下优势: 选用了分辨率最好的光束,双激光束设计: 绿色 (532nm), 红色 (ca. 940nm);可调节的超声波探头及水泵动力;模块化设计,将干法分散仪、湿法分散仪、检测系统独立分开,并且在10-20S就能实现干、湿法的转换;高效的自动光束测量阵列可调节容积, 通过电脑可实现选择:300、400、500ml适用于在水相及大多数有机相(例如异丙醇) 中使用先进的曲光系统测量时间ca. 10 sec.测量单元使用 Cardridge-like 设计 - 易于转换改变优秀的软件系统:采用图形设计的能够支持新32位操作系统的各项功能,标准功能非常广泛,用户也可在多处对程序机型修改从而满足不同的需要。 德国FRITSCH公司一直为全球的用户提供免费的产品测试服务,在欧洲甚至有专门的实验车,可以亲临现场为用户服务。因为我们认为,只有经过实验,才能为用户选择最为合适的产品。 为将这一服务带到中国,我司现已成立粒度分析实验室,为广大的国内用户提供免费的样品测试服务,您只需按照以下步骤即可轻松享受这一服务: 在《资料中心》下载《测试申请表》填写后发送至我司邮箱,我司工作人员会在3个工作日内主动与您联系;您也可直接拨打我司服务电话,由我司工作人员为您服务;经我司确认后,您可选择将样品邮寄或送至我司,我司热忱欢迎广大客户亲临我司参与检测过程;测试完成后我司可提供正式的检测分析报告。 欢迎广大客户前来测试! 我司联系方式: 邮寄地址:北京市海淀区中关村东路18号财智国际大厦A座1505室 电 话:010-82600826-19 传 真:010-82382580 E-MAIL:info@chinyee.cn lt@chinyee.cn
  • 欧美克激光粒度仪应用体验的高速发展
    商用激光粒度仪从上世纪70年代面世以来,仪器的光学设计、各光电部件的规格和品质、样品适应性的干湿法进样系统性能、反演算法等方面均得到不断的进步。随着测量技术不断迭代升级,测试范围和灵敏度也在不断提高,加之激光粒度仪具有的测试范围宽、样品适应性广、测试过程便捷快速、维护需求少、重现性佳等优点,近些年其不断获得众多颗粒相关行业认可,逐步大量地取代了传统筛分、沉降、显微图像等方法成为了颗粒粒径分析和质控的主流仪器。随着技术的日臻成熟,用户对激光粒度仪的期待也逐步从复杂的科学仪器到简便的测量工具的转变。自2010年欧美克加入思百吉集团(Spectris plc.),成为马尔文帕纳科(Malvern Panalytical)的子品牌后,欧美克秉持集团公司以客户为中心的价值观,在新粒度仪开发中不仅着力于引进诸如低杂散光高动态范围光学设计、一体化多探测器工装装配工艺、双色光源全散射角覆盖、高精确度反演算法等等国际先机技术和工艺,同时针对客户测试应用和管理体验的实际需求也进行了重点的开发和改善。在一系列仪器的开发升级中除了始终保持高性能外,亦将与用户仪器应用体验息息相关的更高水平的自动化、智能化、标准化、易操作、少维护、好管理、更安全及友好的数据分析和报告输出等作为重要的发展方向和目标,使得以OMEC LS-609、Topsizer等为代表的系列激光粒度分析仪不断完善,在具有良好的测试性能同时满足用户的多种不同个性化需求,在简便了用户的日常操作维护管理的同时提供了更佳的使用体验。本文试着逐一地举例向读者简要介绍。测试与使用自动化针对越来越多企业使用激光粒度仪进行质控,许多实验室测样量大,技术人员工作负荷高的现象,欧美克在仪器硬件设计上不断增加了自动化控制功能,例如以自动对中或对中智能判断的主机搭配主流的SCF-105B全自动湿法进样循环系统、DPF-110自动化干法进样系统均可以实现一般测试全流程的软件自动化控制。通常情况下,用户仅需要按软件提示将多个干湿法样品依次加入到样品池,仪器可以对这些样品进行自动进样,自动分散,自动测量,自动输出测试报告结果的处理,同时仪器在测试结束后还可以自动进行清洗,多个样品批量测试过程已经被简化。湿法、干法进样器控制面板如上所述,针对质检人员的日常工作,软件专门设计了SOP(标准作业程序)功能,仅需两步(运行程序?加入样品)即可完成高质量粒度测试。软件同时搭配超阈值警告功能,系统根据测试结果自动进行特征粒径结果的阈值分析,直接给出样品是否符合设定的质量阈值的提示。操作者无需查看具体结果数值就可以轻松快速根据警示页面判断样品是否符合质控要求。智能化仪器智能化的目的主要是解决粒度仪测试时由于操作者忽略的仪器状态或加样错误等原因导致的结果的偏差。例如:欧美克开发了对中状态智能判断功能,开启后软件可以自动进行仪器背景状态和光学对中进行判断,根据判断结果自动采取对中或进入测试下一步的操作,为用户节省了大量的时间并延长了对中机构的寿命。在湿法测试中,加样量的智能识别和调整功能,系统会自动识别判断加样量,根据需要提醒操作者继续加样至满足要求或是在加样过量的情况下自动控制调低样品量后进行测量。在干法测试中,智能下料状态动态分析功能可以对流动性不佳样品下料的稳定性自动判断,同时将超量下料和下料中断时的光能信号和测量时间等进行自适应调整。以上的智能化功能保障了测试结果的可靠性,极大减少了测试分析人员的不熟练或疏失的影响。欧美克LS-909激光粒度分析仪同时,在粒度仪智能化设计中,多种影响测试因素的感知和自主分析功能是重要的一环。例如欧美克的干法测试系统皆含有直接定位于分散管的正压传感器及定位于窗口后方的负压传感器,相对于传统的仅对分散压输入处的压力控制,智能系统能对干法分散全过程的压力条件得到最真实的记录和控制,并使得仪器可以智能化自主判断仪器状态和测试数据的可靠性,有力保障了仪器长期使用分散测样条件的一致性和测试结果的重现性,使得原料药、制药及精细化工等行业方法的迁移,测试条件的追溯都有据可循,同时避免了欠压状态测试结果错误的影响。LS-909还带有自适应噪声抑制智能算法,能对探测器信号进行多次反演后进行原始功能自适应匹配修正再分析,有效的提高了仪器分析动态范围。此外,欧美克中高端粒度仪还具有折射率(包括实部和虚部)的自动分析计算等功能。可以通过结合多次取样测试结果的自动智能分析,给出推荐参数。标准化仪器的标准化包括仪器生产工艺和仪器测试条件的标准化,对于粒度测试结果的重现性是至关重要的。早先的激光粒度仪不同仪器之间的一致性较差,这主要是由仪器的多个光学部件在生产装配时的相对位置一致性不佳及杂散光水平不一致造成的。欧美克新的系列激光粒度仪在生产工艺上采用了一体式工装,包括主探测器、侧向、大角及后向探测器的所有探测器都由工装一次性定位,同时在所有探测器上设置仅对窗口颗粒开口的光学屏蔽罩,极大的减少了系统杂散光的干扰,保障了同型号不同仪器之间的测试结果的一致性。LS-609一体式工装定位大角探测器组同时进样器颗粒进样、分散的一致性也得到充分的考量和改进,例如:在开发湿法循环进样器SCF-105B的时候,面对传统电流控制离心泵转速精确度较低的问题,我们在进样器中加入了电机测速装置,通过数字反馈控制电机精确运转,从而保障了泵速显示真正的所见即所得,使得不同进样器之间的分散条件一致性得到提高,也保障了不同粘度介质测量的泵速数据真实可靠。又比如上章节提到的干法进样系统分散压传感器和负压传感器,使得粉体在下料后的全测量管道内状态精确可控,对于测试方法开发确定压力条件及测试中的欠压异常的甄别都有极大帮助。结合主机和进样系统的智能感知、精密控制功能,欧美克现代激光粒度仪真正实现了加样后全流程的测量方法和测试条件的标准化,当经过方法开发的这些对样品的条件被以SOP文件的方式固定下来后,只需要拥有最基本电脑操作和测试常识的操作人员均可以胜任标准化测试工作,同时测试过程条件的数字化记录可以随时用于追溯。欧美克SCF-105B、SCF-108A全自动湿法进样器欧美克DPF-110干法进样器易操作得益于高性能自动化智能化标准化的粒度仪开发,使得粒度仪可以满足用户高精确方法开发、低人工操作需求的标准化测试,逐步向高精密、傻瓜化的方向同时发展。针对粒度测试方法开发人员,欧美克粒度仪使用的集成粒度测试软件内置的大量数据分析筛选比对功能模块,例如除了拥有每个测试的独立报告外,系统还能够自动将多个测试的结果以统计数据图表呈现。且根据需要可以对这些数据按各种测试相关条件进行分类、筛选和排序。根据方法开发中大量数据统计和对比的需要,软件中同时集成了多报告的统计、比较和特征粒径趋势分析功能,通过这些功能使方法开发者可以轻松获得可视化过程结果,以用于测试条件的快速判断和决策。此外,软件还具有一键导出SOP功能,直接将方法开发中理想的测试条件,通过测试记录快速保存为标准化的SOP测量文件。现代化的欧美克集成粒度测试软件采用迭代开发模式,不断的进行优化和升级,不仅具有时代潮流风格的软件UI界面,其针对用户的文件操作、测试操作、数据分析等常见操作行为,进行分类分区图标化管理。在用户需要的大多数操作均可以以快捷按钮一键执行之外,我们通过大量用户操作行为分析,新的版本还将大量用户测量需要执行的多个连续操作进行合并,使其一样可以一键化执行,例如通过将常用SOP直接显示在操作面板上,用户仅需要双击软件测试面板上的SOP文件图标就可以执行完整的多样品测试,再比如传统手动测试需要的加介质、开启泵速循环、排气泡、对中、测背景等常规准备操作亦可以一键式点击仪器测样前准备按钮实现。欧美克Topsizer激光粒度分析仪
  • 在线激光粒度仪知多少?
    p style=" text-indent: 2em " 在线激光粒度分析仪由一般由采样系统、物料稀释系统及激光测量系统三大部分组成。其与常规离线的激光粒度粒度分析的区别主要在于采样和稀释不同。 /p p style=" text-indent: 2em " 采样系统: /p p style=" text-indent: 2em " 水和浆料会同时流过取样阀两条管道,管道一接着粒度测量系统,管道二是生产线的旁路。当系统发出采样信号时,取样阀会旋转180度,从管道二取出一部分样品进入了管道一,被输送到下一个部件–稀释器。为保证取样的代表性,每次采样阀动作5次,即采5个2.5ml的样品,再进行稀释测量。 /p p style=" text-indent: 2em " 稀释系统: /p p style=" text-indent: 2em " 结合使用预稀释器和级联稀释器。预稀释器是一个装有气动搅拌器以及用于控制稀释状态的液位传感器的容器。浆料样品自动地注入预稀释罐进行第一步的稀释,样品通过罐内的搅拌器自动混合,高低位传感器自动地控制预稀释罐的填充和清空。级联稀释器以同轴文氏管为基础,没有运动部件,可以同时稀释和同时分散。联稀释器的设计使用了流体力学模型软件。每个文氏管的动力来自于外部的供水,当通过文氏管区域的时候流体的速度增加。能加入额外的文氏管来增加稀释率。两个稀释仪均可进行自我清理,以便最大限度地减少任何应用中的稀释液用量。级联稀释器内部的文氏管喷更有效分散颗粒使测量数据准确可靠,防止稀释休克。 /p p style=" text-indent: 2em " 激光粒度仪的测量基本原理是:当粒子流通过光学测量池时探测器收集特定时刻特定范围内的散射光,通过大量的扫描并对结果取平均值,得到具有代表性的散射模式。根据Mie理论,光碰到圆形的粒子时发生散射,如果知道粒径和粒子的光学特性,如折光率和吸光度,就能够精确地预测光的散射模式。每种尺寸的离子具有它自身的特征散射模式,就象指纹一 /p p style=" text-indent: 2em " 样,没有一个是重复的。从这一理论反推,确定一系列粒子的散射模式,就可以得到这个系列的粒径及各种粒子所占比例,即粒度分布。 /p p style=" text-indent: 2em " 在线激光粒度仪具有如下的性能特点: /p p style=" text-indent: 2em " 1.能给出极为详尽的粒度分布数据。包括粒度分布表、粒度分布曲线、中位径、平均粒径、边界粒径(能根据用户需求界定粒度分布范围)。 /p p style=" text-indent: 2em " 2.测量范围大,能覆盖的整个粒度范围。在一个量程内就能测量小至亚微米(约0.1 μ m),大至数百微米的粉体粒度。 /p p style=" text-indent: 2em " 3.测量速度快。测量一个样品只需3分钟左右,相当快捷。操作方便。现场安装完毕后,可在计算机上进行远程操作。 /p p style=" text-indent: 2em " 在线激光粒度仪可实现实时监测产品的粒度,具有操作简单、快速、准确的特点,在浆料性质变化不大的条件下,在线分析数据趋势比较平稳,分析稳定性较好。数据分析具有一定的代表性。随着工业生产对粒度检测实时性和速度的要求越来越高,在线激光粒度仪的研究和应用也日益广泛。 /p p style=" text-indent: 2em " 关于在线的粒度检测标准,冶金行业已有YB/T 4605-2017《烧结矿在线自动采样、制样、粒度分析及转鼓强度测定》和YB/T 4547-2016《焦炭在线自动采样、制样、粒度分析及机械强度测定技术规范》,但所用的方法都为筛分法。在线激光散射/衍射法相关粒度检测尚无国家及行业标准出台。另外,值得一提的是,烟台德信仪表有限公司有企业标准Q/0600YDX 001-2017 《在线粒度分析仪》出台。 /p
  • 法国Cilas公司推出全新激光粒度仪
    Cilas公司日前发布了全新的激光粒度仪产品线。新的cilas激光粒度仪在原有激光粒度仪最可信赖、高精确度和最易操作的基础上增加了更多自动化元素。包含多项最新专利的设计使其能够得到最高精确度和准确度的测试结果。   最新的符合工效学要求的取样界面使操作人员能够更高效的分析湿法和干法样品。短光具座专利技术使其坚固耐用,免校验。   Cilas公司新的产品线优势包括:将图像分析和激光衍射法完美的结合在一起。每一款Cilas激光粒度仪都可以配置形态专家图像分析系统。形态专家图像分析系统通过一个倒置的光学显微镜来分析颗粒的形态。这种综合的设计方式使样品同时可以进行粒径和形态的测定。每个系统都可以与干法和湿法模式进行完美的结合。这种专利的设计方式可以免去操作人员进行诸多手工调整的麻烦。分散模式之间的转换可以通过粒度专家软件进行完美的控制。新型干法喷射流分散系统内置一个新型文丘里管系统,增强了所有颗粒流参数的软件控制。新型的数字调节器精确的控制气压并使样品的分散达到最优。新的电路设计提高了系统的自动化水平。使用颗粒专家软件,所有的功能均可实现自动化。这种设计降低了能耗并且满足RoHS环境标准。   Cilas 新产品家族包括990, 1090 和1190激光粒度仪。三款激光粒度仪都可以配置湿法,干法,或是干湿两用。Cilas干湿两用机是目前市场上唯一一款干法和湿法分散模式完美结合的仪器。两种分散模式转换时无需进行硬件的重新排列。
