当前位置: 仪器信息网 > 行业主题 > >

表面应力仪

仪器信息网表面应力仪专题为您提供2024年最新表面应力仪价格报价、厂家品牌的相关信息, 包括表面应力仪参数、型号等,不管是国产,还是进口品牌的表面应力仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合表面应力仪相关的耗材配件、试剂标物,还有表面应力仪相关的最新资讯、资料,以及表面应力仪相关的解决方案。

表面应力仪相关的资讯

  • 岛津原子力显微镜——表面之上(一)
    原子力显微镜是一种典型的表面分析工具。利用探针和表面的作用力,获取表面形貌、机械性能、电磁学性能等信息。但是,表面的状态往往是反应过程的最终表现,想要了解反应的动力学过程,只是着眼于“表面”明显就不够了。此外,对表面状态的诱发因素,也很难从表面的信息中获得。所以,表面的是最容易观察到的,但要究其根本,知其所以然,我们的视线要向“上”看,研究“界面”处的信息。表面之上,让表面不再肤浅。以原子力显微镜最基本的“力-距离”曲线为例。如下图所示,探针逐渐靠近样品表面直至接触,施加一定的作用力后再缓慢提起。在这个过程中,探针感受到的力和探针与样品表面间的距离标化曲线如下图。在逐步接近样品时,探针会受到一个吸引力,表现为曲线向负值方向有一个凹陷;然后逐步施加力至正值,停止;然后后撤探针,在脱离表面前会受到一个粘附力,形成第二个负值方向的凹陷。比较探针压入和提出的过程,探针的受力有一个明显的变化就是在提出过程中增加了探针表面与样品表面的粘附力作用。同时还要考虑样品表面的应力形变恢复带来的应力与吸附力作用距离延长。因此,从“力-距离”曲线中,我们可以获得压入-提出过程中,探针与样品保持接触阶段作用力的变化,由此分析得到杨氏模量;除此之外,在探针与样品表面脱离接触后,其范德华引力与粘弹性力在“界面层”仍然处于变化之中。分析这个阶段的粘附力力值和作用距离等数据,可以获得弹性形变恢复、粘性样品拉伸长度等信息。以上是针对一个点的分析,如果对一个面的每一个测试点都作如此分析,也就是通常所做的面力谱分析。如下图所示。一般而言,面力谱分析获得的是各类机械性能的面分布情况。如下图所示。但是,如果每一个测量点,我们都做如上的分析,还可以得到在垂直方向上,在探针针尖已经脱离了和样品表面的接触后的受力状态。从而获得了从表面向上一段距离内的力变化曲线。这样的数据用一个三维的图像表现出来呢,会给人更直观的认识。如下图所示。通过颜色变化表征垂直分布的力值变化,可以直观看到样品表面在受到压力后压缩和恢复程度,以及粘弹力的持续距离。前者可以反映样品的力学特征,后者可以反映表面化学成分,这个特征尤其在电化学和胶体科学领域非常重要。本文内容非商业广告,仅供专业人士参考。
  • 仪器表征,科学家首次提出钙钛矿材料表面处理新策略!
    【科学背景】随着太阳能技术的快速发展,钙钛矿太阳能电池(PSCs)因其高效能和低成本制造引起了广泛关注。钙钛矿材料作为下一代光伏材料,单结PSCs的转换效率已经超过了26%,显示出巨大的潜力。然而,钙钛矿太阳能电池在商业化应用中仍面临许多挑战,其中最关键的是操作稳定性问题。尽管当前的研究在提高初始效率方面取得了显著进展,但要实现与硅基太阳能电池相媲美的使用寿命,还有许多技术难题需要克服。钙钛矿材料存在许多离子缺陷,这些缺陷在制造和使用过程中会影响器件性能和稳定性。为了解决这些问题,科学家们开发了多种表面处理策略,如铅氧盐、离子液体、自组装单分子层和二维钙钛矿层等。这些方法在一定程度上提高了钙钛矿太阳能电池的性能和稳定性。然而,这些处理方法通常仅在制造阶段有效,难以在设备操作和储存过程中处理新生成的缺陷。而环境应力因素(如湿度、热量和光照)会加剧这些缺陷的形成,进一步影响设备的长期稳定性。为此,香港城市大学冯宪平教授与牛津大学Henry J. Snaith教授等科学家们提出了一种“活性处理剂”的概念,通过包含动态共价键(DCBs)的材料来实现钙钛矿的动态修复。这种方法不仅在制造过程中对钙钛矿薄膜进行处理,还能在设备操作和储存期间持续发挥作用。具体来说,科学家们利用一种含有阻滞尿素/硫代氨基甲酸酯键(HUBLA)的Lewis酸碱材料,这种材料在水和热的作用下能够生成新的活性剂,动态钝化钙钛矿中的缺陷,从而提高设备的性能和稳定性。本研究中,HUBLA材料被用于钙钛矿太阳能电池的表面处理。在暴露于湿气或热量时,HUBLA会生成新的活性剂,进一步钝化钙钛矿中的缺陷。实验结果表明,这种处理策略显著提升了钙钛矿太阳能电池的性能,器件的转换效率达到了25.1%。此外,在氮气环境下85°C的条件下,经过约1500小时的老化测试,HUBLA处理的设备保持了其初始PCE的94%;在空气中85°C和相对湿度30%的条件下,经过1000小时的老化测试,设备保持了其初始PCE的88%。【科学亮点】1. 实验首次提出了实时响应的钙钛矿表面处理策略:利用含有动态共价键(DCBs)的HUBLA材料,该材料在水和热的激活下可以动态修复钙钛矿,从而增强器件的性能和稳定性。这种策略不仅在制造过程中对沉积的钙钛矿薄膜进行处理,还在器件制造后继续发挥作用。2. 实验通过HUBLA及其生成物实现了高效能器件:&bull 通过HUBLA材料与钙钛矿光电活性层中的离子缺陷发生反应,生成新的钝化剂,从而钝化缺陷并提高器件性能。&bull HUBLA材料在暴露于湿气或热量的情况下,可以释放额外的Lewis碱,进一步钝化钙钛矿中的缺陷。这一特性使得器件能够在环境应力下自我修复,保持高效能。3. 实验结果表明,使用HUBLA的钙钛矿太阳能电池(PSC)性能显著提高:&bull 实验实现了转换效率(PCE)达到25.1%的高性能钙钛矿太阳能电池。&bull HUBLA设备在氮气环境中85°C下经过约1500小时的老化测试,仍能保持其初始PCE的94%。&bull 在空气中85°C和相对湿度30%的条件下,经过1000小时的老化后,HUBLA设备仍能保持其初始PCE的88%。4. 提出了一种新型的“活性处理剂”概念:HUBLA材料通过动态共价键技术,在器件操作和存储期间响应环境应力动态修复钙钛矿,从而提升了器件的稳定性和长期性能。这种方法为解决钙钛矿太阳能电池中因环境应力导致的性能衰退问题提供了一种有效的新途径。【科学图文】图1:HUBLA 的动态反应、水解和氧化还原穿梭。图2. 钙钛矿薄膜上HUBLA的动态反应和钝化。图3. 钙钛矿薄膜的稳定性。图4:钙钛矿光伏电池的性能和稳定性。【科学结论】本文开发并应用了一种新型的动态共价键材料——阻滞尿素/硫代氨基甲酸酯键(HUBLA),用于改善钙钛矿太阳能电池(PSC)的性能和稳定性。传统上,钙钛矿材料由于其在湿热环境下易于形成缺陷而限制了其长期稳定性,这对其商业化应用构成了挑战。HUBLA的引入不仅使得钙钛矿能够在制造过程中得到更好的控制,还能在器件使用后动态地修复新生成的缺陷。通过与水和热的相互作用,HUBLA能够释放出新的活性剂,进一步钝化钙钛矿中的离子缺陷,从而显著提升了器件的长期稳定性和性能。具体来说,实验结果显示,经过HUBLA处理的钙钛矿太阳能电池在高温和潮湿条件下的长期老化测试中,保持了高达94%的初始转换效率(PCE),表明其在应对恶劣环境条件下的优越性能。未来,基于动态共价键的表面处理策略可能不仅局限于太阳能电池领域,还有望在其他光电器件以及功能性材料的设计和性能优化中发挥重要作用,推动能源技术的进步和应用拓展。原文详情:Wang, WT., Holzhey, P., Zhou, N. et al. Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature (2024). https://doi.org/10.1038/s41586-024-07705-5
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 智能手机上的表面力学
    如今“一部手机走天下”,已成为现实,智能手机的出现改变了我们的生活。它使我们原来许多物品逐步变得可有可无,渐渐成为我们生活中的伴侣。从1992年第一部智能手机的出现,到如今,手机已生重大革命;从触摸屏取代小键盘,再到大触摸屏手机的出现,彻底改变了手机行业。OLED智能手机显示屏的结构智能手机必须能够很好地抵抗使用过程中产生的外界应力。每次用户操作手机时,手机都会受到震动或刮擦,例如从口袋或袋子中取出手机或把他放在桌子上时。智能手机制造商正在努力实现显示屏、框架以及智能手机外壳的最佳耐刮性。人们使用各种方法来量化耐划伤性能——最合适的两种方法是划痕测试和纳米压痕测试。本应用报告将展示这两种方法在智能手机显示屏抗划擦性和能硬度表征中的应用。纳米压痕和纳米划痕测试纳米压痕测试是一种可以测量薄膜和小体积材料的硬度、弹性模量、蠕变和附着力的方法。用预先定义的载荷将金刚石棱锥压头压入被测材料表面,并记录压入深度。硬度、弹性模量和其他性能是使用ISO14577 标准通过载荷-位移曲线获得的。划痕试验是一种表征涂层附着力和耐划痕性的方法。划痕试验通常使用球形金刚石压头进行,该压头在载荷增加的情况下“划痕”涂层表面,从而产生涂层分层。临界载荷对应于分层或其他类型的粘合剂开始损伤时的载荷,并作为量化表面层或材料的附着力或耐刮擦性的方法。纳米划痕测试仪纳米压痕测试仪1划痕测试保护玻璃耐划性能测试智能手机显示屏的保护玻璃通常由Gorilla玻璃制成,它是一种铝硅酸盐玻璃,并通过浸泡在高温钾盐离子交换槽中进行增韧,防止裂纹扩展和阻止缺陷生成。Gorilla玻璃具有极高的硬度和耐刮擦性,重量轻,光学性能优异。然而,即使如此坚硬且耐划伤的玻璃也可能被划伤,因此有一项正在进行的研究旨在通过表面沉积保护陶瓷层进一步提高其耐划伤性。由于陶瓷层非常薄(~100nm),最适合表征耐划伤性的仪器是安东帕尔纳米划痕测试仪(NST3)。下图显示了在100 nm氧化铝(Al2O3)保护层的Gorilla玻璃上,使用半径为2μm的球形针尖进行高达50 mN的渐进加载试验的结果。氧化铝沉积层的典型破坏形态如图1所示。图1: 在光学显微镜下观察到的划痕后典型失效形貌图2通过临界载荷值(Lc1)下划痕深度(Pd)、残余深度(Rd)和摩擦系数(CoF)的突然变化,对失效进行了显微镜观察,得到关于氧化铝层抗划伤性的重要信息:临界载荷(Lc)越高,抗划伤性越好。图2:划痕实验过程中记录的信号智能手机屏幕上的浅划痕的自修复(恢复)智能手机显示屏上的大多数划痕都很深,肉眼可见(图3)。如果用户希望再次获得平滑的显示,通常必须更换前面板。为了验证清除过程是否有效,并确定可以修复的最大划痕深度,我们在恒定载荷下创建了几个系列的划痕。每一系列划痕都是在不同的载荷下进行的,以获得不同的划痕深度,并且可以评估恢复过程的可靠性。由于必须产生非常浅的划痕,NST3用于创建划痕。图3: 智能手机屏幕上的划痕除了产生可控划痕外,由于扫描后功能,纳米划痕测试仪 (NST3)还可以用作轮廓仪。测量受损智能手机屏幕的表面轮廓,从而评估已存在的划痕深度。测量设置的典型示例如图4所示。在划痕轮廓采集结束时,可以从划痕软件 导出数据,并直接由合适的分析软件(如TalyMap Gold)处 理,以确定预先存在的划痕深度(图5)。根据结果,制造商可以决定是否可以翻新智能手机屏幕。