当前位置: 仪器信息网 > 行业主题 > >

瞬态热线法导热系数仪

仪器信息网瞬态热线法导热系数仪专题为您提供2024年最新瞬态热线法导热系数仪价格报价、厂家品牌的相关信息, 包括瞬态热线法导热系数仪参数、型号等,不管是国产,还是进口品牌的瞬态热线法导热系数仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合瞬态热线法导热系数仪相关的耗材配件、试剂标物,还有瞬态热线法导热系数仪相关的最新资讯、资料,以及瞬态热线法导热系数仪相关的解决方案。

瞬态热线法导热系数仪相关的仪器

  • 产品介绍:DZDR-S瞬态法导热系数测试仪是南京大展仪器生产的一款热分析仪器,采用瞬态热源法,具有测量速度快,测试广泛广,采用双向的控制系统,操作便捷,并且配有软件分析,可以直接出数据报告,采用全新的外形设计,简约小巧。测试方法:DZDR-S瞬态法导热系数测试仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。测试范围:DZDR-S瞬态法导热系数测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。性能优势:1、测量方法。DZDR-S瞬态法导热系数测试仪采用非稳态法中的瞬态热源法,与其他测试方法相比,测量速度更快,准确性高。2、测量速度快。DZDR-S瞬态法导热系数测试仪能够在5~160s内测量出导热系数,提升实验的效率。3、多功能性。DZDR-S瞬态法导热系数测试仪适用于不同类型材料的导热系数测试,其中包括:液体、固体、金属、膏体、胶体、薄膜、粉末和复合材料等等,适用性广泛。4、易用性。DZDR-S瞬态法导热系数测试仪采用双向操作控制系统,仪器和计算机同时操作,彩色触摸屏操作,使得使用和操作设备变得简单和便捷。5、数据准确性。DZDR-S瞬态法导热系数测试仪拥有配套的分析软件,能够提供准确可靠的导热系数测试数据,可直接提供数据报告。6、重复性。DZDR-S瞬态法导热系数测试仪对样品实行无损检测,样品可以重复使用。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 产品介绍 ATS-DRS-T瞬态平面导热系数测定仪是利用瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量热导率,为企业质量监控、材料生产以及实验室研究提供了极大的方便。该仪器操作方便,方法简单易懂,不会对被测样品造成损坏。 上海埃提森仪器科技有限公司基于瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上所发展起来的瞬态平面热源法研发了此产品。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数与温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。 该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。 检测方式特点ATS-DRS-T瞬态平面导热系数测定仪所使用的瞬态平面热源法相比较于激光法,热线法,保护平板法都有优势。首先在于适用材料的范围上瞬态平面热源法可检测固体、液体、粉末、颗粒、胶体等。其次在于样品制作上只需要保持平整即可,对于尺寸的要求极低。同时检测时间也在5-160S左右,相比较平板法的数个小时来说优势明显。 目前国家也在积极修改各行业产品导热系数的检测方式,逐步替代多年前的保护平板法。已修改完成GB∕T 32064-2015 建筑用材料导热系数和热扩散系数瞬态平面热源测试法。相信不久的将来,瞬态平面热源法这一更简单快捷的导热系数检测方式会出现在越来越多的国标中。而上海埃提森仪器科技有限公司的ATS-DRS-T瞬态平面导热系数测定仪也会积极更新,不断优化,让更多客户可以使用上优质便捷的设备。 产品特点 1、仪器参考标准:ISO 22007-2 20082、测试范围广泛,测试性能稳定,在国内同类仪器中,处于较高水平; 3、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间; 4、不会和静态法一样受到接触热阻的影响;5、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可; 6、对样品实行无损检测,意味着样品可以重复使用;7、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算; 8、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;9、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;10、主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理 能力,计算结果更加精确; 11、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定; 12、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁; 13、强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。 售后服务按相关标准和技术要求验收,客户另加技术要求逐项认可。 上海埃提森仪器科技有限公司负责设备的运输及安装指导。客户负责设备的现场起吊、搬运等工作。 调试在客户公司内,在有被培训人员在场情况下,进行调试。上海埃提森仪器科技有限公司免费提供2-3人系统的现场操作培训和简单设备维修培训,以及任何时候的电话咨询。 质保时间整机质保期为最终验收后一年。在质保期内由于机器品质而发生的故障停机,正常情况下,上海埃提森仪器科技有限公司应免费修复。但试验设备因需方人为损坏,机器零配件费用则由需方承担。一年质保期后,由上海埃提森仪器科技有限公司负责售后服务。每年每季度埃提森技术中心都有专职人员进行电话回访,提供坚强的技术保障。
    留言咨询
  • 瞬态平面热源法导热系数测试系统——变温变真空多试样一、简介瞬态平面热源法作为一种绝对导热系数测量方法,在理论上可以达到很高测量精度。在被测试样尺寸和其它要素满足测试方法规定的边界条件时,导热系数的测量范围理论上可以没有限制。因此,对于均质材料,采用瞬态平面热源法不失为一种操作简便和测量精度高的有效方法,在温度不高范围内(-196℃~200℃),这种方法可以作为一种标准方法来使用,并与其它导热系数测试方法一起形成有效的补充和相互比对,甚至可以用于校准其它测试方法。瞬态平面热源法已具有国际标准测试方法,即ISO 22007-2:2008 Plastics-Determination of thermal conductivity and thermal diffusivity-Part 2: Transient plane heat source (Hot Disk) method。依阳公司生产的瞬态平面热源法导热系数测试系统是一种多功能测试设备,具有测试块状和分体材料以及薄膜材料的功能,同时还配备了真空腔装置、循环油浴温度控制系统、气体压强控制系统和多通道扫描开关装置,从而实现了在不同温度和气氛压力下对多个试样同时进行测量。二. 特点(1)变温测试采用冷热循环油浴增压泵流出的硅油作为加热介质流经装载有试样的真空腔体壁,真空腔体放置在厚实的隔热材料套中,使得被测试样可以精确的按照循环油浴温度进行恒温控制,充分利用了循环油浴±0.05℃的高精度温度控制功能,保证了试样温度的均匀性和稳定性。并且,可以通过计算机控制循环油浴的设定温度来自动实现不同温度下的试样热导率测量。试样温度变化范围取决于恒温油浴的温度变化范围,一般温度变化范围为-40℃至250℃。同时还可以配备低温制冷机系统,从而实现温度达到液氦温度区间的材料导热系数测试。 (2)变气压测试工程材料,特别是孔隙率较大的低密度材料,它们所处的气氛压强会严重影响材料的导热系数。同时,空气中的水份也会使得材料的导热系数发生改变。所以,为了准确测量材料的导热系数,所有导热系数测试方法都对被测试样的气氛环境有严格规定,通常要求是一个标准大气压下的高燥空气环境。另外,在宇航空间用工程材料中,距离地球表面不同高度时气氛压强的不同也会导致材料不同的导热系数。为了规范测试气氛环境和模拟出准确的所需气氛压强,导热系数测试系统配备了依阳公司独自研发的具有人工智能的高精度气氛压强控制系统,使得放置试样的真空腔内的气压精确恒定在所需的气压设定点上,实现了不同气体成分在不同气压下的实验环境模拟。试样环境气氛可以是空气和其他任何气体,气压控制范围为3Pa至1个标准大气压,气压的波动率全量程范围内都小于±1%。 (3)多试样同时测量瞬态平面热源法作为一种非稳态法,在理论上有很快的测试时间,但这里所谓的测试时间是指纯粹的通电测试时间,并不包括达到测试模型边界条件要求(被测试样温度均匀)所需要的时间。被测试样热导率越小,试样达到温度均匀所需要的时间越长。一般规定,两次测试的间隔时间至少是测量时间的36倍。如果测量低导热材料(热导率约为0.03 的隔热材料),通常的测试时间为180秒以上,那么重复性测试的时间间隔至少要108分钟。这就意味一个完整的测试过程至少需要近2个小时,而大部分时间是在等待试样温度达到稳定,这还不包括变温过程中温度控制时的恒温时间。由此可见,在测量较低热导率材料过程中,整个测试过程和测试效率并不是很高,与其它稳态法旗鼓相当。