当前位置: 仪器信息网 > 行业主题 > >

水汽同位素标气发生器

仪器信息网水汽同位素标气发生器专题为您提供2024年最新水汽同位素标气发生器价格报价、厂家品牌的相关信息, 包括水汽同位素标气发生器参数、型号等,不管是国产,还是进口品牌的水汽同位素标气发生器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水汽同位素标气发生器相关的耗材配件、试剂标物,还有水汽同位素标气发生器相关的最新资讯、资料,以及水汽同位素标气发生器相关的解决方案。

水汽同位素标气发生器相关的方案

  • 利用同位素示踪方法研究暴雨事件中水汽的不同来源
    在一般或极端降雨事件中,将降水与其特定来源相联系的研究十分少见。普遍使用的大气环流模型方法,对时间空间分辨率和所使用的参数化方案的有效性过于敏感,且无法估计不同气团对降水的相对贡献。以前的研究集中于,使用风型计算的轨迹来检验和量化产生降水的气团路径,但计算轨迹所使用的标准未曾统一。因此,有必要开发其他独立的方法来验证基于模型的结果。许多研究中已经使用降水中的同位素作为示踪剂,来探测水汽来源和气团输送途径。特别是短时间间隔的同位素测量,更能反映时间动态变化下水汽来源。但对于利用同位素方法细致识别和量化不同来源的气团仍然存在研究壁垒。本研究针对2012年7月21日的北京市特大暴雨过程中,通过“Rayleigh分馏模型”及同位素混合模型,对两个不同气团的同位素值进行了计算。结合附近全球降水同位素网络(GNIP)站点的δ 18O特征,识别出降雨初期的西南轨迹和后期的东南轨迹的混合轨迹,以及两者合并时的过渡性降雨。本研究的结果与气象学研究结果相符合,表明使用同位素混合模型确定不同气团对降水的相对贡献,相比于以前的气象轨迹方法更加可靠。本研究结果对同位素水文和同位素气候学-气候变化研究具有广泛的意义。
  • 使用氢气发生器时出现故障怎么解决
    我们在日常实际操作氢气发生器的时候,可能经常会碰到氢气发生器操作中不产生氢气的情况,我们可以从下面几个故障原因自检以下。
  • 氢气发生器用于培育钻石
    无需大量氢气钢瓶,Peak氢气发生器帮您消除安全隐患,消除气瓶的麻烦和不便,以及提供安全、可靠和稳定的实验室气源。
  • 高普科学桌下式氮气发生器(三路气体)专为SCIEX LC-MS设计的氮气发生器方案
    •UG-AB桌下式氮气发生器(三路气体)专为SCIEX LC-MS设计的氮气发生器方案•气体种类: •氮气: 最大气体流速: 12L/min出口压力: 60psi• 空气:最大气体流速: 25L/min出口压力: 110psi•空气:最大气体流速: 12L/min出口压力: 60psi
  • SMX-225CT FPD HR Plus观察汽车安全气囊气体发生器缺陷
    采用岛津公司的inspeXio SMX-225CT FPD HR Plus微焦点X射线CT系统检测汽车安全气囊气体发生器的内部结构,通过CT直观观察汽车安全气囊气体发生器内部孔隙、杂质、破损和裂纹。无损检测产品内部缺陷,有助于工厂品质管控和产品开发。
  • 流动注射氢化物发生器的维护及故障排除
    使用和存放时都不可将发生器倒置或横放, 以免呼吸管内水流出, 在零度以下,运输时或室内存放, 应将呼吸管内水放尽。在零度以上运输时可将呼吸管上口外露的软管用夹子夹紧, 防止水流出, 使用前将夹子取下。
  • 利用乙烯发生器催熟芒果替代自然成熟方法研究
    应用EASY RIPE乙烯发生器(Ethy-Gen II® 浓缩物)在65m³ 冷库环境催熟芒果15小时情况下能否替代自然成熟方法研究,有助于芒果的栽培期管理
  • 传热学第三类边界条件正弦波温度发生器的实施方案
    在传热学第三类边界条件下进行的热物性测试方法中,如Angstrom法、ISO 22007-3温度波法和ISO 22007-6温度调节比较法,会要求边界温度严格按照正弦波形式进行变化,但采用正弦波加热电流方式的现有技术很难实现准确稳定的正弦温度波输出,且给测量带来较大的随机误差。为此本文提出了相应的解决方案,方案的核心是采用具有远程设定点功能的PID控制器,并配套外置正弦波信号发生器或过程校验仪,通过不断改变PID控制器设定值来实现正弦温度波的准确输出。
  • 伯东 Pfeiffer 真空泵用于同位素测试仪器
    同位素比质谱分析原理为首先将样品转化为气态, 在离子源中将气体分子离子化, 接着将离子化气体打入飞行管中. 在飞行管末端通过法拉第收集器来测试不同带电粒子从而测量出来.同位素比质谱分析原理为首先将样品转化为气态, 在离子源中将气体分子离子化, 接着将离子化气体打入飞行管中. 在飞行管末端通过法拉第收集器来测试不同带电粒子从而测量出来.赛默飞同位素比质谱分析上含有多种伯东 Pfeiffer 真空泵, 如前级泵为3台旋片泵 DUO系列油泵, 分子泵为 Hipace 系列两个.