图 4: 使用NST3测量智能手机屏幕的表面轮廓图5: TalyMap软件分析预先存在的划痕的表面轮廓,以确定划痕深度(0.26μm)显示屏塑料/金属外壳的耐刮擦性位于智能手机显示屏旁边的显示屏框架上的油漆容易被划伤,尤其是边缘(图6)。因此,制造商希望提高显示屏框架上油漆的耐刮擦性和附着力。图6: 智能手机外壳上的磨损在这个案例研究中,比较手机外壳上两种不同薄膜的耐刮擦性能和附着力。薄膜的厚度约为30um,对此类薄膜进行划痕测试的最合适的仪器是Rvetest(RST3)或Micro CombiTester(MCT3),他们施加载荷最高达200N(RST3)30N(MCT3),最大划痕深度1mm,使用半径为200um的球形压头和渐进力载荷模式进行划痕1试验,划痕的全景成像如图7所示。图7:两种油漆划痕全景成像涂层1号和2号样品进行比较,2号的分层发生在较低的载荷且损坏也比较严重,2号的耐刮擦性能也不如1。因此,1应能抵抗较长时间的刮擦,其使用应优先于抗刮擦性较差的2。2纳米压痕测试玻璃体上有机薄膜的硬度和弹性模量智能手机显示屏的一个重要组成部分是有机薄膜,有机薄膜已经在OLED显示器中得到广泛应用。它们代表了智能手机显示屏市场的很大一部分,而且在灵活性方面具有的巨大优势,可以开发可折叠手机。有机薄膜的硬度和弹性模量等力学性能非常重要,因为它们表明了薄膜的质量,可以用来预测耐久性。有机电致发光(OLED)层的厚度在100纳米到500纳米之间,其力学性能的测量需要非常灵敏的仪器。安东帕尔超纳米压痕测试仪(UNHT3)具有合适的载荷和位移分辨率,可以可靠地测试这样的薄膜。图8显示了沉积在玻璃基板上的七种OLED薄膜的典型测量结果,每层的厚度约为100nm,最大压入深度控制在10nm。图8: 七种OLED薄膜典型载荷-位移曲线在每个样品上进行了五次最大载荷为300μN的压痕实验, 压痕载荷-位移曲线获得的每个样品的硬度和弹性模量 (图9)所示:弹性模量在33 GPa到55 GPa之间变化,硬度在280 MPa到400 MPa之间变化,标准偏差约为5%, 这证实了各层的均匀性良好,并允许安全区分各。A、B 和D层的硬度最高,C和F层的硬度最低。结果表明,UNHT3 可以用于非常薄的层的机械性能的可靠表征,从而有助于开发新的OLED层。图9: 七个OLED薄膜的硬度和弹性模量光学透明粘合剂(OCA)的机械性能光学透明粘合剂(OCA)是一种薄的粘合薄膜。例如:在智能手机行业中用于将显示器的不同组件之间连接。不仅这些薄膜的粘合性能很重要,而且它们的力学性能也很重要,因为它们决定了OCA的使用方式。安东帕尔生物压痕测试仪已用于测量此类粘合剂。生物压痕仪可以测量粘附力,还可以获得薄膜的刚度(弹性模量)和其与时间相关的特性(蠕变)。保证薄膜牢固地粘附着在基体上,以避免薄膜弯曲,这一点至关重要。在这个案例研究中,我们对三种不同的胶进行了表征:一种柔软的(a),弹性模量(E)约为0.35 MPa,两种较硬的(B,C),弹性模量约为208 MPa和约80 MPa,其中最大压入深度均控制在薄膜厚度的15%左右。图10:生物压痕仪用于测量附着在玻片上的OCA薄膜这些实验使用了半径为500μm的球形针尖,对于较薄的薄膜,建议使用半径较小的针尖,以避免基底的影响。最大压入载荷为0.5mN,最大压入深度在1μm和16μm之间变化,最大载荷下的保持时间为30秒。图11显示三种OCA薄膜的三种压痕曲线的比较,在针尖接近样品表面时,记录了粘附力。尽管在每个样品的不同区域进行了测量,但测量结果显示出良好的重复性。这表明,尽管粘合性能取决于两个接触部件的表面状态,但由于一个样品上的粘合力和所有压痕曲线非常相似,因此达到了稳定状态。图11:三种不同弹性模量OCA薄膜(A、B、C)的压痕曲线对比。4纳米压痕测试划痕测试和纳米压痕测试是智能手机显示屏的重要测试方 法,因为它们可以模拟现实生活中的情况,如冲击或硬物划伤。划痕测试适用于研究保护智能手机显示屏的覆盖玻璃的耐划痕性。该方法也有助于表征薄膜显示框上的附着力,从而选择附着力最佳的粘合剂。最后,该技术还可用于测量屏幕上预先存在的划痕的最大深度,评估其是否可以翻新。纳米压痕测试用于测量沉积在显示器玻璃上的功能薄膜的硬度和弹性模量。力学性能反映了新型显示器开发过程中 薄膜的质量。此外,纳米压痕法允许测定用于安装智能手机屏幕的光学透明粘合剂(OCA)薄膜的粘弹性和力学性。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 鲁汶仪器“一种晶圆外延片表面的晶格缺陷修复方法”专利公布
    天眼查显示,江苏鲁汶仪器股份有限公司“一种晶圆外延片表面的晶格缺陷修复方法”专利公布,申请公布日为2024年6月28日,申请公布号为CN118263091A。背景技术氮化镓基半导体材料具有带隙宽,发光效率高,耐高温以及化学性质稳定等优点,已广泛应用于固态照明、全色彩显示、激光打印等领域。氮化镓薄膜通常生长在异质衬底上,衬底和外延薄膜之间存在较大的晶格失配与热失配,一方面会导致压电极化效应,降低量子阱的发光效率;另一方面使得薄膜在沉积过程中一直受到应力的作用,导致外延片发生弯曲,翘曲甚至龟裂。在u-氮化镓生长时,由于衬底与外延薄膜之间较大的晶格失配,使得外延片受到应力的作用,产生“凹面”变形;又因为热失配的影响,使得在生长温度较低的多量子阱时,曲率绝对值不断减少甚至成为“凸面”变形。等离子体刻蚀是利用等离子态的原子、分子与材料表面作用,形成挥发性物质或直接轰击样品表面使之被刻蚀的工艺,它能实现各向异性刻蚀,即纵向的刻蚀速率远大于横向的刻蚀速率,从而保证了细小图形转移后的保真度。等离子体刻蚀中的感应耦合等离子体(ICP)刻蚀技术由于其控制精度高、大面积刻蚀均匀性好、污染少等优点,在半导体器件制造中获得越来越多的应用。但现有的技术中如直接采用氯基气体对氮化镓晶圆外延片进行刻蚀,会导致氮化镓外延表面的晶格缺陷层并未得到有效的去除,无法获得高均匀性与一致性的氮化镓外延片。发明内容本发明涉及半导体芯片生产领域,具体是一种晶圆外延片表面的晶格缺陷修复方法。本发明提供了一种晶圆外延片表面的晶格缺陷修复方法。本发明提供的方法使用氧化性气体如N2O或O2的等离子体对晶圆外延片表面进行处理,形成均匀的氧化层;使用氯基气体如BCl3的等离子体对氧化层表面进行处理,均匀地移除氧化表层;采用氯基气体与氟基气体的混合气体或氯基气体等离子体对材料表面进行刻蚀,能够有效地优化晶圆外延片表层外延生长过程产生的晶格缺陷或氧化斑造成的刻蚀缺陷和损伤,从而得到高均匀性与一致性的晶圆外延片;相对于现有技术,本发明的晶圆外延片表面晶格缺陷层去除效果更优。
  • 直播| 原子力显微镜和纳米压痕在材料表面微观性能方面的应用
    纳米压痕仪您可以使用安东帕的多功能压痕仪精确得到薄膜、涂层或基体的机械特性,例如硬度和弹性模量。仪器可以测试几乎所有材料,无论是软的、硬的、易碎的还是可延展的材料。也可以在纳米尺度上对材料的蠕变、疲劳和应力 - 应变进行研究。载荷范围大:从纳米到宏观尺度安东帕的纳米压痕仪的载荷范围大,因此几乎提供市面上最多的功能且适用性最强的解决方案。这些专用的压痕测试仪涵盖纳米、微米和宏观尺度,可用于研究无数种材料,包括金属、陶瓷、半导体和聚合物等。纳米压痕测量纳米压痕测量让您能获得材料的机械性能,如硬度、弹性模量或蠕变。在压痕测试过程中,会持续记录载荷和位移,并在仪器的实时提供载荷和位移曲线。直接得到硬度和弹性模量与传统的微米硬度测试仪相反,安东帕压痕仪不仅能够得到样品的硬度,也能够基于高精度的仪器化压入测试 (IIT) 技术得到样品的弹性模量。独特的表面参比技术真正使安东帕压痕仪远远优于其他同类仪器的设计特性是其独特的表面参比系统。我们的仪器设计结合了涵盖整个压痕仪的顶表面参比技术,对大量的压痕测试提供一致的参比。高框架刚度得益于安东帕独特的表面参比技术,纳米压痕仪的将框架距离减至最小,提供极高的框架刚度,从而直接结果就是非常高的测量精度。原子力显微镜:Tosca 系列安东帕Tosca 系列以独特的方式将先进技术与高时效操作相结合,使这款 AFM 成为非常适合科学家和工业用户等群体的纳米技术分析工具。有两种不同的型号可供选择:Tosca 400 或 Tosca 200,前者适合大样品,属于高端 AFM,后者适合中型样品以及预算有限的用户。两者提供的性能、灵活性和质量水平相同。采用模块化理念,为未来的发展做好准备现在你获得的这款仪器已经可以满足未来的需求。其设计为为不远的将来能够扩展多种功能和可能性。可以在当前系统中添加新功能和模式。设计稳固,适用于工业应用安东帕 AFM 的设计专注于工业应用。仪器的机械和电子元件已经通过耐久性测试进行了全面检查。所有关键部件都必须通过这些测试,以确保能够在运行现场多年无故障运行。 紧凑型仪器,体积小巧仪器的两大部分——主机和控制器——在实验室空间和功能方面都做了优化。安东帕的 AFM 集先进的自动化与高精度于一体,同时只需要很少的空间。例如,压电陶瓷 驱动器仍留有充足空间用于安装其他模式或模块的电子扩展卡。 切尽在掌控安东帕 AFM 简化了与仪器的交互,操作非常简单。您只需将样品放在样品台上,安装悬臂梁,然后关闭仓门即可。其余的活动(比如样品定位、接触过程等等)均由软件来执行和控制。 数秒中内即可更换悬臂梁压电陶瓷驱动器 设计精巧,您可以使用我们的悬臂梁更换工具,非常轻松、快速地更换悬臂梁。只需将压电陶瓷驱动器放入工具中,然后向内或向外滑动悬臂梁。无需用镊子将悬臂梁放入压电陶瓷驱动器中,并且能保证悬臂处于最佳放置。
  • Science:仿南洋杉3D毛细锯齿结构表面流体自主择向
    流体可控输运广泛存在于各种自然系统和实际工程中,在微流控、冷凝换热、抗结冰和界面减阻等领域具有广阔的应用前景。自从表/界面科学润湿性基础理论建立以来,国内外学者普遍认为,液体倾向于自发向系统能量降低的方向运动,其运动方向主要取决于表面结构特征和化学组成,与液体的性质无关。然而,液体能否决定其命运,在不改变表面结构和无能量输入的前提下实现运动方向的自主选择是长期以来困扰学者们的科学难题。近日,香港城市大学王钻开教授及其合作者借鉴南洋杉叶片多重悬臂结构特征,制备了仿南洋杉3D毛细锯齿结构表面,通过建立3D固/液界面交互作用,实现流体运动方向的自主选择。该研究以“3D capillary ratchet-induced liquid directional steering”为题发表在国际顶级期刊Science上。大连理工大学冯诗乐副教授和香港城市大学朱平安助理教授为该论文共同第一作者,香港城市大学王钻开教授为该论文通讯作者。图1 南洋杉叶片及其仿生表面多悬臂结构特征。A 南洋杉叶片表面双重曲率结构特征,包括横向和纵向曲率。B仿南洋杉3D毛细锯齿结构表面双重悬臂结构特征,单个锯齿厚度80 μm。要点:研究者借鉴南洋杉叶片结构特征,使用PμSL 3D打印技术(nanoArch® S140,摩方精密),设计并制备了由平行排列的具有横向和纵向曲率的双重悬臂结构的锯齿阵列组成的仿南洋杉3D毛细锯齿结构表面、具有对称垂直平面叶片结构的表面、具有倾斜平面叶片结构的表面和具有平行沟槽结构的表面。3D打印技术所使用树脂为丙烯酸光敏树脂,固化紫外光波长为405 nm,能量密度、曝光时间、曝光分辨率、打印层厚分别30 mW/cm²,1 s,10 μm,10 μm。