为了进一步提高瞬态平面热源法的测试效率,我们增加了一个程序控制的多通道扫描开关,即采用多探头多试样同时测量技术,充分利用试样温度稳定这段等待时间,既保证了每个独立试样的有效测试时间间隔,又能最大限度提高样品测试数量,提高测试效率。 (4)试样多样化安装为了满足固体、粉体和膏状等不同形式材料的导热系数测量,瞬态平面热源法导热系数测试系统配备了专门设计的试样容器。 (5)各向异性导热系数测量为了适用于多层材料、纤维增强塑料等各向异性样品的热传导性能的测试,瞬态平面热源法导热系数测试系统配备了专门设计的测试软件,可进行厚度和面内方向的导热系数测量。(6)薄膜材料导热系数测量瞬态平面热源法导热系数测试系统还可用于单层薄膜样品如织物、高聚物薄膜、陶瓷薄膜、纤维材料、纸和陶瓷上的溅射金属涂层等材料的导热系数测试。样品厚度范围为0.01~2 mm,导热系数测试范围0.005~10 W/mK 三. 技术指标(1)温度变化范围:-269℃~250℃(依据所用温度环境装置)。(2)气压控制范围:3Pa~个标准大气压,气体可以是空气、氮气等,波动率小于±1%。(3)通道数:4线制连接,共8个通道。手动切换和计算机程控切换,最多可同时测量8组试样。(4)试样形式和尺寸:最大试样尺寸为50mm×50mm×40mm。(5)试样形式:固体、粉体、膏状物、薄板和薄膜等。(6)导热系数测量范围:0.005~500W/mK。(7)导热系数测量精度:优于±5%。(8)导热系数测量重复性:优于±7%。(9)薄板试样测试:薄板厚度范围0.1~10mm,导热系数测量范围为10~500 W/mK。(10)薄膜试样测试:薄膜厚度范围为0.01~2 mm,导热系数测试范围0.005~10 W/mK。 四. 应用(1) 瞬态平面热源法薄板试样测试方法对于薄板或薄片状材料,瞬态平面热源法中有专门的测试模型用于导热系数测量,所测试的导热系数是试样整体的导热系数,而不是面内方向的导热系数。如下图所示,测量时先选择两块厚度一致的样品,精确测量样品厚度后,将两块薄板样品分别放置于探头的两边,然后用两块相同材质的绝热隔热材料压紧,使探头与样品之间没有空隙,以保证探头产生的所有热量均为样品所吸收。薄板样品的直径或边长一般应大于50mm。每片样品的厚度可以从0.2mm至8mm不等,这取决于探头半径。薄板试样测试方法与块状试样测试方法有些类似,主要的区别有两点:被测薄板试样的外侧要用绝缘低导热材料压紧,使得试样四周的热损失与探测器加热量相比非常小。在试样中的热流传递主要在薄板试样面内方向上进行,所以瞬态平面热源法薄板测试模型假设试样是无限大平板热传递模型。 (2) 瞬态平面热源法薄膜试样测试方法对于薄膜材料(电绝缘),瞬态平面热源法中采用了薄膜测试模型用于导热系数测量,所测试的导热系数是试样整体的导热系数,而不是面内方向的导热系数。测试时,探头被放置于两片样品和导热性能良好的背景材料之间。测量时,根据薄膜材料的接触热阻的数据计算得到样品的导热系数。如下图所示,测量时先选择两片厚度一致的薄膜样品,精确测量薄膜样品厚度后,将两块薄膜样品分别放置于探头的两边,然后用两块相同的不锈钢块压紧,使探头与样品之间没有空隙,以保证探头产生的所有热量均为样品所吸收。 需要注意的是,在瞬态平面热源法薄膜导热系数测量过程中,被测试样一般没有加载力或加载力很小,对于试样的加载也是为了让被测试样贴紧探头减少探头与被测试样之间的热阻。 (3)不同气压下的导热系数测量硬质聚氨酯泡沫塑料试样,环境温度25℃,每个气压点上至少进行十次重复性测量,采用HOTDISK 4921探头,加热功率0.01~0.006W,加热时间160秒和320秒。(4)不同温度导热硅脂导热系数测量导热硅脂试样,测试温度25~150℃,每个温度点上至少进行10次重复性测量,采用4921探头。
    留言咨询
  • 产品介绍:DZDR-S瞬态导热系数测定仪是南京大展检测仪器推出一款新导热仪,采用瞬态热源法,具备测量速度快、测试范围广,采用全新的外形设计,简约小巧,双向操作系统,操作便捷性高等优势。测试范围:DZDR-S瞬态导热系数测定仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。测试方法:DZDR-S瞬态导热系数测定仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.不会和静态法一样受到接触热阻的影响;3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4.对样品实行无损检测,意味着样品可以重复使用;5.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • TC3000E导热系数仪是西安夏溪电子科技有限公司专门针对于移动测量需求,如户外检测、野外勘探等样品不易带到实验室检测情况下过程中等开发的一款便携式导热系数仪,能够很方便的将仪器带到样品前,随时随地满足用户的测量需求,并具有实验室精密仪器测量准确的性能。对于实验地点不停变更、测量样品不便更换位置或者样品需要制备完成后需立即测量等情况,便携式导热系数仪TC3000E可以很好地胜任,扩展了精密仪器的适用范围及应用领域。 相比于实验室精密测量的TC3000系列导热系数仪,TC3000E具有性价比高、体积小巧、携带方便等优点,并同时保留了TC3000系列导热系数仪的适用广泛、测量快速、测量准确等优点。 TC3000E仍可广泛适用于保温材料、导热胶、橡胶、塑料、陶瓷、土壤、岩石等各种纯质材料、复合材料在不同状态,如块状、片状、粉末、膏状物或胶体下的导热系数测量,除实验室测试使用外,并能在为现场检测、野外勘探、产品质量检验和生产控制中导热系数测量提供了便利。性价比高 相比于实验室专用的TC3000系列导热系数仪,TC3000E热线法导热系数仪价格低,同时延续了热线法适用范围广、测量速度快、测量结果准确等优点,具有更高的性价比,可以满足化工、建材、导热胶等行业企业的生产、质检、研发的需求;便于携带 TC3000E具有轻巧的外观,携带和移动更方便,不仅可以实现传统的将样品带到仪器前的实验室测量,也可以实现将仪器带到样品面前的现场测量;适用范围广 样品种类:可测量保温材料、橡胶、塑料、导热胶、陶瓷、土壤、岩石等; 样品状态:可测固体、膏体、粉末、胶体等不同状态下的样品; 应用环境:可实现现场检测、实验室测试、教学演示、在线检测等; 无损检测:尤其适用于土壤、木材、生物质等含湿材料;测量快速 一组典型的测量过程,从准备测试到后获得数据,一般只需要2~3分钟; 在试样和传感器已经接好、仪器已连接的前提下,还可以采用软件中的自动多次采集功能,用户可以不必一直守在仪器旁边,只需要在测试结束后导出数据即可,因此可以大大的节省用户的测试时间和精力。测量准确 基于热线法原理,TC3000E导热仪延续了TC3000系列测量准确的优点; 对于标准样品,如有机玻璃、硼硅玻璃,TC3000E的测量准确度和重复性均优于2%;对于表面平整的大多数样品,如橡胶、塑料、陶瓷、保温材料等,其准确度和重复性均在3%之内。技术参数 测量原理:瞬态热线法 测量范围:0.001~50 W/(m?K) 分 辨 率:0.0005 W/(mK) 准 确 度:±3% 重 复 性:±3% 温度范围:常温 测量时间:1~20s 样品用量:小厚度0.1mm,小边长2.5 cm(圆形、方形均可,形状不限) 样品形状:块状、片状、膏状、胶体、液体均可 数据传输:USB 操作系统:Windows 外观尺寸:350×250×150mm 电 源:220V 50Hz 工作环境温度:10℃~40℃选配指南 室温下样品导热系数的测量:TC3000E热线法导热系数仪 室温下粉末样品的导热系数测量:TC3000E热线法导热系数仪、粉末样品框参考标准 ASTM C1113 Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique) ASTM D5930 Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line Source Technique GB/T 10297-1998 非金属固体材料导热系数的测定热线法标准 GB/T 11205-2009 橡胶热导率的测定_瞬态热丝法与TC 3000系列一样,TC3000E仍可以广泛应用于大中院校、科研院所、质检部门和生产厂的材料分析检验检测部门,适用于各种保温材料、导热材料、复合材料导热系数的测量,例如:陶瓷、矿石、聚合物、胶泥、纸、织物、原油、粉末、食品等。同时,由于体积小、质量轻、便于携带、价格低廉等优点,还可以广泛用于现场测量、在线抽样检测等。保温材料 保温材料的应用非常广泛,如建筑保温材料、航空航天保温材料、电力行业保温材料等等。导热系数是保温材料重要的性能之一,是鉴别材料保温性能好坏的主要标志。随着当前我国经济的飞速发展,新型保温材料日新月异,对于测试的速度提出了更高的要求。 TC 3000E系列热线法导热系数仪,在准确测量的同时,其几秒钟的采集速度,可以降低厂家的时间和人力成本,使得研究人员可以将更多的精力和时间放在寻找新型保温材料本身,从而提高企业效益。导热材料 随着电子行业的发展,电路的集成程度越来越高,散热问题日益严重,所以高导热材料成为重要的研究课题之一。目前出现的导热材料形态丰富、种类多样,如导热胶、热传导胶带、导热硅脂,导热硅胶片等各种导热导电材料或导热绝缘材料,因此对于导热系数测量的速度和兼容性提供了更高的要求。 TC 3000E系列探头表面绝缘化处理,可以适用于导热导电材料;同时TC 3000E对样品状态的低要求,能够满足用户用一台仪器测量不同状态导热材料的需求,为用户节省了检测成本。复合材料 对于多层复合材料,热线法导热系数仪器更有优势;由于每层材料的厚度会影响到整体的平均导热系数,而实际生产中每个产品是会客观存在差异的,所以必须是对做成的成品进行检验,以准确的反应该成品的导热系数;热线法对被检测样品的要求很低,所以很适用于各种成品的现场检测,而不需要特意制备样品。 由于探头的高灵敏性和使用灵活性,可以在材料的不同位置、不同方向、不同端面上进行检测,因此除测量材料的导热系数外,TC 3000E系列热线法导热系数仪还有很多拓展应用。材料的均匀性检测 可以检验出材料的均匀性,帮助企业改善工艺和生产方法,也可以帮助检验产品是否合格。比如,对于增加了添加剂的导热胶,添加剂的均匀性会直接影响使用中电子器件的散热效果;TC 3000E系列不仅可以区分采用了不同添加剂后导热胶的性能差异,而且能够通过改变实验条件,判别导热胶在某个方向上的均匀性