  • 提高原子吸收光谱法测定电厂水汽系统中铁含量的准确性研究
    核电厂中二回路给水水质为蒸汽发生器传热管的结构完整性提供有力的保证。二回路给水Fe含量很低,一般情况处于5μ g/L左右,甚至更低,并且给水中的Fe含量是WANO指标中重要的一环。因此准确的测量二回路水汽中微量的铁,控制二回路水质优化,是提高核电厂蒸汽发生器使用寿命的重要手段之一。本文介绍了采用珀金埃尔默原子吸收光谱法用于电厂汽水系统铁的含量测定方法,提出了测定的优化条件,并得到良好效果
  • 氢气发生器在石化行业的应用
    采用氢气、氦气做载气,建立聚合级丙烯原料中微量磷烷、砷烷的气质联用(GC-MS)分析方法。对比两种载气GC-MS方法在测定1mL/m3以下磷烷、砷烷时,外标曲线相关系数、加标回收率、相对标准偏差、最低检出限的不同。经实际样品检验,不同载气的GC-MS方法在满足丙烯原料中μL/m3级别磷烷、砷烷的检测和分析的同时,氢载气GC-MS方法提供了一种更低成本的解决方案。
  • 同位素溯源技术在食品安全中的应用
    疯牛病、口蹄疫、禽流感疫病等对食品安全管理带来新的压力,对人类健康构成了极大的威胁,给 疫病发生国造成了严重的经济损失,并带来社会恐慌。同位素溯源技术是国际上目前用于追溯不同来 源食品和实施产地保护的有效工具之一,在食品安全污染物溯源领域有着广阔的应用前景,一些发达国 家纷纷开展此领域的研究。本文阐述了同位素溯源技术的基本原理,比较了同位素溯源技术与其他溯 源技术的区别与联系,综述了国内外研究进展,提出了我国在同位素溯源技术方面应开展的研究工作, 旨在推动我国食品安全追溯制度的建立与完善,保障食品安全,保证消费者身体健康。
  • 德国elementar:同位素溯源技术在食品安全中的应用
    疯牛病、口蹄疫、禽流感疫病等对食品安全管理带来新的压力,对人类健康构成了极大的威胁,给疫病发生国造成了严重的经济损失,并带来社会恐慌。同位素溯源技术是国际上目前用于追溯不同来源食品和实施产地保护的有效工具之一,在食品安全污染物溯源领域有着广阔的应用前景,一些发达国家纷纷开展此领域的研究。本文阐述了同位素溯源技术的基本原理,比较了同位素溯源技术与其他溯源技术的区别与联系,综述了国内外研究进展,提出了我国在同位素溯源技术方面应开展的研究工作,旨在推动我国食品安全追溯制度的建立与完善,保障食品安全,保证消费者身体健康。
  • 中国大陆科学钻探200-4000 m采集的岩心样品的超高压变质岩氧同位素(英文原文)
    对苏鲁造山带超高压变质岩进行了氧同位素研究。目标样本包括深达200至4000米的各种岩性(主要是榴辉岩和片麻岩),岩性之间有五个连续的岩心段。结果显示矿物成分中的δ 18O的值从10.41-9..63‰不等。榴辉岩和片麻岩频繁交替的岩层中,不同的δ 18O值的变化是渐进的,与岩性无关。石英与其他矿物之间存在平衡和不平衡O同位素分馏现象。需要特别注意的是相邻样本之间δ 18O值与距离之间的关系。结果表明对应于大陆碰撞期间产生的*流体流动性,不同岩性和相同岩性的O同位素在20 ~ 50cm的尺度上存在异质性。在掘出过程中,角闪石逆变质作用引起了部分矿物的矿物反应和O同位素间的不平衡。δ 18O与岩相在榴辉岩和片麻岩接触处存在明显变化,也能反映不同岩相之间流体活动比较活跃。尽管逆行现象普遍存在,但逆行流体在稳定同位素组成中具有内部缓冲作用。逆行液起源于氘核,由结构羟基的减压析出液衍生而来。虽然局部外部流体在断层及岩性变化带存在,但是它仍以内部原始形式存在于被掘出的板岩中。角闪石相后退后也发生了流体流动,但只影响长石和云母的O同位素组成。前元形态学原岩推断异构δ 18O值是由于不同程度的大陆碰撞之前大气水岩相互作用。δ 18O值存在的最低深度可达3300米,大别苏禄造山带地表露头岩石有大面积δ 18O残留,新元古代华南地块北缘至少有6.6万km3的超地壳岩石与大气水相互作用。