叶片间距p为750 μm,列间距w为1000 μm,叶片倾斜角度为15 – 90°,纵向和横向的曲率半径R1和R2分别为~400 μm和~650 μm。图2南洋杉叶片及仿南洋杉3D毛细锯齿结构表面流体输运性能。A酒精(红色)和水(蓝色)在南洋杉叶片上的运动行为。其中,酒精沿着锯齿结构倾斜的方向运动,而水沿着相反的方向运动。B低表面能液体和高表面能液体在仿南洋杉3D毛细锯齿结构表面运动行为。要点:研究者发现,乙醇沿着南洋杉叶片表面锯齿结构倾斜的方向运动,而水沿着反方向运动,这种通过调控液体性质来控制其输运方向的现象尚未报道。受此启发,研究者研究了不同表面张力流体在仿南洋杉3D毛细锯齿结构表面的输运性能。研究表明,该仿生功能表面展现出和南洋杉叶片相似的流体择向性能:低表面能流体沿着锯齿结构倾斜的方向运动,而高表面能流体沿着与锯齿结构倾斜相反的方向的运动。即使在长程输运和圆形表面上,流体依然保持良好的单向输运性能。图3 仿南洋杉3D毛细锯齿结构表面流体自主择向机理。A/B低表面能液体和高表面能液体在仿南洋杉3D毛细锯齿结构表面的铺展行为。C横向曲率结构悬臂效应力学分析模型。D流体打破结构扎钉效应的临界状态。E纵向曲率结构悬臂效应力学分析模型。F流体自主择向现象和表面结构及流体表面张力的关系。要点:研究者观察发现,液体在仿南洋杉3D毛细锯齿结构表面铺展过程中,低表面能液体固/液界面展现自下而上的铺展模式,而高表面能液体展现自上而下的铺展模式。实际上,流体沿着特定方向的自发铺展需要满足两个临界条件:第一,流体能接触到相邻的锯齿结构;第二,流体前端受到的驱动力足够克服结构的扎钉效应。3D毛细锯齿结构的亚毫米尺度双重悬臂结构特征,能够调控不同表面张力流体两个临界条件的阈值,建立3D空间上非对称固/液界面相互作用,进而选择流体的铺展模式和铺展方向,实现液体运动方向的有效控制。这是仿南洋杉3D毛细锯齿结构表面流体自主择向的本质。该论文合作者包括香港城市大学机械工程系郑焕玺、李加乾,大连理工大学机械工程学院詹海洋、陈琛、刘亚华教授,香港城市大学生物医学科学系姚希副教授和香港大学机械工程系王立秋教授。论文链接: https://www.science.org/doi/10.1126/science.abg7552
  • 产值500万 表面缺陷检测系统公司获风投青睐
    进入赤霄科技,墙上几个大字格外吸引眼球,&ldquo 专注一件事 表面缺陷机器视觉智能检测系统设备&rdquo 。这家专注于表面缺陷检测系统研发的高科技公司在经历近2年的投入研发后,终于获得回报,公司研发的产品由于性价比高,受到市场推崇,王暾终于舒了口气。2011年,王暾放弃留美读博的机会,毅然决然回国创业,这样的决定曾遭受了不少亲朋好友的反对。   &ldquo 当时根本没有人理解我。&rdquo 王暾回忆。在老师眼里,王暾留美读博再适合不过,由于他放弃这样值得珍惜的机会,以至于恩师&ldquo 反目&rdquo ,&ldquo 你放弃读博的话,就不用回国见我了。&rdquo 每每回想起这样的场景,除了无奈之外,王暾想得更多的是怎么样把项目做好。   2009年,针对众多企业的技术需求,王暾建立了一个技术交易平台。&ldquo 我建立这个技术平台的另外一个重要目的,就是想让所有学技术的人员能在这个技术平台发挥自己最大的才能。&rdquo 王暾介绍。   技术平台的建设难度远超过王暾的想象,资金来源成了平台建设难以逾越的鸿沟。经历了1年多的摸索后,王暾决定先放弃技术平台的建设转向技术开发。   2012年,杭州赤霄科技有限公司正式成立。经历了近两年的研发,无纺布表面缺陷检测系统等3款产品相继面世。2014年上半年,赤霄科技系统设备销售额达到300万,一举扭转只投入,无产出的局面,公司逆转亏损开始盈利。2014年一整年,赤霄科技的年产值预计将达到500余万。   据赤霄科技的王经理介绍,表面缺陷检测系统的研发在国内还处于起步阶段,专注于这一领域的公司也是屈指可数,能在这一行业立足,靠的是技术。   另一方面,赤霄科技在产品的价格上也占足了优势。王暾介绍,德国的同类产品,售价高达80万,而赤霄的同款产品售价20万,更容易被国内的中小企业接受。   由于产品市场效益良好,赤霄科技成了一些风投公司的香馍馍,&ldquo 未来两年,公司会进行融资,并扩大生产。当然,把公司发展成上市公司是我的目标。&rdquo 王暾笑着说。
  • 瑞典百欧林携手大昌华嘉开拓表面张力仪中国业务
    瑞典百欧林携手大昌华嘉开拓表面张力仪中国业务2016-06-29 瑞典百欧林瑞典百欧林科技有限公司与专注于亚洲地区的市场拓展服务领导者大昌华嘉签订合作协议,为瑞典百欧林的先进仪器表面张力仪开拓中国市场。大昌华嘉科技事业部为瑞典百欧林提供全方位的市场拓展服务,以确保充分开拓表面张力仪产品在中国的业务。大昌华嘉在中国庞大、完善的售前和售后网络,与高校、科研及各类政府、企业客户的良好合作关系是瑞典百欧林选择大昌华嘉作为在中国地区的合作伙伴的原因。 “我们很高兴能与大昌华嘉在中国建立合作关系。他们的专业知识,以及长期以来的成熟的客户关系,使我们相信大昌华嘉是支持我们业务增长的绝佳合作伙伴,从而使更多的客户能够从我们的创新解决方案中获益。”瑞典百欧林分析仪器副总裁Johan Westman说道。大昌华嘉中国区科技事业部总经理Oliver Hammel进一步谈道“百欧林选择与我们建立了充满前景的合作关系,我们感到非常自豪,因为我们拥有系统化的市场发展策略以及我们的行业和服务专家。此次战略合作配合了百欧林的尖端技术以及大昌华嘉的市场准入和应用专业知识,这将会促使双方的持续盈利增长。“ 关于大昌华嘉大昌华嘉是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。正如“市场拓展服务”一词所述,大昌华嘉致力于帮助其他公司和品牌拓展当前市场及新兴市场业务。总部位于瑞士苏黎世的大昌华嘉是一家全球性企业,自2012年3月在瑞士证券交易所上市。大昌华嘉在全球36个国家设有770个营运地点 --其中740个分布于亚洲地区,拥有28,300名专业员工。2015年,大昌华嘉的销售净额为101亿瑞士法郎。大昌华嘉于1865年成立,凭借深厚的瑞士传统背景,公司在亚洲开展业务历史悠久,深深植根于亚太地区的社会和企业界。大昌华嘉科技事业部是领先的市场拓展服务提供商,提供基建投资产品和分析仪器的技术解决方案。大昌华嘉科技事业部的强势业务领域涵盖制造和生产、能源、研究、分析仪器、食品和饮料、重金属和基建设施,其服务组合包括市场准入研究与咨询、市场营销、销售、应用工程、售后服务以及项目融资。科技事业部在18个国家设有75个分支机构,拥有约1370名员工- 其中包括500名服务工程师。2015年,大昌华嘉科技事业部的净销售额为3.722亿瑞士法郎。 关于瑞典百欧林瑞典百欧林科技有限公司是一家先进科研仪器生产商,在北欧的瑞典,丹麦和芬兰都有主要产品的研发和生产基地。我们为用户提供高科技、高精度的科研设备,可用于表界面、材料科学、生物科学、药物开发与诊断等研究领域。我们同时专注于用户的技术和应用支持,以及科技的发展与进步。我们的产品均基于最先进的测量技术,而这些技术,或为我们专利,或为我们特有,或在长期科研与发展中占主导地位。我们的核心战略是,通过寻找具有广阔商业前景的科研领域,来应用我们的产品与技术。目前,百欧林的用户已遍布全球70多个国家和地区。 我们的产品:Attension: 界面科学与材料技术的表面张力测试Q-Sense: 纳米尺度分子界面以及相互作用研究 KSV NIMA: 单分子层薄膜的构建与表征工具Sophion: 基于细胞离子通道功能检测的高通量全自动膜片钳
  • 最新Nature: 26.1%效率,钙钛矿太阳能电池表面钝化的新技术!
    【研究背景】钙钛矿太阳能电池(PSCs)由于其在单结构、小尺寸设备上实现了超过26%的功率转换效率(PCE)而成为研究热点。然而,二维钙钛矿表面钝化层引入的问题在于,活性阳离子在热应力下易于迁移,导致钙钛矿结构的八面体连接破坏和膜的快速降解,限制了器件的长期稳定性和效率。为应对此挑战,美国西北大学Kanatzidis、Sargent和Marks团队开发了非二维钙钛矿配体策略,通过限制间隔物进入钙钛矿晶格来抑制表面离子迁移。这些策略成功地减少了高温环境下的性能损失,并且在大面积钙钛矿膜上展现出了更高的钝化效果。为了进一步提升阳离子扩散抑制效果,并最大化八面体网络的稳定性,研究人员引入了边缘-/面共享的设计元素,创新性地实现了类钙钛矿材料的设计。这些进展不仅拓展了钙钛矿体在高性能PSCs中的应用前景,还为深入理解和优化其组成、加工和电子特性提供了重要的设计指南。以上成果在“Nature”期刊上发表了题为“Two-dimensional Perovskitoids Enhance Stability in Perovskite Solar Cells”的最新论文。【科学亮点】(1)首次在钙钛矿领域引入了类钙钛矿结构,这是一种具有较为健壮的有机-无机混合结构,通过边缘/面共享设计元素来抑制阳离子迁移。(2)实验结果显示,类钙钛矿/钙钛矿异质结构相比传统的二维/三维钙钛矿,能够显著抑制阳离子的迁移。通过增加钙钛矿体的维度,特别是引入边缘-/面共享设计,提高了八面体连接性和垂直于平面的取向,有效改善了与三维钙钛矿表面的电荷传输效率。(3)进一步分析表明,采用A6BfP等类钙钛矿作为钙钛矿表面的钝化剂,能够有效修饰钙钛矿表面,形成均匀的大面积钙钛矿膜,并且在厘米级PSCs上实现了高达24.6%的准稳态转换效率。此外,钙钛矿体/钙钛矿异质结构在85°C下稳定运行1250小时,表明其在实际应用中具有良好的稳定性和持久性。【图文解读】图1:类钙钛矿材料的设计与合成。图2:类钙钛矿材料/钙钛矿异质结构的构建。图3:2D类钙钛矿/3D钙钛矿异质结的光电特性。图4:钙钛矿太阳电池的光伏性能和稳定性。【结论展望】本文通过设计和合成具有边缘/面共享结构的类钙钛矿,有效地解决了传统二维钙钛矿表面钝化层在高温条件下易发生的阳离子迁移问题。传统的二维钙钛矿表面钝化层存在着阳离子在二维和三维钙钛矿层之间迁移的风险,这不仅降低了太阳能电池(PSCs)的效率,也影响了其长期稳定性。而通过引入类钙钛矿,特别是具有多维度结构的A6BfP 类钙钛矿,有效增强了其与三维钙钛矿表面的接触效率,通过增强的八面体连接性和垂直取向,改善了电荷传输效率,同时抑制了阳离子的迁移现象。这一创新设计不仅提高了PSCs的性能,还证实了其在高温环境下的长期稳定性,为解决太阳能电池材料在复杂工作条件下的实际应用问题提供了新的理论和实验基础。此外,本研究展示了通过精确设计分子结构,尤其是通过增加分子内部的体积分离距离,为类钙钛矿提供更有效的钝化功能,为未来高效率、长寿命PSCs的开发提供了有力的指导。文献信息:Liu, C., Yang, Y., Chen, H. et al. Two-dimensional Perovskitoids Enhance Stability in Perovskite Solar Cells. Nature (2024). https://doi.org/10.1038/s41586-024-07764-8
  • 岛津EPMA超轻元素分析之六: 氮化处理工件表面缺陷的原因是什么?