    留言咨询
  • TC3000E导热系数仪是西安夏溪电子科技有限公司专门针对于移动测量需求,如户外检测、野外勘探等样品不易带到实验室检测情况下过程中等开发的一款便携式导热系数仪,能够很方便的将仪器带到样品前,随时随地满足用户的测量需求,并具有实验室精密仪器测量准确的性能。对于实验地点的变更、测量样品不便更换位置或者样品需要制备完成后需立即测量等情况,便携式导热系数仪TC3000E可以很好地胜任,扩展了精密仪器的适用范围及应用领域。 相比于实验室精密测量的TC3000系列导热系数仪,TC3000E具有性价比高、体积小巧、携带方便等优点,并同时保留了TC3000系列导热系数仪的适用广泛、测量快速、测量准确等优点。 TC3000E仍可广泛适用于保温材料、导热胶、橡胶、塑料、陶瓷、土壤、岩石等各种纯质材料、复合材料在不同状态,如块状、片状、粉末、膏状物或胶体下的导热系数测量,除实验室测试使用外,并能在为现场检测、野外勘探、产品质量检验和生产控制中导热系数测量提供了便利。主要特点高性价比 相比于实验室专用的TC3000系列导热系数仪,TC3000E热线法导热系数仪价格低,同时延续了热线法适用范围广、测量速度快、测量结果准确等优点,具有更高的性价比,可以很好的满足化工、建材、导热胶等行业企业的生产、质检、研发的需求;便于携带 TC3000E具有轻巧的外观,携带和移动更方便,不仅可以实现传统的将样品带到仪器前的实验室测量,也可以实现将仪器带到样品面前的现场测量;适用范围广 样品种类:可测量保温材料、橡胶、塑料、导热胶、陶瓷、土壤、岩石等; 样品状态:可测固体、膏体、粉末、胶体等不同状态下的样品; 应用环境:可实现现场检测、实验室测试、教学演示、在线检测等; 无损检测:尤其适用于土壤、木材、生物质等含湿材料;测量快速 一组典型的测量过程,从准备测试到后获得数据,一般只需要2~3分钟; 在试样和传感器已经接好、仪器已连接的前提下,还可以采用软件中的自动多次采集功能,用户可以不必一直守在仪器旁边,只需要在测试结束后导出数据即可,因此可以节省用户的测试时间和精力。测量准确 基于热线法原理,TC3000E导热仪延续了TC3000系列测量准确的优点; 对于标准样品,如有机玻璃、硼硅玻璃,TC3000E的测量准确度和重复性均优于2%;对于表面平整的大多数样品,如橡胶、塑料、陶瓷、保温材料等,其准确度和重复性均在3%之内。技术参数 测量原理:瞬态热线法 测量范围:0.001~50 W/(mK) (可拓展至 100 W/(mK)) 分 辨 率:0.0005 W/(mK) 准 确 度:±3% 重 复 性:±3% 温度范围:常温 测量时间:1~20s 样品用量:小厚度0.1 mm,小边长2.5 cm(圆形、方形均可,形状不限) 样品形状:块状、片状、膏状、胶体、液体均可 数据传输:USB 操作系统:Windows 外观尺寸:350×250×150mm 电 源:220V 50Hz 工作环境温度:10℃~40℃选配指南 室温下样品导热系数的测量:TC3000E热线法导热系数仪 室温下粉末样品的导热系数测量:TC3000E热线法导热系数仪、粉末样品框测量软件 参考标准 ASTM C1113 Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique) ASTM D5930 Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line Source Technique GB/T 10297-1998 非金属固体材料导热系数的测定热线法标准 GB/T 11205-2009 橡胶热导率的测定_瞬态热丝法保温材料 保温材料的应用非常广泛,如建筑保温材料、航空航天保温材料、电力行业保温材料等等。导热系数是保温材料重要的性能之一,是鉴别材料保温性能好坏的主要标志。随着当前我国经济的飞速发展,新型保温材料日新月异,对于测试的速度提出了更高的要求。 TC 3000E系列热线法导热系数仪,在准确测量的同时,其几秒钟的采集速度,可以降低厂家的时间和人力成本,使得研究人员可以将更多的精力和时间放在寻找新型保温材料本身,从而提高企业效益。导热材料 随着电子行业的发展,电路的集成程度越来越高,散热问题日益严重,所以高导热材料成为重要的研究课题之一。目前出现的导热材料形态丰富、种类多样,如导热胶、热传导胶带、导热硅脂,导热硅胶片等各种导热导电材料或导热绝缘材料,因此对于导热系数测量的速度和兼容性提供了更高的要求。 TC 3000E系列探头表面绝缘化处理,可以适用于导热导电材料;同时TC 3000E对样品状态的低要求,能够满足用户用一台仪器测量不同状态导热材料的需求,为用户节省了检测成本。典型应用复合材料 对于多层复合材料,热线法导热系数仪器更有优势;由于每层材料的厚度会影响到整体的平均导热系数,而实际生产中每个产品是会客观存在差异的,所以必须是对做成的成品进行检验,以准确的反应该成品的导热系数;热线法对被检测样品的要求很低,所以很适用于各种成品的现场检测,而不需要特意制备样品。 由于探头的高灵敏性和使用灵活性,可以在材料的不同位置、不同方向、不同端面上进行检测,因此除测量材料的导热系数外,TC 3000E系列热线法导热系数仪还有很多拓展应用。材料的均匀性检测 可以检验出材料的均匀性,帮助企业改善工艺和生产方法,也可以帮助检验产品是否合格。比如,对于增加了添加剂的导热胶,添加剂的均匀性会直接影响使用中电子器件的散热效果;TC 3000E系列不仅可以区分采用了不同添加剂后导热胶的性能差异,而且能够通过改变实验条件,判别导热胶在某个方向上的均匀性。
    留言咨询
  • 产品介绍:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。性能优势:1.测试范围广泛,测试性能稳定,在国内同类仪器中,处于优先水平;2.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3.不会和静态法一样受到接触热阻的影响;4.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.对样品实行无损检测,意味着样品可以重复使用;6.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;7.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;10.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套DZDR-S 瞬态热源法导热仪的操作方法:DZDR-S导热系数测试仪测试方法对比:
    留言咨询
  • 产品介绍:DZDR-S是南京大展检测仪器生产一款瞬态热源法导热仪,采用全新的外形设计,简约小巧,配备天平,具有测量速度快,操作简单。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。性能优势:1.测试范围广泛,测试性能稳定;2.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3.不会和静态法一样受到接触热阻的影响;4.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.对样品实行无损检测,意味着样品可以重复使用;6.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;7.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;10.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;12.强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 产品介绍:DZDR-S是南京大展检测仪器生产一款瞬态平面热源法导热仪,采用一体化的机型设计,小巧轻便,同时测量速度快,一键计算导热系数,准确度高等优势。测试范围:DZDR-S 瞬态平面热源法导热仪可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。测试方法:瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间; 2.不会和静态法一样受到接触热阻的影响;3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4对样品实行无损检测,意味着样品可以重复使用;5.