  • AEgIS实验中正电子偶素的激光激发
    采用Ekspla公司的NL300HT激光器泵浦光学参量发生器,产生高能量可调谐纳秒激光输出。在AEgIS实验中,用于激发Na22同位素,产生正电子偶素。
  • 激光剥蚀-稳定同位素比质谱在树轮碳同位素分析中的应用
    树轮常用于研究气候变化与环境演变,通过对其稳定同位素的分析,可揭示生态系统碳—水—氮变化特征及相互作用。树木在生长发育中响应环境变化,将环境信息通过水/空气/土壤中的碳、氢、氧转化为树木年轮的同位素比值变化,从而为重建环境变化提供了一份可靠的“档案”。古气候变化研究载体有树轮、石笋、海洋/湖泊沉积物和冰芯等。其中树轮样本具有两大优势:1)定年精确,分辨率可以到年;2)树轮年表的每一部分都可以和其它树木(年表)重叠搭接,能够获取平均值。稳定碳同位素:气孔导度、光合速率氧氢同位素:温度、叶片蒸腾作用
  • 理加联合:LGR液态水同位素分析仪在PNAS上发表的最新文献
    此前文献表明绝大多数生物中脂肪与水分之间存在比较大的D/H的分馏。这种分馏归结为同位素对脂肪生物合成的影响。本文我们报导了4种细菌(phylum Proteobacteria)的脂肪与水分之间的D/H分馏 ,结果表明单一生物之中波动可以达到500‰ 。这种变动不可能归因于脂肪生物合成,因为这些途径中没有明显的变化,也不能归因于培养基的D/H比率。更重要的是,脂肪/水的D/H随着新陈代谢而系统地变化:化学自养生长(几乎达到-200到-400‰)、光合自养生长的(-150到-250‰)、非自养生物,采用糖做培养基的生物(0到-150‰),以及非自养生物,采用TCA循环(-50到-200‰) 。我们猜测脂肪的D/H比率很大程度上是由生物合成的NADPH来控制,而不是脂肪生物合成途径本身来决定的。我们的结果表明,不同的代谢途径产生NADPH—并间接影响脂肪的同位素组成。如果是这样,脂肪的δD值可能成为连接脂肪和能量代谢的重要生物化学循环工具,并可通过固碳途径中13C提供了更多的补充信息。
  • 碳水同位素分析仪测量北极地区的水文循环和碳循环
    美国海岸警卫队希利 (Healy) 号破冰船实施北极水循环和碳同位素循环研究,博士杰夫· 威尔克 (Jeff Welker) 博士和埃里克• 克莱因 (Eric Klein) 博士 生物科学系 阿拉斯加大学安克雷奇分校 北极地区的水文循环和碳循环目前正随着气候变迁而不断变化,包括海冰覆盖范围及其厚度、北冰洋酸碱度 (pH 值) 以及初级生产力格局和食物网动力学模式方面发生的变化。此外,与海冰有关的蒸发过程变化正在影响着冬夏两季的降水特征以及更广泛的气候模式。举例来说,北极涡旋转移使更多北极气团抵达低纬度地区,这可能会导致美国东北部出现更频繁的极端天气事件。
  • 氮氧双同位素模型在土壤氮溯源的应用
    N2O是一种重要的温室气体,其全球增温潜势是CO2的300倍。农田生态系统是大气的主要来源。此时,氮元素的来源就成为了非常有意义的参数,通过同位素分馏的现象来判断来源成为了热门分析手段。研究表明N同位素在各类土壤和水体中存在重合的情况,那么引入O同位素就显得尤为重要。目前,国内外主要的研究方法是细菌反硝化方法,他们是怎么通过Elementar元素分析仪+气体浓缩仪+同位素质谱联用系统实现的呢?详细请查阅附件内容
  • 微纳米气泡发生器在水处理中的应用