  • 德国Fritsch激光粒度仪 诚招全国代理商
    德国Fritsch激光粒度仪 诚招全国代理商 &mdash &mdash 北京诚驿恒仪科技有限公司 北京诚驿恒仪科技有限公司是一家专业从事进口仪器设备引进的公司。公司自2006年成立以来,一直服务于各大高校及科研院所,为生化制药、石油化工、地质和新材料等高新技术领域提供先进的分析仪器设备和相应的试剂耗材,并得到了广大客户的一致好评。 目前公司主要代理产品如下: 德国Fritsch激光粒度仪; 德国Accurion(Halcyonics)高精度主动减震系统; 新西兰Rocklabs破碎、研磨系统及含金参比物; 德国J.U.M.在线总烃、甲烷和非甲烷监测仪 美国Savillex酸蒸馏器、等离子质谱雾化器及其他PFA材质的实验室器具; 公司为进一步扩展国内市场,此次特面向全国诚招德国Fritsch&mdash &mdash 激光粒度仪代理商: 一.品牌介绍: 德国Fritsch公司成立于1920年,是一家实验室样品处理以及粒度分析仪器设计和生产的专业性公司,一直以来样品制备和粒度分析的技术都是Fritsch的核心竞争力,它们的设备以最简便的操作和最可靠的技术而著称,Fritsch激光粒度仪更是有着超过25年的实践经验。 我司代理的&ldquo analysette 22&rdquo 系列激光粒度仪是Fritsch最具代表性的新型大量程激光粒度仪,应用了主流的反傅里叶技术与它专利的移动样品池技术,具备测量范围广,体积小,干湿分离易转换等一系列优点,并且采取了双激光束设计,为用户在最大限制度上提供质量保证。 二.代理优势: 1.产品技术含量高,具备不可比拟的市场竞争性 2.价格方面 我们将根据数量及金额给予代理商有竞争力的价格 3.服务方面,我公司有专职的技术工程师团队,对于产品的安装调试及产品出现的问题都可以进行快速的回应。 三.代理要求: 1.有销售粒度分析仪的成功项目 2.有粒度分析仪应用的行业背景 有意者可通过以下方式与我司联系: 招商电话:010-82382578 82601938 传 真:010-82382580 E-mail:info@chinyee.cn 公司网站:www.chinyee.cn 公司地址:北京市海淀区中关村东路18号财智国际大厦A座1505
  • 德国Fritsch激光粒度仪及样品前处理研讨会在京举办
    德国Fritsch GmbH作为实验室样品处理以及颗粒度分析仪器设计和生产的专业性公司,几年来凭借对客户认真负责的态度,已经在全球拥有了相当多的客户群。并且得到了客户的一致好评! 为了更好地让中国广大客户了解FRITSCH的产品,德国Fritsch GmbH于2009年3月31日,在北京中苑宾馆举行了“激光粒度仪及样品前处理专题研讨会”。共有100余名FritschGmbH的用户参加了本次研讨会,仪器信息网作为特约媒体也应邀参加。 激光粒度仪及样品前处理专题研讨会现场   德国Fritsch GmbH公司亚太地区技术总监Mr. Diels Ding首先向大家介绍了Fritsch GmbH公司的产品及在中国的总体概况:德国Fritsch GmbH主要从事生产实验室用研磨机(包括球磨机、研磨机、粉碎机、破碎机等)、振动筛分机、样品自动进样及分样系统。仪器适用于各种领域,包括食品、化学、制药、玻璃、陶瓷、塑料、建筑材料、煤炭,以及地质学和矿物学。Fritsch公司的研磨仪器可以处理全世界各个实验室99%以上的材料,并且达到“完美”的研磨效果。目前,中国作为德国Fritsch GmbH在全球进行推广的最大市场,已经得到了德国Fritsch GmbH在各方面的最大支持。 德国Fritsch GmbH公司亚太地区技术总监Mr. Diels Ding致辞   德国Fritsch GmbH公司产品经理Dr.Günther Crolly及Fritsch中国仪器设备有限公司中国地区经理胡烨先生向与会人员详细阐述了激光粒度测量的相关知识与激光粒度测量技术的最新进展。   对于德国Fritsch GmbH所生产的Nano Tec激光粒度仪(纳米型激光粒度仪),Dr. Günther Crolly表示,“我们可以提供客户全球此领域最有竞争力的价格,并且Nano Tec还具有全球最大的量程范围(10nm~2000um)以及全球最高的分辨率(512个测量通道)同时可以测量颗粒的形态。” 德国Fritsch GmbH公司产品经理Dr.Günther Crolly作技术报告 Fritsch中国仪器设备有限公司中国地区经理胡烨先生在现场讲解   除此以外,在本次研讨会上,德国Fritsch GmbH公司还向与会人员展示了其2009年1月推出的新品——新型大量程激光粒度仪(Analysette 22 Micro Tec Plus),是一款可完全替代紧凑型、微米型、大量程微米型的多功能激光粒度仪。介绍到此款仪器,Mr. Diels Ding表示,“将会在中国的粉体领域具有相当大的竞争力。” Fritsch公司大量程激光粒度仪Analysette 22 Micro Tec Plus(右二)及其它样品前处理产品   最后,Mr. Diels Ding和Dr.Günther Crolly就Fritsch GmbH公司的样品前处理系列产品——研磨机、筛分机、样品自动进样及分样系统,在现场为大家进行了免费的技术培训和讲解。 与会人员在观看学习
  • 7月Microtrac 激光粒度仪用户培训季精彩回顾
    大昌华嘉公司作为美国Microtrac激光粒度仪在中国的独家代理商,负责其所有的售前及售后服务,旨在为客户提供最优质的服务。美国Microtrac激光粒度仪在中国拥有非常广泛的客户群体。应众多用户要求,大昌华嘉于7月14日在上海举办了为期两天的粒度仪用户培训,本次培训会致力成为一个互动的平台,特邀请Microtrac 应用技术研究人员,为客户详细介绍粒度仪的理论应用技术以及维护保养等,会议于今天圆满结束,达到沟通技术,增进了解,熟练的使用操作仪器,相互合作的目的。美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。Microtrac 激光粒度分析与 S35001. 测量范围:0.01μ m-2,800μ m;2. 测量理论:静态光衍射 /散射技术,全量程米氏理论处理;3. 专利T激光系统,提高纳米 / 亚微米分辨率;4. 无需扫描,同步接受全量程散射光信号,保证分析结果的高重现性及全量程范围的高分辨率;5. 引进“非球形”颗粒校正因子,保证测量的准确性; Microtrac Inc.公司非常注重技术创新,近半个世纪以来,一直领先着激光粒度分析的前沿技术,可靠的产品和强大的应用支持及完善的售后服务,使得其不断超越自我,推陈出新,独领风骚。培训会现场回顾激光粒度仪应用技术讲解现场激光粒度仪维护保养讲解现场大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。????大昌华嘉商业(中国)有限公司服务电话:4008210778邮箱地址:ins.cn@dksh.com大昌华嘉网站:www.dksh-instrument.cn ????扫描关注“大昌华嘉科学仪器部”公众号
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • 如何选购激光粒度仪
    激光粒度仪主要由光学检测系统,分散进样系统及控制分析软件组成,而光学检测系统又包括光源,光路及检测器等关键部分。在选择激光粒度仪时要特别注意以下几点:   1、 光源   光源主要有氦氖气体激光器和半导体固体激光器两种 氦氖激光器具有线宽窄,单色性极好,而半导体激光器具有体积小,供电电压低,使用寿命较长,当颗粒较小时,根据瑞利散射理论,选用短波长的激光器更能提高小颗粒检测时的信号强度及信噪比。   2、 在光路配置上,需要考虑稳固的光学平台,自动对光功能,无需更换透镜就可以测量宽的粒径范围 如果需干法测量,粒径测量范围下限是否能达到0.1微米而同时上限可达1000微米以上。   3、 检测器是激光粒度仪的最关键部件之一,选择时不能只考虑检测器中检测单元的数量,还要看检测器的几何形状,排列方式,检测单元的面积及其真正的物理检测角度。   4、样品分散进样系统是保证样品正确分散和进样的重要附件,湿法分散进样器需要有内置超声和搅拌及足够力量的循环泵干法分散进样器需要有振动进样功能,样品池是否容易拆卸清洁也非常重要。   5、 软件是用于仪器控制和数据分析的,数据采集速度越快越好。如果颗粒粒径小于几十微米,在软件中需要有折射率和吸收率的数据库并能补充输入这些光学参数获得更为准确的结果。   6、 激光粒度仪测量的准确度和重现性或精度等指标,应该是针对标准样品,只在仪器样本上简单地标上0.5%或更小而不指明针对性,势必会误导   本文摘取自马尔文仪器有限公司资深工程师秦和义发表文章的部分内容   如果您觉得选购因素过多而无从下手,推荐您来激光粒度仪专场,包含马尔文、丹东百特、新帕泰克、麦奇克等近40家厂商的百余台主流产品。仪器信息为保证质量均经过人工严格审核,便捷导购,安心之选。   仪器信息网搜索:激光粒度仪 http://www.instrument.com.cn/zc/partical.asp
  • 欧美克激光粒度仪为中国水文监测提供助力
    中国的淡水资源总量为28000亿立方米,名列世界第四位。但是由于水资源分布不均,资源有效利用率并不高,水土流失情况也较为严重。因此水文监测体系的重要性不言而喻。降水量、河流湖泊水位监测,河流的流量监测、水体内的泥沙监测分析,这四项工作是水文监测工作的重要工作内容。水文工作人员在河流湖泊进行水体采样监测工作 我国水文监测数据采集体系经过近十几年技术飞速发展,数据资料收集的自动化程度有了较大提高。但是总的来说,水位和降水量数据收集的自动化程度要远远高于流量、泥沙数据收集。相对而言,流量、泥沙监测的新技术和新仪器应用水平还不高。中国的水土流失问题比较严重,河流泥沙治理开发工作任重道远,对水文工作的要求也愈来愈高 ,无论是防洪、水资源统一管理、还是生态环境的建设都需要水文监测数据采集过程的准确、及时,水文泥沙颗粒分析工作更是如此。当前,许多的水文站对河流泥沙颗粒的监测,依然应用传统的方法。用沉降干燥法测试泥沙含量,用沉降仪或者筛分法测试水体中泥沙颗粒的粒度分布。这类传统检测手段由于测量速度慢,精度低,无法应对现代水文监测对数据的准确性、及时性的需求。因此,迫切需要引入先进的仪器设备和测试手段。 激光粒度仪是当今主流的粒度分布检测设备,非常适宜用来替代沉降仪、标准筛等传统设备,对自然水体中的泥沙做粒度测试。同时,激光粒度仪使用光在介质中传播过程中的指数衰减定律(Beer-Lambert定律)和光散射理论,可以测得待测样品的体积浓度。这为激光粒度仪方便快捷的监测水体泥沙含量奠定了理论基础。理论上,如果已知颗粒的密度,则有如下关系:重量浓度(含沙量)=体积浓度×泥沙真密度。但是由于沙粒的成份复杂,以及测量过程中的采样、稀释等因素对最终的结果都有影响,常用一个总的转换常数VCC(体积转换常数)来实现量纲的转换,此时也就是有如下关系:重量浓度(含沙量)=体积浓度×VCC。当前,激光粒度仪检测水体泥沙含量的技术进入了实用化阶段。我国水利系统已经开始逐步使用激光粒度仪进行水体泥沙含量监测工作。对比于传统的沉降干燥后用天平称量的方法需要一到两天工时,激光法从采样到输出完整的泥沙粒度分布及水体泥沙含量数据只需20分钟左右,大大提高了数据采集速度。 TOPSIZER激光粒度仪 广东水文局是较早将激光粒度仪引入实际应用的水文机关,珠江三角洲的口门泥沙以幼沙为主,激光粒度仪的宽量程及大动态测量范围,非常适合该区域的泥沙状况监测工作。高质量的泥沙颗粒分析成果将为研究珠江三角洲的口门整治、河流的河道淤积、河床演变提供可靠的数据;为水利工程的调度、运用提供重要的基本资料 ;为河流的治理、开发、水资源利用提供了科学依据。湖南、江苏、浙江等水资源大省,也都投入大量资源,将激光粒度仪引入水文系统的自然水体泥沙研究分析项目。在这波水利系统监测设备的升级行动中,欧美克激光粒度仪的顶级型号——TopSizer激光粒度仪成为这个利国利民项目中的重要一份子。数量众多的欧美克激光粒度仪在长江流域、珠江流域、湘江流域等重要水系一线监测站尽职工作着。 TOPSIZER用户——湖南水利局神山头水文站 TopSizer相比于目前市面上常见的激光粒度仪而言,具有更长焦距的傅里叶透镜,能够准确探测到更小散射角度的散射光信号,大大增强了仪器对大颗粒的测试能力,仪器的测量上限达2000μm。TopSizer率先采用了双光源技术,也就是在红色氦氖激光源的基础上再增加了波长更短的蓝色光源,能够准确探测更大角度的散射光信号,确保仪器对亚微米颗粒的测量性能,使得仪器的测量下限达到0.02μm。真实可靠的超宽分布样品测试能力,保障了泥沙粒度分布测试数据的真实性和权威性。自然水体泥沙含量测试对激光器稳定性及探测器精度提出了苛刻的要求。根据实验数据可推算出,在测试过程中当激光器光强波动1%,泥沙含量数据将波动10%以上。TopSizer使用的激光系统及探测器,具有极高的稳定性和精度,性能远超国内同类型产品。TopSizer激光粒度仪采用原装进口的光电探测器,具有灵敏度高、精度高的特点。能够捕捉到极细微的光强变化。高质量的光电探测器是准确测试泥沙含量的前提保障。 自然水体泥沙粒度及含量测试,跟常规工业粉体粒度测试相比,测试条件要求及取样、制样技术细节更为复杂。这种技术前提,不仅仅对仪器性能有较高需求,同时也对测试应用技术有严格要求。欧美克的应用技术专家,早在2010年左右就开始了自然水体泥沙测试应用技术的研究。在湖南、湖北等多个省份实地采集各类泥沙样品进行研究实验。我们没有局限自己的埋头苦干,还注重跟水利系统的专家进行学习探讨。多次的拜访水利部长江委、湖南省水文局等权威机关,了解用户需求,学习专业技术。还曾经邀请湖南水文局的专家领导莅临我司指导工作。多年不懈的努力,我们建立了一套自然水体泥沙测试SOP(标准化测试流程)。通过建立标准化测试应用技术流程,大幅降低了人为因素对测量数据的影响,保障了数据的真实性、可靠性。欧美克人用严谨踏实的工作作风,换回了自身技术的成长及客户的认可。 技术工作永无止境,欧美克人本着绝对诚信、以客户为中心的价值理念,在粒度测试与控制领域秉承科技创新的精神,坚定前行!