探头采用双螺旋线的结构进行设计,结合属数学模型,利用核心算法对探头上采集的数据进行分析计算;6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;9.仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;10.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 产品介绍: DZDR-S 导热系数测试仪是采用了瞬态平面热源法,仪器由南京大展检测仪器研发、生产,采用了一体化的机型设计,能够实现一键测量,同时进口芯片,测量速度快5~160s出结果,操作简单。测量范围: DZDR-S 瞬态平面热源法导热仪测试样品种类较多,包括:金属、陶瓷、合金、矿石、聚合物、复合材料、纸、泡沫和玻璃钢面板复合板材等。测试方法介绍: DZDR-S 瞬态平面热源法导热仪可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量导热系数,为企业质量监控、材料生产以及实验室研究提供了极大的方便,可以选配有粉末测试容器、液体杯。优势特点:1、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2、主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;3、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;4、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;5、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;5、强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。测试步骤:技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面 复旦大学选购我司导热系数测试仪 部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、 陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings24、Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery25、Development of Renewable Biomass-Derived Carbonaceous Aerogel/Mannitol Phase-Change Composites for High Thermal-Energy-Release Efficiency and Shape Stabilization26、Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement27、Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy28、Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy29、Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response30、Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide31、Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement32、Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management33、Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application 34、Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage35、Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage36、Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal37、Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention38、Innovative Integration of Phase-Change Microcapsules with Metal–Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection39、Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat40、Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion
    留言咨询
  • 加拿大C-Therm的Trident HotDisk 瞬态平面热源法导热仪,集hot disc (hot disk)瞬态平面热源法,MTPS改良瞬态平面热源法和TLS Needle探针法于一体,为诸多科研机构、实验室和知名院校所采用,用于航空、航天、汽车、石油和天然气、建筑和3D打印等各领域的新型材料开发和研究。 Trident HotDisk 瞬态平面热源法导热仪具有宽泛的测量范围,可对气凝胶等绝热材料,相变材料PCM,液体和粉末,聚合物,各向异性材料,薄膜以及含能材料等进行导热系数测试。仪器操作简单、可靠,测试时间短,精度高,重复性好,符合ISO 22007-2,GB/T 32064,ASTM D7984,D5334,D5930等标准。 TPS瞬态平面源方法采用双面传感器,可以同时测得材料的导热系数和热扩散系数。瞬态平面源方法通过对实验参数的控制(即测试时间和功率)为导热系数测量提供了灵活性,同时测试无需使用接触介质。 Hot Disc(HotDisk)瞬态平面热源法导热系数范围:0 ~ 2000 W/mK热扩散系数范围:0 ~ 1200 mm2/s比热范围:up to 5 MJ/m3K 如想了解更多关于应用、参数和报价的信息,欢迎咨询。
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面复旦大学选购我司导热系数测试仪部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面复旦大学选购我司导热系数测试仪部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings24、Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery25、Development of Renewable Biomass-Derived Carbonaceous Aerogel/Mannitol Phase-Change Composites for High Thermal-Energy-Release Efficiency and Shape Stabilization26、Immobilization of laccase on phase-change microcapsules as self-thermoregulatory enzyme carrier for biocatalytic enhancement27、Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy28、Integration of Magnetic Phase-Change Microcapsules with Black Phosphorus Nanosheets for Efficient Harvest of Solar Photothermal Energy29、Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response30、Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide31、Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement32、Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management33、Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application34、Biodegradable wood plastic composites with phase change microcapsules of honeycomb-BN-layer for photothermal energy conversion and storage35、Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage36、Molecularly Imprinted Phase-Change Microcapsule System for Bifunctional Applications in Waste Heat Recovery and Targeted Pollutant Removal37、Pomegranate-like phase-change microcapsules based on multichambered TiO2 shell engulfing multiple n-docosane cores for enhancing heat transfer and leakage prevention38、Innovative Integration of Phase-Change Microcapsules with Metal–Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection39、Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat40、Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion
    留言咨询
  • 一、定义瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。产品特点: 1、测试范围广泛,测试性能稳定; 2、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;3、不会和静态法一样受到接触热阻的影响;4、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5、对样品实行无损检测,意味着样品可以重复使用;6、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析7、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;8、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;9、主机的控制系统使用了ARM 微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力, 计算结果更加准确;10、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;11、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;二、技术参数测试范围0.005~300W/(m*K)测量温度范围常温~130℃探头直径一号探头 7.5mm;二号探头 15mm精度≤2%重复性误差≤3%测量时间5~160s样品温升<15℃电源220V整机功率<500W 样品规格 一号探头所测单个样品 (15*15*3.75)mm 二号探头所测单个样品 (30*30*7.5)mm软件特点: 1、支持仪器系数校准。 2、自动计算导热系数,热扩散系数,相关系数,可以自动判断结果是否符合温升。 3、曲线可以一键自适应,曲线放大,缩小,视图拖动。 4、支持同时打开多条曲线,且数量不受限制。 5、可生成报告,图像,结果,实验信息等,模板可自定义。 6、软件内置试验记录、数据处理和报告格式。 7、可到处数据,支持 xls,tps,cvs,png 等格式导出,并支持对 xls,tps,cvs 等格式的导入。软件具有远程更新功能,可以自动获取到新版本的软件,直接安装。 8、支持数据优化,污点数据去除,智能化进行计算。 9、支持中文,英文, 日语,韩语切换。软件界面 复旦大学选购我司导热系数测试仪 部分采购高校及机构1、二维石墨材料导热防腐涂层制备及性能优化 大连理工大学2、水稻秸秆砂浆复合材料热工性能研究 沈阳农业大学3、陶瓷废料制备轻质保温泡沫陶瓷的研究 华南理工大学4、碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能 中国科学院过程工程研究所5、高性能钢结构防火涂层制备性能及应用研究 烟台大学6、真空绝热板芯材木粉原料的隔热性能分析 福建农林大学7、水性纳米隔热保温涂料的制备与性能研究 深圳恒固纳米科技有限公司8、氧化亚铜包覆正二十烷相变材料微胶囊的制备及其多功能性研究 北京化工大学9、结构保温膨胀珍珠岩混凝土的试验及性能研究 河北建筑工程学院10、棉纤维对保温材料性能的影响 南通开放大学11、纳米填料改性环氧树脂复合材料性能研究 东北石油大学12、二硫化钼改性酚醛树脂的耐热性及抗氧化性研究 内蒙古农业大学13、气凝胶掺杂玻化微珠砂浆性能的研究 江苏省既有建筑绿色化改造工程技术研究中心部分使用导热系数客户SCI论文1、Hydrogel beads derived from chrome leather scraps for the preparation of lightweight gypsum2、Size-controlled graphite nanoplatelets_ thermal conductivity enhancers for epoxy resin3、Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers4、Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler5、A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel 6、Fabrication of Graphene/TiO 2 /Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage 7、Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers8、Preparation and characterization of paraffin/expanded graphite composite phase change materials with high thermal conductivity9、Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage10、Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin11、Lamellar-structured phase change composites based on biomass-derived carbonaceoussheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest12、Construction of double cross-linking PEG/h-BN@GO polymeric energy-storage composites with high structural stability and excellent thermal performances13、Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste14、A novel self-thermoregulatory electrode material based on phosphorene-decorated phase-change microcapsules for supercapacitors15、Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core-shell structure for reliable and durable heat energy storage16、Experimental and numerical study on heat emission characteristics of ventilated air annular in tunneling roadway17、Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors18、Mechanical, thermal and acoustical characteristics of composite board kneaded by leather fiber and semi-liquefied bamboo19、Tuning the oxidation degree of graphite toward highly thermally conductive graphite/epoxy composites20、Thermal self-regulatory smart biosensor based on horseradish peroxidase-immobilized phase-change microcapsules for enhancing detection of hazardous substances21、Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation22、Size-tunable CaCO3@n-eicosane phase-change microcapsules for thermal energy storage23、High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy Coatings
    留言咨询