    微纳米气泡的出现及其不同于普通气泡的特点,使其在水处理等领域显现出优良的技术优势和应用前景,介绍了微纳米气泡以及其比表面积大、停留时间长、自身增压溶解、界面电位高、产生自由基、强化传质效率等特点,论述了微纳米气泡在水体增氧、气浮工艺、强化臭氧化、增强生物活性等环境污染控制领域的应用研究。引 言微米气泡(microbubble)通常是指存在于水中直径为10~50μ m的微小气泡,直径小于200nm的超微小气泡称为纳米气泡(nanobubble),介于微米气泡和纳米气泡之间的气泡称为微纳米气泡(micro-nano bubble),与传统大气泡(coarse bubble,直径50mm)和小气泡(fine bubble,直径5mm)相比,微纳米气泡直径小,其传质特性和界面性质均显著不同于传统大气泡。
  • 硅酸盐矿物氧同位素组成的激光分析
    对于红外激光系统和紫外激光系统, 由于它们加热样品的反应机理完全不同, 决定了它们在稳定同位素地球化学分析中的不同使用范围。根据对CO2 激光系统分析地球化学样品的实践, 发现对结果产生干扰的因素有:(1)石英的粒径效应 (2)微量样品接收电压过低 (3)分子筛的吸附能力 (4)系统中的吸附水 (5)14N19F+对δ 17O 值的影响。由于石英的粒径效应而导致细粒石英(粒径250 μ m)的δ 18O 值偏低, 可以采用不聚焦激光的快速加热法来解决。由于样品量太少而决定了样品气体接收电压过低, 导致δ 18O 值出现系统偏高或偏低, 可以利用校正曲线对结果进行校正。分子筛吸附性能的下降会产生氧同位素的分馏, 因此确定分子筛的使用寿命非常重要。系统中的吸附水利用氟化物试剂预氟化来去除, 重要的是应避免在预氟化的过程中产生大量的HF 腐蚀激光系统的BaF2 窗口玻璃并与部分矿物样品发生反应。
  • prepFAST MC - Mg Sr Ca同位素洗脱
    prepFAST MC是一个完全自动化的低压色谱系统,它将感兴趣的元素从样品基质中分离出来,并收集多个离散洗脱液组分,用于*的同位素分析。该注射器驱动系统允许样品加载、多次酸洗、柱调节和洗脱周期,所有这些都在用户定义的时间间隔(时间、体积和流量)。
  • 同位素技术在环境和生态上的应用
    由robert Michener 和 Kate Lajtha编辑 自从第一版之后,同位素的领域又已经非常扩大了。从开始的应用,地理学家和海洋学家已经更深入的发展了同位素在的理论和实际应用,过去的水土状况,热系统,追踪岩石来源等。相似的,植物生物学家,地理学家,和环境化学家也已经发展了新的理论框架,经验数据库,为了研究植物和动物的同位素应用。自然丰度的同位素记号可以被用来发现单个有机体的类型和机理就像追踪食物的网络一样, 理解营养,和追踪整个生态的营养循环不论是陆地生物还是海洋系统。因此,同位素分析已经越来越作为生物学家,生态学家和所有研究元素和物质一个标准化的手段。 从历史视角的方法 每一个不同的元素,制备样品的方法都不一样。稳定同位素分析的目标是使得样品定量的转变成合适的纯气体(比如CO2,N2或者H2等)使得质谱能够分析。硫可以以SO2或者SF6的方法分析。通常,有机样品首先被干燥(或者在60℃的烘箱中或者冷冻干燥),并且被碾压成粉末。样品可以被保存在一个密闭容器中,使得他们保持干燥。如果对样品的碳元素感兴趣,但是样品中含有无机碳的话,样品需要首先被酸化(通常使用1NHCL,即便有很多用户使用稀释的磷酸) 有机样品中的C和N 早起的同位素测定中,大多数研究者使用氧化反应要不就是“离线”或者“在线”,将有机样品燃烧成气体。 现在均转变成在线的方式,通过元素分析仪连接同位素质谱的装置。1-20mg(或者更多)的样品被称量后,用锡纸包好,放在样品盘上。样品会在氧气流中,在高温下燃烧,然后燃烧的气体被氦气流带到吸附阱上进行分离成H2O,N2,CO2等。感兴趣的气体然后被导入到质谱中进行分析。这就是目前所知的连续流分析模式。 碳酸盐和溶解无机碳 无机碳样品与100%磷酸反应在真空下反应,使其完全转化为纯CO2。这使得可以同时分析C13和O18,条件是磷酸是纯的,并且不能有水。 