    导读 氮化处理工艺应用广泛,但有时由于热处理工艺不正确或操作不当,往往造成产品的各种表面缺陷,影响了产品使用寿命。某氮化处理的工件表面出现了内氧化开裂,使用岛津电子探针EPMA对其进行了分析。 科普小课堂 氮化处理的特点:氮化处理是一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。工件进行氮化热处理可显著提高其表面硬度、耐磨性、抗腐蚀性能、抗疲劳性能以及优秀的耐高温特性,而且氮化处理的温度低、工件变形小、适用材料种类多,在生产中有着大规模应用。 氮化处理的原理:传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入表层内,形成不同含氮量的氮化铁以及各种合金氮化物,如氮化铝、氮化铬等,这些氮化物具有很高的硬度、热稳定性和很高的弥散度,从而改变了表层的化学成分和微观组织,获得了优异的表面性能。 裂纹产生的原因是什么? 电子探针分析氮化后的内氧化裂纹:通过之前的系列,已经了解了超轻元素的测试难点以及岛津电子探针在轻元素和超轻元素分析方面的特点和优势。为了查明氮化工件开裂的问题,使用岛津电子探针EPMA-1720直接对失效件的横截面进行元素的分布表征。 岛津电子探针EPMA-1720 结果显示:裂纹内部主要富集元素C和O,工件表面存在脱碳现象,工件内部存在碳化物沿晶分布,氮化层有梯度地向内扩展趋势。氮化处理前工件是不允许出现脱碳现象的,如前期原材料或前序热处理环节中出现脱碳现象,需要机械加工处理掉。内部的沿晶碳化物会造成晶界结合力的减弱,容易造成沿晶开裂。 表1 表面微裂纹横截面元素C、O、N的分布特征 对另一侧的面分析显示,渗氮处理前,试样表面也存在脱碳层。脱碳层如未全部加工掉,将会致使工件表面脱碳层中含有较高浓度的氮,从而得到较厚的针状或骨状高氮相。具有这种组织形态的渗层,脆性及对裂纹的敏感性都很大。而且在表面也有尖锐的不平整凸起,这些都可能会造成后续工艺中的应力集中导致表面微裂纹。 同时也观察到某些合金元素存在些微的分布不均匀现象,不过这些轻微的成分变化,对性能的影响应该不大。 表2 另一侧面表面微裂纹横截面元素C、Mo、O的分布特征 试样腐蚀后进行金相分析。微观组织显示,近表层存在55~85μm的内部微裂纹,氮化后出现连续的白亮层,白亮氮化层并未在内部裂纹中扩散,所以微裂纹应该出现在表面氮化工艺后的环节。 结论 使用岛津电子探针EPMA-1720对某氮化工件表面微裂纹进行了分析,确认了表面的脱碳现象、基体的碳化物晶界分布、氮化过程中氮的近表面渗透扩展以及微裂纹中氧的扩散现象。工件原材料或工件在氮化前进行调质处理的淬火加热时,都要注意防止产生氧化脱碳;如果工件表面已产生了脱碳,则在调质后氮化前的切削和磨削加工中,须将其去除。同时在氮化工艺前需要加入并做好去应力热处理工艺,否则可能内应力过大造成氮化后的表面缺陷。
  • 快速可靠的新一代全二维面探残余应力分析仪助力氮化硅陶瓷领域获新进展
    随着科技和工业技术的快速发展,人们对材料的硬度、强度、耐磨损、热膨胀系数及绝缘性能等提出了更高的要求。而高技术陶瓷作为继钢铁、塑料之后公认的第三类主要材料,一直以来在突破现有合金和高分子材料的应用极限方向被人们寄以厚望。其中,氮化硅陶瓷因具有优异的低密度、高硬度、高强度、耐高温、耐腐蚀、耐磨损、耐氧化等诸多优点,成为了最具发展潜力与市场应用的新型工程材料之一,在高温、高速、强腐蚀介质的工作环境中具有特殊的应用价值,已被广泛应用在精密机械、电气电子、军事装备和航空航天等领域。但另一方面,工程陶瓷具有硬、脆的特性,使得其机械加工性能较差,因此磨削已成为陶瓷零件的主要加工方式。 工程陶瓷在磨削过程中,工件的表面受剪切滑移、剧烈摩擦、高温、高压等作用,很容易产生严重的塑性变形,从而在工件表面产生残余应力。残余应力将会直接影响工程陶瓷零件的断裂应力、弯曲强度、疲劳强度和耐腐蚀性能。工程陶瓷零件的断裂应力和韧性相比于金属对表面的应力更为敏感。关于残余压应力或拉应力对材料的断裂韧性的影响,特别是裂纹的产生和扩展尚需进一步的研究。零件表面/次表面的裂纹极大地影响着其性能及服役寿命。因此,探索工程陶瓷的残余应力与裂纹扩展的关系就显得尤为重要。 Huli Niu等人为了获得高磨削表面质量的工程陶瓷,以氮化硅陶瓷为研究对象,进行了一系列磨削实验。研究表明:(1)提高砂轮转速、减小磨削深度、降低进给速率有利于减小氮化硅陶瓷的纵向裂纹扩展深度。氮化硅陶瓷工件在磨削后,次表面的裂纹主要是纵向裂纹,该裂纹从多个方向逐渐向陶瓷内部延伸,最终导致次表面损伤。(2)氮化硅陶瓷表面的残余压应力随着砂轮转速的增加、磨削深度和进给速度的减小而增大。平行于磨削方向的残余压应力大于垂直于磨削方向的残余压应力。(3)砂轮转速和磨削深度的增加、进给速率增大时,磨削温度有升高的趋势。在磨削温度从300℃上升到1100℃过程中,表面残余压应力先增大后减小;裂纹扩展深度先减小后增加。在温度约为600℃时,表面残余压应力最大,裂纹扩展深度最小。适当的磨削温度可以提高氮化硅陶瓷的表面残余压应力并抑制裂纹扩展。(4)氮化硅陶瓷表面残余压应力随裂纹扩展深度和表面脆性剥落程度的增加而减小。裂纹扩展位置的残余应力为残余拉应力。它随着裂纹扩展深度的增加而增加。此外,残余应力沿进入表面的距离在压缩和拉伸之间交替分布,在一定深度处这种情况消失。(5)通过调整磨削参数、控制合适的磨削温度,可以提高氮化硅陶瓷磨削表面质量。 以上研究结果为获得高质量氮化硅陶瓷的表面加工提供了强有力的数据支撑。关于Huli Niu等人的该项研究工作,更多的内容可参考文献[1]。 Figure 1. Grinding experiment and measuring equipment: (a) Experimental principle and processing (b) SEM (c) Residual stress analyzer.Figure 6. Surface residual stress under different grinding parameters: (a) Wheel speed (b) Grinding depth (c) Feed rate.上述图片内容均引自文献[1]. 作者在该项研究工作中所使用的残余应力检测设备为日本Pulstec公司推出的小而轻的便携式X射线残余应力分析仪-μ-X360s。该设备采用了圆形全二维面探测器技术,并基于cosα残余应力分析方法可基于多达500个衍射峰进行残余应力拟合,具有探测器技术先进、测试精度高、体积迷你、重量轻、便携性高等特点,不仅可以在实验室使用,还可以方便携带至非实验室条件下的各种车间现场或户外进行原位的残余应力测量。我们期待该设备能助力更多的国内外用户做出优秀的科研工作! 小而轻的便携式X射线残余应力分析仪-μ-X360s设备图 参考文献:[1] Yan H, Deng F, Qin Z, Zhu J, Chang H, Niu H, Effects of Grinding Parameters on the Processing Temperature, Crack Propagation and Residual Stressin Silicon Nitride Ceramics. Micromachines. 2023 14(3):666. https://doi.org/10.3390/mi14030666
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 合肥研究院等在双轴应力调控二维材料析氢方面获进展
    近日,中国科学院合肥物质科学研究院固体物理研究所纳米材料与器件技术研究部与新加坡南洋理工大学合作,在双轴应力调控二维材料析氢方面取得新进展。相关研究成果发表在Advanced Materials上。   由于固有的拉伸应变和增强的局部电场具有高度弯曲表面的纳米材料,已被证明可有效调节自身表面的物理化学状态。研究表明,过渡金属二硫化物(TMD)中的应力可激活惰性基面、提高催化性能,如二硫化钼(MoS2)。然而,与传统的单轴应力相比,多维度应力和TMDs层数对局域电子结构、空穴的影响有待探索。   鉴于此,研究人员提出新型自硫化策略来诱导原位形成层数可调的双轴应变MoS2纳米壳,并剖析了双轴应力和层数如何影响其局部电子构型和活性中心结构。电化学测试和密度泛函理论(DFT)计算表明:可优化MoS2纳米壳中的应变程度、层数和Mo配位条件以实现增强的析氢反应(HER)活性;双轴应变和S空位有助于促进氢吸附步骤;具有4个配位数的特定Mo位点的双层MoS2纳米壳表现出高效的理论催化活性。该工作为制备具有微调层数的双轴应变TMDs电极以及提高电催化性能开辟了新的有效途径。   研究工作得到国家自然科学基金、中科院交叉创新团队和新加坡科技研究局的支持。   论文链接 图1.Ni3S2@BLMoS2的合成与结构表征 图2.DFT理论计算 为促进二维材料的研究与应用,仪器信息网将于2022年11月15日组织召开 “二维材料的表征与评价”主题网络研讨会。邀请业内专家以及厂商技术人员就二维材料最新应用研究进展、检测技术及标准化等分享精彩报告,为广大用户搭建一个即时、高效的交流平台。点击图片直达会议页面
  • 英国剑桥大学刘子维:全息术助力表面形貌的干涉测量
    全息术是一种能够对光波前进行记录和重建的技术,自从 1948 年匈牙利-英国物理学家 Dennis Gabor 发明全息术以来,该技术不仅得到了显微学家,工程师,物理学家甚至艺术家等各领域的广泛关注,还使他获得了 1971 年的诺贝尔物理学奖。干涉术作为光学中另一个主要研究领域,是利用光波的叠加干涉来提取信息,其原理与全息术都是用整体的强度信息来记录光波的振幅和相位,虽然记录的方法有很大不同,但随着 20 世纪 90 年代,高采样密度的电子相机的出现,可用来记录数字全息图,则进一步增强了二者的联系。近日,针对全息术对表面形貌的干涉测量的发展的推动作用,来自美国 Zygo Corporation 的 Peter J. de Groot、 Leslie L. Deck,中国科学院上海光机所的 苏榕 以及德国斯图加特大学的 Wolfgang Osten 联合在 Light: Advanced Manufacturing 上发表了综述文章,题为“Contributions of holography to the advancement of interferometric measurements of surface topography”。本文回顾了包括相移干涉测量,载波条纹干涉,相干降噪,数字全息的斐索干涉仪,计算机生成全息图,震动、变形和粗糙表面形貌和使用三维传输方程的光学建模七个方面,从数据采集到三维成像的基本理论,说明了全息术和干涉测量的协同发展,这两个领域呈现出共同增强和改进的趋势。图1 全息术的两步过程图2 干涉术的两步过程相移干涉测量术 因为记录的光场的复振幅被锁定在强度图样中的共同基本原理,全息术和干涉测量术捕获波前信息也是一个常见的困难,用于表面形貌测量的现代干涉仪中,常用相移干涉测量术(PSI)来解决这个问题,PSI 的思路是通过记录除了它们之间的相移之外几乎相同的多个干涉图,以获取足够的信息来提取被测物体光的相位和强度。Dennis Gabor 早在 1950 年代搭建的全息干涉显微镜使用偏振光学隔离所需的波前,引入除相移外两个完全相同的全息图。如图3所示,Gabor 的正交显微镜使用了一个特殊的棱镜,在反射光和透射光之间引入了 π/2 的相移。因此,可以说,用于表面测量的 PSI 首先出现在全息术中,然后独立出现在干涉测量术中。PSI 现在被广泛用于光学测试和干涉显微镜,虽然许多因素促成了其发展,但其基本思想可以追溯到使用多个相移全息图进行波前合成的最早工作。图3 Gabor正交显微镜简化示意图载波条纹干涉测量术 通过使用角度足够大的参考波来分离 Gabor 全息图中的重叠图像,从而使全息图形成的重建真实图像和共轭图像在远场中变得可分离,是全息术的重大突破之一, 到 1970 年代,人们意识到传播波阵面的远场分离等价物可以在没有全息重建的情况下模拟干涉测量。这一概念在 1982 年武田 (Takeda) 的开创性工作中广受欢迎,他描述了用于结构光和表面形貌的干涉测量的载波条纹方法。载波条纹干涉测量术的基本原理源自通信理论和 Lohmann 对全息重建过程的傅里叶分析。到 2000 年代,计算机和相机技术已经足够先进,可以使用高横向分辨率的二维数字傅里叶变换进行实时数据处理,赋予了载波条纹干涉技术的新的生命。图4 从干涉图到最后的表面形貌地图的过程此外,在菲索干涉仪中,参考波和物体表面的相对倾斜会导致相机处出现密集的干涉条纹。