  • 百特激光粒度仪通过CE认证
    2010年4月23日,丹东市百特仪器有限公司收到了总部设在瑞士日内瓦的世界最大的认证机构&mdash &mdash SGS(Societe Generale de Surveillance S.A.)签署的CE认证证书,宣告百特激光粒度仪通过了CE认证,百特由此成为中国首个通过CE认证的激光粒度仪品牌。 十五年来,丹东市百特仪器有限公司在产品的技术性能、质量控制、安全性能、售后服务等方面投入了大量的人力、物力、财力,使百特激光粒度仪的测试范围、重复性、准确性、自动化程度、安全性能等方面达到了同类产品的领先水平。在此基础上百特在产品质量控制上倾注了大量的心血,从元器件的采购与加工、装配工艺、检验程序、包装运输等方面制定了严格的质量规程,使百特激光粒度仪质量稳定可靠,无故障运行时间大幅度延长,受到用户的信赖。 在注重产品质量和性能的同时,百特在低压安全和电磁兼容性等方面一直坚持按国际标准进行改造和设计,全部采用通过认证的、符合安全和电磁兼容性的电子元器件,在系统布局和电路设计上采取了大量的符合安全标准、减少电磁辐射以及抗干扰设计,取得可喜成果。2010年年初,国际权威的SGS实验室对百特激光粒度仪进行了全面的测试,证明百特激光粒度仪完全符合EN61010-1:2001和EN61326-1:2006标准,一次性通过低电压安全(LVD)和电磁兼容(EMC)测试,据此测试结果,SGS向百特颁发CE认证证书。 获得CE认证证书,是百特打造精品战略所取得的又一个成果,标志着百特激光粒度仪的综合性能和质量达到了国际标准,标志着百特取得了进入国际市场特别是欧美发达国家市场的通行证。百特将以此为契机,在打造精品的道路上继续前行,为创国际知名的激光粒度仪品牌继续努力。
  • 飞驰发布德国飞驰 A22 NeXT 激光粒度仪新品
    一、产品简介全新升级的 ANALYSETTE 22 NeXT 可以让您根据自己的需求选择测量范围:ANALYSETTE 22 NeXT 微米型测量范围为0.5–1500 μm,用于大多数常规样品的测量需求; 或者您可以选择更高端,拥有更大测量范围的 ANALYSETTE 22 NeXT 纳米型,测量范围拓展至0.01-3800μm,纳米型激光粒度仪拥有极高的测量精度,附加的检测器能够更灵敏的分辨极小的颗粒。 满足您需求的决定性优势: 操作和清洗非常简单,分析时间短,可靠的测量结果和重复性,也可以记录额外的测量数据如湿法分散过程中体系的温度及PH值,以超值的价格提供先进的技术,它将是您的明智选择! 二、产品优势:• 契合您需求的测量范围 • ANALYSETTE 22 NeXT 微米型 0.5 – 1500 μm • ANALYSETTE 22 NeXT 纳米型 0.01 – 3800 μm • 测量时间短,准确度极高 • 稳定的重复性,有可靠的数据可比性 • 可移动部件少,大大提升了耐用性能,维护率低 • 操作简单便捷,无死角设计保证清洁无残留 • 设计紧凑,节省空间 创新点:1. 测量范围:0.01 -3800 µ m 2. 斜向设计测量池放置位置,能够获取更大的散射角,使小颗粒散射光更易捕捉,并有效避免全反射现象对测量结果造成的影响。 3. 背向的散射光反射器能够加强小颗粒散射光的捕捉,提高极小颗粒的分辨率 4. 扫描速度:24kHz(约41μ s) 5. 湿法分散单元使用径流泵和超声波分散;并带有带温度和pH值测量功能 6. 进水管路的进液方式能够根据样品特征与分散状态调整:三种不同的液体回流方式来针对不同分散状态的样 7. 测量过程自动进行背景测量与环境光测量,保证环境光源体系中的小颗粒不对测量结果产生影响品。 德国飞驰 A22 NeXT 激光粒度仪
  • 张福根专栏|激光粒度仪导论之性能特点篇
    p strong span style=" font-family:宋体" & nbsp & nbsp 编者按: /span /strong span style=" font-family:宋体" 在 /span 8 span style=" font-family:宋体" 月初,张福根博士的激光粒度仪导论从原理、结构、报告解读、参数拾遗四个维度对激光粒度仪进行了条分缕析,仪器信息网特设专栏刊登了张福根博士的四篇论述文章。好文如佳酿,兴难尽而回味长,幸而大家手笔未歇,从今日起,激光粒度仪应用导论的后续珠玉,将继续晦养读者的头脑,本文飨食读者的,是激光粒度仪导论之性能特点篇 /span ~ /p p style=" text-align:center" strong span style=" font-family:宋体" 激光粒度仪导论之性能特点篇 /span /strong /p p span style=" font-family:宋体" & nbsp & nbsp & nbsp /span span style=" font-family:宋体" 这里所谓的“性能特点”,是激光粒度仪相对于其他原理的粒度测量仪器而言的。除激光粒度仪外,当前市面上主流的粒度仪还有:(1)颗粒图像仪,分为动态和静态两类;(2)电阻法(Electric sensing zone 或 Electric resistance)颗粒计数器;(3)沉降法粒度仪,按照沉降力的来源分为重力沉降和离心沉降两类;按照沉降速度的测量方法分为光透沉降、X-线沉降、沉降管和沉降天平等多种;(4)动态光散射(Dynamic light scattering)粒度仪。鉴于动态光散射仪器只测量纳米和亚微米颗粒,与激光粒度仪的测量范围重叠部分很少,不应放在一起比较。本文讨论的激光粒度仪性能特点是相较于以上前3类仪器而言的 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 动态范围大 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 所谓动态范围是指仪器在一个量程内能测量的最大粒径与最小粒径之比。现在大部分品牌的激光粒度仪都无需调整量程(通过更换傅里叶透镜或调节测量池位置实现),所以仪器的测量范围就是仪器的动态范围。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪的动态范围是由仪器同时能测量的最大散射角和最小散射角决定的。从原理分析,如果只测量前向散射光,测量下限能达到0.3µ m左右;如果光的探测角度范围扩展到后向,那么测量下限可达到0.1µ m。测量上限则由仪器的等效焦距和探测器最小单元的扇形平均半径决定(参考文献:胡华, 张福根等. 激光粒度仪的测量上限. 光学学报, 2018, 38(4): 0429001)。大多数品牌都能轻松测到1000µ m。可见激光粒度仪的动态范围能达到3300:1(无后向散射)或10000:1。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 需要说明的是,大多激光粒度仪厂商都把自己产品的测量下限宣传得很小,例如0.01微米(即10纳米),而把上限说得很大。有些是缺乏科学基础的。用户采信时要谨慎。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 不管怎样,其他3类粒度仪的动态范围都在 /span span style=" font-family:宋体" 100 /span span style=" font-family:宋体" 左右或者更小。可见激光粒度仪的动态范围远大于其他原理的仪器,这给用户使用带来极大的方便。 /span /p p class=" MsoListParagraph" style=" margin-left:24px" strong span style=" font-family:宋体" 测量速度快 /span /strong /p p & nbsp & nbsp & nbsp span style=" font-family:宋体" 激光粒度仪的测量过程主要包括背景测量、投样和搅拌循环、散射光测量、数据反演计算以及报告显示等。整个过程大约需要1分钟左右。当然这里不包括前期的样品制备过程。对难分散样品,在投入仪器的分散槽之前,需用外置的高功率超声分散器进行预处理,这个过程从数秒到几分钟,视样品不同而异。不过难分散样品的预分散对任何仪器都是必须要做的。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 预处理后的测量时间,电阻法仪器也很快,整个过程也在1分钟左右。沉降法仪器每次测量都要等整个沉降过程完成,同时为了满足斯托克斯定律要求的层流条件,沉降速度还不能太快。这样就造成测量过程需要30分钟甚至更长。静态图像法需要一幅一幅地处理图像,还需要人工干预,测一个样需要30分钟或更长。动态图像仪需要数分钟。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 综上所述,激光粒度仪的测量速度是所有现存的粒度仪中最快的仪器之一。 /span /p p class=" MsoListParagraph" style=" margin-left:24px" strong span style=" font-family:宋体" 重复性和再现性好 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 重复性是指将制备好的颗粒样品输送到测量池后,让仪器进行多次测量,不同次测量结果之间的一致性。重复性又称“测量精度”。重复性通常用多次测量结果的相对均方差或标准差来表示。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 有必要提醒的是,同一台仪器,量程的中段往往测量精度高,两端的测量精度低。在不加说明的情况下,都是指量程中段的精度。另外对粒度测量,重复性还跟样品的特性有关。首先是粒度分布宽度的影响。宽度越宽,重复性越低。其次跟样品在介质中的分散难易有关,容易团聚的样品,重复性低。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪比较典型的精度指标是:对单分散(即理论上认为所有颗粒有相同的粒径)样品,D50重复性误差小于 /span span style=" font-family:宋体" 0.5% /span span style=" font-family:宋体" ,甚至 /span span style=" font-family:宋体" 0.2% /span span style=" font-family:宋体" 。对一般的多分散样品(最大最小颗粒之比 /span span style=" font-family:宋体" 10 /span span style=" font-family:宋体" 到 /span span style=" font-family:宋体" 20 /span span style=" font-family:宋体" 倍),国际标准 /span span style=" font-family:宋体" ISO13320 /span span style=" font-family:宋体" ( /span span style=" font-family:宋体" 2009 /span span style=" font-family:宋体" 版)的要求是:” /span span style=" font-family:宋体" D50 /span span style=" font-family:宋体" 重复误差小于 /span span style=" font-family:宋体" 3% /span span style=" font-family:宋体" , /span span style=" font-family:宋体" D10 /span span style=" font-family:宋体" 和 /span span style=" font-family:宋体" D90 /span span style=" font-family:宋体" 重复误差小于 /span span style=" font-family:宋体" 5% /span span style=" font-family:宋体" 。如果粒径小于 /span span style=" font-family:宋体" 10 /span span style=" font-family:宋体" 微米,相对误差可以翻倍”。现行的商品化激光粒度仪, /span span style=" font-family:宋体" 重复性误差大多远小于国际标准的要求 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 再现性是指不同的人对同一样品进行测量(有时为了简便,也有同一个操作者,对同一样品多次取样再测量),得到的结果之间的一致性。显然,重复性是再现性的基础。由于受取样的代表性、样品制备方法(比如分散,移样的手法等)的差异的影响,再现性误差总是大于重复性误差。不过由于激光粒度仪有很高的重复精度,并且取样量比其他测量方法大,因此再现性也可以做到很高。 /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 不论是重复性误差还是再现性误差,一般都是用相对或绝对均方差来表示的。我们了解到有的用户对粒度测量误差的物理意义不甚了解或不甚准确,在此特意再解释一下: /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 我们首先要弄清楚,不论是平均粒径、边界粒径或者用户特别感兴趣的其他测量值,每一次的测量值跟上一次都不可能完全一样,因此每一个量的测量都存在误差。现在假设某一个量(例如D50)在n 次测量中,得到的数值分别为a sub 1 /sub ,a sub 2 /sub ,?,a sub n。 /sub /span /p p style=" text-indent:29px" span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" https://img1.17img.cn/17img/images/201808/insimg/06638399-24f9-44c5-9f0f-6f0309d6149d.jpg" title=" 专栏5图1.png" / /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 举个例子:设我们对一个颗粒样品进行了10次测量,每次的测量值见表2。其平均值和标准差分别为14.139微米和0.021微米。所以 /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a +S=14.139+0.021=14.160 /span span style=" font-family: 宋体" (微米),把测量值和这个上边界值对比,可以发现第4、第5共2个测量值超出; /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a -S=14.139-0.021=14.118 /span span style=" font-family: 宋体" (微米),把测量值和这个下边界对比,可以发现第6、第10共2个测量值超出;总共有4个测量值超出 /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a-S, /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a+S /span span style=" font-family: 宋体" 的区间,占测量值个数的40%,换言之,有60%的测量值在这个区间内。 /span /p p style=" text-align:center text-indent:29px" span style=" font-family: 宋体" 表2 测量误差的含义举例 /span /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 547" tbody tr style=" height:25px" class=" firstRow" td width=" 113" nowrap=" " rowspan=" 2" style=" border-style: solid border-color: windowtext windowtext black border-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 序号 /span /p /td td width=" 95" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 单次测量值(微米) /span /p /td td width=" 94" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 测量值与上边界的差 /span /p /td td width=" 80" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 正值表示超出 /span /p /td td width=" 91" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 测量值与下边界的差 /span /p /td td width=" 50" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 负值表示超出 /span /p /td td style=" border: none " width=" 0" height=" 25" br/ /td /tr tr style=" height:30px" td style=" border: none " width=" 0" height=" 30" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 1 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.149 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.011 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.031 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 2 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.152 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.008 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.034 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 3 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.138 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.022 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.02 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 4 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.174 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.014 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.056 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 5 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.161 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.001 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.043 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 6 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.108 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.052 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.01 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 7 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.125 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.035 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.007 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 8 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.127 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.033 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.009 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 9 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.139 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.021 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.021 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 10 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.115 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.045 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.003 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:21px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 均值 /span span style=" font-family: 宋体" ( /span span style=" font-family: 宋体" 微米 /span span style=" font-family: 宋体" )& nbsp /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 14.139 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td style=" border: none " width=" 0" height=" 21" br/ /td /tr tr style=" height:21px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" & nbsp /span span style=" font-family: 宋体" 标准差 (微米)& nbsp /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 0.021 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td style=" border: none " width=" 0" height=" 21" br/ /td /tr /tbody /table p span style=" font-family: 宋体" & nbsp /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 【 strong 进阶知识6 /strong 】粒度测量误差的表述及误差的统计理论。人们都希望测量误差越小越好,但是误差却不可避免。误差可分为三类:一是系统误差,二是随机误差,三是疏忽误差。系统误差是指测量系统(包括测量设备和操作者)对一个物理量的进行多次测量得到的平均值与该物理量真值之间的偏离。随机误差是多次测量中的某一次测量值对多次测量平均值的偏离。系统误差反映测量系统的准确性( /span strong span style=" font-family:宋体 color:#0070C0" Accurac /span /strong strong span style=" font-family:宋体 color:#0070C0" y /span /strong span style=" font-family: 宋体 color:#0070C0" ),随机误差反映测量系统的精度( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Precision /span /strong span style=" font-family:宋体 color:#0070C0" )或重复性。在实际操作中,误差一方面来源于测量仪器本身,另一方面来源于操作,包括取样误差,操作失误等等。在颗粒仪器行业,为了客观地考察仪器,尽量避免人为影响,一般采用一次投样,重复测量,考察每次测量结果相对于多次测量的平均值之间的误差来评估仪器精度或重复性。 /span span style=" font-family:宋体 color:#0070C0" 而把不同次取样甚至不同操作者测量同一个样品得到的结果之间的相对误差,叫做再现性 /span span style=" font-family:宋体 color:#0070C0" ( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Reproductivity /span /strong span style=" font-family:宋体 color:#0070C0" )。重复性和再现性都反应随机误差的大小。疏忽误差是指测量仪器处于不正常状态或者操作者操作错误得到的测量结果与真值之间的偏差。这里不讨论此类误差。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 粒度测量与其他物理量的测量相比有两个特殊性:一是大多数情况下,粒度不存在或者难以确定真值。这是因为多数情况下颗粒的形状是不规则的,客观上不存在一个真实的“直径”。所谓的颗粒直径都是等效的圆球直径。等效的原理不同,结果也不同;甚至等效的原理相同,数据处理的方法不同,也会造成结果的差异,此其一(关于激光粒度仪的等效粒径,作者曾进行过初步研究,有兴趣的读者可参考“张福根等.棒状和片状颗粒在激光粒度仪中的等效粒径(一)、(二).中国颗粒学会首届年会论文集,1997,267-278”)。其二,即使颗粒是圆球形的,但是粗细不均,客观上也难以用绝对方法(指更可靠、更高精度的方法,比如显微镜)测定足够多的颗粒,最终给出在计量学上有说服力的真值。粒度只有在一种很特殊的情况下才能在一定误差范围内获得真值,这就是粒度分布很窄(称为“单分散”)的圆球形颗粒。现在都用这样的颗粒制作微粒标准物质( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Reference Material /span /strong span style=" font-family:宋体 color:#0070C0" )。所以颗粒测量仪器声称的“准确性”,都是相对于单分散的标准物质来说的。用户需要注意的是,两台不同的粒度仪测标准样时都足够准确,但测量实际样品却可能得出不一样的结果。这是许多用户很费解的事。原因就在于颗粒形状的不规则、大小的不均匀和数据反演算法的差异。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 第二个特殊性是,粒度测量结果的完整表述是由一组数(往往达到几十个)组成的粒度分布,而不是一个数,因此就存在用哪个数或哪几个数来衡量测量误差的问题。