  • 上海众路液态固体粉体导热系数测试仪概况:DR-S是利用瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法比较新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量热导率,为企业质量监控、材料生产以及实验室研究提供了极大的方便。该仪器操作方便,方法简单易懂,不会对被测样品造成损坏。上海众路液态固体粉体导热系数测试仪原理:瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。上海众路液态固体粉体导热系数测试仪测试对象:金属、陶瓷、合金、矿石、聚合物、复合材料、纸、织物、泡沫塑料(表面平整的隔热材料、板材)、矿物棉、水泥墙体、玻璃增强复合板CRC、水泥聚苯板、夹心混凝土、玻璃钢面板复合板材、纸蜂窝板、胶体、液体、粉末、颗粒状和膏状固体等等,测试对象广泛。上海众路液态固体粉体导热系数测试仪主要技术参数: 1.测试范围: 0.005—300W/(m*K)2.测量温度范围: 室温—130℃3.探头直径: 一号探头7.5mm;二号探头15mm4.精度: ±3%5.重复性误差: ≤3%6.测量时间: 5~160秒7.电源: AC 220V8.整机功率: ﹤500w9.样品温升:﹤15℃10.测试样品功率P:一号探头功率0P1w;二号探头功率0P14w11.样品规格:一号探头所测单个样品(15*15*3.75mm);二号探头所测单个样品(30*30*7.5mm)注:1号探头所测的是厚度较薄的低导材料。如所测样品表面光滑平整且具有粘性可将样品进行叠加12. 机器外形:50*41*20
    留言咨询
  • 导热系数是导热材料(如各种导热胶、导热膏、导热脂)、保温材料(如发泡材料、多层材料、气凝胶、建筑保温材料等)、相变材料、橡胶、塑料、陶瓷、金属材料等的重要热性质之一。西安夏溪科技测试中心可提供各种材料的导热系数,对于样品的形状基本没有要求,样品可以是圆形、方形、不规则形等,样品种类包括固体片状、块状、膏体、粉末、胶体等。 测试范围:0.001~2000 W/(mK)温度范围:-30℃~1600℃测量方法:瞬态热线法、探针法、热流计法、防护平板法、激光法样品形态:片状、块状、膏体、胶体、粉末样品形状:基本没有要求,圆形、方形、不规则形均可参考标准:ASTM C1113、ASTM D5930、GB/T 10297、GB/T 11205、ASTM C117、GB/T 10294、ASTM C518、ASTM E1530、GB/T 10295
    留言咨询
  • 介绍:MP-V 导热系数测量平台,可准确测量固体、液体、膏状物和粉末的热导率、热扩散率、比热和热逸散。平台由四种方法组合而成,包括瞬态平面热源法(TPS,ISO 22007-2,ISO 22007-7/ GB/T 32064),瞬态热丝法(THW,ASTM D7896-19),改良式瞬态平面热源法(MTPS,ISO22007-7)和瞬态热线法-探针式(TLS,ASTM D5334-22a,D5930, IEEE-442)。特点:瞬态方法在理论上有相似之处,但在主要设计上具有特定的差异。传感器与电源和感应电路电连接,电流通过传感器,使温度升高并随时间记录变化。产生的热量根据材料热传输特性的速率扩散到样品中。iTransient智慧化检测流程,实现测试和分析的自动化。原始数据可永久保留,以利于結果的确认及分析。只需将样品命名,一键启动后,iTransient会完成测试及数据分析的工作。方法:MP-V 可用于测试导热系数、热扩散系数、比热和热逸散系数,其主要的测试方法包括瞬态平面热源法(TPS) 和瞬态热丝法(THW),分别符合ISO以及ASTM国际标准测试法,也专为个别主要的应用设计而成。不论哪种测试方法,皆为 ”绝对测试法”,因此测试结果是根据原始数据计算,不需校准以及介质,方可直接进行测试。瞬态平面热源法 (TPS, ISO 22007-2, ISO 22007-7 / GB/T 32064)TPS(双螺旋)传感器放置在两块相同材质与尺寸的样品之间(如图1所示)。此方法中,样品假定为半无限体,Thermtest独家 iTPS 功能可协助判定测试所需时间与功率 (MP-V可选的测试时间范围为2 至 160 秒)。此外, 多样的传感器尺寸可供选择,以灵活应变不同的样品尺寸。其他可选的测试模组包括各向异性、薄膜和比热。瞬态热丝法 (THW, ASTM D7896-19)THW传测器插入液体样品置具中(如图2所示)。小直径的传测器线丝和短测试时间,可有效减少对流的影响,且提升准确度。因此,THW方法被公认且广泛被用于液体测试。改良式瞬态平面热源法 (MTPS, ISO 22007-7)MTPS 传测器(如图3所示)遵循与 TPS 相同的工作原理。此传测器配置用于非对称(单面)测试,非常适合只有单件样品可用或者不易分割之大件样品的情况。测试模组包括块体、各向异性、板材和一维,以用于不同表征的材料。瞬态热线法-探针式 (TLS, ASTM D5334-22a, D5930, IEEE-442)TLS传测器(如图4所示)由细电热丝和温度感测器所组成。测试时,只需将传测器完全没入待测样品中。 图1 图2 图3 图4方法瞬态平面热源(TPS)瞬态热丝法(THW)材料固体、膏状物和粉末液体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.01 ~ 500 W/m&bull K0.01~2 W/mK样品尺寸*10 x 10 mm ~无上限20 mL样品厚度*0.05 mm ~无上限N/A其他属性热扩散率 | 比热 | 热逸散(蓄热系数)率热扩散率 | 比热温度范围-75~300℃-50~100℃准确率优于5%优于2%可重复性优于1%优于1%标准ISO 22007-2, ISO 22007-7/ GB/T 32064ASTM D7896-19方法改良式瞬态平面热源法(MTPS)瞬态热线法(TLS)材料固体、膏状物和粉末土壤和高分子聚合物方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.03 ~ 500 W/m&bull K0.1~8 W/mK样品尺寸*25 x 25 mm ~无上限50mm~无上限样品厚度*0.1 mm ~无上限100mm~无上限其他属性热扩散率| 比热 | 热逸散(蓄热系数)率N/A温度范围-50~200℃-40~100℃准确率优于5%优于5%可重复性优于2%优于2%标准ISO 22007-7ASTM D5334-22a, D5930, IEEE-442
    留言咨询
  • 仪器简介:该隔热材料热线法导热系数测试仪、高温导热仪用于测试定形隔热耐火制品,粉状料等材料的导热系数,非金属固体材料导热系数,参考标准:GB5990-86《定形隔热耐火制品导热系数试验方法(热线法)》。GB/T 10297-1998《非金属固体材料导热系数的测定(热线法)》,GB/T 17106-1997《耐火材料导热系数试验方法(平行热线法)》。技术参数:1.导热系数测试范围:交叉热线0.015~1.7w/m.k。平行热线:0.015~20w/m.k; 2.准确度:5%; 3.测试温度1000℃,1400℃,1600℃。(可供选择); 4.试样尺寸要求:Max230*114*65(mm); 5.计量加热功率可调节,也可有计算机控制; 6.同时实现交叉热线和平行热线法测试; 7.连接计算机实现全自动测试分析,windows 7/xp中文操作热分析应用软件; 8.在同一机器配比热容测试模块,可测定固体,粉体材料的比热容。比热容测试精度:7%到10%。 根据用户的测试要求可配置热带法测试和探针法测试方法的仪器。主要特点:仪器集交叉热线和平行热线于一体,合理的设计,由计算机实现全自动测试分析。广泛应用于科研教学,工矿企业质量检测,新材料热物性检测等。
    留言咨询
  • C-Therm的Tx导热系数分析仪采用改良瞬态平面热源法(MTPS)专利技术.单面的界面热传感器(探头),像样品表面施加一个瞬时恒定热源,可以直接测量材料的导热系数和蓄热系数,进而为样品的热物性提供详细的描述.应用范围广泛,可用于固体,粉末,胶体,液体.● 符合标准: ASTM D7984
    留言咨询
  • 产品介绍XIATECH推出的TC3000E导热系数测试仪兼具教学和科研功能,可应用于本科教学,推动本科产教融合建设;适用范围广,固体、液体、膏体、粉末颗粒均可测试。也可应用于科研,目前使用 XIATECH TC3000E导热系数仪发表的高水平论文超400篇。★ 测量原理:瞬态热线★ 测量范围:0.0001~50W/(mK)★ 样品尺寸:固体边长>25mm;液体/胶体/膏体≥50mL★ 样品形状:块状、片状、膏状、粉末、颗粒、胶体、液体均可(圆形、 方形、不规则形状均可,形状无限制)★ 准确度:±3%Ø 先进的检测原理XIATECH TC3000E 导热系数仪采用瞬态热线检测方法,瞬态热线法因测量时间短、准确度高、对环境要求低等优点,得到了大力的发展,已经成为目前国际上导热系数研究领域内可靠的导热系数测量方法。TC3000E导热系数仪操作简单直观,完全符合瞬态热线法的测量模型,可以让学生更好的理解检测原理。Ø 适用范围广TC3000E导热系数仪对材料的形态没有限制,固体材料、粉末颗粒、膏体、液体材料均可测试。可以根据实验课程需要,灵活安排实验内容。固体材料:合成材料:如陶瓷、橡胶、添加剂、织物、玻璃、纸、药品等;复合材料:如塑料、基底材料、热电材料、相变材料等;天然材料:如木头、食物、谷物薄膜薄片:高分子薄膜、导热胶片等胶体材料:粘结剂、润滑脂、凝胶、果冻、导热胶、化妆品、粘稠溶剂等粉末颗粒:土壤颗粒、气凝胶粉末、氧化铝粉末、金属粉末、催化剂粉末等液体材料:石油燃料、化工溶剂、医学制剂、生物制剂、润滑油、冷冻机油、制冷剂、纳米流体等Ø 样品用量少,便于准备教学素材块状或片状材料:最小边长大于25mm;粉末/胶体/液体:最少用量50mL;不需要知道试样的尺寸数据、样品形状(各向异性材料除外)对测试结果没有影响。方便老师准备教学素材。Ø 可协助制定教学计划夏溪科技已帮十多家高校制定了教学计划,在导热系数的检测方法介绍、原理介绍、设备操作教学和实验安排等方面都有丰富的经验。可以根据老师的实验内容、学生数量和课堂时间,协助老师制定教学手册。产品技术参数TC3000E测量原理瞬态热线法测量范围0.001~50 W/(mK) (可拓展至 100 W/(mK))分辨率0.0005 W/(mK)准确度± 3 %重复性± 3 %温度范围室温采集时间1~20 s样品用量固体边长> 25 mm;液体/胶体/膏体用量≥ 50 mL样品形状块状、片状、膏状、粉末、颗粒、胶体、液体均可外形尺寸350×250×150(L×W×H,mm)数据传输USB操作系统Windows工作环境0~40 ℃,≤65% RH电 源220 V,50 Hz