如果仪器在离轴操作时,具有可控制或可补偿的像差,所以只需要对激光菲索系统的光机械硬件进行少量更改,就可以实现这种全息数据采集。因此,载波条纹干涉仪通常是提供机械相移的系统的选择。相干降噪 虽然可见光波段激光器的发明给全息术带来重要进展,然而,在全息术和干涉测量术中不使用激光的主要原因是,散斑效应和来自尘埃颗粒和额外的反射而产生的相干噪声。通过仔细清理光学表面只能很小部分的噪声,而围绕系统的光轴连续地旋转整个光源单元就可以解决这个问题。如果曝光时间很长,这种运动会增强所需的静态图样,同时平均化掉大部分相干噪声。常用的实现平均化的方式包括围绕光轴旋转光学元件、沿着照明光移动漫射器、用旋转元件改变照明光的入射方向,或在傅里叶平面中移动不同的掩模成像系统。激光在 1960 年代开始出现在不等路径光学装置中,最初为全息术开发以减少相干噪声的平均方法,被证明也可有效改善干涉测量的结果。图5中,是 Close 在 1972 年提出的一种基于脉冲红宝石激光器的便携式全息显微镜。显微镜记录了四个全息图,每个全息图都有一个独立的散斑图案,对应于棱镜的旋转位置,由全息图形成的四个图像不相干叠加以减少相干噪声和散斑粒度。图5 使用旋转楔形棱镜的相干降噪系统数字全息菲索干涉仪 Gabor 的背景和研究兴趣使他将全息术视为一种具有大景深的新型显微成像技术,使显微镜学家可以任意地检查图像的不同平面。记录后重新聚焦图像的能力仍然是全息术的决定性特征之一,使我们无需仔细地将物体成像到胶片或探测器上。它还可以记录测量体积,能够清晰地成像三维数据的横截面。而数字全息术使这种能力变得更具吸引力,其重新聚焦完全在计算机内实现。虽然数字重聚焦在数字全息显微镜中很常见,但它通常不被认为是表面形貌干涉测量的特征或能力。尽管如此,从前面对该方法的数学描述来看,在采集后以相同的方式重新聚焦常规干涉测量数据是完全可行的。随着数据密度的增加,人们对校正聚焦误差以保持干涉测量中的高横向分辨率感兴趣。图6 激光菲索干涉仪的聚焦机理与全息系统不同,传统干涉仪的布置方式是在数据采集之前将物体表面精确地聚焦到相机上。图 6 说明了一种简化的聚焦机制。聚焦通常是手动过程,涉及图像清晰度的主观确定。由于光学表面通常在设计上没有特征,因此常见的过程包括将直尺放置在尽可能靠近调整表面的位置并调整焦距,直到直尺看起来最锋利。繁琐的设置和人为错误的结合使得我们可以合理地断言,今天很少有干涉仪能够充分发挥其潜力,仅仅是因为聚焦错误。数字重新聚焦提供了使用软件解决此问题的机会。计算机产生全息图 早在 1960 年代后期,学者们就已经对波带片与计算机生成全息图 (CGH) 之间的类比有了很好的理解,这是因为在开发新的基于激光的不等径干涉仪来测试光学元件的表面形状的应用时,需要对具有非球面形状的透镜和反射镜进行精确测试。图7 计算的菲涅尔波带片图样和牛顿环(等效于单独的虚拟点光源产生的Gabor全息图)然而,干涉仪作为最好的空检测器,在比较形状几乎相同的物体和参考波前时能提供最高的精度和准确度,虽然有许多巧妙的方法可以使用反射和折射光学器件对特定种类的非球面进行空测试,但 CGH 可通过简单地改变不透明和透明区域的分布来显着增加解空间。CGH 空校正器的最吸引人的特点是波前构造的准确性在很大程度上取决于衍射区的平面内位置,而不是表面高度。因此,无需费力地将非球面参考表面抛光至纳米精度,而是可以在更宽松的尺度上从精密参考波来合成反射波前。图8 使用激光菲索干涉仪和计算机产生的全息图测试非球形表面的光学装置振动、变形和粗糙表面形貌 全息干涉测量术是全息术对干涉测量术最明显的贡献,从技术名称中就可以看出。这项发现的广泛应用引起了计量学家高度关注,包括用于通过全息术定量分析三维漫射物体的应力、应变、变形和整体轮廓的方法。全息干涉测量术的发现对干涉测量术的能力和可解释性产生了深远的影响,为了辨别这些联系,首先考虑在同一全息图的两次全息曝光中,倾斜一个平面物体。两个物体方向的强度图样的不相干叠加,调制了全息图中条纹的对比度,而当这个双曝光全息图用参考波重新照射,以合成来自物体的原始波前时,结果也是条纹图样。因此,我们看到传播波前的全息再现,可用于解调双曝光全息图中存在的非相干叠加的干涉图案,将对比度的变化转换为表示两次曝光之间差异的干涉条纹。由于全息图中这些叠加的图案相互不相干,它们可以在不同的时间、全息系统的组成部分的不同位置、甚至不同的波长等条件下生成,因此,该技术的应用范围十分广泛。图9 模拟平面的双曝光全息使用三维传输方程的光学建模 使用物体表面的二维复表示,对本质上是三维问题的传统建模,是假设所有表面点可以同时沿传播方向处于相同焦点位置。因此,这种二维近似的限制是表面高度变化相对于成像系统的景深必须很小。全息术影响了三维衍射理论的发展,进一步影响了干涉显微镜的评估和性能提升。光学仪器的许多特性可以使用传统的阿贝理论和傅里叶光学建模来理解,包括成像系统的空间带宽滤波特性。干涉仪的傅立叶光学模型的第一步,是将表面形貌的表示简化为限制在垂直于光轴的平面内的相位分布。但对于使用干涉测量术的表面形貌测量,这并不是一个具有挑战性的限制,因为普通的菲索干涉仪的景深大约为几毫米,表面高度测量范围可能为几十微米。因此,在高倍显微镜中采用三维方法的速度更快,特别是对于共聚焦显微镜,在高数值孔径下,表面形貌特征不能都在相对于景深的相同的焦点。然而,二维傅里叶光学的近似对于干涉显微镜来说是不够精确的,因为在高放大倍率下,仅几微米的高度变化,就会影响干涉条纹的清晰度和对比度。基于 Kirchhoff 近似推导出了 CSI 的三维图像形成和有效传递函数,其中均匀介质的表面可表示为连续的单层散射点。这种方法已被证明具有重要的实用价值,不仅可以用于理解测量误差的起源,是斜率、曲率和焦点的函数,还可以用于校正像差。本文总结 基于激光的全息术的出现带来了一系列快速的创新,这些创新从全息术发展到干涉测量术。虽然文中提到的七个方面无法完全概括全息术的贡献,但一个明显的趋势是全息术对用于表面形貌测量的干涉测量技术的影响正在不断增加, 这最终可能会导致全息术与通常不被认为是全息术的技术相融合,而应用光学计量的这种演变必将带来全新的解决方案。论文信息 de Groot et al. Light: Advanced Manufacturing (2022)3:7https://doi.org/10.37188/lam.2022.007本文撰稿: 刘子维(英国剑桥大学,博士后)
  • 快速可靠的新一代全二维面探残余应力分析仪再获业界认可!日本无损检测协会正式颁布全球首个cosα 残余应力无损检测标准
    X射线残余应力分析方法和技术,因其具有理论成熟、数据可靠、无损检测等优势,在各种金属加工领域具有广泛的应用。在过去的几十年时间中,市面上的X射线残余应力分析仪主要采用的是基于零维(点)探测器和一维(线)探测器技术的设备。2012年日本Pulstec公司成功发布了基于新型圆形全二维(面)探测器技术的新一代X射线残余应力分析仪设备(μ-X360系列)。μ-X360系列的相关设备具有技术先进、测试精度高、体积迷你、重量轻、便携性等特点,不仅可以在实验室使用,还可以方便携带至非实验室条件下的各种现场或户外进行原位的残余应力测量,这使得X射线残余应力分析方法和技术在应用上实现了更进一步的突破!在工业应用中,参考标准作为指导实践的重要依据一直以来都备受关注。继日本材料学会(The Society of Material Science, Japan)于2020年2月15日发布JSMS-SD-14-20《通过cosα方法测量X射线应力的标准(铁素体钢)》标准后,日本无损检测协会(The Japanese Society of Non-Destructive Inspection, JSNDI)也于近期正式颁布了全球部将cosα方法应用于无损检测领域的标准《cosα法X射线应力测定通则》(标准号:NDIS 4404:2021),我们相信该标准的颁布对于我国今后相关的企业标准、地方标准及标准的制定都能起到积的参考作用,为相关行业的无损检测实践工作提供帮助和启发!新一代全二维面探X射线残余应力分析仪(制造商:日本Pulstec公司 型号:μ-X360s)无损检测是指在不影响被检测对象使用性能且不伤害被检测对象内部组织的前提下,利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,对试件内部及表面的结构、状态及缺陷的类型、数量、形状、性质、位置、尺寸、分布及其变化进行检查和测试的方法。特种设备检测行业其检测对象多为在役状态的大型构件或设备,与实验室检测不同多使用无损检测的手段;与传统方法及设备相比,基于cosα方法的Pulstec μ-X360s残余应力分析仪的突出优势在于采用单次低功率短时X射线入射即可得到可靠的残余应力检测结果,且设备小巧、重量轻,特别适用于对于可移动性及便携性要求较高的现场无损检测。自2015年Quantum Design中国将该设备引进至国内,我们已在各地多家特种设备检测机构完成该设备的销售与安装,如:中国特种设备检测研究院、天津市特种设备监督检验技术研究院、广东省特种设备检测研究院及福建省特种设备检验研究院等,近期,我们又成功完成了浙江省特种设备科学研究院的设备安装并成功验收,Pulstec μ-X360s残余应力分析仪的便携性及易用性得到了客户的高度认可。目前,Pulstec已在全球近20个与地区安装了超过500台μ-X360系列残余应力分析仪,用户不仅遍布于诸多大学及研发实验室,也遍布于各大主要工业制造领域的企业中。通过与客户的密切合作,Pulstec陆续开发出各种解决方案以满足客户的需求。近日,Pulstec与德国Sentenso(Sentenso GmbH)公司合作,推出了工业机器人搭载残余应力分析仪的新解决方案,实现了X射线残余应力分析仪的自主运动、自主检测、自动绘制应力分布云图以及三维振荡等功能。该系统可采用Kuka公司(Kuka AG)或UR公司(Universal Robots)的工业机器人,通过专用夹具将Pulstec μ-X360s的探头部分搭载于工业机器人手臂上,得益于Pulstec的小质量探头,工业机器人的有效载荷仅需4kg即可满足测试需求。
  • μ -X360s便携式全二维面探X射线残余应力分析仪于神华国华(北京)电力研究院成功安装验收
    2019年4月19日,神华国华(北京)电力研究院顺利完成由Quantum Design中国(以下简称QDC)提供的μ-X360s残余应力分析仪的安装验收,QDC工程师紧接着对用户进行了相关知识和设备操作的全面培训。这是继华北电力科学研究院和南方电网贵州电力科学研究院之后,QDC交付验收的中国电力行业的三套μ-X360s便携式全二维面探X射线残余应力分析仪。 图1:QDC工程师对μ-X360s便携式全二维面探X射线残余应力分析仪进行安装调试 残余应力往往在金属构件的冷、热加工过程中形成,对构件的屈服限、疲劳寿命、构件变形及金属脆性破坏有很大的影响。残余应力会影响到机械构件和工程的质量、使用寿命及其安全保障,尤其近几年人们对高铁、航空航天、船舶海洋、石油化工、民用基础设备设施、国防等部门的安全和防护愈加关注,准确测定残余应力越来越受到科研单位和公司企业的高度重视,比如:航空领域的涂层残余应力检测,基础建设领域的钢结构残余应力检测,冶金领域的铸造、切割和轧制残余应力检测,机械加工领域的钢轨残余应力检测,等等。 图2:μ-X360s便携式全二维面探X射线残余应力分析仪X射线衍射残余应力测试方法为无损检测残余应力方法,且理论成熟、完善,因而成为当前应用范围较为广泛的测量结构表面残余应力的方法。蒙国内专家和学者的认可,该技术方法近被列入由“中国质检出版社”和“中国标准出版社”新联合出版的《材料质量检测与分析技术》专业书籍中。 相应的X射线衍射测残余应力设备也成为被较为广泛使用的设备。μ-X360s便携式全二维面探X射线残余应力分析仪可以在实验室内或户外现场对不同样品、构件实现快速、的残余应力测试,得到残余应力结果、半峰宽结果,定性分析晶粒大小、织构、取向信息,同时还以用来测试残余奥氏体含量(选配功能)。
  • 应用:通过表面能表征等离子体对聚合物表面的处理效果