通常用平均粒径(如D[4,3]、D[3,2]或者D50,以及上下边界(累积)粒径D10、D90的测量误差来衡量。用户如果有特别关注的某个测量值,比如说碳酸该行业的2µ m以细的含量,也可以用这个测量值的误差来衡量仪器误差。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 下面再谈误差的表达的问题。用标准误差表达重复性或者再现性已经在正文做过简单介绍。这里再补充几点: /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (1)置信度和置信区间 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 正文已经谈到,单次测量值落在 /span span style=" font-family:Symbol color:#0070C0" ` /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" a-S, /span span style=" font-family:Symbol color:#0070C0" ` /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" a+S /span span style=" font-family:宋体 color:#0070C0" 区间内的概率是 /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" 68.3% /span span style=" font-family:宋体 color:#0070C0" 。这个区间又叫置信区间, /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" 68.3% /span span style=" font-family:宋体 color:#0070C0" 叫做置信度。这里假设了误差的分布满足正态分布规律(注意,这是误差分布,不是粒度分布)。根据概率论中的中心极限定律,如果测量误差是由多个相互独立的因素引起的,只要因素的数量足够多,那么误差的概率分布就满足正态规律。正态分布曲线见下图 /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" , /span span style=" font-family:宋体 color:#0070C0" 一定区间范围内曲线以下的阴影面积就代表发生在该区间内的测量值的概率。 /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 由此我们可以推断出,测量值落在μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -2σ,μ+2σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 区间内的概率是 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 95.4% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " ,μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -3σ,μ+3σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 的概率是 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 99.7% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 。μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -σ,μ+σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 、μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -2σ,μ+2σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 或μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -3σ,μ+3σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 叫做测量值的置信区间,对应的 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 68.3% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 、 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 95.4% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 和 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 99.7% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 称为相应的置信区间内的置信度。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/a45cdca6-a484-4a8d-83ee-30adc265602d.jpg" title=" 专栏5图2.jpg" / /p p style=" text-align:center" span style=" font-family:宋体 color:#0070C0" 随机误差的概率分布 /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (2)方均根误差与标准误差 /span /p p style=" margin-left: 29px text-align: center " span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" https://img1.17img.cn/17img/images/201808/insimg/18f3b470-d0b2-49f0-b9b5-22caa8d02452.jpg" title=" 专栏5图3.png" / /span /p p style=" margin-left:29px" span style=" color: rgb(0, 112, 192) font-family: 宋体 font-size: 16px " 显然,标准误差大于均方根误差。当n趋于无穷时,二者趋于一致。 /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (3)t分布 /span /p p span style=" font-family:宋体 color:#0070C0" & nbsp & nbsp & nbsp /span span style=" font-family:宋体 color:#0070C0" 可以想象,如果我们用n次测量的平均值 /span span style=" font-family: 宋体" a /span span style=" font-family: PMingLiU, serif" ? /span span style=" font-family:宋体 color:#0070C0" 作为测量的报告值,那么一般而言随机误差会减少。具体会减小多少?或者说置信区间和置信度会发生什么变化?需要用到概率论的t分布函数,有兴趣的读者可以自行参考有关书籍。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 适用多种类型的分散介质 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 绝大部分粒度仪都需要把待测颗粒分散在介质中才能测量。具体选择什么介质,首先取决于颗粒本身的特性,比如颗粒与介质不能发生化学反应,能在介质中良好分散等等。其次是介质的使用成本,越低越好。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪测量颗粒时,既可用液体介质(称为“湿法分散”)也可用气体介质(称为“干法分散”),其中液体介质可以是最常见的水,也可以是各种有机溶剂。从而为用户选择适用且经济的介质提供便利。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 操作方便 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 不论使用什么类型的仪器,粒度测量都需要操作者认真仔细地进行,否则就可能引入人为误差。相对而言,激光粒度仪相较于其他粒度仪,操作起来要方便得多。主要表现在: /span /p p span style=" font-family:宋体" & nbsp & nbsp /span span style=" font-family:宋体" (1)对大多数激光粒度仪而言,不需要调整仪器量程。由于动态范围大,0.1微米至1000微米的任何样品都可以在仪器固有的量程范围内完成,无需预先估计样品的粒度分布范围,然后设置好仪器的量程才能测量(目前个别品牌的激光粒度仪还需要选量程,但大多数不需要)。作为对比,电阻法仪器、图像法仪器、沉降法仪器等等,都需要选择量程。 /span /p p & nbsp & nbsp & nbsp span style=" font-family:宋体" ( /span 2 span style=" font-family:宋体" )对分散介质的纯度没有太高要求。这是因为激光粒度仪在测量中有一个“减背景“的操作,杂质颗粒形成的散射光的影响在一定范围内可以通过这个操作消除掉。 /span /p p style=" text-indent:21px" span style=" font-family:宋体" ( /span 3 span style=" font-family:宋体" )一次测量所用的样品量较大,代表性好。另外样品浓度对测量结果的影响也较小。 /span /p p & nbsp & nbsp span style=" font-family:宋体" ( /span 4 span style=" font-family:宋体" )大多产品都具有 /span SOP span style=" font-family:宋体" 功能,进一步降低了操作人员和操作手法不一致带来的测量结果差异。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 局限性 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 上面介绍了激光粒度仪的诸多优点。凡事有优点必然就有缺点。以下是激光粒度仪的缺点: /span /p p style=" text-indent:29px" span style=" font-family:宋体" (1)分辨率低:所谓分辨率是指仪器分辨两个不同粒径的单分散样品的能力。行业一般认为激光粒度仪只能区分粒径相差 /span span style=" font-family:宋体" 3 /span span style=" font-family:宋体" 倍的两个单分散样品。比如把一个 /span span style=" font-family:宋体" 5 /span span style=" font-family:宋体" 微米的样品和 /span span style=" font-family:宋体" 15 /span span style=" font-family:宋体" 微米的样品混合起来,仪器可以测出两个分布的峰。分辨率优异的品牌能够做到 /span span style=" font-family:宋体" 1.5 /span span style=" font-family:宋体" 倍左右。在实用中,需要去区分两个粒径相近的单分散样品的情况很少见,但是分辨率低意味着仪器对样品分布宽度的变化不敏感。有些对粒度均匀性要求很高的样品(比如单分散的标准微球、激光打印机用的碳粉等等)就不适合用激光粒度仪测量了。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" (2)对处在样品的粒度分布范围两端的颗粒不敏感。这是因为激光粒度仪直接测量的是所有颗粒散射光分布叠加在一起的结果,处在粒度分布两端的颗粒占总颗粒的比例很低,例如0.1%,对总光能的贡献很小,容易被噪声淹没。因此用户如果很关注Dmax和Dmin,那么就要注意,激光粒度仪给出的这两个数值是不可靠的。 /span /p p & nbsp & nbsp strong 编者结: /strong span style=" font-family:宋体" 在本文中,张福根博士一根妙笔对激光粒度仪的优势和局限娓娓道来。在下篇系列文章中,张福根博士就激光粒度仪研究界的几个前沿技术问题与大家深度剖析,精彩不容错过! /span /p p style=" text-align: right " span style=" font-family:宋体" (作者:张福根) /span /p
  • 一封写给颗粒的情书——激光粒度仪的5.21群体告白
    p strong 亲爱的颗粒: /strong /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201805/insimg/5ea7f545-2ef0-46b8-866d-d993ddade40f.jpg" title=" 一封写给颗粒的情书.jpg" / /strong /p p style=" text-indent: 2em " 单色光是为了照亮单纯的你,即使被生活散射,也装满了关于你的独家记忆。我们是激光粒度仪,我们或许不能了解你痛苦的原因,但却能体贴到你心中大大小小的“伤痕”。我们知道相恋总是以完美的伪装开始,但却宁愿提前将自己的关键部件条分缕析,因为不愿你所托非人,日后因选择了错误的我而哭泣。 /p p style=" text-indent: 2em " strong 你是我的眼——激光器 /strong /p p style=" text-indent: 0em text-align: center " strong img src=" http://img1.17img.cn/17img/images/201805/insimg/2293bada-4cc9-49fb-b744-87acc12e2a21.jpg" title=" 1.jpg" / /strong /p p style=" text-indent: 2em " 一般来说,我们激光粒度仪应用最广泛的主要有两种激光器——气体激光器和半导体激光器。 /p p style=" text-indent: 2em " 气体激光器的应用时间最是久远,技术也相应的最为成熟,其中最常见的是氦氖激光器,其发出的氦氖激光具有很好的单色性、相干性和准直性,适合在精密测量领域大展拳脚。但是高精密性也带来了相应的高购买和高维修成本,需要高压直流供电,而且占地面积较大。 /p p style=" text-indent: 2em " 自从20世纪80年代被研制出来后,半导体激光器(LD激光器)就是我们激光粒度仪使用基数最大的激光器种类,并且应用的范围不断扩大。这种激光器采用低压恒流供电方式,成本低,使用安全,而且便于维护,而且可实现多种功率甚至功能之间的调制。虽然在信噪比、单色性、准直性等精密性指标上略逊色于氦氖激光器,但是仍在快速地发展中。不过半导体激光器作为光源时,需要搭配恒温设施才能保证输出功率的稳定,这也使得其电路较为复杂。 /p p style=" text-indent: 2em " strong 切莫泪水涟涟——样品池 /strong /p p style=" text-indent: 0em text-align: center " strong img src=" http://img1.17img.cn/17img/images/201805/insimg/38eeca83-970c-45d9-b4e3-d672625ecee2.jpg" title=" 2.jpg" / /strong /p p style=" text-indent: 2em " 样品池顾名思义是盛放待测样品的所在,其外表面一般是玻璃材质,在潮湿的天气容易发生结露现象。激光粒度仪主要是应用光散射的原理,通过测量被测颗粒散射角的大小来确定粒度的,如果样品池结露,微小的水珠也会对光进行散射,对粒度测试会带来极大的误差,甚至会造成背景测试直接异常。 /p p style=" text-indent: 2em " 当出现样品池结露现象时,可以通过擦拭样品池外表面、除湿器除湿或升温的方式解决。由于样品池结露是一个经常会遇到的困扰,因此在选择激光粒度仪时,样品池在粒度仪主机内部还是外部,构造是否方便维护、是否带有露点温度自动监测装置等因素都值得考量。 /p p style=" text-indent: 2em " strong 收到爱的讯号——探测器 /strong /p p style=" text-indent: 0em text-align: center " strong img src=" http://img1.17img.cn/17img/images/201805/insimg/40bde4a2-b92d-4ef3-b1c4-37d445332b84.jpg" title=" 3.jpg" / /strong /p p style=" text-indent: 2em " 当激光遇到傅里叶透镜和被测颗粒颗粒后,散射光是被光电探测器所接收,进而转为数字信号在PC端完成分析。因此探测器的数量、几何形状、和排布方式,对我们激光粒度仪测量范围、准确度、重现性等关键指标都有直接的影响。 /p p style=" text-indent: 2em " 激光粒度仪用的探测器大概经过了三个发展阶段。一开始是直接采用十字星型探测器,后来又发展出环形探测器,接收散射光的面积有所扩大。而现在最理想的探测器排列是采用前向、后向、侧向、大角度等方向多个探测器,呈非均匀性交叉的三维扇形矩阵状排列,这种排列方法能够进一步充分提升信号探测的全面性。 /p p style=" text-indent: 2em " 另外,一般来说,探测器数量即探测器通道数量,与粒度测量的效果是呈正相关的。因此国内优秀的激光粒度仪品牌光电探测器数量都很可观,珠海欧美克的topsizer探测通道数就有98个之多,享誉已久的丹东百特Bettersize2000探测器数量也高达90个,济南微纳的winner系列激光粒度仪多款产品探测器通道数都超过100个。成都精新的JL-6000探测器数量也有80个之多,最大检测角度可达165° 。 /p p style=" text-indent: 2em " strong 款曲万千绣春刀——数据处理和控制系统 /strong /p p style=" text-indent: 0em text-align: center " strong img src=" http://img1.17img.cn/17img/images/201805/insimg/d5937274-05d0-48a7-aea5-c9a4714728b4.jpg" title=" 一封写给颗粒的情书2_仪器信息网.jpg" / /strong /p p style=" text-indent: 2em " 我们激光粒度仪的性能除了与硬件部件有关外,软件也是重要一环,主要用于控制仪器和数据分析。一般来说在使用激光粒度仪采集到光电信号后,需要通过软件进行反演分析。根据ISO13320国际标准,当处理粒径在几十微米以下样本的数据时,软件需要采用用米氏散射理论而不是夫琅禾费衍射,而最新的研究更表明了在微米、纳米全量程使用米氏散射理论的重要性。 /p p style=" text-indent: 2em " 除此之外,数据输出功能、量程扩展功能、报告格式设计等功能也都是衡量一个数据处理软件是否优秀的重要因素,而整个系统良好的SOP流程也对激光粒度仪检测效率的提高大有裨益。 /p p style=" text-indent: 2em " 看到这里,亲爱的颗粒,你是否对我们激光粒度仪有一定了解了呢?或许这封情书可以帮助你在众多的我们中,遇到最合适的我。或许渴望倾诉也正是爱的证明,我们多想陪你聊到天明,如果你也有意,带着你们的检测工作者进入“ a href=" http://www.instrument.com.cn/news/20180518/464153.shtml" target=" _self" title=" " style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 激光粒度仪用户有奖调研问卷 /span /a ”吧,留下你的暗号,更多关于我的悄悄话,我会慢慢说给你听。& nbsp /p p style=" text-align: right " strong 爱你一生一世的激光粒度仪 /strong /p p style=" text-align: right " strong 2018年5月21日 /strong /p
  • 百特激光粒度仪获众多知名企业和高校青睐
    丹东百特仪器有限公司是中国最大的粒度仪器制造商,二十多年来百特专注于粒度测试技术研究、仪器制造和推广应用工作,取得令业界瞩目的成绩,先后研制成功了具有国内外先进水平的Bettersize系列激光粒度仪、BT系列图像粒度粒形分析系统和粉体综合特性测试仪器,拥有43项专利(其中发明专利15项)、14项软件著作权,100多项粒度仪器制造专有技术。在2014年Bettersize2000系列激光粒度仪被评为“国产好仪器”。 进入新世纪,百特仪器将以“打造世界知名粒度仪品牌”为目标,为客户提供技术先进、质量可靠的粒度仪器和专业及时的服务,产品销往全国32个省市区,还出口四大洲42个国家和地区。到目前为止百特在全世界有8000多家用户,国内用户有7280家;国外用户有765家,百特仪器为众多行业提供完善的粒度检测解决方案。在2017年6月百特对 Bettersize2000粒度仪进行的客户满意度调查活动中,用户对仪器性能、技术、服务、供货时效的满意率达到100%。 在众多的用户中,有不少国内外知名的企业,他们包括中石油、 中石化、中科院、 比亚迪、国家电池质检中心、中国汽车技术研究中心、中国船舶重工集团公司、中国建材科学研究总院、玖龙纸业、哈药六厂、上海染料研究所、3M中国有限公司、北京钢铁研究总院、CTI华测检测、天津中央药业、 万华化学、江苏省农药研究所股份有限公司。。。 天津市中央药业有限公司是一个大型综合制药企业,对质量控制要求极为严格。百特 Bettersize2000LD干湿法激光粒度仪操作简便,测试速度快,结果稳定准确,并具有自动清洗、自动进样、自动对中等功能,更重要的是系统具有电子签名功能,保证了每一个批次的药品不仅是合格品,而且都是精品。万华化学集团是一家全球化运营的化工新材料公司,自2012年购买第一台百特激光粒度仪Bettersize2000起,这种高性能的激光粒度仪操作简单、结果准确、重现性好、全自动测试,对公司产品质量和生产工艺的控制起到了无可替代的作用,之后该公司又连续购买了12台,分别在烟台万华、宁波万华、上海万华等公司使用,有的仪器还在海外的分公司中使用。 中科学院上海硅酸盐研究所主要研究领域涵盖了人工晶体、高性能结构与功能陶瓷、特种玻璃、无机涂层、生物环境材料、能源材料、复合材料及先进无机材料性能检测与表征等。在高性能陶瓷研究过程中,材料颗粒的粒度及其分布影响坯体致密度、烧成温度、表面光洁度等,更重要的是影响新型陶瓷的各种物理性能。为了保证新型陶瓷材料的性能,几年来上海硅酸盐研究所购置了7台百特高性能激光粒度仪。 中国石油大学(北京)是教育部直属全国重点大学,该校拥有百特激光、图像粒度仪17台,涵盖化工学院、理学院、地球科学与技术学院、石油工程学院以及化学工程学院。其中Bettersize2000参与国家一级粒度标准物质研发和测试工作,目前该物质已纳入中华人民共和国标准物质目录(编号为GBW12028、GBW112029和GBW12030)。 此外,百特仪器还在清华大学、中国人民大学、中国地质大学、武汉大学、复旦大学、同济大学、天津大学、中国矿业大学、国防科技大学、华东理工大学、吉林大学、哈工大、昆明理工大学、西藏农牧大学等741所著名大学及514家研究机构中发挥举足轻重的作用。百特激光粒度仪具有众多独创技术,包括双镜头技术、折射率测量技术、超声波防干烧技术、自动测试技术等等,有这些技术的保驾护航,受到中国知名企业和高校青睐是不足为奇的了。
  • 闻歌识人 激光粒度仪如何反演“天机”?
    p style=" text-indent: 2em text-align: justify " 激光粒度仪作为粉体材料粒度表征的重要工具,已经成为当今最流行的粒度分析仪,在各领域得到广泛应用。现在市场上激光粒度仪品牌较多,有时对同一样品的测试结果也有较大差异,给用户造成很大的困扰。那么造成这种差异的原因是什么呢?除了样品制备和操作人员的差异外,最主要的原因是各激光粒度仪厂家采用的反演算法有很大差异。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201901/uepic/5398ee10-96c5-4b67-8e3e-64d47f2d388e.jpg" title=" 1.jpg" alt=" 1.jpg" / /span /p p style=" text-indent: 2em text-align: justify " 激光粒度仪的两个核心部分是光路系统和数据处理系统。光路系统主要影响测量范围,数据处理系统主要影响的是结果的准确性。数据处理系统包括信号的滤波、提取和反演算法,本文主要讨论反演算法。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/411dfc8a-5f31-4902-9cf3-db0c0f27f982.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-indent: 2em text-align: justify " 什么是反演?反演就是对反问题的求解过程。科学上的反问题很多,如精确制导、无损探伤、天气预报、CT技术、法医学、考古学等都是反问题,对这些问题的求解过程就是反演。还有我们常做的游戏“闻声识人”,一个人在唱歌,你通过歌声判断这个唱歌的人是谁,这和激光粒度仪通过光散射信号反推粒度分布很相似。如,如果是大合唱,那么你需要通过合音来推算出都有哪些人在参加大合唱,每个人的音量在合音中的贡献比例是多少(类似于多分散样品)。这些事例说明“反演”存在于生活中的方方面面。反演算法是通过数学的方法求解反问题,它的准确性完全依赖所用算法的适应性。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/d40b218f-6d73-4224-8144-e9de64c69092.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 2em text-align: justify " 激光粒度仪中的反演算法是对线性代数中的病态矩阵求解,病态矩阵是指对因数值的很小改变导致解有很大改变的矩阵。激光粒度仪中Mie散射系数矩阵A就是病态矩阵,且条件数较大,求解过程更复杂。我们可以通过矩阵关系式Ax=b,其中A为Mie散射系数矩阵,b为光散射向量,即激光粒度仪每个通道的信号组成的一维矩阵,x就是要求解的粒度分布数据。当b光散射向量有微小波动都会造成粒度分布x有剧烈波动,这是激光粒度仪反演算法的难点所在,并会直接影响激光粒度仪的重复性和准确性。 /p p style=" text-indent: 2em text-align: justify " 本文所说的全程自适应反演算法是指适应单分散、多分散、双峰、多峰等都能得到准确的、稳定的粒度分布结果的任何分布类型样品的反演算法。目前在市面上,很多激光粒度仪厂家在软件中会设置很多分析模式来适应不同类型的样品,如通用模式、单峰模式、多峰模式等。从下图结果可以看出,不同分析模式对同一样品测试结果会产生巨大差异,常用的“通用模式”分布图形较平滑,但它偏离样品的真实分布却很大,反而其它两种模式更适合样品的真实分布,当然这是在我们知道样品粒度分布特征的前提下进行的有针对性的模式选择。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/42d3f04c-f6de-4673-88e3-93114dbcd653.jpg" title=" 4.png" alt=" 4.png" / /p p /p p style=" text-indent: 2em text-align: justify " 与此不同的是,本文作者开发了另外一种全程自适应算法来测试样品的结果,这种算法是以非负最小二乘为基础,采用正则化参数动态变化的数学方法来实现的,软件中没有分析模式选项就直接进行反演计算,适合所有分布类型的样品,不论是单峰的、多峰的、单分散的、宽分布的都能得到准确的结果。目前这种算法已经应用到丹东百特所有型号的激光粒度仪中。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/0beae131-887f-498b-936d-ed14f8bddbcd.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em text-align: justify " 反演算法是激光粒度仪的灵魂,它就像一个黑盒子,你看不到它的内部,不清楚它的过程,但它对得到准确的粒度测试结果是至关重要的。现在,很多用户不太清楚反演算法对粒度测试的重要性,对测试结果准确性的判断不够客观,以为进口仪器测的结果就是准确的。还有不少人追求粒度分布图形光滑、漂亮,这些都是可能造成错误的结果。出现这种现象的原因是国外激光粒度仪进入中国较早,而他们给出的结果大多都是平滑好看的分布曲线,如R-R分布、正态分布等。此文的目的是告诉广大激光粒度仪用户,要进行客观地去判断仪器的优劣,而不是迷信哪一种仪器。最好的方式是配制几种已知粒度分布的样品来验证激光粒度仪及其反演算法,只要在同一个模式下所测结果与实际值一致,这种激光粒度仪及其反演算法就是真实可靠的。 /p p style=" text-indent: 2em text-align: justify " 激光粒度测试反演算法对粒度测试结果有着决定性的影响。通过歌声就能猜对唱歌人,是对声音和旋律有深刻了解的人才能做到的。 /p p style=" text-indent: 2em text-align: right " strong 作者: /strong /p p style=" text-indent: 2em text-align: right " 丹东百特仪器有限公司 /p p style=" text-indent: 2em text-align: right " 研发总监 /p p style=" text-indent: 2em text-align: right " 范继来 /p