    留言咨询
  • MP-V 导热系数测量平台,用于测试固体、液体、糊状物和粉状物的导热系数、热扩散率和比热,平台由四种方法组合而成,包括瞬态平面源(TPS,ISO 22007-2),瞬态热线(THW,ASTM D7896),改良版瞬态平面热源(MTPS)和瞬态线热源(TLS,ASTM D5334, ASTM D5930, IEEE-442)。方法瞬态热平面源(TPS)瞬态热线法(THW)材料 固体、糊剂和粉末液体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.01 ~ 500 W/m&bull K0.01~2 W/mK样品尺寸*10 x 10 mm ~无上限20 mL 样品厚度*0.05 mm ~无上限N/A其他属性热扩散率| 比热 | 热逸散(蓄热系数)率热扩散率| 比热温度范围-75~300 °C-50~100 °C准确率优于5%优于2%可重复性优于1%优于1%标准 ISO 22007-2, GB/T 32064ASTM D7896-19方法MTPS瞬态线热源(TLS)材料固体、糊剂和粉末固体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.03 ~ 500 W/m&bull K0.1~8 W/mK样品尺寸*25 x 25 mm ~无上限50mm~无上限样品厚度*0.1 mm ~无上限100mm~无上限其他属性热扩散率| 比热 | 热逸散(蓄热系数)率N/A温度范围-50~200 ℃-40~100 °C准确率优于5%优于5%可重复性优于2%优于2%标准N/AASTM D5334, ASTM D5930, IEEE-442
    留言咨询
  • THW-L1 瞬态热线法,遵循ASTM 7896-19被广泛应用在液体、胶体的热传导系数、热扩散系数、比热的测试。透过独有的温度平台对应各种不同的温度测试都有更好的扩充。THW的传感器由一根40mm长的金属夹热线丝组成,测试时完全没入待侧样品中。透过电流进行加热并记录电阻变化来测定温度的变化,进而得到热导率。1sec的测试能大幅减少液体对流对于测试的影响
    留言咨询
  • Trident 瞬态平面源 400-860-5168转0702
    加拿大C-Therm公司的Trident导热仪,可采用Flex TPS配置,通过瞬态平面源的柔性双面传感器,给予测试灵活性。用户可自由设置测试时间和功率参数,测定固体、液体、粉末、胶体的导热系数、热扩散系数和比热,并配有专门测试薄板、薄膜以及各向异性材料的模块,适应ISO 22007-2:2015, GB/T 32064-2015标准。 除瞬态平面源TPS方法外,Trident还可另外选择搭载MTPS改良瞬态平面热源法和TLS探针法。 技术参数:可选测试方法: 瞬态平面源(Flex TPS)、改良瞬态平面热源法(MTPS)和探针法(TLS Needle)导热系数:0-2000 W/mK热扩散系数:0-1200 mm2/s比热:0-5 MJ/m3K吸热系数:0 - 40,000 Ws?/m2K精确度:优于5%重复性:优于1%测试时间:0.8 – 180秒测试材料种类:块状材料,复合材料,薄膜材料,薄板材料,各向异性材料 如想了解更多关于应用、参数和报价的信息,欢迎来电或留言咨询。
    留言咨询
  • C-Therm公司推出的新型三合一导热系数测试仪Trident,又称导热系数分析仪,热常数分析仪,它将高精度的改良瞬态平面源(Modified Transient Plane Source,MTPS)与灵活的瞬态平面源(Transient Plane Source,FLEX TPS)和强大的瞬态热线法(Transient Line Source,TLS NEEDLE)三种技术结合在一起。C-Therm的MTPS传感技术,使得导热系数的测试更加简单,更易进行。目前市场上没有比之更快更简便的测试导热率、热扩散率和吸热系数的方法。与其它瞬态法相比,C-Therm Trident导热系数测试仪无需进行复杂的回归分析,无需对样品进行特殊制备,不需要预先了解材料其他的性能参数,例如比热容。 产品特征:1. 广泛的温度范围:-50℃到500℃。2. 易操作,无需校准。3. 灵活性高,可用于实验室,质量控制和在线检测。4. 无需制备样品,样品尺寸不受限制。5. 适用范围广:可以测试固体,液体,粉末,胶体,各向异性材料和薄膜,且可以在各种环境中灵活操作。6. 无损测试:样品不受损坏。技术参数 MTPSFlex TPSNeedle测试方法改良瞬态平面热源法瞬态平面热源法探针法导热系数范围0 ~ 500 W/mK0 ~ 2000 W/mK0.1 ~ 6 W/mK热扩散系数范围0 ~ 300 mm2/s0 ~ 1200 mm2/s不适用比热范围~ 5 MJ/m3K~ 5 MJ/m3K不适用吸热系数范围5 ~ 40,000 Ws1/2/m2K不适用不适用精度优于1%优于1%优于3%准确度优于5%优于5%±(3%+0.02) W/mK国际标准ASTM D7984ISO 22007-2.2, GB/T 32064ASTM D5334, D5930, IEEE 442
    留言咨询
  • 导热系数分析仪 400-860-5168转4249
    ZHDL-S 瞬态平面热源法导热仪简介ZHDL-S是利用瞬态平面热源技术(TPS)开发的导热系数测试仪,可用于各种不同类型材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个全新的水平。在研究材料时能够快速准确的测量热导率,为企业质量监控、材料生产以及实验室研究提供了极大的方便。该仪器操作方便,方法简单易懂,不会对被测样品造成损坏。二、工作原理 瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chalmer理工大学的Silas Gustafsson教授在热线法的基础上发展起来的。它测定材料热物性的原理是基于无限大介质中阶跃加热的圆盘形热源产生的瞬态温度响应。利用热阻性材料做成一个平面的探头,同时作为热源和温度传感器。合金的热阻系数一温度和电阻的关系呈线性关系,即通过了解电阻的变化可以知道热量的损失,从而反映了样品的导热性能。该方法的探头即是采用导电合金经刻蚀处理后形成的连续双螺旋结构薄片,外层为双层的绝缘保护层,厚度很薄,它令探头具有一定的机械强度并保持与样品之间的电绝缘性。在测试过程中,探头被放置于样品中间进行测试。电流通过探头时,产生一定的温度上升,产生的热量同时向探头两侧的样品进行扩散,热扩散的速度依赖于材料的热传导特性。通过记录温度与探头的响应时间,由数学模型可以直接得到导热系数。三、测试对象金属、陶瓷、合金、矿石、聚合物、复合材料、纸、织物、泡沫塑料(表面平整的隔热材料、板材)、矿物棉、水泥墙体、玻璃增强复合板CRC、水泥聚苯板、夹心混凝土、玻璃钢面板复合板材、纸蜂窝板、胶体、液体、粉末、颗粒状和膏状固体等等,测试对象广泛。仪器特点1、仪器参考标准:ISO 22007-2 20082、测试范围广泛,测试性能稳定,在国内同类仪器中,处于中上水平;3、直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;4、不会和静态法一样受到接触热阻的影响;5、无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;6、对样品实行无损检测,意味着样品可以重复使用;7、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;8、样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;9、探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;10、主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加精确;11、仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定;12、智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;13、强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。