    研究背景等离子体处理是聚合物表面改性的一种常用方法,一方面等离子体中的高能态粒子通过轰击作用打断聚合物表面的化学键,等离子体中的自由基则与断开的化学键结合形成极性基团,从而提高了聚合物表面活性;另一方面,高能态粒子的轰击作用也会使聚合物表面微观形貌发生改变 。本文提出通过等离子体处理提高 PP的胶粘接强度。利用KRÜ SS光学接触角测量仪DSA100分析了等离子体处理对于PP表面的接触角、自由能的影响。利用胶粘剂将 PP薄膜与铝箔粘接到一起,采用T剥离强度试验方法对PP的胶粘接强度进行了测试,结果表明等离子体处理可以显著提高 PP的胶粘接强度。DSA100型液滴形状分析仪试验样品制备由于PP薄膜表面可能会有油污、脱模剂等残留物,本文采用超声清洗方法对其表面进行实验前的处理。结果与讨论1.PP表面接触角系统分析了等离子体改性的射频功率和处理时间对于PP表面接触角的影响。首先,将处理时间恒定为 120 s,射频功率分别选取了 80 W、120 W、180 W、240 W 和300 W。如图1(a) 所示,PP表面经等离子体处理后,去离子水和二碘甲烷的接触角均有较明显的下降。当射频功率超过120 W时,接触角下降趋势缓慢,此时去离子水的接触角由99.08°降到了79.25°,二碘甲烷的接触角则由69.31°降到了59.39°。当射频功率达到300 W时,去离子水的接触角为 74.88°,二碘甲烷的接触角为55.88°。去离子水属于极性溶液,它的接触角越小表明PP表面润湿性越好,PP与胶粘剂的粘接强度将越高。 图1.薄膜表面接触角的变化其次,将射频功率恒定为 80 W,处理时间分别为30 s、60 s、120 s、300 s和600 s,PP表面的接触角与处理时间的关系如图1(b)所示。可见,随着处理时间的增长,接触角逐渐减小。当处理时间长于120 s时,接触角变化缓慢,此时去离子水的接触角由 99.08°降到了77.39°,二碘甲烷的接触角由69.31°降到了56.05°。结合上述两个实验结果,本文选择射频功率120 W和处理时间120 s作为后续的PP等离子体改性工艺参数数值。2.PP表面自由能本文采用Owens二液法 ,通过测量去离子水和二碘甲烷在 PP表面的接触角,计算出PP表面的自由能。PP表面自由能与射频功率和处理时间的关系如图2所示。从图中可以看出,PP在等离子体处理后,色散分量和极性分量均有所提升,其中极性分量的提升更显著,PP的表面自由能得到了较大提高。经计算,未经等离子体处理的 PP表面色散分量、极性分量和自由能分别为18.68 mJ/m 2 、12.12 mJ/m 2 、30.8 mJ/m 2 ,经等离子体处理后的PP表面色散分量、极性分量和自由能分别为22.27mJ/m 2 、26.64 mJ/m 2 、48.91 mJ/m 2 。即,经等离子体处理后,PP表面色散分量增加了 19.22%,极性分量增加了119.8%,自由能增加了58.8%。可见,PP表面自由能的提高主要归因于极性分量的增加,而极性分量的增加则是由于等离子体处理使得PP表面形成了极性基团,从而有助于提高PP的胶粘接强度。 图2.PP表面自由能3.PP胶接强度根据T剥离强度试验记录的最大剥离力和最小剥离力计算得到平均剥离力(FT),而剥离强度(σT)为 式中:B为测试样品的宽度 ,本文测试样品的宽度为25 mm。在剥离过程中,可以看到胶粘剂形成的胶膜完全保留在铝箔表面,证明胶粘剂对铝箔的粘附性远高于对PP薄膜的粘附性,即通过该实验测试到的剥离强度为PP与胶粘剂之间的粘接强度。未改性的 PP薄膜和改性后的PP薄膜的剥离力与剥离长度的关系曲线如图3所示,由于夹持位置的差异,PP薄膜与铝箔之间开始出现分离的位置稍有不同。在二者刚出现分离时,剥离力较大,之后剥离力逐渐下降并保持稳定。根据上述公式可以计算出,未改性的PP薄膜最小剥离强度为588 kN/m,最大剥离强度为 661.2 kN/m,平均剥离强度为 624.8 kN/m;与之对应,改性后的PP薄膜最小剥离强度为734 kN/m,最大剥离强度为810.8 kN/m,平均剥离强度为775.2 kN/m。即,PP薄膜经过等离子体改性处理后最小剥离强度提高了24.83%,最大剥离强度提高了22.63%,平均剥离强度提高了24.07%。 图3.剥离长度和剥离力的关系结论本文从接触角、表面自由能等方面揭示了等离子体处理提高PP材料胶粘接强度的机理。实验结果表明,经过等离子体改性处理后,PP表面由疏水性变为亲水性,去离子水的接触角由99°减小到了75°,PP表面自由能由31 mJ/m 2 增大到了49 mJ/m 2 ,同时PP表面整体上变得凸凹不平,且出现了大量纳米级凸起和凹坑。PP表面发生的这些化学和物理变化共同作用,使得PP的胶粘接强度提高了24%。参考文献隋裕,吴梦希,刘军山.等离子体处理对于聚丙烯胶粘接强度的影响[J].机电工程技术,2023,52(01):30-32.
  • 布鲁克纳米表面仪器部诚邀您参加在成都举办的全国表面工程大会
    由中国机械工程学会表面工程分会主办,西南交通大学和表面物理与化学重点实验室承办的第十一届全国表面工程大会暨第八届青年表面工程学术会议将于2016年10月22-25日在成都举行,将为我国表面工程学科的学术交流提供一个重要的平台。表面工程着眼于材料的表面性质,通过对材料表面的再设计和制造,使其被赋予特殊的表面性质,如表面功能化、表面强化、表面防护、表面装饰等。作为一门新兴的交叉学科,表面工程涉及面宽,应用面广。布鲁克纳米表面仪器部作为本次大会的主赞助商,将在会议现场展示三维表面测量设备和摩擦磨损测试设备。会议详情请进入官网了解www.2016ICSE.cn。值此大会之际,我们将于10月22日下午14:00-17:00在成都金牛宾馆举办用户会,诚邀您的参加。布鲁克的应用专家将向您展示表面测量分析的全系列产品及其强大的应用功能,以及最新的技术应用进展。报告人报告题目黄 鹤 博士布鲁克BNS中国区应用主管材料表面的直观观察与定量评定方法的探讨:功能材料的表层结构、结构材料的磨损前后陈苇纲 博士布鲁克AFM应用专家原子力显微镜的高级模式以及在多功能薄膜和镀层领域的应用魏岳腾 博士布鲁克TMT应用专家生物材料摩擦学研究方法若您对我们的用户会感兴趣,请致电010-58333257或发送邮件至min.cai@bruker.com报名参加。期待您的光临!更多信息或动态请关注我们的微信公众号
  • 布鲁克纳米表面仪器部主赞助第十一届全国表面工程大会
    由中国机械工程学会表面工程分会主办,西南交通大学和表面物理与化学重点实验室承办的第十一届全国表面工程大会暨第八届青年表面工程学术会议于10月22-25日在成都金牛宾馆召开。值此二年一届的表面工程盛会之际,国内外1000多名专家参加了本次大会。布鲁克纳米表面仪器部作为大会的主赞助商,携NPFlex三维表面测量系统和TriboLab摩擦磨损测试系统亮相大会。大会承办方为我公司颁发了赞助证书。主赞助商证书会议期间,表面工程领域内的大量专家教授对我公司产品产生浓厚的兴趣,与我公司应用专家进行了深入的交流沟通。中国区应用技术支持主管黄鹤博士也在此次大会上做了技术报告。黄鹤博士现场做仪器演示另值此大会之际,布鲁克纳米表面仪器部在金牛宾馆举办了西南地区的用户会,黄鹤博士、陈苇纲博士、魏岳腾博士分别在用户会上做了相关产品的技术报告。黄鹤博士现场答疑陈苇纲博士做原子力显微镜产品报告魏岳腾博士做摩擦磨损测试系统产品报告
  • 【瑞士步琦】基于喷雾干燥技术的表面增强拉曼光谱研究进展
    基于喷雾干燥技术的表面增强拉曼光谱研究进展水污染是一个全球性问题,威胁着人类健康并损害生态系统的健康。水污染物含有多种对人体健康和生态系统产生不利影响的重金属和有机化合物,需要及时发现和分析以维持环境,同时可以尽量减少对人类健康的危害和对生态系统健康的损害。水样中重金属的检测常用检测方法如下原子吸收光谱法(AAS)阳极溶出伏安法(ASV)电感耦合等离子体质谱法(ICP-MS)电化学检测除了以上常用检测方法外,还可以利用喷雾干燥方法结合拉曼光谱技术-表面增强拉曼光谱(SERS)来测定水中污染物。SERS 技术是一种简便、快速进行有机化合物痕量分析的技术。与传统的拉曼光谱相比,它可以获得信号得到显著增强的拉曼光谱。SERS 中的拉曼增强发生在两个或多个聚集的金属纳米颗粒的连接处,即所谓的热点;贵金属纳米颗粒的聚集程度是 SERS 中拉曼信号增强效果的关键决定因素。喷雾干燥法是将储存溶液中的微小液滴雾化,研究者可以通过改变液滴的大小和液滴内纳米颗粒的浓度来控制纳米微粒的聚集程度。纳米微粒的形成是由于液滴内部溶剂蒸发的结果(图1)。同时,喷雾干燥法也可以在不添加表活物质的情况下制备纳米微粒。该方法获得的纳米微粒可以在使用中将探针分子困在热点中,获得比使用传统 SERS 衬底的方法更有效的信号增强效果。在使用传统 SERS 方法时,通常需要通过将待分析溶液滴到衬底上的方式使探针分子分散到热点附近。也可以将 SERS 制备成溶胶,在测试过程中需要添加表面活性剂,这导致在目标物质信号被放大的同时,表面活性剂的拉曼信号也被放大,会干扰测试。而采用喷雾干燥法制备的纳米微粒可避免这些情况的发生。▲图1,用于制备纳米银微粒的喷雾干燥系统示意图本研究采用喷雾干燥方法制备纳米微粒用于探针分子的痕量分析。首先,研究者采用定制化的喷雾干燥系统制备纳米微粒。之后研究制备的银纳米微粒的大小如何影响探针分子(罗丹明B)的 SERS 信号。最后,我们雾化了银纳米粒子和探针分子罗丹明 B 的预混合溶液,以促进探针分子在热点的捕获,从而进一步增强探针分子拉曼信号。1材料在本研究中选择银纳米颗粒(AgNPs)。购买主粒径为 30 nm的AgNP颗粒(Ag Nanocolloid H-1, Mitsubishi Materials Corporation),用超纯水(18.2 MΩ cm)稀释,得到 0.01wt% 和 0.1wt% AgNP 溶胶。罗丹明 B (RhB)作为探针分子。所有材料均未经进一步提纯使用。2采用喷雾干燥法制备 AgNP 微粒用含有 AgNP 的雾化液滴制备用于 SERS 测试的 AgNP 微粒。实验装置示意图如图1所示。液滴雾化使用了一个定制的系统,该系统带有加压双流体喷嘴。当加压气体被引入时,液体样品通过喷嘴内出现的负压被吸入系统。在喷嘴内形成一层液体膜,然后在剪切应力的作用下分解成液滴。在雾化之前,将超纯水与 AgNPs 溶胶混合,以进一步稀释溶胶中任何浓度的潜在污染物。使用氮气作为干燥气和雾化气,将雾化后的液滴从喷嘴输送到加热区。再以 4.5 L/min 的流量将 N2 气体引入加热区,将雾化后的液滴加热至 150℃,促进溶剂蒸发,使 AgNP 气溶胶干燥。雾化系统总流量为 6.9 L/min,液滴停留时间为 0.93s。最后,使用定制的冲击器将干燥气溶胶形式的 AgNPs 沉积在直径为 14mm 的铜制圆形基板上。撞击喷嘴直径为 1mm,因此 AgNPs 以 17L/min 的流速加速撞击。在 SERS 实验前,将沉积的 AgNP 在常温常压下保存 24h。本次共制备四种不同粒径的 AgNPs 微粒,并对其在 SERS 分析中的敏感性进行了检验。雾化 0.01wt.% 的溶胶得到的 AgNP 微粒粒径最小,雾化 0.1wt.% 的溶胶得到的 AgNP 微粒粒径最大。溶胶中 AgNP 的浓度直接影响单个液滴中 AgNPs 的数量。此外,采用差分迁移率分析仪对制备的四种 AgNPs 微粒进行颗粒度分析,四种微粒的平均粒径分别为 48、86、151 和 218nm。3SERS 分析将制备的四种不同大小的 AgNPs 微粒用于微量罗丹明 B 溶液的 SERS 信号获取。 将 100μL 一定浓度的罗丹明 B 标准水溶液滴在铜基底上制备的 AgNP 微粒上。采用 532nm 激光器,在激光功率为 0.157mW,曝光时间为 1s 的条件下获得 SERS 谱图。每个样品在不同位置获得十几张 SERS 光谱。利用数据处理软件对所得光谱进行背景减除,并获得罗丹明 B 位于 1649 cm&minus 1 处的峰强度。4尺寸和形态表征图2 显示了用浓度分别为 0.01wt% 和 0.1wt% 的 AgNg 溶胶喷雾制备的微粒的尺寸分布。可以看到二者的平均尺寸分别约为 38nm 和 66nm,前者微粒的大小与纯 AgNP 颗粒(~ 30nm)的大小大致一致,这证明前者微粒中主要为纯 AgNP 颗粒。后者微粒增大可归因于 AgNPs 浓度的增加,即溶胶浓度的增加。这表明由 0.1wt% 溶胶喷雾干燥得到的微粒中有聚集。由此可知,用该喷雾干燥系统得到的微粒大小可通过气溶胶浓度的大小控制。▲ 图2,由 0.01wt%、0.1wt% 和 0wt% 的纳米银溶胶喷雾干燥获得的纳米银微粒的粒径大小▲ 图3,沉积后纳米银微粒的SEM图像和尺寸分布。(a, e) 48 nm, (b, f) 86 nm, (c, g) 151 nm, (d, h) 218 nm图3 的 SEM 图像分别显示了在未添加探针分子(即RhB)情况下沉积在铜板上的四种纳米银微粒的相应尺寸分布。由 0.01wt% 的纳米银溶胶喷雾干燥获得的微粒形成了亚单层膜(图3a),颗粒的平均测量尺寸为 48nm(图3e),与制备溶胶前的纯颗粒尺寸(30nm)和气溶胶颗粒尺寸(38nm)基本一致,这表明滴在铜板上的纳米银微粒并未明显聚集。