水样中的溶解无机碳,通过酸化水样并且搅拌水样,在部分真空下产生CO2样品,然后分离纯化该气体。该样品制备原则可以被用来制备血液中的生物碳酸盐。 关于上诉样品的最新方法使用了自动的连续流系统。不需要估计瓶子中的碳酸盐,氦气在酸化之前已经代替了瓶子中的所有气体。在一个反应时间之后,CO2气体被转移到样品环中,然后使用氦气做载气导入到质谱中。一个相似的方法使用在水中DIC的测定中。 氨和水中的硝酸盐δ 15N 早期的溶解无机氮分析中,水样中的氨被分离,使用各种蒸汽蒸馏技术或者使用扩散技术等。所有的步骤使得水中的pH变化,然后将氨气被一个酸trap捕获。蒸馏技术比较适合于大量水中含有痕量氨气的情况,可以使用盐水溶液,大概每个样品需要30分钟。一旦氨气被收集在酸阱中,沸石将会用来从溶液中转移出氨气。在所有的方法中,需要小心NH3在每个阶段的收集也纺织分馏。硝态-N可以使用同样的技术蒸馏在使用还原剂将水中的硝酸根还原为氨气。 水中氧 水中氧的分析主要有两种:水平衡法和元素分析仪-同位素质谱法。 水平衡法: 氘: 水平衡法和EA-IRMS方法。 硫: 测定硫的办法,取决于样品的初始状态,核心是将硫转变成SO2还是SF6。 SF6的优势是F只有一个同位素原子,但是技术上转化有点复杂,所以大部分的实验室使用SO2气体。 大部分的方法都是将硫分离出来然后采用氧化硫成溶液中的硫酸盐。硫酸盐可以使用10%的氯化钡转变成BaSO4沉淀。在这里,样品可以氧化为SO2气体并且导入到质谱中进行检测。 连续流的方法:在元素分析仪中,高温下燃烧S,然后进入柱子分离。之后SO2被导入到质谱中进行分析。
  • 哈希应用案例---哈希产品在电厂水汽系统中的应用
    电厂炉水、给水和蒸汽的硅含量可使二氧化硅不合格,会使汽包出来的饱和蒸汽携带的硅盐增加,在以后的受热面中沉积,影响受热面换热效率,易造成过热器、再加热过热器容易爆管;进入汽轮机后,随着温度压力的降低,蒸汽携带的硅析出,在汽轮机叶片和喷嘴等流通面上形成难以清除的硅酸盐沉积,石头一样,降低汽轮机内效率。华能临沂发电有限公司的水汽系统选用了哈希公司的9210 硅分析仪,通过对炉水、给水和蒸汽的硅含量的在线监测和控制,可有效避免上述危害的发生。9210 硅分析仪通过样水选择电磁阀将样水送入仪表,每路样水的流量都能通过针型阀调节。在一路样水进入测量池之前,它有足够的流动时间来冲洗整个水路和溢流槽。然后,样水阀打开,样水进入测量池。一旦测量池冲洗完毕并且充满样水,样水阀关闭,并顺序注入试剂。仪表要进行参比光密度测量,光的吸收量被计算出,硅的浓度通过对比校准曲线计算得出。更多精彩内容,请您下载后查看。
  • 同位素稀释-碱水解-GCMSMS法测定食品中氯丙醇酯及缩水甘油酯含量
    本文参考GB 5009.191-2024 《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》标准修订中的第二章第一法,建立了同位素稀释-碱水解-气相色谱三重四极杆串联质谱仪测定食品中氯丙醇酯及缩水甘油酯含量的检测方法。食品试样中加入13C取代同位素和氘代同位素,经碱水解后以酸化溴化钠中和,并经液-液萃取脱脂后,用苯基硼酸衍生,衍生液以GCMSMS检测,内标法进行定量。在3~500 ng的浓度范围内,三种脂肪酸酯相关系数均大于0.9995;加标量在0.01mg/kg~2.5mg/kg水平下平行处理6次,其目标物的平均回收率在90.4~108.0%之间,其6次平行的RSD在1.39~18.8%之间,该方法简便、快速、灵敏度高,可用于食品中氯丙醇酯及缩水甘油酯含量的测定。
  • GCMS同位素内标法测定水中多溴二苯醚