  • 激光粒度仪选型指南
    p   激光粒度仪是专指通过颗粒的衍射或散射光的空间分布来分析颗粒大小的仪器。现在许多用户在市场上挑选激光粒度仪的时候,都感到非常为难,因为一方面对激光粒度仪的了解不太多 另一方面市场上鱼龙混杂,各个厂家都说自己的粒度仪是最好的,不知听谁的好。 /p p   挑选激光粒度仪首先要十分注重仪器的准确度和重复性。分辨是否只要用亚微米的标准颗粒测试一下就可分辨 粒度范围宽,适合的应用广,最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。激光粒度亿一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低 另外,气体光源波长短,稳定性优于固体光源。 /p p   在挑选激光粒度仪还要要了解其分散方式是怎样的,一个样品要得到一个客观的测试结果,只有分散的好,才能测出正确的结果。最后要检查激光粒度仪的检测器,因为激光衍射光环半径越大,光强越弱,极易造成小粒子信/噪比降低而漏检,所以对小粒子的分布检测能体现仪器的好坏。 /p p   原帖链接:http://bbs.instrument.com.cn/topic/3443446 /p
  • 张福根专栏|激光粒度仪应用导论之技术问题篇
    p style=" text-indent: 2em " 本文简述了作者团队近几年已经完成的部分研究成果或已经发现而正在解决的激光粒度仪的理论和技术问题。用户了解这些内容对正确认识和更好利用粒度仪器及其输出的测试结果会有所裨益。 /p p style=" text-indent: 2em " 1 爱里斑的反常变化(Anomalous Change of Airy disk,简称ACAD )对及其对激光粒度测量的影响 /p p style=" text-indent: 2em " 前文已经叙述过,激光粒度仪是建立在“颗粒越大,散射光斑(爱里斑)越小”这一物理现象之上的。这一现象使得爱里斑的尺寸与颗粒大小呈现一一对应关系。而作者团队的研究成果(参见论文:L. Pan, F. Zhang, et al. Anomalous change of Airy disk with changing size of spherical particles [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016,170: 83-89)表明,这种物理现象对吸收性颗粒来说,或者透明颗粒从粒径变化的大尺度上看是正确的。但如果颗粒是透明的,那么从某些较小的粒径区间看,有时会出现相反的情况,即:颗粒越大,爱里斑也越大。我们把这种现象称作爱里斑的反常变化(英文简称“ACAD”)。 /p p style=" text-indent: 2em " 下图是基于Mie散射理论,用数值计算的方法绘制的散射光斑模拟图,形象地显示出光斑大小的变化。这里假定颗粒分散在折射率为1.33的水介质中,照明光波长0.633微米。先看第一行,颗粒折射率取1.59,故相对折射率为1.20。从(a1)到(a4),颗粒直径分别为2.88μm, 3.28μm, 5.30μm, 6.06μm,逐步增大;对应的散射光斑角半径(从亮斑中心到第一个暗环的角距离)分别为8.09° ,13.06° ,5.08° ,7.90° ,时大时小。粒径从2.88μm增大到3.28μm,时,爱里斑尺寸则从8.09° 增大到13.06° ,属于反常变化;粒径从5.30μm增大到, 6.06μm,爱里斑尺寸从5.08° 增大到7.90° ,也属于反常变化。图7中的(b1)到(b4)是m 为1.1,颗粒直径分别为5.91μm,6.82μm,10.90μm,11.81μm对应的散射光斑,角半径分别为4.24° ,7.02° ,2.61° ,4.35° ,也是振荡减小的。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/3ad14d66-db52-460b-b9e1-ba3ee2c52995.jpg" title=" 1.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " strong & nbsp 爱里斑图像随着粒径增大而变化 /strong /p p style=" text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201808/insimg/4f396c68-da7c-44fd-8227-d1b3f65bcafc.jpg" title=" 2.png" / /p p style=" text-indent: 2em " 图中红色曲线是根据Fraunhofer衍射理论得到的爱里斑尺寸随无因次参量的变化,它是一条单调下降的曲线。蓝色曲线是根据Mie理论计算的透明颗粒的爱里斑尺寸变化曲线,可以看出它是振荡的。我们把爱里斑尺寸随粒径的增大而增大的粒径区域,称为“反常区”。图中还表达出折射率实部仍然取1.2,但颗粒有吸收时爱里斑尺寸的变化。可以看出,随着吸收系数的增大,反常现象会逐步消失。在该图所设定的情形中,吸收系数达到0.1时,反常现象即完全消失(绿色曲线)。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/9059b5e1-eadd-4451-b427-f6642c42419e.jpg" title=" 3.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " strong & nbsp 爱里斑尺寸随粒径变化曲线 /strong /p p style=" text-indent: 2em " 凭直觉我们就能想到,反常现象的存在可能导致爱里斑尺寸与颗粒大小不再一一对应,从而使得仪器根据光能分布反演粒度分布产生困难。作者团队进一步的研究表明,爱里斑的振荡随着粒径的增长会反复出现直至永远。其振荡周期会趋近于一个常数。而反常现象对粒度分布反演的困扰主要发生在第一个反常区(参考文献:L. Pan, B. Ge, and F. Zhang. Indetermination of particle sizing by laser diffraction in the anomalous size ranges[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 199:20-25)。 /p p style=" text-indent: 2em " 作者团队已经推导出第一个反常区的中心粒径(反常区内Mie理论曲线与Fraunhofer曲线的交点)公式为: /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/be81374b-33fc-4075-a312-18647c7e952f.jpg" title=" 4.jpg" / /p p br/ /p p style=" text-indent: 2em " 从上式可以看出,反常现象对任意折射率的透明颗粒都存在。颗粒折射率越大,第一个反常中心的数值就越小。当被测颗粒的粒径分布落在反常区域,即上述公式给出的粒径位置周围时,将出现两个不同的粒度分布对应于相同的光能分布的情况,从而给粒度分布的反演带来不确定或者错误的结果。对此现象,各激光粒度仪厂商各有应对的方法,比如,真理光学的研发团队就在对ACAD现象深入研究的基础上,成功地解决了该现象对粒度测量的困扰,并已应用在真理光学的激光粒度仪产品中。 /p p style=" text-indent: 2em " 2 平行平板测量池带来的全反射盲区 /p p style=" text-indent: 2em " 所谓“全反射”就是当光线从折射率较大的空间(光密媒质)射向折射率较小的空间(光疏媒质)时,如果入射角较大,则光线将全部反射回光密媒质,不能传播到光疏媒质中。在激光粒度仪中,如果用液体分散待测颗粒(称为“湿法测量”),由于光电探测器总是安装在空气中,那么散射光就是从光密媒质向光疏媒质传播。目前市面上流行的激光粒度仪都是用平行平板玻璃作为测量池的窗口,这就会带来全反射的问题。如下图所示,当散射角比较小时,散射光能够穿过平行平板玻璃进入到空气,从而被光电探测器接收。假设分散介质是水(折射率1.33),那么根据折射定律可以算出全反射角为48.57° ,即在入射光垂直于玻璃表面的情况下,当散射角达到该角度时,光线进入空气的折射角等于90° (称为“全反射临界角”);当散射角继续增大,散射光将全部被玻璃-空气界面反射,回到测量池内,故称全反射。此时没有任何散射光出射到空气中。实际上置于空气中的探测器不可能摆在90° 的方向,常见的最大角为70° 左右,对应于水中的散射角为45° 。所以对前向散射来说,仪器只能接收散射角小于45° 的散射光。45° 到90° 的散射光不能被探测,这个角度范围即为测量盲区。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/62269a7f-254a-4c5d-8872-c0062969f795.jpg" title=" 5.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " strong 散射光在平行平板玻璃测量池内的全反射现象示意图 /strong /p p style=" text-indent: 2em " 对采用平行平板玻璃的测量池,即使设置了后向散射探测器,其后向能接收的最小散射角为135° (=180° -45° )。就是说45° 到135° 之间是测量盲区。该盲区对应于0.3到0.1微米的颗粒。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/51eeae4c-813c-4ec8-90a6-5f99ce16cd00.jpg" title=" 6.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " & nbsp strong 双光束照明的光学结构 /strong /p p style=" text-indent: 2em " 引入另一束不同波长的照明光(以下称为“辅助照明光”或“辅助光束”),是加强激光粒度仪对亚微米颗粒测量能力的一种手段,如上图所示。一般来说辅助光束应该以较大的倾斜角入射到测量池中,从而使得测量池内大于45° 的散射光也能出射到空气中。例如,辅助光从空气入射到测量池的入射角为43° ,则对应于水中的倾斜角为31° 。该光束被颗粒散射后,逆时针方向最大76° (=31+45)的散射光,相对于水-玻璃界面,入射角也只有45° ,所以能够出射到空气中被探测器接收。另一方面,辅助光一般采用波长较短的蓝光,以扩展测量下限。 /p p style=" text-indent: 2em " 真理光学则采用了梯形玻璃的测量窗口,能够较好地解决全反射对亚微米颗粒测量的影响。下图是真理光学LT3600plus激光粒度仪的结构示意图。该仪器包含了多项创新成果。就激光粒度仪的核心技术之一——光学结构来说,主要有两项:一是用一体化的偏振滤波取代了传统的针孔滤波,使仪器的抗震能力极大地提高,完全避免了针孔滤波所固有的易偏移,难调节的麻烦;二是用独创的改进型梯形窗口取代了传统的平板窗口。本文重点讨论第二点。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/fe3173a2-dec7-4250-bf55-92c9a964348d.jpg" title=" 7.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " strong 真理光学LT3600plus的光学结构示意图 /strong /p p style=" text-indent: 2em " 梯形玻璃测量池的工作原理见下图。在这种结构中,前向的平板玻璃被换成了梯形玻璃,同时在梯形玻璃的平行面与斜面相交的棱上加了一片防串条,并且给超大角探测器设置了遮光格栅。当光轴上方的超大角(大于全反射角)散射光传播到玻璃—空气界面时,正好落在玻璃的斜面上。此时散射光到达斜面的入射角总是小于玻璃-空气界面的全反射角,因此能够出射到空气中,从而解决了平板玻璃结构的全反射问题。必须说明的是,这种梯形结构20多年前就有人提出过。但是这种结构在应用中存在一个麻烦的问题,就是从平面出射的散射光和从斜面出射的散射光在空气中会相互串扰。真理光学通过前述的防串条和遮光格栅,巧妙地解决了串扰问题,故此能把梯形玻璃测量池应用在实际的粒度仪中。该方案用一束照明光解决了全反射盲区问题。下图(第二张)是LT3600Plus仪器对对0.1、0.2、0.4、0.5、1.0微米单分散标准颗粒的测量结果综合。 /p p style=" text-indent: 0em text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/24748398-5f6f-41b3-9d65-6a2a6dfd5d7b.jpg" title=" 8.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " & nbsp strong 改进的梯形玻璃测量池工作原理图(不包含后向接收) /strong /p p style=" text-indent: 0em " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/0f4aa241-55ef-4927-b1b4-8ff2a4bb20e1.jpg" title=" 9.jpg" / /strong /p p br/ /p p style=" text-align: center text-indent: 0em " strong & nbsp LT3600Plus测量各种亚微米颗粒的结果综合 /strong /p p style=" text-indent: 2em " 3 折射率数据获取的困难及解决之道 /p p style=" text-indent: 2em " 用激光粒度仪测量样品时,需要预先输入样品的折射率。折射率数值如果不对,将导致错误的测量结果。目前一般是通过查找文献资料获得颗粒的折射率数值(粒度仪厂家虽然在仪器软件中也提供了部分物质的折射率数据,但也是从公开的文献中引用过来)。但是在实际操作中,折射率数据的问题,还是会困扰激光粒度仪的使用。主要原因是: /p p style=" text-indent: 2em " (1)有些样品的折射率在公开文献中查不到; /p p style=" text-indent: 2em " (2)有时查到的折射率数据与实际折射率不符。原因是: /p p style=" text-indent: 2em " & nbsp & nbsp & nbsp (2a)物质中的杂质含量会影响折射率的数值。如果待测物质的实际杂质含量与文献提供数据所对应的杂质含量不一致,那么待测物质的实际折射率与文献提供的折射率数值也不一致。 /p p style=" text-indent: 2em " (2b)物质的折射率随照明光的波长变化。激光粒度仪的主光束通常是红光,波长大约633纳米到655纳米。文献提供的折射率数据对应的光波长很少是这个范围的。最常见的折射率是用钠黄光(波长589纳米)测量得到的。因此实际折射率与文献提供的数值可能不一致。 /p p style=" text-indent: 2em " 准确地获得被测颗粒的折射率,成为激光粒度仪应用的重要问题之一。 /p p style=" text-indent: 2em " 在各种解决方法之中,真理光学的研发团队提出了一种利用激光粒度仪测量得到的散射光分布本身计算待测颗粒的折射率的方法(已申请发明专利)。可以自动测定颗粒尺寸远大于光波长情况下颗粒的折射率。 /p p style=" text-indent: 2em " 本方法所依据的基本原理是:当颗粒的尺寸远大于光波长(典型值为10倍以上),且只考虑小角度(通常小于5º )范围内的光强分布时,散射光分布可以用Fraunhofer衍射理论比较精确地描述。而Fraunhofer衍射理论给出的光能分布与颗粒的折射率无关,只与颗粒尺寸有关;同时在小角范围内,Fraunhofer衍射理论与Mie理论的数值高度吻合,因此我们可以根据散射光在小角范围内的分布和衍射理论确定样品的粒度分布,再利用大角散射光及前面用衍射理论获得的粒度分布,通过简单的迭代算法,计算出颗粒的折射率实部和虚部。 /p p style=" text-indent: 2em " 4 其他问题 /p p style=" text-indent: 2em " 衍射法粒度测量还存在一些其他的值得进一步研究的问题。例如当颗粒浓度很高时,散射光被颗粒多次散射(称为“复散射”)对测量结果的影响,颗粒形状偏离球形是怎样影响测量结果的等等,这些问题都有待研究者们继续探索下去。 /p p style=" text-indent: 2em " 本文中,张福根博士基于自己多年来的研发成果,深入探讨了激光粒度仪存在的几个前沿问题,激光粒度仪的复杂性由此可见一斑,其未来的发展仍然让人期待。不过作为粒度粒型检测分析的重要仪器,有关激光粒度仪的话题不仅是高山流水的学术研究,同时也是日常实验检测中的亲密伙伴,在实际应用中我们应该选择什么样的激光粒度仪呢?下一篇张福根专栏|激光粒度仪选型建议将为你提供参考。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p p style=" text-align: left text-indent: 2em " 更多精彩内容尽在 a href=" http://www.instrument.com.cn/zt/YYMMG" target=" _self" title=" " style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 激光粒度仪应用面面观 /span /a 。 br/ /p
  • 《中国激光粒度仪市场调研报告(2018版)》正式发布
    p style=" text-indent: 2em text-align: justify " span style=" text-indent: 2em font-family: 宋体 " 《中国激光粒度仪市场调研报告(2018版)》 /span span style=" text-indent: 2em font-family: 宋体 " 于 /span span style=" text-indent: 2em " 11 /span span style=" text-indent: 2em font-family: 宋体 " 月 /span span style=" text-indent: 2em " 26 /span span style=" text-indent: 2em font-family: 宋体 " 日正式发布,满满干货,精彩抢先看! /span span style=" text-indent: 2em " /span span style=" text-indent: 2em font-family: 宋体 " 在本报告中你可以收获如下内容: /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 404" valign=" top" style=" border-color: windowtext border-width: 1px padding: 0px 7px " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 中国激光粒度仪用户的地域、单位类型、行业分布 /span /strong /p p style=" text-indent: 2em text-align: justify " strong span & nbsp /span /strong /p /td td width=" 164" valign=" top" style=" border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-left-style: none padding: 0px 7px " p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:red" √ /span /strong /p /td /tr tr td width=" 404" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 各主流品牌的存留市场占比、 span 2018 /span 年中标情况、新品介绍 /span /strong /p p style=" text-indent: 2em text-align: justify " strong span & nbsp /span /strong /p /td td width=" 164" valign=" top" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:red" √ /span /strong /p /td /tr tr td width=" 404" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 用户最关注的激光粒度仪关键零部件、前沿技术 /span /strong /p p style=" text-indent: 2em text-align: justify " strong span & nbsp /span /strong /p /td td width=" 164" valign=" top" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:red" √ /span /strong /p /td /tr tr td width=" 404" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 激光粒度仪相关国家标准、行业标准、企业标准 /span /strong /p p style=" text-indent: 2em text-align: justify " strong span & nbsp /span /strong /p /td td width=" 164" valign=" top" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:red" √ /span /strong /p /td /tr tr td width=" 404" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px " p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 0, 0) " strong span style=" font-family: 宋体 " 用户购买激光粒度仪的决定性因素 /span /strong strong span style=" font-family: 宋体 " /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 0, 0) " strong & nbsp /strong /span /p /td td width=" 164" valign=" top" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong span style=" font-family: 宋体 color: red " √ /span /strong /span /p /td /tr tr td width=" 404" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px word-break: break-all " p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 0, 0) " strong span style=" font-family: 宋体 " 用户对激光粒度仪品牌的熟悉程度 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong & nbsp /strong /span /p /td td width=" 164" valign=" top" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong span style=" font-family: 宋体 color: red " √ /span /strong /span /p /td /tr tr td width=" 404" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px " p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 0, 0) " strong span style=" font-family: 宋体 " 用户与激光粒度仪的适配程度 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong & nbsp /strong /span /p /td td width=" 164" valign=" top" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px word-break: break-all " p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong span style=" font-family: 宋体 color: red " √ /span /strong /span /p /td /tr tr td width=" 404" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px " p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 0, 0) " strong span style=" font-family: 宋体 " 用户对所购买激光粒度仪的决定性因素 /span /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 0, 0) " strong & nbsp /strong /span /p /td td width=" 164" valign=" top" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px word-break: break-all " span style=" color: rgb(255, 0, 0) " strong & nbsp & nbsp & nbsp √ /strong /span /td /tr tr td width=" 404" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 主流激光粒度仪产品质量与售后服务评价 /span /strong /p p style=" text-indent: 2em text-align: justify " strong span & nbsp /span /strong /p /td td width=" 164" valign=" top" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px word-break: break-all " p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:red" √ /span /strong /p /td /tr /tbody /table p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 本调研报告共收录有效调研问卷 /span span 320 /span span style=" font-family:宋体" 份,参考知网论文近 /span span 800 /span span style=" font-family:宋体" 余篇,并结合了对国内激光粒度仪 /span span style=" font-family:宋体" 研发、应用专家,激光粒度仪典型用户和激光粒度仪厂商的采访。