如 图3f 和 图3g 所示 3b 和 3c 的纳米银微粒的尺寸为 86 和 151nm。由 0.1wt% 溶胶制备得到的纳米银微粒形成了更大的球形聚集体(图3d),尺寸为 218nm (图3h),是气相测量中发现的 AgNP 气溶胶(图2)的两倍多。气相测量和 SEM 观察之间的这种尺寸差异可能归因于颗粒反弹效应。只有大的 AgNPs 微粒才能更好地沉积,因为微粒与基底之间的接触面积较大,所以具有较高的附着力。最终使用两种浓度的溶胶和 DMA,我们制备了四种不同尺寸的微粒:48、86、151 和 218 nm。5拉曼增强效果与微粒尺寸大小有关图4 显示了不同浓度的罗丹明 B(分别为 10&minus 6、10&minus 8 和 10&minus 10 M),用四种纳米银微粒(尺寸分别为 48、86、151 和 218nm 时)获得的 SERS 光谱。在罗丹明浓度为 10&minus 6 M 时,采用四种纳米银微粒获得的谱图在 500-1700 cm&minus 1 处都均能清晰地观察到罗丹明 B 的所有特征峰(图4a)。表1 列出了罗丹明 B 的拉曼特征峰归属。其中,1649 cm&minus 1 处的 C-C 伸缩振动信号最为强烈,因此被用作计算 AEF,用于评价拉曼信号的增强情况。在未采用 SERS 增强时,没有观察到罗丹明 B 的特征峰(图4a),这证实了纳米银微粒对罗丹明 B 的拉曼信号起到了增强作用。▲ 图4,(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 浓度下罗丹明 B 溶液的 SERS 光谱。箭头表示罗丹明 B 的拉曼特征峰(表1)表1,罗丹明 B 的主要特征峰及特征峰归属拉曼位移(cm-1)特征峰归属1199C-C 键的伸缩振动1281C-H 键的弯曲振动1360芳香基 C-C 键的弯曲振动1528C-H 键的伸缩振动1649C-C 键的伸缩振动6AgNPs 溶胶和探针分子混合后喷雾干燥图4 和 图5 表明,尺寸为 86nm 的 AgNP 微粒是信号增强效果是最好的。研究者又过在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶进行预混合(即采用预混合雾化途径),制备微粒。进一步探索了微粒的拉曼增强效果。图6显示了浓度为 10&minus 6、10&minus 8 和 10&minus 10 M 的罗丹明 B 溶液在 86nm AgNP 微粒中的 SERS 光谱。▲图5,粒径为 48、86、151和 218nm 的 AgNP 微粒在 浓度为 10-6 和 10-8 M 罗丹明 B 的 AEF 值。部分测试未获得罗丹明 B 特征峰,因此未计算 AEF 值▲图6 采用 AgNP 溶胶与罗丹明 B 预混后获得的微粒对浓度分别为(a) 10&minus 6 M, (b) 10&minus 8 M, (c) 10&minus 10 M 的罗丹明 B 溶液进行信号放大获得的 SERS 光谱▲图7 喷雾干燥制得 86nm 纳米银颗粒后加入罗丹明 B 溶液和罗丹明 B 溶液与 86nm 纳米银微粒预混后喷雾干燥后的 AEF 值▲图8 (a)喷雾干燥后滴入罗丹明B溶液 (b)罗丹明B 溶液与微粒预混后喷雾干燥7结论本研究采用喷雾干燥方法制备高灵敏度的纳米银微粒。使用定制的系统制备了粒径为 48、86、151 和 218nm 的 AgNP 微粒。滴入10&minus 6 M 罗丹明 B 溶液后,48、86、151 和 218nm AgNP 微粒的 AEF 值分别为 2.4 × 103、4.2 × 103、3.3 × 103 和 4.0 × 103,而滴入 10&minus 8 M 罗丹明 B 溶液后,86和 151nm 微粒的 AEFs 为 3.4 × 104 和 2.2 × 104。我们发现 86nm 的 AgNP 微粒是本研究中最敏感的纳米结构。与 218nm AgNP 微粒相比,86nm AgNP 微粒的拉曼增强效果更好,这是由于高浓度溶胶制备的 AgNPs 微粒中电子云变形,降低了它的拉曼增强效果。在喷雾干燥前将罗丹明 B 溶液与 AgNP 溶胶预混后获得的拉曼增强效果较喷雾干燥后加入罗丹明 B 溶液更强。在测试浓度为 10&minus 6 M 和 10&minus 8 M 的罗丹明 B 溶液时,预混后喷雾干燥得到 86nm 微粒的 AEF 值分别为 5.1 × 104 和 3.7 × 106。该方式获得的 AEF 值分别是喷雾干燥后加入方式的 12 倍和 110 倍。该方法应该是更适合用于环境污染物痕量分析的方法。8文献引用Chigusa M. etc. Development of spray‐drying‐based surface‐enhanced Raman spectroscopy. Scientific Reports (2022)12:4511雷尼绍公司总部位于英国,自上世纪九十年代 开始提供显微拉曼光谱仪,是最早的商用显微拉曼供应商之一,一直在拉曼光谱领域是公认的领导者。雷尼绍为一系列应用生产高性能拉曼系统,具有完备的光谱产品系列:inVia 系列显微共焦拉曼光谱仪、 RA802 药物分析仪、 RA816 生物组织分析仪、Virsa 高性能光纤拉曼系统、Raman-AFM 联用系统接口、 Raman-SEM 联用系统等。 凭借优越的产品性能及完善的售后服务, 雷尼绍光谱产品系列极大地提高了客户的研发能力和科研水平,被广泛应用于高校科研和制药、材料、新能源、光伏等多个领域研发中。瑞士步琦公司是全球旋转蒸发技术的市场领先者,并且在中压分离纯化制备色谱,平行反应,喷雾干燥仪和冷冻干燥仪,熔点仪,凯氏定氮仪和萃取仪以及实验室/在线近红外等方面是全球市场主要的供货商。我们相信通过提供高质量的产品和优质的服务,我们能给广大的客户在研究开发创新和生产上提供强有力的支持。我们的所有产品均符合“Quality in your hands” (质量在您手中) 理念。我们始终致力于开发坚固耐用、设计巧妙、便于使用的产品与解决方案,以便满足客户的最高需求。凭借小型喷雾干燥仪 B-290 和 S-300,瑞士步琦巩固了其 40 多年来作为全球市场领导者的地位。实验室喷雾干燥仪融合卓越的产品设计与独特的仪器功能,可为用户提供极佳的使用体验。使用实验室喷雾干燥仪可安全处理有机溶剂;S-300 配备的自动模式可节省大量时间,让整个实验过程调节和可重现性更高;远程控制可以带来极致的灵活性,同时方法编程让操作变得对用户更友好。
  • 选择比表面仪的实用参考资料
    为使人们了解更多有关比表面及孔径分析测试仪的相关基本知识,解答广大客户对比表面及孔径分析测试仪存有的疑惑,让人们买到称心如意的设备,北京理工大学材料系钟家湘教授为此特写了一篇题为&ldquo 高校应如何选择国产比表面仪&rdquo 的文章。 文中首先介绍了表面特性的重要性及其主要指标。钟教授指出:&ldquo 微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,而材料的使用性能与其表面效应最相关。  表面效应的主要影响因素是表面原子的状态与特性,主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化。&rdquo 其次,主要详细介绍了中国比表面积及孔径分析仪概况,具体内容包括比表面及孔径分析仪的分类、国产静态容量法氮吸附仪与动态法氮吸附仪以及与进口比表面仪的对照。从比较中不难看出,静态容量法比表面仪采用国际通用的静态法,具有动态法氮吸附仪所不具备的性能;同时,其测试精度高,重复性好,已赶超国际先进水平,并有质优价廉的优势。 最后,钟教授对高校如何选择国产比表面及孔径分析仪提出了些许建议,是人们在购买仪器时首要了解的最实用参考资料。 链接【高校应如何选择国产比表面仪】 www.lunwentianxia.com/product.free.10011339.1/ 链接【技术交流】 www.jwgb.cn/Technology_View.Asp
  • 【技术知识】表面张力仪在电镀行业中的应用
    以往电镀液的更换或何时再添加接性剂(如促进剂),是以经验值或时间来决定,如此做法是无法量化数据化,不知所以然的做法。电镀液中除了含有欲镀上之金属离子,电解质,错合剂外尚有有机添加剂(光泽剂,结构改良剂,润湿剂),其中润湿剂是影响被镀物(导线架,铜箔基板,构装基板)与金属离子,光泽剂之类等物质之间附着力好坏。镀膜易剥离是因接口活性剂选用不对或是浓度不对所造成。表面张力仪在电镀行业中的应用介绍01如何选定附着力好的电镀液主要是电镀液供货商配方问题,使用者可依供货商所提供电镀液实际去镀看看结果如何而选定,选定后以这新电镀液去测量表面张力值,以这个值当进料检验标准值。电镀液效果好坏还有因选用电镀设备有关,如使用何种电源供应器,选用何种电源供应器技术原理,是整个电镀设备的技术关键点。02制程中电镀液表面张力监控理论上电镀液表面张力愈小,表示电镀液愈容易渗入小缝隙里面,愈容易在被镀物表面润湿,也就是愈容易使用金属离子镀上去。但在品质与经济效益需取得平衡点,故表面张力值需控制在哪一点,这必须有赖使用者去抓。因每一家所考虑的都不一样,故无一定标准。但有一CMC(CriticalMicelleConcentration)点需先抓出来,因为超过CMC点后,表面张力反而不会改变,不但没达到预期效果且浪费接口活性剂。在CMC点之前的任何表面张力值,选一点你们认为制程上的,作为监控的标准值。当CMC点与标准值定下来后,再定时作电镀液取样量测。03结论假设金属离子(欲镀物)浓度是在控制范围内,但因无法渗入较小缝隙内,会造成缝隙内厚度不均匀甚至没镀到,或因润湿性不好除了厚度不均匀外,更是造成易剥离主要原因。表面张力计与底材表面自由能分析仪界面科学领域中,有一物化性质很值得去了解与应用它,尤其在精密化学,半导体,光电等新兴科技产业,在研发,制程改善和品保方面常会碰到界面上瓶颈问题,但因人们没深入去了解此一物化现象,似懂非懂,没有很清晰建立起正确观念,这些观念就是液体表面张力,固体表面自由能与表面自由能分布,和润湿功在实务解释应用上所代表的意义如何,因而无法利用这些观念去发现问题之所在,以谋求解决之道。只要把这物化性质清晰了解后,配合表面张力计和底材表面自由能分析仪的数据,相信可以解决许多表面张力方面的问题。相关仪器A1200自动界面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。广泛用于电力、石油、化工、制药、食品,教学等行业。执行标准适应标准:GB/T6541
  • 国产热表面电离质谱仪通过仪器性能鉴定
    2023年9月18日,西安交通大学组织专家在西安对西安交通大学、西北核技术研究院等联合研制的国产热表面电离质谱仪进行了仪器性能鉴定。鉴定委员会由来自中国核学会、中国计量科学院研究院、中核四〇四有限公司、中国工程物理研究院、中国原子能研究院、中核建中核燃料元件有限公司、中国核动力研究设计院、西北大学、暨南大学、西安交通大学、中国科学院青海盐湖研究所、中国科学院地球环境研究所等单位的14名国内专家组成,其中中国质谱学会原理事长、中国核学会李金英研究员为专家组组长,中国计量科学研究院首席科学家王军研究员为副组长。西安交通大学电气工程学院党委书记梁得亮教授、仪器科学与技术学院党委书记韦学勇教授、仪器科学与技术学院院长赵立波教授、科研院处长陈黎教授及项目组成员等30余人参加会议。科研院陈黎处长主持鉴定会。西安交通大学电气工程学院梁得亮教授首先代表学院感谢各位专家长期以来对国产质谱仪器的关心,质谱仪作为分析仪器皇冠上的“明珠”,国产化问题一直备受关注,希望各位专家多提宝贵建议,对国产仪器客观评价,帮助项目组进一步做好仪器迭代升级。中国质谱学会原理事长、中国核学会李金英研究员在线上主持仪器研制汇报与指标测试汇报环节。项目组技术骨干袁祥龙工程师对国产热表面电离质谱仪的研制目标、关键技术、工程化、未来展望等方面进行了汇报。项目组在国家重大科学仪器设备开发专项、国家重点研发计划等多项重点项目支持下,开展了离子光学理论研究、关键部件研制、测控软件开发、仪器工艺及可靠性迭代等多项工作,取得系列创新成果。中国计量科学研究院王松副研究员在国产热表面电离质谱仪上开展了为期三天的现场测试,会议上介绍了仪器指标测试大纲与测试报告,并分享了个人在国产仪器方面的使用感受。在听取了项目组和第三方测试单位的汇报后,鉴定委员会进行了热烈的讨论,认为国产磁质谱仪器十年磨一剑,取得了令人瞩目的成果、令人振奋,向项目组表示祝贺。专家们结合实际应用场景,就特定核素同时测量、探测器技术方案、微弱信号检测等与项目组进行了深入技术探讨;最后,还对仪器长期稳定性考核、自动化样品处理、知识产权布局等方面提出了具体建议。研究团队学术带头人李志明教授最后总结了团队磁质谱仪器研发历程、目前面临的挑战和未来研发计划,表示研究团队将以本次鉴定会为契机,“咬定青山不放松”,持续做好性能指标先进、“皮实耐用”的国产化质谱仪器。18日下午,鉴定委员会及其他与会专家到现场实地考察了国产热表面电离质谱仪,观看了仪器功能演示、软件操作和关键零部件研制情况,并现场开展样品测试。项目组现场还对在研的高分辨辉光放电质谱仪、高分辨气体质谱仪等仪器的关键部件进行了介绍。鉴定委员会一致认为:该仪器主要技术指标与国外先进商业仪器相当,其中峰形系数、系统稳定性和丰度灵敏度(带阻滞过滤器)指标优于国外仪器;突破了多工位热离子源、磁-电双聚焦离子光学设计、高稳定磁场控制、多接收离子探测等关键技术,在仪器设计与关键部件研制方面有多项创新,实现了同位素丰度高精密测量;自主开发了点样仪、样品带成型及焊接装置、样品带去气装置等全套辅助设备,可满足日常分析要求。热表面电离质谱是被公认为同位素分析最精确的分析方法之一,是一种准确的、可用于校准其他分析方法的参考技术,被广泛应用于核工业、同位素地球化学、计量标准、油气勘探、海洋学等领域。国产热表面电离质谱仪成功通过鉴定将推动我国高端磁质谱仪器向国产化替代迈进,打破关键领域仪器设备“受制于人”的被动局面,具有里程碑意义。