    本文使用岛津GCMS-QP2020 NX气相色谱质谱联用仪建立了水中8种多溴二苯醚的测定方法。量取1000 mL水样,加入13C同位素提取内标,经萃取、净化、浓缩定容后加入13C同位素进样内标,上机进行分析,内标法进行定量。实验结果显示:在2~100 µg/L(BDE-209浓度为20~1000 µg/L)浓度范围内校准曲线线性良好,相关系数大于0.999。次低浓度点标液连续进样6次,峰面积RSD%范围在3.84~8.72%之间,精密度优良。加标实验中,加标浓度为5 µg/L(BDE-209浓度为50 µg/L),各组分回收率在88.72~114.94%之间。本方法使用13C标记的同位素内标定量,准确可靠,可用于水中多溴二苯醚的测定。
  • prepFAST MC - Fe Cu Zn Cd同位素洗脱
    prepFAST MC是一个完全自动化的低压色谱系统,它将感兴趣的元素从样品基质中分离出来,并收集多个离散洗脱液组分,用于*的同位素分析。该注射器驱动系统允许样品加载、多次酸洗、柱调节和洗脱循环,所有这些都在用户定义的时间间隔(时间、体积和流量)内完成。
  • 飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究
    开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb 同位素原位微区分析技术研究, 采用高温活化活性炭过滤载气中的Hg, 使得Hg 背景信号降低了48%, 进一步降低检出限, 分析过程的分馏效应及质量歧视效应校正采用内标Tl 和外标NIST SRM 610 相结合方式进行. 利用研究建立的方法分析了都龙锡锌铟多金属矿带中的黄铜矿、黄铁矿和闪锌矿中Pb 同位素组成. 结果表明, 该矿区不同硫化物矿物间及同一种硫化物不同颗粒间的Pb 含量差异可达1000 多倍, 黄铁矿具有相对较高的Pb 含量,而闪锌矿的Pb 含量则偏低. 高Pb 含量的黄铁矿具有变化小且相对均一的Pb 同位素组成, 而低Pb 含量的闪锌矿的Pb 同位素组成变化极大, 一方面它可能较易受后期热液叠加作用而改变, 另一方面由于闪锌矿中铅含量较低, 则其中所含微量铀的影响显著加大,因而由铀放射性衰变随时间积累起来的放射成因铅也可能是造成其Pb 含量和同位素组成分布范围较大的原因之一. Pb 含量高于10 ppm 的黄铜矿和闪锌矿颗粒显示了一致的Pb 同位素分布, 而Pb 含量高于100 ppm 的所有硫化物颗粒均具有误差范围内一致的Pb同位素组成, 且与化学法得到的结果误差范围内吻合, 表明本研究方法的数据可靠. 本研究还表明, 只有Pb 含量相对较高的硫化物矿物中的Pb 同位素组成才能较真实地记录其成矿物质来源. 而Pb 含量偏低的硫化物矿物中的Pb 同位素组成则可能受样品中微量铀的影响而具有高放射成因铅同位素比值, 也可能代表了后期交代流体改造后的Pb 同位素组成.
  • 采用三价钛还原法分析硝酸盐氮氧同位素-德国元素elementar
    溶解态硝酸盐的同位素分析是环境科学的一个重要应用,与目前的细菌反硝化法和叠氮化镉法相比,新型的三价钛还原法用于硝酸盐同位素分析大大降低了样品预处理的技术门槛。
  • Food Chemistry | 构建中国大米C/H/O稳定同位素的景观图
    近日,浙江省农业科学院,省部共建国家重点实验室、农业农村部农产品信息溯源重点实验室,质量营养所袁玉伟研究员、张永志副研究员为通讯作者,联合数农所盛美玲博士为第一作者,中国水稻所张卫星等为同一作者,首次利用地理环境相似性原理,构建中国大米CHO稳定同位素的景观图和预测模型。该预测模型可以预测水稻稳定同位素的空间分布,从而丰富和补充同位素参考数据库,对大区域范围内的水稻原产地鉴定提供了数据支撑。该篇研究成果发表在《Food Chemistry》。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制