五、技术参数: 测试范围:0.0001—300 W/(m*K)测量样品温度范围:室温—130℃探头直径:一号探头7.5mm;二号探头15mm;三号探头30mm精度:±3%重复性误差:≤3%测量时间:5~160秒电源:AC 220V整机功率:﹤500w样品温升﹤15℃测试样品功率P: 一号探头功率01w;二号探头功率014w三号探头功率014w 样品规格:一号探头所测单个样品(15*15*3.75mm) 二号探头所测单个样品 (30*30*7.5mm) 三号探头所测单个样品 (60*60*2mm)注:1号探头所测的是厚度较薄的低导材料,3号探头测试导热系数50以上的材料;如所测样品表面光滑平整且具有粘性可将样品进行叠加。六、与其他方法相比更快速、更简单、更全面瞬态平面热源法激光法热线法保护平板法测量方法非稳态法非稳态法非稳态法稳态法测量物性直接获得导热系数和热扩散率直接获得热扩散率和比热,通过输入的样品密度值计算得到导热系数直接获得导热系数直接获得导热系数适用范围固体、液体、粉末、膏体、胶体、颗粒固体固体、液体固体样品制备无特殊要求,制样简单制样繁杂制样简单,有特定要求样品尺寸较大测量准确度±3%,蕞好可达到±0.5%蕞好可达到±10%蕞好可达到±5%蕞好可达到±3%物理模型平面热源接触式测量,只要有限面接触良好热源非接触式线热源,必须线模型接触良好热源接触式,需面接触良好热导范围[w/(m*k)]0.005-30010-5000.005-100.005-5测量时间5-160S几分钟几十分钟数小时价格¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 七、操作方法简单易懂
    留言咨询
  • 1、产品介绍 TC3200L液体导热系数仪是TC3000L系列液体导热系数中的高温款,充分发挥了热线法的准确度高(3%)、测试速度快(2s)的优点; XIATECH的专业设计,使其具有足够的抗震性和耐用性,且只需要很少的样品用量(>40mL),即可获得准确的导热系数数据。2、主要特点 ★ 测量快速:2 s内获得数据,很大程度避免自然对流的影响; ★ 测量准确:采用标准试样甲苯和纯水进行检验,准确度可达0.5 %,全量程范围内优于3 %; ★ 适用广泛:适用广泛:可用于室温~200 ℃、0.1~15 MPa内各种极性和非极性流体; ★ 样品用量少:样品用量少:只需要40 mL就可以获得准确的测量结果; ★ 操作简单:操作简单:自动化程度高,无需专业人员即可操作设备; ★ 符合ASTM D2717 ASTM D7896标准。3、适用范围 广泛适用于不同温度条件下各种极性或非极性液体,可测试的样品包括纳米流体、液体燃料、制冷剂、冷冻液、润滑油、离子液体等。4、技术参数TC 3100LTC 3200L测量原理瞬态热线法瞬态热线法温度范围-30~100 ℃室温~200 ℃测量范围0.0005~5 W/(m K)0.0005~5 W/(mK)分 辨 率0.0001 W/(mK)0.0001 W/(mK)准 确 度± 2 %± 3 %重 复 性± 2 %± 3 %耐压范围15 MPa压力控制可选(0.1~15 MPa)测量时间≤ 2 s样品用量≥ 40 mL适用范围各种极性或非极性液体((包含但不限于各类油品、制冷剂、纳米流体、冷冻液、无机盐溶液、各类化学液体试剂等))数据传输USB操作系统Windows参考标准ASTM D2717 ASTM D78965、典型应用 ★ 纳米流体:如TiO2纳米流体、Al2O3纳米流体、Fe3O4纳米流体、ZrO2纳米流体等; ★ 液体燃料:如汽油、柴油、煤油、汽油添加剂、含氧燃料、各种新型的替代燃料等; ★ 制冷剂:如R134a、R12、R22、R123、二甲醚等制冷剂以及制冷剂与润滑油混合物等; ★ 其它:如冷冻液、润滑油、导热油、离子液体等各种极性、非极性液体。
    留言咨询
  • 1、产品介绍 TC3000系列热线法通用型导热系数仪具有测量准确、测量快速、操作简单、适用广泛等优点,为科研领域中的材料研究、导热性能改进以及工业中的产品质量检验、生产控制提供了便利。2、主要特点★ 测量准确:准确度可达1 %,全量程范围内优于3 %;★ 测量快速:1~20 s内即可获得数据,同时可自动连续多次测量,节省了用户的时间;★ 样品要求低:对形状无特殊要求,不规则形状的样品也可直接测量;★ 无损检测:测量速度快、加热功率低,对于成分不稳定材料的导热系数测量具有明显的优势;★ 适用广泛:各种块状、片状、粉末、颗粒、胶体、膏体、液体均可适用,且无需更换探头;★ 符合ASTM C1113 ASTM D5930 GB/T 10297 GB/T 11205标准。3、适用范围广泛适用于不同温度条件下保温材料、塑料橡胶、导热硅脂、岩石土壤、相变材料、动植物体、金属合金等样品,可测试的样品形态包括块状、片状、粉末、膏体、胶体以及不规则形状等。4、技术参数 TC3100TC3200测量原理瞬态热线法瞬态热线法温度范围-30~100℃室温~200℃测量范围0.001~50 W/(m K)(可拓展至 100 W/(mK) )0.001~50 W/(m K)(可拓展至 100 W/(mK) )分 辨 率0.0005 W/(mK)0.0005 W/(mK)准 确 度± 3 %± 3 %~ 5 %重 复 性± 3 %± 3 %测量时间1~20 s样品形状块状、片状、膏状、粉末、颗粒、胶体、液体均可(圆形、方形均可,对形状无限制)样品尺寸固体小厚度0.1mm,边长≥25mm;液体、胶体、膏体小用量50mL 数据传输USB操作系统Windows参考标准ASTM C1113 ASTM D5930 GB/T 10297 GB/T 112055、典型应用★ 合成材料:如陶瓷、橡胶、添加剂、织物、玻璃、纸等; ★ 复合材料:如塑料、基底材料、热电材料、相变材料等;★ 天然材料:如木头、动植物体、谷物、土壤、岩石等;★ 胶体材料:如粘结剂、润滑脂、凝胶、果冻、导热胶、化妆品、粘稠溶剂等;★ 金属合金:不锈钢、铸铁、铅、镍、锡等,以及钠钾合金等液态金属;★ 液体材料:如石油燃料、化工溶剂、医学制剂、生物制剂、润滑油、冷冻机油、制冷剂、纳米流体等
    留言咨询
  • MP-1 导热系数测量平台,用于测试固体、液体、糊状物和粉状物的导热系数、热扩散率和比热,平台由四种方法组合而成,包括瞬态平面源(TPS,ISO 22007-2),瞬态热线(THW,ASTM D7896),改良版瞬态平面热源(MTPS)和瞬态线热源(TLS,ASTM D5334, ASTM D5930, IEEE-442)。方法瞬态热平面源(TPS)瞬态热线法(THW)材料固体、糊剂和粉末液体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.005 ~ 1800 W/m&bull K0.01~2 W/mK样品尺寸*5 x 5 mm ~无上限20 mL样品厚度*0.01 mm ~无上限N/A其他属性热扩散率| 比热 | 热逸散(蓄热系数)率热扩散率| 比热温度范围-160~1000 °C-160~300 °C准确率优于5%优于2%可重复性优于1%优于1%标准ISO 22007-2, GB/T 32064ASTM D7896-19方法MTPS瞬态线热源(TLS)材料固体、糊剂和粉末固体方向3D / 1D: 各向异性、板材、薄膜整体热导率 (W/m&bull K)0.03 ~ 500 W/m&bull K0.1~8 W/mK样品尺寸*25 x 25 mm ~无上限50mm~无上限样品厚度*0.1 mm ~无上限100mm~无上限其他属性热扩散率| 比热 | 热逸散(蓄热系数)率N/A温度范围-50~200 ℃-40~100 °C 准确率优于5%优于5%可重复性优于2%优于2%标准N/AASTM D5334, ASTM D5930, IEEE-442
    留言咨询
  • DZDR-S导热系数测试仪产品介绍:  利用瞬变平面热源技术(TPS)的导热系数仪。该产品由大展机电技术研究所自主研发,测试性能稳定,数据处理分析能力强,可用于各种不同类型材料的热传导性能的测量。  DZDR-S导热系数测试仪测量对象:  材料类型:金属、陶瓷、合金、矿石、聚合物、复合材料、纸、织物、泡沫塑料(表面平整的隔热材料、板材),聚氨酯、酚醛、尿醛、矿物棉(玻璃棉、岩棉、矿棉)、水泥墙体、玻璃增强复合板CRC、水泥聚苯板、夹心混凝土、玻璃钢面板复合板材、纸蜂窝板等。  DZDR-S导热系数测试仪技术参数:测试范围0.005—300W/(m*K)测量样品温度范围室温~130℃探头直径一号探头8mm;二号探头15mm精度±3%重复性误差≤3%测量时间5~160秒工作电源AC220V整机功率﹤500w样品温升﹤15℃测试样品功率P一号探头功率01w;二号探头功率020w样品规格一号探头样品(15*15*7.5mm)二号探头样品(30*30*15mm)1号探头所测的是厚度较薄的低导材料(λ≤0.2W/(m*K))。如所测样品表面光滑平整且具有粘性可将样品进行叠加  DZDR-S导热系数测试仪性能优势:  1.测试范围广泛,测试性能稳定,在国内同类仪器中,处于优先水平。  2.智能化的人机界面,彩色大屏液晶显示。  3.简洁的操作,实验测试时间短。  4.智能化的数据处理。高度自动化的计算机数据通讯和报告处理系统。  5.自动生成测试报告,接上打印机便可打印。软件内置实验记录、数据处理和报告格式,自动出具实验报告。 DZDR-S导热系数测试仪测试方法:
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制