以及专业文献、仪器论坛、中标数据及各专业网站资料整理。 /span span style=" font-family:宋体" 在此,谨对报告所有参与者表示最衷心的感谢 /span span ! /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 报告链接: /span span style=" color: rgb(255, 0, 0) " strong span style=" font-family: 宋体 " a href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=161" 《中国激光粒度仪市场调研报告(2018版)》 /a /span /strong /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体 color:#00B0F0" span style=" color:#00B0F0 text-underline:none" 欢迎感兴趣的网友和我们联系购买报告事宜,电话: /span span style=" font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 color:#00B0F0 text-underline: none" 010-51654077 /span span style=" color:#00B0F0 text-underline:none" 转 /span span style=" color:#00B0F0 text-underline:none" 销售部 /span /span /strong /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 报告节选: /span /strong /p p style=" margin-left: 56px text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 第一章 span style=" font-weight: normal font-stretch: normal font-size: 9px font-family: & #39 Times New Roman& #39 " & nbsp /span /span /strong strong span style=" font-family:宋体" 激光粒度仪市场及应用综述 /span /strong span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/201811/uepic/88aa760c-547c-4b78-9818-8b2248b23ae8.jpg" title=" 1.png" alt=" 1.png" / /span /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 数据来源仪器信息网问卷调研 /span /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体" 激光粒度仪用户的地域分布 /span /strong /p p style=" text-align: justify text-indent: 2em " ... /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/7bc2b4ab-418c-4d39-820d-17bcd5b0c1b6.jpg" title=" 2.png" alt=" 2.png" style=" text-align: center text-indent: 2em " / /p p style=" text-align: center text-indent: 0em " strong style=" text-align: center text-indent: 2em " span style=" font-family:宋体" 我国激光粒度仪用户的行业领域分布 /span /strong /p p style=" margin-left: 74px text-align: justify text-indent: 2em " strong /strong /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 由仪器信息网调研问卷可知,激光粒度仪用户以石油 span / /span 化工行业为最多,占比...制药 span / /span 化妆品领域占比... /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 综合考察我国激光粒度仪不同行业用户的地域分布可知... /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体 text-indent: 2em " ... /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 由仪器信息网调研问卷数据可看出,我国激光粒度仪用户单位最多的是企业分析测试中心,比例超过... /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 综合考察用户数量排名前四的我国激光粒度仪用户四大专业领( span xxx /span 、 span xxx /span 、 span xxx /span 、 span xxx /span )的单位类型,得到如下结论... /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体 color:red" 从品牌分布角度考虑,进口品牌在我国激光粒度仪市场的存流量占比约为...国产品牌占比约为... /span /strong /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体 color:red" 细化到具体的仪器厂商品牌可知,我国激光粒度仪存留市场的品牌分布为... /span /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 一般来说,我们激光粒度仪应用最广泛的主要有两种激光器——气体激光器和半导体激光器,气体激光器的应用时间最是久远,技术也相应的最为成熟,其中最常见的是氦氖激光器。...自从 /span span 20 /span span style=" font-family:宋体" 世纪 /span span 80 /span span style=" font-family:宋体" 年代被研制出来后,半导体激光器( /span span LD /span span style=" font-family:宋体" 激光器)就是我们激光粒度仪使用基数较大的激光器种类,并且应用的范围不断扩大。... /span /p p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/201811/uepic/ada68c77-8f2c-4562-a788-3db1126ee2ef.jpg" title=" 3.png" alt=" 3.png" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family:宋体" 我国用户使用激光粒度仪的光源类型 /span /strong /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 根据仪器信息网的问卷调研数据分析,目前我国的激光粒度仪用户所用激光粒度仪的光源类型分布为... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/ed2a5104-daf9-4f12-bb1d-8cf4c75012b7.jpg" title=" 4.png" alt=" 4.png" / /p p style=" margin-left: 28px text-align: center text-indent: 0em " strong span style=" font-family:宋体" 我国激光粒度仪用户所需颗粒分散方法 /span /strong /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 在粒度测量中,样品的分散非常重要,激光粒度仪的分散方法主要有干法分散和湿法分散两种。... /span span style=" font-family:宋体 color:#333333 background:white" 根据仪器信息网问卷调研的数据结果分析,目前 /span span style=" font-family:宋体" 我国 /span span XX% /span span style=" font-family:宋体" 的激光粒度仪用户干湿分散方法都需要, /span span XX% /span span style=" font-family:宋体" 的用户只需要使用湿法分散... /span span XX% /span span style=" font-family:宋体" 的用户只需要用到干法分散。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 综合考察我国激光粒度仪用户的几个主要专业领域与分散方法需求的情况,可得如下分析结果... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/201811/uepic/c261aa2a-337c-428a-861a-b4131fe2fb66.jpg" title=" 5.png" alt=" 5.png" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family:宋体" 我国 /span /strong strong span style=" font-family:宋体" XXX /span /strong strong span style=" font-family:宋体" 领域激光粒度仪用户所需颗粒分散方法 /span /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体 color:red" 激光粒度仪在石油 /span span style=" color:red" / /span /strong strong span style=" font-family:宋体 color:red" 化工行业的应用非常广泛,包括... /span /strong /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体 color:red" 根据仪器信息网问卷调研数据整理,对石化领域激光粒度仪用户最喜欢使用的几大品牌进行了分析: /span /strong strong /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 64" valign=" top" style=" border-color: windowtext border-width: 1px padding: 0px 7px word-break: break-all " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 排名 /span /strong strong /strong /p /td td width=" 206" valign=" top" style=" border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-left-style: none padding: 0px 7px word-break: break-all " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 激光粒度仪品牌 /span /strong strong /strong /p /td td width=" 207" valign=" top" style=" border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-left-style: none padding: 0px 7px word-break: break-all " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 数量占比 /span /strong strong /strong /p /td /tr tr td width=" 70" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px word-break: break-all " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 1 /span /strong strong /strong /p /td td width=" 206" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体" 品牌 /span span style=" font-family: Simsun, serif" 1 /span /p /td td width=" 207" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " span style=" font-family: Simsun, serif" xx% /span /p /td /tr tr td width=" 70" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px word-break: break-all " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 2 /span /strong strong /strong /p /td td width=" 206" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体" 品牌 /span span style=" font-family: Simsun, serif" 2 /span /p /td td width=" 207" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " span style=" font-family: Simsun, serif" xx% /span /p /td /tr tr td width=" 70" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px word-break: break-all " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 3 /span /strong strong /strong /p /td td width=" 206" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体" 品牌 /span span style=" font-family: Simsun, serif" 3 /span /p /td td width=" 207" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " span style=" font-family: Simsun, serif" xx% /span /p /td /tr tr td width=" 70" valign=" top" style=" border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-top-style: none padding: 0px 7px word-break: break-all " p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 4 /span /strong strong /strong /p /td td width=" 206" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体" 品牌 /span span style=" font-family: Simsun, serif" 4 /span /p /td td width=" 207" style=" border-top-style: none border-left-style: none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " p style=" text-align: justify text-indent: 2em " span style=" font-family: Simsun, serif" xx% /span /p /td /tr /tbody /table p style=" margin-right: 28px text-align: justify text-indent: 2em " strong span style=" font-family:宋体" & nbsp & nbsp /span /strong strong style=" text-indent: 2em " span style=" font-family:宋体" 我国石油/化工领域用户留存量最大的激光粒度仪品牌排名表 /span /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 第二章 激光粒度仪技术进展及品牌市场分析 /span /strong strong /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 部分主流激光粒度仪厂商重要产品及新品介绍... /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 马尔文帕纳科重要及新品激光粒度仪技术特点... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/201811/uepic/d2bbc654-b5ee-49de-ac10-58207f8a6331.jpg" title=" 6.png" alt=" 6.png" / /span /p p style=" text-align: center text-indent: 2em " strong style=" text-indent: 2em " span style=" font-family:宋体" 用户关注的激光粒度仪仪器及相关配件研究方向 /span /strong br/ /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 在用户所关注的仪器及相关配件性能的研究进展方面。根据仪器信息网问卷调研数据分析,最受激光粒度仪用户关注的仪器相关研究进展?? /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" & nbsp /span strong style=" text-indent: 2em " span style=" font-family:宋体" 第三章 主流激光粒度仪厂商市场分析 /span /strong /p p style=" text-indent: 2em text-align: justify " strong /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/201811/uepic/25fc8b88-c12f-4c98-983a-467ec088db50.jpg" title=" 7.png" alt=" 7.png" / /span /p p style=" text-align: center text-indent: 0em " strong style=" text-indent: 2em " span style=" font-family:宋体" 某品牌激光粒度仪用户单位类型分布 /span /strong br/ /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: justify text-indent: 2em " ... /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/42add6b6-1e7a-46df-a6bd-5db9c4fca9fb.jpg" title=" 8.png" alt=" 8.png" style=" text-align: center " / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 某品牌用户行业分布 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " ... /p p style=" text-align: center text-indent: 0em " span img src=" https://img1.17img.cn/17img/images/201811/uepic/ed8e6880-4878-4910-b265-138a457c58f1.jpg" title=" 9.png" alt=" 9.png" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family:宋体" 某品牌用户使用仪器年限分布 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " ... /p p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/201811/uepic/3a7cf8cb-7db8-4b10-9655-afec1eabe7aa.jpg" title=" 10.png" alt=" 10.png" / /span /p p style=" text-align: center text-indent: 0em " strong style=" text-indent: 2em " span style=" font-family:宋体" 最让某品牌激光粒度仪用户困扰的因素 /span /strong br/ /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: justify text-indent: 2em " ... /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 第四章 span & nbsp /span 激光粒度仪相关标准 /span /strong strong /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 国家标准有... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 行业标准有... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 企业标准有... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体" 第五章 用户对激光粒度仪市场的评价 /span /strong strong /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/201811/uepic/62744488-2f08-4f63-83a1-46dfc3b26ad5.jpg" title=" 11.png" alt=" 11.png" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family:宋体" 用户使用激光粒度仪年限分析 /span /strong /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em font-family: 宋体 " 分析我国激光粒度仪用户使用年限,5年以上的老用户占比... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-align: center text-indent: 0em " span img src=" https://img1.17img.cn/17img/images/201811/uepic/14184fba-5a3d-4de0-949e-134083367808.jpg" title=" 12.png" alt=" 12.png" / /span /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 用户在使用、维护激光粒度仪中的困扰因素分析 /span /strong strong /strong /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 根据仪器信息网问卷调研数据分析结果显示,用户在使用和维护激光粒度仪过程中最大的困扰因素来自于... /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 将激光粒度仪用户困扰因素与四个激光粒度仪用户最多的行业进行交叉分析,可以得到如下结论... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 根据仪器信息网问卷调研数据分析,影响用户购买激光粒度仪的最主要三个因素依次为 span XX /span 、 span XX /span 、 span XX /span ,超过 span 50% /span 的用户在购买激光粒度仪时会重点考虑这三个因素。... /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 将用户的岗位性质与用户购买激光粒度仪的决定性因素进行交叉分析 span , /span 可得如下结果... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span img src=" https://img1.17img.cn/17img/images/201811/uepic/ceaf633a-388d-423c-a9cf-93f633044bff.jpg" title=" 13.png" alt=" 13.png" / /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体 color:red" 仪器信息网对用户最熟悉的激光粒度仪品牌进行了调研。在参与此次问卷调研的用户当中, span 58.91% /span 左右的人最熟悉的激光粒度仪品牌为 span XXX /span ,占比...,接下来依次为... /span /strong /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体 color:red" 我们特别注意到,用户对激光粒度仪品牌 span X /span 的熟悉度较高,但其激光粒度仪的市场存流量却不占前列,两项数据占比出入较大。