  • 全自动表面张力仪的校准技巧
    全自动表面张力仪的校准是确保测量精度和可靠性的关键步骤。以下是一些常见的校准技巧和步骤:准备工作:确保表面张力仪处于稳定的工作环境中,避免有风或振动的地方。确保校准液体和校准工具的准备充分,包括正确的标准溶液和清洁的仪器表面。选择标准溶液:根据表面张力仪的型号和制造商的建议,选择正确的标准液体。通常使用双蒸馏水或特定浓度的表面活性剂溶液。确保标准溶液的温度稳定,并且符合实验室的环境条件。校准步骤:将标准溶液放入表面张力仪的测量池中,按照设备说明书上的指导将仪器准备好。启动仪器进行校准程序。校准过程可能包括自动识别标准液体并进行校准,或者手动输入校准值的情况。校准结果分析:完成校准后,仪器通常会显示校准结果。这些结果应该与预期的标准值接近,通常有一个接受范围或容差值。如果校准结果不在预期范围内,可能需要重复校准步骤或者进行仪器的调整和维护。记录和验证:记录每次校准的日期、结果和操作人员的信息。定期验证表面张力仪的测量结果,确保仪器保持准确性。这通常包括使用不同的标准溶液进行重复校准或比较。维护和定期检查:定期清洁和维护表面张力仪,确保仪器的各个部件处于良好状态。根据制造商的建议,定期进行预防性维护和检查,以确保仪器的长期稳定性和性能。通过正确的校准和维护程序,全自动表面张力仪可以保持高精度和可靠性,从而提高实验室测量的准确性和重复性。
  • 不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案表面残留油污检测仪
    不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案测试说明客户:德国Relyon Plasma公司样品:不锈钢板测量设备:析塔清洁度仪FluoScan 3D污染物:福斯溶剂型防锈油Fuchs Anticorit MKR 4目标采用荧光法测量不锈钢表面污染情况,检查等离子清洗的效果及其影响参数。操作过程首先,将不锈钢板放在60°C的超声波清洗槽中,使用碱性清洗剂清洗15分钟,然后用去离子水彻底冲洗并干燥不锈钢板。随后,在不锈钢板上滴一滴Anticorit MKR 4防腐蚀油,并用实验室用布擦拭。然后,使用析塔FluoScan 3D清洁度检测仪,采用荧光法,高分辨率扫描钢板,检测钢板上的防腐蚀油分布。荧光法是一种对油膜厚度敏感的测量,测试结果以RFU(相对荧光单位)显示,RFU值越低,表面越干净。等离子清洗对于等离子体清洗,手持等离子体设置piezobrush® PZ3被连接到析塔SITA FluoScan 3D(自动检测清洁度的测试台)的移动轴上,使得可以通过自动化进行等离子清洗处理。piezobrush® PZ3在测试板上以编程的移动路径移动,同时等离子体以恒定的移动速度开启,并与钢板表面保持恒定的距离。为了说明速度(清洗时间)的影响,首先以2.5mm/s的速度进行处理,然后在清洗时间一半的位置上,以5mm/s的速度进行处理。测量结果图1:未清洗的不锈钢板上的荧光测量结果图2:等离子清洗后的不锈钢板上的荧光测量结果结论荧光测量的结果表明,使用等离子清洗的两个区域比钢板的其他部分干净很多。清洗时间越长,清洗效果越好。荧光法适用于在等离子清洗后轻松和快速地监测清洗结果,通过测量可以确定影响等离子清洗的参数,达到最佳的清洗效果,同时降低成本。使用析塔FluoScan 3D清洁度仪自动检测测量零件清洁度,高分辨率扫描零件,最终以图像化呈现零件污染程度不同的区域。析塔FluoScan 3D自动表面清洁度检测仪广泛运用在不同的清洗工艺(水基、溶剂、激光、等离子.....),可以灵活应用在实验室或生产车间。翁开尔是德国析塔中国独家代理商,欢迎致电咨询析塔自动清洁度检测系统。
  • 2013全国表面分析科学会议上的仪器厂商
    仪器信息网讯 2013 年8 月20,“2013 全国表面分析科学与技术应用学术会议暨表面分析国家标准宣贯及X 射线光电子能谱(XPS)高端研修班”在北京举行。100余名从事表面分析技术研究与应用的研究人员参加了此次会议。   本次会议由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会主办,国家大型科学仪器中心-北京电子能谱中心、北京师范大学分析测试中心和北京大学分析测试中心共同承办。   表面分析仪器的主要供应商均参加了此次会议。赛黙飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、高德英特(北京)科技有限公司(代理日本ULVAC-PHI产品)、北京艾飞拓科技有限公司(代理德国ION TOF公司产品)、北京精微高博科学技术有限公司等分别在会议中就本公司的最新产品和技术作了主题报告。 报告人:赛黙飞世尔科技(中国)有限公司Richard G.White 报告题目:Recent advances in XPS instrumentation from Thermo Fisher Scientific 报告人:岛津企业管理(中国)有限公司龚沿东 报告题目:高灵敏XPS—Axis Ultra DLD 检测器在采谱和成像方面的应用 报告人:高德英特(北京)科技有限公司陈文徵 报告题目:PHI 公司在表面分析技术中的新进展 报告人:北京艾飞拓科技有限公司高聚宁 报告题目:飞行时间二次离子质谱最新进展和应用 报告人:北京精微高博科学技术有限公司钟家湘 报告题目:多孔粉体材料表面特性的表证与测试   另外,此次会议中赛默飞还特别设置了展位,并赞助了本次大会的欢迎晚宴。 赛默飞展位 赛默飞化学分析部运营总监兼表面分析部门经理胡翔宇在晚宴中致辞 欢迎晚宴现场   有关本次会议的主题报告及最新产品和技术进展,敬请关注仪器信息网后续报道。
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • 第十届表面分析技术应用论坛暨表面化学分析国家标准宣贯会第一轮通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第十届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2023年6月19日举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。主办单位:国家大型科学仪器中心-北京电子能谱中心;全国微束分析标准化技术委员会表面化学分析分技术委员会;中国分析测试协会高校分析测试分会;北京理化分析测试学会表面分析专业委员会;仪器信息网承办单位:仪器信息网扫码报名会议日程报告时间报告题目报告嘉宾9:00-12:00主持人姚文清(清华大学/国家电子能谱中心副主任)9:00-9:20致辞李景虹(清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会 院士/主任/主任委员)9:20-10:00待定韩晓东(南方科技大学 教授)10:00-10:40原位红外技术研究光催化界面机制陈春城(中科院化学所 研究员)10:40-11:20基于XPS-SEM的表面分析联用技术和应用葛青亲(赛默飞世尔科技(中国)有限公司 资深应用专家)11:20-12:00重新认识月球表面过程:嫦娥五号月壤的制约李阳(中国科学院地球化学研究所 副主任/研究员)12:00-14:00午休全体观众14:00-17:10主持人刘芬(中科院化学所/表面化学分析分技术委员会秘书长)14:00-14:40待定赵丽霞(天津工业大学 教授)14:40-15:20二次离子质谱(SIMS)质量分辨的测量李展平(清华大学分析中心 高级工程师)15:20-15:50待定北京艾飞拓科技有限公司15:50-16:30国际标准ISO 24417:2022《表面化学分析 辉光放电光谱法分析铁基表面的金属纳米膜》的制定张毅(宝山钢铁股份有限公司中央研究院 教授级高级工程师)16:30-17:10待定孙洁林(上海交通大学 研究员)报名链接:https://www.instrument.com.cn/webinar/meetings/bmfx2023/会议联系会议内容:管编辑,17862992005,guancg@instrument.com.cn会议赞助:刘经理,15718850776,liuyw@instrument.com.cn
  • 一轮通知 | 第十一届表面分析技术应用论坛暨表面化学分析国家标准宣贯会
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第十一届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2024年8月5-6日举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。1. 主办单位国家大型科学仪器中心-北京电子能谱中心全国微束分析标准化技术委员会表面化学分析分技术委员会中国分析测试协会高校分析测试分会北京理化分析测试学会表面分析专业委员会仪器信息网2. 会议时间2024年8月5日-6日3. 会议形式仪器信息网“3i讲堂”平台4. 会议日程报告时间报告题目报告嘉宾表面分析技术与应用专场主持人:朱永法 教授9:00-9:50表面等离子体电化学显微成像清华大学李景虹 院士9:50-10:30Hydrogen Evolution via Interface Engineered Nanocatalysis新加坡国立大学陈伟 教授10:30-11:00基于原位XPS-Raman的表面分析联用技术和应用赛默飞11:00-11:30待定岛津11:30-12:10待定重庆大学周小元 教授午休表面分析技术与应用专场主持人:姚文清 研究员14:00-14:40有机共轭半导体可见光催化光水解产氢研究清华大学朱永法 教授14:40-15:10待定艾飞拓15:10-15:50气-液微界面化学成像表征及理化特性复旦大学张立武 教授15:50-16:20待定厂商报告16:20-17:00光电子能谱与能源半导体界面华东师范大学保秦烨 教授17:00-17:40待定电子科技大学董帆 教授表面化学分析国家标准宣贯专场主持人:刘芬 秘书长09:00-09:40GB/T 42518-2023 锗酸铋(BGO)晶体 痕量元素化学分析 辉光放电质谱法中科院上海硅酸盐所卓尚军 研究员09:40-10:10待定厂商报告10:10-10:50GB/T 42360-2023 表面化学分析 水的全反射X射线荧光光谱分析中石化石油化工科学研究院有限公司邱丽美 研究员10:50-11:20待定厂商报告11:20-12:00GB/T 43661-2024表面化学分析 扫描探针显微术 用于二维掺杂物成像等用途的电扫描探针显微镜(ESPM,如SSRM和SCM)空间分辨的定义和校准中山大学陈建 教授5. 参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/bmfx2024/ (内容更新中)报名二维码6. 会议联系会议内容:张编辑 15683038170(同微信) zhangxir@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制