分析原因... /span /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 根据仪器信息网问卷调研数据分析,有 span 13.33% /span 的激光粒度仪用户在使用激光粒度仪时遇到过进样分散系统故障,近 span 8% /span 的用户受到过... /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" ...在用户受到的进样分散系统故障中,主要包含的故障类型有... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 根据仪器信息网问卷调研可知, span XX% /span 的用户认为使用的激光粒度仪可以完全满足用户需求。...另外还有相近比例的用户直接表示有部分需求无法满足,这其中仅有一半的用户可以得到厂商提供的解决方案。... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" text-indent: 2em font-family: 宋体 " 从答疑解惑、上门服务、质保、培训及回访四个维度考察用户享受过的主流激光粒度仪售后服务... /span /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " strong style=" text-indent: 2em " span style=" font-family:宋体" 第六章 总结 /span /strong /p p style=" text-indent: 2em text-align: justify " strong /strong /p p style=" text-indent: 2em text-align: justify " ... /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 报告目录 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 摘要 span & nbsp & nbsp & nbsp 3 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 前言 span & nbsp & nbsp & nbsp 3 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 第一章 激光粒度仪市场及应用综述 span 4 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.1 /span span style=" font-family:宋体" 激光粒度仪用户的地域分布 span & nbsp & nbsp & nbsp 4 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.2 /span span style=" font-family:宋体" 激光粒度仪用户的行业领域分布 span & nbsp & nbsp & nbsp 5 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.3 /span span style=" font-family:宋体" 激光粒度仪用户单位类型 span & nbsp 8 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.4 /span span style=" font-family:宋体" 激光粒度仪用户存留仪器品牌分布 span & nbsp 11 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.5 /span span style=" font-family:宋体" 激光粒度仪用户关键零部件及系统分析 span & nbsp 12 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.5.1 /span span style=" font-family:宋体" 激光器 span & nbsp & nbsp & nbsp 12 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.5.2 /span span style=" font-family:宋体" 样品池 span & nbsp & nbsp & nbsp 13 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.5.3 /span span style=" font-family:宋体" 样品分散系统 span & nbsp 15 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.5.4 /span span style=" font-family:宋体" 探测器 span & nbsp & nbsp & nbsp 17 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.6 /span span style=" font-family:宋体" 激光粒度仪主要应用行业 span & nbsp & nbsp 18 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.6.1 /span span style=" font-family:宋体" 激光粒度仪在石化行业的应用 span & nbsp & nbsp & nbsp 18 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.6.2 /span span style=" font-family:宋体" 激光粒度仪在制药行业的应用 span & nbsp & nbsp & nbsp 19 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.6.3 /span span style=" font-family:宋体" 激光粒度仪在食品 span / /span 饮料 span / /span 烟酒行业的应用 span & nbsp 19 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.6.4 /span span style=" font-family:宋体" 激光粒度仪在环保 span / /span 水工业领域的应用 span 20 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.7 /span span style=" font-family:宋体" 激光粒度仪 span 2018 /span 年中标盘点(截至 span 2018 /span 年 span 9 /span 月) span 20 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.7.1 /span span style=" font-family:宋体" 激光粒度仪 span 2018 /span 上半年中标盘点 span 20 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 1.7.2 /span span style=" font-family:宋体" 激光粒度仪 span 2018 /span 年 span 7-8 /span 月中标盘点 span & nbsp & nbsp 23 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 第二章 激光粒度仪技术进展及品牌市场分析 span 27 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.1 /span span style=" font-family:宋体" 激光粒度仪前沿技术浅谈 span & nbsp 27 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.1.1 /span span style=" font-family:宋体" 爱里斑的反常变化 span & nbsp 27 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.1.2 /span span style=" font-family:宋体" 在线技术 span & nbsp 28 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.1.3 /span span style=" font-family:宋体" 折射率及复折射率研究 span & nbsp 29 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.2 /span span style=" font-family:宋体" 部分主流激光粒度仪厂商重要产品及新品介绍 span & nbsp & nbsp & nbsp 29 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.2.1 /span span style=" font-family:宋体" 马尔文帕纳科 span & nbsp 29 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.2.2 /span span style=" font-family:宋体" 贝克曼库尔特 span & nbsp 30 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.2.3 /span span style=" font-family:宋体" 丹东百特 span & nbsp 31 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.2.4 /span span style=" font-family:宋体" 珠海欧美克 span & nbsp & nbsp & nbsp 31 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.2.5 /span span style=" font-family:宋体" 麦奇克 span & nbsp & nbsp & nbsp 32 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.2.6 /span span style=" font-family:宋体" 济南微纳 span & nbsp 33 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 2.3 /span span style=" font-family:宋体" 用户关注的激光粒度仪技术研究方向 span 34 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 第三章 主流激光粒度仪厂商市场分析 span & nbsp & nbsp 35 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 3.1 /span span style=" font-family:宋体" 马尔文帕纳科 span & nbsp & nbsp & nbsp 35 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 3.2 /span span style=" font-family:宋体" 丹东百特 span & nbsp & nbsp & nbsp 38 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 3.3 /span span style=" font-family:宋体" 珠海欧美克 span & nbsp 39 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 3.4 /span span style=" font-family:宋体" 贝克曼库尔特 span & nbsp & nbsp & nbsp 42 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 3.5 /span span style=" font-family:宋体" 麦奇克 span & nbsp 44 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 第四章 span & nbsp /span 激光粒度仪相关标准 span & nbsp 46 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 4.1 /span span style=" font-family:宋体" 部分激光粒度仪相关国家标准 span & nbsp 46 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 4.2 /span span style=" font-family:宋体" 部分激光粒度仪相关行业标准 span & nbsp 47 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 4.3 /span span style=" font-family:宋体" 部分激光粒度仪相关企业标准 span & nbsp 47 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 第五章 用户对激光粒度仪市场的评价 span & nbsp & nbsp 48 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 5.1 /span span style=" font-family:宋体" 用户使用激光粒度仪的年限分析 span & nbsp & nbsp & nbsp 48 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 5.2 /span span style=" font-family:宋体" 激光粒度仪用户困扰因素分析 span & nbsp & nbsp 48 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 5.3 /span span style=" font-family:宋体" 用户购买激光粒度仪的决定性因素 span & nbsp 52 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 5.4 /span span style=" font-family:宋体" 用户最熟悉的激光粒度仪品牌 span & nbsp 57 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 5.6 /span span style=" font-family:宋体" 用户使用主流激光粒度仪时出现故障的情况 span & nbsp 58 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 5.7 /span span style=" font-family:宋体" 用户对主流激光粒度仪与工作适配程度的评价 span & nbsp & nbsp & nbsp 59 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 5.8 /span span style=" font-family:宋体" 用户对主流激光粒度仪售后服务质量的评价 span & nbsp & nbsp 60 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 第六章 总结 span 61 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 参考文献 span & nbsp & nbsp & nbsp 63 /span /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family:宋体" 敲重点,报告链接: /span span style=" color: rgb(255, 0, 0) " strong span style=" font-family: 宋体 " a href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=161" 《中国激光粒度仪市场调研报告(2018版)》 /a /span /strong strong /strong strong /strong /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family:宋体 color:#00B0F0" span style=" color:#00B0F0 text-underline:none" 欢迎感兴趣的网友和我们联系购买报告事宜,电话: /span span style=" font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 color:#00B0F0 text-underline: none" 010-51654077 /span span style=" color:#00B0F0 text-underline:none" 转 /span span style=" color:#00B0F0 text-underline:none" 销售部 /span /span /strong /p
  • 欧美克发布激光粒度仪新产品---TopSizer
    仪器信息网讯 2012年9月14日,“欧美克新产品上市暨颗粒技术交流会”在北京召开。来自业内的80多位专家、用户及媒体出席了此次TopSizer新品发布会。   据欧美克介绍,TopSizer的真实测量范围0.02-2000微米,达到国际一流水平 重复性误差≤0.5%(标准粒子的D50偏差),达到国际先进水平。 TopSizer激光粒度仪 欧美克总经理贾尔斯西姆科克致辞   欧美克总经理贾尔斯西姆科克在致辞中讲到,这是欧美克公司(以下简称欧美克)被思百吉集团(以下简称思百吉)收购以来的第一次的新品发布会,思百吉是一家在伦敦证券交易所上市的专门从事仪表检测及控制的公司。思百吉可以让欧美克以子公司的身份在管理流程和程序方面共享丰富的经验,使欧美克在产品设计上得到最大的增强,从而提供可靠的、重复性良好的、性能卓越的仪器。另外,成为思百吉的一员也使欧美克能共享进口供应商的关键部件,提高仪器的可靠性。同时作为思百吉的一员,欧美克还可以在技术共享的协议下,获得其它专利技术。以上这些因素共同促成了TopSizer这款新产品的问世。 营销总监吴汉平先生   会上,欧美克营销总监吴汉平介绍了欧美克的发展历程,据吴汉平介绍,TopSizer是国产激光粒度仪中最先进的,是国产仪器中测试性能最好、可靠性最高的激光粒度仪 也是国产仪器中最高端的激光粒度仪。“TopSizer的上市标志着国产高端激光粒度仪已达到国际先进水平。这次新产品的发布也标志着欧美克可以站在一个新的高度、新的起点。”吴汉平说。 欧美克总经理贾尔斯西姆科克和两位专家为新产品揭幕 欧美克研发总监蔡斌   会上,研发总监蔡斌先生详细地解读了激光粒度仪的原理、应用,以及此次推出的新产品TopSizer的技术特点。另外,蔡斌先生还特别透露,欧美克此次推出的新产品采用了折叠光路和双光源技术,使得其真实测量范围宽于国内其他品牌,填补了国内空白,标志着国产激光粒度仪性能又上了一个大台阶。 河北工业大学教授梁广川介绍了激光粒度仪在锂电池行业的应用 河北工业大学教授何豫基介绍了激光粒度仪在CaCO3行业的应用   TopSizer激光粒度仪技术特点   ※采用新型折叠光路设计专利,保证仪器结构紧凑,稳定而且光学性能优越   ※国内第一款采用双光源设计仪器,测量动态范围更宽更精准   ※真实测量范围0.02-2000微米,达到国际一流水平   ※重复性误差≤0.5%(标准粒子的D50偏差),达到国际先进水平   ※采用进口高稳定,低噪声,偏振氦氖激光器为仪器提供高质量测试光源,确保测试结果准确和稳定   ※仪器光电探测器阵列和光学器件等核心零件大量采用原装进口器件, 保证仪器稳定可靠,测试性能优越   ※全新进样系统设计,全面提升样品分散、悬浮和清洗能力,满足各种不同特性样品测试需求   ※全程采用米氏理论和单镜头设计,测试结果更准确可靠   ※全新开发的测试软件和数据分析内核, 具备大容量光学分析数据库和丰富测试分析功能, 全面提升测试性能和体验。
  • 国际先进!丹东百特Bettersize2600激光粒度仪通过中国颗粒学会鉴定
    p style=" text-align: justify text-indent: 2em " 6月18日,由中国颗粒学会主持召开的“Bettersize2600激光粒度仪”项目技术与产品鉴定会在丹东百特仪器有限公司成功举办,Bettersize2600凭借多项自主创新和优异的性能得到了众位中国颗粒学会权威专家的一致肯定,成功通过科技成果鉴定。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/de08b7de-d391-412f-bdc3-de9376de7b24.jpg" title=" IMG_1453.JPG" alt=" IMG_1453.JPG" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 会议现场 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/85c4604e-10e4-4637-b7ac-e5a7e5ed950e.jpg" title=" DSC_5764e323e2.jpg" alt=" DSC_5764e323e2.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center text-indent: 0em " strong 中国颗粒学会理事长陈运法 /strong /p p style=" text-align: justify text-indent: 2em " 会议由中国颗粒学会理事长陈运法主持,参加会议的专家还有上海理工大学教授蔡小舒、沈阳药科大学教授崔福德、北京航空航天大学教授沈志刚、中科院过程工程研究所研究员李兆军、北京市理化分析测试中心研究员周素红、上海市计量测试技术研究院研究员吴立敏、中国计量科学研究院副研究员张文阁、中国颗粒学会秘书长王体壮等。参会的丹东百特高层领导有丹东百特仪器有限公司总经理董青云、副总经理刘忠兰、销售总监丛丽华、研发总监范继来等。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 500px " src=" https://img1.17img.cn/17img/images/201906/uepic/7f5b59e4-557d-4626-8e77-61c8d8fe190f.jpg" title=" das asd.jpg" alt=" das asd.jpg" width=" 500" height=" 500" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em " strong 中国颗粒学会专家现场考察 /strong /p p style=" text-align: justify text-indent: 2em " 参会专家们首先在董青云总经理的陪同下前往丹东百特的展示厅、车间和实验室等地,现场考察了其制造、供应、研发、销售和服务能力。从1995年成立,经过24年砥砺前行的丹东百特如今建筑面积达10000平方米,拥有独立的仪器制造中心、新产品研发中心、精密机械加工车间等,具备制造高质量、高技术含量仪器的硬件条件。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/f75b4a49-7775-436f-8427-81eebcb3b4d2.jpg" title=" IMG_1461.JPG" alt=" IMG_1461.JPG" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 董青云 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/a78e066a-c2cd-428b-878e-4d8e148abcfc.jpg" title=" IMG_1507.JPG" alt=" IMG_1507.JPG" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 范继来 /strong /p p style=" text-align: justify text-indent: 2em " 鉴定会上,董青云向各位专家介绍了丹东百特的起步历程和近年来的发展情况,范继来汇报了Bettersize2600的工作、研究、经济社会效益及用户的使用情况,百特的研发工程师先后汇报了与之相关的多功能进样系统和高速采样系统。Bettersize2600是丹东百特自主立项、研制的高性能激光粒度仪,于2017年底正式研发成功,是丹东百特产品线上广受用户欢迎的佼佼者,已获国内外制药、电池、陶瓷、金属、非金属粉体、农药、食品、水泥等行业200多家用户的应用与好评。仪器目前共授权发明专利4项,授权实用新型专利3项,通过了欧盟CE认证和美国FDA21 CFR Part 11认证,并曾荣获2018年度中国科学仪器优秀新产品奖。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 277px " src=" https://img1.17img.cn/17img/images/201906/uepic/4e62213a-5d08-42a2-8bc3-0651b1181b40.jpg" title=" 是完全去.jpg" alt=" 是完全去.jpg" width=" 500" height=" 277" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong Bettersize2600激光粒度仪 /strong /p p style=" text-align: justify text-indent: 2em " 与会专家审阅了鉴定材料,听取了项目组的工作报告、研究报告和现场测试报告,并进行了现场考察和质询,最后一致认为,Bettersize2600具有如下特点和优势: /p p style=" text-align: justify text-indent: 2em " 首先,提出并研制成功“单光束单镜头正反傅里叶光学系统”和高速近全角度信号探测系统,仪器的量程为0.02-2600(μm),测量重复性优于0.3%,准确性优于0.5%。 /p p style=" text-align: justify text-indent: 2em " 其次,仪器具有“样品折射率测量”和“样品复配”新功能,解决了未知折射率颗粒粒度测量和用户粒度分布级配需求的难题。 /p p style=" text-align: justify text-indent: 2em " 此外,仪器配备有干法、微量干法、循环水湿法、循环溶剂湿法、微量溶剂湿法5种进样系统并具有“一键测试”功能,可以满足各种样品测试需求,实现了从纳米、微米到毫米级的颗粒粒度测试功能,是一种“全能型”激光粒度仪。 /p p style=" text-align: justify text-indent: 2em " 最后,仪器的采样频率达到11kHz,显著提高了粒度测量的精度和准确性,特别是对微量(毫克级)干法样品粒度测量具有重要意义。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 500px " src=" https://img1.17img.cn/17img/images/201906/uepic/6fe03793-407c-45d7-a892-b80236f4b548.jpg" title=" 41 231 23.jpg" alt=" 41 231 23.jpg" width=" 500" height=" 500" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em " strong 专家讨论剪影 /strong /p p style=" text-align: justify text-indent: 2em " 经过严格的审查和热烈的讨论,专家们给出了如下鉴定结论:Bettersize2600激光粒度仪采用多项创新技术,填补了国内空白,达到国际先进水平,并具备批量投产条件。 /p
  • 百特激光粒度仪助力仿制药一致性评价,北京研讨会再谱新篇章
    随着仿制药一致性评价的广泛开展和不断深入,大家对于原辅料质量和制剂过程有着越来越高的要求。相对于杂质和化学成分指标,一些物理指标越来越受到重视,一是颗粒大小、形状和流动性对于制剂过程和疗效影响巨大,因此不论是片剂、注射制剂还是吸入制剂,都对颗粒大小和分布有明确的要求;二粒度测试方法学还不够普及,不当的操作对结果影响较大,影响仿制药的一致性。为了促进粒度测试方法学交流,近日,丹东百特和北京诺康达医药科技股份有限公司联合举办了“一致性评价下颗粒检测面临的挑战和机遇”的研讨会。会上,丹东百特仪器有限公司技术总监李雪冰博士,从药典中颗粒检测相关方法为切入点,详细介绍了颗粒测试的不同方法、激光衍射的方法学开发和验证,以及不同方法或者仪器的数据差异和解析等。李博士用简洁幽默的语言,通过大量的应用案例和实测数据,对于制药领域中颗粒检测遇到的问题进行梳理,内容深入浅出,与会者反响热烈。 报告过程中,不少与会者就自己还就自己在工作中遇到的问题与李博士进行了交流。有的问题涉及药典对物性的要求,有的是仪器使用过程中操作的细节,李博士都一一解答。比如在湿法粒度测试时微溶样品如何处理?干法粒度测试时压力滴定如何具体实施?怎样处理表面带静电的样品?对于同一个原辅料,干湿法分散该如何选择?测试时如果粒度结果有“拖尾”现象如何处理?等等。整个报告过程气氛火爆,通过答疑解惑和相互探讨,达到了相互学习,共同提高的目的。药物一致性评价是个系统的工程,需要制药生产设备、制剂工艺、检测分析、原料供应等密切配合。作为一家粒度、粒形和流动性仪器的供应商,丹东百特始终积极参与药物颗粒检测解决方案的研究与构建,希望与业界密切配合,发挥自己的技术优势,打造中国“好药”。Bettersize2600是丹东百特仪器新一代激光粒度仪,其采用的正反傅里叶结合光路,加上前向、侧向和后向散射光接收技术和倾斜样品池技术,实现了全角度散射光测量,提升了测量范围,保证了测量精度和分辨率。同时该仪器具备3Q认证,符合21 CFR PART 11部分要求,完全满足仿制药一致性评价关于数据完整性、安全性以及审计追踪、电子签名等数据要求。
  • 《激光粒度仪(中国) 市场调研报告(2021版)》发布
    粒度是粉体材料的主要性能指标,粒度测试已经成为粉体材料生产、应用、研究的一项重要的基础性工作。粒度测试的方法很多,常见的有筛分法、沉降法、显微镜法、电阻法、光散射法、电超声法等。其中,光散射法以其显著特点已在颗粒测量领域及国际市场上占据了主导地位。基于光散射原理的激光粒度仪主要分为静态光散射激光粒度仪(俗称“静态激光粒度仪”)和动态光散射激光粒度仪(俗称“纳米粒度仪”)。静态光散射法具有测量动态范围宽、测试速度快、重复性好、操作简便、可实现在线测量等优点,是目前应用最广泛的粒度测试方法;动态散射法具有准确、快速、重复性好等优点,已成为一种常规的纳米粒度表征方法。前者主要用于测量微米、亚微米颗粒,后者则主要用于测量纳米颗粒及Zeta电位。目前,激光粒度仪应用领域非常广泛,包括制药、化工、能源、冶金、建材、地矿、环保、食品、化妆品、半导体等行业,以及高校、科研院所、军工等领域。为了更系统地了解我国激光粒度仪的市场情况,仪器信息网特别对激光粒度仪用户进行抽样调研,对主流激光粒度仪厂商进行采访,并对2020-2021年千里马招标网、各省市政府采购网招中标信息,仪器信息网激光粒度仪专场流量,大型科研仪器国家网络管理平台数据进行统计分析,撰写了《激光粒度仪(中国) 市场调研报告(2021版)》。本报告内容主要包括:中国激光粒度仪市场现状、竞争格局及发展趋势,激光粒度仪用户抽样调研分析,招中标、仪器导购专场、共享仪器平台大数据统计分析。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=241如对本报告感兴趣,可通过以下邮箱survey@instrument.com.cn联系我司相关人员,咨询报告相关细节!  附报告目录:第一章 激光粒度仪概述1.1激光粒度仪定义及分类1.2激光粒度仪发展历程第二章 激光粒度仪市场综合分析2.1激光粒度仪市场概览2.2 2020-2021年激光粒度仪新品一览第三章 激光粒度仪用户市场调研分析3.1激光粒度仪用户地域分布3.2激光粒度仪用户行业分布3.3不同品牌激光粒度仪用户数量分析3.4激光粒度仪用户采购行为分析3.5 激光粒度仪使用困扰因素分析3.6激光粒度仪产品及售后改进建议第四章 激光粒度仪大数据统计分析4.1激光粒度仪2020年中标盘点4.2激光粒度仪导购专场访问量统计分析4.3共享仪器平台激光粒度仪品牌盘点第五章 激光粒度仪技术与市场发展趋势5.1激光粒度仪技术发展趋势5.2.激光粒度仪市场发展趋势参考文献附录马尔文帕纳科 丹东百特麦奇克新帕泰克 珠海欧美克济南微纳真理光学
  • 百特研发中心主任范继来的激光粒度仪情怀
    从事粒度测试研发工作近二十年,对激光粒度仪充满了感情,与其说是对事业的追求,不如说是一种情怀,那是探索的情怀,是提升与超越的情怀!2002年我参加工作时,我们的激光粒度测试技术同欧美相距甚远,那时我就梦想有朝一日赶上和超过他们,这个梦想使我找到了不断钻研和探索的动力。经过多年的努力,百特激光粒度仪得到了飞跃发展,获得了7项发明专利,22项实用新型专利,9项著作权,并参与起草了5项国家标准。特别是在光学系统和数据处理方面,百特激光粒度仪的创新技术已居于世界领先地位。光学系统是激光粒度仪的基础,它决定了仪器测量范围和测量精度。目前,国际先进的激光粒度仪的测量范围已经涵盖纳米到毫米范围,而百特自主研发的双镜头激光粒度仪、正反傅里叶结合光学系统激光粒度仪,散射光探测角度几乎达到了0-180°,测量范围同样涵盖了纳米到毫米的广阔范围,并且重复性精度甚至达到了0.1%,这就是百特独创的光学系统的神奇效果。要实现激光粒度测试中大角度散射光的接收,首先要解决激光在水中全反射角的限制。国外激光粒度仪普遍采用双光源方式来突破这个限制,但双光源存在波长不同、折射率不同、功率不一致、数据连接点凸起等问题,影响测量结果。而百特另辟蹊径,采用单一光源的双镜头和正反傅里叶结合光学系统,这种系统获得的散射信号是连续的,基准是一致的,折射率是唯一的,而探测角度却与双光束光学系统有相同的效果,因此百特光学系统优于双光束系统,是被理论和实践反复证明了的。 对激光粒度仪而言,光学系统好比人体的肌肉,而以Mie散射理论为基础的反演算法则像人体的中枢神经,它对激光粒度仪的内在性能——准确性、重复性和分辨力——有着直接的影响。由于反演算法首先对高阶病态矩阵求解,而病态矩阵求解是令数学家都头疼的难题,稍不留神就可能得出千奇百怪的结果,正所谓“差之毫厘谬以千里”。就是这项技术,我和我的研发团队用了十几年的时间,费尽了“洪荒之力”,终于在非负最小二乘法基础上找到了全局优化、大角度差分、智能降噪和自由拟合的合理方法,保证了百特激光粒度仪的准确性、重复性和分辨力全面超过进口品牌。我始终有一个情怀,那就是中国的激光粒度仪要达到甚至超越国际先进水平。通过多年努力研究,现在我们可以骄傲地说,以百特为代表的中国的激光粒度测试技术已经达世界先进水平,我和我的同事为此感到自豪和骄傲。我们当然不会满足,还要激情满怀地在提升激光粒度仪的道路上继续前行。
  • 成都精新:激光粒度仪测试原料药样品经验谈
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在制药行业中,粉体的颗粒特性已成为胶囊、药片、口服制剂等产品开发和质量控制中至关重要的因素之一。原料药的粒度分布会对产品的性能产生显著的影响,如:溶解度、生物利用度、含量均匀度、稳定性等。此外,原料药和辅料的粒度分布也会影响药物的可生产性,如:颗粒流动性、总混均匀度、可压性等,最终可能影响药物的安全性、有效性和质量。所以无论是制粉还是制粒都对药物的粒度分布有一个很严格的要求。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/872d1979-fedc-4a32-883a-a72710391b9c.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" font-family: 宋体, SimSun " strong 图1& nbsp & nbsp 显微镜下采集的原料药颗粒形貌 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) font-size: 18px " strong 粒度测试方法选择依据大揭秘 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 原料药和辅料的粒度测试,要根据它的特性选择合适的粒度测试方法。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首次测量样品的第一步就是决定在湿状态下还是在干状态下分析样品。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如一些样品易和湿分散介质起反应,比如可能溶解或和液体接触时膨胀,就应选择干法测试。干法测试的方法是:采用空压机气体为分散介质,利用紊流分散原理,配合高精度进料装置和粉料喷射枪(专利),无油静音气源,保证样品被充分分散,得到准确的粒度数据。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如样品能在水中均匀分散,且不溶解或膨胀,应选择湿法测试,尤其是液体或乳液类原料。湿法测试的方法是:将样粉放入样品池,进行超声波分散、机械搅拌循环测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) " 取样、分散小技巧分享 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 粒度测试还应有完善的粒度分析标准,包括取样、分散方法、仪器参数设置、管理员进入密码、数据分析和说明等。其中取样和分散至关重要,关系到样品最终测试的准确性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 1、取样 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药物的粒度测量是通过对少量的样品,进行粒度分布测试来表征大量粉体粒度分布的,因此要求所测的样品必须具有充分的代表性。取样应注意以下几点: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " ①从生产线中取样时要从料流中截断料流取样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " ②从大堆物料中取样时要从不同深度、不同部位多点取样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " ③从实验室样品中取样首先要混合均匀,多点(至少四个点)取样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " ④从悬浮液中取样时应充分搅拌均匀,从液面到器皿底之间摇匀抽取。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 2、样品分散方法 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 对于粒径小或有粘性的颗粒,这些颗粒有聚集的趋势,选择合适的样品分散方法至关重要,样品分散的目的是尽可能地减弱样品分析中颗粒的聚集,同时避免过度使用分散力而造成颗粒损耗。以湿法测试为例,常见的分散方式有: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1、介质湿润:粒度测量通常是将样品置于某种液体介质中,形成一定颗粒浓度的均匀悬浮液,这种均匀悬浮液通过测量窗口时就可以进行粒度测量。这里所用的液体是起媒介作用的物质,称为介质(可以是自来水、蒸馏水、纯净水等)。粒度测量的介质要求:①.纯净②不与被测样品发生化学反应。③使样品具有适当的沉降状态。④与样品具有良好亲和性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 2、搅拌:通过搅拌叶片产生的剪切力使颗粒与介质分散。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 3、超声波分散:通过超声波产生的高频率机械振动信号传输到介质中,将聚集颗粒分散。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 4、分散剂:分散剂是指加入到粒度测量介质中能提高颗粒表面与介质间亲和性,使颗粒 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在介质中达到易浸润又保持分散状态的物质。常用的分散剂有六偏磷酸钠、焦磷酸钠、表面活性剂(包括洗涤剂)等。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) " 仪器推荐 /span /strong /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e3b5c3d3-4b77-441d-9e41-070036056ae7.jpg" title=" 图片2.jpg" alt=" 图片2.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" font-family: 宋体, SimSun " strong 图2& nbsp & nbsp JL-6000 激光粒度仪主机、辅机组合说明 /strong /span /p p style=" text-indent: 0em " script src=" https://p.bokecc.com/player?vid=389F5AC676FAE8E19C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script span style=" font-family: 宋体, SimSun " strong br/ /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 成都精新自主研发的JL-6000集干法测试和湿法测试于一体,满足了新药研发对于药物粒度的测试需求。软件按照SOP标准化流程操作,提供D10、D50、D90、D97等典型粒径值,并有体积平均粒径、面积平均粒径、比表面积,累计粒度分布曲线、粒度分布数据等,设置管理员权限和审计追踪。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/4065fc9c-5b28-466b-badd-befbe3fac3a8.jpg" title=" 图片3.jpg" alt=" 图片3.jpg" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: 宋体, SimSun " & nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 图3& nbsp & nbsp 粒度报告典型粒径值 /span /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/344eb23c-0cec-44bb-8458-3f6eb2e0045b.jpg" title=" 图片4.jpg" alt=" 图片4.jpg" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: 宋体, SimSun " 图4& nbsp & nbsp 曲线区间粒度分布数据与直方图 /span /strong /p p style=" text-indent: 0em " strong span style=" font-family: 宋体, SimSun " br/ /span /strong /p p style=" text-indent: 0em text-align: right " strong span style=" font-family: 宋体, SimSun " 作者:李梅 /span /strong /p p style=" text-indent: 0em text-align: right " strong span style=" font-family: 宋体, SimSun " 成都精新粉体有限公司测试中心工程师 /span /strong /p p style=" text-indent: 0em text-align: center " span style=" font-size: 18px color: rgb(0, 0, 0) " strong span style=" font-size: 18px font-family: 宋体, SimSun " 更多相关仪器欢迎点击进入仪器信息网 a href=" https://www.instrument.com.cn/zc/470.html" target=" _self" span style=" font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 240) " 激光粒度仪专场 /span /a 了解 /span /strong /span /p p style=" text-align: left text-indent: 2em " strong span style=" font-family: 宋体, SimSun " (注:本文由成都精新供稿,不代表仪器信息网本网观点) /span /strong /p
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 激光粒度仪在粒度检测中的应用浅谈
    p style=" text-indent: 2em " 编者按:谈到粒度,激光粒度仪怎能缺席?目前,在各行各业的粒度检测领域,激光粒度仪应用广泛。从传统的石油化工、建材家居,到制药、食品、环保,甚至在新兴的锂电、半导体、石墨烯等行业,都能看到激光粒度仪活跃的身影。 /p p style=" text-indent: 2em " 那么激光粒度仪在粒度检测中到底是怎样应用的呢?我国颗粒学泰斗专家周素红研究员的论述,无疑将给我们带来启示…… /p p style=" text-indent: 2em " strong 专家观点: /strong /p p style=" text-indent: 2em " 激光粒度分析方法是近年来发展较快的一种测试方法,其主要特点是: /p p style=" text-indent: 2em " 1)测量的粒径范围广, 可进行从纳米到微米量级如此宽范围的粒度分布。约为 :20nm ~ 2000μm , 某些情况下上限可达 3500μm /p p style=" text-indent: 2em " 2)适用范围广泛 , 不仅能测量固体颗粒 , 还能测量液体中的粒子 /p p style=" text-indent: 2em " 3)重现性好 ,与传统方法相比 ,激光粒度分析仪能给出准确可靠的测量结果 /p p style=" text-indent: 2em " 4)测量时间快,整个测量过程1-2分钟即可, 某些仪器已实现了实时检测和实时显示 ,可以让用户在整个测量过程中观察并监视样品。 /p p style=" text-indent: 2em " 激光粒度分析不仅在先进的材料工程 、国防工业、军事科学、而且在众多传统产业中都有广泛的应用前景。特别是高新材料科学的研究与开发 ,产品的质量控制等 , 如 :陶瓷、粉末冶金、稀土 、电池、制药 、食品、饮料 、水泥 、涂料 、粘合剂 、颜料、塑料、保健及化妆品 。由于颗粒粒子的特异性能在于它的粒径十分细小,粒径大小是表征颗粒性能的一个重要参数, 因此 ,对颗粒粒径进行测量是开展材料检测、评价颗粒材料的重要指标。 /p p style=" text-indent: 2em " 当光线照射到颗粒上时会发生散射 、衍射 。其衍射、散射光强度均与粒子的大小有关 。观测其光强度, 可应用夫琅和费衍射理论和 Mie 散射理论求得粒子径分布(激光衍射/散射法)。 /p p style=" text-indent: 2em " 光入射到球形粒子时可产生三类光:1)在粒子表面 、通过粒子内部、经粒子内表面的反射光 2)通过粒子内部而折射出的光 3)在表面的衍射光 。这些现象与粒子的大小无关 。全都可以作为光散射处理 。一般地 , 光散射现象可以用经Maxwell 电磁方程式严密解出的 Mie 散射理论说明。但是, 实际使用起来过于复杂, 为了求得实际的光强度, 可根据入射波长 λ和粒子半径r 的关系 ,即 :r& lt & lt λ时,Rayleigh 散射理论r& gt & gt λ时,Fraunhofer 衍射理论在使用上述理论时 ,应考虑到光的波长和粒子径的关系, 在不同的领域使用不同的理论 。 /p p style=" text-indent: 2em " 粒子径大于波长的时候, 由 Fraunhofer 衍射理论求得的衍射光强度和 Mie 散射理论求得的散射光强度大体是一致的。因此 ,可以把 Fraunhofer 衍射理论作为 Mie 散射理论的近似处理。这时 ,光散射(衍射)的方向几乎都集中在前方, 其强度与粒子径的大小有关 ,有很大的变化。即, 表示粒子径固有的光强度谱 。解出粒子的光强度分布(散射谱)就可以定出粒子径。当波长和粒子径很接近的时候 ,不能用 Fraunhofer 的近似式来表示散射强度 。这时有必要根据 Mie 散射理论作进一步讨论。在Mie 散射中的散射光强度由入射光波长(λ)、粒子径(a)、粒子和介质的相对折射率(m)来确定 。、 /p p style=" text-indent: 2em " 激光粒度分析的应用领域极为广泛, 如 :1)医药中的粒度控制着药物的溶解速度和药效 2)催化剂的粒度影响着生成反应效率 3)制陶原料的粒度影响着烧结后的物理特性 4)矿物的粒度影响着长途海运的安全 5)食品的保质期受粒度影响 6)橡胶原料粒度影响着其寿命 7)电池原料的粒度影响着电池的充放电效率和寿命 8)涂料 、染料中的粒度影响着产品染色时的发色、光泽 、退色 9)塑料原料的粒度影响着塑料的透明度和加工以及使用性能。 /p
  • 2021年激光粒度仪中标盘点:纳米粒度仪需求激增
    激光粒度仪是一种常用的粒度测试仪器,广泛应用于制药、化工、能源、建材、地矿、环保等行业,以及高校、科研院所、军工等领域;按工作原理,主要分为静态光散射激光粒度仪(俗称“静态激光粒度仪”)和动态光散射激光粒度仪(俗称“纳米粒度仪”)。为了更好的了解激光粒度仪市场,仪器信息网对2021年激光粒度仪中标标讯整理分析,供广大仪器用户参考。(注:本文数据来源于公开招中标信息平台,共统计激光粒度仪中标公告234条,不包括非招标形式采购及未公开采购项目,主要反映激光粒度仪科研市场变化,结果仅供定性参考。)从时间维度来看,2021年激光粒度仪月度中标数量波动较大。1-5月份科研市场采购需求疲软,招投标市场表现低迷;6月份中标数量激增,达到全年峰值,主要原因在于马尔文帕纳科在本月分别中标一批Mastersizer 3000激光粒度仪与一批Zetasizer Pro纳米粒度及电位分析仪;下半年中标数量虽有波动,但整体保持在相对高位。从季度分布来看,2021年激光粒度仪中标数量逐季增加,与2020年趋势基本相似。据公开招中标信息平台统计,2021年激光粒度仪招标单位覆盖29个省份、自治区及直辖市。广东省中标数量再列第一,排名二到五位的依次为江苏、北京、浙江、山东;激光粒度仪采购需求连续两年集中在以上五个省市。四川、山西、河北、辽宁、河南各省中标数量排名位于第二梯队,其中,河北与河南两地浮现激光粒度仪“采购大户”,2021年,河北化工医药职业技术学院、河北省药品医疗器械检验研究院、郑州大学分单次或多次采购了一批激光粒度仪,仪器总价均超过200万元。2021年激光粒度仪采购用户单位类型对采购单位分析发现,2021年,来自大专院校/科研院所的采购比例有所提升,高达79%;而企业占比缩减至5%。“十四五”期间,科技创新被提到前所未有的高度,国家实验室及研究机构的建设浪潮势必为科学仪器市场带来新的机遇,激光粒度仪厂商应高度关注,提前布局。2021年中标激光粒度仪类型分布从中标激光粒度仪类型来看,2021年纳米粒度仪采购需求激增,中标数量占比47%,创历年新高。近年来,随着新能源、生物医药、纳米技术等行业的迅速发展,对纳米颗粒尺寸表征的需求呈现指数般增长态势,国内外激光粒度仪生产厂商积极响应市场需求,纷纷推出纳米粒度及电位分析仪。2020年,马尔文帕纳科重磅发布Zetasizer Advance系列纳米粒度电位仪,包括Lab,Pro,Ultra三个型号;2021年,丹东百特隆重推出BeNano系列纳米粒度及 Zeta 电位仪,包括BeNano 90 Zeta、BeNano 180 Zeta、BeNano 180 Zeta Pro等多个型号;珠海欧美克高调发布NS-90Z纳米粒度及电位分析仪,成功引进和吸收了马尔文帕纳科纳米颗粒表征技术。随着各方入局及新产品的推出,纳米粒度仪市场迎来良好发展机遇。2021年激光粒度仪中标价格分布纵观整体中标价位分布,30万元以上的中高端激光粒度仪更受科研用户青睐,合计占比达67%。长期以来,国产品牌往往占据中低端市场,进口品牌则在高端市场占绝对优势;值得一提的是,国产品牌开始逐渐向高端市场渗透,2021年,多条中标讯息显示,丹东百特激光粒度仪中标单价超过40万元。2021年进口/国产品牌中标数量占比2021年激光粒度仪各品牌中标数量占比分布2021年激光粒度仪中标市场上,国产占比35%,进口占比65%,与2020年相比保持稳定。聚焦中标品牌,马尔文帕纳科以41%的占比稳坐榜首;丹东百特位列第二,占比19%,持续领跑国产品牌榜;麦奇克凭借7%的占比重回前三;济南微纳与珠海欧美克紧跟其后,并列第四,占比6%;布鲁克海文与安东帕中标数量旗鼓相当,各占比5%。其他表现较好的品牌还有新帕泰克、HORIBA、真理光学、Sequoia、贝克曼库尔特、美国PSS等。根据2021年中标数据信息,仪器信息网整理了2021年招投标市场“出镜率”较高的激光粒度仪明星型号,榜单如下:仪器类型品牌型号纳米粒度及Zeta电位仪马尔文帕纳科Zetasizer Pro激光粒度仪马尔文帕纳科Mastersizer 3000激光粒度仪丹东百特Bettersize2600纳米粒度及Zeta电位仪丹东百特BeNano 90 Zeta纳米粒度及Zeta电位仪安东帕Litesizer 500纳米粒度及Zeta电位仪麦奇克Nanotrac Wave II纳米粒度及Zeta电位仪布鲁克海文NanoBrook Omni纳米粒度及Zeta电位仪布鲁克海文NanoBrook 90plus PALS激光粒度仪欧美克LS-909激光粒度仪济南微纳Winner802
  • “激光粒度仪用户有奖调研”首批话费发放啦!
    p style=" text-indent: 2em " span style=" text-indent: 2em " 激光粒度仪是粒度检测领域的“大将”,具有操作简便、检测快而广,准确性和重复性优良等特点。而中国的激光粒度仪市场也蓬勃发展,欣欣向荣,不仅市场份额庞大,而且竞争也日益激烈。 /span /p p style=" text-indent: 2em " 为了从不同维度调研用户使用激光粒度仪的情况,了解用户对激光粒度仪的需求,仪器信息网日前组织了“话费流量送不停!激光粒度仪用户调研进行时”活动,活动期间的有效调研问卷将获得10元话费或100M流量的奖励。 /p p style=" text-indent: 2em " 活动得到了广大激光粒度仪用户的积极响应,目前已获得近150份调研问卷。经过严格审核筛选,首批获奖名单成功出炉,共有128名小伙伴获得了话费或流量奖励(获奖名单见下表)。本次调研主要以选择题的形式开展,一共将收集有效问卷200份,目前获奖名额只余72份,有限机遇,还未动手的小伙伴们要抓紧机会了哟~ /p p style=" text-indent: 2em " 问卷链接:激光粒度仪用户有奖调研问卷。 /p p style=" text-indent: 2em " 获奖名单详情如下: /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/7afeaec1-5764-4469-9171-823ef7473703.jpg" title=" 终版.jpg" / & nbsp & nbsp /p p style=" text-indent: 2em text-align: left " 特别通知:有一位参与调研的小伙伴(电话88XX9252,图中标红的那位),因留下的并非手机号码,无法发放奖励,请及时与我们联系(010-51654077-8046),其他小伙伴如有任何疑问也欢迎随时致电。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制